1
|
Persano L, Camposeo A, Matino F, Wang R, Natarajan T, Li Q, Pan M, Su Y, Kar-Narayan S, Auricchio F, Scalet G, Bowen C, Wang X, Pisignano D. Advanced Materials for Energy Harvesting and Soft Robotics: Emerging Frontiers to Enhance Piezoelectric Performance and Functionality. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405363. [PMID: 39291876 DOI: 10.1002/adma.202405363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/24/2024] [Indexed: 09/19/2024]
Abstract
Piezoelectric energy harvesting captures mechanical energy from a number of sources, such as vibrations, the movement of objects and bodies, impact events, and fluid flow to generate electric power. Such power can be employed to support wireless communication, electronic components, ocean monitoring, tissue engineering, and biomedical devices. A variety of self-powered piezoelectric sensors, transducers, and actuators have been produced for these applications, however approaches to enhance the piezoelectric properties of materials to increase device performance remain a challenging frontier of materials research. In this regard, the intrinsic polarization and properties of materials can be designed or deliberately engineered to enhance the piezo-generated power. This review provides insights into the mechanisms of piezoelectricity in advanced materials, including perovskites, active polymers, and natural biomaterials, with a focus on the chemical and physical strategies employed to enhance the piezo-response and facilitate their integration into complex electronic systems. Applications in energy harvesting and soft robotics are overviewed by highlighting the primary performance figures of merits, the actuation mechanisms, and relevant applications. Key breakthroughs and valuable strategies to further improve both materials and device performance are discussed, together with a critical assessment of the requirements of next-generation piezoelectric systems, and future scientific and technological solutions.
Collapse
Affiliation(s)
- Luana Persano
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, I-56127, Italy
| | - Andrea Camposeo
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, I-56127, Italy
| | - Francesca Matino
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, I-56127, Italy
| | - Ruoxing Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, 53707, USA
| | - Thiyagarajan Natarajan
- Department of Materials Science, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Qinlan Li
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Pan
- Department of Mechanical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Yewang Su
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sohini Kar-Narayan
- Department of Materials Science, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Ferdinando Auricchio
- Department of Civil Engineering and Architecture, University of Pavia, via Ferrata 3, Pavia, I-27100, Italy
| | - Giulia Scalet
- Department of Civil Engineering and Architecture, University of Pavia, via Ferrata 3, Pavia, I-27100, Italy
| | - Chris Bowen
- Department of Mechanical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Xudong Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, 53707, USA
| | - Dario Pisignano
- Dipartimento di Fisica "E. Fermi", Università di Pisa, Largo B. Pontecorvo 3, Pisa, I-56127, Italy
| |
Collapse
|
2
|
Tang ZX, Wang B, Li ZR, Huang Z, Zhao HX, Long LS, Zheng LS. Enhancing the performance of molecule-based piezoelectric sensors by optimizing their microstructures. Chem Sci 2024:d4sc05442c. [PMID: 39416288 PMCID: PMC11474403 DOI: 10.1039/d4sc05442c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
By combining the rigidity of inorganic components with the flexibility of organic components, molecule-based ferroelectrics emerge as promising candidates for flexible, self-powered piezoelectric sensors. While it is well known that the performance of piezoelectric sensor devices depends not only on the materials' piezoelectric properties but also on the device architecture, research into enhancing molecule-based piezoelectric sensor performance through microstructure optimization has never been investigated. Here, we report the synthesis of a molecule-based ferroelectric, [(2-bromoethyl) trimethylammonium][GaBr4] ([(CH3)3NCH2CH2Br][GaBr4]) (1), which exhibits a piezoelectric coefficient (d 33) of up to 331 pC N-1. Our investigation reveals that the power density of a composite piezoelectric sensor device made from 1@S-PDMS(800#) (with microstructures) is twelve times that of 1-Flat-PDMS (without microstructures), due to a synergistic combination of piezoelectric and triboelectric effects. Interestingly, this flexible piezoelectric sensor can effectively detect human physiological signals, such as finger bending, breathing, and speech recognition, without the need for an external power supply.
Collapse
Affiliation(s)
- Zheng-Xiao Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
| | - Bin Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
| | - Zhi-Rui Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
| | - Zhuo Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
| | - Hai-Xia Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
| | - La-Sheng Long
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
| | - Lan-Sun Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
| |
Collapse
|
3
|
Khazaee M, Riahi S, Rezania A. Conceptual Piezoelectric-Based Energy Harvester from In Vivo Heartbeats' Cyclic Kinetic Motion for Leadless Intracardiac Pacemakers. MICROMACHINES 2024; 15:1133. [PMID: 39337793 PMCID: PMC11434573 DOI: 10.3390/mi15091133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024]
Abstract
This paper studies the development of piezoelectric energy harvesting for self-powered leadless intracardiac pacemakers. The energy harvester fit inside the battery compartment, assuming that the energy harvester would replace the battery with a smaller rechargeable battery capacity. The power output analysis was derived from the three-dimensional finite element analysis and in vivo heart measurements. A Doppler laser at the anterior basal in the right ventricle directly measured the heart's kinetic motion. Piezoceramics in the cantilevered configuration were studied. The heart motion was periodic but not harmonic and shock-based. This study found that energy can be harvested by applying periodic bio-movements (cardiac motion). The results also showed that the energy harvester can generate 1.1 V voltage. The effect of various geometrical parameters on power generation was studied. This approach offers potential for self-powered implantable medical devices, with the harvested energy used to power devices such as pacemakers.
Collapse
Affiliation(s)
- Majid Khazaee
- Department of AAU Energy, Aalborg University, 9220 Aalborg East, Denmark
| | - Sam Riahi
- Department of Cardiology, Aalborg University Hospital, 9000 Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, 9000 Aalborg, Denmark
| | - Alireza Rezania
- Department of AAU Energy, Aalborg University, 9220 Aalborg East, Denmark
| |
Collapse
|
4
|
Li J, Li Z, Xie Y, Cai T, Shin D, Chen C, Mirkin C. Non-Centrosymmetric Single Crystalline Biomolecular Nano-Arrays for Responsive Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408153. [PMID: 39128135 DOI: 10.1002/adma.202408153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/31/2024] [Indexed: 08/13/2024]
Abstract
Herein, a novel strategy is reported for synthesizing libraries of single crystalline amino acid (AA) nanocrystals with control over size, anisotropy, and polymorphism by leveraging dip-pen nanolithography (DPN) and recrystallization via solvent vapor annealing. The crystals are prepared by first depositing nanoreactors consisting of a solvent with AAs, followed by water vapor-induced recrystallization. This leads to isotropic structures that are non-centrosymmetric with strong piezoelectric (g33 coefficients >1000 mVm N-1), ferroelectric, and non-linear optical properties. However, recrystallizing arrays of isotropic DL-alanine nanodot features with a binary solvent (water and ethanol) leads to arrays of 1D piezoelectric nanorods with their long axis coincident with the polar axis. Moreover, positioning nanoreactors containing AAs (the nanodot features) between micro electrodes leads to capillary formation, making the reactors anisotropic and facilitating piezoelectric nanorod formation between the electrodes. This offers a facile route to device fabrication. These as-fabricated devices respond to ultrasonic stimulation in the form of a piezoelectric response. The technique described herein is significant as it provides a rapid way of investigating non-centrosymmetric nanoscale biocrystals, potentially pivotal for fabricating a new class of stimuli-responsive devices such as sensors, energy harvesters, and stimulators.
Collapse
Affiliation(s)
- Jun Li
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA
| | - Zhiwei Li
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA
| | - Yi Xie
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA
| | - Tong Cai
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA
| | - Donghoon Shin
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Chaojian Chen
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA
| | - Chad Mirkin
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
5
|
Wang B, Li Z, Tang Z, Zhao H, Long L, Zheng L. Achievement of a giant electromechanical conversion coefficient in a molecule-based ferroelectric. Chem Sci 2024:d4sc04185b. [PMID: 39246367 PMCID: PMC11376092 DOI: 10.1039/d4sc04185b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/24/2024] [Indexed: 09/10/2024] Open
Abstract
Molecule-based ferroelectrics are promising candidates for flexible self-powered power supplies (i.e., piezoelectric generators (PEGs)). Although the large electromechanical conversion coefficients (d 33 × g 33) of piezoelectrics are key to enhancing the performance of PEGs in their nonresonant states, it remains a great challenge to obtain molecule-based piezoelectrics with large d 33 × g 33. Here, we report a molecule-based ferroelectric [(CH3)3NCH2CH2Cl][GaBr4] (1) that exhibits the largest piezoelectric coefficient (∼454 pC N-1) and electromechanical conversion coefficient (4953.1 × 10-12 m2 N-1) among all known free-standing polycrystalline pellets. Notably, the PEG comprising 15 wt% 1 and polydimethylsiloxane (PDMS) achieves a power density of up to 120 μW cm-2, marking the highest reported power density for ferroelectric@PDMS PEGs to date.
Collapse
Affiliation(s)
- Bin Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 Fujian China
| | - Zhirui Li
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 Fujian China
| | - Zhengxiao Tang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 Fujian China
| | - Haixia Zhao
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 Fujian China
| | - Lasheng Long
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 Fujian China
| | - Lansun Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 Fujian China
| |
Collapse
|
6
|
Qi JC, Peng H, Xu ZK, Wang ZX, Tang YY, Liao WQ, Zou G, You YM, Xiong RG. Discovery of molecular ferroelectric catalytic annulation for quinolines. Nat Commun 2024; 15:6738. [PMID: 39112514 PMCID: PMC11306768 DOI: 10.1038/s41467-024-51106-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Ferroelectrics as emerging and attractive catalysts have shown tremendous potential for applications including wastewater treatment, hydrogen production, nitrogen fixation, and organic synthesis, etc. In this study, we demonstrate that molecular ferroelectric crystal TMCM-CdCl3 (TMCM = trimethylchloromethylammonium) with multiaxial ferroelectricity and superior piezoelectricity has an effective catalytic activity on the direct construction of the pharmacologically important substituted quinoline derivatives via one-pot [3 + 2 + 1] annulation of anilines and terminal alkynes by using N,N-dimethylformamide (DMF) as the carbon source. The recrystallized TMCM-CdCl3 crystals from DMF remain well ferroelectricity and piezoelectricity. Upon ultrasonic condition, periodic changes in polarization contribute to the release of free charges from the surface of the ferroelectric domains in nano size, which then quickly interacts with the substrates in the solution to trigger the pivotal redox process. Our work advances the molecular ferroelectric crystal as a catalytic route to organic synthesis, not only providing valuable direction for molecular ferroelectrics but also further enriching the executable range of ferroelectric catalysis.
Collapse
Affiliation(s)
- Jun-Chao Qi
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Hang Peng
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Zhe-Kun Xu
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Zhong-Xia Wang
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, People's Republic of China.
| | - Yuan-Yuan Tang
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Wei-Qiang Liao
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, People's Republic of China.
| | - Guifu Zou
- College of Energy, Soochow Institute for Energy and Materials Innovations, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215000, People's Republic of China.
| | - Yu-Meng You
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, People's Republic of China.
| | - Ren-Gen Xiong
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, People's Republic of China.
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, People's Republic of China.
| |
Collapse
|
7
|
Yang X, Guo H, Yuan C, Li Y, Sun H. Enhancing output current in degradable flexible piezoelectric nanogenerators through internal electrode construction. J Colloid Interface Sci 2024; 667:640-649. [PMID: 38663279 DOI: 10.1016/j.jcis.2024.04.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/28/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
Conventional piezoelectric nanogenerators (PNGs) face challenges in terms of degradation and reusability, which have negative environmental implications. On the other hand, biocompatible and degradable piezoelectric materials often exhibit lower piezoelectric response. In this study, potassium sodium niobate (KNN) powder and the biodegradable polymer poly(ε-caprolactone) (PCL) were used to fabricate piezoelectric composite films through solution casting. By constructing staggered electrodes, the total polarized charges quantity is increased, achieving a larger current output. The three-unit PNG (3-PNG) based on the composite film with 15 wt% KNN powder, reaches a maximum output current of 0.85 μA, which exhibits higher charging efficiency compared to 1-PNG. Moreover, the prepared 3-PNG can effectively harvest mechanical energy from human activities and maintain a stable output after 10,000 cycles of bending and releasing. The film exhibits complete degradation when exposed to acidic, neutral, and alkaline solutions. This research provides a promising option for environmentally friendly piezoelectric materials selected and output performance enhanced through optimized structural designs, making them more suitable for practical applications.
Collapse
Affiliation(s)
- Xinyue Yang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Huiling Guo
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Chongxiao Yuan
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; Advanced Ceramics Institute of Zibo New & High-Tech Industrial Development Zone, Zibo 255000, China
| | - Yuanhui Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; Advanced Ceramics Institute of Zibo New & High-Tech Industrial Development Zone, Zibo 255000, China
| | - Huajun Sun
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; Advanced Ceramics Institute of Zibo New & High-Tech Industrial Development Zone, Zibo 255000, China.
| |
Collapse
|
8
|
Zhang P, Li Q, Li Z, Shi X, Wang H, Huo C, Zhou L, Kuang X, Lin K, Cao Y, Deng J, Yu C, Chen X, Miao J, Xing X. Intrinsic-strain-induced ferroelectric order and ultrafine nanodomains in SrTiO 3. Proc Natl Acad Sci U S A 2024; 121:e2400568121. [PMID: 38857392 PMCID: PMC11194550 DOI: 10.1073/pnas.2400568121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/27/2024] [Indexed: 06/12/2024] Open
Abstract
Nano ferroelectrics holds the potential application promise in information storage, electro-mechanical transformation, and novel catalysts but encounters a huge challenge of size limitation and manufacture complexity on the creation of long-range ferroelectric ordering. Herein, as an incipient ferroelectric, nanosized SrTiO3 was indued with polarized ordering at room temperature from the nonpolar cubic structure, driven by the intrinsic three-dimensional (3D) tensile strain. The ferroelectric behavior can be confirmed by piezoelectric force microscopy and the ferroelectric TO1 soft mode was verified with the temperature stability to 500 K. Its structural origin comes from the off-center shift of Ti atom to oxygen octahedron and forms the ultrafine head-to-tail connected 90° nanodomains about 2 to 3 nm, resulting in an overall spontaneous polarization toward the short edges of nanoparticles. According to the density functional theory calculations and phase-field simulations, the 3D strain-related dipole displacement transformed from [001] to [111] and segmentation effect on the ferroelectric domain were further proved. The topological ferroelectric order induced by intrinsic 3D tensile strain shows a unique approach to get over the nanosized limitation in nanodevices and construct the strong strain-polarization coupling, paving the way for the design of high-performance and free-assembled ferroelectric devices.
Collapse
Affiliation(s)
- Peixi Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing100083, China
| | - Qiang Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing100083, China
| | - Zhiguo Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing100083, China
| | - Xiaoming Shi
- Department of Physics, University of Science and Technology Beijing, Beijing100083, China
| | - Haoyu Wang
- Department of Physics, University of Science and Technology Beijing, Beijing100083, China
| | - Chuanrui Huo
- Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing100083, China
| | - Lihui Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Xiaojun Kuang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin541006, China
| | - Kun Lin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing100083, China
| | - Yili Cao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing100083, China
| | - Jinxia Deng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing100083, China
| | - Chengyi Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing100083, China
| | - Xin Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing100083, China
| | - Jun Miao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing100083, China
| | - Xianran Xing
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing100083, China
| |
Collapse
|
9
|
Han J, Park SH, Jung YS, Cho YS. High-performance piezoelectric energy harvesting in amorphous perovskite thin films deposited directly on a plastic substrate. Nat Commun 2024; 15:4129. [PMID: 38755193 PMCID: PMC11099020 DOI: 10.1038/s41467-024-48551-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/04/2024] [Indexed: 05/18/2024] Open
Abstract
Most reported thin-film piezoelectric energy harvesters have been based on cantilever-type crystalline ferroelectric oxide thin films deposited on rigid substrates, which utilize vibrational input sources. Herein, we introduce flexible amorphous thin-film energy harvesters based on perovskite CaCu3Ti4O12 (CCTO) thin films on a plastic substrate for highly competitive electromechanical energy harvesting. The room-temperature sputtering of CCTO thin films enable the use of plastic substrates to secure reliable flexibility, which has not been available thus far. Surprisingly, the resultant amorphous nature of the films results in an output voltage and power density of ~38.7 V and ~2.8 × 106 μW cm-3, respectively, which break the previously reported record for typical polycrystalline ferroelectric oxide thin-film cantilevers. The origin of this excellent electromechanical energy conversion is systematically explored as being related to the localized permanent dipoles of TiO6 octahedra and lowered dielectric constant in the amorphous state, depending on the stoichiometry and defect states. This is the leading example of a high-performance flexible piezoelectric energy harvester based on perovskite oxides not requiring a complex process for transferring films onto a plastic substrate.
Collapse
Affiliation(s)
- Ju Han
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Korea
| | - Sung Hyun Park
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Korea
| | - Ye Seul Jung
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Korea
| | - Yong Soo Cho
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
10
|
Zhang ZX, Wang H, Ni HF, Wang N, Wang CF, Huang PZ, Jia QQ, Teri G, Fu DW, Zhang Y, An Z, Zhang Y. Organic-Inorganic Hybrid Ferroelectric and Antiferroelectric with Afterglow Emission. Angew Chem Int Ed Engl 2024; 63:e202319650. [PMID: 38275283 DOI: 10.1002/anie.202319650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 01/27/2024]
Abstract
Luminescent ferroelectrics are holding exciting prospect for integrated photoelectronic devices due to potential light-polarization interactions at electron scale. Integrating ferroelectricity and long-lived afterglow emission in a single material would offer new possibilities for fundamental research and applications, however, related reports have been a blank to date. For the first time, we here achieved the combination of notable ferroelectricity and afterglow emission in an organic-inorganic hybrid material. Remarkably, the presented (4-methylpiperidium)CdCl3 also shows noticeable antiferroelectric behavior. The implementation of cationic customization and halogen engineering not only enables a dramatic enhancement of Curie temperature of 114.4 K but also brings a record longest emission lifetime up to 117.11 ms under ambient conditions, realizing a leapfrog improvement of at least two orders of magnitude compared to reported hybrid ferroelectrics so far. This finding would herald the emergence of novel application potential, such as multi-level density data storage or multifunctional sensors, towards the future integrated optoelectronic devices with multitasking capabilities.
Collapse
Affiliation(s)
- Zhi-Xu Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - He Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211800, People's Republic of China
| | - Hao-Fei Ni
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Na Wang
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou, 341000, People's Republic of China
| | - Chang-Feng Wang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Pei-Zhi Huang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Qiang-Qiang Jia
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Gele Teri
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Da-Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Yujian Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211800, People's Republic of China
| | - Yi Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| |
Collapse
|
11
|
Jia QQ, Lu HF, Luo JQ, Zhang YY, Ni HF, Zhang FW, Wang J, Fu DW, Wang CF, Zhang Y. Organic-Inorganic Rare-Earth Double Perovskite Ferroelectric with Large Piezoelectric Response and Ferroelasticity for Flexible Composite Energy Harvesters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306989. [PMID: 38032164 DOI: 10.1002/smll.202306989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/11/2023] [Indexed: 12/01/2023]
Abstract
Hybrid organic-inorganic perovskite (HOIP) ferroelectric materials have great potential for developing self-powered electronic transducers owing to their impressive piezoelectric performance, structural tunability and low processing temperatures. Nevertheless, their inherent brittle and low elastic moduli limit their application in electromechanical conversion. Integration of HOIP ferroelectrics and soft polymers is a promising solution. In this work, a hybrid organic-inorganic rare-earth double perovskite ferroelectric, [RM3HQ]2RbPr(NO3)6 (RM3HQ = (R)-N-methyl-3-hydroxylquinuclidinium) is presented, which possesses multiaxial nature, ferroelasticity and satisfactory piezoelectric properties, including piezoelectric charge coefficient (d33) of 102.3 pC N-1 and piezoelectric voltage coefficient (g33) of 680 × 10-3 V m N-1. The piezoelectric generators (PEG) based on composite films of [RM3HQ]2RbPr(NO3)6@polyurethane (PU) can generate an open-circuit voltage (Voc) of 30 V and short-circuit current (Isc) of 18 µA, representing one of the state-of-the-art PEGs to date. This work has promoted the exploration of new HOIP ferroelectrics and their development of applications in electromechanical conversion devices.
Collapse
Affiliation(s)
- Qiang-Qiang Jia
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Hai-Feng Lu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Jia-Qi Luo
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Ying-Yu Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Hao-Fei Ni
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Feng-Wen Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P.R. China
| | - Da-Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Chang-Feng Wang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Yi Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| |
Collapse
|
12
|
Zhang HY, Tang YY, Gu ZX, Wang P, Chen XG, Lv HP, Li PF, Jiang Q, Gu N, Ren S, Xiong RG. Biodegradable ferroelectric molecular crystal with large piezoelectric response. Science 2024; 383:1492-1498. [PMID: 38547269 DOI: 10.1126/science.adj1946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 02/07/2024] [Indexed: 04/02/2024]
Abstract
Transient implantable piezoelectric materials are desirable for biosensing, drug delivery, tissue regeneration, and antimicrobial and tumor therapy. For use in the human body, they must show flexibility, biocompatibility, and biodegradability. These requirements are challenging for conventional inorganic piezoelectric oxides and piezoelectric polymers. We discovered high piezoelectricity in a molecular crystal HOCH2(CF2)3CH2OH [2,2,3,3,4,4-hexafluoropentane-1,5-diol (HFPD)] with a large piezoelectric coefficient d33 of ~138 picocoulombs per newton and piezoelectric voltage constant g33 of ~2450 × 10-3 volt-meters per newton under no poling conditions, which also exhibits good biocompatibility toward biological cells and desirable biodegradation and biosafety in physiological environments. HFPD can be composite with polyvinyl alcohol to form flexible piezoelectric films with a d33 of 34.3 picocoulombs per newton. Our material demonstrates the ability for molecular crystals to have attractive piezoelectric properties and should be of interest for applications in transient implantable electromechanical devices.
Collapse
Affiliation(s)
- Han-Yue Zhang
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, P. R. China
| | - Yuan-Yuan Tang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, P. R. China
| | - Zhu-Xiao Gu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu, P. R. China
| | - Peng Wang
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, P. R. China
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu, P. R. China
| | - Xiao-Gang Chen
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, P. R. China
| | - Hui-Peng Lv
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, P. R. China
| | - Peng-Fei Li
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, P. R. China
| | - Qing Jiang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu, P. R. China
| | - Ning Gu
- Medical School, Nanjing University, Nanjing 210093, Jiangsu, P. R. China
| | - Shenqiang Ren
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Ren-Gen Xiong
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, P. R. China
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, P. R. China
| |
Collapse
|
13
|
Ji J, Yu G, Xu C, Xiang HJ. Fractional quantum ferroelectricity. Nat Commun 2024; 15:135. [PMID: 38167841 PMCID: PMC10761868 DOI: 10.1038/s41467-023-44453-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
For an ordinary ferroelectric, the magnitude of the spontaneous electric polarization is at least one order of magnitude smaller than that resulting from the ionic displacement of the lattice vectors, and the direction of the spontaneous electric polarization is determined by the point group of the ferroelectric. Here, we introduce a new class of ferroelectricity termed Fractional Quantum Ferroelectricity. Unlike ordinary ferroelectrics, the polarization of Fractional Quantum Ferroelectricity arises from substantial atomic displacements that are comparable to lattice constants. Applying group theory analysis, we identify 28 potential point groups that can realize Fractional Quantum Ferroelectricity, including both polar and non-polar groups. The direction of polarization in Fractional Quantum Ferroelectricity is found to always contradict with the symmetry of the "polar" phase, which violates Neumann's principle, challenging conventional symmetry-based knowledge. Through the Fractional Quantum Ferroelectricity theory and density functional calculations, we not only explain the puzzling experimentally observed in-plane polarization of monolayer α-In2Se3, but also predict polarization in a cubic compound of AgBr. Our findings unveil a new realm of ferroelectric behavior, expanding the understanding and application of these materials beyond the limits of traditional ferroelectrics.
Collapse
Affiliation(s)
- Junyi Ji
- Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai, 200433, China
- Shanghai Qi Zhi Institute, Shanghai, 200030, China
| | - Guoliang Yu
- Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai, 200433, China
- Shanghai Qi Zhi Institute, Shanghai, 200030, China
| | - Changsong Xu
- Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai, 200433, China.
- Shanghai Qi Zhi Institute, Shanghai, 200030, China.
| | - H J Xiang
- Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai, 200433, China.
- Shanghai Qi Zhi Institute, Shanghai, 200030, China.
- Collaborative Innovation Center of Advanced Microstructures, Nanjing, 210093, China.
| |
Collapse
|
14
|
Nakagawa T, Ding Y, Bu K, Lü X, Liu H, Moliterni A, Popović J, Mihalik M, Jagličić Z, Mihalik M, Vrankić M. Photophysical Behavior of Triethylmethylammonium Tetrabromoferrate(III) under High Pressure. Inorg Chem 2023; 62:19527-19541. [PMID: 38044824 DOI: 10.1021/acs.inorgchem.3c02607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The pressure-induced properties of hybrid organic-inorganic ferroelectrics (HOIFs) with tunable structures and selectable organic and inorganic components are important for device fabrication. However, given the structural complexity of polycrystalline HOIFs and the limited resolution of pressure data, resolving the structure-property puzzle has so far been the exception rather than the rule. With this in mind, we present a collection of in situ high-pressure data measured for triethylmethylammonium tetrabromoferrate(III), ([N(C2H5)3CH3][FeBr4]) (EMAFB) by unraveling its flexible physical and photophysical behavior up to 80 GPa. Pressure-driven X-ray diffraction and Raman spectroscopy disclose its soft and reversible structural distortion, creating room for delicate band gap modulation. During compression, orange turns dark red at ∼2 GPa, and further compression results in piezochromism, leading to opaque black, while decompressed EMAFB appears in an orange hue. Assuming that the mechanical softness of EMAFB is the basis for reversible piezochromic control, we present alternations in the electronic landscape leading to a 1.22 eV band narrowing at 20.3 GPa while maintaining the semiconducting character at 72 GPa. EMAFB exhibits an emission enhancement, manifested by an increase of photoluminescence up to 17.3 GPa, correlating with the onsets of structural distortion and amorphization. The stimuli-responsive behavior of EMAFB, exhibiting stress-activated modification of the electronic structure, can enrich the physical library of HOIFs suitable for pressure-sensing technologies.
Collapse
Affiliation(s)
- Takeshi Nakagawa
- Center for High-Pressure Science & Technology Advanced Research, 100094 Beijing, P. R. China
| | - Yang Ding
- Center for High-Pressure Science & Technology Advanced Research, 100094 Beijing, P. R. China
| | - Kejun Bu
- Center for High-Pressure Science & Technology Advanced Research, 100094 Beijing, P. R. China
| | - Xujie Lü
- Center for High-Pressure Science & Technology Advanced Research, 100094 Beijing, P. R. China
| | - Haozhe Liu
- Center for High-Pressure Science & Technology Advanced Research, 100094 Beijing, P. R. China
| | - Anna Moliterni
- Institute of Crystallography (IC)-CNR, Via Amendola 122/O, 70126 Bari, Italy
| | - Jasminka Popović
- Division of Materials Physics, Rud̵er Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Marian Mihalik
- Institute of Experimental Physics, Watsonova 47, 040 01 Košice, Slovak Republic
| | - Zvonko Jagličić
- Institute of Mathematics, Physics and Mechanics, Jadranska 19, 1000 Ljubljana, Slovenia
- Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jamova 2, 1000 Ljubljana, Slovenia
| | - Matúš Mihalik
- Institute of Experimental Physics, Watsonova 47, 040 01 Košice, Slovak Republic
| | - Martina Vrankić
- Division of Materials Physics, Rud̵er Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| |
Collapse
|
15
|
Guan J, Zheng Y, Cheng P, Han W, Han X, Wang P, Xin M, Shi R, Xu J, Bu XH. Free Halogen Substitution of Chiral Hybrid Metal Halides for Activating the Linear and Nonlinear Chiroptical Properties. J Am Chem Soc 2023. [PMID: 38039190 DOI: 10.1021/jacs.3c09395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Halogen substitution has been proven as an effective approach to the band gap engineering and optoelectronic modulation of organic-inorganic hybrid metal halide (OIHMH) materials. Various high-performance mixed halide OIHMH film materials have been primarily obtained through the substitution of coordinated halogens in their inorganic octahedra. Herein, we propose a new strategy of substitution of free halogen outside the inorganic octahedra for constructing mixed halide OIHMH single crystals with chiral structures, resulting in a boost of their linear and nonlinear chiroptical properties. The substitution from DMA4[InCl6]Cl (DMA = dimethylammonium) to DMA4[InCl6]Br crystals through a facile antisolvent vaporization method produces centimeter-scale single crystals with high thermal stability along with high quantum yield photoluminescence, conspicuous circularly polarized luminescence, and greatly enhanced second harmonic generation (SHG). In particular, the obtained DMA4[InCl6]Br single crystal features an intrinsic chiral structure, exhibiting a significant SHG circular dichroism (SHG-CD) response with a highest reported anisotropy factor (gSHG-CD) of 1.56 among chiral OIHMH materials. The enhancements in both linear and nonlinear chiroptical properties are directly attributed to the modulation of octahedral distortion. The mixed halide OIHMH single crystals obtained by free halogen substitution confine the introduced halogens within free halogen sites of the lattice, thereby ensuring the stability of compositions and properties. The successful employment of such a free halogen substitution approach may broaden the horizon of the regulation of structures and the optoelectronic properties of the OIHMH materials.
Collapse
Affiliation(s)
- Junjie Guan
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| | - Yongshen Zheng
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| | - Puxin Cheng
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| | - Wenqing Han
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| | - Xiao Han
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| | - Peihan Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| | - Mingyang Xin
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| | - Rongchao Shi
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| | - Jialiang Xu
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| | - Xian-He Bu
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| |
Collapse
|
16
|
Guo TM, Gao FF, Gong YJ, Li ZG, Wei F, Li W, Bu XH. Chiral Two-Dimensional Hybrid Organic-Inorganic Perovskites for Piezoelectric Ultrasound Detection. J Am Chem Soc 2023; 145:22475-22482. [PMID: 37797315 DOI: 10.1021/jacs.3c06708] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Hybrid organic-inorganic perovskites (HOIPs) have exhibited striking application potential in piezoelectric energy harvesting and sensing due to their high piezoelectricity, light weight, and solution processability. However, to date, the application of piezoelectric HOIPs in ultrasound detection has not yet been explored. Here, we report the synthesis of a pair of chiral two-dimensional piezoelectric HOIPs, R-(4-bromo-2-butylammonium)2PbBr4 and S-(4-bromo-2-butylammonium)2PbBr4 [R-(BrBA)2PbBr4 and S-(BrBA)2PbBr4], which show low mechanical strength and significant piezoelectric strain coefficients that are advantageous for mechanoelectrical energy conversion. Benefiting from these virtues, the R-(BrBA)2PbBr4@PBAT and S-(BrBA)2PbBr4@PBAT [PBAT = poly(butyleneadipate-co-terephthalate)] composite films show prominent underwater ultrasound detection performance with a transmission effectivity of 12.0% using a 10.0 MHz probe, comparable with that of a polyvinylidene fluoride (PVDF) device fabricated in the same conditions. Density functional theory calculations reveal that R-(BrBA)2PbBr4 and S-(BrBA)2PbBr4 have a beneficial acoustic impedance (5.07-6.76 MRayl) compatible with that of water (1.5 MRayl), which is responsible for the facile ultrasound-induced electricity generation. These encouraging results open up new possibilities for applying piezoelectric HOIPs in underwater ultrasound detection and imaging technologies.
Collapse
Affiliation(s)
- Tian-Meng Guo
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University & TKL of Metal and Molecule Based Material Chemistry, Tianjin 300350, China
| | - Fei-Fei Gao
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University & TKL of Metal and Molecule Based Material Chemistry, Tianjin 300350, China
| | - Yong-Ji Gong
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University & TKL of Metal and Molecule Based Material Chemistry, Tianjin 300350, China
| | - Zhi-Gang Li
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University & TKL of Metal and Molecule Based Material Chemistry, Tianjin 300350, China
| | - Fengxia Wei
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis 08-03, Singapore 138634
| | - Wei Li
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University & TKL of Metal and Molecule Based Material Chemistry, Tianjin 300350, China
| | - Xian-He Bu
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University & TKL of Metal and Molecule Based Material Chemistry, Tianjin 300350, China
| |
Collapse
|
17
|
Liu JC, Ai Y, Liu Q, Zeng YP, Chen XG, Lv HP, Xiong RG, Liao WQ. Solid-Liquid Crystal Biphasic Ferroelectrics with Tunable Biferroelectricity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302436. [PMID: 37202898 DOI: 10.1002/adma.202302436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/27/2023] [Indexed: 05/20/2023]
Abstract
Ferroelectricity has been separately found in numerous solid and liquid crystal materials since its first discovery in 1920. However, a single material with biferroelectricity existing in both solid and liquid crystal phases is very rare, and the regulation of biferroelectricity has never been studied. Here, solid-liquid crystal biphasic ferroelectrics, cholestanyl 4-X-benzoate (4X-CB, X = Cl, Br, and I), which exhibits biferroelectricity in both the solid and liquid crystal phases, is presented. It is noted that the ferroelectric liquid crystal phase of 4X-CB is a cholesteric one, distinct from the ordinary chiral smectic ferroelectric liquid crystal phase. Moreover, 4X-CB shows solid-solid and solid-liquid crystal phase transitions, of which the transition temperatures gradually increase from Cl to Br to I substitution. The spontaneous polarization (Ps ) of 4X-CB in both solid and liquid crystal phases can also be regulated by different halogen substitutions, where the 4Br-CB has the optimal Ps because of the larger molecular dipole moment. To the authors' knowledge, 4X-CB is the first ferroelectric with tunable biferroelectricity, which offers a feasible case for the performance optimization of solid-liquid crystal biphasic ferroelectrics.
Collapse
Affiliation(s)
- Jun-Chao Liu
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Yong Ai
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Qin Liu
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Yi-Piao Zeng
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Xiao-Gang Chen
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Hui-Peng Lv
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Ren-Gen Xiong
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Wei-Qiang Liao
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| |
Collapse
|
18
|
Khan AA, Rana MM, Wang S, Fattah MFA, Kayaharman M, Zhang K, Benedict S, Goldthorpe IA, Zhou YN, Sargent EH, Ban D. Control of Halogen Atom in Inorganic Metal-Halide Perovskites Enables Large Piezoelectricity for Electromechanical Energy Generation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303366. [PMID: 37183275 DOI: 10.1002/smll.202303366] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/04/2023] [Indexed: 05/16/2023]
Abstract
Regulating the strain of inorganic perovskites has emerged as a critical approach to control their electronic and optical properties. Here, an alternative strategy to further control the piezoelectric properties by substituting the halogen atom (I/Br) in the CsPbX3 perovskite (X = Cl, Br) structure is adopted. A series of piezoelectric materials with excellent piezoelectric coefficients (d33 ) are unveiled. Iodine-incorporated CsPbBr2 I demonstrates the record intrinsic piezoelectric response (d33 ≈47 pC N-1 ) among all inorganic metal halide perovskites. This leads to an excellent electrical output power of ≈ 0.375 mW (24.8 µW cm-2 N-1 ) in the piezoelectric energy generator (PEG) which is higher than those of the pristine/mixed perovskite references with CsPbX3 (X = I, Br, Cl). With its structural phase remaining unchanged, the strained CsPbBr2 I retains its superior piezoelectricity in both thin film and nanocrystal powder forms, further demonstrating its repeatability and versatility of applications. The origin of high piezoelectricity is found to be due to halogen-induced anisotropic lattice strain in the unit-cell along the c-axis, and octahedral distortion. This study reveals an avenue to design new piezoelectric materials by modifying their halide constituents and paves the way to design efficient PEGs for improved electromechanical energy conversion.
Collapse
Affiliation(s)
- Asif Abdullah Khan
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave West, Waterloo, ON, N2L 3G1, Canada
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave West, Waterloo, ON, N2L 3G1, Canada
| | - Md Masud Rana
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave West, Waterloo, ON, N2L 3G1, Canada
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave West, Waterloo, ON, N2L 3G1, Canada
| | - Sasa Wang
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, ON, M5S 3G4, Canada
| | - Md Fahim Al Fattah
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave West, Waterloo, ON, N2L 3G1, Canada
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave West, Waterloo, ON, N2L 3G1, Canada
| | - Muhammed Kayaharman
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave West, Waterloo, ON, N2L 3G1, Canada
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave West, Waterloo, ON, N2L 3G1, Canada
| | - Kaiping Zhang
- Centre for Advanced Materials Joining, Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Shawn Benedict
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave West, Waterloo, ON, N2L 3G1, Canada
| | - I A Goldthorpe
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave West, Waterloo, ON, N2L 3G1, Canada
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave West, Waterloo, ON, N2L 3G1, Canada
| | - Y Norman Zhou
- Centre for Advanced Materials Joining, Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, ON, M5S 3G4, Canada
| | - Dayan Ban
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave West, Waterloo, ON, N2L 3G1, Canada
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave West, Waterloo, ON, N2L 3G1, Canada
- School of Physics and Electronics, Henan University, No. 1 Jinming street, Kaifeng, Henan, 475001, P. R. China
| |
Collapse
|
19
|
Ai Y, Li P, Chen X, Lv H, Weng Y, Shi Y, Zhou F, Xiong R, Liao W. The First Ring Enlargement Induced Large Piezoelectric Response in a Polycrystalline Molecular Ferroelectric. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302426. [PMID: 37328441 PMCID: PMC10460893 DOI: 10.1002/advs.202302426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/19/2023] [Indexed: 06/18/2023]
Abstract
Inorganic ferroelectrics have long dominated research and applications, taking advantage of high piezoelectric performance in bulk polycrystalline ceramic forms. Molecular ferroelectrics have attracted growing interest because of their environmental friendliness, easy processing, lightweight, and good biocompatibility, while realizing the considerable piezoelectricity in their bulk polycrystalline forms remains a great challenge. Herein, for the first time, through ring enlargement, a molecular ferroelectric 1-azabicyclo[3.2.1]octonium perrhenate ([3.2.1-abco]ReO4 ) with a large piezoelectric coefficient d33 up to 118 pC/N in the polycrystalline pellet form is designed, which is higher than that of the parent 1-azabicyclo[2.2.1]heptanium perrhenate ([2.2.1-abch]ReO4 , 90 pC/N) and those of most molecular ferroelectrics in polycrystalline or even single crystal forms. The ring enlargement reduces the molecular strain for easier molecular deformation, which contributes to the higher piezoelectric response in [3.2.1-abco]ReO4 . This work opens up a new avenue for exploring high piezoelectric polycrystalline molecular ferroelectrics with great potential in piezoelectric applications.
Collapse
Affiliation(s)
- Yong Ai
- Ordered Matter Science Research CenterNanchang UniversityNanchang330031P. R. China
| | - Peng‐Fei Li
- Ordered Matter Science Research CenterNanchang UniversityNanchang330031P. R. China
| | - Xiao‐Gang Chen
- Ordered Matter Science Research CenterNanchang UniversityNanchang330031P. R. China
| | - Hui‐Peng Lv
- Ordered Matter Science Research CenterNanchang UniversityNanchang330031P. R. China
| | - Yan‐Ran Weng
- Ordered Matter Science Research CenterNanchang UniversityNanchang330031P. R. China
| | - Yu Shi
- Ordered Matter Science Research CenterNanchang UniversityNanchang330031P. R. China
| | - Feng Zhou
- Ordered Matter Science Research CenterNanchang UniversityNanchang330031P. R. China
| | - Ren‐Gen Xiong
- Ordered Matter Science Research CenterNanchang UniversityNanchang330031P. R. China
| | - Wei‐Qiang Liao
- Ordered Matter Science Research CenterNanchang UniversityNanchang330031P. R. China
| |
Collapse
|
20
|
Tao K, Zhang B, Li Q, Yan Q. Centimeter-Sized Piezoelectric Single Crystal of Chiral Bismuth-Based Hybrid Halide with Superior Electrostrictive Coefficient. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207663. [PMID: 36610007 DOI: 10.1002/smll.202207663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/24/2022] [Indexed: 06/17/2023]
Abstract
The lead-free hybrid perovskite piezoelectrics possess advantages of easy processing, light weight, and low-toxicity over inorganic ceramics. However, the lack of understanding in structure-property relationships hinders exploration of new molecular piezoelectric crystals with excellent performances. Herein, by introducing chiral α-phenylethylammonium (α-PEA+ ) cations into bismuth-based hybrid halides, centimeter-sized (R-α-PEA)4 Bi2 I10 and (S-α-PEA)4 Bi2 I10 single crystals with a superior piezoelectric voltage coefficient g22 of 309 mV m N-1 , are obtained. Structural rigidity in crystals leads to a remarkable electrostrictive coefficient Q22 of 25.8 m4 C-2 , nearly 20 times higher than that of poly(vinylidene fluoride) (PVDF), which is beneficial to improve piezoelectricity with the synergistic effect of chirality. Moreover, the as-grown crystals show outstanding phase stability from 173 K to ≈470 K. This work suggests a design strategy based on rigidity and chirality to exploit novel piezoelectrics among hybrid metal halides.
Collapse
Affiliation(s)
- Kezheng Tao
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Bowen Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Qiang Li
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Qingfeng Yan
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
21
|
Deng WF, Li YX, Zhao YX, Hu JS, Yao ZS, Tao J. Inversion of Molecular Chirality Associated with Ferroelectric Switching in a High-Temperature Two-Dimensional Perovskite Ferroelectric. J Am Chem Soc 2023; 145:5545-5552. [PMID: 36827700 DOI: 10.1021/jacs.3c00634] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Controlling molecular chirality by external stimuli is of great significance in both fundamental research and technological applications. Herein, we report a high-temperature (384 K) molecular ferroelectric of a Cu(II) complex whose spontaneous polarization can be switched associated with flipping of molecular chirality. In this two-dimensional perovskite structure, the inorganic layer is separated by (NH3(CH2)2SS(CH2)2NH3)2+ organic cations skewed in a chiral conformation (P- or M-helicity in an individual crystal). As the stereodynamic disulfide bridge determines the molecular dipole moment along the polar axis, the chiral organic cation can be converted to its enantiomer as a consequence of an electric field-induced shift of the S-S moiety relative to its screw axis during the ferroelectric switching. The variation of the molecular chirality is examined with single-crystal X-ray diffraction and circular dichroism spectra. The simultaneous switching of molecular chirality and spontaneous polarization in this perovskite ferroelectric may lead to novel chiral electronic phenomena.
Collapse
Affiliation(s)
- Wen-Feng Deng
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Yu-Xia Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Yan-Xin Zhao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Jie-Sheng Hu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Zi-Shuo Yao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Jun Tao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| |
Collapse
|
22
|
Yang M, Ye Z, Ren Y, Farhat M, Chen PY. Recent Advances in Nanomaterials Used for Wearable Electronics. MICROMACHINES 2023; 14:603. [PMID: 36985010 PMCID: PMC10053072 DOI: 10.3390/mi14030603] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
In recent decades, thriving Internet of Things (IoT) technology has had a profound impact on people's lifestyles through extensive information interaction between humans and intelligent devices. One promising application of IoT is the continuous, real-time monitoring and analysis of body or environmental information by devices worn on or implanted inside the body. This research area, commonly referred to as wearable electronics or wearables, represents a new and rapidly expanding interdisciplinary field. Wearable electronics are devices with specific electronic functions that must be flexible and stretchable. Various novel materials have been proposed in recent years to meet the technical challenges posed by this field, which exhibit significant potential for use in different wearable applications. This article reviews recent progress in the development of emerging nanomaterial-based wearable electronics, with a specific focus on their flexible substrates, conductors, and transducers. Additionally, we discuss the current state-of-the-art applications of nanomaterial-based wearable electronics and provide an outlook on future research directions in this field.
Collapse
Affiliation(s)
- Minye Yang
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Zhilu Ye
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yichong Ren
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Mohamed Farhat
- Division of Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Pai-Yen Chen
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
23
|
Ni HF, Ye LK, Zhuge PC, Hu BL, Lou JR, Su CY, Zhang ZX, Xie LY, Fu DW, Zhang Y. A nickel(ii)-based one-dimensional organic-inorganic halide perovskite ferroelectric with the highest Curie temperature. Chem Sci 2023; 14:1781-1786. [PMID: 36819861 PMCID: PMC9930933 DOI: 10.1039/d2sc05857j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Organic-inorganic halide perovskites (OIHPs) are very eye-catching due to their chemical tunability and rich physical properties such as ferroelectricity, magnetism, photovoltaic properties and photoluminescence. However, no nickel-based OIHP ferroelectrics have been reported so far. Here, we designed an ABX3 OIHP ferroelectric (3-pyrrolinium)NiCl3, where the 3-pyrrolinium cations are located on the voids surrounded by one-dimensional chains composed of NiCl6-face-sharing octahedra via hydrogen bonding interactions. Such a unique structure enables the (3-pyrrolinium)NiCl3 with a high spontaneous polarization (P s) of 5.8 μC cm-2 and a high Curie temperature (T c) of 428 K, realizing dramatic enhancement of 112 and 52 K compared to its isostructural (3-pyrrolinium)MCl3 (M = Cd, Mn). To our knowledge, remarkably, (3-pyrrolinium)NiCl3 should be the first case of nickel(ii)-based OIHP ferroelectric to date, and its T c of 428 K (35 K above that of BaTiO3) is the highest among all reported one-dimensional OIHP ferroelectrics. This work offers a new structural building block for enriching the family of OIHP structures and will inspire the further exploration of new nickel(ii)-based OIHP ferroelectrics.
Collapse
Affiliation(s)
- Hao-Fei Ni
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 China
| | - Lou-Kai Ye
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 China
| | - Peng-Cheng Zhuge
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 China
| | - Bo-Lan Hu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 China
| | - Jia-Rui Lou
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 China
| | - Chang-Yuan Su
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University Nanjing 211189 China
| | - Zhi-Xu Zhang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University Nanjing 211189 China
| | - Li-Yan Xie
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 China
| | - Da-Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 China
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University Nanjing 211189 China
| | - Yi Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 China
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University Nanjing 211189 China
| |
Collapse
|
24
|
Chen XG, Tang YY, Lv HP, Song XJ, Peng H, Yu H, Liao WQ, You YM, Xiong RG. Remarkable Enhancement of Piezoelectric Performance by Heavy Halogen Substitution in Hybrid Perovskite Ferroelectrics. J Am Chem Soc 2023; 145:1936-1944. [PMID: 36637030 DOI: 10.1021/jacs.2c12306] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Piezoelectric materials that enable electromechanical conversion have great application value in actuators, transducers, sensors, and energy harvesters. Large piezoelectric (d33) and piezoelectric voltage (g33) coefficients are highly desired and critical to their practical applications. However, obtaining a material with simultaneously large d33 and g33 has long been a huge challenge. Here, we reported a hybrid perovskite ferroelectric [Me3NCH2Cl]CdBrCl2 to mitigate and roughly address this issue by heavy halogen substitution. The introduction of a large-size halide element softens the metal-halide bonds and reduces the polarization switching barrier, resulting in excellent piezoelectric response with a large d33 (∼440 pC/N), which realizes a significant optimization compared with that of previously reported [Me3NCH2Cl]CdCl3 (You et al. Science2017, 357, 306-309). More strikingly, [Me3NCH2Cl]CdBrCl2 simultaneously shows a giant g33 of 6215 × 10-3 V m/N, far exceeding those of polymers and conventional piezoelectric ceramics. Combined with simple solution preparation, easy processing of thin films, and a high Curie temperature of 373 K, these attributes make [Me3NCH2Cl]CdBrCl2 promising for high-performance piezoelectric sensors in flexible, wearable, and biomechanical devices.
Collapse
Affiliation(s)
- Xiao-Gang Chen
- Ordered Matter Science Research Center, Nanchang University, Nanchang330031, People's Republic of China
| | - Yuan-Yuan Tang
- Ordered Matter Science Research Center, Nanchang University, Nanchang330031, People's Republic of China
| | - Hui-Peng Lv
- Ordered Matter Science Research Center, Nanchang University, Nanchang330031, People's Republic of China
| | - Xian-Jiang Song
- Ordered Matter Science Research Center, Nanchang University, Nanchang330031, People's Republic of China
| | - Hang Peng
- Ordered Matter Science Research Center, Nanchang University, Nanchang330031, People's Republic of China
| | - Hang Yu
- Ordered Matter Science Research Center, Nanchang University, Nanchang330031, People's Republic of China
| | - Wei-Qiang Liao
- Ordered Matter Science Research Center, Nanchang University, Nanchang330031, People's Republic of China
| | - Yu-Meng You
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing211189, People's Republic of China
| | - Ren-Gen Xiong
- Ordered Matter Science Research Center, Nanchang University, Nanchang330031, People's Republic of China
| |
Collapse
|
25
|
Lv HP, Liao WQ, You YM, Xiong RG. Inch-Size Molecular Ferroelectric Crystal with a Large Electromechanical Coupling Factor on Par with Barium Titanate. J Am Chem Soc 2022; 144:22325-22331. [DOI: 10.1021/jacs.2c11213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Hui-Peng Lv
- Ordered Matter Science Research Center, Nanchang University, Nanchang330031, People’s Republic of China
| | - Wei-Qiang Liao
- Ordered Matter Science Research Center, Nanchang University, Nanchang330031, People’s Republic of China
| | - Yu-Meng You
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing211189, People’s Republic of China
| | - Ren-Gen Xiong
- Ordered Matter Science Research Center, Nanchang University, Nanchang330031, People’s Republic of China
| |
Collapse
|