1
|
Lin Y, Zhu Y, Jing L, Lei X, Xie Z. Regulation of viral replication by host restriction factors. Front Immunol 2025; 16:1484119. [PMID: 39917304 PMCID: PMC11798991 DOI: 10.3389/fimmu.2025.1484119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/06/2025] [Indexed: 02/09/2025] Open
Abstract
Viral infectious diseases, caused by numerous viruses including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A virus (IAV), enterovirus (EV), human immunodeficiency virus (HIV), hepatitis B virus (HBV), and human papillomavirus (HPV), pose a continuous threat to global health. As obligate parasites, viruses rely on host cells to replicate, and host cells have developed numerous defense mechanisms to counteract viral infection. Host restriction factors (HRFs) are critical components of the early antiviral response. These cellular proteins inhibit viral replication and spread by impeding essential steps in the viral life cycle, such as viral entry, genome transcription and replication, protein translation, viral particle assembly, and release. This review summarizes the current understanding of how host restriction factors inhibit viral replication, with a primary focus on their diverse antiviral mechanisms against a range of viruses, including SARS-CoV-2, influenza A virus, enteroviruses, human immunodeficiency virus, hepatitis B virus, and human papillomavirus. In addition, we highlight the crucial role of these factors in shaping the host-virus interactions and discuss their potential as targets for antiviral drug development.
Collapse
Affiliation(s)
- Ying Lin
- National Health Commission (NHC) Key Laboratory of System Biology of Pathogens and Christophe Merieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Yun Zhu
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Ling Jing
- National Health Commission (NHC) Key Laboratory of System Biology of Pathogens and Christophe Merieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaobo Lei
- National Health Commission (NHC) Key Laboratory of System Biology of Pathogens and Christophe Merieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
| | - Zhengde Xie
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Fenn J, Madon K, Conibear E, Derelle R, Nevin S, Kundu R, Hakki S, Tregoning JS, Koycheva A, Derqui N, Tolosa-Wright M, Jonnerby J, Wang L, Baldwin S, Pillay TD, Thwaites RS, Luca C, Varro R, Badhan A, Parker E, Rosadas C, McClure M, Tedder R, Taylor G, Lalvani A. An ultra-early, transient interferon-associated innate immune response associates with protection from SARS-CoV-2 infection despite exposure. EBioMedicine 2025; 111:105475. [PMID: 39667271 PMCID: PMC11697275 DOI: 10.1016/j.ebiom.2024.105475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND A proportion of individuals exposed to respiratory viruses avoid contracting detectable infection. We tested the hypothesis that early innate immune responses associate with resistance to detectable infection in close contacts of COVID-19 cases. METHODS 48 recently-exposed household contacts of symptomatic COVID-19 cases were recruited in London, UK between May 2020 and March 2021 through a prospective, longitudinal observational study. Blood and nose and throat swabs were collected during the acute period of index case viral shedding and longitudinally thereafter. Magnitude of SARS-CoV-2 exposure was quantified, and serial PCR and serological assays used to determine infection status of contacts. Whole-blood RNA-seq was performed and analysed to identify transcriptomic signatures of early infection and resistance to infection. FINDINGS 24 highly-exposed household contacts became PCR-positive and seropositive whilst 24 remained persistently PCR-negative and seronegative. A 96-gene transcriptomic signature of early SARS-CoV-2 infection was identified using RNA-seq of longitudinal blood samples from PCR-positive contacts. This signature was dominated by interferon-associated genes and expression correlated positively with viral load. Elevated expression of this 96-gene signature was also observed during exposure in 25% (6/24) of persistently PCR-negative, seronegative contacts. PCR-negative contacts with elevated signature expression had higher-magnitude SARS-CoV-2 exposure compared to those with low signature expression. We validated this signature in SARS-CoV-2-infected individuals in two independent cohorts. In naturally-exposed healthcare workers (HCWs) we found that 7/58 (12%) PCR-negative HCWs exhibited elevated signature expression. Comparing gene-signature expression in SARS-CoV-2 Controlled Human Infection Model (CHIM) volunteers pre- and post-inoculation, we observed that 14 signature genes were transiently upregulated as soon as 6 hr post-inoculation in PCR-negative volunteers, while in PCR-positive volunteers gene-signature upregulation did not occur until 3 days later. INTERPRETATION Our interferon-associated signature of early SARS-CoV-2 infection characterises a subgroup of exposed, uninfected contacts in three independent cohorts who may have successfully aborted infection prior to induction of adaptive immunity. The earlier transient upregulation of signature genes in PCR-negative compared to PCR-positive CHIM volunteers suggests that ultra-early interferon-associated innate immune responses correlate with, and may contribute to, protection against SARS-CoV-2 infection. FUNDING This work was supported by the NIHR Health Protection Research Unit in Respiratory Infections, United Kingdom, NIHR Imperial College London, United Kingdom (Grant number: NIHR200927; AL) in partnership with the UK Health Security Agency and the NIHR Medical Research Council (MRC), United Kingdom (Grant number: MR/X004058/1). Support for sequencing was provided by the Imperial BRC Genomics Facility which is funded by the NIHR, United Kingdom. The development of the hybrid DABA assay used for quantification of SARS-CoV-2 anti-Spike RBD antibodies was supported by the MRC (MC_PC_19078).
Collapse
Affiliation(s)
- Joe Fenn
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK.
| | - Kieran Madon
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Emily Conibear
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Romain Derelle
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Sean Nevin
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Rhia Kundu
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Seran Hakki
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - John S Tregoning
- Department of Infectious Disease, Imperial College London, London, UK
| | - Aleksandra Koycheva
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Nieves Derqui
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
| | - Mica Tolosa-Wright
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Jakob Jonnerby
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Lulu Wang
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Samuel Baldwin
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Timesh D Pillay
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Constanta Luca
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Robert Varro
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Anjna Badhan
- Department of Infectious Disease, Imperial College London, London, UK
| | - Eleanor Parker
- Department of Infectious Disease, Imperial College London, London, UK
| | - Carolina Rosadas
- Department of Infectious Disease, Imperial College London, London, UK
| | - Myra McClure
- Department of Infectious Disease, Imperial College London, London, UK
| | - Richard Tedder
- Department of Infectious Disease, Imperial College London, London, UK
| | - Graham Taylor
- Department of Infectious Disease, Imperial College London, London, UK
| | - Ajit Lalvani
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
3
|
See WR, Yousefi M, Ooi YS. A review of virus host factor discovery using CRISPR screening. mBio 2024; 15:e0320523. [PMID: 39422472 PMCID: PMC11559068 DOI: 10.1128/mbio.03205-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
The emergence of genome-scale forward genetic screening techniques, such as Haploid Genetic screen and clustered regularly interspaced short palindromic repeats (CRISPR) knockout screen has opened new horizons in our understanding of virus infection biology. CRISPR screening has become a popular tool for the discovery of novel host factors for several viruses due to its specificity and efficiency in genome editing. Here, we review how CRISPR screening has revolutionized our understanding of virus-host interactions from scientific and technological viewpoints. A summary of the published screens conducted thus far to uncover virus host factors is presented, highlighting their experimental design and significant findings. We will outline relevant methods for customizing the CRISPR screening process to answer more specific hypotheses and compile a glossary of conducted CRISPR screens to show their design aspects. Furthermore, using flaviviruses and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as examples, we hope to offer a broad-based perspective on the capabilities of CRISPR screening to serve as a reference point to guide future unbiased discovery of virus host factors.
Collapse
Affiliation(s)
- Wayne Ren See
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Meisam Yousefi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Yaw Shin Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
4
|
Ortega-Prieto AM, Jimenez-Guardeño JM. Interferon-stimulated genes and their antiviral activity against SARS-CoV-2. mBio 2024; 15:e0210024. [PMID: 39171921 PMCID: PMC11389394 DOI: 10.1128/mbio.02100-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic remains an international health problem caused by the recent emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of May 2024, SARS-CoV-2 has caused more than 775 million cases and over 7 million deaths globally. Despite current vaccination programs, infections are still rapidly increasing, mainly due to the appearance and spread of new variants, variations in immunization rates, and limitations of current vaccines in preventing transmission. This underscores the need for pan-variant antivirals and treatments. The interferon (IFN) system is a critical element of the innate immune response and serves as a frontline defense against viruses. It induces a generalized antiviral state by transiently upregulating hundreds of IFN-stimulated genes (ISGs). To gain a deeper comprehension of the innate immune response to SARS-CoV-2, its connection to COVID-19 pathogenesis, and the potential therapeutic implications, this review provides a detailed overview of fundamental aspects of the diverse ISGs identified for their antiviral properties against SARS-CoV-2. It emphasizes the importance of these proteins in controlling viral replication and spread. Furthermore, we explore methodological approaches for the identification of ISGs and conduct a comparative analysis with other viruses. Deciphering the roles of ISGs and their interactions with viral pathogens can help identify novel targets for antiviral therapies and enhance our preparedness to confront current and future viral threats.
Collapse
Affiliation(s)
- Ana Maria Ortega-Prieto
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| | - Jose M Jimenez-Guardeño
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| |
Collapse
|
5
|
Puray-Chavez M, Eschbach JE, Xia M, LaPak KM, Zhou Q, Jasuja R, Pan J, Xu J, Zhou Z, Mohammed S, Wang Q, Lawson DQ, Djokic S, Hou G, Ding S, Brody SL, Major MB, Goldfarb D, Kutluay SB. A basally active cGAS-STING pathway limits SARS-CoV-2 replication in a subset of ACE2 positive airway cell models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.07.574522. [PMID: 38260460 PMCID: PMC10802478 DOI: 10.1101/2024.01.07.574522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Host factors that define the cellular tropism of SARS-CoV-2 beyond the cognate ACE2 receptor are poorly defined. Here we report that SARS-CoV-2 replication is restricted at a post-entry step in a number of ACE2-positive airway-derived cell lines due to tonic activation of the cGAS-STING pathway mediated by mitochondrial DNA leakage and naturally occurring cGAS and STING variants. Genetic and pharmacological inhibition of the cGAS-STING and type I/III IFN pathways as well as ACE2 overexpression overcome these blocks. SARS-CoV-2 replication in STING knockout cell lines and primary airway cultures induces ISG expression but only in uninfected bystander cells, demonstrating efficient antagonism of the type I/III IFN-pathway in productively infected cells. Pharmacological inhibition of STING in primary airway cells enhances SARS-CoV-2 replication and reduces virus-induced innate immune activation. Together, our study highlights that tonic activation of the cGAS-STING and IFN pathways can impact SARS-CoV-2 cellular tropism in a manner dependent on ACE2 expression levels.
Collapse
Affiliation(s)
- Maritza Puray-Chavez
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jenna E. Eschbach
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ming Xia
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kyle M. LaPak
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Qianzi Zhou
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ria Jasuja
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jiehong Pan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jian Xu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Zixiang Zhou
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Shawn Mohammed
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Qibo Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dana Q. Lawson
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sanja Djokic
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gaopeng Hou
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven L. Brody
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael B. Major
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Institute for Informatics, Data Science & Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Sebla B. Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
6
|
Le Pen J, Paniccia G, Kinast V, Moncada-Velez M, Ashbrook AW, Bauer M, Hoffmann HH, Pinharanda A, Ricardo-Lax I, Stenzel AF, Rosado-Olivieri EA, Dinnon KH, Doyle WC, Freije CA, Hong SH, Lee D, Lewy T, Luna JM, Peace A, Schmidt C, Schneider WM, Winkler R, Yip EZ, Larson C, McGinn T, Menezes MR, Ramos-Espiritu L, Banerjee P, Poirier JT, Sànchez-Rivera FJ, Cobat A, Zhang Q, Casanova JL, Carroll TS, Glickman JF, Michailidis E, Razooky B, MacDonald MR, Rice CM. A genome-wide arrayed CRISPR screen identifies PLSCR1 as an intrinsic barrier to SARS-CoV-2 entry that recent virus variants have evolved to resist. PLoS Biol 2024; 22:e3002767. [PMID: 39316623 PMCID: PMC11486371 DOI: 10.1371/journal.pbio.3002767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/17/2024] [Accepted: 07/25/2024] [Indexed: 09/26/2024] Open
Abstract
Interferons (IFNs) play a crucial role in the regulation and evolution of host-virus interactions. Here, we conducted a genome-wide arrayed CRISPR knockout screen in the presence and absence of IFN to identify human genes that influence Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. We then performed an integrated analysis of genes interacting with SARS-CoV-2, drawing from a selection of 67 large-scale studies, including our own. We identified 28 genes of high relevance in both human genetic studies of Coronavirus Disease 2019 (COVID-19) patients and functional genetic screens in cell culture, with many related to the IFN pathway. Among these was the IFN-stimulated gene PLSCR1. PLSCR1 did not require IFN induction to restrict SARS-CoV-2 and did not contribute to IFN signaling. Instead, PLSCR1 specifically restricted spike-mediated SARS-CoV-2 entry. The PLSCR1-mediated restriction was alleviated by TMPRSS2 overexpression, suggesting that PLSCR1 primarily restricts the endocytic entry route. In addition, recent SARS-CoV-2 variants have adapted to circumvent the PLSCR1 barrier via currently undetermined mechanisms. Finally, we investigate the functional effects of PLSCR1 variants present in humans and discuss an association between PLSCR1 and severe COVID-19 reported recently.
Collapse
Affiliation(s)
- Jérémie Le Pen
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Gabrielle Paniccia
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Volker Kinast
- Department of Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Department for Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Marcela Moncada-Velez
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
| | - Alison W. Ashbrook
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Michael Bauer
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - H.-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Ana Pinharanda
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Inna Ricardo-Lax
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Ansgar F. Stenzel
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Edwin A. Rosado-Olivieri
- Laboratory of Synthetic Embryology, The Rockefeller University, New York, New York, United States of America
| | - Kenneth H. Dinnon
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - William C. Doyle
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Catherine A. Freije
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Seon-Hui Hong
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Danyel Lee
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Tyler Lewy
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Joseph M. Luna
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Avery Peace
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Carltin Schmidt
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
| | - William M. Schneider
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Roni Winkler
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Elaine Z. Yip
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Chloe Larson
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Timothy McGinn
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Miriam-Rose Menezes
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Lavoisier Ramos-Espiritu
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Priyam Banerjee
- Bio-Imaging Resource Center, The Rockefeller University, New York, New York, United States of America
| | - John T. Poirier
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, New York, United States of America
| | - Francisco J. Sànchez-Rivera
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Aurélie Cobat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Qian Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, New York, United States of America
| | - Thomas S. Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, New York, United States of America
| | - J. Fraser Glickman
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Brandon Razooky
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Margaret R. MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| |
Collapse
|
7
|
Frasson I, Diamante L, Zangrossi M, Carbognin E, Pietà AD, Penna A, Rosato A, Verin R, Torrigiani F, Salata C, Dizanzo MP, Vaccaro L, Cacchiarelli D, Richter SN, Montagner M, Martello G. Identification of druggable host dependency factors shared by multiple SARS-CoV-2 variants of concern. J Mol Cell Biol 2024; 16:mjae004. [PMID: 38305139 PMCID: PMC11411213 DOI: 10.1093/jmcb/mjae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/23/2023] [Accepted: 01/31/2024] [Indexed: 02/03/2024] Open
Abstract
The high mutation rate of SARS-CoV-2 leads to the emergence of multiple variants, some of which are resistant to vaccines and drugs targeting viral elements. Targeting host dependency factors, e.g. cellular proteins required for viral replication, would help prevent the development of resistance. However, it remains unclear whether different SARS-CoV-2 variants induce conserved cellular responses and exploit the same core host factors. To this end, we compared three variants of concern and found that the host transcriptional response was conserved, differing only in kinetics and magnitude. Clustered regularly interspaced short palindromic repeats screening identified host genes required for each variant during infection. Most of the genes were shared by multiple variants. We validated our hits with small molecules and repurposed the US Food and Drug Administration-approved drugs. All the drugs were highly active against all the tested variants, including new variants that emerged during the study (Delta and Omicron). Mechanistically, we identified reactive oxygen species production as a key step in early viral replication. Antioxidants such as N-acetyl cysteine (NAC) were effective against all the variants in both human lung cells and a humanized mouse model. Our study supports the use of available antioxidant drugs, such as NAC, as a general and effective anti-COVID-19 approach.
Collapse
Affiliation(s)
- Ilaria Frasson
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
| | - Linda Diamante
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
- Department of Biology, Armenise/Harvard Pluripotent Stem Cell Biology Laboratory, University of Padua, Padua 35131, Italy
| | - Manuela Zangrossi
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
| | - Elena Carbognin
- Department of Biology, Armenise/Harvard Pluripotent Stem Cell Biology Laboratory, University of Padua, Padua 35131, Italy
| | - Anna Dalla Pietà
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua 35128, Italy
| | - Alessandro Penna
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua 35128, Italy
| | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua 35128, Italy
- Veneto Institute of Oncology IOV-IRCCS, Padua 35128, Italy
| | - Ranieri Verin
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua 35020, Italy
| | - Filippo Torrigiani
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua 35020, Italy
| | - Cristiano Salata
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
| | | | - Lorenzo Vaccaro
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli 80078, Italy
- Department of Translational Medicine, University of Naples Federico II, Naples 80138, Italy
| | - Davide Cacchiarelli
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli 80078, Italy
- Department of Translational Medicine, University of Naples Federico II, Naples 80138, Italy
- School for Advanced Studies, Genomics and Experimental Medicine Program, University of Naples Federico II, Naples 80138, Italy
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
- Microbiology and Virology Unit, Padua University Hospital, Padua 35128, Italy
| | - Marco Montagner
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
| | - Graziano Martello
- Department of Biology, Armenise/Harvard Pluripotent Stem Cell Biology Laboratory, University of Padua, Padua 35131, Italy
| |
Collapse
|
8
|
Sakai M, Masuda Y, Tarumoto Y, Aihara N, Tsunoda Y, Iwata M, Kamiya Y, Komorizono R, Noda T, Yusa K, Tomonaga K, Makino A. Genome-scale CRISPR-Cas9 screen identifies host factors as potential therapeutic targets for SARS-CoV-2 infection. iScience 2024; 27:110475. [PMID: 39100693 PMCID: PMC11295705 DOI: 10.1016/j.isci.2024.110475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/01/2024] [Accepted: 07/05/2024] [Indexed: 08/06/2024] Open
Abstract
Although many host factors important for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection have been reported, the mechanisms by which the virus interacts with host cells remain elusive. Here, we identified tripartite motif containing (TRIM) 28, TRIM33, euchromatic histone lysine methyltransferase (EHMT) 1, and EHMT2 as proviral factors involved in SARS-CoV-2 infection by CRISPR-Cas9 screening. Our result suggested that TRIM28 may play a role in viral particle formation and that TRIM33, EHMT1, and EHMT2 may be involved in viral transcription and replication. UNC0642, a compound that specifically inhibits the methyltransferase activity of EHMT1/2, strikingly suppressed SARS-CoV-2 growth in cultured cells and reduced disease severity in a hamster infection model. This study suggests that EHMT1/2 may be a therapeutic target for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Madoka Sakai
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
| | - Yoshie Masuda
- Laboratory of Stem Cell Genetics, Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
| | - Yusuke Tarumoto
- Laboratory of Stem Cell Genetics, Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
| | - Naoyuki Aihara
- Laboratory of Veterinary Pathology, Azabu University, Kanagawa 2520206, Japan
| | - Yugo Tsunoda
- Laboratory of Ultrastructural Virology, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, Kyoto 6068507, Japan
- CREST, Japan Science and Technology Agency, Saitama 1020076, Japan
| | - Michiko Iwata
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
| | - Yumiko Kamiya
- Laboratory of Veterinary Pathology, Azabu University, Kanagawa 2520206, Japan
| | - Ryo Komorizono
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
| | - Takeshi Noda
- Laboratory of Ultrastructural Virology, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, Kyoto 6068507, Japan
- CREST, Japan Science and Technology Agency, Saitama 1020076, Japan
| | - Kosuke Yusa
- Laboratory of Stem Cell Genetics, Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
| | - Keizo Tomonaga
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
- Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto 6068507, Japan
- Department of Molecular Virology, Graduate School of Medicine, Kyoto University, Kyoto 6068507, Japan
| | - Akiko Makino
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
- Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto 6068507, Japan
| |
Collapse
|
9
|
Lum KK, Reed TJ, Yang J, Cristea IM. Differential Contributions of Interferon Classes to Host Inflammatory Responses and Restricting Virus Progeny Production. J Proteome Res 2024; 23:3249-3268. [PMID: 38564653 PMCID: PMC11296908 DOI: 10.1021/acs.jproteome.3c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Fundamental to mammalian intrinsic and innate immune defenses against pathogens is the production of Type I and Type II interferons, such as IFN-β and IFN-γ, respectively. The comparative effects of IFN classes on the cellular proteome, protein interactions, and virus restriction within cell types that differentially contribute to immune defenses are needed for understanding immune signaling. Here, a multilayered proteomic analysis, paired with biochemical and molecular virology assays, allows distinguishing host responses to IFN-β and IFN-γ and associated antiviral impacts during infection with several ubiquitous human viruses. In differentiated macrophage-like monocytic cells, we classified proteins upregulated by IFN-β, IFN-γ, or pro-inflammatory LPS. Using parallel reaction monitoring, we developed a proteotypic peptide library for shared and unique ISG signatures of each IFN class, enabling orthogonal confirmation of protein alterations. Thermal proximity coaggregation analysis identified the assembly and maintenance of IFN-induced protein interactions. Comparative proteomics and cytokine responses in macrophage-like monocytic cells and primary keratinocytes provided contextualization of their relative capacities to restrict virus production during infection with herpes simplex virus type-1, adenovirus, and human cytomegalovirus. Our findings demonstrate how IFN classes induce distinct ISG abundance and interaction profiles that drive antiviral defenses within cell types that differentially coordinate mammalian immune responses.
Collapse
Affiliation(s)
- Krystal K. Lum
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544
| | - Tavis J. Reed
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544
| | - Jinhang Yang
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544
| |
Collapse
|
10
|
Gao Q, Zhang C, Xu X, Huang X, Jia D, Shan Y, Fang W, Li X, Xu J. The death domain-associated protein suppresses porcine epidemic diarrhea virus replication by interacting with signal transducer and activator of transcription 1 and inducing downstream ISG15 expression. Vet Microbiol 2024; 292:110065. [PMID: 38564904 DOI: 10.1016/j.vetmic.2024.110065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
Porcine epidemic diarrhea virus (PEDV) is an enteric coronavirus that causes acute enteric disease in piglets and severely threatens the pig industry all over the world. Death domain-associated protein (DAXX) is a classical chaperone protein involved in multiple biological processes, such as cell apoptosis, transcriptional regulation, DNA damage repair, and host innate immunity. However, whether DAXX functions in the anti-PEDV innate immune responses remains unclear. In this study, we found that PEDV infection upregulated DAXX expression and induced its nucleocytoplasmic translocation in IPEC-J2 cells. Furthermore, we found that DAXX overexpression was inhibitory to PEDV replication, while downregulation of DAXX by RNA interference facilitated PEDV replication. The antiviral activity of DAXX was due to its positive effect on IFN-λ3-STAT1 signaling, as DAXX positively regulated STAT1 activation through their interaction in cytoplasm and enhancing the downstream ISG15 expression. Mutation of tryptophan at 621 to alanine in DAXX increased its abundance in the cytoplasm, leading to the upregulation of STAT1 phosphorylation and ISG15 expression. It indicated that cytoplasmic fraction of DAXX was advantageous for the STAT1-ISG15 signaling axis and PEDV inhibition. In summary, these results show that DAXX inhibits PEDV infection by increasing IFN-λ3-induced STAT1 phosphorylation and the downstream ISG15 expression.
Collapse
Affiliation(s)
- Qin Gao
- Department of Veterinary Medicine, College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chuni Zhang
- Department of Veterinary Medicine, College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaohan Xu
- Department of Veterinary Medicine, College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaoqi Huang
- Department of Veterinary Medicine, College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Dekai Jia
- Department of Veterinary Medicine, College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ying Shan
- Department of Veterinary Medicine, College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Province Key Laboratory of Veterinary Medicine, MOA Key Laboratory of Animal Virology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Weihuan Fang
- Department of Veterinary Medicine, College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Province Key Laboratory of Veterinary Medicine, MOA Key Laboratory of Animal Virology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaoliang Li
- Department of Veterinary Medicine, College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Province Key Laboratory of Veterinary Medicine, MOA Key Laboratory of Animal Virology, Zhejiang University, Hangzhou, Zhejiang 310058, China; The Rural Development Academy, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Jidong Xu
- Department of Veterinary Medicine, College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Province Key Laboratory of Veterinary Medicine, MOA Key Laboratory of Animal Virology, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
11
|
Gao F, Lin W, Wang X, Liao M, Zhang M, Qin N, Chen X, Xia L, Chen Q, Sha O. Identification of receptors and factors associated with human coronaviruses in the oral cavity using single-cell RNA sequencing. Heliyon 2024; 10:e28280. [PMID: 38560173 PMCID: PMC10981076 DOI: 10.1016/j.heliyon.2024.e28280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) ravaged the world, and Coronavirus Disease 2019 (COVID-19) exhibited highly prevalent oral symptoms that had significantly impacted the lives of affected patients. However, the involvement of four human coronavirus (HCoVs), namely SARS-CoV-2, SARS-CoV, MERS-CoV, and HCoV-229E, in oral cavity infections remained poorly understood. We integrated single-cell RNA sequencing (scRNA-seq) data of seven human oral tissues through consistent normalization procedure, including minor salivary gland (MSG), parotid gland (PG), tongue, gingiva, buccal, periodontium and pulp. The Seurat, scDblFinder, Harmony, SingleR, Ucell and scCancer packages were comprehensively used for analysis. We identified specific cell clusters and generated expression profiles of SARS-CoV-2 and coronavirus-associated receptors and factors (SCARFs) in seven oral regions, providing direction for predicting the tropism of four HCoVs for oral tissues, as well as for dental clinical treatment. Based on our analysis, it appears that various SCARFs, including ACE2, ASGR1, KREMEN1, DPP4, ANPEP, CD209, CLEC4G/M, TMPRSS family proteins (including TMPRSS2, TMPRSS4, and TMPRSS11A), and FURIN, are expressed at low levels in the oral cavity. Conversely, BSG, CTSB, and CTSL exhibit enrichment in oral tissues. Our study also demonstrates widespread expression of restriction factors, particularly IFITM1-3 and LY6E, in oral cells. Additionally, some replication, assembly, and trafficking factors appear to exhibit broad oral tissues expression patterns. Overall, the oral cavity could potentially serve as a high-risk site for SARS-CoV-2 infection, while displaying a comparatively lower degree of susceptibility towards other HCoVs (including SARS-CoV, MERS-CoV and HCoV-229E). Specifically, MSG, tongue, and gingiva represent potential sites of vulnerability for four HCoVs infection, with the MSG exhibiting a particularly high susceptibility. However, the expression patterns of SCARFs in other oral sites demonstrate relatively intricate and may only be specifically associated with SARS-CoV-2 infection. Our study sheds light on the mechanisms of HCoVs infection in the oral cavity as well as gains insight into the characteristics and distribution of possible HCoVs target cells in oral tissues, providing potential therapeutic targets for HCoVs infection in the oral cavity.
Collapse
Affiliation(s)
- Feng Gao
- School of Dentistry, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
- Institute of Dental Research, Shenzhen University, Shenzhen, China
| | - Weiming Lin
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Xia Wang
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
- The Chinese University of Hong Kong Shenzhen, School of Medicine, Shenzhen, China
| | - Mingfeng Liao
- The Third People's Hospital of Shenzhen, Shenzhen, China
| | - Mingxia Zhang
- The Third People's Hospital of Shenzhen, Shenzhen, China
| | - Nianhong Qin
- Department of Stomatology, Shenzhen People's Hospital, Shenzhen, China
| | - Xianxiong Chen
- School of Dentistry, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Lixin Xia
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Ou Sha
- School of Dentistry, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
- Institute of Dental Research, Shenzhen University, Shenzhen, China
| |
Collapse
|
12
|
Steiner S, Kratzel A, Barut GT, Lang RM, Aguiar Moreira E, Thomann L, Kelly JN, Thiel V. SARS-CoV-2 biology and host interactions. Nat Rev Microbiol 2024; 22:206-225. [PMID: 38225365 DOI: 10.1038/s41579-023-01003-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 01/17/2024]
Abstract
The zoonotic emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the ensuing coronavirus disease 2019 (COVID-19) pandemic have profoundly affected our society. The rapid spread and continuous evolution of new SARS-CoV-2 variants continue to threaten global public health. Recent scientific advances have dissected many of the molecular and cellular mechanisms involved in coronavirus infections, and large-scale screens have uncovered novel host-cell factors that are vitally important for the virus life cycle. In this Review, we provide an updated summary of the SARS-CoV-2 life cycle, gene function and virus-host interactions, including recent landmark findings on general aspects of coronavirus biology and newly discovered host factors necessary for virus replication.
Collapse
Affiliation(s)
- Silvio Steiner
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Annika Kratzel
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - G Tuba Barut
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Reto M Lang
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Etori Aguiar Moreira
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Lisa Thomann
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Jenna N Kelly
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
- European Virus Bioinformatics Center, Jena, Germany
| | - Volker Thiel
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland.
- European Virus Bioinformatics Center, Jena, Germany.
| |
Collapse
|
13
|
Le Pen J, Rice CM. The antiviral state of the cell: lessons from SARS-CoV-2. Curr Opin Immunol 2024; 87:102426. [PMID: 38795501 PMCID: PMC11260430 DOI: 10.1016/j.coi.2024.102426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/20/2024] [Accepted: 05/06/2024] [Indexed: 05/28/2024]
Abstract
In this review, we provide an overview of the intricate host-virus interactions that have emerged from the study of SARS-CoV-2 infection. We focus on the antiviral mechanisms of interferon-stimulated genes (ISGs) and their modulation of viral entry, replication, and release. We explore the role of a selection ISGs, including BST2, CD74, CH25H, DAXX, IFI6, IFITM1-3, LY6E, NCOA7, PLSCR1, OAS1, RTP4, and ZC3HAV1/ZAP, in restricting SARS-CoV-2 infection and discuss the virus's countermeasures. By synthesizing the latest research on SARS-CoV-2 and host antiviral responses, this review aims to provide a deeper understanding of the antiviral state of the cell under SARS-CoV-2 and other viral infections, offering insights for the development of novel antiviral strategies and therapeutics.
Collapse
Affiliation(s)
- Jérémie Le Pen
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA.
| | - Charles M Rice
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| |
Collapse
|
14
|
Baid K, Irving AT, Jouvenet N, Banerjee A. The translational potential of studying bat immunity. Trends Immunol 2024; 45:188-197. [PMID: 38453577 DOI: 10.1016/j.it.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 03/09/2024]
Abstract
Molecular studies in bats have led to the discovery of antiviral adaptations that may explain how some bat species have evolved enhanced immune tolerance towards viruses. Accumulating data suggest that some bat species have also evolved remarkable features of longevity and low rates of cancer. Furthermore, recent research strongly suggests that discovering immune adaptations in bat models can be translated to develop immune modulators and recognize alternate therapeutic strategies for diseases affecting humans. We posit that research in bat immunology will lead to discoveries that can potentially be translated to improve health outcomes in humans.
Collapse
Affiliation(s)
- Kaushal Baid
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Aaron T Irving
- Department of Clinical Laboratory Studies, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China; BIMET - Biomedical and Health Translational Research Centre of Zhejiang Province; College of Medicine & Veterinary Medicine, The University of Edinburgh, Edinburgh, EH8 9YL, UK
| | - Nolwenn Jouvenet
- Institut Pasteur, Université de Paris, CNRS UMR3569, Virus Sensing and Signaling Unit, Paris, France
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
15
|
Yao YL, Luo Y, Wang Q, Geng R, Chen Y, Liu MQ, Li B, Chen J, Wu CG, Jia JK, Luo JY, He YT, Jiang TT, Zhu Y, Hu B, Zhou P, Shi ZL. Identification of TMEM53 as a novel SADS-CoV restriction factor that targets viral RNA-dependent RNA polymerase. Emerg Microbes Infect 2023; 12:2249120. [PMID: 37584551 PMCID: PMC10467534 DOI: 10.1080/22221751.2023.2249120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/17/2023]
Abstract
ABSTRACTZoonotic transmission of coronaviruses (CoVs) poses a serious public health threat. Swine acute diarrhea syndrome coronavirus (SADS-CoV), originating from a bat HKU2-related CoV, causes devastating swine diseases and poses a high risk of spillover to humans. Currently, licensed therapeutics that can prevent potential human outbreaks are unavailable. Identifying the cellular proteins that restrict viral infection is imperative for developing effective interventions and therapeutics. We utilized a large-scale human cDNA screening and identified transmembrane protein 53 (TMEM53) as a novel cell-intrinsic SADS-CoV restriction factor. The inhibitory effect of TMEM53 on SADS-CoV infection was found to be independent of canonical type I interferon responses. Instead, TMEM53 interacts with non-structural protein 12 (NSP12) and disrupts viral RNA-dependent RNA polymerase (RdRp) complex assembly by interrupting NSP8-NSP12 interaction, thus suppressing viral RdRp activity and RNA synthesis. Deleting the transmembrane domain of TMEM53 resulted in the abrogation of TMEM53-NSP12 interaction and TMEM53 antiviral activity. Importantly, TMEM53 exhibited broad antiviral activity against multiple HKU2-related CoVs. Our findings reveal a novel role of TMEM53 in SADS-CoV restriction and pave the way to host-directed therapeutics against HKU2-related CoV infection.
Collapse
Affiliation(s)
- Yu-Lin Yao
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Yun Luo
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Qi Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Rong Geng
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Ying Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Mei-Qin Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Bei Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Jing Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Chun-Guang Wu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Jing-Kun Jia
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Jing-Yi Luo
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yan-Tong He
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Ting-Ting Jiang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Yan Zhu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Ben Hu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Peng Zhou
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, People’s Republic of China
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| |
Collapse
|
16
|
Ding S, Wang H, Liao Y, Chen R, Hu Y, Wu H, Shen H, Tang S. HPV16 E7 protein antagonizes TNF-α-induced apoptosis of cervical cancer cells via Daxx/JNK pathway. Microb Pathog 2023; 185:106423. [PMID: 37871853 DOI: 10.1016/j.micpath.2023.106423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Human papillomavirus (HPV) E7 protein as an important viral factor was involved in the progression of cervical cancer by mediating the cellular signaling pathways. Daxx (Death domain-associated protein) can interact with a variety of proteins to affect the viral infection process. However, the interaction and its related function between HPV16 E7 and Daxx have not been adequately investigated. Here, it was found that HPV16 E7 can interact with Daxx in HeLa or C33A cells by co-immunoprecipitation. HPV16 E7 protein treatment can up-regulate Daxx protein expression, while the interference in Daxx expression and the agonists for JNK can both reduce the antagonistic effects of HPV16 E7 on TNF-α-induced apoptosis, suggesting that Daxx/JNK pathway may be involved in the anti-apoptotic activity of HPV16 E7.
Collapse
Affiliation(s)
- Shuang Ding
- Institute of Pathogenic Biology, School of Basic Medicine Sciences, Hengyang Medical College, University of South China, Hengyang, China; Department of Clinical Laboratory, The Seventh Affiliated Hospital, University of South China / Hunan Provincial Veterans Administration Hospital, Changsha, China
| | - Hanmeng Wang
- Institute of Pathogenic Biology, School of Basic Medicine Sciences, Hengyang Medical College, University of South China, Hengyang, China
| | - Yaqi Liao
- Institute of Pathogenic Biology, School of Basic Medicine Sciences, Hengyang Medical College, University of South China, Hengyang, China
| | - Ranzhong Chen
- Institute of Pathogenic Biology, School of Basic Medicine Sciences, Hengyang Medical College, University of South China, Hengyang, China
| | - Yu Hu
- Institute of Pathogenic Biology, School of Basic Medicine Sciences, Hengyang Medical College, University of South China, Hengyang, China
| | - Hongrong Wu
- Institute of Pathogenic Biology, School of Basic Medicine Sciences, Hengyang Medical College, University of South China, Hengyang, China
| | - Haiyan Shen
- Institute of Pathogenic Biology, School of Basic Medicine Sciences, Hengyang Medical College, University of South China, Hengyang, China
| | - Shuangyang Tang
- Institute of Pathogenic Biology, School of Basic Medicine Sciences, Hengyang Medical College, University of South China, Hengyang, China.
| |
Collapse
|
17
|
Li M. Fortifying immunity: PLSCR1 picks battle against SARS-CoV-2. Cell Host Microbe 2023; 31:1417-1419. [PMID: 37708846 DOI: 10.1016/j.chom.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023]
Abstract
Interferons (IFNs) and interferon-stimulated genes (ISGs) are the major players in the host innate immunity against viral infection. In a recent Nature paper, Xu et al. identified phospholipid scramblase 1 (PLSCR1) as a novel ISG that restricts severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection by blocking virus-cell fusion.
Collapse
Affiliation(s)
- Minghua Li
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
18
|
McDougal MB, De Maria AM, Ohlson MB, Kumar A, Xing C, Schoggins JW. Interferon inhibits a model RNA virus via a limited set of inducible effector genes. EMBO Rep 2023; 24:e56901. [PMID: 37497756 PMCID: PMC10481653 DOI: 10.15252/embr.202356901] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/28/2023] Open
Abstract
Interferons control viral infection by inducing the expression of antiviral effector proteins encoded by interferon-stimulated genes (ISGs). The field has mostly focused on identifying individual antiviral ISG effectors and defining their mechanisms of action. However, fundamental gaps in knowledge about the interferon response remain. For example, it is not known how many ISGs are required to protect cells from a particular virus, though it is theorized that numerous ISGs act in concert to achieve viral inhibition. Here, we used CRISPR-based loss-of-function screens to identify a markedly limited set of ISGs that confer interferon-mediated suppression of a model alphavirus, Venezuelan equine encephalitis virus (VEEV). We show via combinatorial gene targeting that three antiviral effectors-ZAP, IFIT3, and IFIT1-together constitute the majority of interferon-mediated restriction of VEEV, while accounting for < 0.5% of the interferon-induced transcriptome. Together, our data suggest a refined model of the antiviral interferon response in which a small subset of "dominant" ISGs may confer the bulk of the inhibition of a given virus.
Collapse
Affiliation(s)
- Matthew B McDougal
- Department of MicrobiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Anthony M De Maria
- Department of MicrobiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Maikke B Ohlson
- Department of MicrobiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Ashwani Kumar
- Bioinformatics Core, McDermott CenterUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Chao Xing
- Bioinformatics Core, McDermott CenterUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - John W Schoggins
- Department of MicrobiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| |
Collapse
|
19
|
Mar KB, Wells AI, Caballero Van Dyke MC, Lopez AH, Eitson JL, Fan W, Hanners NW, Evers BM, Shelton JM, Schoggins JW. LY6E is a pan-coronavirus restriction factor in the respiratory tract. Nat Microbiol 2023; 8:1587-1599. [PMID: 37443277 PMCID: PMC11234902 DOI: 10.1038/s41564-023-01431-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
LY6E is an antiviral restriction factor that inhibits coronavirus spike-mediated fusion, but the cell types in vivo that require LY6E for protection from respiratory coronavirus infection are unknown. Here we used a panel of seven conditional Ly6e knockout mice to define which Ly6e-expressing cells confer control of airway infection by murine coronavirus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Loss of Ly6e in Lyz2-expressing cells, radioresistant Vav1-expressing cells and non-haematopoietic cells increased susceptibility to murine coronavirus. Global conditional loss of Ly6e expression resulted in clinical disease and higher viral burden after SARS-CoV-2 infection, but little evidence of immunopathology. We show that Ly6e expression protected secretory club and ciliated cells from SARS-CoV-2 infection and prevented virus-induced loss of an epithelial cell transcriptomic signature in the lung. Our study demonstrates that lineage confined rather than broad expression of Ly6e sufficiently confers resistance to disease caused by murine and human coronaviruses.
Collapse
Affiliation(s)
- Katrina B Mar
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alexandra I Wells
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Alexandra H Lopez
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jennifer L Eitson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wenchun Fan
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Natasha W Hanners
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bret M Evers
- Departments of Pathology and Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John M Shelton
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John W Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
20
|
Samuel CE. Interferon at the crossroads of SARS-CoV-2 infection and COVID-19 disease. J Biol Chem 2023; 299:104960. [PMID: 37364688 PMCID: PMC10290182 DOI: 10.1016/j.jbc.2023.104960] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023] Open
Abstract
A novel coronavirus now known as SARS-CoV-2 emerged in late 2019, possibly following a zoonotic crossover from a coronavirus present in bats. This virus was identified as the pathogen responsible for the severe respiratory disease, coronavirus disease-19 (COVID-19), which as of May 2023, has killed an estimated 6.9 million people globally according to the World Health Organization. The interferon (IFN) response, a cornerstone of antiviral innate immunity, plays a key role in determining the outcome of infection by SARS-CoV-2. This review considers evidence that SARS-CoV-2 infection leads to IFN production; that virus replication is sensitive to IFN antiviral action; molecular mechanisms by which the SARS-CoV-2 virus antagonizes IFN action; and how genetic variability of SARS-CoV-2 and the human host affects the IFN response at the level of IFN production or action or both. Taken together, the current understanding suggests that deficiency of an effective IFN response is an important determinant underlying some cases of critical COVID-19 disease and that IFNλ and IFNα/β have potential as therapeutics for the treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Charles E Samuel
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA.
| |
Collapse
|
21
|
Savan R, Gale M. Innate immunity and interferon in SARS-CoV-2 infection outcome. Immunity 2023; 56:1443-1450. [PMID: 37437537 PMCID: PMC10361255 DOI: 10.1016/j.immuni.2023.06.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/14/2023]
Abstract
Innate immunity and the actions of type I and III interferons (IFNs) are essential for protection from SARS-CoV-2 and COVID-19. Each is induced in response to infection and serves to restrict viral replication and spread while directing the polarization and modulation of the adaptive immune response. Owing to the distribution of their specific receptors, type I and III IFNs, respectively, impart systemic and local actions. Therapeutic IFN has been administered to combat COVID-19 but with differential outcomes when given early or late in infection. In this perspective, we sort out the role of innate immunity and complex actions of IFNs in the context of SARS-CoV-2 infection and COVID-19. We conclude that IFNs are a beneficial component of innate immunity that has mediated natural clearance of infection in over 700 million people. Therapeutic induction of innate immunity and use of IFN should be featured in strategies to treat acute SARS-CoV-2 infection in people at risk for severe COVID-19.
Collapse
Affiliation(s)
- Ram Savan
- Department of Immunology and Center for Innate Immunity and Immune Disease, University of Washington, 750 Republican St., Seattle, WA 98109, USA
| | - Michael Gale
- Department of Immunology and Center for Innate Immunity and Immune Disease, University of Washington, 750 Republican St., Seattle, WA 98109, USA.
| |
Collapse
|
22
|
Sacchi A, Giannessi F, Sabatini A, Percario ZA, Affabris E. SARS-CoV-2 Evasion of the Interferon System: Can We Restore Its Effectiveness? Int J Mol Sci 2023; 24:ijms24119353. [PMID: 37298304 DOI: 10.3390/ijms24119353] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Type I and III Interferons (IFNs) are the first lines of defense in microbial infections. They critically block early animal virus infection, replication, spread, and tropism to promote the adaptive immune response. Type I IFNs induce a systemic response that impacts nearly every cell in the host, while type III IFNs' susceptibility is restricted to anatomic barriers and selected immune cells. Both IFN types are critical cytokines for the antiviral response against epithelium-tropic viruses being effectors of innate immunity and regulators of the development of the adaptive immune response. Indeed, the innate antiviral immune response is essential to limit virus replication at the early stages of infection, thus reducing viral spread and pathogenesis. However, many animal viruses have evolved strategies to evade the antiviral immune response. The Coronaviridae are viruses with the largest genome among the RNA viruses. Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) caused the coronavirus disease 2019 (COVID-19) pandemic. The virus has evolved numerous strategies to contrast the IFN system immunity. We intend to describe the virus-mediated evasion of the IFN responses by going through the main phases: First, the molecular mechanisms involved; second, the role of the genetic background of IFN production during SARS-CoV-2 infection; and third, the potential novel approaches to contrast viral pathogenesis by restoring endogenous type I and III IFNs production and sensitivity at the sites of infection.
Collapse
Affiliation(s)
- Alessandra Sacchi
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Flavia Giannessi
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Andrea Sabatini
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Zulema Antonia Percario
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Elisabetta Affabris
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| |
Collapse
|
23
|
Luo SY, Moussa EW, Lopez-Orozco J, Felix-Lopez A, Ishida R, Fayad N, Gomez-Cardona E, Wang H, Wilson JA, Kumar A, Hobman TC, Julien O. Identification of Human Host Substrates of the SARS-CoV-2 M pro and PL pro Using Subtiligase N-Terminomics. ACS Infect Dis 2023; 9:749-761. [PMID: 37011043 PMCID: PMC10081575 DOI: 10.1021/acsinfecdis.2c00458] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Indexed: 04/04/2023]
Abstract
The recent emergence of SARS-CoV-2 in the human population has caused a global pandemic. The virus encodes two proteases, Mpro and PLpro, that are thought to play key roles in the suppression of host protein synthesis and immune response evasion during infection. To identify the specific host cell substrates of these proteases, active recombinant SARS-CoV-2 Mpro and PLpro were added to A549 and Jurkat human cell lysates, and subtiligase-mediated N-terminomics was used to capture and enrich protease substrate fragments. The precise location of each cleavage site was identified using mass spectrometry. Here, we report the identification of over 200 human host proteins that are potential substrates for SARS-CoV-2 Mpro and PLpro and provide a global mapping of proteolysis for these two viral proteases in vitro. Modulating proteolysis of these substrates will increase our understanding of SARS-CoV-2 pathobiology and COVID-19.
Collapse
Affiliation(s)
- Shu Y. Luo
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Eman W. Moussa
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Joaquin Lopez-Orozco
- Department
of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Alberto Felix-Lopez
- Department
of Medical Microbiology & Immunology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Ray Ishida
- Department
of Medical Microbiology & Immunology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Nawell Fayad
- Department
of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Erik Gomez-Cardona
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Henry Wang
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Joyce A. Wilson
- Department
of Biochemistry, Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Anil Kumar
- Department
of Biochemistry, Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Tom C. Hobman
- Department
of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Department
of Medical Microbiology & Immunology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Li
Ka Shing Institute of Virology, Edmonton, Alberta T6G
2E1, Canada
| | - Olivier Julien
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Li
Ka Shing Institute of Virology, Edmonton, Alberta T6G
2E1, Canada
| |
Collapse
|
24
|
McDougal MB, De Maria AM, Ohlson MB, Kumar A, Xing C, Schoggins JW. Interferon inhibits a model RNA virus via a limited set of inducible effector genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529297. [PMID: 36865157 PMCID: PMC9980057 DOI: 10.1101/2023.02.21.529297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Interferons control viral infection by inducing the expression of antiviral effector proteins encoded by interferon-stimulated genes (ISGs). The field has mostly focused on identifying individual antiviral ISG effectors and defining their mechanisms of action. However, fundamental gaps in knowledge about the interferon response remain. For example, it is not known how many ISGs are required to protect cells from a particular virus, though it is theorized that numerous ISGs act in concert to achieve viral inhibition. Here, we used CRISPR-based loss-of-function screens to identify a markedly limited set of ISGs that confer interferon-mediated suppression of a model alphavirus, Venezuelan equine encephalitis virus (VEEV). We show via combinatorial gene targeting that three antiviral effectors - ZAP, IFIT3, and IFIT1 - together constitute the majority of interferon-mediated restriction of VEEV, while accounting for less than 0.5% of the interferon-induced transcriptome. Together, our data suggests a refined model of the antiviral interferon response in which a small subset of "dominant" ISGs may confer the bulk of the inhibition of a given virus.
Collapse
|
25
|
Mar KB, Van Dyke MC, Lopez AH, Eitson JL, Fan W, Hanners NW, Evers BM, Shelton JM, Schoggins JW. LY6E protects mice from pathogenic effects of murine coronavirus and SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525551. [PMID: 36747632 PMCID: PMC9900800 DOI: 10.1101/2023.01.25.525551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
LY6E is an antiviral protein that inhibits coronavirus entry. Its expression in immune cells allows mice to control murine coronavirus infection. However, it is not known which immune cell subsets mediate this control or whether LY6E protects mice from SARS-CoV-2. In this study, we used tissue-specific Cre recombinase expression to ablate Ly6e in distinct immune compartments or in all epiblast-derived cells, and bone marrow chimeras to target Ly6e in a subset of radioresistant cells. Mice lacking Ly6e in Lyz2 -expressing cells and radioresistant Vav1 -expressing cells were more susceptible to lethal murine coronavirus infection. Mice lacking Ly6e globally developed clinical disease when challenged with the Gamma (P.1) variant of SARS-CoV-2. By contrast, wildtype mice and mice lacking type I and type III interferon signaling had no clinical symptoms after SARS-CoV-2 infection. Transcriptomic profiling of lungs from SARS-CoV-2-infected wildtype and Ly6e knockout mice revealed a striking reduction of secretory cell-associated genes in infected knockout mice, including Muc5b , an airway mucin-encoding gene that may protect against SARS-CoV-2-inflicted respiratory disease. Collectively, our study reveals distinct cellular compartments in which Ly6e confers cell intrinsic antiviral effects, thereby conferring resistance to disease caused by murine coronavirus and SARS-CoV-2.
Collapse
|
26
|
Zhu X, Trimarco JD, Williams CA, Barrera A, Reddy TE, Heaton NS. ZBTB7A promotes virus-host homeostasis during human coronavirus 229E infection. Cell Rep 2022; 41:111540. [PMID: 36243002 PMCID: PMC9533670 DOI: 10.1016/j.celrep.2022.111540] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/24/2022] [Accepted: 09/29/2022] [Indexed: 11/22/2022] Open
Abstract
The cellular fate after infection with human coronaviruses (HCoVs) is typically death. Previous data suggest, however, that the transcriptional state of an individual cell may sometimes allow additional outcomes of infection. Here, to probe the range of interactions a permissive cell type can have with a HCoV, we perform a CRISPR activation screen with HCoV-229E. The screen identified the transcription factor ZBTB7A, which strongly promotes cell survival after infection. Rather than suppressing viral infection, ZBTB7A upregulation allows the virus to induce a persistent infection and homeostatic state with the cell. We also find that control of oxidative stress is a primary driver of cellular survival during HCoV-229E infection. These data illustrate that, in addition to the nature of the infecting virus and the type of cell that it encounters, the cellular gene expression profile prior to infection can affect the eventual fate.
Collapse
Affiliation(s)
- Xinyu Zhu
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Joseph D. Trimarco
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Courtney A. Williams
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA,Center for Genomic and Computational Biology, Duke University, Durham, NC, USA,Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Alejandro Barrera
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA,Center for Genomic and Computational Biology, Duke University, Durham, NC, USA,Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Timothy E. Reddy
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA,Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA,Center for Genomic and Computational Biology, Duke University, Durham, NC, USA,Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA,Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nicholas S. Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA,Corresponding author
| |
Collapse
|
27
|
Pires De Souza GA, Le Bideau M, Boschi C, Wurtz N, Colson P, Aherfi S, Devaux C, La Scola B. Choosing a cellular model to study SARS-CoV-2. Front Cell Infect Microbiol 2022; 12:1003608. [PMID: 36339347 PMCID: PMC9634005 DOI: 10.3389/fcimb.2022.1003608] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/03/2022] [Indexed: 08/04/2023] Open
Abstract
As new pathogens emerge, new challenges must be faced. This is no different in infectious disease research, where identifying the best tools available in laboratories to conduct an investigation can, at least initially, be particularly complicated. However, in the context of an emerging virus, such as SARS-CoV-2, which was recently detected in China and has become a global threat to healthcare systems, developing models of infection and pathogenesis is urgently required. Cell-based approaches are crucial to understanding coronavirus infection biology, growth kinetics, and tropism. Usually, laboratory cell lines are the first line in experimental models to study viral pathogenicity and perform assays aimed at screening antiviral compounds which are efficient at blocking the replication of emerging viruses, saving time and resources, reducing the use of experimental animals. However, determining the ideal cell type can be challenging, especially when several researchers have to adapt their studies to specific requirements. This review strives to guide scientists who are venturing into studying SARS-CoV-2 and help them choose the right cellular models. It revisits basic concepts of virology and presents the currently available in vitro models, their advantages and disadvantages, and the known consequences of each choice.
Collapse
Affiliation(s)
- Gabriel Augusto Pires De Souza
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Marion Le Bideau
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Céline Boschi
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Nathalie Wurtz
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Philippe Colson
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Sarah Aherfi
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Christian Devaux
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Department of Biological Sciences (INSB), Centre National de la Recherche Scientifique, Marseille, France
| | - Bernard La Scola
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| |
Collapse
|
28
|
Bonaventure B, Rebendenne A, Chaves Valadão AL, Arnaud‐Arnould M, Gracias S, Garcia de Gracia F, McKellar J, Labaronne E, Tauziet M, Vivet‐Boudou V, Bernard E, Briant L, Gros N, Djilli W, Courgnaud V, Parrinello H, Rialle S, Blaise M, Lacroix L, Lavigne M, Paillart J, Ricci EP, Schulz R, Jouvenet N, Moncorgé O, Goujon C. The
DEAD
box
RNA
helicase
DDX42
is an intrinsic inhibitor of positive‐strand
RNA
viruses. EMBO Rep 2022; 23:e54061. [PMID: 36161446 PMCID: PMC9638865 DOI: 10.15252/embr.202154061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
Genome‐wide screens are powerful approaches to unravel regulators of viral infections. Here, a CRISPR screen identifies the RNA helicase DDX42 as an intrinsic antiviral inhibitor of HIV‐1. Depletion of endogenous DDX42 increases HIV‐1 DNA accumulation and infection in cell lines and primary cells. DDX42 overexpression inhibits HIV‐1 infection, whereas expression of a dominant‐negative mutant increases infection. Importantly, DDX42 also restricts LINE‐1 retrotransposition and infection with other retroviruses and positive‐strand RNA viruses, including CHIKV and SARS‐CoV‐2. However, DDX42 does not impact the replication of several negative‐strand RNA viruses, arguing against an unspecific effect on target cells, which is confirmed by RNA‐seq analysis. Proximity ligation assays show DDX42 in the vicinity of viral elements, and cross‐linking RNA immunoprecipitation confirms a specific interaction of DDX42 with RNAs from sensitive viruses. Moreover, recombinant DDX42 inhibits HIV‐1 reverse transcription in vitro. Together, our data strongly suggest a direct mode of action of DDX42 on viral ribonucleoprotein complexes. Our results identify DDX42 as an intrinsic viral inhibitor, opening new perspectives to target the life cycle of numerous RNA viruses.
Collapse
Affiliation(s)
| | | | | | | | - Ségolène Gracias
- Virus Sensing and Signaling Unit, Department of Virology, Institut Pasteur Université de Paris Cité, CNRS UMR 3569 Paris France
| | | | | | | | | | - Valérie Vivet‐Boudou
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002 Strasbourg France
| | | | | | - Nathalie Gros
- CEMIPAI, CNRS Université de Montpellier Montpellier France
| | | | | | - Hugues Parrinello
- Montpellier GenomiX (MGX), Biocampus, CNRS, INSERM Université de Montpellier Montpellier France
| | - Stéphanie Rialle
- Montpellier GenomiX (MGX), Biocampus, CNRS, INSERM Université de Montpellier Montpellier France
| | | | - Laurent Lacroix
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM Université PSL Paris France
| | - Marc Lavigne
- Department of Virology Institut Pasteur Paris France
| | | | | | - Reiner Schulz
- Department of Medical & Molecular Genetics King's College London London UK
| | - Nolwenn Jouvenet
- Virus Sensing and Signaling Unit, Department of Virology, Institut Pasteur Université de Paris Cité, CNRS UMR 3569 Paris France
| | | | | |
Collapse
|