1
|
Adelsberger C, Bosco S, Klinovaja J, Loss D. Valley-Free Silicon Fins Caused by Shear Strain. PHYSICAL REVIEW LETTERS 2024; 133:037001. [PMID: 39094129 DOI: 10.1103/physrevlett.133.037001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 04/04/2024] [Accepted: 06/05/2024] [Indexed: 08/04/2024]
Abstract
Electron spins confined in silicon quantum dots are promising candidates for large-scale quantum computers. However, the degeneracy of the conduction band of bulk silicon introduces additional levels dangerously close to the window of computational energies, where the quantum information can leak. The energy of the valley states-typically 0.1 meV-depends on hardly controllable atomistic disorder and still constitutes a fundamental limit to the scalability of these architectures. In this work, we introduce designs of complementary metal-oxide-semiconductor (CMOS)-compatible silicon fin field-effect transistors that enhance the energy gap to noncomputational states by more than one order of magnitude. Our devices comprise realistic silicon-germanium nanostructures with a large shear strain, where troublesome valley degrees of freedom are completely removed. The energy of noncomputational states is therefore not affected by unavoidable atomistic disorder and can further be tuned in situ by applied electric fields. Our design ideas are directly applicable to a variety of setups and will offer a blueprint toward silicon-based large-scale quantum processors.
Collapse
|
2
|
van Riggelen-Doelman F, Wang CA, de Snoo SL, Lawrie WIL, Hendrickx NW, Rimbach-Russ M, Sammak A, Scappucci G, Déprez C, Veldhorst M. Coherent spin qubit shuttling through germanium quantum dots. Nat Commun 2024; 15:5716. [PMID: 38977681 PMCID: PMC11231167 DOI: 10.1038/s41467-024-49358-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/30/2024] [Indexed: 07/10/2024] Open
Abstract
Quantum links can interconnect qubit registers and are therefore essential in networked quantum computing. Semiconductor quantum dot qubits have seen significant progress in the high-fidelity operation of small qubit registers but establishing a compelling quantum link remains a challenge. Here, we show that a spin qubit can be shuttled through multiple quantum dots while preserving its quantum information. Remarkably, we achieve these results using hole spin qubits in germanium, despite the presence of strong spin-orbit interaction. In a minimal quantum dot chain, we accomplish the shuttling of spin basis states over effective lengths beyond 300 microns and demonstrate the coherent shuttling of superposition states over effective lengths corresponding to 9 microns, which we can extend to 49 microns by incorporating dynamical decoupling. These findings indicate qubit shuttling as an effective approach to route qubits within registers and to establish quantum links between registers.
Collapse
Affiliation(s)
- Floor van Riggelen-Doelman
- QuTech and Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA, Delft, The Netherlands
| | - Chien-An Wang
- QuTech and Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA, Delft, The Netherlands
| | - Sander L de Snoo
- QuTech and Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA, Delft, The Netherlands
| | - William I L Lawrie
- QuTech and Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA, Delft, The Netherlands
| | - Nico W Hendrickx
- QuTech and Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA, Delft, The Netherlands
| | - Maximilian Rimbach-Russ
- QuTech and Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA, Delft, The Netherlands
| | - Amir Sammak
- QuTech and Netherlands Organisation for Applied Scientific Research (TNO), 2628 CK, Delft, The Netherlands
| | - Giordano Scappucci
- QuTech and Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA, Delft, The Netherlands
| | - Corentin Déprez
- QuTech and Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA, Delft, The Netherlands.
| | - Menno Veldhorst
- QuTech and Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA, Delft, The Netherlands.
| |
Collapse
|
3
|
Künne M, Willmes A, Oberländer M, Gorjaew C, Teske JD, Bhardwaj H, Beer M, Kammerloher E, Otten R, Seidler I, Xue R, Schreiber LR, Bluhm H. The SpinBus architecture for scaling spin qubits with electron shuttling. Nat Commun 2024; 15:4977. [PMID: 38862531 PMCID: PMC11166970 DOI: 10.1038/s41467-024-49182-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 05/24/2024] [Indexed: 06/13/2024] Open
Abstract
Quantum processor architectures must enable scaling to large qubit numbers while providing two-dimensional qubit connectivity and exquisite operation fidelities. For microwave-controlled semiconductor spin qubits, dense arrays have made considerable progress, but are still limited in size by wiring fan-out and exhibit significant crosstalk between qubits. To overcome these limitations, we introduce the SpinBus architecture, which uses electron shuttling to connect qubits and features low operating frequencies and enhanced qubit coherence. Device simulations for all relevant operations in the Si/SiGe platform validate the feasibility with established semiconductor patterning technology and operation fidelities exceeding 99.9%. Control using room temperature instruments can plausibly support at least 144 qubits, but much larger numbers are conceivable with cryogenic control circuits. Building on the theoretical feasibility of high-fidelity spin-coherent electron shuttling as key enabling factor, the SpinBus architecture may be the basis for a spin-based quantum processor that meets the scalability requirements for practical quantum computing.
Collapse
Affiliation(s)
- Matthias Künne
- JARA-FIT Institute for Quantum Information, Forschungszentrum Jülich GmbH and RWTH Aachen University, 52074, Aachen, Germany
| | - Alexander Willmes
- JARA-FIT Institute for Quantum Information, Forschungszentrum Jülich GmbH and RWTH Aachen University, 52074, Aachen, Germany
| | - Max Oberländer
- JARA-FIT Institute for Quantum Information, Forschungszentrum Jülich GmbH and RWTH Aachen University, 52074, Aachen, Germany
| | - Christian Gorjaew
- JARA-FIT Institute for Quantum Information, Forschungszentrum Jülich GmbH and RWTH Aachen University, 52074, Aachen, Germany
| | - Julian D Teske
- JARA-FIT Institute for Quantum Information, Forschungszentrum Jülich GmbH and RWTH Aachen University, 52074, Aachen, Germany
| | - Harsh Bhardwaj
- JARA-FIT Institute for Quantum Information, Forschungszentrum Jülich GmbH and RWTH Aachen University, 52074, Aachen, Germany
| | - Max Beer
- JARA-FIT Institute for Quantum Information, Forschungszentrum Jülich GmbH and RWTH Aachen University, 52074, Aachen, Germany
| | - Eugen Kammerloher
- JARA-FIT Institute for Quantum Information, Forschungszentrum Jülich GmbH and RWTH Aachen University, 52074, Aachen, Germany
| | - René Otten
- JARA-FIT Institute for Quantum Information, Forschungszentrum Jülich GmbH and RWTH Aachen University, 52074, Aachen, Germany
- ARQUE Systems GmbH, 52074, Aachen, Germany
| | - Inga Seidler
- JARA-FIT Institute for Quantum Information, Forschungszentrum Jülich GmbH and RWTH Aachen University, 52074, Aachen, Germany
| | - Ran Xue
- JARA-FIT Institute for Quantum Information, Forschungszentrum Jülich GmbH and RWTH Aachen University, 52074, Aachen, Germany
| | - Lars R Schreiber
- JARA-FIT Institute for Quantum Information, Forschungszentrum Jülich GmbH and RWTH Aachen University, 52074, Aachen, Germany.
- ARQUE Systems GmbH, 52074, Aachen, Germany.
| | - Hendrik Bluhm
- JARA-FIT Institute for Quantum Information, Forschungszentrum Jülich GmbH and RWTH Aachen University, 52074, Aachen, Germany.
- ARQUE Systems GmbH, 52074, Aachen, Germany.
| |
Collapse
|
4
|
Xue R, Beer M, Seidler I, Humpohl S, Tu JS, Trellenkamp S, Struck T, Bluhm H, Schreiber LR. Si/SiGe QuBus for single electron information-processing devices with memory and micron-scale connectivity function. Nat Commun 2024; 15:2296. [PMID: 38485971 PMCID: PMC10940717 DOI: 10.1038/s41467-024-46519-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/26/2024] [Indexed: 03/18/2024] Open
Abstract
The connectivity within single carrier information-processing devices requires transport and storage of single charge quanta. Single electrons have been adiabatically transported while confined to a moving quantum dot in short, all-electrical Si/SiGe shuttle device, called quantum bus (QuBus). Here we show a QuBus spanning a length of 10 μm and operated by only six simply-tunable voltage pulses. We introduce a characterization method, called shuttle-tomography, to benchmark the potential imperfections and local shuttle-fidelity of the QuBus. The fidelity of the single-electron shuttle across the full device and back (a total distance of 19 μm) is (99.7 ± 0.3) %. Using the QuBus, we position and detect up to 34 electrons and initialize a register of 34 quantum dots with arbitrarily chosen patterns of zero and single-electrons. The simple operation signals, compatibility with industry fabrication and low spin-environment-interaction in 28Si/SiGe, promises long-range spin-conserving transport of spin qubits for quantum connectivity in quantum computing architectures.
Collapse
Affiliation(s)
- Ran Xue
- JARA-FIT Institute for Quantum Information, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Max Beer
- JARA-FIT Institute for Quantum Information, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Inga Seidler
- JARA-FIT Institute for Quantum Information, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Simon Humpohl
- JARA-FIT Institute for Quantum Information, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
- ARQUE Systems GmbH, Aachen, Germany
| | - Jhih-Sian Tu
- Helmholtz Nano Facility (HNF), Forschungszentrum Jülich, Jülich, Germany
| | - Stefan Trellenkamp
- Helmholtz Nano Facility (HNF), Forschungszentrum Jülich, Jülich, Germany
| | - Tom Struck
- JARA-FIT Institute for Quantum Information, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
- ARQUE Systems GmbH, Aachen, Germany
| | - Hendrik Bluhm
- JARA-FIT Institute for Quantum Information, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
- ARQUE Systems GmbH, Aachen, Germany
| | - Lars R Schreiber
- JARA-FIT Institute for Quantum Information, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany.
- ARQUE Systems GmbH, Aachen, Germany.
| |
Collapse
|
5
|
Burkard G. Diamond spins making waves again. Proc Natl Acad Sci U S A 2024; 121:e2320837121. [PMID: 38227665 PMCID: PMC10823166 DOI: 10.1073/pnas.2320837121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024] Open
Affiliation(s)
- Guido Burkard
- Department of Physics, University of Konstanz, KonstanzD-78457, Germany
| |
Collapse
|
6
|
Meyer M, Déprez C, Meijer IN, Unseld FK, Karwal S, Sammak A, Scappucci G, Vandersypen LMK, Veldhorst M. Single-Electron Occupation in Quantum Dot Arrays at Selectable Plunger Gate Voltage. NANO LETTERS 2023; 23:11593-11600. [PMID: 38091376 PMCID: PMC10755753 DOI: 10.1021/acs.nanolett.3c03349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023]
Abstract
The small footprint of semiconductor qubits is favorable for scalable quantum computing. However, their size also makes them sensitive to their local environment and variations in the gate structure. Currently, each device requires tailored gate voltages to confine a single charge per quantum dot, clearly challenging scalability. Here, we tune these gate voltages and equalize them solely through the temporary application of stress voltages. In a double quantum dot, we reach a stable (1,1) charge state at identical and predetermined plunger gate voltage and for various interdot couplings. Applying our findings, we tune a 2 × 2 quadruple quantum dot such that the (1,1,1,1) charge state is reached when all plunger gates are set to 1 V. The ability to define required gate voltages may relax requirements on control electronics and operations for spin qubit devices, providing means to advance quantum hardware.
Collapse
Affiliation(s)
- Marcel Meyer
- QuTech
and Kavli Institute of Nanoscience, Delft
University of Technology, PO Box 5046, 2600 GA Delft, The
Netherlands
| | - Corentin Déprez
- QuTech
and Kavli Institute of Nanoscience, Delft
University of Technology, PO Box 5046, 2600 GA Delft, The
Netherlands
| | - Ilja N. Meijer
- QuTech
and Kavli Institute of Nanoscience, Delft
University of Technology, PO Box 5046, 2600 GA Delft, The
Netherlands
| | - Florian K. Unseld
- QuTech
and Kavli Institute of Nanoscience, Delft
University of Technology, PO Box 5046, 2600 GA Delft, The
Netherlands
| | - Saurabh Karwal
- QuTech
and Netherlands Organisation for Applied Scientific Research (TNO), PO Box 155, 2600 AD Delft, The Netherlands
| | - Amir Sammak
- QuTech
and Netherlands Organisation for Applied Scientific Research (TNO), PO Box 155, 2600 AD Delft, The Netherlands
| | - Giordano Scappucci
- QuTech
and Kavli Institute of Nanoscience, Delft
University of Technology, PO Box 5046, 2600 GA Delft, The
Netherlands
| | - Lieven M. K. Vandersypen
- QuTech
and Kavli Institute of Nanoscience, Delft
University of Technology, PO Box 5046, 2600 GA Delft, The
Netherlands
| | - Menno Veldhorst
- QuTech
and Kavli Institute of Nanoscience, Delft
University of Technology, PO Box 5046, 2600 GA Delft, The
Netherlands
| |
Collapse
|
7
|
Reducing charge noise in quantum dots by using thin silicon quantum wells. Nat Commun 2023; 14:1385. [PMID: 36914637 PMCID: PMC10011559 DOI: 10.1038/s41467-023-36951-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/25/2023] [Indexed: 03/16/2023] Open
Abstract
Charge noise in the host semiconductor degrades the performance of spin-qubits and poses an obstacle to control large quantum processors. However, it is challenging to engineer the heterogeneous material stack of gate-defined quantum dots to improve charge noise systematically. Here, we address the semiconductor-dielectric interface and the buried quantum well of a 28Si/SiGe heterostructure and show the connection between charge noise, measured locally in quantum dots, and global disorder in the host semiconductor, measured with macroscopic Hall bars. In 5 nm thick 28Si quantum wells, we find that improvements in the scattering properties and uniformity of the two-dimensional electron gas over a 100 mm wafer correspond to a significant reduction in charge noise, with a minimum value of 0.29 ± 0.02 μeV/Hz½ at 1 Hz averaged over several quantum dots. We extrapolate the measured charge noise to simulated dephasing times to CZ-gate fidelities that improve nearly one order of magnitude. These results point to a clean and quiet crystalline environment for integrating long-lived and high-fidelity spin qubits into a larger system.
Collapse
|
8
|
Zwolak JP, Taylor JM. Colloquium: Advances in automation of quantum dot devices control. REVIEWS OF MODERN PHYSICS 2023; 95:10.1103/revmodphys.95.011006. [PMID: 37051403 PMCID: PMC10088060 DOI: 10.1103/revmodphys.95.011006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Arrays of quantum dots (QDs) are a promising candidate system to realize scalable, coupled qubit systems and serve as a fundamental building block for quantum computers. In such semiconductor quantum systems, devices now have tens of individual electrostatic and dynamical voltages that must be carefully set to localize the system into the single-electron regime and to realize good qubit operational performance. The mapping of requisite QD locations and charges to gate voltages presents a challenging classical control problem. With an increasing number of QD qubits, the relevant parameter space grows sufficiently to make heuristic control unfeasible. In recent years, there has been considerable effort to automate device control that combines script-based algorithms with machine learning (ML) techniques. In this Colloquium, a comprehensive overview of the recent progress in the automation of QD device control is presented, with a particular emphasis on silicon- and GaAs-based QDs formed in two-dimensional electron gases. Combining physics-based modeling with modern numerical optimization and ML has proven effective in yielding efficient, scalable control. Further integration of theoretical, computational, and experimental efforts with computer science and ML holds vast potential in advancing semiconductor and other platforms for quantum computing.
Collapse
Affiliation(s)
- Justyna P. Zwolak
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Jacob M. Taylor
- Joint Quantum Institute, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
- Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
9
|
Kanaar DW, Güngördü U, Kestner JP. Non-adiabatic quantum control of quantum dot arrays with fixed exchange using Cartan decomposition. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20210275. [PMID: 36335944 DOI: 10.1098/rsta.2021.0275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
In semiconductor spin qubits which typically interact through short-range exchange coupling, shuttling of spin is a practical way to generate quantum operations between distant qubits. Although the exchange is often tunable through voltages applied to gate electrodes, its minimal value can be significantly large, which hinders the applicability of existing shuttling protocols to such devices, requiring a different approach. In this work, we extend our previous results for double- and triple-dot systems, and describe a method for implementing spin state transfer in long chains of singly occupied quantum dots in a non-adiabatic manner. We make use of Cartan decomposition to break down the interacting problem into simpler problems in a systematic way, and use dynamical invariants to design smooth non-adiabatic pulses that can be implemented in devices with modest control bandwidth. Finally, we discuss the extensibility of our results to directed shuttling of spin states on two-dimensional lattices of quantum dots with fixed coupling. This article is part of the theme issue 'Shortcuts to adiabaticity: theoretical, experimental and interdisciplinary perspectives'.
Collapse
Affiliation(s)
- David W Kanaar
- Department of Physics, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Utkan Güngördü
- Laboratory for Physical Sciences, College Park, MD 20740, USA
- Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - J P Kestner
- Department of Physics, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|