1
|
Luo Y, Zhao Z, Fu C, Chen Y, Duan X, Meng S, He Z, Feng J, Wang J, You H, Chen H. Core-shell Au@Ag NPs-based SERS-LFIA for the simultaneous quantitation of PEDV and PoRVA on site. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 333:125863. [PMID: 39946860 DOI: 10.1016/j.saa.2025.125863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/16/2025] [Accepted: 02/03/2025] [Indexed: 03/05/2025]
Abstract
Porcine epidemic diarrhea virus (PEDV) and porcine group A rotavirus (PoRVA) are predominant pathogens responsible for infectious diarrhea in porcine. Co-infections of PEDV and PoRVA have become a common situation in porcine farms in recent years, which increases the severity of the diarrhea disease and makes the accurate diagnosis more difficult. Rapid quantitation of PEDV and PoRVA is of great significance for the guarantee of disease control. In this study, a 4-mercaptobenzoic acid (MBA) modified core-shell Au@Ag nanoparticles (Au@MBA@Ag NPs) based lateral flow immunochromatography (LFIA) with dual-signal modes of visual observation and surface-enhanced Raman scattering (SERS) signal analysis was developed for the rapid and sensitive detection of PEDV and PoRVA. The established SERS-LFIA was capable of simultaneous quantitation of PEDV and PoRVA in porcine fecal samples within 20 min, with visual limits of detection (LODs) of 6.25 × 102 TCID50/mL and 7.42 × 102 copies/μL for PEDV and PoRVA, respectively. The LODs based on Raman signals were as low as 8.01 × 101 TCID50/mL and 3.19 × 102 copies/μL for PEDV and PoRVA, respectively, which were more than two orders of magnitude lower than the conventional colloidal gold (AuNPs) based colorimetric immunochromatography. Additionally, the SERS-LFIA exhibited no cross-reactivity with other prevalent pathogens and was highly repeatability, with a coefficient of variation (CV) of less than 15 %. When detecting clinical samples, the overall compliance of the SERS-LFIA with RT-PCR results was 93.3 %. Thus, the developed SERS-LFIA showed great potential for field applications on the rapid diagnosis of PEDV and PoRVA infection.
Collapse
Affiliation(s)
- Yaxiang Luo
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning 530004 Guangxi, China
| | - Zhi Zhao
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning 530004 Guangxi, China
| | - Chengxiang Fu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning 530004 Guangxi, China
| | - Yingkai Chen
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning 530004 Guangxi, China
| | - Xiaoge Duan
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning 530004 Guangxi, China
| | - Shuling Meng
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning 530004 Guangxi, China
| | - Zhaoyuan He
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning 530004 Guangxi, China
| | - Jianyuan Feng
- Guangxi State Farms Yongxin Animal Husbandry Group Co., Ltd., Nanning 530006 Guangxi, China
| | - Jinzi Wang
- School of Marine Science and Biotechnology, Guangxi Minzu University, Nanning 530006 Guangxi, China.
| | - Hui You
- School of Mechanical Engineering, Guangxi University, Nanning 530004 Guangxi, China.
| | - Hailan Chen
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning 530004 Guangxi, China.
| |
Collapse
|
2
|
Xu T, Liang Y, Gong S, Meng Z, Zhang Y, Huang S, Liu T, Wang S, Wang Z. Construction of a flavonol-based colorimetric and fluorescent probe with large Stokes shift for detecting hypochlorous acid in foodstuffs and imaging in living cells, zebrafish and plants tissues. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 332:125800. [PMID: 39893736 DOI: 10.1016/j.saa.2025.125800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/13/2025] [Accepted: 01/24/2025] [Indexed: 02/04/2025]
Abstract
The excessive addition of hypochlorous acid (HClO) during food preservation can reduce the nutritional value of foodstuffs, and its abnormal levels in organisms will affect normal physiological and pathological activities. Herein, an efficient fluorescent probe HTTPC for monitoring HClO in foodstuffs and biosystems has been developed from natural flavonol. HTTPC itself emitted intense orange fluorescence emission in nearly 100 % aqueous solution, and it underwent a remarkable fluorescence quenching effect after being treated with HClO. HTTPC could selectively recognize HClO over other different biologically relevant species. Moreover, HTTPC featured many distinguished sensing properties, including large Stokes shift (184 nm), low detection limit (4.7 nM), strong anti-interference capability and rapid response to HClO (10 s). Furthermore, HTTPC can serve as a potential approach for qualitative determination of HClO residues within foodstuffs with good recoveries. HTTPC exhibited outstanding biocompatibility and low cytotoxicity, and it could successfully achieve the real-time fluorescence imaging of HClO fluctuations within live HeLa cells, zebrafish and onion tissues.
Collapse
Affiliation(s)
- Tongtong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037 PR China
| | - Yueyin Liang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037 PR China
| | - Shuai Gong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037 PR China
| | - Zhiyuan Meng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037 PR China
| | - Yan Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037 PR China
| | - Shun Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037 PR China
| | - Tianqi Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037 PR China
| | - Shifa Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037 PR China
| | - Zhonglong Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037 PR China.
| |
Collapse
|
3
|
Li C, Ma Y, Fan C, An Y, Ma S. A ratiometric fluorescence sensor based on molecular imprinting technology for rapid and visual detection of norfloxacin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 330:125689. [PMID: 39756132 DOI: 10.1016/j.saa.2024.125689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025]
Abstract
The problem of excessive use and abuse of antibiotics in the environment and food biology is becoming increasingly prominent, and norfloxacin (NOR) is widely used as an inexpensive and broad-spectrum antibiotic drug. Therefore, rapid and effective detection of antibiotics and residues in biological samples has become a demand of the times. This article describes a ratiometric fluorescence sensor based on molecular imprinting technology for the rapid and visual detection of NOR. A linear relationship (R2 = 0.9977) was established between the ratio of self-fluorescence of NOR to the reference fluorescence from rhodamine B and NOR concentration (0-400 μg/L), with a detection limit as low as 0.38 ng/mL, the detection time is as short as 8 min, and a high imprinting factor of 4.5. Visual detection of NOR was achieved through the change of fluorescence color from red to blue-purple. Satisfactory detection accuracy (RSD < 3.5 %) and recovery rate (90.03-102.10 %) were obtained through real sample spiking experiments and were highly consistent with HPLC-UV results. This ratiometric fluorescent sensor based on molecularly imprinting technology with high selectivity, sensitivity, rapidity, and visualization for detecting NOR in complex matrices has broad application prospects in the fields of rapid screening and on-site detection.
Collapse
Affiliation(s)
- Chao Li
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China; Shaanxi Institute of Product Quality Supervision and Inspection, Xi'an, Shaanxi 710048, China
| | - Yangmin Ma
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| | - Cheng Fan
- Shaanxi Institute of Product Quality Supervision and Inspection, Xi'an, Shaanxi 710048, China
| | - Yu An
- Shaanxi Institute of Product Quality Supervision and Inspection, Xi'an, Shaanxi 710048, China
| | - Siyue Ma
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| |
Collapse
|
4
|
Guo X, Yang D, Chen Y, Ding J, Ding L, Song D. Highly sensitive ratiometric fluorescence detection of dibutyl phthalate in liquor and water using bio-based fluorescent molecularly imprinted polymers. Talanta 2025; 285:127329. [PMID: 39657521 DOI: 10.1016/j.talanta.2024.127329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/20/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
A novel fluorescent molecularly imprinted polymer (DBP-FMIPs) was designed and prepared for the selective detection of dibutyl phthalate (DBP) in food samples. This was achieved using inclusion complexes formed between short amylose and DBP as precursors, with tetrafluoroterephthalonitrile, which possesses an electron-donor-acceptor type dipolar structure within a compact benzene backbone, serving as a crosslinking agent and fluorescent readout signal. DBP-FMIPs exhibit excellent fluorescence stability and high selectivity, with a response time of less than 3 min for DBP. Based on the blue-green fluorescence emitted by DBP-FMIPs (λem = 500 nm), this material provided the response signal, while the red-emitting carbon dots(R-CDs, λem = 680 nm) were used as an internal reference, constructing a ratiometric fluorescence probe (R-CDs/DBP-FMIPs). The fluorescence intensity ratio (I500/I680)0/(I500/I680) exhibited a linear response to DBP within a concentration range of 0.020-20 mg L-1, with a detection limit as low as 4.5 μg L-1, and its fluorescence color shifted from blue to red. The fluorescent probe was successfully applied for detecting DBP in liquor and drinking water samples, achieving recoveries of 88-107 % and a relative standard deviation of 1.1-6.4 %. This preparation method can also be adapted for synthesizing FMIPs targeting other hydrophobic compounds. Additionally, the developed ratiometric fluorescence probe shows great potential for the selective and visual detection of phthalates in complex samples.
Collapse
Affiliation(s)
- Xu Guo
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Dandan Yang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Yanhua Chen
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lan Ding
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China.
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| |
Collapse
|
5
|
Gao M, Bian C, Wang J, Liu Y, Li Z, Zhao Y, Wang X. pH-regulated CQDs@Eu/GMP ICP sensor array and its fingerprinting on 96-well plates: Toward point-of-use/specific identification and quantitation of six tetracyclines in animal farm wastewater, milks and milk-derivative products. Food Chem 2025; 468:142349. [PMID: 39675277 DOI: 10.1016/j.foodchem.2024.142349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
Herein, a "lab-on-an-AIE@Ln/ICP" sensor array was constructed by employing aggregation-induced emission carbon quantum dots (AIE-CQDs) as the guest and Eu/GMP ICP as the host. Based on the antenna effect (AE) and reductive photo-induced electron transfer (r-PET) between CQDs@Eu/GMP ICPs and tetracyclines (TCs), the as-constructed sensor produced satisfactorily dual-emitting fluorescence. By combining pH regulation with principal component analysis (PCA), the underlying fingerprinting patterns realized the specific identification and quantitation of six TCs in animal farm wastewater, milks and milk-derivative products. Through the aggregation-induced quenching of CQDs@Eu/GMP ICPs on test strips, the discernible fluorescence alterations were successfully utilized for developing smartphone-based visual assay. To sum up, the prominent novelty of this study lies in that based on the comprehensive principles of AE and r-PET along with combination of pH-adjustment and PCA, the pioneered sensor assay achieves specifically identifying and sensing individual TCs for their rapid and on-site detection in animal-derived matrices.
Collapse
Affiliation(s)
- Ming Gao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Suzhou Shijing Technology Co., Ltd. No. 58, Jinrui Road, Xiangcheng District, Suzhou 215137, China.
| | - Chang Bian
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Junxia Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Suzhou National Joint Laboratory for Green and Low-carbon Wastewater Treatment and Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yu Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhenghao Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yutao Zhao
- Suzhou Shijing Technology Co., Ltd. No. 58, Jinrui Road, Xiangcheng District, Suzhou 215137, China
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
6
|
Diao Y, Gao J, Ma Y, Pan G. Epitope-imprinted biomaterials with tailor-made molecular targeting for biomedical applications. Bioact Mater 2025; 45:162-180. [PMID: 39634057 PMCID: PMC11616479 DOI: 10.1016/j.bioactmat.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Molecular imprinting technology (MIT), a synthetic strategy to create tailor-made molecular specificity, has recently achieved significant advancements. Epitope imprinting strategy, an improved MIT by imprinting the epitopes of biomolecules (e.g., proteins and nucleic acids), enables to target the entire molecule through recognizing partial epitopes exposed on it, greatly expanding the applicability and simplifying synthesis process of molecularly imprinted polymers (MIPs). Thus, epitope imprinting strategy offers promising solutions for the fabrication of smart biomaterials with molecular targeting and exhibits wide applications in various biomedical scenarios. This review explores the latest advances in epitope imprinting techniques, emphasizing selection of epitopes and functional monomers. We highlight the significant improvements in specificity, sensitivity, and stability of these materials, which have facilitated their use in bioanalysis, clinical therapy, and pharmaceutical development. Additionally, we discuss the application of epitope-imprinted materials in the recognition and detection of peptides, proteins, and cells. Despite these advancements, challenges such as template complexity, imprinting efficiency, and scalability remain. This review addresses these issues and proposes potential directions for future research to overcome these barriers, thereby enhancing the efficacy and practicality of epitope molecularly imprinting technology in biomedical fields.
Collapse
Affiliation(s)
- Youlu Diao
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, Jiangsu, 212013, China
| | - Jia Gao
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, Jiangsu, 212013, China
| | - Yue Ma
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, Jiangsu, 212013, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
7
|
Ventisette S, Ferruzzi T, Sestaioni D, Palladino P, Minunni M, Scarano S. An antibody-free bio-layer interferometry biosensor for immunoglobulin G1 detection in human serum by using molecularly imprinted polynorepinephrine. Biosens Bioelectron 2025; 271:117095. [PMID: 39734107 DOI: 10.1016/j.bios.2024.117095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 12/31/2024]
Abstract
Bio-Layer Interferometry (BLI) has emerged as a versatile technique in affinity-based biosensing, analogous to Surface Plasmon Resonance. BLI enables real-time, label-free detection, and quantification of biomolecular interactions between an immobilized receptor and an analyte in solution. The BLI sensor comprises an optical fiber with an internal reference layer at the end and an external biocompatible layer where biological receptors are immobilized and exposed to the solution. We report the first BLI bioassay using a mimetic receptor based on molecularly imprinted polynorepinephrine (MIPNE) for detecting immunoglobulin G isotype 1 in whole, untreated, human serum. Using BLI fiber optics with different chemical linkers, we compared the analytical performance, with a focus on selectivity against other Ig classes and across the four IgG isotypes. The bioassay displayed the ability to detect IgG1 with excellent analytical parameters both in buffer condition (LOD = 0.54 ± 0.01 μg mL-1, LOQ = 2.09 ± 0.02 μg mL-1, avRSD = 5.3%) and in whole serum (%RE = 0.3%, avRSD = 3%). These findings highlight the potential of integrating PNE-based molecular imprinting technology with BLI platforms for diverse analytical and diagnostic applications.
Collapse
Affiliation(s)
- S Ventisette
- Department of Chemistry "Ugo Schiff', University of Florence, Via della Lastruccia, 3-13, 50019, Sesto Fiorentino, Italy
| | - T Ferruzzi
- Department of Chemistry "Ugo Schiff', University of Florence, Via della Lastruccia, 3-13, 50019, Sesto Fiorentino, Italy
| | - D Sestaioni
- Department of Chemistry "Ugo Schiff', University of Florence, Via della Lastruccia, 3-13, 50019, Sesto Fiorentino, Italy
| | - P Palladino
- Department of Chemistry "Ugo Schiff', University of Florence, Via della Lastruccia, 3-13, 50019, Sesto Fiorentino, Italy
| | - M Minunni
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126, Pisa, Italy.
| | - S Scarano
- Department of Chemistry "Ugo Schiff', University of Florence, Via della Lastruccia, 3-13, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
8
|
Lin LL, Alvarez-Puebla R, Liz-Marzán LM, Trau M, Wang J, Fabris L, Wang X, Liu G, Xu S, Han XX, Yang L, Shen A, Yang S, Xu Y, Li C, Huang J, Liu SC, Huang JA, Srivastava I, Li M, Tian L, Nguyen LBT, Bi X, Cialla-May D, Matousek P, Stone N, Carney RP, Ji W, Song W, Chen Z, Phang IY, Henriksen-Lacey M, Chen H, Wu Z, Guo H, Ma H, Ustinov G, Luo S, Mosca S, Gardner B, Long YT, Popp J, Ren B, Nie S, Zhao B, Ling XY, Ye J. Surface-Enhanced Raman Spectroscopy for Biomedical Applications: Recent Advances and Future Challenges. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39991932 DOI: 10.1021/acsami.4c17502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The year 2024 marks the 50th anniversary of the discovery of surface-enhanced Raman spectroscopy (SERS). Over recent years, SERS has experienced rapid development and became a critical tool in biomedicine with its unparalleled sensitivity and molecular specificity. This review summarizes the advancements and challenges in SERS substrates, nanotags, instrumentation, and spectral analysis for biomedical applications. We highlight the key developments in colloidal and solid SERS substrates, with an emphasis on surface chemistry, hotspot design, and 3D hydrogel plasmonic architectures. Additionally, we introduce recent innovations in SERS nanotags, including those with interior gaps, orthogonal Raman reporters, and near-infrared-II-responsive properties, along with biomimetic coatings. Emerging technologies such as optical tweezers, plasmonic nanopores, and wearable sensors have expanded SERS capabilities for single-cell and single-molecule analysis. Advances in spectral analysis, including signal digitalization, denoising, and deep learning algorithms, have improved the quantification of complex biological data. Finally, this review discusses SERS biomedical applications in nucleic acid detection, protein characterization, metabolite analysis, single-cell monitoring, and in vivo deep Raman spectroscopy, emphasizing its potential for liquid biopsy, metabolic phenotyping, and extracellular vesicle diagnostics. The review concludes with a perspective on clinical translation of SERS, addressing commercialization potentials and the challenges in deep tissue in vivo sensing and imaging.
Collapse
Affiliation(s)
- Linley Li Lin
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Ramon Alvarez-Puebla
- Departamento de Química Física e Inorganica, Universitat Rovira i Virgili, Tarragona 43007, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona 08010, Spain
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Ikerbasque, Basque Foundation for Science, University of Santiago de nCompostela, Bilbao 48013, Spain
- Centro de Investigación Cooperativa en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
- Cinbio, University of Vigo, Vigo 36310, Spain
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jing Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350117, China
| | - Laura Fabris
- Department of Applied Science and Technology, Politecnico di Torino Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Guokun Liu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry and Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Liangbao Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Aiguo Shen
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Shikuan Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yikai Xu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Chunchun Li
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jinqing Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Shao-Chuang Liu
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jian-An Huang
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
- Research Unit of Disease Networks, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
- Biocenter Oulu, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
| | - Indrajit Srivastava
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, Texas 79106, United States
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Limei Tian
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems Texas A&M University, College Station, Texas 77843, United States
| | - Lam Bang Thanh Nguyen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Xinyuan Bi
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Dana Cialla-May
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Pavel Matousek
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UKRI, Harwell Campus, Oxfordshire OX11 0QX, United Kingdom
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Nicholas Stone
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Randy P Carney
- Department of Biomedical Engineering, University of California, Davis, California 95616, United States
| | - Wei Ji
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 145040, China
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Zhou Chen
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - In Yee Phang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Nano Energy Composites, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Malou Henriksen-Lacey
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Centro de Investigación Cooperativa en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
| | - Haoran Chen
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Zongyu Wu
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Heng Guo
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems Texas A&M University, College Station, Texas 77843, United States
| | - Hao Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Gennadii Ustinov
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Siheng Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sara Mosca
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UKRI, Harwell Campus, Oxfordshire OX11 0QX, United Kingdom
| | - Benjamin Gardner
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Yi-Tao Long
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Juergen Popp
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shuming Nie
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xing Yi Ling
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Nano Energy Composites, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Jian Ye
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| |
Collapse
|
9
|
Brissaud C, Jain S, Henrotte O, Pouget E, Pauly M, Naldoni A, Comesaña-Hermo M. Plasmonic Chirality Meets Reactivity: Challenges and Opportunities. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2025; 129:3361-3373. [PMID: 40008194 PMCID: PMC11849436 DOI: 10.1021/acs.jpcc.4c08454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025]
Abstract
The unique optoelectronic features associated with plasmonic nanomaterials in a broad energy range of the electromagnetic spectrum have the potential to overcome the current limitations in the development of heterogeneous photocatalytic systems with enantioselective capabilities. Recent advancements in creating plasmonic structures with strong chiroptical features have already enabled asymmetric recognition of molecular substrates or even polarization-sensitive chemical reactivity under visible and near-infrared irradiation. Nevertheless, important developments need to be achieved to attain real enantioselective reactivity solely driven by plasmons. This Perspective discusses current trends in the formation of chiral plasmonic materials and their application as photocatalysts to achieve stereocontrol in photochemical reactions. We summarize the challenges in this field and offer insight into future opportunities that could enhance the effectiveness of these innovative systems.
Collapse
Affiliation(s)
| | - Swareena Jain
- Department
of Chemistry and NIS Centre, University
of Turin, Turin 10125, Italy
| | - Olivier Henrotte
- Regional
Centre of Advanced Technologies and Materials Department, Czech Advanced
Technology and Research Institute, Palacký
University Olomouc, Šlechtitelů 27, Olomouc 78371, Czech Republic
- Nanoinstitut
München, Fakultät für Physik, Ludwig-Maximilians-Universität München, Königinstraße 10, 80539 München, Germany
| | - Emilie Pouget
- Université
of Bordeaux, CNRS, Bordeaux
INP, CBMN, UMR 5248, F-33600 Pessac, France
| | - Matthias Pauly
- Université
de Strasbourg, CNRS, Institut Charles Sadron UPR22, F-67000 Strasbourg, France
- ENS
de Lyon, CNRS, LCH, UMR
5182, F-69342 Lyon
Cedex 07, France
| | - Alberto Naldoni
- Department
of Chemistry and NIS Centre, University
of Turin, Turin 10125, Italy
| | | |
Collapse
|
10
|
Ruan C, Zhou S, Wu X, Zou L, Wang R, Li G. Lanthanide coordination polymers as luminescent laccase mimics for ratiometric sensing of dopamine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125398. [PMID: 39520818 DOI: 10.1016/j.saa.2024.125398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/22/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Some metal ions, with inner enzyme-like catalytic activity, could be doped into lanthanide coordination polymers (Ln CPs) through coordination, which has been proved as a facile strategy to prepare the luminescent nanozymes. In this study, Cu-doped Ln CPs with laccase-mimic activity and double luminescence were rationally designed and synthesized by self-assembly of guanine monophosphate (GMP), 2-aminoterephthalic acid (ATA), Cu2+ and Tb3+ in buffer solution at room temperature. The obtained probes Tb/Cu-GMP/ATA CPs not only emitted green fluorescence of Tb3+ and blue fluorescence of ATA simultaneously under irradiation at the same wavelength, but also processed enhanced laccase-like activity for catalyzing the oxidation of phenolic substrates. Upon dopamine (DA), the probes catalyzed the oxidation of DA to polydopamine (PDA), which effectively quenched the fluorescence of Tb3+ due to the internal filtration effect. Based on this, a ratiometric fluorescent sensor for DA was constructed accordingly, and the corresponding fluorescence intensity ratio of Tb3+to ATA (F547/F427) was linearly correlated with the DA concentration in the range of 1 to 400 μM, with a detection limit of 0.44 μM. Besides, this sensor could be used to detect DA in human serum samples with good recovery, which results were highly consistent with that of HPLC method. The constituent and luminescence tunability, as well as the extraordinarily facile synthesis, made Ln CPs a potential platform for designing and preparing the integrated multifunctional probe for special target in sensing applications.
Collapse
Affiliation(s)
- Chen Ruan
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Siqi Zhou
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xinru Wu
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Lina Zou
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Rong Wang
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Gaiping Li
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
11
|
Zhang Z, Luo E, Wang W, Huang D, Liu J, Du Z. Molecularly Imprinted Nanozymes with Substrate Specificity: Current Strategies and Future Direction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408343. [PMID: 39655386 DOI: 10.1002/smll.202408343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/29/2024] [Indexed: 02/06/2025]
Abstract
Molecular imprinting technology (MIT) stands out for its exceptional simplicity and customization capabilities and has been widely employed in creating artificial antibodies that can precisely recognize and efficiently capture target molecules. Concurrently, nanozymes have emerged as promising enzyme mimics in the biomedical field, characterized by their remarkable stability, ease of production scalability, robust catalytic activity, and high tunability. Drawing inspiration from natural enzymes, molecularly imprinted nanozymes combine the unique benefits of both MIT and nanozymes, thereby conferring biomimetic catalysts with substrate specificity and catalytic selectivity. In this review, the latest strategies for the fabrication of molecularly imprinted nanozymes, focusing on the use of organic polymers and inorganic nanomaterials are explored. Additionally, cutting-edge techniques for generating atom-layer-imprinted islands with ultra-thin atomic-scale thickness is summarized. Their applications are particularly noteworthy in the fields of catalyst optimization, detection techniques, and therapeutic strategies, where they boost reaction selectivity and efficiency, enable precise identification and quantification of target substances, and enhance therapeutic effectiveness while minimizing adverse effects. Lastly, the prevailing challenges in the field and delineate potential avenues for future progress is encapsulated. This review will foster advancements in artificial enzyme technology and expand its applications.
Collapse
Affiliation(s)
- Zhou Zhang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Ergui Luo
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan, 030032, China
| | - Wenjuan Wang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030060, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Zhi Du
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030060, China
| |
Collapse
|
12
|
Gong H, Cai G, Li Y, Jiang N, Chen C, Chen F, Cai C. Portable dual-function ratio-type triple-emission molecularly imprinted fluorescence sensor for the simultaneous visual detection of hepatitis A and B viruses. Anal Chim Acta 2025; 1336:343451. [PMID: 39788649 DOI: 10.1016/j.aca.2024.343451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/03/2024] [Accepted: 11/19/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Viral epidemics have long endangered human health and had dramatic impacts on environment and society. The currently known viruses and the rapid emergence of previously unknown viruses lead to an urgent need for effective virus detection strategies. It is important to develop methods that can detect multiple related viruses simultaneously in order to improve detection efficiency and to avoid treatment delays due to misdiagnoses. However, an important practical problem for viruses simultaneously detection is mutual interference between the targets, which is caused by a certain degree of signal superposition. RESULTS A portable ratio-based triple-emission molecular imprinting fluorescence sensor was constructed to detect hepatitis A virus (HAV) and hepatitis B virus (HBV) simultaneously, which eliminated background interference and mutual interference between the two targets, and improved detection accuracy. In this sensor, a layer containing blue fluorescent carbon quantum dots (B-CDs) coated with silicon was used as a constant luminescent core to permit ratiometric detection of signals, this layer also affords visual analysis due to its constant blue color. As signal sources to employ yellow-green and red quantum dots, HAV- and HBV-specific molecularly imprinted polymers (MIPs) were prepared by imprinting virus onto the core containing the B-CDs. Under the optimized detection conditions, the simply physically mixing HAV-MIPs and HBV-MIPs in a specific ratio, which leads to non-interfering fluorescence signals and the simultaneous detection of the two target viruses via the rich color visualization under ultraviolet light. SIGNIFICANCE This strategy provides a simple and low-cost (0.26 ¥/sensor) method for the simultaneous detection of two hepatitis viruses, and provides an avenue for the development of portable methods for the simultaneous detection of similar highly infectious viruses. This self-service sensor also has the potential to be used by patients themselves, reducing pressures on medical staff and decreasing risks of cross-infection.
Collapse
Affiliation(s)
- Hang Gong
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, China; The key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| | - Ganping Cai
- The key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Yong Li
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China.
| | - Ning Jiang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China
| | - Chunyan Chen
- The key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Feng Chen
- The key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Changqun Cai
- The key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
13
|
Yang SQ, Jia BZ, Liu J, Wang H, Lei HT, Luo L, Xu ZL. Nanozyme-mediated ratiometric fluorescence hydrogel for on-site detection of sulfite in food. Food Chem 2025; 463:141525. [PMID: 39388869 DOI: 10.1016/j.foodchem.2024.141525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
In this work, a ratiometric fluorescence hydrogel nanosensor was developed by integrating a composite consisting of o-phenylenediamine (OPD), manganese dioxide nanoflakes (MnO2 NFs), and N-doped carbon dots (N-CDs) into an agarose hydrogel for sulfite detection. MnO2 NFs demonstrated intense oxidase-like activity, facilitating the conversion of non-fluorescent OPD into yellow-emissive 2,3-diaminophenazine (DAP). As a result, a significant emission peak belongs to DAP, alongside the fluorescence quenching of N-CDs through FRET. Upon interaction with sulfite, MnO2 NFs lost their oxidase-like function. This process decreased the fluorescence of DAP and restored the blue fluorescence of N-CDs, producing a typical ratiometric response, ranging from 3 nM ∼ 400 μM, with a detection limit (LOD) of 3.79 nM. Employing a smartphone, the fluorescence color change demonstrated by the hydrogel sensor was translated into quantitative data (LOD: 8.44 nM). This hydrogel sensor offers an affordable, portable, and user-friendly solution for sulfite detection and food safety monitoring.
Collapse
Affiliation(s)
- Si-Qi Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou Dublin International College of Life Sciences and Technology, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Bao-Zhu Jia
- College of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, China; School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jie Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou Dublin International College of Life Sciences and Technology, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou Dublin International College of Life Sciences and Technology, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hong-Tao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou Dublin International College of Life Sciences and Technology, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Lin Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou Dublin International College of Life Sciences and Technology, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou Dublin International College of Life Sciences and Technology, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
14
|
Yuan N, Ren Y, Gao T, Wang J, Li J. Effect of structure on sensing performance of nitro explosives with high sensitivity and mechanism of two Tb(III) coordination polymers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 324:124943. [PMID: 39146629 DOI: 10.1016/j.saa.2024.124943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
The use of a conjugate N-containing ligand resulted in the decreasing of structural dimensions from 2D network of [Tb(2-pyia)(Ac)(H2O)] (CP1) to 1D chain [Tb(2-pyia)(Ac)(IDP)] (CP2) (2-H2pyia = 5-(pyridin-2-ylmethoxy) isophthalic acid and IDP=imidazo[4,5-f]-[1,10] phenanthroline). Both of them exhibit the characteristic luminescence of Tb ions and could have high fluorescence sensing properties for cefixime and fluridine. The different sensing properties for nitro explosives are manifested as CP1 for nitrobenzene and CP2 for 4-nitrophenol due to the difference in structure. Furthermore, CP2 exhibits the ratiometric fluorescence sensing for Fe3+ ion with a low detection limit of 0.405 μM. The fluorescence sensing mechanism of the two Tb complexes for different analytes was investigated using experimental methods and theoretical calculations. CP1 was used for the detection of Flu residues in the actual system and better results were obtained. The work shows the introduction of the chelated ligand might affect the structural and sensing performance changes of coordination polymers.
Collapse
Affiliation(s)
- Nana Yuan
- College of Chemistry and Chemical Engineering, Laboratory of New Energy and New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Yixia Ren
- College of Chemistry and Chemical Engineering, Laboratory of New Energy and New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China.
| | - Ting Gao
- College of Chemistry and Chemical Engineering, Laboratory of New Energy and New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Jijiang Wang
- College of Chemistry and Chemical Engineering, Laboratory of New Energy and New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Jinfeng Li
- College of Chemistry and Chemical Engineering, Laboratory of New Energy and New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| |
Collapse
|
15
|
Hu M, Wen C, Liu J, Li M, Leng N, Guo X, Fang Q, Kou Q, Huang R, Lin XC. Ratiometric surface-enhanced Raman spectroscopy detection of 5-hydroxyindole-3-acetic acid based on Au@MIL-125@MIPs substrates. Talanta 2025; 281:126880. [PMID: 39277938 DOI: 10.1016/j.talanta.2024.126880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
5-Hydroxyindole-3-acetic acid (5-HIAA) is a molecular marker that can be used in the early diagnosis of carcinoid tumors, and the development of sophisticated 5-HIAA assays is therefore of great importance. Surface-enhanced Raman spectroscopy (SERS) has been widely used for the rapid and sensitive detection of disease biomarkers. Insufficient specificity for tumor markers and poor spectral reproducibility are the bottlenecks in the practical use of SERS technology. In this study, based on MIL-125 surface-loaded gold nanoparticles (Au@MIL-125), a novel strategy was proposed to obtain Au@MIL-125@molecularly imprinted polymers (MIPs) as functional SERS substrates by wrapping a thin MIP shell around the Au@MIL-125 surface for selective separation followed by a 5-HIAA assay. The Raman peak intensity ratio (I865/I1078) was used to quantify 5-HIAA after a SERS spectral calibration with an embedded internal standard (i.e., 4-aminobenzenethiol) to improve the quantitative accuracy. The linear range was from 10-11 to 10-7 M, and the limit of detection (LOD) was 5.45 × 10-13 M. The method of integrating the MIPs with the metal MOF-based nanocomposites was shown to be useful in the analysis of real samples using SERS. The application of SERS for the selective and quantitative detection of analytes in real sample analysis, therefore, has great potential.
Collapse
Affiliation(s)
- Miaomiao Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China; Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Changchun Wen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| | - Jian Liu
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Minzhe Li
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Nan Leng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Xiaohuan Guo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Qi Fang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Qinjie Kou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Rong Huang
- Department of Transfusion, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang-Cheng Lin
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, China.
| |
Collapse
|
16
|
Niu X, Liu Y, Zhao R, Yuan M, Zhao H, Li H, Yang X, Wang K. Mechanisms for translating chiral enantiomers separation research into macroscopic visualization. Adv Colloid Interface Sci 2025; 335:103342. [PMID: 39561657 DOI: 10.1016/j.cis.2024.103342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/19/2024] [Accepted: 11/10/2024] [Indexed: 11/21/2024]
Abstract
Chirality is a common phenomenon in nature, including the dominance preference of small biomolecules, the special spatial conformation of biomolecules, and the biological and physiological processes triggered by chirality. The selective chiral recognition of molecules in nature from up-bottom or bottom-up is of great significance for living organisms. Such as the transcription of DNA, the recognition of membrane proteins, and the catalysis of enzymes all involve chiral recognition processes. The selective recognition between these macromolecules is mainly achieved through non covalent interactions such as hydrophobic interactions, ammonia bonding, electrostatic interactions, metal coordination, van der Waals forces, and π-π stacking. Researchers have been committed to studying how to convert this weak non covalent interaction into macroscopic visualization, which has further understood of the interactions between chiral molecules and is of great significance for simulating the interactions between molecules in living organisms. This article reviews several models of chiral recognition mechanisms, the interaction forces involved in the chiral recognition process, and the research progress of chiral recognition mechanisms. The outlook in this review points out that studying chiral recognition interactions provides an important bridge between chiral materials and the life sciences, providing an ideal platform for studying chiral phenomena in biological systems.
Collapse
Affiliation(s)
- Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China.
| | - Yongqi Liu
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Rui Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Mei Yuan
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Hongfang Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Xing Yang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China.
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China.
| |
Collapse
|
17
|
Xie Y, Xu J, Shao D, Liu Y, Qu X, Hu S, Dong B. SERS-Based Local Field Enhancement in Biosensing Applications. Molecules 2024; 30:105. [PMID: 39795162 PMCID: PMC11722145 DOI: 10.3390/molecules30010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Surface-enhanced Raman scattering (SERS) stands out as a highly effective molecular identification technique, renowned for its exceptional sensitivity, specificity, and non-destructive nature. It has become a main technology in various sectors, including biological detection and imaging, environmental monitoring, and food safety. With the development of material science and the expansion of application fields, SERS substrate materials have also undergone significant changes: from precious metals to semiconductors, from single crystals to composite particles, from rigid to flexible substrates, and from two-dimensional to three-dimensional structures. This report delves into the advancements of the three latest types of SERS substrates: colloidal, chip-based, and tip-enhanced Raman spectroscopy. It explores the design principles, distinctive functionalities, and factors that influence SERS signal enhancement within various SERS-active nanomaterials. Furthermore, it provides an outlook on the future challenges and trends in the field. The insights presented are expected to aid researchers in the development and fabrication of SERS substrates that are not only more efficient but also more cost-effective. This progress is crucial for the multifunctionalization of SERS substrates and for their successful implementation in real-world applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China; (Y.X.); (J.X.); (D.S.); (Y.L.); (X.Q.); (S.H.)
| |
Collapse
|
18
|
Wang S, Zhao A, Li G, Sun X, Wang J, Cui M. In Situ Regenerable Molecularly Imprinted Polymer Biosensor for Electrochemical Detection of Nonelectroactive Branched-Chain Amino Acids in Human Sweat. Anal Chem 2024; 96:20287-20295. [PMID: 39663207 DOI: 10.1021/acs.analchem.4c05144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
The significant challenge in achieving in situ regeneration for conventional molecularly imprinted polymers (MIPs) restricts their promising application in continuous monitoring of biochemical molecules closely related to human health, especially nonelectroactive molecules. This is because they are either limited to a single use or require removal of imprinted templates through chemical washing steps, which is clearly impractical for sustainable monitoring. Here, a class of in situ regenerable MIP biosensors, taking nonelectroactive branched-chain amino acids (BCAAs) as templates and methyldopa as a functional monomer, was engineered to achieve repeatable in situ regeneration and in situ target recognition. The in situ regeneration was realized through an amperometric i-t technique with a negative voltage (-0.9 V) according to intrinsic isoelectric points of analytes instead of conventional wash steps. This electrochemical extraction process not only maximally repelled the imprinted templates, creating a large number of cavities (recognition sites) and significantly enhancing sensitivity, but also ensured the successful in situ regeneration of developed biosensing interfaces. The template extraction was evaluated by examining changes in the surface morphology, elemental composition, distribution, content, and interfacial properties. The developed BCAA MIP biosensors achieved sensitive target detection with the linear range from 0.001 to 10.0 μg/mL and limits of detection down to 0.45 (Leu), 0.47 (Ile), and 0.31 (Val) ng/mL. Beyond that, the biosensors demonstrated an excellent ability in decreasing biofouling, realizing repeatable in situ target detection in human sweat, and the obtained results were highly consistent with those of the enzyme-linked immunosorbent assay, indicating high feasibility, reliability, and accuracy in practical application. Meanwhile, the biosensors showed excellent specificity, selectivity, and stability.
Collapse
Affiliation(s)
- Shuai Wang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P.R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, P.R. China
| | - Aili Zhao
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P.R. China
| | - Guohui Li
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao 266042, P.R. China
| | - Xiaofeng Sun
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P.R. China
| | - Jingui Wang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P.R. China
| | - Min Cui
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P.R. China
| |
Collapse
|
19
|
Yang L, Li P, Bai L, Cao J, Yan H. Innovative hierarchical porous hydrophilic molecularly imprinted resin for high-throughput detection of perfluorocarboxylic acids in milk using 96-well plate SPE-LC-MS/MS. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135989. [PMID: 39357359 DOI: 10.1016/j.jhazmat.2024.135989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
The accumulation of perfluorocarboxylic acids (PFCAs) in environment and foods represents a significant threat to public health due to the long-term ingestion of contaminated food. This study introduces a novel adsorbent, the hierarchical porous hydrophilic molecularly imprinted resin (HPHMIR), which was synthesized by integrating molecular imprinting techniques with hydrophilic resins. The HPHMIR, characterized by its extensive mesoporous structure (average pore width ∼9.71 nm) and favorable imprinting factors (2.6-5.0), facilitates the effective adsorption of PFCAs from complex matrices through multiple interaction mechanisms, including hydrogen bonding and electrostatic interactions. This innovative material was employed in a 96-well plate format for solid-phase extraction (SPE), and combined with LC-MS/MS, a high-throughput method for the determination of PFCAs in milk was developed. The proposed method demonstrated exceptional performance, including excellent linearity (0.48-240 ng mL-1; r ≥ 0.9986), low detection limits (0.04-0.11 ng mL-1), high precision (relative standard deviation ≤ 9.9 %), and satisfactory recovery (75.7-118.1 %). These results highlight the efficacy of the method in extracting trace levels of PFCAs from complicated sample matrices, presenting a promising alternative for monitoring PFCA contamination and advancing public health standards.
Collapse
Affiliation(s)
- Lansen Yang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; Hebei Key Laboratory of Public Health Safety, College of Pharmaceutical Sciences, College of Public Health, School of Life Science, Hebei University, Baoding 071002, China
| | - Pengfei Li
- Hebei Key Laboratory of Public Health Safety, College of Pharmaceutical Sciences, College of Public Health, School of Life Science, Hebei University, Baoding 071002, China
| | - Ligai Bai
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Jiankun Cao
- Hebei Key Laboratory of Public Health Safety, College of Pharmaceutical Sciences, College of Public Health, School of Life Science, Hebei University, Baoding 071002, China
| | - Hongyuan Yan
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; Hebei Key Laboratory of Public Health Safety, College of Pharmaceutical Sciences, College of Public Health, School of Life Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
20
|
Zhang Q, Yan J, Ma X, Zhao L, Song P, Xia L. Self-calibrated paper-based nanoarrays for background-free quantitative detection of pesticides using self-assembly and mask-assisted techniques. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136195. [PMID: 39432932 DOI: 10.1016/j.jhazmat.2024.136195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
Flexible surface-enhanced Raman scattering (SERS) has received considerable attention in the field of rapid analysis. However, obtaining accurate quantitative SERS results remains challenging. Here, we develop a SERS sensor based on self-assembly and mask-assisted techniques for the precise transfer of Au@PB@Ag nanoarrays onto filter paper. Prussian blue (PB) as an internal standard (IS) is used to calibrate the fluctuations in the SERS signal induced by the microstructure of the filter paper, and can generate a local plasmon resonance under a Raman laser at a wavelength of 633 nm, which enables a dual electromagnetic enhancement of the internal self-calibration and external target molecule signals. The SERS substrate has a low limit of detection of 3.96 × 10-9, a uniformity relative standard deviation (RSD) of 9.94 % (16.85 % uncalibrated), a repeatability RSD of 9.43 % (31.2 % for Au@Ag NPs), and remains stable for more than 45 days. Thiram and thiabendazole in fruit juices can be quantitatively detected using patterned transfer monolayer arrays with a common dropper. The R2 coefficients of the pesticide concentration and Raman intensity fitting curves improved from 0.9659 and 0.9499 to 0.9976 and 0.9928, respectively. Thus, paper-based Au@PB@Ag nanoarrays have facilitated the development of SERS technology for practical applications.
Collapse
Affiliation(s)
- Qijia Zhang
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Jinkun Yan
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Xiaodi Ma
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Lefa Zhao
- Teaching & Research Department of Common Course, Shenyang Sport University, Shenyang 110115, China.
| | - Peng Song
- College of Physics, Liaoning University, Shenyang 110036, China.
| | - Lixin Xia
- College of Chemistry, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
21
|
Chi J, Xie Q, Huang G, Xie S, Lin X, Huang G. Versatile, reusable and highly sensitive SERS-based point-of-care testing microplatform for reliable ATP detection. Biosens Bioelectron 2024; 265:116710. [PMID: 39190969 DOI: 10.1016/j.bios.2024.116710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
The advancement in miniaturized Raman spectrometers, coupled with the single-molecule-level sensitivity and unique fingerprint identification capability of surface-enhanced Raman scattering (SERS), offers great potential for point-of-care testing (POCT). Despite this, accurately quantifying analyte molecules, particularly in complex samples with limited sample volumes, remains difficult. Herein, we present a versatile and reusable SERS microplatform for highly sensitive and reliable quantitative detection of adenosine triphosphate (ATP) in biological fluids. The platform utilizes gold-Prussian blue core-shell nanoparticles modified with polyethyleneimine (Au@PB@PEI NPs), embedded within gold nanoparticle-immobilized capillary-based silica monolithic materials. PB acts as an internal standard, while PEI enhances molecular capture. The periodic, bimodal porous structure of the silica monolithic materials provides uniform and abundant sites for nanoparticle attachment, facilitating rapid liquid permeation, intense SERS enhancement, and efficient enrichment. The platform regulates ATP capture and release through magnesium ions in the liquid phase, eliminating matrix interferences and enabling platform reuse. Integrating efficient molecular enrichment, separation, an interference-free internal standard, a liquid flow channel, and a detection chamber, our platform offers simplicity in operation, exceptional sensitivity and accuracy, and rapid analysis (∼10 min). Employing PB as an internal calibration standard, ratiometric Raman signals (I732/I2123) facilitate precise ATP quantification, achieving a remarkable limit of detection down to 0.62 pM. Furthermore, this platform has been proven to be highly reproducible and validated for ATP quantification in both mouse cerebrospinal fluid and human serum, underscoring its immense potential for POCT applications.
Collapse
Affiliation(s)
- Jinxin Chi
- Institute of Analytical Technology and Smart Instruments, Xiamen Key Laboratory of Food and Drug Safety, College of Environment and Public Health, Xiamen Huaxia University, Xiamen, 361024, China
| | - Qian Xie
- Institute of Analytical Technology and Smart Instruments, Xiamen Key Laboratory of Food and Drug Safety, College of Environment and Public Health, Xiamen Huaxia University, Xiamen, 361024, China
| | - Guobin Huang
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, China
| | - Shulun Xie
- Institute of Analytical Technology and Smart Instruments, Xiamen Key Laboratory of Food and Drug Safety, College of Environment and Public Health, Xiamen Huaxia University, Xiamen, 361024, China; Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, China
| | - Xucong Lin
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, China
| | - Guihua Huang
- Institute of Analytical Technology and Smart Instruments, Xiamen Key Laboratory of Food and Drug Safety, College of Environment and Public Health, Xiamen Huaxia University, Xiamen, 361024, China.
| |
Collapse
|
22
|
Gong H, Wu X, Chen F, Li Y, Chen C, Cai C. Molecular imprinting resonant light scattering sensor based on teamed boronate affinity for highly specific detection of glycoprotein. Microchem J 2024; 207:112260. [DOI: 10.1016/j.microc.2024.112260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
23
|
Li H, Liu X, Feng X, Guo X, Xu Z, Wang Y. Rapid assessment of acetophenone using an anti-interfering triple-emission Ln 3+-functionalized HOF@MOF sensor. Talanta 2024; 280:126718. [PMID: 39154436 DOI: 10.1016/j.talanta.2024.126718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
The development of high-performance sensors for rapidly detecting acetylacetone (AP) in water samples is necessary because its release into the environment can result in many vital problems for human health and environment. Herein, we first designed a hybrid by integrating HOF with ZIF-8 through a sequential growth strategy. By separately introducing blue-emitting SiQDs and green- and red-emitting Tb3+ and Eu3+ into ZIF-8 and HOF, the resultant ZIF-8@SiQDs@HOF@Eu3+@Tb3+ comprised three emission peaks at 484, 545 and 620 nm, all of which could be employed as switch-off responsive peaks to low concentrations of AP with a detection limit of 0.79 ppm. However, in environments with high concentrations of AP, a turn-on signal at 484 nm was observed. Thereupon, the ratiometric fluorescence intensity of the ternary emission varied within different concentration ranges, accompanied by the fluorescence color evolution from red to salmon to plum to purple to final blue. Moreover, a portable sensing film was fabricated for rapid warning, sensitive and visual determination of AP in complicated environments. Therefore, this triple-emission sensor with wide color variations and strong anti-interference advantages could promote further research to improve the selectivity, sensitivity and inherent self-correction of multimodal fluorescence detection and the ease of sensing operation.
Collapse
Affiliation(s)
- Huijun Li
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Xiang Liu
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Xiaoqin Feng
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Xiaoyuan Guo
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Zhouqing Xu
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Yan Wang
- State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization, Henan Polytechnic University, Jiaozuo, 454000, China; Henan Provincial Research Center for Early Warning and Emergency Engineering of Combusstion and Explosion Power Disaster, Henan Polytechnic University, Jiaozuo, 454000, China.
| |
Collapse
|
24
|
Zhang LL, Li L, Wang D, Hong Y, Tang K, Hong J, Chen Z, Yang W, Lu L, Duan LY. Rapid redox-response featured visual ascorbic acid sensor based on simple-assembled europium metal-organic framework. Food Chem 2024; 459:140339. [PMID: 38986206 DOI: 10.1016/j.foodchem.2024.140339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
A facile, fast and visible sensing platform for ascorbic acid (AA) detection has been developed based on self-assembled hydrangea-like europium metal-organic framework (HL-EuMOF). HL-EuMOF was synthesized through a simple one-step mixing process with Eu3+ and 1, 10-phenanthroline-2, 9-dicarboxylic acid at room temperature, which exhibited excellent properties including strong red fluorescence, long decay lifetime (548.623 μs) and good luminescent stability. Based on the specific redox reaction between Fe3+ and AA, the HL-EuMOF@Fe3+ was fabricated with "turn-off" response for AA, where the resulting Fe2+ displayed effective fluorescence quenching ability toward HL-EuMOF. The sensor demonstrated low detection limit (31.94 nM), rapid response time (30 s) and high selectivity. Integration of smartphone-assisted RGB analysis with HL-EuMOF@Fe3+ permitted convenient and visible quantitative determination of AA level. This approach also presented good detection performances in complex human serum and beverage samples, which could provide a valuable tool for AA detection in biomedical research and food industry.
Collapse
Affiliation(s)
- Lin-Lin Zhang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Li Li
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, College of Science, Jiangxi Agricultural University, Nanchang 330045, China
| | - Dan Wang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yanping Hong
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Kaijie Tang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jiaxin Hong
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zeng Chen
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wuying Yang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Limin Lu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, College of Science, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Lu-Ying Duan
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
25
|
Lee D, Pang Y. Chiral sensing of glucose by surface-enhanced Raman spectroscopy. Anal Chim Acta 2024; 1330:343290. [PMID: 39489971 DOI: 10.1016/j.aca.2024.343290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/24/2024] [Accepted: 09/28/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Chiral-selective molecular interactions are considered crucial in numerous physiological processes. Chiral-selective analytical methods of biomolecules with sufficient sensitivity are of great interest in numerous applications. Several surface-enhanced Raman scattering (SERS)-based methods have recently been reported for chiral sensing of biomolecules. However, the lack of molecular-level understanding of SERS spectral changes of reporter and analyte molecules may mislead the development of chiral detection methods. RESULTS We report the chiral sensing of glucose (Glu) by SERS of L- and D-phenylalanine (Phe) with colloidal gold nanoparticles (AuNPs) synthesized by borohydride ions. The Phe SERS showed drastic spectral changes only when Glu of the same chirality as Phe was added, which also showed strong dependence on Glu concentration. The increase of δ(COO-) and decrease of νs(COO-) modes in Phe SERS, exclusively observed with the chiral-selective bimolecular interactions of chirally matching Glu, are understood as modified surface adsorption geometry of the carboxylate group. Quantitative spectral analysis for the Glu concentration of a specific chirality showed the detection limit down to 2 × 10-9 - 2 × 10-7 M levels depending on the existence of the opposite enantiomer of Glu. SIGNIFICANCE In this study, we demonstrated that the Phe SERS on AuNPs can be utilized in the chiral sensing of Glu molecules with quantitative concentration analysis. The bimolecular interactions of surface-adsorbed Phe and chirally matching Glu are suggested for the chiral recognition of Phe SERS. These results imply that a molecule-level understanding is indispensable for developing SERS-based chiral sensing methods.
Collapse
Affiliation(s)
- Daedu Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Yoonsoo Pang
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
26
|
Gao Z, Yan X, Jia Q, Zhang J, Guo G, Li H, Li H, Xie G, Tao Y, Chen R. Stimulating Chiral Selective Expression of Room Temperature Phosphorescence for Chirality Recognition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2410671. [PMID: 39377218 PMCID: PMC11600253 DOI: 10.1002/advs.202410671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Indexed: 10/09/2024]
Abstract
Chiral recognition is crucial for applications in chiral purity assessment and biomedical fields. However, achieving chiral recognition through visible room temperature phosphorescence remains challenging. Here, two chiral molecules, designated as host and guest are synthesized, which possess similar structural configurations. A viable strategy involving a chiral configuration-dependent energy transfer process to enable selective phosphorescence expression is proposed, thereby enabling chiral recognition in a host-guest doping system. The chiral and structural similarity between host and guest facilitates efficient Dexter energy transfer due to the reduced spatial distance between the molecules. This mechanism significantly enhances the intensity of red phosphorescence from the guest molecule, characterized by an emission peak at 612 nm and a prolonged lifetime of 32.7 ms. This work elucidates the mechanism of chiral-dependent energy transfer, demonstrating its potential for selectively expressing phosphorescence in chiral recognition.
Collapse
Affiliation(s)
- Zhisheng Gao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & TelecommunicationsNanjing210023China
| | - Xin Yan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & TelecommunicationsNanjing210023China
| | - Qi Jia
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & TelecommunicationsNanjing210023China
| | - Jingru Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & TelecommunicationsNanjing210023China
| | - Guangyao Guo
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & TelecommunicationsNanjing210023China
| | - Huanhuan Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & TelecommunicationsNanjing210023China
| | - Hui Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & TelecommunicationsNanjing210023China
| | - Gaozhan Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & TelecommunicationsNanjing210023China
| | - Ye Tao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & TelecommunicationsNanjing210023China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Runfeng Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & TelecommunicationsNanjing210023China
| |
Collapse
|
27
|
Song L, Zhang J, Wang M, Huang Z, Zhang Y, Zhang X, Liang Y, He J. Simultaneously Selective Separation of Zearalenone and Four Aflatoxins From Rice Samples Using Co-Pseudo-Template Imprinted Polymers With MIL-101(Cr)-NH2 as Core. J Chromatogr Sci 2024; 62:892-903. [PMID: 38862395 DOI: 10.1093/chromsci/bmae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 04/26/2024] [Indexed: 06/13/2024]
Abstract
A novel approach for the simultaneous separation of zearalenone (ZEN) and four types of aflatoxins (AFB1, AFB2, AFG1 and AFG2) from rice samples was presented. This approach utilized modified MIL-101(Cr)-NH2 as core, with molecularly imprinted polymers (MIPs) serving as the shell. The MIL-101(Cr)-NH2 was prepared via ring-opening reaction, while the imprinted polymers were synthesized using warfarin and 4-methylumbelliferyl acetate as co-pseudo template, ethylene glycol dimethacrylate as the cross-linker and azobisisobutyronitrile as initiator. The resulting co-pseudo-template-MIPs (CPT-MIPs) were thoroughly characterized and evaluated. Adsorption studies demonstrate that the adsorption process of CPT-MIPs follows a chemical monolayer adsorption mechanism, with imprinted factors ranging from 1.24 to 1.52 and selective factors ranging from 1.29 to 1.52. Self-made columns were prepared, and the method for separation was developed and validated. The limit of detections ranged from 0.12 to 2.09 μg/kg, and the limit of qualifications ranged from 1.2 to 6.25 μg/kg. To assess the reliability of the method, ZEN and AFs were spiked at three different levels, and the recoveries ranged from 79.53 to 94.58%, with relative standard deviations of 2.90-5.78%.
Collapse
Affiliation(s)
- Lixin Song
- Department of Environment Engineering, Henan Vocational College of Water Conservancy and Environment, 136 Huayuan Road, Jinshui District, Zhengzhou 450001, PR China
| | - Jian Zhang
- Department of Environment Engineering, Henan Vocational College of Water Conservancy and Environment, 136 Huayuan Road, Jinshui District, Zhengzhou 450001, PR China
| | - Mingyu Wang
- School of Chemistry and Chemical Engineering, Henan University of Technology, 100 Lianhua Road, Zhongyuan District, Zhengzhou 450001, PR China
| | - Zhipeng Huang
- School of Chemistry and Chemical Engineering, Henan University of Technology, 100 Lianhua Road, Zhongyuan District, Zhengzhou 450001, PR China
| | - Yunxia Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, 100 Lianhua Road, Zhongyuan District, Zhengzhou 450001, PR China
| | - Xing Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, 100 Lianhua Road, Zhongyuan District, Zhengzhou 450001, PR China
| | - Yutao Liang
- School of Chemistry and Chemical Engineering, Henan University of Technology, 100 Lianhua Road, Zhongyuan District, Zhengzhou 450001, PR China
| | - Juan He
- School of Chemistry and Chemical Engineering, Henan University of Technology, 100 Lianhua Road, Zhongyuan District, Zhengzhou 450001, PR China
| |
Collapse
|
28
|
Yue F, Zhao X, Chen X, Li Y, Huang Y, Zhao D, Xu J, Jia L, Zhao T. A dual-channel sensing platform for the cross-interference-free detection of tetracycline and copper ion. Talanta 2024; 279:126617. [PMID: 39084037 DOI: 10.1016/j.talanta.2024.126617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/06/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Tetracycline (TC) and copper ion (Cu2+), as important additives in animal feed, play a crucial role in disease prevention and growth regulation. However, the abuse leads to concentration accumulation, which seriously threatens human health and the ecological environment. There is an urgent need to develop a detection method to achieve fast and synchronous detection of these pollutants without cross-interference. Here, a carbon dots-doped lanthanide-based fluorescent nanosensor (CDs@Tb-MOFs@SiO2-NH2-Eu) was synthesized, which can detect TC in the 380 nm channel by "antenna effect" and internal filtering effects (IFE), and identify Cu2+ in the 320 nm channel. The sensor was highly sensitive to TC within 0-4 μM with a detection limit as low as 3.64 nM, and Cu2+ could be detected within 0-40 μM with a detection limit of 38 nM. A portable dual-channel visual fluorescence sensor was obtained by loading the probes onto test paper and cotton swabs in food samples, which indicates the practicability of this sensing strategy.
Collapse
Affiliation(s)
- Fengzhi Yue
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China
| | - Xiaolei Zhao
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China
| | - Xiangzhen Chen
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China
| | - Yongxin Li
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China
| | - Yuanyuan Huang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China
| | - Dan Zhao
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China
| | - Jun Xu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China.
| | - Lei Jia
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China.
| | - Tongqian Zhao
- Institute of Resources & Environment, Henan Polytechnic University, Jiaozuo, Henan, 454000, China.
| |
Collapse
|
29
|
Stefancu A, Aizpurua J, Alessandri I, Bald I, Baumberg JJ, Besteiro LV, Christopher P, Correa-Duarte M, de Nijs B, Demetriadou A, Frontiera RR, Fukushima T, Halas NJ, Jain PK, Kim ZH, Kurouski D, Lange H, Li JF, Liz-Marzán LM, Lucas IT, Meixner AJ, Murakoshi K, Nordlander P, Peveler WJ, Quesada-Cabrera R, Ringe E, Schatz GC, Schlücker S, Schultz ZD, Tan EX, Tian ZQ, Wang L, Weckhuysen BM, Xie W, Ling XY, Zhang J, Zhao Z, Zhou RY, Cortés E. Impact of Surface Enhanced Raman Spectroscopy in Catalysis. ACS NANO 2024; 18:29337-29379. [PMID: 39401392 PMCID: PMC11526435 DOI: 10.1021/acsnano.4c06192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024]
Abstract
Catalysis stands as an indispensable cornerstone of modern society, underpinning the production of over 80% of manufactured goods and driving over 90% of industrial chemical processes. As the demand for more efficient and sustainable processes grows, better catalysts are needed. Understanding the working principles of catalysts is key, and over the last 50 years, surface-enhanced Raman Spectroscopy (SERS) has become essential. Discovered in 1974, SERS has evolved into a mature and powerful analytical tool, transforming the way in which we detect molecules across disciplines. In catalysis, SERS has enabled insights into dynamic surface phenomena, facilitating the monitoring of the catalyst structure, adsorbate interactions, and reaction kinetics at very high spatial and temporal resolutions. This review explores the achievements as well as the future potential of SERS in the field of catalysis and energy conversion, thereby highlighting its role in advancing these critical areas of research.
Collapse
Affiliation(s)
- Andrei Stefancu
- Nanoinstitute
Munich, Faculty of Physics, Ludwig-Maximilians-Universität
München, 80539 Munich, Germany
| | - Javier Aizpurua
- IKERBASQUE,
Basque Foundation for Science, 48011 Bilbao, Basque Country Spain
- Donostia
International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 San Sebastián-Donostia, Basque Country Spain
- Department
of Electricity and Electronics, University
of the Basque Country, 20018 San Sebastián-Donostia, Basque Country Spain
| | - Ivano Alessandri
- INSTM,
UdR Brescia, Via Branze
38, Brescia 25123, Italy
- Department
of Information Engineering (DII), University
of Brescia, Via Branze
38, Brescia 25123, Italy
- INO−CNR, Via Branze 38, Brescia 25123, Italy
| | - Ilko Bald
- Institute
of Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24−25, D-14476 Potsdam, Germany
| | - Jeremy J. Baumberg
- Nanophotonics
Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, England U.K.
| | | | - Phillip Christopher
- Department
of Chemical Engineering, University of California
Santa Barbara, Santa
Barbara, California 93106, United States
| | - Miguel Correa-Duarte
- CINBIO,
Universidade de Vigo, Vigo 36310, Spain
- Biomedical
Research Networking Center for Mental Health (CIBERSAM), Southern Galicia Institute of Health Research (IISGS), Vigo 36310, Spain
| | - Bart de Nijs
- Nanophotonics
Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, England U.K.
| | - Angela Demetriadou
- School
of Physics and Astronomy, University of
Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
| | - Renee R. Frontiera
- Department
of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Tomohiro Fukushima
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Sapporo 060-0810, Japan
- JST-PRESTO, Tokyo, 332-0012, Japan
| | - Naomi J. Halas
- Department
of Chemistry, Rice University, Houston, Texas 77005, United States
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department
of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
- Technical
University of Munich (TUM) and Institute for Advanced Study (IAS), Lichtenbergstrasse 2 a, D-85748, Garching, Germany
| | - Prashant K. Jain
- Department
of Chemistry, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
- Materials
Research Laboratory, University of Illinois
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Zee Hwan Kim
- Department
of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Dmitry Kurouski
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| | - Holger Lange
- Institut
für Physik und Astronomie, Universität
Potsdam, 14476 Potsdam, Germany
- The Hamburg
Centre for Ultrafast Imaging, 22761 Hamburg, Germany
| | - Jian-Feng Li
- State
Key
Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College
of Chemistry and Chemical Engineering, College of Energy, College
of Materials, Xiamen University, Xiamen 361005, China
| | - Luis M. Liz-Marzán
- IKERBASQUE,
Basque Foundation for Science, 48011 Bilbao, Basque Country Spain
- CINBIO,
Universidade de Vigo, Vigo 36310, Spain
- CIC biomaGUNE,
Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Centro
de Investigación Biomédica en Red, Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
| | - Ivan T. Lucas
- Nantes
Université, CNRS, IMN, F-44322 Nantes, France
| | - Alfred J. Meixner
- Institute
of Physical and Theoretical Chemistry, University
of Tubingen, 72076 Tubingen, Germany
| | - Kei Murakoshi
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Sapporo 060-0810, Japan
| | - Peter Nordlander
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department
of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
- Technical
University of Munich (TUM) and Institute for Advanced Study (IAS), Lichtenbergstrasse 2 a, D-85748, Garching, Germany
| | - William J. Peveler
- School of
Chemistry, Joseph Black Building, University
of Glasgow, Glasgow, G12 8QQ U.K.
| | - Raul Quesada-Cabrera
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
- Department
of Chemistry, Institute of Environmental Studies and Natural Resources
(i-UNAT), Universidad de Las Palmas de Gran
Canaria, Campus de Tafira, Las Palmas de GC 35017, Spain
| | - Emilie Ringe
- Department
of Materials Science and Metallurgy and Department of Earth Sciences, University of Cambridge, Cambridge CB3 0FS, United Kingdom
| | - George C. Schatz
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Sebastian Schlücker
- Physical
Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), Universität Duisburg-Essen, 45141 Essen, Germany
| | - Zachary D. Schultz
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Emily Xi Tan
- School of
Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Nanyang, 637371, Singapore
| | - Zhong-Qun Tian
- State
Key
Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College
of Chemistry and Chemical Engineering, College of Energy, College
of Materials, Xiamen University, Xiamen 361005, China
| | - Lingzhi Wang
- Shanghai
Engineering Research Center for Multi-media Environmental Catalysis
and Resource Utilization, East China University
of Science and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
- Key
Laboratory
for Advanced Materials and Joint International Research Laboratory
of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize
Scientist Joint Research Center, School of Chemistry and Molecular
Engineering, East China University of Science
and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
| | - Bert M. Weckhuysen
- Debye Institute
for Nanomaterials Science and Institute for Sustainable and Circular
Chemistry, Department of Chemistry, Utrecht
University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Wei Xie
- Key Laboratory
of Advanced Energy Materials Chemistry (Ministry of Education), Renewable
Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin 300071, China
| | - Xing Yi Ling
- School of
Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Nanyang, 637371, Singapore
- School
of
Chemical and Material Engineering, Jiangnan
University, Wuxi, 214122, People’s Republic
of China
- Lee Kong
Chian School of Medicine, Nanyang Technological
University, 59 Nanyang Drive, Singapore, 636921, Singapore
- Institute
for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Jinlong Zhang
- Shanghai
Engineering Research Center for Multi-media Environmental Catalysis
and Resource Utilization, East China University
of Science and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
- Key
Laboratory
for Advanced Materials and Joint International Research Laboratory
of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize
Scientist Joint Research Center, School of Chemistry and Molecular
Engineering, East China University of Science
and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
| | - Zhigang Zhao
- Key
Lab
of Nanodevices and Applications, Suzhou Institute of Nano-Tech and
Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Nano Science
and Technology Institute, University of
Science and Technology of China (USTC), Suzhou 215123, China
| | - Ru-Yu Zhou
- State
Key
Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College
of Chemistry and Chemical Engineering, College of Energy, College
of Materials, Xiamen University, Xiamen 361005, China
| | - Emiliano Cortés
- Nanoinstitute
Munich, Faculty of Physics, Ludwig-Maximilians-Universität
München, 80539 Munich, Germany
| |
Collapse
|
30
|
Yang J, Song Q, Zhang T, Yan Y, Yuan C, Cui Y, Hou X. Chiral Metal-Organic Framework Films with Ordered Macropores for Enantioselective Analysis of Proteins. Anal Chem 2024; 96:17280-17289. [PMID: 39405304 DOI: 10.1021/acs.analchem.4c03558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Chiral film-based sensors show great promise for discriminating between enantiomers due to their miniaturization and low power consumption. However, their practical use is hindered by the trade-off between enantioselectivity and mass transfer capability, especially concerning biomacromolecules such as proteins. In this work, we present an effective and straightforward method for creating highly organized macropores within crystalline chiral metal-organic framework (CMOF) films. This approach harnesses the shaping influence of a polystyrene nanosphere template and the crystallization induced by the liquid dielectric barrier discharge plasma. The resultant highly ordered macro-microporous structures improve mass diffusion and access to chiral active sites in the hierarchical CMOF films. Coupled with their inherent chirality, strong fluorescence emission, high crystallinity, and exceptional stability, these attributes endow these CMOF films with enhanced sensing capabilities for chiral molecules. Particularly, the macro-microporous structure facilitates efficient protein recognition, overcoming a significant challenge encountered by MOFs due to protein dimensions surpassing MOF pore sizes. These films exhibit increased enantioselectivity, better limits of detection, and wider linear ranges compared with purely microporous CMOF films. This study thus provides a powerful synthetic approach for hierarchical CMOF films, addressing the limitations of traditional thin film sensors and opening an avenue for efficient chiral sensing of large biomacromolecules.
Collapse
Affiliation(s)
- Ji Yang
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Qinyi Song
- College of Chemistry, and Key Lab of Green Chem and Tech of MOE, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Tong Zhang
- College of Chemistry, and Key Lab of Green Chem and Tech of MOE, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Yilun Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Chen Yuan
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xiandeng Hou
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, P. R. China
- College of Chemistry, and Key Lab of Green Chem and Tech of MOE, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| |
Collapse
|
31
|
Wang C, Zhu Z, Huang X, Wang X, Zhang L, Peng Y, Wan R, Han L, Li L, Qin X, Li H, Chen J. Recent Advances in Developing Optical and Electrochemical Sensors for Monitoring Thiram and Future Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23024-23038. [PMID: 39396199 DOI: 10.1021/acs.jafc.4c06107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Thiram, as one widely used dithiocarbamate pesticide, has been considered seriously detrimental to food safety and human health because of poor efficiency, nonstandard/superfluous usage, and lack of a targeting effect. Developing high-performance sensors for thirams is strongly needed. With the rapid development of chemistry, biology, and materials science, many sensors have been constructed for thiram with high sensitivity and selectivity. Regarding the energy form of the signal, recognition mode, and detection principle, recent advances in the design and construction of optical and electrochemical sensors for thiram are summarized in this review, including colorimetric, luminescent, chemiluminescent, and electrochemical sensors. The advantages and disadvantages of the sensors for thiram including sensitivity, ability to avoid interference, recognition mechanism, signal output mode, and practicability are clarified in detail. Furthermore, the challenges faced, effective restrictions, and next direction of development are proposed for achieving more sensitive and selective analysis of thiram with less interference. We desire that this review will supply a solid theoretical basis and inspiration to generate innovative thinking for achieving new progress on thiram assays and the commercialization of the developed sensors in the future.
Collapse
Affiliation(s)
- Chenfei Wang
- Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, Baoding, 071002 Hebei, China
| | - Zihan Zhu
- Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, Baoding, 071002 Hebei, China
| | - Xinda Huang
- Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, Baoding, 071002 Hebei, China
| | - Xuan Wang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding, 071002 Hebei, China
| | - Li Zhang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding, 071002 Hebei, China
| | - Yue Peng
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding, 071002 Hebei, China
| | - Rongyan Wan
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding, 071002 Hebei, China
| | - Lirong Han
- Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, Baoding, 071002 Hebei, China
| | - Linsen Li
- Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, Baoding, 071002 Hebei, China
| | - Xinhong Qin
- Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, Baoding, 071002 Hebei, China
| | - Haiyin Li
- Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, Baoding, 071002 Hebei, China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding, 071002 Hebei, China
| | - Jianling Chen
- Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, Baoding, 071002 Hebei, China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding, 071002 Hebei, China
| |
Collapse
|
32
|
Zhang D, Zhang Y, Li K, Wang S, Ma Y, Liao Y, Wang F, Liu H. A smartphone-combined ratiometric fluorescence molecularly imprinted probe based on biomass-derived carbon dots for determination of tyramine in fermented meat products. Food Chem 2024; 454:139759. [PMID: 38805926 DOI: 10.1016/j.foodchem.2024.139759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/08/2024] [Accepted: 05/18/2024] [Indexed: 05/30/2024]
Abstract
A ratiometric fluorescence molecularly imprinted probe employing two distinct emission wavelengths of biomass carbon dots was developed for highly selective and visual quantitative detection of tyramine in fermented meat products. The red emission biomass carbon dots were employed as responsive elements, and the blue ones were utilized as the reference elements. The molecularly imprinted polymers were incorporated in the ratiometric sensing to distinguish and adsorb tyramine. With the linear range of 1-60 μg/L, the ratiometric fluorescence molecularly imprinted probe was successfully applied to detect tyramine in real samples with the satisfactory recoveries of 79.74-112.12% and the detect limitation of 1.3 μg/kg, indicating that this probe has great potential applications for the detection of tyramine in real samples. Moreover, smartphone-based fluorescence signal recognition analysis on hand has been developed for the quantitative analysis of tyramine, providing a portable visual optical analysis terminal for rapid on-site determination of tyramine.
Collapse
Affiliation(s)
- Dianwei Zhang
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Yuhua Zhang
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Kexin Li
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Shengnan Wang
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Yuanchen Ma
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Yonghong Liao
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Fenghuan Wang
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China..
| | - Huilin Liu
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China..
| |
Collapse
|
33
|
Li Z, Deng J, Ma P, Bai H, Jin Y, Zhang Y, Dong A, Burenjargal M. Stimuli-Responsive Molecularly Imprinted Polymers: Mechanism and Applications. J Sep Sci 2024; 47:e202400441. [PMID: 39385447 DOI: 10.1002/jssc.202400441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 10/12/2024]
Abstract
Molecularly imprinted polymers (MIPs) are very suitable for extraction, drug delivery systems, and sensors due to their good selective adsorption ability, but the difficulty of eluting templates during synthesis and the limitation of application scenarios put higher demands on MIPs. Stimuli-responsive MIPs (SR-MIPs) can actively respond to changes in external conditions to realize various functions, which provides new ideas for the further development of MIPs. This paper reviews the multiple response modes of MIPs, including the common temperature, pH, photo, magnetic, redox-responsive and rare gas, biomolecule, ion, and solvent-responsive MIPs, and explains the mechanism, composition, and applications of such SR-MIPs. These SR-MIPs and the resulting dual/multiple-responsive MIPs have good selectivity, and controllability, and are very promising for isolation and extraction, targeted drug delivery, and electro-sensor.
Collapse
Affiliation(s)
- Zheng Li
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Jiaming Deng
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Peirong Ma
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Haoran Bai
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Yuting Jin
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Yanling Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | | |
Collapse
|
34
|
Sun G, Zhang X, Zheng Z, Zhang ZY, Dong M, Sessler JL, Li C. Chiral Macrocycles for Enantioselective Recognition. J Am Chem Soc 2024; 146:26233-26242. [PMID: 39269922 DOI: 10.1021/jacs.4c07924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The efficient synthesis of chiral macrocycles with highly enantioselective recognition remains a challenge. We have addressed this issue by synthesizing a pair of chiral macrocycles, namely, R/S-BINOL[2], achieving total isolated yields of up to 62% through a two-step reaction sequence. These macrocycles are readily purified by column chromatography over silica gel without the need for chiral separation, thus streamlining the overall synthesis. R/S-BINOL[2] demonstrated enantioselective recognition toward chiral ammonium salts, with enantioselectivity (KS/KR) values reaching up to 13.2, although less favorable separations were seen for other substrates. R/S-BINOL[2] also displays blue circularly polarized luminescence with a |glum| value of up to 2.2 × 10-3. The R/S-BINOL[2] macrocycles of this study are attractive as chiral hosts in that they both display enantioselective guest recognition and benefit from a concise, high-yielding synthesis. As such, they may have a role to play in chiral separations.
Collapse
Affiliation(s)
- Guang Sun
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Xue Zhang
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Zhe Zheng
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Zhi-Yuan Zhang
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Ming Dong
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Chunju Li
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| |
Collapse
|
35
|
Wang X, Han J, Zhang S, Liu K, Fan X, Bai C, Chen G. Self-polymerization silica nanoparticles based molecularly imprinted polymers for selective recognition of protein. J Chromatogr A 2024; 1732:465260. [PMID: 39142168 DOI: 10.1016/j.chroma.2024.465260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/30/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Molecularly imprinted polymers (MIPs) are promising for precise protein separation and purification. However, challenges persist due to their large size, variable configuration, and instability during preparation. Here, a simple silicon self-assembly program was designed to synthesize MIPs without any organic reagents and acid-base catalysis, avoiding the structural damage of protein under severe conditions. In this method, employing hemoglobin (Hb) as a model protein, with tween-20 in emulsification, and tetraethyl orthosilicate (TEOS) as the cross-linking agent, along with co-functional monomers 3-aminopropyltriethoxysilane (APTES) and benzyl(triethoxy)silane (BnTES), enhanced binding efficacy was achieved. Successful imprinting was evidenced through surface morphology observation and physical/chemical property evaluations of the synthesized MIPs. A series of adsorption experiments were performed to investigate the recognition performance of Hb-MIPs. The Hb-MIPs not only exhibited large adsorption capacity (400 μg/mg) and good imprinting factor (6.09) toward template protein, but also showed satisfactory selectivity for reference proteins. Five cycles of adsorption proved that the Hb-MIPs had good reusability. In addition, the successful isolation of HB from bovine blood indicated that Hb-MIPs were an excellent separation and purification material. The mild preparation conditions and good adsorption capacity demonstrated the potential value of this method in separation and purification research.
Collapse
Affiliation(s)
- Xiaofei Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Jili Han
- Center for Hybrid Nanostructures, Universität Hamburg, Hamburg, Germany
| | - Shuxian Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Keshuai Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaoxuan Fan
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Changcai Bai
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| | - Guoning Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
36
|
Peng R, Guo L, Chen L, Liu L, Deng W, Li D. Reaction-Modulated Surface-Enhanced Raman Scattering Strategy for Stereoselective Differentiation and Identification of Amino Acids. Anal Chem 2024. [PMID: 39235974 DOI: 10.1021/acs.analchem.4c01519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Surface-enhanced Raman scattering (SERS) sensing of racemates is a remarkably fascinating yet very sophisticated objective because of similar physicochemical features of enantiomers. Inspired by the enantiomeric selectivity of nucleophilic addition reaction (NAR) toward amino acids, we herein propose highly effective, robust SERS discrimination of d- and l-valine by synergizing asymmetric gold nanorods-embedded ZIF-8 nanoparticles (AGNZ) with NAR to engender stereoselective molecular fingerprint. Experimental and chemometric analyses disclose that enantioselectivity lies in dual aspects: (i) abundant interfacial cavities and 3D hot-spots in AGNZ offer necessary confined asymmetrical surroundings to trigger enantiospecific molecular adsorption and interaction affinity, and (ii) the specified NAR drags the racemates adjacent to the interfacial area of AGNZ for maximum analytes-substrate interaction. This strategy is universal and can be utilized for the recognition of different amino acid enantiomers. Importantly, multiple quantifications of the racemic ratio can be realized with superior prognostic performances. This synergizing strategy therefore provides a significant paradigm shift from traditional methods to realize highly effective SERS discrimination of racemates.
Collapse
Affiliation(s)
- Ruiqi Peng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Lei Guo
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Lu Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Lulu Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Wei Deng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Dan Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| |
Collapse
|
37
|
Ding F, Ma Y, Fan W, Xu J, Pan G. Tailor-made molecular imprints for biological event intervention. Trends Biotechnol 2024; 42:1097-1111. [PMID: 38604879 DOI: 10.1016/j.tibtech.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 04/13/2024]
Abstract
Molecular imprints, which are crosslinked architectures containing specific molecular recognition cavities for targeting compounds, have recently transitioned from in vitro diagnosis to in vivo treatment. In current application scenarios, it has become an important topic to create new biomolecular recognition pathways through molecular imprinting, thereby inhibiting the pathogenesis and regulating the development of diseases. This review starts with a pathological analysis, mainly focusing on the corresponding artificial enzymes, enzyme inhibitors and antibody mimics with enhanced functions that are created by molecular imprinting strategies. Recent advances are highlighted in the use of molecular imprints as tailor-made nanomedicines for the prevention of three major diseases: metabolic syndrome, cancer, and bacterial/viral infections.
Collapse
Affiliation(s)
- Fan Ding
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yue Ma
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Wensi Fan
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Jingjing Xu
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China.
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
38
|
Chen Z, Li Z, He H, Liu J, Deng J, Jiang L, Liu X. Ratiometric fluorescence sensor based on deep learning for rapid and user-friendly detection of tetracycline antibiotics. Food Chem 2024; 450:138961. [PMID: 38640544 DOI: 10.1016/j.foodchem.2024.138961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 04/21/2024]
Abstract
The detection of tetracycline antibiotics (TCs) in food holds great significance in minimizing their absorption within the human body. Hence, this study aims to develop a rapid, convenient, real-time, and accurate detection method for detecting antibiotics in an authentic market setting. A colorimetric fluorescence sensor was devised for tetracycline detection utilizing PVA aerogels as the substrate. Its operating principle is based on the IFE effect and antenna effect. A detection device is designed to capture fluorescence images while deep learning was employed to aid in the detection process. The sensor exhibits high responsiveness with a mere 60-s requirement for detection and demonstrates substantial color changes(blue to red), achieving 99% accuracy within the range of 10-100 μM with the assistance of deep learning (Resnet18). Real sample simulation tests yielded recovery rates between 95% and 130%. Overall, the proposed strategy proved to be a simple, portable, reliable, and responsive solution for rapid real-time TCs detection in food samples.
Collapse
Affiliation(s)
- Zhengjie Chen
- Electronic Information School, Wuhan University, Wuhan 430072, PR China
| | - Zhi Li
- Electronic Information School, Wuhan University, Wuhan 430072, PR China
| | - Haibin He
- Institute of Artificial Intelligence and School of Computer Science, Wuhan University, Wuhan 430072, PR China
| | - Juhua Liu
- Institute of Artificial Intelligence and School of Computer Science, Wuhan University, Wuhan 430072, PR China
| | - Junjie Deng
- Electronic Information School, Wuhan University, Wuhan 430072, PR China
| | - Lin Jiang
- Department of Electrical and Computer Engineering, Clarkson University, Potsdam, NY 13699-5720, USA
| | - Xinghai Liu
- Electronic Information School, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
39
|
Chen C, Zhang Q, Cheng Y, Fan Y, Fang M, Li K, Li X. Constructing molecularly imprinted membranes with instant noodles-like structure for selectively separating acteoside. Anal Chim Acta 2024; 1317:342915. [PMID: 39029997 DOI: 10.1016/j.aca.2024.342915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 07/21/2024]
Abstract
Acteoside (ACT) was the main bioactive components in phenylethanoid glycosides of Cistanche tubulosa. Currently, the development of an efficient method for selectively separating ACT was crucial. Consequently, yolk-shell magnetic mesoporous carbon (YSMMC) was synthesized as a nanofiller to prepare molecularly imprinted membranes (ACT-MIMs) with instant noodles-like structure for selectively separating ACT. The numerous YSMMC were moved to the upper surface of ACT-MIMs by magnetic guidance and constructed the instant noodles-like structure in ACT-MIMs. The instant noodle-like structure increased the surface roughness of ACT-MIMs, which was conducive to improving the effective imprinted interface, increasing the selectivity of ACT-MIMs. In addition, the instant noodle-like structure had dendritic interleaved pathways in ACT-MIMs. The dendritic interleaved pathways can intercept ACT through ACT-MIMs, enhancing the permselectivity of ACT-MIMs. The prepared YSMMC possessed the dendritic shell and interlayer cavity structure can provide a great accommodation space, improving the rebinding capacities of ACT-MIMs. The high permselectivity (14.49), remarkable selectivity (7.52), and excellent rebinding capacity (120.48 mg/g) were achieved for the prepared ACT-MIMs. Thus, the design of ACT-MIMs with the instant noodles-like structure were valuable for selectively separating of bioactive components.
Collapse
Affiliation(s)
- Chen Chen
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Qiong Zhang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Yun Cheng
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Yingying Fan
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Mujin Fang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Kui Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Xueqin Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
40
|
Zhu JH, Wang H, Guo J, Zhao J, Gao Z, Song YY, Zhao C. Homochiral light-sensitive metal-organic framework photoelectrochemical gated transistor for enantioselective discrimination of monosaccharides. Biosens Bioelectron 2024; 258:116336. [PMID: 38692222 DOI: 10.1016/j.bios.2024.116336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
As pure antipodes may differ in biological interactions, pharmacology, and toxicity, discrimination of enantiomers is important in the pharmaceutical and agrochemical industries. Two major challenges in enantiomer determination are transducing and amplifying the distinct chiral-recognition signals. In this study, a light-sensitive organic photoelectrochemical transistor (OPECT) with homochiral character is developed for enantiomer discrimination. Demonstrated with the discrimination of glucose enantiomers, the photoelectrochemically active gate electrode is prepared by integrating Au nanoparticles (AuNPs) and a chiral Cu(II)-metal-organic framework (c-CuMOF) onto TiO2 nanotube arrays (TNT). The captured glucose enantiomers are oxidized to hydrogen peroxide (H2O2) by the oxidase-mimicking AuNPs-loaded c-CuMOF. Based on the confinement effect of the mesopocket structure of the c-CuMOF and the remarkable charge transfer ability of the 1D nanotubular architecture, variations in H2O2 yield are translated into significant changes in OPECT drain currents (ID) by inducing a catalytic precipitation reaction. Variations in ID confer a sensitive discrimination of glucose enantiomers with a limit of detection (LOD) of 0.07 μM for L-Glu and 0.05 μM for D-Glu. This enantiomer-driven gate electrode response strategy not only provides a new route for enantiomer identification, but also helps to understand the origin of the high stereoselectivity in living systems.
Collapse
Affiliation(s)
- Jian-Hong Zhu
- College of Science, Northeastern University, Shenyang, 110004, China
| | - Haiquan Wang
- College of Science, Northeastern University, Shenyang, 110004, China
| | - Junli Guo
- College of Science, Northeastern University, Shenyang, 110004, China; Foshan Graduate School of Innovation, Northeastern University, Foshan, 528311, China
| | - Junjian Zhao
- College of Science, Northeastern University, Shenyang, 110004, China
| | - Zhida Gao
- College of Science, Northeastern University, Shenyang, 110004, China
| | - Yan-Yan Song
- College of Science, Northeastern University, Shenyang, 110004, China.
| | - Chenxi Zhao
- School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
41
|
Yang K, Kang Y, Zhang Q, Wu D, Shen J, Wei Y, Wang C. Nitrogen-doped magnetic porous carbon nanospheres derived from dual templates-induced mesoporous polydopamine coated Fe 3O 4 for efficient extraction and sensitive determination of volatile nitrosamines by gas chromatography-mass spectroscopy. Talanta 2024; 276:126235. [PMID: 38761654 DOI: 10.1016/j.talanta.2024.126235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/23/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
N-nitrosamines (NAs) are highly carcinogenic compounds commonly found in food, beverages, and consumer products. Due to their wide polarity range, it is challenging to find a suitable carbon adsorbent that can simultaneously adsorb and enrich both polar and nonpolar NAs with good recovery. In this study, nitrogen-doped magnetic mesoporous carbon nanospheres (M-MCN) were prepared and employed as an adsorbent for magnetic solid-phase extraction (MSPE) to extract and concentrate four NAs. The introduction of nitrogen functional groups enhanced the hydrophilicity of the carbon material, allowing M-MCN to achieve a balance between hydrophilicity and hydrophobicity, resulting in good recovery for both polar and nonpolar NAs. A method combining MSPE with gas chromatography-mass spectrometry (GC-MS) was developed for the determination of NAs in processed meat and alcoholic beverages. The method exhibited a good linear range (1-100 ng g-1, r2 > 0.9967) and trace-level detection (0.53-6.6 ng g-1). The recovery rates for the four NAs ranged between 85.7 and 110.7 %, with intra-day precision expressed as relative standard deviation (RSD) between 4.1 and 10.7 %, and inter-day precision between 4.8 and 12.9 %. The results demonstrated not only good accuracy and precision but also provided a new adsorbent for the enrichment of trace-level NAs in processed meat and alcoholic beverage samples.
Collapse
Affiliation(s)
- Kai Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Material Science, Northwest University, Xi'an, Shaanxi, 710127, PR China
| | - Yingying Kang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Material Science, Northwest University, Xi'an, Shaanxi, 710127, PR China
| | - Qinming Zhang
- Shaanxi Environmental Monitoring Centre, Shaanxi Key Laboratory for Environmental Monitoring and Forewarning of Trace Pollutants, Xi'an, Shaanxi, 710054, PR China
| | - Dan Wu
- Sunresin New Materials Co., Ltd., Xi'an, Shaanxi, 710076, PR China
| | - Jiwei Shen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Material Science, Northwest University, Xi'an, Shaanxi, 710127, PR China
| | - Yinmao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Material Science, Northwest University, Xi'an, Shaanxi, 710127, PR China
| | - Chaozhan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Material Science, Northwest University, Xi'an, Shaanxi, 710127, PR China.
| |
Collapse
|
42
|
Liu Y, Zhao L, Liu Y, Zhang Y, Chen W, Tang S. Surface molecularly imprinted polymer/covalent organic framework/silica composite material with specific recognition ability and excellent chromatographic performance. Talanta 2024; 276:126238. [PMID: 38761655 DOI: 10.1016/j.talanta.2024.126238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/14/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024]
Abstract
Facing with the difficulty of specific chromatographic separation of nucleoside drugs, this study prepared a surface molecularly imprinted polymer (SMIP) modified covalent organic framework (COF) coated silica stationary phase based on the specificity of molecular imprinting technology and the powerful chromatographic separation performance of COF. This novel SMIP-COF@SiO2 stationary phase can not only specifically identify template molecule and structural analogs, but can also be used to separate multiple types of analytes, such as B vitamins, sulfonamides, alkylbenzenes, phenyl ketones, polycyclic aromatic hydrocarbons and environmental endocrine disruptors, which satisfies the need for complex sample separation. Various retention mechanisms have been investigated and multiple interactions between the SMIP-COF@SiO2 stationary phase and the analytes are discovered. The chromatographic performance of SMIP-COF@SiO2 is far superior to that of the SMIP@SiO2 and COF@SiO2. Furthermore, the SMIP-COF@SiO2 stationary phase can be successfully used to analyze polycyclic aromatic hydrocarbons in the environmental water sample and detect whitening ingredient in skincare product, indicating its great potential for application in various fields.
Collapse
Affiliation(s)
- Yuanfei Liu
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan, 430205, China
| | - Lulu Zhao
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan, 430205, China
| | - Yanjuan Liu
- School of Pharmacy, Linyi University, Shuangling Road, Linyi, 276000, Shandong, China
| | - Yuefei Zhang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan, 430205, China
| | - Wei Chen
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan, 430205, China
| | - Sheng Tang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan, 430205, China.
| |
Collapse
|
43
|
Hosseini F, Dashtian K, Golzani M, Ejraei Z, Zare-Dorabei R. Remote magnetically stimulated xanthan-biochar-Fe3O 4-molecularly imprinted biopolymer hydrogel toward electrochemical enantioselection of l-tryptophan. Anal Chim Acta 2024; 1316:342837. [PMID: 38969427 DOI: 10.1016/j.aca.2024.342837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/23/2024] [Accepted: 06/05/2024] [Indexed: 07/07/2024]
Abstract
Monitoring the levels of L-Tryptophan (L-Trp) in body fluids is crucial due to its significant role in metabolism and protein synthesis, which ultimately affects neurological health. Herein, we have developed a novel magneto-responsive electrochemical enantioselective sensor for the recognition of L-Trp based on oriented biochar derived from Loofah, Fe3O4 nanoparticles, and molecularly imprinted polydopamine (MIPDA) in xanthan hydrogel. The successful synthesis of these materials has been confirmed through physicochemical and electrochemical characterization. Various operational factors such as pH, response time, loading sample volume, and loading of active materials were optimized. As a result, the sensor exhibited an affordable linear range of 1.0-60.0 μM, with a desirable limit of detection of 0.44 μM. Furthermore, the proposed electrochemical sensor demonstrated good reproducibility and desirable selectivity for the determination of L-Trp, making it suitable for analyzing L-Trp levels in human plasma and serum samples. The development presented offers an appealing, easily accessible, and efficient strategy. It utilizes xanthan hydrogel to improve mass transfer and adhesion, biochar-stabilized Fe3O4 to facilitate magnetic orientation and accelerate mass transfer and sensitivity, and polydopamine MIP to enhance selectivity. This approach enables on-site evaluation of L-Trp levels, which holds significant value for healthcare monitoring and early detection of related conditions.
Collapse
Affiliation(s)
- Fatemeh Hosseini
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Kheibar Dashtian
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Mojdeh Golzani
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Zahra Ejraei
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Rouholah Zare-Dorabei
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| |
Collapse
|
44
|
Kan L, Zhang Z, Zhang J, Liu Q, Yuan C, He Y, Zhang W, Qiao X, Shi G, Pang X. Precise Construction of Chiral Plasmonic Nanoparticles for Enantioselective Discrimination. J Phys Chem Lett 2024; 15:7740-7747. [PMID: 39046311 DOI: 10.1021/acs.jpclett.4c01715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Chiral plasmonic nanostructures exhibit potential in the advanced manufacturing industry, due to their fascinating characteristics. However, the limitation of existing fabrication methods as difficulty to precisely manipulate chiral nanostructures at the nanoscale restricts their application and optimization of performance. In this work, we report a simple and robust route for the precise construction of chiral Au nanoparticles (NPs), employing star-like block copolymers with well-defined structures as chiral templates. The globular unimolecular micelles as nanoreactors enabled control over the size, shape, and chirality of in situ grown nanocrystals. Utilizing the chiral anisotropy property of surface-enhanced Raman scattering (SERS), the enantioselective discrimination on various substrates was accomplished with an enhancement factor over 9.3 × 106. NPs with a smaller size exhibited strengthened Raman enhancement and chiral recognition. Furthermore, these chiral unimolecular-micelle-based templates with high efficiency and strong controllability could pave the way for tailor-made chiral nanomaterials.
Collapse
Affiliation(s)
- Longwang Kan
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenqian Zhang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Junle Zhang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
- Faculty of Engineering, Huanghe Science and Technology College, Zhengzhou 450063, China
| | - Qianwei Liu
- International College of Zhengzhou University, Zhengzhou 450001, China
| | - Chenrong Yuan
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yanjie He
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wenjie Zhang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoguang Qiao
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
- College of Materials Engineering, Henan International Joint Laboratory of Rare Earth Composite Materials, Henan University of Engineering, Zhengzhou 451191, China
| | - Ge Shi
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xinchang Pang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
45
|
Chwojnowska E, Kowalska AA, Kamińska A, Lewiński J. Direct Readout of Homo- vs Heterochiral Ligand Shell of Quantum Dots. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37308-37317. [PMID: 38973569 PMCID: PMC11261568 DOI: 10.1021/acsami.4c07648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
The chiroptical activity of various semiconductor inorganic nanocrystalline materials has typically been tested using circular dichroism or circularly polarized luminescence. Herein, we report on a high-throughput screening method for identifying and differentiating chiroptically active quantum-sized ZnO crystals using Raman spectroscopy combined with principal component analysis. ZnO quantum dots (QDs) coated by structurally diverse homo- and heterochiral aminoalcoholate ligands (cis- and trans-1-amino-2-indanolate, 2-amino-1-phenylethanolate, and diphenyl-2-pyrrolidinemethanolate) were prepared using the one-pot self-supporting organometallic procedure and then extensively studied toward the identification of specific Raman fingerprints and spectral variations. The direct comparison between the spectra demonstrates that it is very difficult to make definite recognition and identification between QDs coated with enantiomers based only on the differences in the respective Raman bands' position shifts and their intensities. However, the applied approach involving the principal component analysis performed on the Raman spectra allows the simultaneous differentiation and identification of the studied QDs. The first and second principal components explain 98, 97, 97, and 87% of the variability among the studied families of QDs and demonstrate the possibility of using the presented method as a qualitative assay. Thus, the reported multivariate approach paves the way for simultaneous differentiation and identification of chirotopically active semiconductor nanocrystals.
Collapse
Affiliation(s)
- Elżbieta Chwojnowska
- Institute
of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52 , Warsaw 01-224, Poland
| | - Aneta A. Kowalska
- Institute
of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52 , Warsaw 01-224, Poland
| | - Agnieszka Kamińska
- Institute
of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52 , Warsaw 01-224, Poland
| | - Janusz Lewiński
- Institute
of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52 , Warsaw 01-224, Poland
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3 , Warsaw 00-664, Poland
| |
Collapse
|
46
|
Jia Y, Wu W, Chen R, Wang H, Zhang C, Chen L, Yao J. Magneto-electrochemical method for chiral recognition of amino acid enantiomers. Analyst 2024; 149:3732-3738. [PMID: 38842499 DOI: 10.1039/d4an00547c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Chiral recognition of enantiomers with identical mirror-symmetric molecular structures is important for the analysis of biomolecules, and it conventionally relies on stereoselective interactions in chiral chemical environments. Here, we develop a magneto-electrochemical method for the enhanced detection of chiral amino acids (AAs), that combines the advantages of the high sensitivity of electrochemiluminescent (ECL) biosensors and chirality-induced effects under a magnetic field. The ECL difference between L- and D-enantiomers can be amplified over 35-fold under a field of 3.5 kG, and the chiral discrimination can be achieved in dilute AA solutions down to the nM level. The field-dependent ECL and chronocoulometry measurements suggest that chiral AAs can lock the spins on their radicals and thus enlarge the ECL change under applied magnetic fields (magneto-ECL, MECL), which explains the field-enhanced chiral discrimination of AA enantiomers. Finally, a detailed protocol is demonstrated for the identification of unknown AA solutions, in which the species, chirality and concentration of AAs can be determined simultaneously from the 2D plots of the ECL and MECL results. This work benefits the development of field-assisted detection methods and represents a promising and universal strategy for the comprehensive analysis of chiral biomolecules.
Collapse
Affiliation(s)
- Yueqian Jia
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wubin Wu
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Rui Chen
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Hong Wang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuang Zhang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Lili Chen
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- Institute of Molecular Engineering Plus, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
47
|
Zhao Y, Geng C, Wang L, Cao Y, Yang H, Peng L, Jiang X, Guo Y, Ye X, Lv W, Yang QH. Engineering catalytic defects via molecular imprinting for high energy Li-S pouch cells. Natl Sci Rev 2024; 11:nwae190. [PMID: 38938275 PMCID: PMC11210504 DOI: 10.1093/nsr/nwae190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/16/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024] Open
Abstract
Heterogeneous catalysis promises to accelerate sulfur-involved conversion reactions in lithium-sulfur batteries. Solid-state Li2S dissociation remains as the rate-limiting step because of the weakly matched solid-solid electrocatalysis interfaces. We propose an electrochemically molecular-imprinting strategy to have a metal sulfide (MS) catalyst with imprinted defects in positions from which the pre-implanted Li2S has been electrochemically removed. Such tailor-made defects enable the catalyst to bind exclusively to Li atoms in Li2S reactant and elongate the Li-S bond, thus decreasing the reaction energy barrier during charging. The imprinted Ni3S2 catalyst shows the best activity due to the highest defect concentration among the MS catalysts examined. The Li2S oxidation potential is substantially reduced to 2.34 V from 2.96 V for the counterpart free of imprinted vacancies, and an Ah-level pouch cell is realized with excellent cycling performance. With a lean electrolyte/sulfur ratio of 1.80 μL mgS -1, the cell achieves a benchmarkedly high energy density beyond 500 Wh kg-1.
Collapse
Affiliation(s)
- Yufei Zhao
- Shenzhen Geim Graphene Center, Engineering Laboratory for Functionalized Carbon Materials, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, School of Chemical Engineering and Technology, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
| | - Chuannan Geng
- Shenzhen Geim Graphene Center, Engineering Laboratory for Functionalized Carbon Materials, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, School of Chemical Engineering and Technology, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Li Wang
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, School of Chemical Engineering and Technology, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
| | - Yun Cao
- Shenzhen Geim Graphene Center, Engineering Laboratory for Functionalized Carbon Materials, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Haotian Yang
- Shenzhen Geim Graphene Center, Engineering Laboratory for Functionalized Carbon Materials, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, School of Chemical Engineering and Technology, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
| | - Linkai Peng
- Shenzhen Geim Graphene Center, Engineering Laboratory for Functionalized Carbon Materials, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xin Jiang
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, School of Chemical Engineering and Technology, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Yong Guo
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, School of Chemical Engineering and Technology, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Xiaolin Ye
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, School of Chemical Engineering and Technology, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Wei Lv
- Shenzhen Geim Graphene Center, Engineering Laboratory for Functionalized Carbon Materials, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Quan-Hong Yang
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, School of Chemical Engineering and Technology, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
| |
Collapse
|
48
|
Cui C, Fan Y, Chen Y, Wei R, Lv J, Yan M, Jiang D, Liu Z. Molecular imprinting-based Ru@SiO 2-embedded covalent organic frameworks composite for electrochemiluminescence detection of cyanidin-3-O-glucoside. Talanta 2024; 274:125997. [PMID: 38569369 DOI: 10.1016/j.talanta.2024.125997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
Cyanidin-3-O-glucoside (C3G), a natural antioxidant, plays multiple physiological or pathological roles in maintaining human health; thereby, designing advanced sensors to achieve specific recognition and high-sensitivity detection of C3G is significant. Herein, an imprinted-type electrochemiluminescence (ECL) sensing platform was developed using core-shell Ru@SiO2-CMIPs, which were prepared by covalent organic framework (COF)-based molecularly imprinted polymers (CMIPs) embedded in luminescent Ru@SiO2 cores. The C3G-imprinted COF shell not only helps generate a steady-enhanced ECL signal, but also enables specific recognition of C3G. When C3G is bound to Ru@SiO2-CMIPs with abundant imprinted cavities, resonance energy transfer (RET) behavior is triggered, resulting in a quenched ECL response. The constructed Ru@SiO2-CMIPs nanoprobes exhibit ultra-high sensitivity, absolute specificity, and an ultra-low detection limit (0.15 pg mL-1) for analyzing C3G in food matrices. This study provides a means to construct an efficient and reliable molecular imprinting-based ECL sensor for food analysis.
Collapse
Affiliation(s)
- Chen Cui
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China.
| | - Yunfeng Fan
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Yaxuan Chen
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Renlong Wei
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Jie Lv
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Meng Yan
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhimin Liu
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China.
| |
Collapse
|
49
|
Zhang D, Zhang Y, Wang S, Ma Y, Liao Y, Wang F, Liu H. Fabrication of fluorescence probe based on molecularly imprinted polymers on red emissive biomass-derived carbon dots coupled with smartphone readout for tyramine determination in fermented meat products. Mikrochim Acta 2024; 191:436. [PMID: 38954059 DOI: 10.1007/s00604-024-06499-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024]
Abstract
A fluorescence probe based on molecularly imprinted polymers on red emissive biomass-derived carbon dots (r-BCDs@MIPs) was developed to detect tyramine in fermented meat products. The red emissive biomass-derived carbon dots (r-BCDs) were synthesized by the one-step solvothermal method using discarded passion fruit shells as raw materials. The fluorescence emission peak of r-BCDs was at 670 nm, and the relative quantum yield (QY) was about 2.44%. Molecularly imprinted sensing materials were prepared with r-BCDs as fluorescent centers for the detection of trace tyramine, which showed a good linear response in the concentration range of tyramine from 1 to 40 µg L-1. The linear correlation coefficient was 0.9837, and the limit of detection was 0.77 µg L-1. The method was successfully applied to the determination of tyramine in fermented meat products, and the recovery was 87.17-106.02%. The reliability of the results was verified through high-performance liquid chromatography (HPLC). Furthermore, we combined the r-BCDs@MIPs with smartphone-assisted signal readout to achieve real-time detection of tyramine in real samples. Considering its simplicity and convenience, the method could be used as a rapid and low-cost promising platform with broad application prospects for on-site detection of trace tyramine with smartphone-assisted signal readout.
Collapse
Affiliation(s)
- Dianwei Zhang
- Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048, China
| | - Yuhua Zhang
- Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048, China
| | - Shengnan Wang
- Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048, China
| | - Yuanchen Ma
- Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048, China
| | - Yonghong Liao
- Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048, China
| | - Fenghuan Wang
- Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048, China.
| | - Huilin Liu
- Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048, China.
| |
Collapse
|
50
|
Li Z, Liang S, Zhang C, Zhou L, Luo F, Lou Z, Chen Z, Zhang X, Yang M. A ratiometric fluorescence and colorimetry dual-signal sensing strategy based on o-phenylenediamine and AuNCs for determination of Cu 2+ and glyphosate. Mikrochim Acta 2024; 191:423. [PMID: 38922503 DOI: 10.1007/s00604-024-06484-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024]
Abstract
A ratiometric fluorescence sensing strategy has been developed for the determination of Cu2+ and glyphosate with high sensitivity and specificity based on OPD (o-phenylenediamine) and glutathione-stabilized gold nanoclusters (GSH-AuNCs). Water-soluble 1.75-nm size GSH-AuNCs with strong red fluorescence and maximum emission wavelength at 682 nm were synthesized using GSH as the template. OPD was oxidized by Cu2+, which produced the bright yellow fluorescence oxidation product 2,3-diaminophenazine (DAP) with a maximum fluorescence emission peak at 570 nm. When glyphosate existed in the system, the chelation between glyphosate and Cu2+ hindered the formation of DAP and reduced the fluorescence intensity of the system at the wavelength of 570 nm. Meanwhile, the fluorescence intensity at the wavelength of 682 nm remained basically stable. It exhibited a good linear relationship towards Cu2+ and glyphosate in water in the range 1.0-10 µM and 0.050-3.0 µg/mL with a detection limit of 0.547 µM and 0.0028 µg/mL, respectively. The method was also used for the semi-quantitative determination of Cu2+ and glyphosate in water by fluorescence color changes visually detected by the naked eyes in the range 1.0-10 µM and 0.30-3.0 µg/mL, respectively. The sensing strategy showed higher sensitivity, more obvious color changes, and better disturbance performance, satisfying with the detection demands of Cu2+ and glyphosate in environmental water samples. The study provides a reliable detection strategy in the environment safety fields.
Collapse
Affiliation(s)
- Ziqiang Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| | - Shuang Liang
- College of Plant Protection, Jilin Agricultural University, Jilin, 130000, China
| | - Changsheng Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
- College of Plant Protection, Jilin Agricultural University, Jilin, 130000, China
| | - Li Zhou
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| | - Fengjian Luo
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| | - Zhengyun Lou
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| | - Zongmao Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| | - Xinzhong Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China.
| | - Mei Yang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China.
| |
Collapse
|