1
|
Liebing AD, Rabe P, Krumbholz P, Zieschang C, Bischof F, Schulz A, Billig S, Birkemeyer C, Pillaiyar T, Garcia-Marcos M, Kraft R, Stäubert C. Succinate receptor 1 signaling mutually depends on subcellular localization and cellular metabolism. FEBS J 2025. [PMID: 39838520 DOI: 10.1111/febs.17407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/08/2024] [Accepted: 01/09/2025] [Indexed: 01/23/2025]
Abstract
Succinate is a pivotal tricarboxylic acid cycle metabolite but also specifically activates the Gi- and Gq-coupled succinate receptor 1 (SUCNR1). Contradictory roles of succinate and succinate-SUCNR1 signaling include reports about its anti- or pro-inflammatory effects. The link between cellular metabolism and localization-dependent SUCNR1 signaling qualifies as a potential cause for the reported conflicts. To systematically address this connection, we used a diverse set of methods, including several bioluminescence resonance energy transfer-based biosensors, dynamic mass redistribution measurements, second messenger and kinase phosphorylation assays, calcium imaging, and metabolic analyses. Different cellular metabolic states were mimicked using glucose (Glc) or glutamine (Gln) as available energy substrates to provoke differential endogenous succinate (SUC) production. We show that SUCNR1 signaling, localization, and metabolism are mutually dependent, with SUCNR1 showing distinct spatial and energy substrate-dependent Gi and Gq protein activation. We found that Gln-consumption associated with a higher rate of oxidative phosphorylation causes increased extracellular SUC concentrations, accompanied by a higher rate of SUCNR1 internalization, reduced miniGq protein recruitment to the plasma membrane, and lower Ca2+ signals. In Glc, under basal conditions, SUCNR1 causes stronger Gq than Gi protein activation, while the opposite is true upon stimulation with an agonist. In addition, SUCNR1 specifically interacts with miniG proteins in endosomal compartments. In THP-1 cells, polarized to M2-like macrophages, endogenous SUCNR1-mediated Gi signaling stimulates glycolysis, while Gq signaling inhibits the glycolytic rate. Our results suggest that the metabolic context determines spatially dependent SUCNR1 signaling, which in turn modulates cellular energy homeostasis and mediates adaptations to changes in SUC concentrations.
Collapse
Affiliation(s)
- Aenne-Dorothea Liebing
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Germany
| | - Philipp Rabe
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Germany
| | - Petra Krumbholz
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Germany
| | - Christian Zieschang
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Germany
| | - Franziska Bischof
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Germany
| | - Angela Schulz
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Germany
| | - Susan Billig
- Research Group of Mass Spectrometry, Institute of Analytical Chemistry, Leipzig University, Germany
| | - Claudia Birkemeyer
- Research Group of Mass Spectrometry, Institute of Analytical Chemistry, Leipzig University, Germany
- German Center for Integrative Biodiversity Research (iDiv) Halle-Leipzig-Jena, Germany
| | - Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Germany
| | - Mikel Garcia-Marcos
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, MA, USA
- Department of Biology, Boston University College of Arts & Sciences, MA, USA
| | - Robert Kraft
- Carl Ludwig Institute for Physiology, Medical Faculty, Leipzig University, Germany
| | - Claudia Stäubert
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Germany
| |
Collapse
|
2
|
Chen Y, Liu L, Calhoun R, Cheng L, Merrick D, Steger DJ, Seale P. Transcriptional regulation of adipocyte lipolysis by IRF2BP2. SCIENCE ADVANCES 2025; 11:eads5963. [PMID: 39752494 PMCID: PMC11698119 DOI: 10.1126/sciadv.ads5963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/03/2024] [Indexed: 01/06/2025]
Abstract
Adipocyte lipolysis controls systemic energy levels and metabolic homeostasis. Lipolysis is regulated by posttranslational modifications of key lipolytic enzymes. However, less is known about the transcriptional mechanisms that regulate lipolysis. Here, we identify interferon regulatory factor-2 binding protein 2 (IRF2BP2) as a transcriptional repressor of adipocyte lipolysis. Deletion of IRF2BP2 in human adipocytes increases lipolysis without affecting glucose uptake, whereas IRF2BP2 overexpression decreases lipolysis. RNA sequencing, and chromatin immunoprecipitation sequencing analyses show that IRF2BP2 represses lipolysis-related genes, including LIPE, which encodes hormone sensitive lipase, the rate-limiting enzyme in lipolysis. Adipocyte-selective deletion of Irf2bp2 in mice increases Lipe expression and free fatty acid levels, resulting in adipose tissue inflammation and glucose intolerance. Together, these findings demonstrate that IRF2BP2 restrains adipocyte lipolysis and opens avenues to target lipolysis for the treatment of metabolic disease.
Collapse
Affiliation(s)
- Yang Chen
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lin Liu
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan Calhoun
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lan Cheng
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Merrick
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David J. Steger
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick Seale
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Chen Y, Liu L, Calhoun R, Cheng L, Merrick D, Steger DJ, Seale P. Transcriptional regulation of adipocyte lipolysis by IRF2BP2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.605689. [PMID: 39211193 PMCID: PMC11360913 DOI: 10.1101/2024.07.31.605689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Adipocyte lipolysis controls systemic energy levels and metabolic homeostasis. Lipolysis is regulated by post-translational modifications of key lipolytic enzymes. However, less is known about the transcriptional mechanisms that regulate lipolysis. Here, we identify the transcriptional factor interferon regulatory factor-2 binding protein 2 (IRF2BP2) as a repressor of adipocyte lipolysis. Deletion of IRF2BP2 in primary human adipocytes increases lipolysis without affecting glucose uptake, whereas IRF2BP2 overexpression decreases lipolysis. RNA-seq and ChIP-seq analyses reveal that IRF2BP2 directly represses several lipolysis-related genes, including LIPE ( HSL , hormone sensitive lipase), which encodes the rate-limiting enzyme in lipolysis. Adipocyte-selective deletion of Irf2bp2 in mice increases Lipe expression and free fatty acid levels, resulting in elevated adipose tissue inflammation and glucose intolerance. Altogether, these findings demonstrate that IRF2BP2 restrains adipocyte lipolysis and opens new avenues to target lipolysis for the treatment of metabolic disease.
Collapse
|
4
|
Cui Y, Auclair H, He R, Zhang Q. GPCR-mediated regulation of beige adipocyte formation: Implications for obesity and metabolic health. Gene 2024; 915:148421. [PMID: 38561165 DOI: 10.1016/j.gene.2024.148421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/10/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Obesity and its associated complications pose a significant burden on health. The non-shivering thermogenesis (NST) and metabolic capacity properties of brown adipose tissue (BAT), which are distinct from those of white adipose tissue (WAT), in combating obesity and its related metabolic diseases has been well documented. However, beige adipose tissue, the third and relatively novel type of adipose tissue, which emerges in extensive presence of WAT and shares similar favorable metabolic properties with BAT, has garnered considerable attention in recent years. In this review, we focused on the role of G protein-coupled receptors (GPCRs), the largest receptor family and the most successful class of drug targets in humans, in the induction of beige adipocytes. More importantly, we highlight researchers' clinical treatment attempts to ameliorate obesity and other related metabolic diseases through the formation and activation of beige adipose tissue. In summary, this review provides valuable insights into the formation of beige adipose tissue and the involvement of GPCRs, based on the latest advancements in scientific research.
Collapse
Affiliation(s)
- Yuanxu Cui
- Animal Zoology Department, Kunming Medical University, Kunming, China; Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, China
| | - Hugo Auclair
- Faculty of Medicine, François-Rabelais University, Tours, France
| | - Rong He
- Animal Zoology Department, Kunming Medical University, Kunming, China
| | - Qiang Zhang
- Animal Zoology Department, Kunming Medical University, Kunming, China.
| |
Collapse
|
5
|
Dietzsch AN, Al-Hasani H, Altschmied J, Bottermann K, Brendler J, Haendeler J, Horn S, Kaczmarek I, Körner A, Krause K, Landgraf K, Le Duc D, Lehmann L, Lehr S, Pick S, Ricken A, Schnorr R, Schulz A, Strnadová M, Velluva A, Zabri H, Schöneberg T, Thor D, Prömel S. Dysfunction of the adhesion G protein-coupled receptor latrophilin 1 (ADGRL1/LPHN1) increases the risk of obesity. Signal Transduct Target Ther 2024; 9:103. [PMID: 38664368 PMCID: PMC11045723 DOI: 10.1038/s41392-024-01810-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/04/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Obesity is one of the diseases with severe health consequences and rapidly increasing worldwide prevalence. Understanding the complex network of food intake and energy balance regulation is an essential prerequisite for pharmacological intervention with obesity. G protein-coupled receptors (GPCRs) are among the main modulators of metabolism and energy balance. They, for instance, regulate appetite and satiety in certain hypothalamic neurons, as well as glucose and lipid metabolism and hormone secretion from adipocytes. Mutations in some GPCRs, such as the melanocortin receptor type 4 (MC4R), have been associated with early-onset obesity. Here, we identified the adhesion GPCR latrophilin 1 (ADGRL1/LPHN1) as a member of the regulating network governing food intake and the maintenance of energy balance. Deficiency of the highly conserved receptor in mice results in increased food consumption and severe obesity, accompanied by dysregulation of glucose homeostasis. Consistently, we identified a partially inactivating mutation in human ADGRL1/LPHN1 in a patient suffering from obesity. Therefore, we propose that LPHN1 dysfunction is a risk factor for obesity development.
Collapse
Affiliation(s)
- André Nguyen Dietzsch
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Munich-Neuherberg, Germany
| | - Joachim Altschmied
- Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cardiovascular Research Institute (CARID), Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Katharina Bottermann
- Cardiovascular Research Institute (CARID), Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Pharmacology, Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jana Brendler
- Institute of Anatomy, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Judith Haendeler
- Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cardiovascular Research Institute (CARID), Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Susanne Horn
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Isabell Kaczmarek
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Antje Körner
- Center for Pediatric Research, Hospital for Children and Adolescents, Medical Faculty, Leipzig University, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Kerstin Krause
- Department of Endocrinology, Nephrology, Rheumatology, Leipzig University Medical Center, Leipzig, Germany
| | - Kathrin Landgraf
- Center for Pediatric Research, Hospital for Children and Adolescents, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Diana Le Duc
- Institute of Human Genetics, Leipzig University Medical Center, Leipzig, Germany
| | - Laura Lehmann
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefan Lehr
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Munich-Neuherberg, Germany
| | - Stephanie Pick
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Albert Ricken
- Institute of Anatomy, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Rene Schnorr
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Angela Schulz
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Martina Strnadová
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Akhil Velluva
- Institute of Human Genetics, Leipzig University Medical Center, Leipzig, Germany
| | - Heba Zabri
- Institute of Pharmacology, Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
- School of Medicine, University of Global Health Equity, Kigali, Rwanda
| | - Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany.
| | - Simone Prömel
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
6
|
Kimura T, Iwadare T, Wakabayashi SI, Kuldeep S, Nakajima T, Yamazaki T, Aomura D, Zafar H, Iwaya M, Joshita S, Uehara T, Pydi SP, Tanaka N, Umemura T. Thrombospondin 2 is a key determinant of fibrogenesis in non-alcoholic fatty liver disease. Liver Int 2024; 44:483-496. [PMID: 38010940 DOI: 10.1111/liv.15792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023]
Abstract
OBJECTIVE Hepatic overexpression of the thrombospondin 2 gene (THBS2) and elevated levels of circulating thrombospondin 2 (TSP2) have been observed in patients with chronic liver disease. This study aimed to identify the specific cells expressing THBS2/TSP2 in non-alcoholic fatty liver disease (NAFLD) and investigate the underlying mechanism behind THBS2/TSP2 upregulation. DESIGN Comprehensive NAFLD liver gene datasets, including single-cell RNA sequencing (scRNA-seq), in-house NAFLD liver tissue, and LX-2 cells derived from human hepatic stellate cells (HSCs), were analysed using a combination of computational biology, genetic, immunological, and pharmacological approaches. RESULTS Analysis of the genetic dataset revealed the presence of 1433 variable genes in patients with advanced fibrosis NAFLD, with THBS2 ranked among the top 2 genes. Quantitative polymerase chain reaction (qPCR) examination of NAFLD livers showed a significant correlation between THBS2 expression and fibrosis stage (r = .349, p < .001). In support of this, scRNA-seq data and in situ hybridization demonstrated that the THBS2 gene was highly expressed in HSCs of NAFLD patients with advanced fibrosis. Pathway analysis of the gene dataset revealed THBS2 expression to be associated with the transforming growth factor beta (TGFβ) pathway and collagen gene activation. Moreover, the activation of LX-2 cells with TGFβ increased THBS2/TSP2 and collagen expression independently of the TGFβ-SMAD2/3 pathway. THBS2 gene knockdown significantly decreased collagen expression in LX-2 cells. CONCLUSIONS THBS2/TSP2 is highly expressed in HSCs and plays a role in regulating fibrogenesis in NAFLD patients. THBS2/TSP2 may therefore represent a potential target for anti-fibrotic therapy in NAFLD.
Collapse
Affiliation(s)
- Takefumi Kimura
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
- Consultation Center for Liver Diseases, Shinshu University Hospital, Matsumoto, Japan
| | - Takanobu Iwadare
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shun-Ichi Wakabayashi
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Seema Kuldeep
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Tomoyuki Nakajima
- Department of Laboratory Medicine, Shinshu University School Hospital, Matsumoto, Japan
| | - Tomoo Yamazaki
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
- Department of Medicine, University of California San Diego, San Diego, La Jolla, USA
| | - Daiki Aomura
- Department of Medicine, Division of Nephrology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hamim Zafar
- Department of Computer Science and Engineering and Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Mai Iwaya
- Department of Laboratory Medicine, Shinshu University School Hospital, Matsumoto, Japan
| | - Satoru Joshita
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takeshi Uehara
- Department of Laboratory Medicine, Shinshu University School Hospital, Matsumoto, Japan
| | - Sai P Pydi
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Naoki Tanaka
- Department of Global Medical Research Promotion, Shinshu University Graduate School of Medicine, Matsumoto, Japan
- International Relations Office, Shinshu University School of Medicine, Matsumoto, Japan
- Research Center for Social Systems, Shinshu University, Matsumoto, Japan
| | - Takeji Umemura
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
- Consultation Center for Liver Diseases, Shinshu University Hospital, Matsumoto, Japan
| |
Collapse
|
7
|
Zhang K, Zhang MX, Meng XX, Zhu J, Wang JJ, He YF, Li YH, Zhao SC, Shi ZM, Zheng LN, Han T, Hong W. Targeting GPR65 alleviates hepatic inflammation and fibrosis by suppressing the JNK and NF-κB pathways. Mil Med Res 2023; 10:56. [PMID: 38001521 PMCID: PMC10675918 DOI: 10.1186/s40779-023-00494-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND G-protein coupled receptors (GPCRs) are recognized as attractive targets for drug therapy. However, it remains poorly understood how GPCRs, except for a few chemokine receptors, regulate the progression of liver fibrosis. Here, we aimed to reveal the role of GPR65, a proton-sensing receptor, in liver fibrosis and to elucidate the underlying mechanism. METHODS The expression level of GPR65 was evaluated in both human and mouse fibrotic livers. Furthermore, Gpr65-deficient mice were treated with either bile duct ligation (BDL) for 21 d or carbon tetrachloride (CCl4) for 8 weeks to investigate the role of GPR65 in liver fibrosis. A combination of experimental approaches, including Western blotting, quantitative real-time reverse transcription‑polymerase chain reaction (qRT-PCR), and enzyme-linked immunosorbent assay (ELISA), confocal microscopy and rescue studies, were used to explore the underlying mechanisms of GPR65's action in liver fibrosis. Additionally, the therapeutic potential of GPR65 inhibitor in the development of liver fibrosis was investigated. RESULTS We found that hepatic macrophages (HMs)-enriched GPR65 was upregulated in both human and mouse fibrotic livers. Moreover, knockout of Gpr65 significantly alleviated BDL- and CCl4-induced liver inflammation, injury and fibrosis in vivo, and mouse bone marrow transplantation (BMT) experiments further demonstrated that the protective effect of Gpr65 knockout is primarily mediated by bone marrow-derived macrophages (BMMs). Additionally, in vitro data demonstrated that Gpr65 silencing and GPR65 antagonist inhibited, while GPR65 overexpression and application of GPR65 endogenous and exogenous agonists enhanced the expression and release of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and transforming growth factor-β (TGF-β), all of which subsequently promoted the activation of hepatic stellate cells (HSCs) and the damage of hepatocytes (HCs). Mechanistically, GPR65 overexpression, the acidic pH and GPR65 exogenous agonist induced up-regulation of TNF-α and IL-6 via the Gαq-Ca2+-JNK/NF-κB pathways, while promoted the expression of TGF-β through the Gαq-Ca2+-MLK3-MKK7-JNK pathway. Notably, pharmacological GPR65 inhibition retarded the development of inflammation, HCs injury and fibrosis in vivo. CONCLUSIONS GPR65 is a major regulator that modulates the progression of liver fibrosis. Thus, targeting GPR65 could be an effective therapeutic strategy for the prevention of liver fibrosis.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Meng-Xia Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xiao-Xiang Meng
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Jing Zhu
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Jia-Jun Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yi-Fan He
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Ye-Hua Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Si-Cong Zhao
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Zhe-Min Shi
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Li-Na Zheng
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Tao Han
- Department of Hepatology and Gastroenterology, Tianjin Union Medical Center, Tianjin Medical University, Tianjin Union Medical Center affiliated to Nankai University, Tianjin, 300000, China.
| | - Wei Hong
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
8
|
Townsend LK, Steinberg GR. AMPK and the Endocrine Control of Metabolism. Endocr Rev 2023; 44:910-933. [PMID: 37115289 DOI: 10.1210/endrev/bnad012] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/10/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023]
Abstract
Complex multicellular organisms require a coordinated response from multiple tissues to maintain whole-body homeostasis in the face of energetic stressors such as fasting, cold, and exercise. It is also essential that energy is stored efficiently with feeding and the chronic nutrient surplus that occurs with obesity. Mammals have adapted several endocrine signals that regulate metabolism in response to changes in nutrient availability and energy demand. These include hormones altered by fasting and refeeding including insulin, glucagon, glucagon-like peptide-1, catecholamines, ghrelin, and fibroblast growth factor 21; adipokines such as leptin and adiponectin; cell stress-induced cytokines like tumor necrosis factor alpha and growth differentiating factor 15, and lastly exerkines such as interleukin-6 and irisin. Over the last 2 decades, it has become apparent that many of these endocrine factors control metabolism by regulating the activity of the AMPK (adenosine monophosphate-activated protein kinase). AMPK is a master regulator of nutrient homeostasis, phosphorylating over 100 distinct substrates that are critical for controlling autophagy, carbohydrate, fatty acid, cholesterol, and protein metabolism. In this review, we discuss how AMPK integrates endocrine signals to maintain energy balance in response to diverse homeostatic challenges. We also present some considerations with respect to experimental design which should enhance reproducibility and the fidelity of the conclusions.
Collapse
Affiliation(s)
- Logan K Townsend
- Centre for Metabolism Obesity and Diabetes Research, Hamilton, ON L8S 4L8, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Gregory R Steinberg
- Centre for Metabolism Obesity and Diabetes Research, Hamilton, ON L8S 4L8, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
9
|
Haspula D, Cui Z. Neurochemical Basis of Inter-Organ Crosstalk in Health and Obesity: Focus on the Hypothalamus and the Brainstem. Cells 2023; 12:1801. [PMID: 37443835 PMCID: PMC10341274 DOI: 10.3390/cells12131801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Precise neural regulation is required for maintenance of energy homeostasis. Essential to this are the hypothalamic and brainstem nuclei which are located adjacent and supra-adjacent to the circumventricular organs. They comprise multiple distinct neuronal populations which receive inputs not only from other brain regions, but also from circulating signals such as hormones, nutrients, metabolites and postprandial signals. Hence, they are ideally placed to exert a multi-tier control over metabolism. The neuronal sub-populations present in these key metabolically relevant nuclei regulate various facets of energy balance which includes appetite/satiety control, substrate utilization by peripheral organs and glucose homeostasis. In situations of heightened energy demand or excess, they maintain energy homeostasis by restoring the balance between energy intake and expenditure. While research on the metabolic role of the central nervous system has progressed rapidly, the neural circuitry and molecular mechanisms involved in regulating distinct metabolic functions have only gained traction in the last few decades. The focus of this review is to provide an updated summary of the mechanisms by which the various neuronal subpopulations, mainly located in the hypothalamus and the brainstem, regulate key metabolic functions.
Collapse
Affiliation(s)
- Dhanush Haspula
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Zhenzhong Cui
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA;
| |
Collapse
|
10
|
Liu L, Wess J. Adipocyte G Protein-Coupled Receptors as Potential Targets for Novel Antidiabetic Drugs. Diabetes 2023; 72:825-834. [PMID: 37339353 PMCID: PMC10281224 DOI: 10.2337/db23-0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/12/2023] [Indexed: 06/22/2023]
Abstract
The functional state of adipocytes plays a central role in regulating numerous important metabolic functions, including energy and glucose homeostasis. While white adipocytes store excess calories as fat (triglycerides) and release free fatty acids as a fuel source in times of need, brown and beige adipocytes (so-called thermogenic adipocytes) convert chemical energy stored in substrates (e.g., fatty acids or glucose) into heat, thus promoting energy expenditure. Like all other cell types, adipocytes express many G protein-coupled receptors (GPCRs) that are linked to four major functional classes of heterotrimeric G proteins (Gs, Gi/o, Gq/11, and G12/13). During the past few years, novel experimental approaches, including the use of chemogenetic strategies, have led to a series of important new findings regarding the metabolic consequences of activating or inhibiting distinct GPCR/G protein signaling pathways in white, brown, and beige adipocytes. This novel information should guide the development of novel drugs capable of modulating the activity of specific adipocyte GPCR signaling pathways for the treatment of obesity, type 2 diabetes, and related metabolic disorders.
Collapse
Affiliation(s)
- Liu Liu
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
| |
Collapse
|
11
|
Wang Y, Ye L. Somatosensory innervation of adipose tissues. Physiol Behav 2023; 265:114174. [PMID: 36965573 PMCID: PMC11537203 DOI: 10.1016/j.physbeh.2023.114174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023]
Abstract
The increasing prevalence of obesity and type 2 diabetes has led to a greater interest in adipose tissue physiology. Adipose tissue is now understood as an organ with endocrine and thermogenic capacities in addition to its role in fat storage. It plays a critical role in systemic metabolism and energy regulation, and its activity is tightly regulated by the nervous system. Fat is now recognized to receive sympathetic innervation, which transmits information from the brain, as well as sensory innervation, which sends information into the brain. The role of sympathetic innervation in adipose tissue has been extensively studied. However, the extent and the functional significance of sensory innervation have long been unclear. Recent studies have started to reveal that sensory neurons robustly innervate adipose tissue and play an important role in regulating fat activity. This brief review will discuss both historical evidence and recent advances, as well as important remaining questions about the sensory innervation of adipose tissue.
Collapse
Affiliation(s)
- Yu Wang
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Li Ye
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
12
|
Na G, Zhang J, Lv D, Chen P, Song X, Cai F, Zheng S, Wan W, Shan Y. Germinated Brown rice enhanced n-3 PUFA metabolism in type 2 diabetes patients: A randomized controlled trial. Clin Nutr 2023; 42:579-589. [PMID: 36870245 DOI: 10.1016/j.clnu.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND Brown rice (BR) has been considered as a potential strategy in improving T2DM. However, there are a lack of population-based trials on the association of Germinated brown rice (GBR) and diabetes. AIMS We aimed to explore the influence of GBR diet in T2DM patients for 3 months and whether this effect relates to serum fatty acids. METHODS Two hundred and twenty T2DM patients have been enrolled and eligible subjects (n = 112, 61 female, 51 male) were randomly divided into GBR intervention group (n = 56) and control group (n = 56). Except those who lost follow-up and withdrew, final GBR group and control group consisted of 42 and 43 patients, respectively. Participants in GBR group were asked to consume 100 g/d GBR instead of equal refined grain (RG) for 3 months, while control group maintain their usual eating habits. A structured questionnaire was used for demographic information at baseline, and basic indicators were measured both at the beginning and end of the trail to evaluate plasma glucose and lipids levels. RESULTS In GBR group, mean dietary inflammation index (DII) decreased, indicating GBR intervention retarded patient inflammation. Besides, glycolipid related parameters, including FBG, HbA1c, TC and HDL, were all significantly lower than those in control group. Excitingly, fatty acid composition was changed by intake of GBR, especially n-3 PUFA and n-3/n-6 PUFA rate were significantly increased. Moreover, subjects in GBR group had higher levels of n-3 metabolites, such as RVE, MaR1 and PD1, reducing inflammatory effect. In contrast, n-6 metabolites, like LTB4 and PGE2 which could promote inflammatory effect, were lower in GBR group. CONCLUSION We confirmed that diet with 100 g/d GBR for 3 months could really improve T2DM to some extent. This beneficial effect may be related to n-3 metabolites, namely inflammation changes. TRIAL REGISTRATION ChiCRT-IOR-17013999, www.chictr.org.cn.
Collapse
Affiliation(s)
- Guanqiong Na
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Jing Zhang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Dian Lv
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Ping Chen
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Xinyue Song
- School of Chemical and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Fenfen Cai
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Sicong Zheng
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Wenting Wan
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Yujuan Shan
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
13
|
GPCR in Adipose Tissue Function-Focus on Lipolysis. Biomedicines 2023; 11:biomedicines11020588. [PMID: 36831123 PMCID: PMC9953751 DOI: 10.3390/biomedicines11020588] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Adipose tissue can be divided anatomically, histologically, and functionally into two major entities white and brown adipose tissues (WAT and BAT, respectively). WAT is the primary energy depot, storing most of the bioavailable triacylglycerol molecules of the body, whereas BAT is designed for dissipating energy in the form of heat, a process also known as non-shivering thermogenesis as a defense against a cold environment. Importantly, BAT-dependent energy dissipation directly correlates with cardiometabolic health and has been postulated as an intriguing target for anti-obesity therapies. In general, adipose tissue (AT) lipid content is defined by lipid uptake and lipogenesis on one side, and, on the other side, it is defined by the breakdown of lipids and the release of fatty acids by lipolysis. The equilibrium between lipogenesis and lipolysis is important for adipocyte and general metabolic homeostasis. Overloading adipocytes with lipids causes cell stress, leading to the recruitment of immune cells and adipose tissue inflammation, which can affect the whole organism (metaflammation). The most important consequence of energy and lipid overload is obesity and associated pathophysiologies, including insulin resistance, type 2 diabetes, and cardiovascular disease. The fate of lipolysis products (fatty acids and glycerol) largely differs between AT: WAT releases fatty acids into the blood to deliver energy to other tissues (e.g., muscle). Activation of BAT, instead, liberates fatty acids that are used within brown adipocyte mitochondria for thermogenesis. The enzymes involved in lipolysis are tightly regulated by the second messenger cyclic adenosine monophosphate (cAMP), which is activated or inhibited by G protein-coupled receptors (GPCRs) that interact with heterotrimeric G proteins (G proteins). Thus, GPCRs are the upstream regulators of the equilibrium between lipogenesis and lipolysis. Moreover, GPCRs are of special pharmacological interest because about one third of the approved drugs target GPCRs. Here, we will discuss the effects of some of most studied as well as "novel" GPCRs and their ligands. We will review different facets of in vitro, ex vivo, and in vivo studies, obtained with both pharmacological and genetic approaches. Finally, we will report some possible therapeutic strategies to treat obesity employing GPCRs as primary target.
Collapse
|
14
|
Rahbani JF, Scholtes C, Lagarde DM, Hussain MF, Roesler A, Dykstra CB, Bunk J, Samborska B, O'Brien SL, Tripp E, Pacis A, Angueira AR, Johansen OS, Cinkornpumin J, Hossain I, Lynes MD, Zhang Y, White AP, Pastor WA, Chondronikola M, Sidossis L, Klein S, Kralli A, Cypess AM, Pedersen SB, Jessen N, Tseng YH, Gerhart-Hines Z, Seale P, Calebiro D, Giguère V, Kazak L. ADRA1A-Gα q signalling potentiates adipocyte thermogenesis through CKB and TNAP. Nat Metab 2022; 4:1459-1473. [PMID: 36344764 PMCID: PMC9684074 DOI: 10.1038/s42255-022-00667-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022]
Abstract
Noradrenaline (NA) regulates cold-stimulated adipocyte thermogenesis1. Aside from cAMP signalling downstream of β-adrenergic receptor activation, how NA promotes thermogenic output is still not fully understood. Here, we show that coordinated α1-adrenergic receptor (AR) and β3-AR signalling induces the expression of thermogenic genes of the futile creatine cycle2,3, and that early B cell factors, oestrogen-related receptors and PGC1α are required for this response in vivo. NA triggers physical and functional coupling between the α1-AR subtype (ADRA1A) and Gαq to promote adipocyte thermogenesis in a manner that is dependent on the effector proteins of the futile creatine cycle, creatine kinase B and tissue-non-specific alkaline phosphatase. Combined Gαq and Gαs signalling selectively in adipocytes promotes a continual rise in whole-body energy expenditure, and creatine kinase B is required for this effect. Thus, the ADRA1A-Gαq-futile creatine cycle axis is a key regulator of facultative and adaptive thermogenesis.
Collapse
Affiliation(s)
- Janane F Rahbani
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Charlotte Scholtes
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Damien M Lagarde
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Mohammed F Hussain
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Anna Roesler
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Christien B Dykstra
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Jakub Bunk
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Bozena Samborska
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Shannon L O'Brien
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| | - Emma Tripp
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| | - Alain Pacis
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Anthony R Angueira
- Institute for Diabetes, Obesity & Metabolism and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Olivia S Johansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Ishtiaque Hossain
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Matthew D Lynes
- Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Yang Zhang
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Andrew P White
- Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - William A Pastor
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Maria Chondronikola
- Department of Nutrition and Radiology, University of California, Davis, Davis, CA, USA
- Department of Nutrition and Dietetics, Harokopio University of Athens, Athens, Greece
| | - Labros Sidossis
- Department of Kinesiology and Health, School of Arts and Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Samuel Klein
- Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO, USA
| | - Anastasia Kralli
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aaron M Cypess
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Steen B Pedersen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Aarhus N, Denmark
| | - Niels Jessen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Aarhus N, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Zachary Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Patrick Seale
- Institute for Diabetes, Obesity & Metabolism and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Davide Calebiro
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| | - Vincent Giguère
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Lawrence Kazak
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada.
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
15
|
Navarro-Lérida I, Aragay AM, Asensio A, Ribas C. Gq Signaling in Autophagy Control: Between Chemical and Mechanical Cues. Antioxidants (Basel) 2022; 11:1599. [PMID: 36009317 PMCID: PMC9405508 DOI: 10.3390/antiox11081599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
All processes in human physiology relies on homeostatic mechanisms which require the activation of specific control circuits to adapt the changes imposed by external stimuli. One of the critical modulators of homeostatic balance is autophagy, a catabolic process that is responsible of the destruction of long-lived proteins and organelles through a lysosome degradative pathway. Identification of the mechanism underlying autophagic flux is considered of great importance as both protective and detrimental functions are linked with deregulated autophagy. At the mechanistic and regulatory levels, autophagy is activated in response to diverse stress conditions (food deprivation, hyperthermia and hypoxia), even a novel perspective highlight the potential role of physical forces in autophagy modulation. To understand the crosstalk between all these controlling mechanisms could give us new clues about the specific contribution of autophagy in a wide range of diseases including vascular disorders, inflammation and cancer. Of note, any homeostatic control critically depends in at least two additional and poorly studied interdependent components: a receptor and its downstream effectors. Addressing the selective receptors involved in autophagy regulation is an open question and represents a new area of research in this field. G-protein coupled receptors (GPCRs) represent one of the largest and druggable targets membrane receptor protein superfamily. By exerting their action through G proteins, GPCRs play fundamental roles in the control of cellular homeostasis. Novel studies have shown Gαq, a subunit of heterotrimeric G proteins, as a core modulator of mTORC1 and autophagy, suggesting a fundamental contribution of Gαq-coupled GPCRs mechanisms in the control of this homeostatic feedback loop. To address how GPCR-G proteins machinery integrates the response to different stresses including oxidative conditions and mechanical stimuli, could provide deeper insight into new signaling pathways and open potential and novel therapeutic strategies in the modulation of different pathological conditions.
Collapse
Affiliation(s)
- Inmaculada Navarro-Lérida
- Molecular Biology Department and Center of Molecular Biology “Severo Ochoa”, CSIC-UAM, 28049 Madrid, Spain
- Health Research Institute “La Princesa”, 28006 Madrid, Spain
- Center for Biomedical Research in Cardiovascular Diseases Network (CIBERCV), ISCIII, 28029 Madrid, Spain
- Connexion Cancer-CSIC, 28006 Madrid, Spain
| | - Anna M. Aragay
- Department of Biology, Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), 08028 Barcelona, Spain
| | - Alejandro Asensio
- Molecular Biology Department and Center of Molecular Biology “Severo Ochoa”, CSIC-UAM, 28049 Madrid, Spain
- Health Research Institute “La Princesa”, 28006 Madrid, Spain
- Center for Biomedical Research in Cardiovascular Diseases Network (CIBERCV), ISCIII, 28029 Madrid, Spain
- Connexion Cancer-CSIC, 28006 Madrid, Spain
| | - Catalina Ribas
- Molecular Biology Department and Center of Molecular Biology “Severo Ochoa”, CSIC-UAM, 28049 Madrid, Spain
- Health Research Institute “La Princesa”, 28006 Madrid, Spain
- Center for Biomedical Research in Cardiovascular Diseases Network (CIBERCV), ISCIII, 28029 Madrid, Spain
- Connexion Cancer-CSIC, 28006 Madrid, Spain
| |
Collapse
|