1
|
Duan Y, Shang X, Wu R, Yu Y, He Q, Tian R, Li W, Zhu G, Guo W. The transcription factor GhMYB4 represses lipid transfer and sucrose transporter genes and inhibits fiber cell elongation in cotton. PLANT PHYSIOLOGY 2024; 197:kiae637. [PMID: 39607732 DOI: 10.1093/plphys/kiae637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Cotton (Gossypium hirsutum) fiber is a highly elongated single cell with a thickened cell wall. MYB transcription factors are important regulators of plant cell elongation; however, the molecular mechanism involved in regulating fiber elongation remains to be explored. Here, we present evidence that the R2R3-MYB transcription factor GhMYB4 negatively regulates cotton fiber cell elongation by suppressing the expression of 2 crucial genes previously reported to affect fiber development: lipid transfer protein 4 (GhLTP4) and sucrose transporter 12 (GhSWEET12). GhMYB4 is preferentially expressed in elongating fiber cells. Knockdown of GhMYB4 in cotton results in longer fiber cells, whereas overexpression of GhMYB4 in Arabidopsis leads to reduced plant height and root length. Transcriptomic and lipidomic analyses revealed that GhMYB4 is involved in coordinating 3 interconnected biological processes, namely lipid content regulation, auxin signaling, and sugar metabolism. Additionally, we showed that GhMYB4 inhibits the expression of GhLTP4 and GhSWEET12 by binding to the MYB cis-element (TTTAGTG) in their respective promoters. Interestingly, basic helix-loop-helix transcription factor 105 (GhbHLH105) and MYB transcription factor 212 (GhMYB212) counteract the inhibitory effects of GhMYB4 on the expression of GhLTP4 and GhSWEET12, respectively. These findings provide insights into the complex molecular mechanisms regulating plant cell elongation.
Collapse
Affiliation(s)
- Yujia Duan
- The Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya 572000, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoguang Shang
- The Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya 572000, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruoxue Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujia Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingfei He
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruiping Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Weixi Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Guozhong Zhu
- The Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya 572000, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangzhen Guo
- The Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya 572000, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Xu F, Li G, He S, Zeng Z, Wang Q, Zhang H, Yan X, Hu Y, Tian H, Luo M. Sphingolipid inhibitor response gene GhMYB86 controls fiber elongation by regulating microtubule arrangement. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1898-1914. [PMID: 38995105 DOI: 10.1111/jipb.13740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024]
Abstract
Although the cell membrane and cytoskeleton play essential roles in cellular morphogenesis, the interaction between the membrane and cytoskeleton is poorly understood. Cotton fibers are extremely elongated single cells, which makes them an ideal model for studying cell development. Here, we used the sphingolipid biosynthesis inhibitor, fumonisin B1 (FB1), and found that it effectively suppressed the myeloblastosis (MYB) transcription factor GhMYB86, thereby negatively affecting fiber elongation. A direct target of GhMYB86 is GhTUB7, which encodes the tubulin protein, the major component of the microtubule cytoskeleton. Interestingly, both the overexpression of GhMYB86 and GhTUB7 caused an ectopic microtubule arrangement at the fiber tips, and then leading to shortened fibers. Moreover, we found that GhMBE2 interacted with GhMYB86 and that FB1 and reactive oxygen species induced its transport into the nucleus, thereby enhancing the promotion of GhTUB7 by GhMYB86. Overall, we established a GhMBE2-GhMYB86-GhTUB7 regulation module for fiber elongation and revealed that membrane sphingolipids affect fiber elongation by altering microtubule arrangement.
Collapse
Affiliation(s)
- Fan Xu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Guiming Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Shengyang He
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Dianjiang No.1 Middle School of Chongqing, Chongqing, 408300, China
| | - Zhifeng Zeng
- Yushan No.1 Senior High School, Shangrao, 334700, China
| | - Qiaoling Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Hongju Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Xingying Yan
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Yulin Hu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Huidan Tian
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Ming Luo
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400715, China
| |
Collapse
|
3
|
Zhong A, Zou X, Wei Z, Gan L, Peng J, Li Y, Wang Z, Liu Y. Cotton Pectate Lyase GhPEL48_Dt Promotes Fiber Initiation Mediated by Histone Acetylation. PLANTS (BASEL, SWITZERLAND) 2024; 13:2356. [PMID: 39273840 PMCID: PMC11397362 DOI: 10.3390/plants13172356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024]
Abstract
GhPEL48_Dt, a Pectate lyase (PEL, EC4.2.2.2), is a crucial enzyme involved in cell-wall modification and pectin degradation. Studies have shown that the GhPEL48_Dt also plays a significant role in cotton-fiber development; however, the specific function and regulatory mechanism of GhPEL48_Dt in cotton-fiber development are still not fully understood. Here, we found that the histone deacetylase inhibitor-Trichostatin A significantly reduces the transcript levels of GhPEL48_Dt and its enzyme activity. Further, silencing of GhPEL48_Dt significantly inhibits the initiation and elongation of cotton fibers by promoting pectin degradation, and the heterologous expression of GhPEL48_Dt promotes the development of trichomes and root hairs in Arabidopsis, which suggests that GhPEL48_Dt plays a positive and conserved role in single cell i.e., fiber, root hair, and leaf trichome development. Collectively, this paper provides a comprehensive analysis of the fundamental characteristics and functions of GhPEL48_Dt in fiber development, including the regulatory role of histone acetylation on GhPEL48_Dt, which contributes to the understanding of pectin degradation pathways and establishes a theoretical foundation for elucidating its regulatory mechanism.
Collapse
Affiliation(s)
- Anlin Zhong
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Xianyan Zou
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Zhenzhen Wei
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Lei Gan
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Jun Peng
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Yonghui Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Zhi Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Yuanyuan Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
4
|
Ma J, Yang L, Dang Y, Shahzad K, Song J, Jia B, Wang L, Feng J, Wang N, Pei W, Wu M, Zhang X, Zhang J, Wu J, Yu J. Deciphering the dynamic expression network of fiber elongation and the functional role of the GhTUB5 gene for fiber length in cotton based on an introgression population of upland cotton. J Adv Res 2024:S2090-1232(24)00324-2. [PMID: 39106927 DOI: 10.1016/j.jare.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/02/2024] [Accepted: 08/02/2024] [Indexed: 08/09/2024] Open
Abstract
INTRODUCTION Interspecific introgression between Gossypium hirsutum and G. barbadense allows breeding cotton with outstanding fiber length (FL). However, the dynamic gene regulatory network of FL-related genes has not been characterized, and the functional mechanism through which the hub gene GhTUB5 mediates fiber elongation has yet to be determined. METHODS Coexpression analyses of 277 developing fiber transcriptomes integrated with QTL mapping using 250 introgression lines of different FL phenotypes were conducted to identify genes related to fiber elongation. The function of GhTUB5 was determined by ectopic expression of two TUB5 alleles in Arabidopsis and knockout of GhTUB5 in upland cotton. Yeast two-hybrid, split-luciferase and pull-down assays were conducted to screen for interacting proteins, and upstream genes were identified by yeast one-hybrid, dual-LUC and electrophoretic mobility shift assays. RESULTS The 32,612, 30,837 and 30,277 genes expressed at 5, 10 and 15 days postanthesis (dpa) were grouped into 19 distinct coexpression modules, and 988 genes in the MEblack module were enriched in the cell wall process and exhibited significant associations with FL. A total of 20 FL-QTLs were identified, each explaining 3.34-16.04 % of the phenotypic variance in the FL. Furthermore, several FL-QTLs contained 15 genes that were differentially expressed in the MEblack module including the tubulin beta gene (TUB5). Compared with the wild type, the overexpression of GhTUB5 and GbTUB5 in Arabidopsis suppressed root cell length but promoted cellulose synthesis. Knockout of GhTUB5 resulted in longer fiber lines. Protein-based experiments revealed that GhTUB5 interacts with GhZFP6. Additionally, GhTUB5 was directly activated by GhHD-ZIP7, a homeobox-leucine zipper transcription factor, and its paralogous gene was previously reported to mediate fiber elongation. CONCLUSION This study opens a new avenue to dissect functional mechanism of cotton fiber elongation. Our findings provide some molecular details on how GhTUB5 mediates the FL phenotype in cotton.
Collapse
Affiliation(s)
- Jianjiang Ma
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Liupeng Yang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuanyue Dang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China; Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| | - Kashif Shahzad
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jikun Song
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Bing Jia
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Li Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Juanjuan Feng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Nuohan Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Wenfeng Pei
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Man Wu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Xuexian Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, USA.
| | - Jianyong Wu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.
| | - Jiwen Yu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China; Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China.
| |
Collapse
|
5
|
Song Z, Zhang C, Song G, Wei H, Xu W, Pan H, Ding C, Xu M, Zhen Y. Unraveling the lncRNA-miRNA-mRNA Regulatory Network Involved in Poplar Coma Development through High-Throughput Sequencing. Int J Mol Sci 2024; 25:7403. [PMID: 39000510 PMCID: PMC11242837 DOI: 10.3390/ijms25137403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Poplar coma, the fluff-like appendages of seeds originating from the differentiated surface cells of the placenta and funicle, aids in the long-distance dispersal of seeds in the spring. However, it also poses hazards to human safety and causes pollution in the surrounding environment. Unraveling the regulatory mechanisms governing the initiation and development of coma is essential for addressing this issue comprehensively. In this study, strand-specific RNA-seq was conducted at three distinct stages of coma development, revealing 1888 lncRNAs and 52,810 mRNAs. The expression profiles of lncRNAs and mRNAs during coma development were analyzed. Subsequently, potential target genes of lncRNAs were predicted through co-localization and co-expression analyses. Integrating various types of sequencing data, lncRNA-miRNA-TF regulatory networks related to the initiation of coma were constructed. Utilizing identified differentially expressed genes encoding kinesin and actin, lncRNA-miRNA-mRNA regulatory networks associated with the construction and arrangement of the coma cytoskeleton were established. Additionally, relying on differentially expressed genes encoding cellulose synthase, sucrose synthase, and expansin, lncRNA-miRNA-mRNA regulatory networks related to coma cell wall synthesis and remodeling were developed. This study not only enhances the comprehension of lncRNA but also provides novel insights into the molecular mechanisms governing the initiation and development of poplar coma.
Collapse
Affiliation(s)
- Zihe Song
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Chenghao Zhang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Guotao Song
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Hang Wei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Wenlin Xu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Huixin Pan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Meng Xu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yan Zhen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
6
|
Cvrčková F, Ghosh R, Kočová H. Transmembrane formins as active cargoes of membrane trafficking. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3668-3684. [PMID: 38401146 PMCID: PMC11194305 DOI: 10.1093/jxb/erae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/23/2024] [Indexed: 02/26/2024]
Abstract
Formins are a large, evolutionarily old family of cytoskeletal regulators whose roles include actin capping and nucleation, as well as modulation of microtubule dynamics. The plant class I formin clade is characterized by a unique domain organization, as most of its members are transmembrane proteins with possible cell wall-binding motifs exposed to the extracytoplasmic space-a structure that appears to be a synapomorphy of the plant kingdom. While such transmembrane formins are traditionally considered mainly as plasmalemma-localized proteins contributing to the organization of the cell cortex, we review, from a cell biology perspective, the growing evidence that they can also, at least temporarily, reside (and in some cases also function) in endomembranes including secretory and endocytotic pathway compartments, the endoplasmic reticulum, the nuclear envelope, and the tonoplast. Based on this evidence, we propose that class I formins may thus serve as 'active cargoes' of membrane trafficking-membrane-embedded proteins that modulate the fate of endo- or exocytotic compartments while being transported by them.
Collapse
Affiliation(s)
- Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ 128 43 Praha 2, Czechia
| | - Rajdeep Ghosh
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ 128 43 Praha 2, Czechia
| | - Helena Kočová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ 128 43 Praha 2, Czechia
| |
Collapse
|
7
|
Zhang W, Fan Y, Chi J. The synergistic effect of multiple organic macromolecules on the formation of calcium oxalate raphides of Musa spp. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2470-2480. [PMID: 38243384 DOI: 10.1093/jxb/erae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Needle-like calcium oxalate crystals called raphides are unique structures in the plant kingdom. Multiple biomacromolecules work together in the regulatory and transportation pathways to form raphides; however, the mechanism by which this occurs remains unknown. Using banana (Musa spp.), this study combined in vivo methods including confocal microscopy, transmission electron microscopy, and Q Exactive mass spectrometry to identify the main biomolecules, such as vesicles, together with the compositions of lipids and proteins in the crystal chamber, which is the membrane compartment that surrounds each raphide during its formation. Simulations of the vesicle transportation process and the synthesis of elongated calcium oxalate crystals in vitro were then conducted, and the results suggested that the vesicles carrying amorphous calcium oxalate and proteins embedded in raphides are transported along actin filaments. These vesicles subsequently fuse with the crystal chamber, utilizing the proteins embedded in the raphides as a template for the final formation of the structure. Our findings contribute to the fundamental understanding of the regulation of the diverse biomacromolecules that are crucial for raphide formation. Moreover, the implications of these findings extend to other fields such as materials science, and particularly the synthesis of functionalized materials.
Collapse
Affiliation(s)
- Wenjun Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuke Fan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jialin Chi
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
8
|
Shen N, Han L, Liu Z, Deng X, Zhu S, Liu C, Tang D, Li Y. The Microtubule End Binding Protein Mal3 Is Essential for the Dynamic Assembly of Microtubules during Magnaporthe oryzae Growth and Pathogenesis. Int J Mol Sci 2024; 25:2672. [PMID: 38473921 DOI: 10.3390/ijms25052672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Cytoskeletal microtubules (MTs) play crucial roles in many aspects of life processes in eukaryotic organisms. They dynamically assemble physiologically important MT arrays under different cell conditions. Currently, aspects of MT assembly underlying the development and pathogenesis of the model plant pathogenic fungus Magnaporthe oryzae (M. oryzae) are unclear. In this study, we characterized the MT plus end binding protein MoMal3 in M. oryzae. We found that knockout of MoMal3 results in defects in hyphal polar growth, appressorium-mediated host penetration and nucleus division. Using high-resolution live-cell imaging, we further found that the MoMal3 mutant assembled a rigid MT in parallel with the MT during hyphal polar growth, the cage-like network in the appressorium and the stick-like spindle in nuclear division. These aberrant MT organization patterns in the MoMal3 mutant impaired actin-based cell growth and host infection. Taken together, these findings showed that M. oryzae relies on MoMal3 to assemble elaborate MT arrays for growth and infection. The results also revealed the assembly mode of MTs in M. oryzae, indicating that MTs are pivotal for M. oryzae growth and host infection and may be new targets for devastating fungus control.
Collapse
Affiliation(s)
- Ningning Shen
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Libo Han
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zixuan Liu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xianya Deng
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuai Zhu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengyu Liu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanbao Li
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
9
|
Wen X, Chen Z, Yang Z, Wang M, Jin S, Wang G, Zhang L, Wang L, Li J, Saeed S, He S, Wang Z, Wang K, Kong Z, Li F, Zhang X, Chen X, Zhu Y. A comprehensive overview of cotton genomics, biotechnology and molecular biological studies. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2214-2256. [PMID: 36899210 DOI: 10.1007/s11427-022-2278-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/09/2023] [Indexed: 03/12/2023]
Abstract
Cotton is an irreplaceable economic crop currently domesticated in the human world for its extremely elongated fiber cells specialized in seed epidermis, which makes it of high research and application value. To date, numerous research on cotton has navigated various aspects, from multi-genome assembly, genome editing, mechanism of fiber development, metabolite biosynthesis, and analysis to genetic breeding. Genomic and 3D genomic studies reveal the origin of cotton species and the spatiotemporal asymmetric chromatin structure in fibers. Mature multiple genome editing systems, such as CRISPR/Cas9, Cas12 (Cpf1) and cytidine base editing (CBE), have been widely used in the study of candidate genes affecting fiber development. Based on this, the cotton fiber cell development network has been preliminarily drawn. Among them, the MYB-bHLH-WDR (MBW) transcription factor complex and IAA and BR signaling pathway regulate the initiation; various plant hormones, including ethylene, mediated regulatory network and membrane protein overlap fine-regulate elongation. Multistage transcription factors targeting CesA 4, 7, and 8 specifically dominate the whole process of secondary cell wall thickening. And fluorescently labeled cytoskeletal proteins can observe real-time dynamic changes in fiber development. Furthermore, research on the synthesis of cotton secondary metabolite gossypol, resistance to diseases and insect pests, plant architecture regulation, and seed oil utilization are all conducive to finding more high-quality breeding-related genes and subsequently facilitating the cultivation of better cotton varieties. This review summarizes the paramount research achievements in cotton molecular biology over the last few decades from the above aspects, thereby enabling us to conduct a status review on the current studies of cotton and provide strong theoretical support for the future direction.
Collapse
Affiliation(s)
- Xingpeng Wen
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhiwen Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Zuoren Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Maojun Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuangxia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangda Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Zhang
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Lingjian Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jianying Li
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sumbul Saeed
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shoupu He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhi Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Kun Wang
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- Shanxi Agricultural University, Jinzhong, 030801, China.
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Xianlong Zhang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xiaoya Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| | - Yuxian Zhu
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China.
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
10
|
Fu G, Chen B, Pei X, Wang X, Wang X, Nazir MF, Wang J, Zhang X, Xing A, Pan Z, Lin Z, Peng Z, He S, Du X. Genome-wide analysis of the serine carboxypeptidase-like protein family reveals Ga09G1039 is involved in fiber elongation in cotton. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107759. [PMID: 37321040 DOI: 10.1016/j.plaphy.2023.107759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 04/27/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023]
Abstract
The Gossypium is a model genus for understanding polyploidy and the evolutionary pattern of inheritance. This study aimed to investigate the characteristics of SCPLs in different cotton species and their role in fiber development. A total of 891 genes from one typical monocot and ten dicot species were naturally divided into three classes based on phylogenetic analysis. The SCPL gene family in cotton has undergone intense purifying selection with some functional variation. Segmental duplication and whole genome duplication were shown to be the two main reasons for the increase in the number of genes during cotton evolution. The identification of Gh_SCPL genes exhibiting differential expression in particular tissues or response to environmental stimuli provides a new measure for the in-depth characterization of selected genes of importance. Ga09G1039 was involved in the developmental process of fibers and ovules, and it is significantly different from proteins from other cotton species in terms of phylogenetic, gene structure, conserved protein motifs and tertiary structure. Overexpression of Ga09G1039 significantly increased the length of stem trichomes. Ga09G1039 may be a serine carboxypeptidase protein with hydrolase activity, according to functional region, prokaryotic expression, and western blotting analysis. The results provide a comprehensive overview of the genetic basis of SCPLs in Gossypium and further our knowledge in understanding the key aspects of SCPLs in cotton with their potential role in fiber development and stress resistance.
Collapse
Affiliation(s)
- Guoyong Fu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430000, China
| | - Baojun Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xinxin Pei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoyang Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Mian Faisal Nazir
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jingjing Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaomeng Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Aishuang Xing
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhaoe Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430000, China
| | - Zhen Peng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Shoupu He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Xiongming Du
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
11
|
Yang Z, Liu Z, Ge X, Lu L, Qin W, Qanmber G, Liu L, Wang Z, Li F. Brassinosteroids regulate cotton fiber elongation by modulating very-long-chain fatty acid biosynthesis. THE PLANT CELL 2023; 35:2114-2131. [PMID: 36861340 DOI: 10.1093/plcell/koad060] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/02/2023] [Accepted: 02/27/2023] [Indexed: 05/30/2023]
Abstract
Brassinosteroid (BR), a growth-promoting phytohormone, regulates many plant growth processes including cell development. However, the mechanism by which BR regulates fiber growth is poorly understood. Cotton (Gossypium hirsutum) fibers are an ideal single-cell model in which to study cell elongation due to their length. Here we report that BR controls cotton fiber elongation by modulating very-long-chain fatty acid (VLCFA) biosynthesis. BR deficiency reduces the expression of 3-ketoacyl-CoA synthases (GhKCSs), the rate-limiting enzymes involved in VLCFA biosynthesis, leading to lower saturated VLCFA contents in pagoda1 (pag1) mutant fibers. In vitro ovule culture experiments show that BR acts upstream of VLCFAs. Silencing of BRI1-EMS-SUPPRESOR 1.4 (GhBES1.4), encoding a master transcription factor of the BR signaling pathway, significantly reduces fiber length, whereas GhBES1.4 overexpression produces longer fibers. GhBES1.4 regulates endogenous VLCFA contents and directly binds to BR RESPONSE ELEMENTS (BRREs) in the GhKCS10_At promoter region, which in turn regulates GhKCS10_At expression to increase endogenous VLCFA contents. GhKCS10_At overexpression promotes cotton fiber elongation, whereas GhKCS10_At silencing inhibits cotton fiber growth, supporting a positive regulatory role for GhKCS10_At in fiber elongation. Overall, these results uncover a mechanism of fiber elongation through crosstalk between BR and VLCFAs at the single-cell level.
Collapse
Affiliation(s)
- Zuoren Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100 Xinjiang, China
| | - Zhao Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan, China
| | - Xiaoyang Ge
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan, China
| | - Lili Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan, China
| | - Wenqiang Qin
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan, China
| | - Ghulam Qanmber
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan, China
| | - Le Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan, China
| | - Zhi Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100 Xinjiang, China
| |
Collapse
|
12
|
Liu Z, Sun Z, Ke H, Chen B, Gu Q, Zhang M, Wu N, Chen L, Li Y, Meng C, Wang G, Wu L, Zhang G, Ma Z, Zhang Y, Wang X. Transcriptome, Ectopic Expression and Genetic Population Analysis Identify Candidate Genes for Fiber Quality Improvement in Cotton. Int J Mol Sci 2023; 24:8293. [PMID: 37175999 PMCID: PMC10179096 DOI: 10.3390/ijms24098293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Comparative transcriptome analysis of fiber tissues between Gossypium barbadense and Gossypium hirsutum could reveal the molecular mechanisms underlying high-quality fiber formation and identify candidate genes for fiber quality improvement. In this study, 759 genes were found to be strongly upregulated at the elongation stage in G. barbadense, which showed four distinct expression patterns (I-IV). Among them, the 346 genes of group IV stood out in terms of the potential to promote fiber elongation, in which we finally identified 42 elongation-related candidate genes by comparative transcriptome analysis between G. barbadense and G. hirsutum. Subsequently, we overexpressed GbAAR3 and GbTWS1, two of the 42 candidate genes, in Arabidopsis plants and validated their roles in promoting cell elongation. At the secondary cell wall (SCW) biosynthesis stage, 2275 genes were upregulated and exhibited five different expression profiles (I-V) in G. barbadense. We highlighted the critical roles of the 647 genes of group IV in SCW biosynthesis and further picked out 48 SCW biosynthesis-related candidate genes by comparative transcriptome analysis. SNP molecular markers were then successfully developed to distinguish the SCW biosynthesis-related candidate genes from their G. hirsutum orthologs, and the genotyping and phenotyping of a BC3F5 population proved their potential in improving fiber strength and micronaire. Our results contribute to the better understanding of the fiber quality differences between G. barbadense and G. hirsutum and provide novel alternative genes for fiber quality improvement.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yan Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China; (Z.L.); (Z.S.); (H.K.); (B.C.); (Q.G.); (M.Z.); (N.W.); (G.Z.); (Z.M.)
| | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China; (Z.L.); (Z.S.); (H.K.); (B.C.); (Q.G.); (M.Z.); (N.W.); (G.Z.); (Z.M.)
| |
Collapse
|
13
|
Li WB, Song SW, Zhong MM, Liu LG, Su L, Han LB, Xia GX, Sun YD, Wang HY. VILLIN2 regulates cotton defense against Verticillium dahliae by modulating actin cytoskeleton remodeling. PLANT PHYSIOLOGY 2023; 192:666-679. [PMID: 36881883 PMCID: PMC10152694 DOI: 10.1093/plphys/kiad095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/24/2023] [Indexed: 05/03/2023]
Abstract
The active structural change of actin cytoskeleton is a general host response upon pathogen attack. This study characterized the function of the cotton (Gossypium hirsutum) actin-binding protein VILLIN2 (GhVLN2) in host defense against the soilborne fungus Verticillium dahliae. Biochemical analysis demonstrated that GhVLN2 possessed actin-binding, -bundling, and -severing activities. A low concentration of GhVLN2 could shift its activity from actin bundling to actin severing in the presence of Ca2+. Knockdown of GhVLN2 expression by virus-induced gene silencing reduced the extent of actin filament bundling and interfered with the growth of cotton plants, resulting in the formation of twisted organs and brittle stems with a decreased cellulose content of the cell wall. Upon V. dahliae infection, the expression of GhVLN2 was downregulated in root cells, and silencing of GhVLN2 enhanced the disease tolerance of cotton plants. The actin bundles were less abundant in root cells of GhVLN2-silenced plants than in control plants. However, upon infection by V. dahliae, the number of actin filaments and bundles in the cells of GhVLN2-silenced plants was raised to a comparable level as those in control plants, with the dynamic remodeling of the actin cytoskeleton appearing several hours in advance. GhVLN2-silenced plants exhibited a higher incidence of actin filament cleavage in the presence of Ca2+, suggesting that pathogen-responsive downregulation of GhVLN2 could activate its actin-severing activity. These data indicate that the regulated expression and functional shift of GhVLN2 contribute to modulating the dynamic remodeling of the actin cytoskeleton in host immune responses against V. dahliae.
Collapse
Affiliation(s)
- Wen-Bo Li
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuang-Wei Song
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng-Meng Zhong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lan-Gong Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Su
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li-Bo Han
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gui-Xian Xia
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong-Duo Sun
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hai-Yun Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
14
|
Xu Z, Qu X, Wu S, Wang P. Studying the Organization of the Actin Cytoskeleton in the Multicellular Trichomes of Tomato. Methods Mol Biol 2023; 2604:327-335. [PMID: 36773247 DOI: 10.1007/978-1-0716-2867-6_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Trichomes are unique polarized cells of the plant epidermis that provide an excellent model system for studying the plant cytoskeleton. Unlike Arabidopsis trichomes that are unicellular with a typical three-branch shape, the trichomes in tomato (Solanum lycopersicum) are multicellular with additional morphology and function diversity. Technically, it is hard to image tomato trichomes at the subcellular level because of their size and because they can be easily damaged. Here, we describe the methods we have used for the visualization and quantification of cytoskeletal arrangements in tomato trichomes which are at different developmental stages, using both live-cell imaging and phalloidin staining after fixation.
Collapse
Affiliation(s)
- Zhijing Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Xiaolu Qu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Shuang Wu
- College of Horticulture, School of Future Technology , Fujian Agriculture and Forestry University, Fuzhou, China
| | - Pengwei Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China. .,Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
15
|
Wang G, Yu Y, Kong Z. Visualization of Cytoskeleton Organization and Dynamics in Elongating Cotton Fibers by Live-Cell Imaging. Methods Mol Biol 2023; 2604:311-316. [PMID: 36773245 DOI: 10.1007/978-1-0716-2867-6_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Cotton fibers are extremely elongated single cells and have long been regarded as an ideal model to investigate polarized plant cell elongation. Actin filaments (F-actin), as well as the cortical microtubules (CMTs), play vital roles in polarized cell growth and morphogenesis. We have generated stable transgenic cotton plants expressing fluorescent markers for the actin and microtubule cytoskeletons. Further live-cell imaging identified dynamic features of the F-actin and cortical microtubule (CMT) architectures and discovered that cotton fibers elongate in a unique tip-biased diffuse growth mode. Here, we describe methods for preparing growing cotton fiber samples, as well as the visualization of cytoskeletal organization and dynamics by live-cell imaging. Combined with comprehensive image analyses, these methods can be used to identify how cytoskeleton organization and dynamics determine cell morphogenesis in highly polarized cotton fibers.
Collapse
Affiliation(s)
- Guangda Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yanjun Yu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China. .,Shanxi Agricultural University, Taigu, China.
| |
Collapse
|
16
|
Song Q, Gao W, Du C, Wang J, Zuo K. Cotton microtubule-associated protein GhMAP20L5 mediates fiber elongation through the interaction with the tubulin GhTUB13. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 327:111545. [PMID: 36464024 DOI: 10.1016/j.plantsci.2022.111545] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/30/2022] [Accepted: 11/27/2022] [Indexed: 05/26/2023]
Abstract
Targeting proteins for Xklp2 (TPX2s) comprise a class of MAPs that are essential for plant growth and development by regulating the dynamic changes of microtubules (MTs) and proper formation of cytoskeleton. However, the function of TPX2 proteins in cotton fiber development remains poorly understood. Here, we identified the function of a fiber elongation-specific TPX2 protein, GhMAP20L5, in cotton. Suppressed GhMAP20L5 gene expression in cotton (GhMAP20L5i) significantly reduced fiber elongation rate, fiber length and lint percentage. GhMAP20L5i fibers had thinner and looser secondary cell walls (SCW), and incompact helix twists. GhMAP20L5 specifically interacted with the tubulin GhTUB13 on the cytoskeleton. Gene coexpression analysis showed that GhMAP20L5 involved in multiple pathways related to cytoskeleton establishment and fiber cell wall formation and affected cellulase genes expressions. In summary, our results revealed that GhMAP20L5 is important for fiber development by regulating cytoskeleton establishment and the cellulose deposition in cotton.
Collapse
Affiliation(s)
- Qingwei Song
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanting Gao
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuanhui Du
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jin Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Kaijing Zuo
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
17
|
Jiao Y, Long Y, Xu K, Zhao F, Zhao J, Li S, Geng S, Gao W, Sun P, Deng X, Chen Q, Li C, Qu Y. Weighted Gene Co-Expression Network Analysis Reveals Hub Genes for Fuzz Development in Gossypium hirsutum. Genes (Basel) 2023; 14:208. [PMID: 36672949 PMCID: PMC9858766 DOI: 10.3390/genes14010208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 01/14/2023] Open
Abstract
Fuzzless Gossypium hirsutum mutants are ideal materials for investigating cotton fiber initiation and development. In this study, we used the fuzzless G. hirsutum mutant Xinluzao 50 FLM as the research material and combined it with other fuzzless materials for verification by RNA sequencing to explore the gene expression patterns and differences between genes in upland cotton during the fuzz period. A gene ontology (GO) enrichment analysis showed that differentially expressed genes (DEGs) were mainly enriched in the metabolic process, microtubule binding, and other pathways. A weighted gene co-expression network analysis (WGCNA) showed that two modules of Xinluzao 50 and Xinluzao 50 FLM and four modules of CSS386 and Sicala V-2 were highly correlated with fuzz. We selected the hub gene with the highest KME value among the six modules and constructed an interaction network. In addition, we selected some genes with high KME values from the six modules that were highly associated with fuzz in the four materials and found 19 common differential genes produced by the four materials. These 19 genes are likely involved in the formation of fuzz in upland cotton. Several hub genes belong to the arabinogalactan protein and GDSL lipase, which play important roles in fiber development. According to the differences in expression level, 4 genes were selected from the 19 genes and tested for their expression level in some fuzzless materials. The modules, hub genes, and common genes identified in this study can provide new insights into the formation of fiber and fuzz, and provide a reference for molecular design breeding for the genetic improvement of cotton fiber.
Collapse
Affiliation(s)
- Yang Jiao
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yilei Long
- Institute of Cash Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Kaixiang Xu
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Fuxiang Zhao
- Xinjiang Academy of Agricultural Reclamation, Shihezi 832000, China
| | - Jieyin Zhao
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Shengmei Li
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Shiwei Geng
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Wenju Gao
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Peng Sun
- Xinjiang Kuitun Agricultural and Rural Bureau, KuiTun 833200, China
| | - Xiaojuan Deng
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Quanjia Chen
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Chunpin Li
- Institute of Cash Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Yanying Qu
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
18
|
Qin Y, Sun M, Li W, Xu M, Shao L, Liu Y, Zhao G, Liu Z, Xu Z, You J, Ye Z, Xu J, Yang X, Wang M, Lindsey K, Zhang X, Tu L. Single-cell RNA-seq reveals fate determination control of an individual fibre cell initiation in cotton (Gossypium hirsutum). PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2372-2388. [PMID: 36053965 PMCID: PMC9674311 DOI: 10.1111/pbi.13918] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 05/13/2023]
Abstract
Cotton fibre is a unicellular seed trichome, and lint fibre initials per seed as a factor determines fibre yield. However, the mechanisms controlling fibre initiation from ovule epidermis are not understood well enough. Here, with single-cell RNA sequencing (scRNA-seq), a total of 14 535 cells were identified from cotton ovule outer integument of Xu142_LF line at four developmental stages (1.5, 1, 0.5 days before anthesis and the day of anthesis). Three major cell types, fibre, non-fibre epidermis and outer pigment layer were identified and then verified by RNA in situ hybridization. A comparative analysis on scRNA-seq data between Xu142 and its fibreless mutant Xu142 fl further confirmed fibre cluster definition. The developmental trajectory of fibre cell was reconstructed, and fibre cell was identified differentiated at 1 day before anthesis. Gene regulatory networks at four stages revealed the spatiotemporal pattern of core transcription factors, and MYB25-like and HOX3 were demonstrated played key roles as commanders in fibre differentiation and tip-biased diffuse growth respectively. A model for early development of a single fibre cell was proposed here, which sheds light on further deciphering mechanism of plant trichome and the improvement of cotton fibre yield.
Collapse
Affiliation(s)
- Yuan Qin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Mengling Sun
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Weiwen Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Mingqi Xu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Lei Shao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Yuqi Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Guannan Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Zhenping Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Zhongping Xu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Jiaqi You
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Zhengxiu Ye
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Jiawen Xu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | | | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| |
Collapse
|
19
|
Shang X, Duan Y, Zhao M, Zhu L, Liu H, He Q, Yu Y, Li W, Amjid MW, Ruan YL, Guo W. GhRabA4c coordinates cell elongation via regulating actin filament–dependent vesicle transport. Life Sci Alliance 2022; 5:5/10/e202201450. [PMID: 36271510 PMCID: PMC9449706 DOI: 10.26508/lsa.202201450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/30/2022] Open
Abstract
GhRabA4c is required for cotton fiber cell elongation via functioning in actin filament assembly and bundling, vesicle transport, and deposition of multiple cell wall components. Plant cell expands via a tip growth or diffuse growth mode. In plants, RabA is the largest group of Rab GTPases that regulate vesicle trafficking. The functions of RabA protein in modulating polarized expansion in tip growth cells have been demonstrated. However, whether and how RabA protein functions in diffuse growth plant cells have never been explored. Here, we addressed this question by examining the role of GhRabA4c in cotton fibers. GhRabA4c was preferentially expressed in elongating fibers with its protein localized to endoplasmic reticulum and Golgi apparatus. Over- and down-expression of GhRabA4c in cotton lead to longer and shorter fibers, respectively. GhRabA4c interacted with GhACT4 to promote the assembly of actin filament to facilitate vesicle transport for cell wall synthesis. Consistently, GhRabA4c-overexpressed fibers exhibited increased content of wall components and the transcript levels of the genes responsible for the synthesis of cell wall materials. We further identified two MYB proteins that directly regulate the transcription of GhRabA4c. Collectively, our data showed that GhRabA4c promotes diffused cell expansion by supporting vesicle trafficking and cell wall synthesis.
Collapse
Affiliation(s)
- Xiaoguang Shang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing, China
- The Sanya Institute of Nanjing Agricultural University, Nanjing, China
| | - Yujia Duan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Meiyue Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- The Sanya Institute of Nanjing Agricultural University, Nanjing, China
| | - Lijie Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Hanqiao Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Qingfei He
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- The Sanya Institute of Nanjing Agricultural University, Nanjing, China
| | - Yujia Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- The Sanya Institute of Nanjing Agricultural University, Nanjing, China
| | - Weixi Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Waqas Amjid
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Yong-Ling Ruan
- Plant Science Division, Research School of Biology, The Australian National University, Canberra, Australia
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing, China
- The Sanya Institute of Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
20
|
Liu Z, Østerlund I, Ruhnow F, Cao Y, Huang G, Cai W, Zhang J, Liang W, Nikoloski Z, Persson S, Zhang D. Fluorescent cytoskeletal markers reveal associations between the actin and microtubule cytoskeleton in rice cells. Development 2022; 149:275467. [DOI: 10.1242/dev.200415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/09/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Rice (Oryza sativa) is one of our main food crops, feeding ∼3.5 billion people worldwide. An increasing number of studies note the importance of the cytoskeleton, including actin filaments and microtubules, in rice development and environmental responses. Yet, reliable in vivo cytoskeleton markers are lacking in rice, which limits our knowledge of cytoskeletal functions in living cells. Therefore, we generated bright fluorescent marker lines of the actin and microtubule cytoskeletons in rice, suitable for live-cell imaging in a wide variety of rice tissues. Using these lines, we show that actin bundles and microtubules engage and co-function during pollen grain development, how the cytoskeletal components are coordinated during root cell development, and that the actin cytoskeleton is robust and facilitates microtubule responses during salt stress. Hence, we conclude that our cytoskeletal marker lines, highlighted by our findings of cytoskeletal associations and dynamics, will substantially further future investigations in rice biology.
Collapse
Affiliation(s)
- Zengyu Liu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University 1 , Minhang 200240, Shanghai , China
| | - Isabella Østerlund
- University of Copenhagen 2 Department of Plant and Environmental Sciences (PLEN) , , 1870 Frederiksberg , Denmark
- Max Planck Institute of Molecular Plant Physiology 3 Systems Biology and Mathematical Modelling , , Am Mühlenberg 1, 14476 Potsdam-Golm , Germany
| | - Felix Ruhnow
- University of Copenhagen 2 Department of Plant and Environmental Sciences (PLEN) , , 1870 Frederiksberg , Denmark
| | - Yiran Cao
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University 1 , Minhang 200240, Shanghai , China
| | - Guoqiang Huang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University 1 , Minhang 200240, Shanghai , China
| | - Wenguo Cai
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University 1 , Minhang 200240, Shanghai , China
| | - Jiao Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University 1 , Minhang 200240, Shanghai , China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University 1 , Minhang 200240, Shanghai , China
| | - Zoran Nikoloski
- Max Planck Institute of Molecular Plant Physiology 3 Systems Biology and Mathematical Modelling , , Am Mühlenberg 1, 14476 Potsdam-Golm , Germany
| | - Staffan Persson
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University 1 , Minhang 200240, Shanghai , China
- University of Copenhagen 2 Department of Plant and Environmental Sciences (PLEN) , , 1870 Frederiksberg , Denmark
- Copenhagen Plant Science Center (CPSC) 4 , , 1870 Frederiksberg , Denmark
- University of Copenhagen 4 , , 1870 Frederiksberg , Denmark
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University 1 , Minhang 200240, Shanghai , China
- School of Agriculture, Food, and Wine 5 , , Waite Campus, Urrbrae, SA 5064 , Australia
- University of Adelaide 5 , , Waite Campus, Urrbrae, SA 5064 , Australia
| |
Collapse
|
21
|
Zeng J, Xi J, Li B, Yan X, Dai Y, Wu Y, Xiao Y, Pei Y, Zhang M. Microtubules play a crucial role in regulating actin organization and cell initiation in cotton fibers. PLANT CELL REPORTS 2022; 41:1059-1073. [PMID: 35217893 DOI: 10.1007/s00299-022-02837-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Dynamic organization of actin and microtubule cytoskeletons directs a distinct expansion behavior of cotton fiber initiation from cell elongation. Cotton fibers are highly elongated single cells derived from the ovule epidermis. Although actin and microtubule (MT) cytoskeletons have been implicated in cell elongation and secondary wall deposition, their roles in fiber initiation is poorly understood. Here, we used fluorescent probes and pharmacological approaches to study the roles of these cytoskeletal components during cotton fiber initiation. Both cytoskeletons align along the growth axis in initiating fibers. The dorsal view of ovules shows that unlike the fine actin filaments (AFs) in nonfiber cells, the AFs in fiber cells are dense and bundled. MTs are randomized in fiber cells and well-ordered in nonfiber cells. The pharmacological experiments revealed that the depolymerization of AFs and MTs assisted fiber initiation. Both AF stabilization and depolymerization inhibited fiber elongation. In contrast, the proper depolymerization of MTs promoted cell elongation, although the MT-stabilizing drug consistently resulted in a negative effect. Notably, we found that the organization of AFs was correlated with MT dynamics. Stabilizing the MTs by taxol treatment promoted the formation of AF bundles (in fiber initials) and transversely aligned AFs (in elongating fibers), whereas depolymerizing the MTs by oryzalin treatment promoted the fragmentation of AFs. Collectively, our data indicates that MTs plays a crucial role in regulating AF organization and early development of cotton fibers.
Collapse
Affiliation(s)
- Jianyan Zeng
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
- Academy of Agricultural Sciences, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
| | - Jing Xi
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
- Academy of Agricultural Sciences, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
| | - Baoxia Li
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
- Academy of Agricultural Sciences, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
| | - Xingying Yan
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
- Academy of Agricultural Sciences, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
| | - Yonglu Dai
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
- Academy of Agricultural Sciences, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
| | - Yiping Wu
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
- Academy of Agricultural Sciences, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
| | - Yuehua Xiao
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
- Academy of Agricultural Sciences, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
| | - Yan Pei
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
- Academy of Agricultural Sciences, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
| | - Mi Zhang
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China.
- Academy of Agricultural Sciences, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China.
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
22
|
Yu D, Li X, Li Y, Ali F, Li F, Wang Z. Dynamic roles and intricate mechanisms of ethylene in epidermal hair development in Arabidopsis and cotton. THE NEW PHYTOLOGIST 2022; 234:375-391. [PMID: 34882809 DOI: 10.1111/nph.17901] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Ethylene affects many aspects of plant growth and development, including root hairs and trichomes growth in Arabidopsis, as well as fiber development in cotton, though the underlying mechanism is unclear. In this article, we update the research progress associated with the main genes in ethylene biosynthesis and signaling pathway, and we propose a clear ethylene pathway based on genome-wide identification of homologues in cotton. Expression pattern analysis using transcriptome data revealed that some candidate genes may contribute to cotton fiber development through the ethylene pathway. Moreover, we systematically summarized the effects of ethylene on the development of epidermal hair and the underlying regulatory mechanisms in Arabidopsis. Based on the knowledge of ethylene-promoted cell differentiation, elongation, and development in different tissues or plants, we advised a possible regulatory network for cotton fiber development with ethylene as the hub. Importantly, we emphasized the roles of ethylene as an important node in regulating cotton vegetative growth, and stress resistance, and suggested utilizing multiple methods to subtly modify ethylene synthesis or signaling in a tissue or spatiotemporal-specific manner to clarify its exact effect on architecture, adaptability of the plant, and fiber development, paving the way for basic research and genetic improvement of the cotton crop.
Collapse
Affiliation(s)
- Daoqian Yu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaona Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yonghui Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Faiza Ali
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhi Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| |
Collapse
|
23
|
Keynia S, Davis TC, Szymanski DB, Turner JA. Cell twisting during desiccation reveals axial asymmetry in wall organization. Biophys J 2022; 121:932-942. [PMID: 35151632 PMCID: PMC8943815 DOI: 10.1016/j.bpj.2022.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/27/2021] [Accepted: 02/09/2022] [Indexed: 11/25/2022] Open
Abstract
Plant cell size and shape are tuned to their function and specified primarily by cellulose microfibril (CMF) patterning of the cell wall. Arabidopsis thaliana leaf trichomes are unicellular structures that act as a physical defense to deter insect feeding. This highly polarized cell type employs a strongly anisotropic cellulose wall to extend and taper, generating sharply pointed branches. During elongation, the mechanisms by which shifts in fiber orientation generate cells with predictable sizes and shapes are unknown. Specifically, the axisymmetric growth of trichome branches is often thought to result from axisymmetric CMF patterning. Here, we analyzed the direction and degree of twist of branches after desiccation to reveal the presence of an asymmetric cell wall organization with a left-hand bias. CMF organization, quantified using computational modeling, suggests a limited reorientation of microfibrils during growth and a maximum branch length limited by the wall axial stiffness. The model provides a mechanism for CMF asymmetry, which occurs after the branch bending stiffness becomes low enough that ambient bending affects the principal stresses. After this stage, the CMF synthesis results in a constant bending stiffness for longer branches. The bending vibration natural frequencies of branches with respect to their length are also discussed.
Collapse
Affiliation(s)
- Sedighe Keynia
- Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Thomas C Davis
- Department of Botany and Plant Pathology, Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| | - Daniel B Szymanski
- Department of Botany and Plant Pathology, Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| | - Joseph A Turner
- Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska.
| |
Collapse
|
24
|
Hu GY, Ma JY, Li F, Zhao JR, Xu FC, Yang WW, Yuan M, Gao W, Long L. Optimizing the Protein Fluorescence Reporting System for Somatic Embryogenesis Regeneration Screening and Visual Labeling of Functional Genes in Cotton. FRONTIERS IN PLANT SCIENCE 2022; 12:825212. [PMID: 35069674 PMCID: PMC8777222 DOI: 10.3389/fpls.2021.825212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Protein fluorescence reporting systems are of crucial importance to in-depth life science research, providing systematic labeling tools for visualization of microscopic biological activities in vivo and revolutionizing basic research. Cotton somatic cell regeneration efficiency is low, causing difficulty in cotton transformation. It is conducive to screening transgenic somatic embryo using the fluorescence reporting system. However, available fluorescence labeling systems in cotton are currently limited. To optimize the fluorescence reporting system of cotton with an expanded range of available fluorescent proteins, we selected 11 fluorescent proteins covering red, green, yellow, and cyan fluorescence colors and expressed them in cotton. Besides mRuby2 and G3GFP, the other nine fluorescent proteins (mCherry, tdTomato, sfGFP, Clover, EYFP, YPet, mVenus, mCerulean, and ECFP) were stably and intensely expressed in transgenic callus and embryo, and inherited in different cotton organs derive from the screened embryo. In addition, transgenic cotton expressing tdTomato appears pink under white light, not only for callus and embryo tissues but also various organs of mature plants, providing a visual marker in the cotton genetic transformation process, accelerating the evaluation of transgenic events. Further, we constructed transgenic cotton expressing mCherry-labeled organelle markers in vivo that cover seven specific subcellular compartments: plasma membrane, endoplasmic reticulum, tonoplast, mitochondrion, plastid, Golgi apparatus, and peroxisome. We also provide a simple and highly efficient strategy to quickly determine the subcellular localization of uncharacterized proteins in cotton cells using organelle markers. Lastly, we built the first cotton stomatal fluorescence reporting system using stomata-specific expression promoters (ProKST1, ProGbSLSP, and ProGC1) to drive Clover expression. The optimized fluorescence labeling system for transgenic somatic embryo screening and functional gene labeling in this study offers the potential to accelerating somatic cell regeneration efficiency and the in vivo monitoring of diverse cellular processes in cotton.
Collapse
Affiliation(s)
- Gai-Yuan Hu
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Jia-Yi Ma
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Fen Li
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Jing-Ruo Zhao
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Fu-Chun Xu
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Wen-Wen Yang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Man Yuan
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Wei Gao
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Lu Long
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| |
Collapse
|
25
|
Sun Y, Zhong M, Li Y, Zhang R, Su L, Xia G, Wang H. GhADF6-mediated actin reorganization is associated with defence against Verticillium dahliae infection in cotton. MOLECULAR PLANT PATHOLOGY 2021; 22:1656-1667. [PMID: 34515397 PMCID: PMC8578822 DOI: 10.1111/mpp.13137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/28/2021] [Accepted: 08/19/2021] [Indexed: 05/07/2023]
Abstract
Several studies have revealed that actin depolymerizing factors (ADFs) participate in plant defence responses; however, the functional mechanisms appear intricate and need further exploration. In this study, we identified an ADF6 gene in upland cotton (designated as GhADF6) that is evidently involved in cotton's response to the fungal pathogen Verticillium dahliae. GhADF6 binds to actin filaments and possesses actin severing and depolymerizing activities in vitro and in vivo. When cotton root (the site of the fungus invasion) was inoculated with the pathogen, the expression of GhADF6 was markedly down-regulated in the epidermal cells. By virus-induced gene silencing analysis, the down-regulation of GhADF6 expression rendered the cotton plants tolerant to V. dahliae infection. Accordingly, the abundance of actin filaments and bundles in the root cells was significantly higher than that in the control plant, which phenocopied that of the V. dahliae-challenged wild-type cotton plant. Altogether, our results provide evidence that an increase in filament actin (F-actin) abundance as well as dynamic actin remodelling are required for plant defence against the invading pathogen, which are likely to be fulfilled by the coordinated expressional regulation of the actin-binding proteins, including ADF.
Collapse
Affiliation(s)
- Yongduo Sun
- Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- State Key Laboratory of Plant GenomicsBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Mengmeng Zhong
- Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- State Key Laboratory of Plant GenomicsBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yuanbao Li
- Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- State Key Laboratory of Plant GenomicsBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ruihui Zhang
- University of Chinese Academy of SciencesBeijingChina
- Institute of BotanyChinese Academy of SciencesBeijingChina
| | - Lei Su
- Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- State Key Laboratory of Plant GenomicsBeijingChina
| | - Guixian Xia
- Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- State Key Laboratory of Plant GenomicsBeijingChina
| | - Haiyun Wang
- Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- State Key Laboratory of Plant GenomicsBeijingChina
| |
Collapse
|
26
|
Majda M, Kozlova L, Banasiak A, Derba-Maceluch M, Iashchishyn IA, Morozova-Roche LA, Smith RS, Gorshkova T, Mellerowicz EJ. Elongation of wood fibers combines features of diffuse and tip growth. THE NEW PHYTOLOGIST 2021; 232:673-691. [PMID: 33993523 DOI: 10.1111/nph.17468] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Xylem fibers are highly elongated cells that are key constituents of wood, play major physiological roles in plants, comprise an important terrestrial carbon reservoir, and thus have enormous ecological and economic importance. As they develop, from fusiform initials, their bodies remain the same length while their tips elongate and intrude into intercellular spaces. To elucidate mechanisms of tip elongation, we studied the cell wall along the length of isolated, elongating aspen xylem fibers and used computer simulations to predict the forces driving the intercellular space formation required for their growth. We found pectin matrix epitopes (JIM5, LM7) concentrated at the tips where cellulose microfibrils have transverse orientation, and xyloglucan epitopes (CCRC-M89, CCRC-M58) in fiber bodies where microfibrils are disordered. These features are accompanied by changes in cell wall thickness, indicating that while the cell wall elongates strictly at the tips, it is deposited all over fibers. Computer modeling revealed that the intercellular space formation needed for intrusive growth may only require targeted release of cell adhesion, which allows turgor pressure in neighboring fiber cells to 'round' the cells creating spaces. These characteristics show that xylem fibers' elongation involves a distinct mechanism that combines features of both diffuse and tip growth.
Collapse
Affiliation(s)
- Mateusz Majda
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, Umeå, 901 83, Sweden
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Liudmila Kozlova
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, Umeå, 901 83, Sweden
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Centre, Russian Academy of Sciences, Kazan, 420111, Russia
| | - Alicja Banasiak
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, Umeå, 901 83, Sweden
- Department of Plant Developmental Biology, Institute of Experimental Biology, University of Wrocław, Kanonia 6/8, Wrocław, 50-328, Poland
| | - Marta Derba-Maceluch
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, Umeå, 901 83, Sweden
| | - Igor A Iashchishyn
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, SE-901 87, Sweden
| | | | - Richard S Smith
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Tatyana Gorshkova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Centre, Russian Academy of Sciences, Kazan, 420111, Russia
| | - Ewa J Mellerowicz
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, Umeå, 901 83, Sweden
| |
Collapse
|
27
|
Huang G, Huang JQ, Chen XY, Zhu YX. Recent Advances and Future Perspectives in Cotton Research. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:437-462. [PMID: 33428477 DOI: 10.1146/annurev-arplant-080720-113241] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cotton is not only the world's most important natural fiber crop, but it is also an ideal system in which to study genome evolution, polyploidization, and cell elongation. With the assembly of five different cotton genomes, a cotton-specific whole-genome duplication with an allopolyploidization process that combined the A- and D-genomes became evident. All existing A-genomes seemed to originate from the A0-genome as a common ancestor, and several transposable element bursts contributed to A-genome size expansion and speciation. The ethylene production pathway is shown to regulate fiber elongation. A tip-biased diffuse growth mode and several regulatory mechanisms, including plant hormones, transcription factors, and epigenetic modifications, are involved in fiber development. Finally, we describe the involvement of the gossypol biosynthetic pathway in the manipulation of herbivorous insects, the role of GoPGF in gland formation, and host-induced gene silencing for pest and disease control. These new genes, modules, and pathways will accelerate the genetic improvement of cotton.
Collapse
Affiliation(s)
- Gai Huang
- Institute for Advanced Studies, Wuhan University, Wuhan 430072, China;
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jin-Quan Huang
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiao-Ya Chen
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu-Xian Zhu
- Institute for Advanced Studies, Wuhan University, Wuhan 430072, China;
| |
Collapse
|
28
|
Weighted Gene Co-Expression Network Analysis Reveals Hub Genes Contributing to Fuzz Development in Gossypium arboreum. Genes (Basel) 2021; 12:genes12050753. [PMID: 34067654 PMCID: PMC8156360 DOI: 10.3390/genes12050753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
Fuzzless mutants are ideal materials to decipher the regulatory network and mechanism underlying fuzz initiation and formation. In this study, we utilized two Gossypium arboreum accessions differing in fuzz characteristics to explore expression pattern differences and discriminate genes involved in fuzz development using RNA sequencing. Gene ontology (GO) analysis was conducted and found that DEGs were mainly enriched in the regulation of transcription, metabolic processes and oxidation–reduction-related processes. Weighted gene co-expression network analysis discerned the MEmagenta module highly associated with a fuzz/fuzzless trait, which included a total of 50 hub genes differentially expressed between two materials. GaFZ, which negatively regulates trichome and fuzz formation, was found involved in MEmagenta cluster1. In addition, twenty-eight hub genes in MEmagenta cluster1 were significantly up-regulated and expressed in fuzzless mutant DPL972. It is noteworthy that Ga04G1219 and Ga04G1240, which, respectively, encode Fasciclin-like arabinogalactan protein 18(FLA18) and transport protein, showed remarkable differences of expression level and implied that they may be involved in protein glycosylation to regulate fuzz formation and development. This module and hub genes identified in this study will provide new insights on fiber and fuzz formation and be useful for the molecular design breeding of cotton genetic improvement.
Collapse
|
29
|
Hua B, Chang J, Xu Z, Han X, Xu M, Yang M, Yang C, Ye Z, Wu S. HOMEODOMAIN PROTEIN8 mediates jasmonate-triggered trichome elongation in tomato. THE NEW PHYTOLOGIST 2021; 230:1063-1077. [PMID: 33474772 DOI: 10.1111/nph.17216] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/05/2021] [Indexed: 05/24/2023]
Abstract
Plant hormones can adjust the physiology and development of plants to enhance their adaptation to biotic and abiotic challenges. Jasmonic acid (JA), one of the immunity hormones in plants, triggers genome-wide transcriptional changes in response to insect attack and wounding. Although JA is known to affect the development of trichomes, epidermal appendages that form a protective barrier against various stresses, it remains unclear how JA interacts with developmental programs that regulate trichome development. In this study, we show that JA affects trichome length in tomato by releasing the transcriptional repression mediated by Jasmonate ZIM (JAZ) proteins. We identified SlJAZ4, a negative regulator preferentially expressed in trichomes, as the critical component in JA signaling in tomato trichomes. We also identified a homeodomain-leucine zipper gene, SlHD8, as the downstream regulator of JA signaling that promotes trichome elongation. SlHD8 is also highly expressed in trichomes and physically interacts with SlJAZ4. Loss-of-function mutations in SlHD8 caused shorter trichomes, a phenotype that was only partially rescued by methyl jasmonate treatment. Our dual-luciferase and chromatin immunoprecipitation-quantitative PCR assays revealed that SlHD8 regulates trichome elongation by directly binding to the promoters of a set of cell-wall-loosening protein genes and activating their transcription. Together, our findings define SlHD8-SlJAZ4 as a key module mediating JA-induced trichome elongation in tomato.
Collapse
Affiliation(s)
- Bing Hua
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiang Chang
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhijing Xu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoqian Han
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mengyuan Xu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Meina Yang
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Changxian Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuang Wu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
30
|
Zhang X, Cao J, Huang C, Zheng Z, Liu X, Shangguan X, Wang L, Zhang Y, Chen Z. Characterization of cotton ARF factors and the role of GhARF2b in fiber development. BMC Genomics 2021; 22:202. [PMID: 33752589 PMCID: PMC7986310 DOI: 10.1186/s12864-021-07504-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/02/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Cotton fiber is a model system for studying plant cell development. At present, the functions of many transcription factors in cotton fiber development have been elucidated, however, the roles of auxin response factor (ARF) genes in cotton fiber development need be further explored. RESULTS Here, we identify auxin response factor (ARF) genes in three cotton species: the tetraploid upland cotton G. hirsutum, which has 73 ARF genes, and its putative extent parental diploids G. arboreum and G. raimondii, which have 36 and 35 ARFs, respectively. Ka and Ks analyses revealed that in G. hirsutum ARF genes have undergone asymmetric evolution in the two subgenomes. The cotton ARFs can be classified into four phylogenetic clades and are actively expressed in young tissues. We demonstrate that GhARF2b, a homolog of the Arabidopsis AtARF2, was preferentially expressed in developing ovules and fibers. Overexpression of GhARF2b by a fiber specific promoter inhibited fiber cell elongation but promoted initiation and, conversely, its downregulation by RNAi resulted in fewer but longer fiber. We show that GhARF2b directly interacts with GhHOX3 and represses the transcriptional activity of GhHOX3 on target genes. CONCLUSION Our results uncover an important role of the ARF factor in modulating cotton fiber development at the early stage.
Collapse
Affiliation(s)
- Xiufang Zhang
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Junfeng Cao
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
- Plant Stress Biology Center, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
- University of Chinese Academy of Sciences, Shanghai, 200032 China
| | - Chaochen Huang
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210 China
| | - Zishou Zheng
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
- University of Chinese Academy of Sciences, Shanghai, 200032 China
| | - Xia Liu
- Esquel Group, 25 Harbour Road, Wanchai, Hong Kong, China
| | - Xiaoxia Shangguan
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Lingjian Wang
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Yugao Zhang
- Esquel Group, 25 Harbour Road, Wanchai, Hong Kong, China
| | - Zhiwen Chen
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
- Institute of Carbon Materials Science, Shanxi Datong University, Datong, 037009 China
| |
Collapse
|
31
|
A Modified Actin (Gly65Val Substitution) Expressed in Cotton Disrupts Polymerization of Actin Filaments Leading to the Phenotype of Ligon Lintless-1 ( Li1) Mutant. Int J Mol Sci 2021; 22:ijms22063000. [PMID: 33809404 PMCID: PMC7998759 DOI: 10.3390/ijms22063000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/16/2021] [Accepted: 02/24/2021] [Indexed: 12/20/2022] Open
Abstract
Dynamic remodeling of the actin cytoskeleton plays a central role in the elongation of cotton fibers, which are the most important natural fibers in the global textile industry. Here, a high-resolution mapping approach combined with comparative sequencing and a transgenic method revealed that a G65V substitution in the cotton actin Gh_D04G0865 (GhACT17D in the wild-type) is responsible for the Gossypium hirsutum Ligon lintless-1 (Li1) mutant (GhACT17DM). In the mutant GhACT17DM from Li1 plant, Gly65 is substituted with valine on the lip of the nucleotide-binding domain of GhACT17D, which probably affects the polymerization of F-actin. Over-expression of GhACT17DM, but not GhACT17D, driven by either a CaMV35 promoter or a fiber-specific promoter in cotton produced a Li1-like phenotype. Compared with the wild-type control, actin filaments in Li1 fibers showed higher growth and shrinkage rates, decreased filament skewness and parallelness, and increased filament density. Taken together, our results indicate that the incorporation of GhACT17DM during actin polymerization disrupts the establishment and dynamics of the actin cytoskeleton, resulting in defective fiber elongation and the overall dwarf and twisted phenotype of the Li1 mutant.
Collapse
|
32
|
Graham BP, Haigler CH. Microtubules exert early, partial, and variable control of cotton fiber diameter. PLANTA 2021; 253:47. [PMID: 33484350 DOI: 10.1007/s00425-020-03557-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/30/2020] [Indexed: 05/07/2023]
Abstract
Variable cotton fiber diameter is set early in anisotropic elongation by cell-type-specific processes involving the temporal and spatial regulation of microtubules in the apical region. Cotton fibers are single cells that originate from the seed epidermis of Gossypium species. Then, they undergo extreme anisotropic elongation and limited diametric expansion. The details of cellular morphogenesis determine the quality traits that affect fiber uses and value, such as length, strength, and diameter. Lower and more consistent diameter would increase the competitiveness of cotton fiber with synthetic fiber, but we do not know how this trait is controlled. The complexity of the question is indicated by the existence of fibers in two major width classes in the major commercial species: broad and narrow fibers exist in commonly grown G. hirsutum, whereas G. barbadense produces only narrow fiber. To further understand how fiber diameter is controlled, we used ovule cultures, morphology measurements, and microtubule immunofluorescence to observe the effects of microtubule antagonists on fiber morphology, including shape and diameter within 80 µm of the apex. The treatments were applied at either one or two days post-anthesis during different stages of fiber morphogenesis. The results showed that inhibiting the presence and/or dynamic activity of microtubules caused larger diameter tips to form, with greater effects often observed with earlier treatment. The presence and geometry of a microtubule-depleted-zone below the apex were transiently correlated with the apical diameter of the narrow tip types. Similarly, the microtubule antagonists had somewhat different effects between tip types. Overall, the results demonstrate cell-type-specific mechanisms regulating fiber expansion within 80 µm of the apex, with variation in the impact of microtubules between tip types and over developmental time.
Collapse
Affiliation(s)
- Benjamin P Graham
- Department of Crop and Soil Sciences and Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Candace H Haigler
- Department of Crop and Soil Sciences and Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
33
|
Song X, Zhu G, Hou S, Ren Y, Amjid MW, Li W, Guo W. Genome-Wide Association Analysis Reveals Loci and Candidate Genes Involved in Fiber Quality Traits Under Multiple Field Environments in Cotton ( Gossypium hirsutum). FRONTIERS IN PLANT SCIENCE 2021; 12:695503. [PMID: 34421946 PMCID: PMC8374309 DOI: 10.3389/fpls.2021.695503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/16/2021] [Indexed: 05/17/2023]
Abstract
Fiber length, fiber strength, and fiber micronaire are the main fiber quality parameters in cotton. Thus, mining the elite and stable loci/alleles related to fiber quality traits and elucidating the relationship between the two may accelerate genetic improvement of fiber quality in cotton. Here, genome-wide association analysis (GWAS) was performed for fiber quality parameters based on phenotypic data, and 56,010 high-quality single nucleotide polymorphisms (SNPs) using 242 upland cotton accessions under 12 field environments were obtained. Phenotypic analysis exhibited that fiber length (FL) had a positive correlation with fiber strength (FS) and had a negative correlation with fiber micronaire (Mic). Genetic analysis also indicated that FL, FS, and Mic had high heritability of more than 80%. A total of 67 stable quantitative trait loci (QTLs) were identified through GWAS analysis, including 31 for FL, 21 for FS, and 22 for Mic. Of them, three pairs homologous QTLs were detected between A and D subgenomes, and seven co-located QTLs with two fiber quality parameters were found. Compared with the reported QTLs, 34 co-located with previous studies, and 33 were newly revealed. Integrated with transcriptome analysis, we selected 256, 244, and 149 candidate genes for FL, FS, and Mic, respectively. Gene Ontology (GO) analysis showed that most of the genes located in QTLs interval of the three fiber quality traits were involved in sugar biosynthesis, sugar metabolism, microtubule, and cytoskeleton organization, which played crucial roles in fiber development. Through correlation analysis between haplotypes and phenotypes, three genes (GH_A05G1494, GH_D11G3097, and GH_A05G1082) predominately expressed in fiber development stages were indicated to be potentially responsible for FL, FS, and Mic, respectively. The GH_A05G1494 encoded a protein containing SGS-domain, which is related to tubulin-binding and ubiquitin-protein ligase binding. The GH_D11G3097 encoded 20S proteasome beta subunit G1, and was involved in the ubiquitin-dependent protein catabolic process. The GH_A05G1082 encoded RAN binding protein 1 with a molecular function of GTPase activator activity. These results provide new insights and candidate loci/genes for the improvement of fiber quality in cotton.
Collapse
|
34
|
Genome-Wide Identification and Comparative Analysis of Myosin Gene Family in Four Major Cotton Species. Genes (Basel) 2020; 11:genes11070731. [PMID: 32630134 PMCID: PMC7397272 DOI: 10.3390/genes11070731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 11/16/2022] Open
Abstract
Myosin protein as a molecular motor, binding with Actin, plays a significant role in various physiological activities such as cell division, movement, migration, and morphology; however, there are only a few studies on plant Myosin gene family, particularly in cotton. A total of 114 Myosin genes were found in Gossypium hirsutum, Gossypium barbadense, Gossypium raimondii, and Gossypium arboreum. All Myosins could be grouped into six groups, and for each group of these genes, similar gene structures are found. Study of evolution suggested that the whole genome duplications event occurring about 13-20 MYA (millions of years ago) is the key explanation for Myosins expanse in cotton. Cis-element and qPCR analysis revealed that plant hormones such as abscisic acid, methyl jasmonate, and salicylic acid can control the expression of Myosins. This research provides useful information on the function of Myosin genes in regulating plant growth, production, and fiber elongation for further studies.
Collapse
|
35
|
Yang Z, Qanmber G, Wang Z, Yang Z, Li F. Gossypium Genomics: Trends, Scope, and Utilization for Cotton Improvement. TRENDS IN PLANT SCIENCE 2020; 25:488-500. [PMID: 31980282 DOI: 10.1016/j.tplants.2019.12.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/19/2019] [Accepted: 12/09/2019] [Indexed: 05/23/2023]
Abstract
Cotton (Gossypium spp.) is the most important natural fiber crop worldwide. The diversity of Gossypium species also provides an ideal model for investigating evolution and domestication of polyploids. However, the huge and complex cotton genome hinders genomic research. Technical advances in high-throughput sequencing and bioinformatics analysis have now largely overcome these obstacles, bringing about a new era of cotton genomics. Here, we review recent progress in Gossypium genomics based on whole genome sequencing, resequencing, and comparative genomics, which have provided insights about the genomic basis of fiber biogenesis and the landscape of cotton functional genomics. We address current challenges and present multidisciplinary genomics-enabled breeding strategies covering the breadth of high fiber yield, quality, and environmental resilience for future cotton breeding programs.
Collapse
Affiliation(s)
- Zuoren Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Ghulam Qanmber
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Zhi Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Zhaoen Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| |
Collapse
|
36
|
Nowak J, Gennermann K, Persson S, Nikoloski Z. CytoSeg 2.0: automated extraction of actin filaments. Bioinformatics 2020; 36:2950-2951. [PMID: 31971582 PMCID: PMC7203740 DOI: 10.1093/bioinformatics/btaa035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 12/23/2019] [Accepted: 01/19/2020] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Actin filaments (AFs) are dynamic structures that substantially change their organization over time. The dynamic behavior and the relatively low signal-to-noise ratio during live-cell imaging have rendered the quantification of the actin organization a difficult task. RESULTS We developed an automated image-based framework that extracts AFs from fluorescence microscopy images and represents them as networks, which are automatically analyzed to identify and compare biologically relevant features. Although the source code is freely available, we have now implemented the framework into a graphical user interface that can be installed as a Fiji plugin, thus enabling easy access by the research community. AVAILABILITY AND IMPLEMENTATION CytoSeg 2.0 is open-source software under the GPL and is available on Github: https://github.com/jnowak90/CytoSeg2.0. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jacqueline Nowak
- School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia.,Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany.,Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Kristin Gennermann
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Zoran Nikoloski
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany.,Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| |
Collapse
|
37
|
Li YB, Xu R, Liu C, Shen N, Han LB, Tang D. Magnaporthe oryzae fimbrin organizes actin networks in the hyphal tip during polar growth and pathogenesis. PLoS Pathog 2020; 16:e1008437. [PMID: 32176741 PMCID: PMC7098657 DOI: 10.1371/journal.ppat.1008437] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 03/26/2020] [Accepted: 02/26/2020] [Indexed: 01/19/2023] Open
Abstract
Magnaporthe oryzae causes rice blast disease, but little is known about the dynamic restructuring of the actin cytoskeleton during its polarized tip growth and pathogenesis. Here, we used super-resolution live-cell imaging to investigate the dynamic organization of the actin cytoskeleton in M. oryzae during hyphal tip growth and pathogenesis. We observed a dense actin network at the apical region of the hyphae and actin filaments originating from the Spitzenkörper (Spk, the organizing center for hyphal growth and development) that formed branched actin bundles radiating to the cell membrane. The actin cross-linking protein Fimbrin (MoFim1) helps organize this actin distribution. MoFim1 localizes to the actin at the subapical collar, the actin bundles, and actin at the Spk. Knockout of MoFim1 resulted in impaired Spk maintenance and reduced actin bundle formation, preventing polar growth, vesicle transport, and the expansion of hyphae in plant cells. Finally, transgenic rice (Oryza sativa) expressing RNA hairpins targeting MoFim1 exhibited improved resistance to M. oryzae infection, indicating that MoFim1 represents an excellent candidate for M. oryzae control. These results reveal the dynamics of actin assembly in M. oryzae during hyphal tip development and pathogenesis, and they suggest a mechanism in which MoFim1 organizes such actin networks.
Collapse
Affiliation(s)
- Yuan-Bao Li
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Rui Xu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Chengyu Liu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ningning Shen
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Li-Bo Han
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
38
|
Yang Y, Huang W, Wu E, Lin C, Chen B, Lin D. Cortical Microtubule Organization during Petal Morphogenesis in Arabidopsis. Int J Mol Sci 2019; 20:E4913. [PMID: 31623377 PMCID: PMC6801907 DOI: 10.3390/ijms20194913] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 12/31/2022] Open
Abstract
Cortical microtubules guide the direction and deposition of cellulose microfibrils to build the cell wall, which in turn influences cell expansion and plant morphogenesis. In the model plant Arabidopsis thaliana (Arabidopsis), petal is a relatively simple organ that contains distinct epidermal cells, such as specialized conical cells in the adaxial epidermis and relatively flat cells with several lobes in the abaxial epidermis. In the past two decades, the Arabidopsis petal has become a model experimental system for studying cell expansion and organ morphogenesis, because petals are dispensable for plant growth and reproduction. Recent advances have expanded the role of microtubule organization in modulating petal anisotropic shape formation and conical cell shaping during petal morphogenesis. Here, we summarize recent studies showing that in Arabidopsis, several genes, such as SPIKE1, Rho of plant (ROP) GTPases, and IPGA1, play critical roles in microtubule organization and cell expansion in the abaxial epidermis during petal morphogenesis. Moreover, we summarize the live-confocal imaging studies of Arabidopsis conical cells in the adaxial epidermis, which have emerged as a new cellular model. We discuss the microtubule organization pattern during conical cell shaping. Finally, we propose future directions regarding the study of petal morphogenesis and conical cell shaping.
Collapse
Affiliation(s)
- Yanqiu Yang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Weihong Huang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Endian Wu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Chentao Lin
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Binqing Chen
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Deshu Lin
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
39
|
Chang J, Xu Z, Li M, Yang M, Qin H, Yang J, Wu S. Spatiotemporal cytoskeleton organizations determine morphogenesis of multicellular trichomes in tomato. PLoS Genet 2019; 15:e1008438. [PMID: 31584936 PMCID: PMC6812842 DOI: 10.1371/journal.pgen.1008438] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 10/24/2019] [Accepted: 09/19/2019] [Indexed: 11/18/2022] Open
Abstract
Plant trichomes originate from epidermal cell, forming protective structure from abiotic and biotic stresses. Different from the unicellular trichome in Arabidopsis, tomato trichomes are multicellular structure and can be classified into seven different types based on cell number, shape and the presence of glandular cells. Despite the importance of tomato trichomes in insect resistance, our understanding of the tomato trichome morphogenesis remains elusive. In this study, we quantitatively analyzed morphological traits of trichomes in tomato and further performed live imaging of cytoskeletons in stably transformed lines with actin and microtubule markers. At different developmental stages, two types of cytoskeletons exhibited distinct patterns in different trichome cells, ranging from transverse, spiral to longitudinal. This gradual transition of actin filament angle from basal to top cells could correlate with the spatial expansion mode in different cells. Further genetic screen for aberrant trichome morphology led to the discovery of a number of independent mutations in SCAR/WAVE and ARP2/3 complex, which resulted in actin bundling and distorted trichomes. Disruption of microtubules caused isotropic expansion while abolished actin filaments entirely inhibited axial extension of trichomes, indicating that microtubules and actin filaments may control distinct aspects of trichome cell expansion. Our results shed light on the roles of cytoskeletons in the formation of multicellular structure of tomato trichomes.
Collapse
Affiliation(s)
- Jiang Chang
- College of Horticulture, FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhijing Xu
- College of Horticulture, FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Meng Li
- College of Horticulture, FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Meina Yang
- College of Horticulture, FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haiyang Qin
- College of Horticulture, FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Yang
- College of Horticulture, FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuang Wu
- College of Horticulture, FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|