1
|
Orso R, Creutzberg KC, Begni V, Petrillo G, Cattaneo A, Riva MA. Emotional dysregulation following prenatal stress is associated with altered prefrontal cortex responsiveness to an acute challenge in adolescence. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111162. [PMID: 39383932 DOI: 10.1016/j.pnpbp.2024.111162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Exposure to prenatal stress (PNS) has the potential to elicit multiple neurobiological alterations and increase the susceptibility to psychiatric disorders. Moreover, gestational stress may sensitize the brain toward an altered response to subsequent challenges. Here, we investigated the effects of PNS in rats and assessed whether these animals exhibit an altered brain responsiveness to an acute stress (AS) during adolescence. From gestational day 14 until delivery, Sprague Dawley dams were exposed to PNS or left undisturbed. During adolescence (PND38 to PND41), offspring were tested in the social interaction and splash test. At PND44 half of the animals were exposed to 5 min of forced swim stress. Males and Females exposed to PNS showed reduced sociability and increased anhedonic-like behavior. At the molecular level, exposure of adolescent rats to AS produced increased activation of the amygdala and ventral and dorsal hippocampus. Regarding the prefrontal cortex (PFC), we observed a pronounced activation in PNS males exposed to AS. Cell-type specific transcriptional analyses revealed a significant imbalance in the activation of PFC excitatory and inhibitory neurons in PNS males and females exposed to AS. Furthermore, stressed males exhibited disrupted HPA-axis function, while females showed impairments in the modulation of antioxidant genes. Our study shows that PNS induces emotional dysregulation and alters the responsiveness of the PFC to an acute stressor. Moreover, the disruption of excitatory and inhibitory balance during adolescence could influence the ability to respond to challenging events that may contribute to precipitate a full-blown pathologic condition.
Collapse
Affiliation(s)
- Rodrigo Orso
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.
| | | | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.
| | - Giulia Petrillo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - Annamaria Cattaneo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| |
Collapse
|
2
|
Holt LM, Gyles TM, Parise EM, Minier-Toribio A, Rivera M, Markovic T, Yeh SY, Nestler EJ. Astrocytic CREB in nucleus accumbens promotes susceptibility to chronic stress. Biol Psychiatry 2024:S0006-3223(24)01626-3. [PMID: 39369762 DOI: 10.1016/j.biopsych.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 09/18/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Increasing evidence implicates astrocytes in stress and depression in both rodent models and human Major Depressive Disorder (MDD). Despite this, little is known about the transcriptional responses to stress of astrocytes within the nucleus accumbens (NAc), a key brain reward region, and their influence on behavioral outcomes. METHODS We used whole cell sorting, RNA-sequencing, and bioinformatic analyses to investigate the NAc astrocyte transcriptome in male mice in response to chronic social defeat stress (CSDS). Immunohistochemistry was used to determine stress-induced changes in astrocytic CREB within the NAc. Finally, astrocytic regulation of depression-like behavior was investigated using viral-mediated manipulation of CREB in combination with CSDS. RESULTS We found a robust transcriptional response in NAc astrocytes to CSDS in stressed mice, with changes seen in both stress-susceptible and stress-resilient animals. Bioinformatic analysis revealed CREB, a transcription factor widely studied in neurons, as one of the top-predicted upstream regulators of the NAc astrocyte transcriptome, with opposite activation states implicated in resilient vs. susceptible mice. This bioinformatic deduction was confirmed at the protein level with immunohistochemistry. Moreover, NAc astrocyte morphological complexity correlated with CREB activation and was reduced selectively in astrocytes of resilient mice. Viral overexpression of CREB selectively in NAc astrocytes promoted susceptibility to chronic stress. CONCLUSIONS Together, our data demonstrate that the astrocyte transcriptome responds robustly to CSDS and that transcriptional regulation in astrocytes contributes to depressive-like behaviors. A better understanding of transcriptional regulation in astrocytes may reveal unknown molecular mechanisms underlying neuropsychiatric disorders.
Collapse
Affiliation(s)
- Leanne M Holt
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Trevonn M Gyles
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Eric M Parise
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Angelica Minier-Toribio
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Matthew Rivera
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Tamara Markovic
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Szu-Ying Yeh
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
3
|
Lanshakov DA, Sukhareva EV, Bulygina VV, Khozyainova AA, Gerashchenko TS, Denisov EV, Kalinina TS. Brainstem transcriptomic changes in male Wistar rats after acute stress, comparing the use of duplex specific nuclease (DSN). Sci Rep 2024; 14:21856. [PMID: 39300279 DOI: 10.1038/s41598-024-73042-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 09/12/2024] [Indexed: 09/22/2024] Open
Abstract
In this work, we have analyzed the transcriptomic changes in the brainstem of male Wistar rats 2 h after an acute stress exposure. We performed duplex-specific nuclease normalization of cDNA libraries and compared the results back-to-back for the first time. Based on our RNAseq data, we selected reference genes for RT-qPCR that are best suited for acute stress experiments. Most genes were upregulated. We detected a massive shift in neuropeptide Crh, Trh,Cga, Tshb, Uts2b, Tac4, Lep and neuropeptide receptor Hcrtr1, Sstr5, Bdkrb2, Crhr2 signaling, as well as glutamate Grin3b, Grm2 and GABA Gpr156, acetylcholine Chrm4,Chrne, adrenergic Adra2b receptors expression. A strong increase in the expression of intermediate filaments Krt83/Krt86/Krt80/Krt84/Krt87/Krt4/Krt76 and motor proteins Myo7a, Klc3 was detected. Remarkably, in the absence of astrocyte activation, we also observed signs of microglial activation at this time point. Both expression of anti-inflammatory cytokines Il13, Ccl24 and pro-inflammatory cytokine receptors Il9r, Il12rb1, Tnfrsf14, Tnfrsf13c, Tnfrsf25, Tnfrsf1b were increased. In the Wnt signaling pathway, we observed increased expression of ligands-receptors Wnt1, Wnt11, Ror2 and also negative regulators Notum, Sfrp5, Sost. RNAseq results after DSN treatment correlated at a high level with RNAseq results without DSN, but there was a proportion of genes that shifted their logFC values. They are mostly rare transcripts TPM 1-10 with higher 0.5-0.9 GC content.
Collapse
Affiliation(s)
- Dmitriy A Lanshakov
- Postgenomics Neurobiology Laboratory, Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, Russian Federation.
- Natural Science Department, Novosibirsk State University, Novosibirsk, Russian Federation.
| | - Ekaterina V Sukhareva
- Postgenomics Neurobiology Laboratory, Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, Russian Federation
| | - Veta V Bulygina
- Functional Neurogenomics Laboratory, Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, Russian Federation
| | - Anna A Khozyainova
- Laboratory of Cancer Progression Biology, Tomsk National Research Medical Center, Cancer Research Institute, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Tatiana S Gerashchenko
- Laboratory of Cancer Progression Biology, Tomsk National Research Medical Center, Cancer Research Institute, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Evgeny V Denisov
- Laboratory of Cancer Progression Biology, Tomsk National Research Medical Center, Cancer Research Institute, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Tatyana S Kalinina
- Natural Science Department, Novosibirsk State University, Novosibirsk, Russian Federation
- Functional Neurogenomics Laboratory, Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, Russian Federation
| |
Collapse
|
4
|
Park J, Song H, Moon S, Kim Y, Cho S, Han K, Park CY, Cho SW, Oh CM. Cardiometabolic benefits of fenofibrate in heart failure related to obesity and diabetes. Cardiovasc Diabetol 2024; 23:343. [PMID: 39285303 PMCID: PMC11406805 DOI: 10.1186/s12933-024-02417-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Heart failure (HF) is a serious and common condition affecting millions of people worldwide, with obesity being a major cause of metabolic disorders such as diabetes and cardiovascular disease. This study aimed to investigate the effects of fenofibrate, a peroxisome proliferator-activated receptor alpha (PPARα) agonist, on the obese- and diabetes-related cardiomyopathy. METHODS AND RESULTS We used db/db mice and high fat diet-streptozotocin induced diabetic mice to investigate the underlying mechanisms of fenofibrate's beneficial effects on heart function. Fenofibrate reduced fibrosis, and lipid accumulation, and suppressed inflammatory and immunological responses in the heart via TNF signaling. In addition, we investigated the beneficial effects of fenofibrate on HF hospitalization. The Korean National Health Insurance database was used to identify 427,154 fenofibrate users and 427,154 non-users for comparison. During the 4.22-year follow-up, fenofibrate use significantly reduced the risk of HF hospitalization (hazard ratio, 0.907; 95% CI 0.824-0.998). CONCLUSIONS The findings suggest that fenofibrate may be a useful therapeutic agent for obesity- and diabetes-related cardiomyopathy.
Collapse
Affiliation(s)
- Jiwon Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Hangyul Song
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Shinje Moon
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Yumin Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Sungsoo Cho
- Division of Cardiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Korea
| | - Cheol-Young Park
- Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Sung Woo Cho
- Division of Cardiology, Department of Internal Medicine, Inje Univeristy Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Gyeonggi-Do, Korea.
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea.
| |
Collapse
|
5
|
Hofstra BM, Hoeksema EE, Kas MJH, Verbeek DS. Cross-species analysis uncovers the mitochondrial stress response in the hippocampus as a shared mechanism in mouse early life stress and human depression. Neurobiol Stress 2024; 31:100643. [PMID: 38800537 PMCID: PMC11127276 DOI: 10.1016/j.ynstr.2024.100643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Depression, or major depressive disorder, poses a significant burden for both individuals and society, affecting approximately 10.8% of the general population. This psychiatric disorder leads to approximately 800,000 deaths per year. A combination of genetic and environmental factors such as early life stress (ELS) increase the risk for development of depression in humans, and a clear role for the hippocampus in the pathophysiology of depression has been shown. Nevertheless, the underlying mechanisms of depression remain poorly understood, resulting in a lack of effective treatments. To better understand the core mechanisms underlying the development of depression, we used a cross-species design to investigate shared hippocampal pathophysiological mechanisms in mouse ELS and human depression. Mice were subjected to ELS by a maternal separation paradigm, followed by RNA sequencing analysis of the adult hippocampal tissue. This identified persistent transcriptional changes linked to mitochondrial stress response pathways, with oxidative phosphorylation and protein folding emerging as the main mechanisms affected by maternal separation. Remarkably, there was a significant overlap between the pathways involved in mitochondrial stress response we observed and publicly available RNAseq data from hippocampal tissue of depressive patients. This cross-species conservation of changes in gene expression of mitochondria-related genes suggests that mitochondrial stress may play a pivotal role in the development of depression. Our findings highlight the potential significance of the hippocampal mitochondrial stress response as a core mechanism underlying the development of depression. Further experimental investigations are required to expand our understanding of these mechanisms.
Collapse
Affiliation(s)
- Bente M. Hofstra
- Department of Genetics, University of Groningen, University Medical Center Groningen, the Netherlands
- Department of Behavioural Neuroscience, Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | - Emmy E. Hoeksema
- Department of Behavioural Neuroscience, Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | - Martien JH. Kas
- Department of Behavioural Neuroscience, Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | - Dineke S. Verbeek
- Department of Genetics, University of Groningen, University Medical Center Groningen, the Netherlands
| |
Collapse
|
6
|
Mirzaei A, Hiller BC, Stelzer IA, Thiele K, Tan Y, Becker M. Computational Approaches for Connecting Maternal Stress to Preterm Birth. Clin Perinatol 2024; 51:345-360. [PMID: 38705645 DOI: 10.1016/j.clp.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Multiple studies have hinted at a complex connection between maternal stress and preterm birth (PTB). This article describes the potential of computational methods to provide new insights into this relationship. For this, we outline existing approaches for stress assessments and various data modalities available for profiling stress responses, and review studies that sought either to establish a connection between stress and PTB or to predict PTB based on stress-related factors. Finally, we summarize the challenges of computational methods, highlighting potential future research directions within this field.
Collapse
Affiliation(s)
- Amin Mirzaei
- Department of Computer Science and Electrical Engineering, Institute for Visual and Analytic Computing, Universität Rostock, Albert-Einstein-Straße 22, 18059 Rostock, Germany
| | - Bjarne C Hiller
- Department of Computer Science and Electrical Engineering, Institute for Visual and Analytic Computing, Universität Rostock, Albert-Einstein-Straße 22, 18059 Rostock, Germany
| | - Ina A Stelzer
- Department of Pathology, University of California San Diego, GPL/CMM-West, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Kristin Thiele
- Division for Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Center for Obstetrics and Pediatrics, Martinistrasse 52, 20246 Hamburg, Germany
| | - Yuqi Tan
- Department of Microbiology and Immunology, Stanford University School of Medicine, CSSR3220, 269 Campus Drive, Stanford, CA 94305, USA
| | - Martin Becker
- Department of Computer Science and Electrical Engineering, Institute for Visual and Analytic Computing, Universität Rostock, Albert-Einstein-Straße 22, 18059 Rostock, Germany.
| |
Collapse
|
7
|
Valenza M, Facchinetti R, Torazza C, Ciarla C, Bronzuoli MR, Balbi M, Bonanno G, Popoli M, Steardo L, Milanese M, Musazzi L, Bonifacino T, Scuderi C. Molecular signatures of astrocytes and microglia maladaptive responses to acute stress are rescued by a single administration of ketamine in a rodent model of PTSD. Transl Psychiatry 2024; 14:209. [PMID: 38796504 PMCID: PMC11127980 DOI: 10.1038/s41398-024-02928-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/28/2024] Open
Abstract
Stress affects the brain and alters its neuroarchitecture and function; these changes can be severe and lead to psychiatric disorders. Recent evidence suggests that astrocytes and microglia play an essential role in the stress response by contributing to the maintenance of cerebral homeostasis. These cells respond rapidly to all stimuli that reach the brain, including stressors. Here, we used a recently validated rodent model of post-traumatic stress disorder in which rats can be categorized as resilient or vulnerable after acute inescapable footshock stress. We then investigated the functional, molecular, and morphological determinants of stress resilience and vulnerability in the prefrontal cortex, focusing on glial and neuronal cells. In addition, we examined the effects of a single subanesthetic dose of ketamine, a fast-acting antidepressant recently approved for the treatment of resistant depression and proposed for other stress-related psychiatric disorders. The present results suggest a prompt glial cell response and activation of the NF-κB pathway after acute stress, leading to an increase in specific cytokines such as IL-18 and TNF-α. This response persists in vulnerable individuals and is accompanied by a significant change in the levels of critical glial proteins such as S100B, CD11b, and CX43, brain trophic factors such as BDNF and FGF2, and proteins related to dendritic arborization and synaptic architecture such as MAP2 and PSD95. Administration of ketamine 24 h after the acute stress event rescued many of the changes observed in vulnerable rats, possibly contributing to support brain homeostasis. Overall, our results suggest that pivotal events, including reactive astrogliosis, changes in brain trophic factors, and neuronal damage are critical determinants of vulnerability to acute traumatic stress and confirm the therapeutic effect of acute ketamine against the development of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Marta Valenza
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy
| | - Roberta Facchinetti
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy
| | - Carola Torazza
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Claudia Ciarla
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy
| | - Maria Rosanna Bronzuoli
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy
| | - Matilde Balbi
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Giambattista Bonanno
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Maurizio Popoli
- Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Milano, Italy
| | - Luca Steardo
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy
| | - Marco Milanese
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Tiziana Bonifacino
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Caterina Scuderi
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy.
| |
Collapse
|
8
|
Privitera M, von Ziegler LM, Floriou-Servou A, Duss SN, Zhang R, Waag R, Leimbacher S, Sturman O, Roessler FK, Heylen A, Vermeiren Y, Van Dam D, De Deyn PP, Germain PL, Bohacek J. Noradrenaline release from the locus coeruleus shapes stress-induced hippocampal gene expression. eLife 2024; 12:RP88559. [PMID: 38477670 DOI: 10.7554/elife.88559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
Exposure to an acute stressor triggers a complex cascade of neurochemical events in the brain. However, deciphering their individual impact on stress-induced molecular changes remains a major challenge. Here, we combine RNA sequencing with selective pharmacological, chemogenetic, and optogenetic manipulations to isolate the contribution of the locus coeruleus-noradrenaline (LC-NA) system to the acute stress response in mice. We reveal that NA release during stress exposure regulates a large and reproducible set of genes in the dorsal and ventral hippocampus via β-adrenergic receptors. For a smaller subset of these genes, we show that NA release triggered by LC stimulation is sufficient to mimic the stress-induced transcriptional response. We observe these effects in both sexes, and independent of the pattern and frequency of LC activation. Using a retrograde optogenetic approach, we demonstrate that hippocampus-projecting LC neurons directly regulate hippocampal gene expression. Overall, a highly selective set of astrocyte-enriched genes emerges as key targets of LC-NA activation, most prominently several subunits of protein phosphatase 1 (Ppp1r3c, Ppp1r3d, Ppp1r3g) and type II iodothyronine deiodinase (Dio2). These results highlight the importance of astrocytic energy metabolism and thyroid hormone signaling in LC-mediated hippocampal function and offer new molecular targets for understanding how NA impacts brain function in health and disease.
Collapse
Affiliation(s)
- Mattia Privitera
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Switzerland, Zurich, Switzerland
| | - Lukas M von Ziegler
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Switzerland, Zurich, Switzerland
| | - Amalia Floriou-Servou
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Switzerland, Zurich, Switzerland
| | - Sian N Duss
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Switzerland, Zurich, Switzerland
| | - Runzhong Zhang
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Rebecca Waag
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Switzerland, Zurich, Switzerland
| | - Sebastian Leimbacher
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Oliver Sturman
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Switzerland, Zurich, Switzerland
| | - Fabienne K Roessler
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Annelies Heylen
- Laboratory of Neurochemistry and Behavior, Experimental Neurobiology Unit, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Yannick Vermeiren
- Laboratory of Neurochemistry and Behavior, Experimental Neurobiology Unit, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Division of Human Nutrition and Health, Chair Group of Nutritional Biology, Wageningen University & Research (WUR), Wageningen, Netherlands
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behavior, Experimental Neurobiology Unit, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Alzheimer Center, University of Groningen and University Medical Center Groningen (UMCG), Groningen, Netherlands
| | - Peter P De Deyn
- Laboratory of Neurochemistry and Behavior, Experimental Neurobiology Unit, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Alzheimer Center, University of Groningen and University Medical Center Groningen (UMCG), Groningen, Netherlands
- Department of Neurology, Memory Clinic of Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Pierre-Luc Germain
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Switzerland, Zurich, Switzerland
- Computational Neurogenomics, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
- Laboratory of Statistical Bioinformatics, University of Zürich, Zürich, Switzerland
| | - Johannes Bohacek
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Switzerland, Zurich, Switzerland
| |
Collapse
|
9
|
Holt LM, Gyles TM, Parise EM, Minier-Toribio A, Markovic T, Rivera M, Yeh SY, Nestler EJ. Astrocytic CREB in nucleus accumbens promotes susceptibility to chronic stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575728. [PMID: 38293227 PMCID: PMC10827054 DOI: 10.1101/2024.01.15.575728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Background Increasing evidence implicates astrocytes in stress and depression in both rodent models and human Major Depressive Disorder (MDD). Despite this, little is known about the transcriptional responses to stress of astrocytes within the nucleus accumbens (NAc), a key brain reward region, and their influence on behavioral outcomes. Methods We used whole cell sorting, RNA-sequencing, and bioinformatic analyses to investigate the NAc astrocyte transcriptome in male mice in response to chronic social defeat stress (CSDS). Immunohistochemistry was used to determine stress-induced changes in astrocytic CREB within the NAc. Finally, astrocytic regulation of depression-like behavior was investigated using viral-mediated manipulation of CREB in combination with CSDS. Results We found a robust transcriptional response in NAc astrocytes to CSDS in stressed mice, with changes seen in both stress-susceptible and stress-resilient animals. Bioinformatic analysis revealed CREB, a transcription factor widely studied in neurons, as one of the top-predicted upstream regulators of the NAc astrocyte transcriptome, with opposite activation states seen in resilient versus susceptible mice. This bioinformatic result was confirmed at the protein level with immunohistochemistry. Viral overexpression of CREB selectively in NAc astrocytes promoted susceptibility to chronic stress. Conclusions Together, our data demonstrate that the astrocyte transcriptome responds robustly to CSDS and, for the first time, that transcriptional regulation in astrocytes contributes to depressive-like behaviors. A better understanding of transcriptional regulation in astrocytes may reveal unknown molecular mechanisms underlying neuropsychiatric disorders.
Collapse
Affiliation(s)
- Leanne M. Holt
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Trevonn M Gyles
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Eric M. Parise
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Angelica Minier-Toribio
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Tamara Markovic
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Matthew Rivera
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Szu-Ying Yeh
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Eric J. Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
10
|
Papageorgiou MP, Theodoridou D, Nussbaumer M, Syrrou M, Filiou MD. Deciphering the Metabolome under Stress: Insights from Rodent Models. Curr Neuropharmacol 2024; 22:884-903. [PMID: 37448366 PMCID: PMC10845087 DOI: 10.2174/1570159x21666230713094843] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/22/2022] [Accepted: 01/09/2023] [Indexed: 07/15/2023] Open
Abstract
Despite intensive research efforts to understand the molecular underpinnings of psychological stress and stress responses, the underlying molecular mechanisms remain largely elusive. Towards this direction, a plethora of stress rodent models have been established to investigate the effects of exposure to different stressors. To decipher affected molecular pathways in a holistic manner in these models, metabolomics approaches addressing altered, small molecule signatures upon stress exposure in a high-throughput, quantitative manner provide insightful information on stress-induced systemic changes in the brain. In this review, we discuss stress models in mice and rats, followed by mass spectrometry (MS) and nuclear magnetic resonance (NMR) metabolomics studies. We particularly focus on acute, chronic and early life stress paradigms, highlight how stress is assessed at the behavioral and molecular levels and focus on metabolomic outcomes in the brain and peripheral material such as plasma and serum. We then comment on common metabolomics patterns across different stress models and underline the need for unbiased -omics methodologies and follow-up studies of metabolomics outcomes to disentangle the complex pathobiology of stress and pertinent psychopathologies.
Collapse
Affiliation(s)
- Maria P. Papageorgiou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (BRI-FORTH), Ioannina, Greece
| | - Daniela Theodoridou
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Greece
| | - Markus Nussbaumer
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (BRI-FORTH), Ioannina, Greece
| | - Maria Syrrou
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Greece
| | - Michaela D. Filiou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (BRI-FORTH), Ioannina, Greece
- Ιnstitute of Biosciences, University of Ioannina, Greece
| |
Collapse
|
11
|
Rodrigues-Ribeiro L, Resende BL, Pinto Dias ML, Lopes MR, de Barros LLM, Moraes MA, Verano-Braga T, Souza BR. Neuroproteomics: Unveiling the Molecular Insights of Psychiatric Disorders with a Focus on Anxiety Disorder and Depression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1443:103-128. [PMID: 38409418 DOI: 10.1007/978-3-031-50624-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Anxiety and depression are two of the most common mental disorders worldwide, with a lifetime prevalence of up to 30%. These disorders are complex and have a variety of overlapping factors, including genetic, environmental, and behavioral factors. Current pharmacological treatments for anxiety and depression are not perfect. Many patients do not respond to treatment, and those who do often experience side effects. Animal models are crucial for understanding the complex pathophysiology of both disorders. These models have been used to identify potential targets for new treatments, and they have also been used to study the effects of environmental factors on these disorders. Recent proteomic methods and technologies are providing new insights into the molecular mechanisms of anxiety disorder and depression. These methods have been used to identify proteins that are altered in these disorders, and they have also been used to study the effects of pharmacological treatments on protein expression. Together, behavioral and proteomic research will help elucidate the factors involved in anxiety disorder and depression. This knowledge will improve preventive strategies and lead to the development of novel treatments.
Collapse
Affiliation(s)
- Lucas Rodrigues-Ribeiro
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Physiology and Biophysics, Proteomics Group (NPF), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Bruna Lopes Resende
- Department of Physiology and Biophysics, Laboratory of Neurodevelopment and Evolution (NeuroDEv), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Maria Luiza Pinto Dias
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Physiology and Biophysics, Proteomics Group (NPF), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Megan Rodrigues Lopes
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Physiology and Biophysics, Proteomics Group (NPF), Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Physiology and Biophysics, Laboratory of Neurodevelopment and Evolution (NeuroDEv), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Larissa Luppi Monteiro de Barros
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Physiology and Biophysics, Proteomics Group (NPF), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Muiara Aparecida Moraes
- Department of Physiology and Biophysics, Laboratory of Neurodevelopment and Evolution (NeuroDEv), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Thiago Verano-Braga
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Federal University of Minas Gerais, Belo Horizonte, Brazil.
- Department of Physiology and Biophysics, Proteomics Group (NPF), Federal University of Minas Gerais, Belo Horizonte, Brazil.
| | - Bruno Rezende Souza
- Department of Physiology and Biophysics, Laboratory of Neurodevelopment and Evolution (NeuroDEv), Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
12
|
Gazorpak M, Hugentobler KM, Paul D, Germain PL, Kretschmer M, Ivanova I, Frei S, Mathis K, Rudolf R, Mompart Barrenechea S, Fischer V, Xue X, Ptaszek AL, Holzinger J, Privitera M, Hierlemann A, Meijer OC, Konrat R, Carreira EM, Bohacek J, Gapp K. Harnessing PROTAC technology to combat stress hormone receptor activation. Nat Commun 2023; 14:8177. [PMID: 38071198 PMCID: PMC10710461 DOI: 10.1038/s41467-023-44031-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Counteracting the overactivation of glucocorticoid receptors (GR) is an important therapeutic goal in stress-related psychiatry and beyond. The only clinically approved GR antagonist lacks selectivity and induces unwanted side effects. To complement existing tools of small-molecule-based inhibitors, we present a highly potent, catalytically-driven GR degrader, KH-103, based on proteolysis-targeting chimera technology. This selective degrader enables immediate and reversible GR depletion that is independent of genetic manipulation and circumvents transcriptional adaptations to inhibition. KH-103 achieves passive inhibition, preventing agonistic induction of gene expression, and significantly averts the GR's genomic effects compared to two currently available inhibitors. Application in primary-neuron cultures revealed the dependency of a glucocorticoid-induced increase in spontaneous calcium activity on GR. Finally, we present a proof of concept for application in vivo. KH-103 opens opportunities for a more lucid interpretation of GR functions with translational potential.
Collapse
Affiliation(s)
- Mahshid Gazorpak
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, 8057, Zürich, Switzerland
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, 8057, Zürich, Switzerland
| | - Karina M Hugentobler
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Dominique Paul
- Lab of Statistical Bioinformatics, University of Zürich, 8057, Zürich, Switzerland
| | - Pierre-Luc Germain
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, 8057, Zürich, Switzerland
- Lab of Statistical Bioinformatics, University of Zürich, 8057, Zürich, Switzerland
- Computational Neurogenomics, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, 8057, Zürich, Switzerland
| | - Miriam Kretschmer
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, 8057, Zürich, Switzerland
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, 8057, Zürich, Switzerland
| | - Iryna Ivanova
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, 8057, Zürich, Switzerland
| | - Selina Frei
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, 8057, Zürich, Switzerland
| | - Kei Mathis
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, 8057, Zürich, Switzerland
| | - Remo Rudolf
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, 8057, Zürich, Switzerland
| | - Sergio Mompart Barrenechea
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, 8057, Zürich, Switzerland
| | - Vincent Fischer
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, 8057, Zürich, Switzerland
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, 8057, Zürich, Switzerland
| | - Xiaohan Xue
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, 4056, Basel, Switzerland
| | - Aleksandra L Ptaszek
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Max Perutz Laboratories, Department of Structural and Computational Biology, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - Julian Holzinger
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Max Perutz Laboratories, Department of Structural and Computational Biology, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - Mattia Privitera
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, 8057, Zürich, Switzerland
| | - Andreas Hierlemann
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, 4056, Basel, Switzerland
| | - Onno C Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2300, RA, Leiden, the Netherlands
| | - Robert Konrat
- Department of Structural and Computational Biology, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - Erick M Carreira
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Johannes Bohacek
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, 8057, Zürich, Switzerland
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, 8057, Zürich, Switzerland
| | - Katharina Gapp
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, 8057, Zürich, Switzerland.
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, 8057, Zürich, Switzerland.
| |
Collapse
|
13
|
Tooley KB, Chucair-Elliott AJ, Ocañas SR, Machalinski AH, Pham KD, Hoolehan W, Kulpa AM, Stanford DR, Freeman WM. Differential usage of DNA modifications in neurons, astrocytes, and microglia. Epigenetics Chromatin 2023; 16:45. [PMID: 37953264 PMCID: PMC10642035 DOI: 10.1186/s13072-023-00522-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Cellular identity is determined partly by cell type-specific epigenomic profiles that regulate gene expression. In neuroscience, there is a pressing need to isolate and characterize the epigenomes of specific CNS cell types in health and disease. In this study, we developed an in vivo tagging mouse model (Camk2a-NuTRAP) for paired isolation of neuronal DNA and RNA without cell sorting and then used this model to assess epigenomic regulation, DNA modifications in particular, of gene expression between neurons and glia. RESULTS After validating the cell-specificity of the Camk2a-NuTRAP model, we performed TRAP-RNA-Seq and INTACT-whole genome oxidative bisulfite sequencing (WGoxBS) to assess the neuronal translatome and epigenome in the hippocampus of young mice (4 months old). WGoxBS findings were validated with enzymatic methyl-Seq (EM-Seq) and nanopore sequencing. Comparing neuronal data to microglial and astrocytic data from NuTRAP models, microglia had the highest global mCG levels followed by astrocytes and then neurons, with the opposite pattern observed for hmCG and mCH. Differentially modified regions between cell types were predominantly found within gene bodies and distal intergenic regions, rather than proximal promoters. Across cell types there was a negative correlation between DNA modifications (mCG, mCH, hmCG) and gene expression at proximal promoters. In contrast, a negative correlation of gene body mCG and a positive relationship between distal promoter and gene body hmCG with gene expression was observed. Furthermore, we identified a neuron-specific inverse relationship between mCH and gene expression across promoter and gene body regions. CONCLUSIONS Neurons, astrocytes, and microglia demonstrate different genome-wide levels of mCG, hmCG, and mCH that are reproducible across analytical methods. However, modification-gene expression relationships are conserved across cell types. Enrichment of differential modifications across cell types in gene bodies and distal regulatory elements, but not proximal promoters, highlights epigenomic patterning in these regions as potentially greater determinants of cell identity. These findings also demonstrate the importance of differentiating between mC and hmC in neuroepigenomic analyses, as up to 30% of what is conventionally interpreted as mCG can be hmCG, which often has a different relationship to gene expression than mCG.
Collapse
Affiliation(s)
- Kyla B Tooley
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Ana J Chucair-Elliott
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Sarah R Ocañas
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Adeline H Machalinski
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Kevin D Pham
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Walker Hoolehan
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Adam M Kulpa
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - David R Stanford
- Center for Biomedical Data Sciences, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Willard M Freeman
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
14
|
Brivio E, Kos A, Ulivi AF, Karamihalev S, Ressle A, Stoffel R, Hirsch D, Stelzer G, Schmidt MV, Lopez JP, Chen A. Sex shapes cell-type-specific transcriptional signatures of stress exposure in the mouse hypothalamus. Cell Rep 2023; 42:112874. [PMID: 37516966 DOI: 10.1016/j.celrep.2023.112874] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 05/19/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023] Open
Abstract
Stress-related psychiatric disorders and the stress system show prominent differences between males and females, as well as strongly divergent transcriptional changes. Despite several proposed mechanisms, we still lack the understanding of the molecular processes at play. Here, we explore the contribution of cell types to transcriptional sex dimorphism using single-cell RNA sequencing. We identify cell-type-specific signatures of acute restraint stress in the paraventricular nucleus of the hypothalamus, a central hub of the stress response, in male and female mice. Further, we show that a history of chronic mild stress alters these signatures in a sex-specific way, and we identify oligodendrocytes as a major target for these sex-specific effects. This dataset, which we provide as an online interactive app, offers the transcriptomes of thousands of individual cells as a molecular resource for an in-depth dissection of the interplay between cell types and sex on the mechanisms of the stress response.
Collapse
Affiliation(s)
- Elena Brivio
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Brain Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Aron Kos
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | | | - Stoyo Karamihalev
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany
| | - Andrea Ressle
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Rainer Stoffel
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Dana Hirsch
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gil Stelzer
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Juan Pablo Lopez
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Brain Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
15
|
Fan Z, Ardicoglu R, Batavia AA, Rust R, von Ziegler L, Waag R, Zhang J, Desgeorges T, Sturman O, Dang H, Weber R, Roszkowski M, Moor AE, Schwab ME, Germain PL, Bohacek J, De Bock K. The vascular gene Apold1 is dispensable for normal development but controls angiogenesis under pathological conditions. Angiogenesis 2023; 26:385-407. [PMID: 36933174 PMCID: PMC10328887 DOI: 10.1007/s10456-023-09870-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/06/2023] [Indexed: 03/19/2023]
Abstract
The molecular mechanisms of angiogenesis have been intensely studied, but many genes that control endothelial behavior and fate still need to be described. Here, we characterize the role of Apold1 (Apolipoprotein L domain containing 1) in angiogenesis in vivo and in vitro. Single-cell analyses reveal that - across tissues - the expression of Apold1 is restricted to the vasculature and that Apold1 expression in endothelial cells (ECs) is highly sensitive to environmental factors. Using Apold1-/- mice, we find that Apold1 is dispensable for development and does not affect postnatal retinal angiogenesis nor alters the vascular network in adult brain and muscle. However, when exposed to ischemic conditions following photothrombotic stroke as well as femoral artery ligation, Apold1-/- mice display dramatic impairments in recovery and revascularization. We also find that human tumor endothelial cells express strikingly higher levels of Apold1 and that Apold1 deletion in mice stunts the growth of subcutaneous B16 melanoma tumors, which have smaller and poorly perfused vessels. Mechanistically, Apold1 is activated in ECs upon growth factor stimulation as well as in hypoxia, and Apold1 intrinsically controls EC proliferation but not migration. Our data demonstrate that Apold1 is a key regulator of angiogenesis in pathological settings, whereas it does not affect developmental angiogenesis, thus making it a promising candidate for clinical investigation.
Collapse
Affiliation(s)
- Zheng Fan
- Department of Health Sciences and Technology, Laboratory of Exercise and Health, ETH Zürich, Zurich, Switzerland
- Institute of Anatomy, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Raphaela Ardicoglu
- Department of Health Sciences and Technology, Laboratory of Exercise and Health, ETH Zürich, Zurich, Switzerland
- Department of Health Sciences and Technology, Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, ETH Zürich, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zürich, University of Zürich, Zurich, Switzerland
| | - Aashil A Batavia
- Department of Pathology and Molecular Pathology, University and University Hospital Zürich, Zurich, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Ruslan Rust
- Department of Health Sciences and Technology, Institute for Regenerative Medicine, University of Zürich, ETH Zürich, Zurich, Switzerland
| | - Lukas von Ziegler
- Department of Health Sciences and Technology, Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, ETH Zürich, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zürich, University of Zürich, Zurich, Switzerland
| | - Rebecca Waag
- Department of Health Sciences and Technology, Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, ETH Zürich, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zürich, University of Zürich, Zurich, Switzerland
| | - Jing Zhang
- Department of Health Sciences and Technology, Laboratory of Exercise and Health, ETH Zürich, Zurich, Switzerland
| | - Thibaut Desgeorges
- Department of Health Sciences and Technology, Laboratory of Exercise and Health, ETH Zürich, Zurich, Switzerland
| | - Oliver Sturman
- Department of Health Sciences and Technology, Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, ETH Zürich, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zürich, University of Zürich, Zurich, Switzerland
| | - Hairuo Dang
- Department of Health Sciences and Technology, Laboratory of Exercise and Health, ETH Zürich, Zurich, Switzerland
- DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany
| | - Rebecca Weber
- Department of Health Sciences and Technology, Institute for Regenerative Medicine, University of Zürich, ETH Zürich, Zurich, Switzerland
| | - Martin Roszkowski
- Department of Health Sciences and Technology, Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, ETH Zürich, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zürich, University of Zürich, Zurich, Switzerland
| | - Andreas E Moor
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Martin E Schwab
- Department of Health Sciences and Technology, Institute for Regenerative Medicine, University of Zürich, ETH Zürich, Zurich, Switzerland
| | - Pierre-Luc Germain
- Neuroscience Center Zurich, ETH Zürich, University of Zürich, Zurich, Switzerland
- Department of Health Sciences and Technology, Computational Neurogenomics, Institute for Neuroscience, ETH Zürich, Zurich, Switzerland
- Department for Molecular Life Sciences, Laboratory of Statistical Bioinformatics, University of Zürich, Zurich, Switzerland
| | - Johannes Bohacek
- Department of Health Sciences and Technology, Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, ETH Zürich, Zurich, Switzerland.
- Neuroscience Center Zurich, ETH Zürich, University of Zürich, Zurich, Switzerland.
| | - Katrien De Bock
- Department of Health Sciences and Technology, Laboratory of Exercise and Health, ETH Zürich, Zurich, Switzerland.
| |
Collapse
|
16
|
Kim EJ, Kim JJ. Neurocognitive effects of stress: a metaparadigm perspective. Mol Psychiatry 2023; 28:2750-2763. [PMID: 36759545 PMCID: PMC9909677 DOI: 10.1038/s41380-023-01986-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/11/2023]
Abstract
Stressful experiences, both physical and psychological, that are overwhelming (i.e., inescapable and unpredictable), can measurably affect subsequent neuronal properties and cognitive functioning of the hippocampus. At the cellular level, stress has been shown to alter hippocampal synaptic plasticity, spike and local field potential activity, dendritic morphology, neurogenesis, and neurodegeneration. At the behavioral level, stress has been found to impair learning and memory for declarative (or explicit) tasks that are based on cognition, such as verbal recall memory in humans and spatial memory in rodents, while facilitating those that are based on emotion, such as differential fear conditioning in humans and contextual fear conditioning in rodents. These vertically related alterations in the hippocampus, procedurally observed after subjects have undergone stress, are generally believed to be mediated by recurrently elevated circulating hypothalamic-pituitary-adrenal (HPA) axis effector hormones, glucocorticoids, directly acting on hippocampal neurons densely populated with corticosteroid receptors. The main purposes of this review are to (i) provide a synopsis of the neurocognitive effects of stress in a historical context that led to the contemporary HPA axis dogma of basic and translational stress research, (ii) critically reappraise the necessity and sufficiency of the glucocorticoid hypothesis of stress, and (iii) suggest an alternative metaparadigm approach to monitor and manipulate the progression of stress effects at the neural coding level. Real-time analyses can reveal neural activity markers of stress in the hippocampus that can be used to extrapolate neurocognitive effects across a range of stress paradigms (i.e., resolve scaling and dichotomous memory effects issues) and understand individual differences, thereby providing a novel neurophysiological scaffold for advancing future stress research.
Collapse
Affiliation(s)
- Eun Joo Kim
- Department of Psychology, University of Washington, Seattle, WA, 98195, USA
- School of Psychology, Korea University, Seoul, 02841, Republic of Korea
| | - Jeansok J Kim
- Department of Psychology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
17
|
Vlasov I, Filatova E, Slominsky P, Shadrina M. Differential expression of Dusp1 and immediate early response genes in the hippocampus of rats, subjected to forced swim test. Sci Rep 2023; 13:9985. [PMID: 37340011 DOI: 10.1038/s41598-023-36611-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 06/07/2023] [Indexed: 06/22/2023] Open
Abstract
The forced swim test (FST) is widely used to screen for potential antidepressant drugs and treatments. Despite this, the nature of stillness during FST and whether it resembles "depressive-like behavior" are widely debated issues. Furthermore, despite being widely used as a behavioral assay, the effects of the FST on the brain transcriptome are rarely investigated. Therefore, in this study we have investigated changes in the transcriptome of the rat hippocampus 20 min and 24 h after FST exposure. RNA-Seq is performed on the hippocampus tissues of rats 20 min and 24 h after an FST. Differentially expressed genes (DEGs) were identified using limma and used to construct gene interaction networks. Fourteen differentially expressed genes (DEGs) were identified only in the 20-m group. No DEGs were identified 24 h after the FST. These genes were used for Gene Ontology term enrichment and gene-network construction. Based on the constructed gene-interaction networks, we identified a group of DEGs (Dusp1, Fos, Klf2, Ccn1, and Zfp36) that appeared significant based on multiple methods of downstream analysis. Dusp1 appears especially important, as its role in the pathogenesis of depression has been demonstrated both in various animal models of depression and in patients with depressive disorders.
Collapse
Affiliation(s)
- Ivan Vlasov
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute, .
| | - Elena Filatova
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute
| | - Petr Slominsky
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute
| | - Maria Shadrina
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute
| |
Collapse
|
18
|
Tooley KB, Chucair-Elliott AJ, Ocañas SR, Machalinski AH, Pham KD, Stanford DR, Freeman WM. Differential usage of DNA modifications in neurons, astrocytes, and microglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.543497. [PMID: 37333391 PMCID: PMC10274634 DOI: 10.1101/2023.06.05.543497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Background Cellular identity is determined partly by cell type-specific epigenomic profiles that regulate gene expression. In neuroscience, there is a pressing need to isolate and characterize the epigenomes of specific CNS cell types in health and disease. This is especially true as for DNA modifications where most data are derived from bisulfite sequencing that cannot differentiate between DNA methylation and hydroxymethylation. In this study, we developed an in vivo tagging mouse model (Camk2a-NuTRAP) for paired isolation of neuronal DNA and RNA without cell sorting and then used this model to assess epigenomic regulation of gene expression between neurons and glia. Results After validating the cell-specificity of the Camk2a-NuTRAP model, we performed TRAP-RNA-Seq and INTACT whole genome oxidative bisulfite sequencing to assess the neuronal translatome and epigenome in the hippocampus of young mice (3 months old). These data were then compared to microglial and astrocytic data from NuTRAP models. When comparing the different cell types, microglia had the highest global mCG levels followed by astrocytes and then neurons, with the opposite pattern observed for hmCG and mCH. Differentially modified regions between cell types were predominantly found within gene bodies and distal intergenic regions, with limited differences occurring within proximal promoters. Across cell types there was a negative correlation between DNA modifications (mCG, mCH, hmCG) and gene expression at proximal promoters. In contrast, a negative correlation of mCG with gene expression within the gene body while a positive relationship between distal promoter and gene body hmCG and gene expression was observed. Furthermore, we identified a neuron-specific inverse relationship between mCH and gene expression across promoter and gene body regions. Conclusions In this study, we identified differential usage of DNA modifications across CNS cell types, and assessed the relationship between DNA modifications and gene expression in neurons and glia. Despite having different global levels, the general modification-gene expression relationship was conserved across cell types. The enrichment of differential modifications in gene bodies and distal regulatory elements, but not proximal promoters, across cell types highlights epigenomic patterning in these regions as potentially greater determinants of cell identity.
Collapse
Affiliation(s)
- Kyla B. Tooley
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Ana J. Chucair-Elliott
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Sarah R. Ocañas
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Adeline H. Machalinski
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Kevin D. Pham
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - David R. Stanford
- Center for Biomedical Data Sciences, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Willard M. Freeman
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK USA
| |
Collapse
|
19
|
Chen K, Zhang L, Wang F, Mao H, Tang Q, Shi G, You Y, Yuan Q, Chen B, Fang X. Altered functional connectivity within the brain fear circuit in Parkinson's disease with anxiety: A seed-based functional connectivity study. Heliyon 2023; 9:e15871. [PMID: 37305477 PMCID: PMC10256910 DOI: 10.1016/j.heliyon.2023.e15871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 04/06/2023] [Accepted: 04/24/2023] [Indexed: 06/13/2023] Open
Abstract
Objectives Aimed to investigate whether there are abnormal changes in the functional connectivity (FC) between the amygdala with other brain areas, in Parkinson's disease (PD) patients with anxiety. Methods Participants were enrolled prospectively, and the Hamilton Anxiety Rating (HAMA) Scale was used to quantify anxiety disorder. Rest-state functional MRI (rs-fMRI) was applied to analyze the amygdala FC patterns among anxious PD patients, non-anxious PD patients, and healthy controls. Results Thirty-three PD patients were recruited, 13 with anxiety, 20 without anxiety, and 19 non-anxious healthy controls. In anxious PD patients, FC between the amygdala with the hippocampus, putamen, intraparietal sulcus, and precuneus showed abnormal alterations compared with non-anxious PD patients and healthy controls. In particular, FC between the amygdala and hippocampus negatively correlated with the HAMA score (r = -0.459, p = 0.007). Conclusion Our results support the role of the fear circuit in emotional regulation in PD with anxiety. Also, the abnormal FC patterns of the amygdala could preliminarily explain the neural mechanisms of anxiety in PD.
Collapse
Affiliation(s)
- Kaidong Chen
- Department of Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Liangxi District, Wuxi, 214023, Jiangsu Province, China
| | - Li Zhang
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Liangxi District, Wuxi, 214023, Jiangsu Province, China
| | - Feng Wang
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Liangxi District, Wuxi, 214023, Jiangsu Province, China
| | - Haixia Mao
- Department of Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Liangxi District, Wuxi, 214023, Jiangsu Province, China
| | - Qunfeng Tang
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Liangxi District, Wuxi, 214023, Jiangsu Province, China
| | - Guofeng Shi
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Liangxi District, Wuxi, 214023, Jiangsu Province, China
| | - Yiping You
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Liangxi District, Wuxi, 214023, Jiangsu Province, China
| | - Qingfang Yuan
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Liangxi District, Wuxi, 214023, Jiangsu Province, China
| | - Bixue Chen
- Department of Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Liangxi District, Wuxi, 214023, Jiangsu Province, China
| | - Xiangming Fang
- Department of Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Liangxi District, Wuxi, 214023, Jiangsu Province, China
| |
Collapse
|
20
|
Hicks EM, Seah C, Cote A, Marchese S, Brennand KJ, Nestler EJ, Girgenti MJ, Huckins LM. Integrating genetics and transcriptomics to study major depressive disorder: a conceptual framework, bioinformatic approaches, and recent findings. Transl Psychiatry 2023; 13:129. [PMID: 37076454 PMCID: PMC10115809 DOI: 10.1038/s41398-023-02412-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 04/21/2023] Open
Abstract
Major depressive disorder (MDD) is a complex and heterogeneous psychiatric syndrome with genetic and environmental influences. In addition to neuroanatomical and circuit-level disturbances, dysregulation of the brain transcriptome is a key phenotypic signature of MDD. Postmortem brain gene expression data are uniquely valuable resources for identifying this signature and key genomic drivers in human depression; however, the scarcity of brain tissue limits our capacity to observe the dynamic transcriptional landscape of MDD. It is therefore crucial to explore and integrate depression and stress transcriptomic data from numerous, complementary perspectives to construct a richer understanding of the pathophysiology of depression. In this review, we discuss multiple approaches for exploring the brain transcriptome reflecting dynamic stages of MDD: predisposition, onset, and illness. We next highlight bioinformatic approaches for hypothesis-free, genome-wide analyses of genomic and transcriptomic data and their integration. Last, we summarize the findings of recent genetic and transcriptomic studies within this conceptual framework.
Collapse
Affiliation(s)
- Emily M Hicks
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Carina Seah
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Alanna Cote
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Shelby Marchese
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Kristen J Brennand
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06511, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Matthew J Girgenti
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA.
| | - Laura M Huckins
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA.
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA.
| |
Collapse
|
21
|
Chehimi SN, Crist RC, Reiner BC. Unraveling Psychiatric Disorders through Neural Single-Cell Transcriptomics Approaches. Genes (Basel) 2023; 14:771. [PMID: 36981041 PMCID: PMC10047992 DOI: 10.3390/genes14030771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The development of single-cell and single-nucleus transcriptome technologies is enabling the unraveling of the molecular and cellular heterogeneity of psychiatric disorders. The complexity of the brain and the relationships between different brain regions can be better understood through the classification of individual cell populations based on their molecular markers and transcriptomic features. Analysis of these unique cell types can explain their involvement in the pathology of psychiatric disorders. Recent studies in both human and animal models have emphasized the importance of transcriptome analysis of neuronal cells in psychiatric disorders but also revealed critical roles for non-neuronal cells, such as oligodendrocytes and microglia. In this review, we update current findings on the brain transcriptome and explore molecular studies addressing transcriptomic alterations identified in human and animal models in depression and stress, neurodegenerative disorders (Parkinson's and Alzheimer's disease), schizophrenia, opioid use disorder, and alcohol and psychostimulant abuse. We also comment on potential future directions in single-cell and single-nucleus studies.
Collapse
Affiliation(s)
| | - Richard C. Crist
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
22
|
Lee H, Park J, Kim S. Metabolic and Transcriptomic Signatures of the Acute Psychological Stress Response in the Mouse Brain. Metabolites 2023; 13:metabo13030453. [PMID: 36984893 PMCID: PMC10052811 DOI: 10.3390/metabo13030453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Acute stress response triggers various physiological responses such as energy mobilization to meet metabolic demands. However, the underlying molecular changes in the brain remain largely obscure. Here, we used a brief water avoidance stress (WAS) to elicit an acute stress response in mice. By employing RNA-sequencing and metabolomics profiling, we investigated the acute stress-induced molecular changes in the mouse whole brain. The aberrant expression of 60 genes was detected in the brain tissues of WAS-exposed mice. Functional analyses showed that the aberrantly expressed genes were enriched in various processes such as superoxide metabolism. In our global metabolomic profiling, a total of 43 brain metabolites were significantly altered by acute WAS. Metabolic pathways upregulated from WAS-exposed brain tissues relative to control samples included lipolysis, eicosanoid biosynthesis, and endocannabinoid synthesis. Acute WAS also elevated the levels of branched-chain amino acids, 5-aminovalerates, 4-hydroxy-nonenal-glutathione as well as mannose, suggesting complex metabolic changes in the brain. The observed molecular events in the present study provide a valuable resource that can help us better understand how acute psychological stress impacts neural functions.
Collapse
Affiliation(s)
- Haein Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jina Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
23
|
Martini P, Mingardi J, Carini G, Mattevi S, Ndoj E, La Via L, Magri C, Gennarelli M, Russo I, Popoli M, Musazzi L, Barbon A. Transcriptional Profiling of Rat Prefrontal Cortex after Acute Inescapable Footshock Stress. Genes (Basel) 2023; 14:genes14030740. [PMID: 36981011 PMCID: PMC10048409 DOI: 10.3390/genes14030740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/31/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Stress is a primary risk factor for psychiatric disorders such as Major Depressive Disorder (MDD) and Post Traumatic Stress Disorder (PTSD). The response to stress involves the regulation of transcriptional programs, which is supposed to play a role in coping with stress. To evaluate transcriptional processes implemented after exposure to unavoidable traumatic stress, we applied microarray expression analysis to the PFC of rats exposed to acute footshock (FS) stress that were sacrificed immediately after the 40 min session or 2 h or 24 h after. While no substantial changes were observed at the single gene level immediately after the stress session, gene set enrichment analysis showed alterations in neuronal pathways associated with glia development, glia-neuron networking, and synaptic function. Furthermore, we found alterations in the expression of gene sets regulated by specific transcription factors that could represent master regulators of the acute stress response. Of note, these pathways and transcriptional programs are activated during the early stress response (immediately after FS) and are already turned off after 2 h-while at 24 h, the transcriptional profile is largely unaffected. Overall, our analysis provided a transcriptional landscape of the early changes triggered by acute unavoidable FS stress in the PFC of rats, suggesting that the transcriptional wave is fast and mild, but probably enough to activate a cellular response to acute stress.
Collapse
Affiliation(s)
- Paolo Martini
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Jessica Mingardi
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Giulia Carini
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy
| | - Stefania Mattevi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Elona Ndoj
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Luca La Via
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Chiara Magri
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Massimo Gennarelli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy
| | - Isabella Russo
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy
| | - Maurizio Popoli
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Laura Musazzi
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Alessandro Barbon
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
24
|
Saito-Takatsuji H, Yoshitomi Y, Yamamoto R, Furuyama T, Ishigaki Y, Kato N, Yonekura H, Ikeda T. Transthyretin Is Commonly Upregulated in the Hippocampus of Two Stress-Induced Depression Mouse Models. Int J Mol Sci 2023; 24:ijms24043736. [PMID: 36835151 PMCID: PMC9964880 DOI: 10.3390/ijms24043736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/28/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Chronic stress can affect gene expression in the hippocampus, which alters neural and cerebrovascular functions, thereby contributing to the development of mental disorders such as depression. Although several differentially expressed genes in the depressed brain have been reported, gene expression changes in the stressed brain remain underexplored. Therefore, this study examines hippocampal gene expression in two mouse models of depression induced by forced swim stress (FSS) and repeated social defeat stress (R-SDS). Transthyretin (Ttr) was commonly upregulated in the hippocampus of both mouse models, as determined by microarray, RT-qPCR, and Western blot analyses. Evaluation of the effects of overexpressed Ttr in the hippocampus using adeno-associated virus-mediated gene transfer revealed that TTR overexpression induced depression-like behavior and upregulation of Lcn2 and several proinflammatory genes (Icam1 and Vcam1) in the hippocampus. Upregulation of these inflammation-related genes was confirmed in the hippocampus obtained from mice vulnerable to R-SDS. These results suggest that chronic stress upregulates Ttr expression in the hippocampus and that Ttr upregulation may be involved in the induction of depression-like behavior.
Collapse
Affiliation(s)
- Hidehito Saito-Takatsuji
- Department of Biochemistry, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, Kahoku-gun, Ishikawa 920-0293, Japan
| | - Yasuo Yoshitomi
- Department of Biochemistry, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, Kahoku-gun, Ishikawa 920-0293, Japan
| | - Ryo Yamamoto
- Department of Physiology, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, Kahoku-gun, Ishikawa 920-0293, Japan
| | - Takafumi Furuyama
- Department of Physiology, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, Kahoku-gun, Ishikawa 920-0293, Japan
| | - Yasuhito Ishigaki
- Division of Molecular and Cell Biology, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku-gun, Ishikawa 920-0293, Japan
| | - Nobuo Kato
- Department of Physiology, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, Kahoku-gun, Ishikawa 920-0293, Japan
| | - Hideto Yonekura
- Department of Biochemistry, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, Kahoku-gun, Ishikawa 920-0293, Japan
| | - Takayuki Ikeda
- Department of Biochemistry, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, Kahoku-gun, Ishikawa 920-0293, Japan
- Correspondence: ; Tel.: +81-76-218-8111
| |
Collapse
|
25
|
Long KLP, Muroy SE, Sorooshyari SK, Ko MJ, Jaques Y, Sudmant P, Kaufer D. Transcriptomic profiles of stress susceptibility and resilience in the amygdala and hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527777. [PMID: 36798395 PMCID: PMC9934702 DOI: 10.1101/2023.02.08.527777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
A single, severe episode of stress can bring about myriad responses amongst individuals, ranging from cognitive enhancement to debilitating and persistent anxiety; however, the biological mechanisms that contribute to resilience versus susceptibility to stress are poorly understood. The dentate gyrus (DG) of the hippocampus and the basolateral nucleus of the amygdala (BLA) are key limbic regions that are susceptible to the neural and hormonal effects of stress. Previous work has also shown that these regions contribute to individual variability in stress responses; however, the molecular mechanisms underlying the role of these regions in susceptibility and resilience are unknown. In this study, we profiled the transcriptomic signatures of the DG and BLA of rats with divergent behavioral outcomes after a single, severe stressor. We subjected rats to three hours of immobilization with exposure to fox urine and conducted a behavioral battery one week after stress to identify animals that showed persistent, high anxiety-like behavior. We then conducted bulk RNA sequencing of the DG and BLA from susceptible, resilient, and unexposed control rats. Differential gene expression analyses revealed that the molecular signatures separating each of the three groups were distinct and non-overlapping between the DG and BLA. In the amygdala, key genes associated with insulin and hormonal signaling corresponded with vulnerability. Specifically, Inhbb, Rab31 , and Ncoa3 were upregulated in the amygdala of stress-susceptible animals compared to resilient animals. In the hippocampus, increased expression of Cartpt - which encodes a key neuropeptide involved in reward, reinforcement, and stress responses - was strongly correlated with vulnerability to anxiety-like behavior. However, few other genes distinguished stress-susceptible animals from control animals, while a larger number of genes separated stress-resilient animals from control and stress-susceptible animals. Of these, Rnf112, Tbx19 , and UBALD1 distinguished resilient animals from both control and susceptible animals and were downregulated in resilience, suggesting that an active molecular response in the hippocampus facilitates protection from the long-term consequences of severe stress. These results provide novel insight into the mechanisms that bring about individual variability in the behavioral responses to stress and provide new targets for the advancement of therapies for stress-induced neuropsychiatric disorders.
Collapse
|
26
|
Chen K, Zhang L, Mao H, Chen K, Shi Y, Meng X, Wang F, Hu X, Fang X. The impact of iron deposition on the fear circuit of the brain in patients with Parkinson's disease and anxiety. Front Aging Neurosci 2023; 15:1116516. [PMID: 36845658 PMCID: PMC9951615 DOI: 10.3389/fnagi.2023.1116516] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
Objective Anxiety is one of the most common psychiatric symptoms of Parkinson's disease (PD), and brain iron deposition is considered to be one of the pathological mechanisms of PD. The objective of this study was to explore alterations in brain iron deposition in PD patients with anxiety compared to PD patients without anxiety, especially in the fear circuit. Methods Sixteen PD patients with anxiety, 23 PD patients without anxiety, and 26 healthy elderly controls were enrolled prospectively. All subjects underwent neuropsychological assessments and brain magnetic resonance imaging (MRI) examinations. Voxel-based morphometry (VBM) was used to study morphological brain differences between the groups. Quantitative susceptibility mapping (QSM), an MRI technique capable of quantifying susceptibility changes in brain tissue, was used to compare susceptibility changes in the whole brain among the three groups. The correlations between brain susceptibility changes and anxiety scores quantified using the Hamilton Anxiety Rating Scale (HAMA) were compared and analyzed. Results PD patients with anxiety had a longer duration of PD and higher HAMA scores than PD patients without anxiety. No morphological brain differences were observed between the groups. In contrast, voxel-based and ROI-based QSM analyses showed that PD patients with anxiety had significantly increased QSM values in the medial prefrontal cortex, anterior cingulate cortex, hippocampus, precuneus, and angular cortex. Furthermore, the QSM values of some of these brain regions were positively correlated with the HAMA scores (medial prefrontal cortex: r = 0.255, p = 0.04; anterior cingulate cortex: r = 0.381, p < 0.01; hippocampus: r = 0.496, p < 0.01). Conclusion Our findings support the idea that anxiety in PD is associated with iron burden in the brain fear circuit, providing a possible new approach to explaining the potential neural mechanism of anxiety in PD.
Collapse
Affiliation(s)
- Kaidong Chen
- Department of Radiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Li Zhang
- Department of Neurology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Haixia Mao
- Department of Radiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Kefei Chen
- Department of Neurology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Yachen Shi
- Department of Neurology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Xiangpan Meng
- Department of Radiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Feng Wang
- Department of Neurology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China,*Correspondence: Xiangming Fang, ✉
| | - Xiaoyun Hu
- Department of Radiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China,Feng Wang, ✉
| | - Xiangming Fang
- Department of Radiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China,Xiaoyun Hu, ✉
| |
Collapse
|
27
|
Miranda L, Bordes J, Gasperoni S, Lopez JP. Increasing resolution in stress neurobiology: from single cells to complex group behaviors. Stress 2023; 26:2186141. [PMID: 36855966 DOI: 10.1080/10253890.2023.2186141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Stress can have severe psychological and physiological consequences. Thus, inappropriate regulation of the stress response is linked to the etiology of mood and anxiety disorders. The generation and implementation of preclinical animal models represent valuable tools to explore and characterize the mechanisms underlying the pathophysiology of stress-related psychiatric disorders and the development of novel pharmacological strategies. In this commentary, we discuss the strengths and limitations of state-of-the-art molecular and computational advances employed in stress neurobiology research, with a focus on the ever-increasing spatiotemporal resolution in cell biology and behavioral science. Finally, we share our perspective on future directions in the fields of preclinical and human stress research.
Collapse
Affiliation(s)
- Lucas Miranda
- Department of Statistical Genetics, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Joeri Bordes
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Serena Gasperoni
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Juan Pablo Lopez
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
28
|
Mahony C, O'Ryan C. A molecular framework for autistic experiences: Mitochondrial allostatic load as a mediator between autism and psychopathology. Front Psychiatry 2022; 13:985713. [PMID: 36506457 PMCID: PMC9732262 DOI: 10.3389/fpsyt.2022.985713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022] Open
Abstract
Molecular autism research is evolving toward a biopsychosocial framework that is more informed by autistic experiences. In this context, research aims are moving away from correcting external autistic behaviors and toward alleviating internal distress. Autism Spectrum Conditions (ASCs) are associated with high rates of depression, suicidality and other comorbid psychopathologies, but this relationship is poorly understood. Here, we integrate emerging characterizations of internal autistic experiences within a molecular framework to yield insight into the prevalence of psychopathology in ASC. We demonstrate that descriptions of social camouflaging and autistic burnout resonate closely with the accepted definitions for early life stress (ELS) and chronic adolescent stress (CAS). We propose that social camouflaging could be considered a distinct form of CAS that contributes to allostatic overload, culminating in a pathophysiological state that is experienced as autistic burnout. Autistic burnout is thought to contribute to psychopathology via psychological and physiological mechanisms, but these remain largely unexplored by molecular researchers. Building on converging fields in molecular neuroscience, we discuss the substantial evidence implicating mitochondrial dysfunction in ASC to propose a novel role for mitochondrial allostatic load in the relationship between autism and psychopathology. An interplay between mitochondrial, neuroimmune and neuroendocrine signaling is increasingly implicated in stress-related psychopathologies, and these molecular players are also associated with neurodevelopmental, neurophysiological and neurochemical aspects of ASC. Together, this suggests an increased exposure and underlying molecular susceptibility to ELS that increases the risk of psychopathology in ASC. This article describes an integrative framework shaped by autistic experiences that highlights novel avenues for molecular research into mechanisms that directly affect the quality of life and wellbeing of autistic individuals. Moreover, this framework emphasizes the need for increased access to diagnoses, accommodations, and resources to improve mental health outcomes in autism.
Collapse
Affiliation(s)
| | - Colleen O'Ryan
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
29
|
Kuo JY, Denman AJ, Beacher NJ, Glanzberg JT, Zhang Y, Li Y, Lin DT. Using deep learning to study emotional behavior in rodent models. Front Behav Neurosci 2022; 16:1044492. [PMID: 36483523 PMCID: PMC9722968 DOI: 10.3389/fnbeh.2022.1044492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/02/2022] [Indexed: 11/25/2023] Open
Abstract
Quantifying emotional aspects of animal behavior (e.g., anxiety, social interactions, reward, and stress responses) is a major focus of neuroscience research. Because manual scoring of emotion-related behaviors is time-consuming and subjective, classical methods rely on easily quantified measures such as lever pressing or time spent in different zones of an apparatus (e.g., open vs. closed arms of an elevated plus maze). Recent advancements have made it easier to extract pose information from videos, and multiple approaches for extracting nuanced information about behavioral states from pose estimation data have been proposed. These include supervised, unsupervised, and self-supervised approaches, employing a variety of different model types. Representations of behavioral states derived from these methods can be correlated with recordings of neural activity to increase the scope of connections that can be drawn between the brain and behavior. In this mini review, we will discuss how deep learning techniques can be used in behavioral experiments and how different model architectures and training paradigms influence the type of representation that can be obtained.
Collapse
Affiliation(s)
- Jessica Y. Kuo
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Alexander J. Denman
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Nicholas J. Beacher
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Joseph T. Glanzberg
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Yan Zhang
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Yun Li
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States
| | - Da-Ting Lin
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
30
|
Hu Y, Liu Y, Li S. Effect of Acute Cold Stress on Neuroethology in Mice and Establishment of Its Model. Animals (Basel) 2022; 12:ani12192671. [PMID: 36230412 PMCID: PMC9559653 DOI: 10.3390/ani12192671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
Cold environment is an inevitable stress source for humans and livestock in cold areas, which easily induce a cold stress response and then cause a series of abnormal changes in energy metabolism, neuroendocrine system, behavior and emotion. Homeostasis is maintained by the unified regulation of the autonomic nervous system, endocrine system, metabolism and behavior under cold exposure. Behavior is an indispensable part of the functional regulation of the body to respond to environmental changes. At present, the behavioral changes caused by cold exposure are unclear or even chaotic due to the difficulty of defining cold stress. Therefore, this study aims to systematically observe the changes in spontaneous movement, exploratory behavior and anxiety of mice under different intensity cold exposure and summarize the characteristics and behavior traits combined with relevant blood physiological indexes under corresponding conditions. Mice models of cold stress with different intensities were established (cold exposure gradients were 22 °C, 16 °C, 10 °C and 4 °C, and time gradients of each temperature were 2 h, 4 h, 6 h, 8 h, 10 h and 12 h). After the corresponding cold exposure treatment, mice immediately carried out the open field test(OFT) and elevated plus maze test (PMT) to evaluate their spontaneous movement, exploratory behavior and anxiety. Subsequently, blood samples were collected and used for the determination of corticosterone (Cort), corticotropin-releasing hormone (CRH), epinephrine (E), norepinephrine (NE), dopamine (DA) and 5-hydroxytryptamine (5-HT) by enzyme-linked immunosorbent assay (ELISA). Spontaneous movement of mice increased under 22 °C cold exposure, but their exploration behavior did not significantly change, and their anxiety improved at the initial stage. The spontaneous movement and anxiety of mice increased in the initial stage and decreased in the later stage under cold exposure at 16, 10 and 4 °C and the exploratory behavior was inhibited. The hypothalamic-pituitary-adrenal (HPA) axis and locus coeruleus-noradrenergic (LC/NE) system were activated by cold stress and fluctuated with different intensities of cold exposure. Meanwhile, serum DA increased, and 5-HT was the opposite under different intensities of cold exposure. In conclusion, mild acute cold exposure promoted the spontaneous movement, increased exploratory behavior and improved anxiety. As the intensity of cold exposure increases, cold exposure had a negative effect on spontaneous movement, exploratory behavior and emotion. The physiological basis of these behavioral and emotional changes in mice under different intensity cold stimulation is the fluctuation of Cort, CRH, E, NE, DA and 5-HT.
Collapse
Affiliation(s)
- Yajie Hu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yang Liu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Shize Li
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
31
|
Hu GF, Wang X, Meng LB, Li JY, Xu HX, Wu DS, Shan MJ, Chen YH, Xu JP, Gong T, Chen Z, Li YJ, Liu DP. SGLT1/2 as the potential biomarkers of renal damage under Apoe−/− and chronic stress via the BP neural network model and support vector machine. Front Cardiovasc Med 2022; 9:948909. [PMID: 36035950 PMCID: PMC9405420 DOI: 10.3389/fcvm.2022.948909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundChronic stress (CS) could produce negative emotions. The molecular mechanism of SGLT1 and SGLT2 in kidney injury caused by chronic stress combined with atherosclerosis remains unclear.MethodsIn total, 60 C57BL/6J mice were randomly divided into four groups, namely, control (CON, n = 15), control diet + chronic stress (CON+CS, n = 15), high-fat diet + Apoe−/− (HF + Apoe−/−, n = 15), and high-fat diet + Apoe−/− + chronic stress (HF+Apoe−/− + CS, n = 15) groups. The elevated plus maze and open field tests were performed to examine the effect of chronic stress. The expression of SGLT1 and SGLT2 in the kidney was detected. The support vector machine (SVM) and back propagation (BP) neural network model were constructed to explore the predictive value of the expression of SGLT1/2 on the renal pathological changes. The receiver operating characteristic (ROC) curve analysis was used.ResultsA chronic stress model and atherosclerosis model were constructed successfully. Edema, broken reticular fiber, and increased glycogen in the kidney would be obvious in the HF + Apoe−/− + CS group. Compared with the CON group, the expression of SGLT1/2 in the kidney was upregulated in the HF + Apoe−/− + CS group (P < 0.05). There existed positive correlations among edema, glycogen, reticular fiber, expression of SGLT1/2 in the kidney. There were higher sensitivity and specificity of diagnosis of SGLT1/2 for edema, reticular fiber, and glycogen in the kidney. The result of the SVM and BP neural network model showed better predictive values of SGLT1 and SGLT2 for edema and glycogen in the kidney.ConclusionIn conclusion, SGLT1/2 might be potential biomarkers of renal damage under Apoe−/− and chronic stress, which provided a potential research direction for future related explorations into this mechanism.
Collapse
Affiliation(s)
- Gai-feng Hu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Xiang Wang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ling-bing Meng
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-yi Li
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong-xuan Xu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Di-shan Wu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng-jie Shan
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Yu-hui Chen
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jia-pei Xu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Tao Gong
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Tao Gong
| | - Zuoguan Chen
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Zuoguan Chen
| | - Yong-jun Li
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Yong-jun Li
| | - De-ping Liu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: De-ping Liu
| |
Collapse
|