1
|
Zhou L, Yan M, Luo G, Xu L, Fang Y, Yang D. Bottom Electrode Modification Enables Efficient and Bright Silicon-Based Top-Emission Perovskite Light-Emitting Diodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404181. [PMID: 39449561 DOI: 10.1002/smll.202404181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/13/2024] [Indexed: 10/26/2024]
Abstract
The integration of perovskites with mature silicon platform has emerged as a promising approach in the development of efficient on-chip light sources and high-brightness displays. However, the performance of Si-based green perovskite light-emitting diodes (PeLEDs) still falls significantly short compared to their red and near-infrared counterparts. In this study, it is revealed that the high work function Au, widely employed in Si-based top-emission PeLEDs as the reflective bottom electrode, exhibits considerably lower reflectivity in the green spectrum than in the longer wavelengths. Consequently, Ag electrode is introduced to replace Au to enhance the green light reflectivity, and the ultrathin MoO3 and self-assembled monolayers (SAMs) are sequentially deposited for surface modification. These results indicate that the MoO3 layer removes the energy barrier at Ag/polymer hole transport layer interface, enhancing the hole injection efficiency; while the SAMs firmly anchor onto the MoO3 layer, effectively preventing interfacial defect formation. Benefited from this organic/inorganic dual-layer modification strategy, Si-based green PeLEDs with an impressive peak external quantum efficiency of 18.2% and a maximum brightness of 81931 cd m-2 are successfully fabricated, on par with those of the red and near-infrared counterparts. This achievement marks an advancement in developing high-performance Si-based PeLEDs with full-spectrum output.
Collapse
Affiliation(s)
- Lingfeng Zhou
- State Key Laboratory of Silicon and Advanced Semiconductor Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Minxing Yan
- State Key Laboratory of Silicon and Advanced Semiconductor Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Guangjie Luo
- State Key Laboratory of Silicon and Advanced Semiconductor Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Li Xu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yanjun Fang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Shangyu Institute of Semiconductor Materials, Shaoxing, 312300, P. R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030024, P. R. China
| | - Deren Yang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Shangyu Institute of Semiconductor Materials, Shaoxing, 312300, P. R. China
| |
Collapse
|
2
|
Liu H, Shi G, Peng C, Chen W, Yao H, Xiao Z. Advances and Challenges in Large-Area Perovskite Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2410154. [PMID: 39318091 DOI: 10.1002/adma.202410154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/07/2024] [Indexed: 09/26/2024]
Abstract
Metal halide perovskite light-emitting diodes (PeLEDs) have shown promise for high-definition displays and flat-panel lighting because of their wide color gamut, narrow emission band, and high brightness. The external quantum efficiency of PeLEDs increased rapidly from ≈1% to more than 25% in the past few years. However, most of these high-performance devices are fabricated using a spin coating method with a small device area of <0.1 cm2, limiting their commercial applications. Recently, large-area PeLEDs have attracted growing attention and significant breakthroughs have been reported. This perspective first introduces the pros and cons of each technique in making large-area PeLEDs. The advances in the fabrication of large-area PeLEDs are then summarized using spin coating and mass-production methods such as inkjet printing, blade coating, and thermal evaporation. Moreover, the challenging issues will be discussed that are urgent to be solved for large-area PeLEDs.
Collapse
Affiliation(s)
- Hui Liu
- Department of Physics, CAS Key Laboratory of Strongly coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Guangyi Shi
- Department of Physics, CAS Key Laboratory of Strongly coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chenchen Peng
- Department of Physics, CAS Key Laboratory of Strongly coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wenjing Chen
- Department of Physics, CAS Key Laboratory of Strongly coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Haitao Yao
- Department of Physics, CAS Key Laboratory of Strongly coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhengguo Xiao
- Department of Physics, CAS Key Laboratory of Strongly coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
3
|
Qi H, Tong Y, Zhang X, Wang H, Zhang L, Chen Y, Wang Y, Shang J, Wang K, Wang H. Homogenizing Energy Landscape for Efficient and Spectrally Stable Blue Perovskite Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2409319. [PMID: 39302002 DOI: 10.1002/adma.202409319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Blue perovskite light-emitting diodes (PeLEDs) have attracted enormous attention; however, their unsatisfactory device efficiency and spectral stability still remain great challenges. Unfavorable low-dimensional phase distribution and defects with deeper energy levels usually cause energy disorder, substantially limiting the device's performance. Here, an additive-interface optimization strategy is reported to tackle these issues, thus realizing efficient and spectrally stable blue PeLEDs. A new type of additive-formamidinium tetrafluorosuccinate (FATFSA) is introduced into the quasi-2D mixed halide perovskite accompanied by interface engineering, which effectively impedes the formation of undesired low-dimensional phases with various bandgaps throughout the entire film, thereby boosting energy transfer process for accelerating radiative recombination; this strategy also diminishes the halide vacancies especially chloride-related defects with deep energy level, thus reducing nonradiative energy loss for efficient radiative recombination. Benefitting from homogenized energy landscape throughout the entire perovskite emitting layer, PeLEDs with spectrally-stable blue emission (478 nm) and champion external quantum efficiency (EQE) of 21.9% are realized, which represents a record value among this type of PeLEDs in the pure blue region.
Collapse
Affiliation(s)
- Heng Qi
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Yu Tong
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xuewen Zhang
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Hao Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Lu Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education, School of Materials Science Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Yali Chen
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Yibo Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jingzhi Shang
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Kun Wang
- School of Microelectronics, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Hongqiang Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
4
|
Zheng S, Wang Z, Jiang N, Huang H, Wu X, Li D, Teng Q, Li J, Li C, Li J, Pang T, Zeng L, Zhang R, Huang F, Lei L, Wu T, Yuan F, Chen D. Ultralow voltage-driven efficient and stable perovskite light-emitting diodes. SCIENCE ADVANCES 2024; 10:eadp8473. [PMID: 39241067 PMCID: PMC11378915 DOI: 10.1126/sciadv.adp8473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/01/2024] [Indexed: 09/08/2024]
Abstract
The poor operational stability of perovskite light-emitting diodes (PeLEDs) remains a major obstacle to their commercial application. Achieving high brightness and quantum efficiency at low driving voltages, thus effectively reducing heat accumulation, is key to enhancing the operational lifetime of PeLEDs. Here, we present a breakthrough, attaining a record-low driving voltage while maintaining high brightness and efficiency. By thoroughly suppressing interface recombination and ensuring excellent charge transport, our PeLEDs, with an emission peak at 515 nanometers, achieve a maximum brightness of 90,295 candelas per square meter and a peak external quantum efficiency of 27.8% with an ultralow turn-on voltage of 1.7 volts (~70% bandgap voltage). Notably, Joule heat is nearly negligible at these low driving voltages, substantially extending the operational lifetime to 7691.1 hours. Our optimized strategies effectively tackle stability issue through thermal management, paving the way for highly stable PeLEDs.
Collapse
Affiliation(s)
- Song Zheng
- College of Physics and Energy, Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fuzhou 350117, China
| | - Zhibin Wang
- College of Physics and Energy, Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fuzhou 350117, China
| | - Naizhong Jiang
- College of Physics and Energy, Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fuzhou 350117, China
| | - Hailiang Huang
- College of Physics and Energy, Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fuzhou 350117, China
| | - Ximing Wu
- College of Physics and Energy, Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fuzhou 350117, China
| | - Dan Li
- College of Physics and Energy, Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fuzhou 350117, China
| | - Qian Teng
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jinyang Li
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Chenhao Li
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jinsui Li
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Tao Pang
- Huzhou Key Laboratory of Materials for Energy Conversion and Storage, College of Science, Huzhou University, Huzhou 313000, China
| | - Lingwei Zeng
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Ruidan Zhang
- College of Physics and Energy, Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fuzhou 350117, China
| | - Feng Huang
- College of Physics and Energy, Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fuzhou 350117, China
| | - Lei Lei
- Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou 310018, China
| | - Tianmin Wu
- Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou 350117, China
| | - Fanglong Yuan
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Daqin Chen
- College of Physics and Energy, Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fuzhou 350117, China
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou 350117, China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou 350117, China
| |
Collapse
|
5
|
Beegum KAB, Sasi S, Thomas C, Mathew A, Raman R. Bluish-white Light-emitting 2D Sheets of Lead-free Perovskite Cesium Titanium Bromide (CsTiBr 3) by a Two-stage Deposition Technique. J Fluoresc 2024; 34:2325-2333. [PMID: 37768464 DOI: 10.1007/s10895-023-03444-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Bluish-white light-emitting materials are commonly used in LED lighting because they produce natural-looking light. Here we report the photoluminescent emission (PL) of novel, two-dimensional lead-free CsTiBr3 perovskite prepared via a two-stage deposition process. The formation of two-dimensional nanosheets of CsTiBr3 perovskite is confirmed by XRD, EDAX, and FESEM analysis. The height of the cesium bromide thin film substrate from the titanium bromide vapor source plays an important role in the formation of two-dimensional CsTiBr3. The CsTiBr3 perovskite nanosheets exhibit unique exciton- luminescence at 440 nm and self-trapped exciton emission at 595 nm which are the characteristics of two-dimensional halide structure, along with the band-to-band emission at 400 nm at an excitation wavelength of 340 nm. The resulting bluish-white light PL emission makes two-dimensional CsTiBr3 perovskite an alternative material to the traditional lead-based perovskite in LEDs, display technology, solid-state lighting, and various optoelectronic devices, addressing environmental concerns.
Collapse
Affiliation(s)
- K A Benazeera Beegum
- Optoelectronic and Nanomaterials Research Laboratory, Department of Physics, Union Christian College, Aluva, 683102, Kerala, India
| | - Saranya Sasi
- Optoelectronic and Nanomaterials Research Laboratory, Department of Physics, Union Christian College, Aluva, 683102, Kerala, India
| | - Christeena Thomas
- Optoelectronic and Nanomaterials Research Laboratory, Department of Physics, Union Christian College, Aluva, 683102, Kerala, India
| | - Alex Mathew
- Optoelectronic and Nanomaterials Research Laboratory, Department of Physics, Union Christian College, Aluva, 683102, Kerala, India
| | - Reshmi Raman
- Optoelectronic and Nanomaterials Research Laboratory, Department of Physics, Union Christian College, Aluva, 683102, Kerala, India.
| |
Collapse
|
6
|
Zhang Q, Zhang D, Liao Z, Cao YB, Kumar M, Poddar S, Han J, Hu Y, Lv H, Mo X, Srivastava AK, Fan Z. Perovskite Light-Emitting Diodes with Quantum Wires and Nanorods. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2405418. [PMID: 39183527 DOI: 10.1002/adma.202405418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/22/2024] [Indexed: 08/27/2024]
Abstract
Perovskite materials, celebrated for their exceptional optoelectronic properties, have seen extensive application in the field of light-emitting diodes (LEDs), where research is as abundant as the proverbial "carloads of books." In this review, the research of perovskite materials is delved into from a dimensional perspective, with a focus on the exemplary performance of low-dimensional perovskite materials in LEDs. This discussion predominantly revolves around perovskite quantum wires and perovskite nanorods. Perovskite quantum wires are versatile in their growth, compatible with both solution-based and vapor-phase growth, and can be deposited over large areas-even on spherical substrates-to achieve commendable electroluminescence (EL). Perovskite nanorods, on the other hand, boast a suite of superior characteristics, such as polarization properties and tunability of the transition dipole moment, endowing them with the great potential to enhance light extraction efficiency. Furthermore, zero-dimensional (0D) perovskite materials like nanocrystals (NCs) are also the subject of widespread research and application. This review reflects on and synthesizes the unique qualities of the aforementioned materials while exploring their vital roles in the development of high-efficiency perovskite LEDs (PeLEDs).
Collapse
Affiliation(s)
- Qianpeng Zhang
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Daquan Zhang
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Zebing Liao
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Yang Bryan Cao
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Mallem Kumar
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Swapnadeep Poddar
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Junchao Han
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Ying Hu
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Hualiang Lv
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Xiaoliang Mo
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Abhishek Kumar Srivastava
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Zhiyong Fan
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
7
|
Gao Y, Cai Q, He Y, Zhang D, Cao Q, Zhu M, Ma Z, Zhao B, He H, Di D, Ye Z, Dai X. Highly efficient blue light-emitting diodes based on mixed-halide perovskites with reduced chlorine defects. SCIENCE ADVANCES 2024; 10:eado5645. [PMID: 39018409 PMCID: PMC466955 DOI: 10.1126/sciadv.ado5645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/14/2024] [Indexed: 07/19/2024]
Abstract
Perovskite light-emitting diodes (PeLEDs) provide excellent opportunities for low-cost, color-saturated, and large-area displays. However, the performance of blue PeLEDs lags far behind that of their green and red counterparts. Here, we show that the external quantum efficiencies (EQEs) of blue PeLEDs scale linearly with the photoluminescence quantum yields (PL QYs) of CsPb(BrxCl1-x)3 nanocrystals emitting at 460 to 480 nm. The recombination efficiency of carriers is highly sensitive to the chlorine content and the related deep-level defects in nanocrystals, causing notable EQE drops even with minor increases in chlorine defects. Minor adjustments of chlorine content through rubidium compensation on the A-site effectively suppress the formation of nonradiative defects, improving PL QYs while retaining desirable bandgaps for blue-emitting nanocrystals. Our PeLEDs with record-high efficiencies span the blue spectrum, achieving peak EQEs of 12.0% (460 nm), 16.7% (465 nm), 21.3% (470 nm), 24.3% (475 nm), and 26.4% (480 nm). This work exemplifies chlorine-defect control as a key design principle for high-efficiency blue PeLEDs.
Collapse
Affiliation(s)
- Yun Gao
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Center of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, China
| | - Qiuting Cai
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering; International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, China
| | - Yifan He
- Wenzhou XINXINTAIJING Tech. Co. Ltd., Wenzhou 325006, China
| | - Dingshuo Zhang
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Center of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, China
| | - Qingli Cao
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Center of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, China
| | - Meiyi Zhu
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Center of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, China
| | - Zichao Ma
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Center of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, China
| | - Baodan Zhao
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering; International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, China
| | - Haiping He
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Center of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030002, China
| | - Dawei Di
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering; International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, China
| | - Zhizhen Ye
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Center of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030002, China
| | - Xingliang Dai
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Center of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030002, China
| |
Collapse
|
8
|
Ballenger J, Giunta KS, Carlson R, Nicholas AD, Ducati LC, Oliveira de Brito MO, Zeller M, Pike RD. Ternary Complexes of BiI 3/CuI and SbI 3/CuI with Tetrahydrothiophene. Inorg Chem 2024; 63:11688-11699. [PMID: 38850561 PMCID: PMC11200257 DOI: 10.1021/acs.inorgchem.4c01147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Reactions of BiI3/CuI mixtures with tetrahydrothiophene (THT) in toluene produce 2-D sheet networks BiCu3I6(THT)n (n = 2, 3, or 4), depending on reaction conditions. All three structures are based on BiI6 octahedra, which share pairs of (μ2-I)2 with Cu3(THT)n units. BiCu3I6(THT)2 features Cu2(μ2-I)2 rhombs with close Cu···Cu interactions and is accompanied by formation of the very complex HBi3Cu12I22(THT)8. Reactions of SbI3/CuI with THT in toluene produced a SbCu3I6(THT)2 network shows Cu3(μ2-THT)2 units, like its Bi congener, but Cu6(μ2-I)6 barrels rather than rhombs. Isolated SbI3 units are stacked above the Cu6I6 barrels. A molecular compound, Sb3Cu3I12(THT)6 consists of a face-sharing Sb3I12 stack, in which the Cu-THT units are bonded in asymmetric fashion about the central SbI6. Metal-halide bonds were investigated via QTAIM and NLMO analyses, demonstrating that these bonds are largely ionic and occur between the Bi/Sb and I p orbitals. Hirshfeld analysis shows significant H···H and H···I interactions. Diffuse reflectance spectroscopy (DRS) reveals band edges for the Bi species of 1.71-1.82 eV, while those for the neutral Sb complexes are in the range of 1.94-2.06 eV. Mapping of the electronic structure via density of state calculations indicates population of antibonding Bi/Sb-I orbitals in the excited state.
Collapse
Affiliation(s)
- James
H. Ballenger
- Department
of Chemistry, William & Mary, Williamsburg ,Virginia 23187, United States
| | - Katherine S. Giunta
- Department
of Chemistry, William & Mary, Williamsburg ,Virginia 23187, United States
| | - Ruby Carlson
- Department
of Chemistry, William & Mary, Williamsburg ,Virginia 23187, United States
| | - Aaron D. Nicholas
- National
Security Directorate, Pacific Northwest
National Laboratory, Richland ,Washington 99354,United States
| | - Lucas C. Ducati
- Institute
of Chemistry, Universidade São Paulo, São Paulo ,SP 05508-220, Brazil
| | | | - Matthias Zeller
- Department
of Chemistry, Purdue University, West Lafayette ,Indiana 47907-2084, United
States
| | - Robert D. Pike
- Department
of Chemistry, William & Mary, Williamsburg ,Virginia 23187, United States
| |
Collapse
|
9
|
Zhang Z, Niu Q, Chai B, Xiong J, Chen Y, Zeng W, Peng X, Iwuoha EI, Xia R. Enhanced Efficiency and Stability of Sky Blue Perovskite Light-Emitting Diodes via Introducing Lead Acetate. Molecules 2024; 29:2425. [PMID: 38893300 PMCID: PMC11174098 DOI: 10.3390/molecules29112425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/04/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
All-inorganic metal halide perovskite is promising for highly efficient and thermally stable perovskite light-emitting diodes (PeLEDs). However, there is still great room for improvement in the film quality, including low coverage and high trap density, which play a vital role in achieving high-efficiency PeLEDs. In this work, lead acetate (Pb(Ac)2) was introduced into the perovskite precursor solution as an additive. Experimental results show that perovskite films deposited from a one-step anti-solvent free solution process with increased surface coverage and reduced trap density were obtained, leading to enhanced photoluminescence (PL) intensity. More than that, the valence band maximum (VBM) of perovskite films was reduced, bringing about a better energy level matching the work function of the hole-injection layer (HIL) poly (3,4-ethylenedioxythiophene)-poly (styrene sulfonate) (PEDOT: PSS), which is facilitated for the hole injection, leading to a decrease in the turn-on voltage (Vth) of PeLEDs from 3.4 V for the control device to 2.6 V. Finally, the external quantum efficiency (EQE) of the sky blue PeLEDs (at 484 nm) increased from 0.09% to 0.66%. The principles of Pb(Ac)2 were thoroughly investigated by using X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). This work provides a simple and effective strategy for improving the morphology of perovskite and therefore the performance of PeLEDs.
Collapse
Affiliation(s)
- Zequan Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China; (Z.Z.); (B.C.); (J.X.); (Y.C.); (W.Z.)
| | - Qiaoli Niu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China; (Z.Z.); (B.C.); (J.X.); (Y.C.); (W.Z.)
| | - Baoxiang Chai
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China; (Z.Z.); (B.C.); (J.X.); (Y.C.); (W.Z.)
| | - Junhao Xiong
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China; (Z.Z.); (B.C.); (J.X.); (Y.C.); (W.Z.)
| | - Yuqing Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China; (Z.Z.); (B.C.); (J.X.); (Y.C.); (W.Z.)
| | - Wenjin Zeng
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China; (Z.Z.); (B.C.); (J.X.); (Y.C.); (W.Z.)
| | - Xinwen Peng
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China;
| | - Emmanuel Iheanyichukwu Iwuoha
- Sensor Lab (University of the Western Cape Sensor Laboratories), 4th Floor Chemical Sciences Building, University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa;
| | - Ruidong Xia
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China; (Z.Z.); (B.C.); (J.X.); (Y.C.); (W.Z.)
| |
Collapse
|
10
|
Ren B, Zhang D, Qiu X, Ding Y, Zhang Q, Fu Y, Liao JF, Poddar S, Chan CLJ, Cao B, Wang C, Zhou Y, Kuang DB, Zeng H, Fan Z. Full-color fiber light-emitting diodes based on perovskite quantum wires. SCIENCE ADVANCES 2024; 10:eadn1095. [PMID: 38748790 PMCID: PMC11095450 DOI: 10.1126/sciadv.adn1095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/11/2024] [Indexed: 05/19/2024]
Abstract
Fiber light-emitting diodes (Fi-LEDs), which can be used for wearable lighting and display devices, are one of the key components for fiber/textile electronics. However, there exist a number of impediments to overcome on device fabrication with fiber-like substrates, as well as on device encapsulations. Here, we uniformly grew all-inorganic perovskite quantum wire arrays by filling high-density alumina nanopores on the surface of Al fibers with a dip-coating process. With a two-step evaporation method to coat a surrounding transporting layer and semitransparent electrode, we successfully fabricated full-color Fi-LEDs with emission peaks at 625 nanometers (red), 512 nanometers (green), and 490 nanometers (sky-blue), respectively. Intriguingly, additional polydimethylsiloxane packaging helps instill the mechanical bendability, stretchability, and waterproof feature of Fi-LEDs. The plasticity of Al fiber also allows the one-dimensional architecture Fi-LED to be shaped and constructed for two-dimensional or even three-dimensional architectures, opening up a new vista for advanced lighting with unconventional formfactors.
Collapse
Affiliation(s)
- Beitao Ren
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Daquan Zhang
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Xiao Qiu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yucheng Ding
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Qianpeng Zhang
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yu Fu
- School of Advanced Energy, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Jin-Feng Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Swapnadeep Poddar
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Chak Lam Jonathan Chan
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Bryan Cao
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Chen Wang
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yu Zhou
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Dai-Bin Kuang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Haibo Zeng
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics and Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Zhiyong Fan
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
11
|
Gong X, Hao X, Si J, Deng Y, An K, Hu Q, Cai Q, Gao Y, Ke Y, Wang N, Du Z, Cai M, Ye Z, Dai X, Liu Z. High-Performance All-Inorganic Architecture Perovskite Light-Emitting Diodes Based on Tens-of-Nanometers-Sized CsPbBr 3 Emitters in a Carrier-Confined Heterostructure. ACS NANO 2024; 18:8673-8682. [PMID: 38471123 DOI: 10.1021/acsnano.3c09004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Developing green perovskite light-emitting diodes (PeLEDs) with a high external quantum efficiency (EQE) and low efficiency roll-off at high brightness remains a critical challenge. Nanostructured emitter-based devices have shown high efficiency but restricted ascending luminance at high current densities, while devices based on large-sized crystals exhibit low efficiency roll-off but face great challenges to high efficiency. Herein, we develop an all-inorganic device architecture combined with utilizing tens-of-nanometers-sized CsPbBr3 (TNS-CsPbBr3) emitters in a carrier-confined heterostructure to realize green PeLEDs that exhibit high EQEs and low efficiency roll-off. A typical type-I heterojunction containing TNS-CsPbBr3 crystals and wide-bandgap Cs4PbBr6 within a grain is formed by carefully controlling the precursor ratio. These heterostructured TNS-CsPbBr3 emitters simultaneously enhance carrier confinement and retain low Auger recombination under a large injected carrier density. Benefiting from a simple device architecture consisting of an emissive layer and an oxide electron-transporting layer, the PeLEDs exhibit a sub-bandgap turn-on voltage of 2.0 V and steeply rising luminance. In consequence, we achieved green PeLEDs demonstrating a peak EQE of 17.0% at the brightness of 36,000 cd m-2, and the EQE remained at 15.7% and 12.6% at the brightness of 100,000 and 200,000 cd m-2, respectively. In addition, our results underscore the role of interface degradation during device operation as a factor in device failure.
Collapse
Affiliation(s)
- Xinquan Gong
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Xiaoming Hao
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Junjie Si
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Yunzhou Deng
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE U.K
| | - Kai An
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Qianqing Hu
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Qiuting Cai
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People's Republic of China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou Zhejiang University, Wenzhou 325006, People's Republic of China
| | - Yun Gao
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People's Republic of China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou Zhejiang University, Wenzhou 325006, People's Republic of China
| | - You Ke
- Shaanxi Institute of Flexible Electronics (SIFE), Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road, Xi'an 710072, People's Republic of China
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Nana Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Zhuopeng Du
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Muzhi Cai
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Zhizhen Ye
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People's Republic of China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou Zhejiang University, Wenzhou 325006, People's Republic of China
| | - Xingliang Dai
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People's Republic of China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou Zhejiang University, Wenzhou 325006, People's Republic of China
| | - Zugang Liu
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, People's Republic of China
| |
Collapse
|
12
|
Li Y, Zhang Q, Chong Y, Huang WH, Chen CL, Jin X, Chen G, Fan Z, Qiu Y, Ye D. Efficient Photothermal Catalytic Oxidation Enabled by Three-Dimensional Nanochannel Substrates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5153-5161. [PMID: 38456428 DOI: 10.1021/acs.est.3c09077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Photothermal catalysis exhibits promising prospects to overcome the shortcomings of high-energy consumption of traditional thermal catalysis and the low efficiency of photocatalysis. However, there is still a challenge to develop catalysts with outstanding light absorption capability and photothermal conversion efficiency for the degradation of atmospheric pollutants. Herein, we introduced the Co3O4 layer and Pt nanoclusters into the three-dimensional (3D) porous membrane through the atomic layer deposition (ALD) technique, leading to a Pt/Co3O4/AAO monolithic catalyst. The 3D ordered nanochannel structure can significantly enhance the solar absorption capacity through the light-trapping effect. Therefore, the embedded Pt/Co3O4 catalyst can be rapidly heated and the O2 adsorbed on the Pt clusters can be activated to generate sufficient O2- species, exhibiting outstanding activity for the diverse VOCs (toluene, acetone, and formaldehyde) degradation. Optical characterization and simulation calculation confirmed that Pt/Co3O4/AAO exhibited state-of-the-art light absorption and a notable localized surface plasmon resonance (LSPR) effect. In situ diffuse reflectance infrared Fourier transform spectrometry (in situ DRIFTS) studies demonstrated that light irradiation can accelerate the conversion of intermediates during toluene and acetone oxidation, thereby inhibiting byproduct accumulation. Our finding extends the application of AAO's optical properties in photothermal catalytic degradation of air pollutants.
Collapse
Affiliation(s)
- Yifei Li
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510000, China
| | - Qianpeng Zhang
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai 200433, China
| | - Yanan Chong
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510000, China
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology (NTUST), Taipei 10607, Taiwan
| | - Chi-Liang Chen
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology (NTUST), Taipei 10607, Taiwan
| | - Xiaojing Jin
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510000, China
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan 528333, P. R. China
| | - Guangxu Chen
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510000, China
| | - Zhiyong Fan
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong SAR, China
| | - Yongcai Qiu
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510000, China
| | - Daiqi Ye
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510000, China
| |
Collapse
|
13
|
Huang Y, Zhu J, Li J, Luo J, Du P, Song B, Tang J. Thermally Evaporated Blue Quasi-Two-Dimensional Perovskite Light-Emitting Diodes via Low-Dimensional Phase Distribution Arrangement. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38471065 DOI: 10.1021/acsami.3c17082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Perovskite light-emitting diodes (PeLEDs) have shown great potential in the display domain due to their wide color gamut, narrow emission, and low cost. In current PeLEDs manufacturing methods, thermal evaporation shows great competitiveness with its advantages of easy patterning, production line compatibility, and solvent-free processability. However, the development of thermally evaporated blue PeLEDs is limited by their low radiative recombination rate and high defect density. Herein, we report high-performance thermally evaporated blue PeLEDs by in situ introduction of ammonium cations. We confirm that phenethylammonium (PEA+) has lower adsorption energy, which significantly reduces the low-n phases in a quasi-2D perovskite film. The energy transfer rate is also promoted by the PEA+ addition. As a result, we fabricate blue PeLEDs with an external quantum efficiency of 1.56% by thermal evaporation. The strategy of arranging phase distribution could benefit the industrialization of full-color PeLEDs.
Collapse
Affiliation(s)
- Yuanlong Huang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Jiaxing Zhu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Jinghui Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Jiajun Luo
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Peipei Du
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Boxiang Song
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Jiang Tang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
14
|
Liu H, Shi G, Khan R, Chu S, Huang Z, Shi T, Sun H, Li Y, Zhou H, Xiao P, Chen T, Xiao Z. Large-Area Flexible Perovskite Light-Emitting Diodes Enabled by Inkjet Printing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309921. [PMID: 38016083 DOI: 10.1002/adma.202309921] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/14/2023] [Indexed: 11/30/2023]
Abstract
Metal halide perovskite light-emitting diodes (PeLEDs) are attracting increasing attention due to their potential applications in flat panel lighting and displays. The solution process, large-area fabrication, and flexibility are attractive properties of PeLEDs over traditional inorganic LEDs. However, it is still very challenging to deposit uniform perovskite films on flexible substrates using a blade or slot-die coating, as the flexible substrate is not perfectly flat. Here, the inkjet printing technique is adopted, and the key challenges are overcome step-by-step in preparing large-area films on flexible substrates. Double-hole transporting layers are first used and a wetting interfacial layer to improve the surface wettability so that the printed perovskite droplets can form a continuous wet film. The fluidic and evaporation dynamics of the perovskite wet layer is manipulated to suppress the coffee ring effect by solvent engineering. Uniform perovskite films are obtained finally on flexible substrates with different perovskite compositions. The peak external quantum efficiency of the inkjet-printed PeLEDs reaches 14.3%. Large-area flexible PeLEDs (4 × 7 cm2 ) also show very uniform emission. This work represents a significant step toward real applications of large-area PeLEDs in flexible flat-panel lighting.
Collapse
Affiliation(s)
- Hui Liu
- Department of Physics, CAS Key Laboratory of Strongly coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
- School of Microelectronics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Guangyi Shi
- Department of Physics, CAS Key Laboratory of Strongly coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Rashid Khan
- Department of Physics, CAS Key Laboratory of Strongly coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shenglong Chu
- Department of Physics, CAS Key Laboratory of Strongly coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zongming Huang
- Department of Physics, CAS Key Laboratory of Strongly coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Tongfei Shi
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Haiding Sun
- School of Microelectronics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yaping Li
- Center for Micro- and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hongmin Zhou
- Instruments Center for Physical Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Peng Xiao
- Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Tao Chen
- Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhengguo Xiao
- Department of Physics, CAS Key Laboratory of Strongly coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
15
|
Poddar S, Chen Z, Kumar S, Zhang D, Ding Y, Long Z, Ma Z, Zhang Q, Fan Z. Geometric Shape Recognition with an Ultra-High Density Perovskite Nanowire Array-Based Artificial Vision System. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5028-5035. [PMID: 38235664 DOI: 10.1021/acsami.3c18719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Artificial vision systems (AVS) have potential applications in visual prosthetics and artificially intelligent robotics, and they require a preprocessor and a processor to mimic human vision. Halide perovskite (HP) is a promising preprocessor and processor due to its excellent photoresponse, ubiquitous charge migration pathways, and innate hysteresis. However, the material instability associated with HP thin films hinders their utilization in physical AVSs. Herein, we have developed ultrahigh-density arrays of robust HP nanowires (NWs) rooted in a porous alumina membrane (PAM) as the active layer for an AVS. The NW devices exhibit gradual photocurrent change, responding to changes in light pulse duration, intensity, and number, and allow contrast enhancement of visual inputs with a device lifetime of over 5 months. The NW-based processor possesses temporally stable conductance states with retention >105 s and jitter <10%. The physical AVS demonstrated 100% accuracy in recognizing different shapes, establishing HP as a reliable material for neuromorphic vision systems.
Collapse
Affiliation(s)
- Swapnadeep Poddar
- Department of Electronic & Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Zhesi Chen
- Department of Electronic & Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Shivam Kumar
- Department of Electronic & Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Daquan Zhang
- Department of Electronic & Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Yucheng Ding
- Department of Electronic & Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Zhenghao Long
- Department of Electronic & Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Zichao Ma
- Department of Electronic & Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Qianpeng Zhang
- Department of Electronic & Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Zhiyong Fan
- Department of Electronic & Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
- Shanghai Artificial Intelligence Laboratory, Shanghai 200000, P. R. China
| |
Collapse
|