1
|
Tolopka JI, Svriz M, Ledesma TM, Lanari E, Scervino JM, Moreno JE. Environmental Pollutant Anthracene Induces ABA-Dependent Transgenerational Effects on Gemmae Dormancy in Marchantia polymorpha. PLANTS (BASEL, SWITZERLAND) 2024; 13:2979. [PMID: 39519898 PMCID: PMC11548294 DOI: 10.3390/plants13212979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Anthracene, a polycyclic aromatic hydrocarbon (PAH) from fossil fuel combustion, poses significant environmental threats. This study investigates the role of abscisic acid (ABA) in the anthracene tolerance of the liverwort Marchantia polymorpha using mutants deficient in ABA perception (Mppyl1) or biosynthesis (Mpaba1). In this study, we monitored the role of ABA in the anthracene tolerance response by tracking two ABA-controlled traits: plant growth inhibition and gemmae dormancy. We found that the anthracene-induced inhibition of plant growth is dose-dependent, similar to the growth-inhibiting effect of ABA, but independent of ABA pathways. However, gemmae dormancy was differentially affected by anthracene in ABA-deficient mutants. We found that gemmae from anthracene-exposed WT plants exhibited reduced germination compared to those from mock-treated plants. This suggests that the anthracene exposure of mother plants induces a transgenerational effect, resulting in prolonged dormancy in their asexual propagules. While Mppyl1 gemmae retained a dormancy delay when derived from anthracene-exposed thalli, the ABA biosynthesis mutant Mpaba1 did not display any significant dormancy delay as a consequence of anthracene exposure. These results, together with the strong induction of ABA marker genes upon anthracene treatment, imply that anthracene-induced germination inhibition relies on ABA synthesis in the mother plant, highlighting the critical role of MpABA1 in the tolerance response. These findings reveal a complex interplay between anthracene stress and ABA signaling, where anthracene triggers ABA-mediated responses, influencing reproductive success and highlighting the potential for leveraging genetic and hormonal pathways to enhance plant resilience in contaminated habitats.
Collapse
Affiliation(s)
- Juan I. Tolopka
- Instituto de Agrobiotecnología del Litoral, Centro Científico Tecnológico CONICET Santa Fe, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Colectora Ruta Nacional No. 168 km. 0, Paraje El Pozo, Santa Fe 3000, Argentina; (J.I.T.); (T.M.L.)
| | - Maya Svriz
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Universidad Nacional del Comahue-CONICET, SC Bariloche, Río Negro 8400, Argentina; (M.S.); (J.M.S.)
| | - Tamara M. Ledesma
- Instituto de Agrobiotecnología del Litoral, Centro Científico Tecnológico CONICET Santa Fe, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Colectora Ruta Nacional No. 168 km. 0, Paraje El Pozo, Santa Fe 3000, Argentina; (J.I.T.); (T.M.L.)
| | - Eugenia Lanari
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Universidad Nacional del Comahue-CONICET, SC Bariloche, Río Negro 8400, Argentina; (M.S.); (J.M.S.)
| | - José M. Scervino
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Universidad Nacional del Comahue-CONICET, SC Bariloche, Río Negro 8400, Argentina; (M.S.); (J.M.S.)
| | - Javier E. Moreno
- Instituto de Agrobiotecnología del Litoral, Centro Científico Tecnológico CONICET Santa Fe, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Colectora Ruta Nacional No. 168 km. 0, Paraje El Pozo, Santa Fe 3000, Argentina; (J.I.T.); (T.M.L.)
| |
Collapse
|
2
|
Liang Z, Shi Y, Huang Y, Lu J, Zhang M, Cao X, Hu R, Li D, Chen W, Zhu C, Wu D, Chen K. XYLEM NAC DOMAIN 1 (EjXND1) relieves cold-induced lignification by negatively regulating the EjHB1-EjPRX12 module in loquat fruit. J Adv Res 2024:S2090-1232(24)00376-X. [PMID: 39233002 DOI: 10.1016/j.jare.2024.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
INTRODUCTION Lignin is a principal constituent of the secondary cell wall, which plays a role in both plant growth and defensing against stress, such as low temperature and pest infestation. Additionally, it also accumulates in fleshy fruits and negatively affects fruit quality. Red-fleshed loquat is temperature sensitive and exhibits cold-induced lignification. A number of technologies have been developed, for example, Low Temperature Conditioning (LTC) treatment, which has been applied in order to relieve the symptom of cold injury. OBJECTIVES The present study seeks to elucidate the regulatory mechanism underlying cold-induced lignification in loquat fruit. METHODS The target genes were isolated through the analysis of transcriptome. The gene function was analyzed by transient transgenic method in tobacco leaves and loquat fruit, respectively, as well as stable overexpression in liverwort. The regulatory mechanism study was achieved by in vitro protein-protein interaction assays, dual-luciferase assay, and EMSA. RESULTS In the present study, the Xylem NAC Domain transcription factor EjXND1 was identified as a repressor of loquat fruit lignification. It was demonstrated that EjXND1 could interact with the characterized lignin activator EjHB1, resulting in a diminution of the activation of EjHB1 on EjPRX12 promoter. Furthermore, two highly methylated regions were identified in the promoter of EjXDN1. One of these regions exhibited a negative correlation between methylation level and EjXND1 expression. Additionally, it was shown that hypermethylation of this region weaken the binding affinity of EjXND1 activators to its promoter. CONCLUSION The EjXND1 plays a role in modified Low Temperature Conditioning (mLTC) treatment that alleviates cold-induced lignification in red-fleshed loquat fruit by targeting the EjHB1-EjPRX12 module and EjXND1 is regulated by the dynamic of DNA methylation level in the promoter.
Collapse
Affiliation(s)
- Zihao Liang
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yanna Shi
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth and Development, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yiqing Huang
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Jiao Lu
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Mengxue Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Xizhi Cao
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Ruoqian Hu
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Dongdong Li
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth and Development, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Wenbo Chen
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth and Development, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Changqing Zhu
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth and Development, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Di Wu
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth and Development, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Kunsong Chen
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth and Development, Zhejiang University, Zijingang Campus, Hangzhou 310058, China.
| |
Collapse
|
3
|
Zheng L, Gao S, Bai Y, Zeng H, Shi H. NF-YC15 transcription factor activates ethylene biosynthesis and improves cassava disease resistance. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2424-2434. [PMID: 38600705 PMCID: PMC11331790 DOI: 10.1111/pbi.14355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/04/2024] [Accepted: 03/29/2024] [Indexed: 04/12/2024]
Abstract
The nuclear factor Y (NF-Y) transcription factors play important roles in plant development and physiological responses. However, the relationship between NF-Y, plant hormone and plant stress resistance in tropical crops remains unclear. In this study, we identified MeNF-YC15 gene in the NF-Y family that significantly responded to Xanthomonas axonopodis pv. manihotis (Xam) treatment. Using MeNF-YC15-silenced and -overexpressed cassava plants, we elucidated that MeNF-YC15 positively regulated disease resistance to cassava bacterial blight (CBB). Notably, we illustrated MeNF-YC15 downstream genes and revealed the direct genetic relationship between MeNF-YC15 and 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (MeACO1)-ethylene module in disease resistance, as evidenced by the rescued disease susceptibility of MeNF-YC15 silenced cassava plants with ethylene treatment or overexpressing MeACO1. In addition, the physical interaction between 2C-type protein phosphatase 1 (MePP2C1) and MeNF-YC15 inhibited the transcriptional activation of MeACO1 by MeNF-YC15. In summary, MePP2C1-MeNF-YC15 interaction modulates ethylene biosynthesis and cassava disease resistance, providing gene network for cassava genetic improvement.
Collapse
Affiliation(s)
- Liyan Zheng
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and ForestryHainan UniversitySanya and HaikouHainan provinceChina
| | - Shuai Gao
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and ForestryHainan UniversitySanya and HaikouHainan provinceChina
| | - Yujing Bai
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and ForestryHainan UniversitySanya and HaikouHainan provinceChina
| | - Hongqiu Zeng
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and ForestryHainan UniversitySanya and HaikouHainan provinceChina
| | - Haitao Shi
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and ForestryHainan UniversitySanya and HaikouHainan provinceChina
| |
Collapse
|
4
|
Takaoka Y, Liu R, Ueda M. A structure-redesigned intrinsically disordered peptide that selectively inhibits a plant transcription factor in jasmonate signaling. PNAS NEXUS 2024; 3:pgae312. [PMID: 39139264 PMCID: PMC11319934 DOI: 10.1093/pnasnexus/pgae312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/10/2024] [Indexed: 08/15/2024]
Abstract
Plant hormone-related transcription factors (TFs) are key regulators of plant development, responses to environmental stress such as climate changes, pathogens, and pests. These TFs often function as families that exhibit genetic redundancy in higher plants, and are affected by complex crosstalk mechanisms between different plant hormones. These properties make it difficult to analyze and control them in many cases. In this study, we introduced a chemical inhibitor to manipulate plant hormone-related TFs, focusing on the jasmonate (JA) and ethylene (ET) signaling pathways, with the key TFs MYC2/3/4 and EIN3/EIL1. This study revealed that JAZ10CMID, the binding domain of the repressor involved in the desensitization of both TFs, is an intrinsically disordered region in the absence of binding partners. Chemical inhibitors have been designed based on this interaction to selectively inhibit MYC TFs while leaving EIN3/EIL1 unaffected. This peptide inhibitor effectively disrupts MYC-mediated responses while activating EIN3-mediated responses and successfully uncouples the crosstalk between JA and ET signaling in Arabidopsis thaliana. Furthermore, the designed peptide inhibitor was also shown to selectively inhibit the activity of MpMYC, an ortholog of AtMYC in Marchantia polymorpha, demonstrating its applicability across different plant species. This underscores the potential of using peptide inhibitors for specific TFs to elucidate hormone crosstalk mechanisms in non-model plants without genetic manipulation. Such a design concept for chemical fixation of the disordered structure is expected to limit the original multiple binding partners and provide useful chemical tools in chemical biology research.
Collapse
Affiliation(s)
- Yousuke Takaoka
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Ruiqi Liu
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Minoru Ueda
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza Aoba, Aoba-ku, Sendai 980-8578, Japan
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
5
|
Fan H, Wang X, Zhong H, Quan K, Yu R, Ma S, Song S, Lin M. Integrated analysis of miRNAs, transcriptome and phytohormones in the flowering time regulatory network of tea oil camellia. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:945-956. [PMID: 38974357 PMCID: PMC11222345 DOI: 10.1007/s12298-024-01473-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/09/2024]
Abstract
Camellia oleifera is a crucial cash crop in the southern region of China. Timely flowering is a crucial characteristic for maximizing crop productivity. Nevertheless, the cold temperature and wet weather throughout the fall and winter seasons in South China impact the timing of flowering and the yield produced by C. oleifera. This study examined the miRNAs, transcriptomes, and phytohormones that are part of the flowering time regulatory networks in distinct varieties of C. oleifera (Sep, Oct, and Nov). This study provides evidence that phytohormones significantly impact the timing of flowering in C. oleifera leaves. There is a positive correlation between the accumulation variations of zeatin (cZ), brassinolide (BL), salicylic acid (SA), 1-amino cyclopropane carboxylic acid (ACC), and jasmonic acid (JA) and flowering time. This means that blooming occurs earlier when the quantity of these substances in leaves increases. Abscisic acid (ABA), trans-zeatin-riboside (tZR), dihydrozeatin (dh-Z), and IP (N6-Isopentenyladenine) exhibit contrasting effects. Furthermore, both miR156 and miR172 play a crucial function in regulating flowering time in C. oleifera leaves by modulating the expression of SOC1, primarily through the miR156-SPL and miR172-AP2 pathways. These findings establish a strong basis for future research endeavors focused on examining the molecular network associated with the flowering period of C. oleifera and controlling flowering time management through external treatments. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01473-2.
Collapse
Affiliation(s)
- Haixiao Fan
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi China
- Jiangxi Kiwifruit Engineering Research Center, Nanchang, Jiangxi China
| | - Xiaoling Wang
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi China
- Jiangxi Kiwifruit Engineering Research Center, Nanchang, Jiangxi China
| | - Huiqi Zhong
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi China
- Jiangxi Kiwifruit Engineering Research Center, Nanchang, Jiangxi China
| | - Kehui Quan
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi China
- Jiangxi Kiwifruit Engineering Research Center, Nanchang, Jiangxi China
| | - Ruohan Yu
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi China
- Jiangxi Kiwifruit Engineering Research Center, Nanchang, Jiangxi China
| | - Shiying Ma
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi China
- Jiangxi Kiwifruit Engineering Research Center, Nanchang, Jiangxi China
| | - Siqiong Song
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi China
- Jiangxi Kiwifruit Engineering Research Center, Nanchang, Jiangxi China
| | - Mengfei Lin
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi China
- Jiangxi Kiwifruit Engineering Research Center, Nanchang, Jiangxi China
| |
Collapse
|
6
|
Cui Y, Ji X, Yu W, Liu Y, Bai Q, Su S. Genome-Wide Characterization and Functional Validation of the ACS Gene Family in the Chestnut Reveals Its Regulatory Role in Ovule Development. Int J Mol Sci 2024; 25:4454. [PMID: 38674037 PMCID: PMC11049808 DOI: 10.3390/ijms25084454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Ovule abortion significantly contributes to a reduction in chestnut yield. Therefore, an examination of the mechanisms underlying ovule abortion is crucial for increasing chestnut yield. In our previous study, we conducted a comprehensive multiomic analysis of fertile and abortive ovules and found that ACS genes in chestnuts (CmACS) play a crucial role in ovule development. Therefore, to further study the function of ACS genes, a total of seven CmACS members were identified, their gene structures, conserved structural domains, evolutionary trees, chromosomal localization, and promoter cis-acting elements were analyzed, and their subcellular localization was predicted and verified. The spatiotemporal specificity of the expression of the seven CmACS genes was confirmed via qRT-PCR analysis. Notably, CmACS7 was exclusively expressed in the floral organs, and its expression peaked during fertilization and decreased after fertilization. The ACC levels remained consistently greater in fertile ovules than in abortive ovules. The ACSase activity of CmACS7 was identified using the genetic transformation of chestnut healing tissue. Micro Solanum lycopersicum plants overexpressing CmACS7 had a significantly greater rate of seed failure than did wild-type plants. Our results suggest that ovule fertilization activates CmACS7 and increases ACC levels, whereas an overexpression of CmACS7 leads to an increase in ACC content in the ovule prior to fertilization, which can lead to abortion. In conclusion, the present study demonstrated that chestnut ovule abortion is caused by poor fertilization and not by nutritional competition. Optimization of the pollination and fertilization of female flowers is essential for increasing chestnut yield and reducing ovule abortion.
Collapse
Affiliation(s)
- Yanhong Cui
- College of Forestry, Beijing Forestry University, Beijing 100083, China; (Y.C.); (X.J.); (W.Y.); (Y.L.)
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China
| | - Xingzhou Ji
- College of Forestry, Beijing Forestry University, Beijing 100083, China; (Y.C.); (X.J.); (W.Y.); (Y.L.)
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China
| | - Wenjie Yu
- College of Forestry, Beijing Forestry University, Beijing 100083, China; (Y.C.); (X.J.); (W.Y.); (Y.L.)
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yang Liu
- College of Forestry, Beijing Forestry University, Beijing 100083, China; (Y.C.); (X.J.); (W.Y.); (Y.L.)
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Qian Bai
- College of Forestry, Beijing Forestry University, Beijing 100083, China; (Y.C.); (X.J.); (W.Y.); (Y.L.)
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China
| | - Shuchai Su
- College of Forestry, Beijing Forestry University, Beijing 100083, China; (Y.C.); (X.J.); (W.Y.); (Y.L.)
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China
| |
Collapse
|
7
|
Wang Y, Jiang L, Kong D, Meng J, Song M, Cui W, Song Y, Wang X, Liu J, Wang R, He Y, Chang C, Ju C. Ethylene controls three-dimensional growth involving reduced auxin levels in the moss Physcomitrium patens. THE NEW PHYTOLOGIST 2024. [PMID: 38571393 DOI: 10.1111/nph.19728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024]
Abstract
The conquest of land by plants was concomitant with, and possibly enabled by, the evolution of three-dimensional (3D) growth. The moss Physcomitrium patens provides a model system for elucidating molecular mechanisms in the initiation of 3D growth. Here, we investigate whether the phytohormone ethylene, which is believed to have been a signal before land plant emergence, plays a role in 3D growth regulation in P. patens. We report ethylene controls 3D gametophore formation, based on results from exogenously applied ethylene and genetic manipulation of PpEIN2, which is a central component in the ethylene signaling pathway. Overexpression (OE) of PpEIN2 activates ethylene responses and leads to earlier formation of gametophores with fewer gametophores produced thereafter, phenocopying ethylene-treated wild-type. Conversely, Ppein2 knockout mutants, which are ethylene insensitive, show initially delayed gametophore formation with more gametophores produced later. Furthermore, pharmacological and biochemical analyses reveal auxin levels are decreased in the OE lines but increased in the knockout mutants. Our results suggest that evolutionarily, ethylene and auxin molecular networks were recruited to build the plant body plan in ancestral land plants. This might have played a role in enabling ancient plants to acclimate to the continental surfaces of the planet.
Collapse
Affiliation(s)
- Yidong Wang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Lanlan Jiang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Dongdong Kong
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Jie Meng
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Meifang Song
- Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing, 100050, China
| | - Wenxiu Cui
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yaqi Song
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Xiaofan Wang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Jiao Liu
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Rui Wang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yikun He
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Caren Chang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Chuanli Ju
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| |
Collapse
|
8
|
Li H, Wang S, Zhai L, Cui Y, Tang G, Huo J, Li X, Bian S. The miR156/SPL12 module orchestrates fruit colour change through directly regulating ethylene production pathway in blueberry. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:386-400. [PMID: 37797061 PMCID: PMC10826998 DOI: 10.1111/pbi.14193] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/26/2023] [Accepted: 09/23/2023] [Indexed: 10/07/2023]
Abstract
Colour change is an important event during fruit ripening in blueberry. It is well known that miR156/SPLs act as regulatory modules mediating anthocyanin biosynthesis and ethylene plays critical roles during colour change, but the intrinsic connections between the two pathways remain poorly understood. Previously, we demonstrated that blueberry VcMIR156a/VcSPL12 affects the accumulation of anthocyanins and chlorophylls in tomato and Arabidopsis. In this study, we first showed that VcMIR156a overexpression in blueberry led to enhanced anthocyanin biosynthesis, decreased chlorophyll accumulation, and, intriguingly, concomitant elevation in the expression of ethylene biosynthesis genes and the level of the ethylene precursor ACC. Conversely, VcSPL12 enhanced chlorophyll accumulation and suppressed anthocyanin biosynthesis and ACC synthesis in fruits. Moreover, the treatment with ethylene substitutes and inhibitors attenuated the effects of VcMIR156a and VcSPL12 on pigment accumulation. Protein-DNA interaction assays indicated that VcSPL12 could specifically bind to the promoters and inhibit the activities of the ethylene biosynthetic genes VcACS1 and VcACO6. Collectively, our results show that VcMIR156a/VcSPL12 alters ethylene production through targeting VcACS1 and VcACO6, therefore governing fruit colour change. Additionally, VcSPL12 may directly interact with the promoter region of the chlorophyll biosynthetic gene VcDVR, thereby activating its expression. These findings established an intrinsic connection between the miR156/SPL regulatory module and ethylene pathway.
Collapse
Affiliation(s)
- Hongxue Li
- College of Plant ScienceJilin UniversityChangchunChina
| | - Shouwen Wang
- College of Plant ScienceJilin UniversityChangchunChina
| | - Lulu Zhai
- College of Plant ScienceJilin UniversityChangchunChina
| | - Yuhai Cui
- Agriculture and Agri‐Food Canada, London Research and Development CentreLondonONCanada
- Department of BiologyWestern UniversityLondonONCanada
| | - Guiliang Tang
- Department of Biological Sciences, Life Science and Technology InstituteMichigan Technological UniversityHoughtonMIUSA
| | - Junwei Huo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural AffairsNortheast Agricultural UniversityHarbinChina
| | - Xuyan Li
- College of Plant ScienceJilin UniversityChangchunChina
| | - Shaomin Bian
- College of Plant ScienceJilin UniversityChangchunChina
| |
Collapse
|
9
|
Yin L, Zhang X, Gao A, Cao M, Yang D, An K, Guo S, Yin H. Genome-Wide Identification and Expression Analysis of 1-Aminocyclopropane-1-Carboxylate Synthase ( ACS) Gene Family in Chenopodium quinoa. PLANTS (BASEL, SWITZERLAND) 2023; 12:4021. [PMID: 38068656 PMCID: PMC10707884 DOI: 10.3390/plants12234021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/13/2023] [Accepted: 11/28/2023] [Indexed: 04/10/2024]
Abstract
Ethylene plays an important role in plant development and stress resistance. The rate-limiting enzyme in ethylene biosynthesis is 1-aminocyclopropane-1-carboxylic acid synthase (ACS). C. quinoa (Chenopodium quinoa) is an important food crop known for its strong tolerance to abiotic stresses. However, knowledge regarding the ACS gene family in C. quinoa remains restricted. In this study, we successfully identified 12 ACS genes (CqACSs) from the C. quinoa genome. Through thorough analysis of their sequences and phylogenetic relationships, it was verified that 8 out of these 12 CqACS isozymes exhibited substantial resemblance to ACS isozymes possessing ACS activity. Furthermore, these eight isozymes could be categorized into three distinct groups. The four remaining CqACS genes grouped under category IV displayed notable similarities with AtACS10 and AtACS12, known as amido transferases lacking ACS activity. The CqACS proteins bore resemblance to the AtACS proteins and had the characteristic structural features typically observed in plant ACS enzymes. Twelve CqACS genes were distributed across 8 out of the 18 chromosomes of C. quinoa. The CqACS genes were expanded from segment duplication. Many cis-regulatory elements related with various abiotic stresses, phytohormones, and light were found. The expression patterns of ACS genes varied across different tissues of C. quinoa. Furthermore, the analysis of gene expression patterns under abiotic stress showed that CqACS genes can be responsive to various stresses, implying their potential functions in adapting to various abiotic stresses. The findings from this research serve as a foundation for delving deeper into the functional roles of CqACS genes.
Collapse
Affiliation(s)
- Lu Yin
- College of Life Sciences, Yantai University, Yantai 264005, China; (L.Y.); (X.Z.); (A.G.); (M.C.); (D.Y.); (K.A.)
| | - Xia Zhang
- College of Life Sciences, Yantai University, Yantai 264005, China; (L.Y.); (X.Z.); (A.G.); (M.C.); (D.Y.); (K.A.)
| | - Aihong Gao
- College of Life Sciences, Yantai University, Yantai 264005, China; (L.Y.); (X.Z.); (A.G.); (M.C.); (D.Y.); (K.A.)
| | - Meng Cao
- College of Life Sciences, Yantai University, Yantai 264005, China; (L.Y.); (X.Z.); (A.G.); (M.C.); (D.Y.); (K.A.)
| | - Dongdong Yang
- College of Life Sciences, Yantai University, Yantai 264005, China; (L.Y.); (X.Z.); (A.G.); (M.C.); (D.Y.); (K.A.)
| | - Kexin An
- College of Life Sciences, Yantai University, Yantai 264005, China; (L.Y.); (X.Z.); (A.G.); (M.C.); (D.Y.); (K.A.)
| | - Shanli Guo
- College of Grassland Sciences, Qingdao Agricultural University, Qingdao 266109, China
- High-Efficiency Agricultural Technology Industry Research Institute of Saline and Alkaline Land of Dongying, Qingdao Agricultural University, Dongying 257300, China
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao Agricultural University, Qingdao 266109, China
| | - Haibo Yin
- College of Life Sciences, Yantai University, Yantai 264005, China; (L.Y.); (X.Z.); (A.G.); (M.C.); (D.Y.); (K.A.)
| |
Collapse
|
10
|
Wu W, Sun NJ, Xu Y, Chen YT, Liu XF, Shi LY, Chen W, Zhu QG, Gong BC, Yin XR, Yang ZF. Exogenous gibberellin delays maturation in persimmon fruit through transcriptional activators and repressors. PLANT PHYSIOLOGY 2023; 193:840-854. [PMID: 37325946 DOI: 10.1093/plphys/kiad351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 05/21/2023] [Indexed: 06/17/2023]
Abstract
As the harvest season of most fruit is concentrated, fruit maturation manipulation is essential for the fresh fruit industry to prolong sales time. Gibberellin (GA), an important phytohormone necessary for plant growth and development, has also shown a substantial regulatory effect on fruit maturation; however, its regulatory mechanisms remain inconclusive. In this research, preharvest GA3 treatment effectively delayed fruit maturation in several persimmon (Diospyros kaki) cultivars. Among the proteins encoded by differentially expressed genes, 2 transcriptional activators (NAC TRANSCRIPTION FACTOR DkNAC24 and ETHYLENE RESPONSIVE FACTOR DkERF38) and a repressor (MYB-LIKE TRANSCRIPTION FACTOR DkMYB22) were direct regulators of GERANYLGERANYL DIPHOSPHATE SYNTHASE DkGGPS1, LYSINE HISTIDINE TRANSPORTER DkLHT1, and FRUCTOSE-BISPHOSPHATE ALDOLASE DkFBA1, respectively, resulting in the inhibition of carotenoid synthesis, outward transport of an ethylene precursor, and consumption of fructose and glucose. Thus, the present study not only provides a practical method to prolong the persimmon fruit maturation period in various cultivars but also provides insights into the regulatory mechanisms of GA on multiple aspects of fruit quality formation at the transcriptional regulation level.
Collapse
Affiliation(s)
- Wei Wu
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Ning-Jing Sun
- College of Resources and Environment Sciences, Baoshan University, Baoshan, Yunnan 678000, China
| | - Yang Xu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Yu-Tong Chen
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiao-Fen Liu
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Li-Yu Shi
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
| | - Wei Chen
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
| | - Qing-Gang Zhu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bang-Chu Gong
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Xue-Ren Yin
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhen-Feng Yang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
| |
Collapse
|
11
|
Wang Z, Su C, Hu W, Su Q, Luan Y. The effectors of Phytophthora infestans impact host immunity upon regulation of antagonistic hormonal activities. PLANTA 2023; 258:59. [PMID: 37530861 DOI: 10.1007/s00425-023-04215-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023]
Abstract
MAIN CONCLUSION Phytophthora infestans effectors manipulate the antagonism of host hormones to interfere with the immune response of plants at different infection stages. Phytophthora infestans (P. infestans) poses a serious threat to global crop production, and its effectors play an indispensable role in its pathogenicity. However, the function of these effectors during the switch from biotrophy to necrotrophy of P. infestans remains unclear. Further research on the effectors that manipulate the antagonistic response of host hormones is also lacking. In this study, a coexpression analysis and infection assays were performed to identify distinct gene expression changes in both P. infestans and tomato. During the switch from biotrophy to necrotrophy, P. infestans secretes three types of effectors to interfere with host salicylic acid (SA), jasmonic acid (JA), ethylene (ET), and abscisic acid (ABA) levels. The three aforementioned effectors also regulate the host gene expression including NPR1, TGA2.1, PDF1.2, NDR1, ERF3, NCED6, GAI4, which are involved in hormone crosstalk. The changes in plant hormones are mediated by the three types of effectors, which may accelerate infection and drive completion of the P. infestans lifecycle. Our findings provide new insight into plant‒pathogen interactions that may contribute to the prevention growth of hemibiotrophic pathogens.
Collapse
Affiliation(s)
- Zhicheng Wang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Chenglin Su
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Wenyun Hu
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Qiao Su
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
12
|
Khan NA, Ferrante A, Khan MIR, Poor P. Editorial: Ethylene: a key regulatory molecule in plants, Volume II. FRONTIERS IN PLANT SCIENCE 2023; 14:1222462. [PMID: 37396643 PMCID: PMC10313324 DOI: 10.3389/fpls.2023.1222462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023]
Affiliation(s)
- Nafees A. Khan
- Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Milan, Italy
| | | | - Peter Poor
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| |
Collapse
|
13
|
Shu P, Li Y, Sheng J, Shen L. SlMAPK3 Positively Regulates the Ethylene Production of Postharvest Tomato Fruits and Is Involved in Ethylene-Mediated Cold Tolerance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37023258 DOI: 10.1021/acs.jafc.2c08723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades and ethylene are crucial for plant growth, development, and stress responses, but their potential mechanisms in cold resistance remain unclear. We revealed that SlMAPK3 transcript levels were dramatically induced by cold treatment in an ethylene-dependent manner. Under cold stress, the proline content of SlMAPK3-overexpression fruit was 96.5 and 115.9% higher than that of wild-type fruit (WT), respectively, while the ion leakage was 37.3 and 32.5% lower than that of WT. RNA sequencing revealed that overexpression of SlMAPK3 caused upregulation of genes that are enriched in the ethylene-activated signaling pathway (GO:0009873), cold signaling pathway (GO:0009409), and heat signaling pathway (GO:0009408). RT-qPCR demonstrated that the expression levels of SlACS2, SlACS4, SlSAHH, SlCBF1, SlDREB, SlGolS1, and SlHSP17.7 in the OE.MAPK3 fruits were consistent with the RNA sequencing results. Meanwhile, the knockout of SlMAPK3 reduced the ethylene content, ACC content, and ACS activity. Moreover, the knockout of SlMAPK3 reduced the positive effect of ethylene in cold stress, while suppressing the expression of SlICE1 and SlCBF1. In conclusion, our study demonstrated a novel mechanism by which SlMAPK3 positively regulates the ethylene production of postharvest tomato fruits and is involved in ethylene-mediated cold tolerance.
Collapse
Affiliation(s)
- Pan Shu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yujing Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jiping Sheng
- School of Agricultural Economics and Rural Development, Renmin University of China, Beijing 100872, China
| | - Lin Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
14
|
Yin CC, Huang YH, Zhang X, Zhou Y, Chen SY, Zhang JS. Ethylene-mediated regulation of coleoptile elongation in rice seedlings. PLANT, CELL & ENVIRONMENT 2023; 46:1060-1074. [PMID: 36397123 DOI: 10.1111/pce.14492] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/05/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Rice is an important food crop in the world and the study of its growth and plasticity has a profound influence on sustainable development. Ethylene modulates multiple agronomic traits of rice as well as abiotic and biotic stresses during its lifecycle. It has diverse roles, depending on the organs, developmental stages and environmental conditions. Compared to Arabidopsis (Arabidopsis thaliana), rice ethylene signalling pathway has its own unique features due to its special semiaquatic living environment and distinct plant structure. Ethylene signalling and responses are part of an intricate network in crosstalk with internal and external factors. This review will summarize the current progress in the mechanisms of ethylene-regulated coleoptile growth in rice, with a special focus on ethylene signaling and interaction with other hormones. Insights into these molecular mechanisms may shed light on ethylene biology and should be beneficial for the genetic improvement of rice and other crops.
Collapse
Affiliation(s)
- Cui-Cui Yin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, China
| | - Yi-Hua Huang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, China
| | - Xun Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Zhou
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Tansley C, Houghton J, Rose AME, Witek B, Payet RD, Wu T, Miller JB. CIPK-B is essential for salt stress signalling in Marchantia polymorpha. THE NEW PHYTOLOGIST 2023; 237:2210-2223. [PMID: 36660914 PMCID: PMC10953335 DOI: 10.1111/nph.18633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/13/2022] [Indexed: 06/17/2023]
Abstract
Calcium signalling is central to many plant processes, with families of calcium decoder proteins having expanded across the green lineage and redundancy existing between decoders. The liverwort Marchantia polymorpha has fast become a new model plant, but the calcium decoders that exist in this species remain unclear. We performed phylogenetic analyses to identify the calcineurin B-like (CBL) and CBL-interacting protein kinase (CIPK) network of M. polymorpha. We analysed CBL-CIPK expression during salt stress, and determined protein-protein interactions using yeast two-hybrid and bimolecular fluorescence complementation. We also created genetic knockouts using CRISPR/Cas9. We confirm that M. polymorpha has two CIPKs and three CBLs. Both CIPKs and one CBL show pronounced salt-responsive transcriptional changes. All M. polymorpha CBL-CIPKs interact with each other in planta. Knocking out CIPK-B causes increased sensitivity to salt, suggesting that this CIPK is involved in salt signalling. We have identified CBL-CIPKs that form part of a salt tolerance pathway in M. polymorpha. Phylogeny and interaction studies imply that these CBL-CIPKs form an evolutionarily conserved salt overly sensitive pathway. Hence, salt responses may be some of the early functions of CBL-CIPK networks and increased abiotic stress tolerance required for land plant emergence.
Collapse
Affiliation(s)
- Connor Tansley
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - James Houghton
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Althea M. E. Rose
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Bartosz Witek
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Rocky D. Payet
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Taoyang Wu
- School of Computing SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - J. Benjamin Miller
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| |
Collapse
|
16
|
Komatsu A, Kodama K, Mizuno Y, Fujibayashi M, Naramoto S, Kyozuka J. Control of vegetative reproduction in Marchantiapolymorpha by the KAI2-ligand signaling pathway. Curr Biol 2023; 33:1196-1210.e4. [PMID: 36863344 DOI: 10.1016/j.cub.2023.02.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/29/2022] [Accepted: 02/06/2023] [Indexed: 03/04/2023]
Abstract
In vegetative reproduction of Marchantia polymorpha (M. polymorpha), propagules, called gemmae, are formed in gemma cups. Despite its significance for survival, control of gemma and gemma cup formation by environmental cues is not well understood. We show here that the number of gemmae formed in a gemma cup is a genetic trait. Gemma formation starts from the central region of the floor of the gemma cup, proceeds to the periphery, and terminates when the appropriate number of gemmae is initiated. The MpKARRIKIN INSENSITIVE2 (MpKAI2)-dependent signaling pathway promotes gemma cup formation and gemma initiation. The number of gemmae in a cup is controlled by modulating the ON/OFF switch of the KAI2-dependent signaling. Termination of the signaling results in the accumulation of MpSMXL, a suppressor protein. In the Mpsmxl mutants, gemma initiation continues, leading to the formation of a highly increased number of gemmae in a cup. Consistent with its function, the MpKAI2-dependent signaling pathway is active in gemma cups where gemmae initiate, as well as in the notch region of the mature gemma and midrib of the ventral side of the thallus. In this work, we also show that GEMMA CUP-ASSOCIATED MYB1 works downstream of this signaling pathway to promote gemma cup formation and gemma initiation. We also found that the availability of potassium affects gemma cup formation independently from the KAI2-dependent signaling pathway in M. polymorpha. We propose that the KAI2-dependent signaling pathway functions to optimize vegetative reproduction by adapting to the environment in M. polymorpha.
Collapse
Affiliation(s)
- Aino Komatsu
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Kyoichi Kodama
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Yohei Mizuno
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Mizuki Fujibayashi
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Satoshi Naramoto
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan; Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan.
| |
Collapse
|
17
|
Bowman JL. The origin of a land flora. NATURE PLANTS 2022; 8:1352-1369. [PMID: 36550365 DOI: 10.1038/s41477-022-01283-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/19/2022] [Indexed: 05/12/2023]
Abstract
The origin of a land flora fundamentally shifted the course of evolution of life on earth, facilitating terrestrialization of other eukaryotic lineages and altering the planet's geology, from changing atmospheric and hydrological cycles to transforming continental erosion processes. Despite algal lineages inhabiting the terrestrial environment for a considerable preceding period, they failed to evolve complex multicellularity necessary to conquer the land. About 470 million years ago, one lineage of charophycean alga evolved complex multicellularity via developmental innovations in both haploid and diploid generations and became land plants (embryophytes), which rapidly diversified to dominate most terrestrial habitats. Genome sequences have provided unprecedented insights into the genetic and genomic bases for embryophyte origins, with some embryophyte-specific genes being associated with the evolution of key developmental or physiological attributes, such as meristems, rhizoids and the ability to form mycorrhizal associations. However, based on the fossil record, the evolution of the defining feature of embryophytes, the embryo, and consequently the sporangium that provided a reproductive advantage, may have been most critical in their rise to dominance. The long timeframe and singularity of a land flora were perhaps due to the stepwise assembly of a large constellation of genetic innovations required to conquer the terrestrial environment.
Collapse
Affiliation(s)
- John L Bowman
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia.
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
18
|
Li D, Dierschke T, Roden S, Chen K, Bowman JL, Chang C, Van de Poel B. A transporter of 1-aminocyclopropane-1-carboxylic acid affects thallus growth and fertility in Marchantia polymorpha. THE NEW PHYTOLOGIST 2022; 236:2103-2114. [PMID: 36151927 DOI: 10.1111/nph.18510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
In seed plants, 1-aminocyclopropane-1-carboxylic acid (ACC) is the precursor of the plant hormone ethylene but also has ethylene-independent signaling roles. Nonseed plants produce ACC but do not efficiently convert it to ethylene. In Arabidopsis thaliana, ACC is transported by amino acid transporters, LYSINE HISTIDINE TRANSPORTER 1 (LHT1) and LHT2. In nonseed plants, LHT homologs have been uncharacterized. Here, we isolated an ACC-insensitive mutant (Mpain) that is defective in ACC uptake in the liverwort Marchantia polymorpha. Mpain contained a frameshift mutation (1 bp deletion) in the MpLHT1 coding sequence, and was complemented by expression of a wild-type MpLHT1 transgene. Additionally, ACC insensitivity was re-created in CRISPR/Cas9-Mplht1 knockout mutants. We found that MpLHT1 can also transport l-hydroxyproline and l-histidine. We examined the physiological functions of MpLHT1 in vegetative growth and reproduction based on mutant phenotypes. Mpain and Mplht1 plants were smaller and developed fewer gemmae cups compared to wild-type plants. Mplht1 mutants also had reduced fertility, and archegoniophores displayed early senescence. These findings reveal that MpLHT1 serves as an ACC and amino acid transporter in M. polymorpha and has diverse physiological functions. We propose that MpLHT1 contributes to homeostasis of ACC and other amino acids in M. polymorpha growth and reproduction.
Collapse
Affiliation(s)
- Dongdong Li
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, 3001, Leuven, Belgium
- Department of Cell Biology and Molecular Genetics, University of Maryland, Bioscience Research Building, College Park, MD, 20742, USA
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, 310058, Hangzhou, China
| | - Tom Dierschke
- School of Biological Sciences, Monash University, 3800, Melbourne, Vic., Australia
| | - Stijn Roden
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, 3001, Leuven, Belgium
| | - Kunsong Chen
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, 310058, Hangzhou, China
| | - John L Bowman
- School of Biological Sciences, Monash University, 3800, Melbourne, Vic., Australia
| | - Caren Chang
- Department of Cell Biology and Molecular Genetics, University of Maryland, Bioscience Research Building, College Park, MD, 20742, USA
| | - Bram Van de Poel
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, 3001, Leuven, Belgium
- KU Leuven Plant Institute (LPI), University of Leuven, 3001, Leuven, Belgium
| |
Collapse
|
19
|
Bharadwaj PS, Sanchez L, Li D, Enyi D, Van de Poel B, Chang C. The plant hormone ethylene promotes abiotic stress tolerance in the liverwort Marchantia polymorpha. FRONTIERS IN PLANT SCIENCE 2022; 13:998267. [PMID: 36340412 PMCID: PMC9632724 DOI: 10.3389/fpls.2022.998267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/29/2022] [Indexed: 06/13/2023]
Abstract
Plants are often faced with an array of adverse environmental conditions and must respond appropriately to grow and develop. In angiosperms, the plant hormone ethylene is known to play a protective role in responses to abiotic stress. Here we investigated whether ethylene mediates resistance to abiotic stress in the liverwort Marchantia polymorpha, one of the most distant land plant relatives of angiosperms. Using existing M. polymorpha knockout mutants of Mpein3, and Mpctr1, two genes in the ethylene signaling pathway, we examined responses to heat, salinity, nutrient deficiency, and continuous far-red light. The Mpein3 and Mpctr1 mutants were previously shown to confer ethylene insensitivity and constitutive ethylene responses, respectively. Using mild or sub-lethal doses of each stress treatment, we found that Mpctr1 mutants displayed stress resilience similar to or greater than the wild type. In contrast, Mpein3 mutants showed less resilience than the wild type. Consistent with ethylene being a stress hormone, we demonstrated that ethylene production is enhanced by each stress treatment. These results suggest that ethylene plays a role in protecting against abiotic stress in M. polymorpha, and that ethylene has likely been conserved as a stress hormone since before the evolutionary divergence of bryophytes from the land plant lineage approximately 450 Ma.
Collapse
Affiliation(s)
- Priyanka S. Bharadwaj
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Lizbeth Sanchez
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Dongdong Li
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Leuven, Belgium
| | - Divine Enyi
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Bram Van de Poel
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Leuven, Belgium
- KU Leuven Plant Institute, University of Leuven, Leuven, Belgium
| | - Caren Chang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| |
Collapse
|
20
|
Bowman JL, Arteaga-Vazquez M, Berger F, Briginshaw LN, Carella P, Aguilar-Cruz A, Davies KM, Dierschke T, Dolan L, Dorantes-Acosta AE, Fisher TJ, Flores-Sandoval E, Futagami K, Ishizaki K, Jibran R, Kanazawa T, Kato H, Kohchi T, Levins J, Lin SS, Nakagami H, Nishihama R, Romani F, Schornack S, Tanizawa Y, Tsuzuki M, Ueda T, Watanabe Y, Yamato KT, Zachgo S. The renaissance and enlightenment of Marchantia as a model system. THE PLANT CELL 2022; 34:3512-3542. [PMID: 35976122 PMCID: PMC9516144 DOI: 10.1093/plcell/koac219] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/21/2022] [Indexed: 05/07/2023]
Abstract
The liverwort Marchantia polymorpha has been utilized as a model for biological studies since the 18th century. In the past few decades, there has been a Renaissance in its utilization in genomic and genetic approaches to investigating physiological, developmental, and evolutionary aspects of land plant biology. The reasons for its adoption are similar to those of other genetic models, e.g. simple cultivation, ready access via its worldwide distribution, ease of crossing, facile genetics, and more recently, efficient transformation, genome editing, and genomic resources. The haploid gametophyte dominant life cycle of M. polymorpha is conducive to forward genetic approaches. The lack of ancient whole-genome duplications within liverworts facilitates reverse genetic approaches, and possibly related to this genomic stability, liverworts possess sex chromosomes that evolved in the ancestral liverwort. As a representative of one of the three bryophyte lineages, its phylogenetic position allows comparative approaches to provide insights into ancestral land plants. Given the karyotype and genome stability within liverworts, the resources developed for M. polymorpha have facilitated the development of related species as models for biological processes lacking in M. polymorpha.
Collapse
Affiliation(s)
| | - Mario Arteaga-Vazquez
- Instituto de Biotecnología y Ecología Aplicada, Universidad Veracruzana, Xalapa VER 91090, México
| | - Frederic Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Liam N Briginshaw
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne VIC 3800, Australia
| | - Philip Carella
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Adolfo Aguilar-Cruz
- Instituto de Biotecnología y Ecología Aplicada, Universidad Veracruzana, Xalapa VER 91090, México
| | - Kevin M Davies
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4442, New Zealand
| | - Tom Dierschke
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
| | - Liam Dolan
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Ana E Dorantes-Acosta
- Instituto de Biotecnología y Ecología Aplicada, Universidad Veracruzana, Xalapa VER 91090, México
| | - Tom J Fisher
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne VIC 3800, Australia
| | - Eduardo Flores-Sandoval
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne VIC 3800, Australia
| | - Kazutaka Futagami
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | | | - Rubina Jibran
- The New Zealand Institute for Plant & Food Research Limited, Auckland 1142, New Zealand
| | - Takehiko Kanazawa
- Division of Cellular Dynamics, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi 444-8585, Japan
- The Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Hirotaka Kato
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Jonathan Levins
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | - Hirofumi Nakagami
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Ryuichi Nishihama
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Facundo Romani
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | | | - Yasuhiro Tanizawa
- Department of Informatics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Masayuki Tsuzuki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi 444-8585, Japan
- The Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Yuichiro Watanabe
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama 649-6493, Japan
| | - Sabine Zachgo
- Division of Botany, School of Biology and Chemistry, Osnabrück University, Osnabrück 49076, Germany
| |
Collapse
|
21
|
Vaughan-Hirsch J, Li D, Roig Martinez A, Roden S, Pattyn J, Taira S, Shikano H, Miyama Y, Okano Y, Voet A, Van de Poel B. A 1-aminocyclopropane-1-carboxylic-acid (ACC) dipeptide elicits ethylene responses through ACC-oxidase mediated substrate promiscuity. FRONTIERS IN PLANT SCIENCE 2022; 13:995073. [PMID: 36172554 PMCID: PMC9510837 DOI: 10.3389/fpls.2022.995073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Plants produce the volatile hormone ethylene to regulate many developmental processes and to deal with (a)biotic stressors. In seed plants, ethylene is synthesized from 1-aminocyclopropane-1-carboxylic acid (ACC) by the dedicated enzyme ACC oxidase (ACO). Ethylene biosynthesis is tightly regulated at the level of ACC through ACC synthesis, conjugation and transport. ACC is a non-proteinogenic amino acid, which also has signaling roles independent from ethylene. In this work, we investigated the biological function of an uncharacterized ACC dipeptide. The custom-synthesized di-ACC molecule can be taken up by Arabidopsis in a similar way as ACC, in part via Lysine Histidine Transporters (e.g., LHT1). Using Nano-Particle Assisted Laser Desoprtion/Ionization (Nano-PALDI) mass-spectrometry imaging, we revealed that externally fed di-ACC predominantly localizes to the vasculature tissue, despite it not being detectable in control hypocotyl segments. Once taken up, the ACC dimer can evoke a triple response phenotype in dark-grown seedlings, reminiscent of ethylene responses induced by ACC itself, albeit less efficiently compared to ACC. Di-ACC does not act via ACC-signaling, but operates via the known ethylene signaling pathway. In vitro ACO activity and molecular docking showed that di-ACC can be used as an alternative substrate by ACO to form ethylene. The promiscuous nature of ACO for the ACC dimer also explains the higher ethylene production rates observed in planta, although this reaction occurred less efficiently compared to ACC. Overall, the ACC dipeptide seems to be transported and converted into ethylene in a similar way as ACC, and is able to augment ethylene production levels and induce subsequent ethylene responses in Arabidopsis.
Collapse
Affiliation(s)
- John Vaughan-Hirsch
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Leuven, Belgium
| | - Dongdong Li
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Leuven, Belgium
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Albert Roig Martinez
- Division of Biochemistry, Molecular and Structural Biology, Department of Chemistry, University of Leuven, Leuven, Belgium
| | - Stijn Roden
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Leuven, Belgium
| | - Jolien Pattyn
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Leuven, Belgium
| | - Shu Taira
- Department of Agriculture, Fukushima University, Fukushima, Japan
| | - Hitomi Shikano
- Department of Agriculture, Fukushima University, Fukushima, Japan
| | - Yoko Miyama
- Department of Agriculture, Fukushima University, Fukushima, Japan
| | - Yukari Okano
- Department of Agriculture, Fukushima University, Fukushima, Japan
| | - Arnout Voet
- Division of Biochemistry, Molecular and Structural Biology, Department of Chemistry, University of Leuven, Leuven, Belgium
| | - Bram Van de Poel
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Leuven, Belgium
- KU Leuven Plant Institute, University of Leuven, Leuven, Belgium
| |
Collapse
|
22
|
Liang Y, Heyman J, Xiang Y, Vandendriessche W, Canher B, Goeminne G, De Veylder L. The wound-activated ERF15 transcription factor drives Marchantia polymorpha regeneration by activating an oxylipin biosynthesis feedback loop. SCIENCE ADVANCES 2022; 8:eabo7737. [PMID: 35960801 PMCID: PMC9374346 DOI: 10.1126/sciadv.abo7737] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The regenerative potential in response to wounding varies widely among species. Within the plant lineage, the liverwort Marchantia polymorpha displays an extraordinary regeneration capacity. However, its molecular pathways controlling the initial regeneration response are unknown. Here, we demonstrate that the MpERF15 transcription factor gene is instantly activated after wounding and is essential for gemmaling regeneration following tissue incision. MpERF15 operates both upstream and downstream of the MpCOI1 oxylipin receptor by controlling the expression of oxylipin biosynthesis genes. The resulting rise in the oxylipin dinor-12-oxo-phytodienoic acid (dn-OPDA) levels results in an increase in gemma cell number and apical notch organogenesis, generating highly disorganized and compact thalli. Our data pinpoint MpERF15 as a key factor activating an oxylipin biosynthesis amplification loop after wounding, which eventually results in reactivation of cell division and regeneration. We suggest that the genetic networks controlling oxylipin biosynthesis in response to wounding might have been reshuffled over evolution.
Collapse
Affiliation(s)
- Yuanke Liang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Jefri Heyman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Yanli Xiang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Wiske Vandendriessche
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Balkan Canher
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Geert Goeminne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Metabolomics Core, Ghent, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| |
Collapse
|
23
|
Houben M, Vaughan-Hirsch J, Mou W, Van de Poel B. Ethylene Insensitive 3-Like 2 is a Brassicaceae-specific transcriptional regulator involved in fine-tuning ethylene responses in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4793-4805. [PMID: 35526188 DOI: 10.1093/jxb/erac198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/05/2022] [Indexed: 06/14/2023]
Abstract
Ethylene signaling directs a pleiotropy of developmental processes in plants. In Arabidopsis, ethylene signaling converges at the master transcription factor Ethylene Insensitive 3 (EIN3), which has five homologs, EIN3-like 1-5 (EIL1-EIL5). EIL1 is most fully characterized and operates similarly to EIN3, while EIL3-5 are not involved in ethylene signaling. EIL2 remains less investigated. Our phylogenetic analysis revealed that EIL2 homologs have only been retrieved in the Brassicaceae family, suggesting that EIL2 diverged to have specific functions in the mustard family. By characterizing eil2 mutants, we found that EIL2 is involved in regulating ethylene-specific developmental processes in Arabidopsis thaliana, albeit in a more subtle way compared with EIN3/EIL1. EIL2 steers ethylene-triggered hypocotyl elongation in light-grown seedlings and is involved in lateral root formation. Furthermore, EIL2 takes part in regulating flowering time as eil2 mutants flower on average 1 d earlier and have fewer leaves. A pEIL2:EIL2:GFP translational reporter line revealed that EIL2 protein abundance is restricted to the stele of young developing roots. EIL2 expression, and not EIL2 protein stability, is regulated by ethylene in an EIN3/EIL1-dependent way. Despite EIL2 taking part in several developmental processes, the precise upstream and downstream regulation of this ethylene- and Brassicaceae-specific transcription factor remains to be elucidated.
Collapse
Affiliation(s)
- Maarten Houben
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC, USA
| | - John Vaughan-Hirsch
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Wangshu Mou
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Bram Van de Poel
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| |
Collapse
|
24
|
Su L, Cheng S, Liu Y, Xie Y, He Z, Jia M, Zhou X, Zhang R, Li C. Transcriptome and Metabolome Analysis Provide New Insights into the Process of Tuberization of Sechium edule Roots. Int J Mol Sci 2022; 23:ijms23126390. [PMID: 35742832 PMCID: PMC9224348 DOI: 10.3390/ijms23126390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Chayote (Sechium edule) produces edible tubers with high starch content after 1 year of growth but the mechanism of chayote tuberization remains unknown. ‘Tuershao’, a chayote cultivar lacking edible fruits but showing higher tuber yield than traditional chayote cultivars, was used to study tuber formation through integrative analysis of the metabolome and transcriptome profiles at three tuber-growth stages. Starch biosynthesis- and galactose metabolism-related genes and metabolites were significantly upregulated during tuber bulking, whereas genes encoding sugars will eventually be exported transporter (SWEET) and sugar transporter (SUT) were highly expressed during tuber formation. Auxin precursor (indole-3-acetamide) and ethylene precursor, 1-aminocyclopropane-1-carboxylic acid, were upregulated, suggesting that both hormones play pivotal roles in tuber development and maturation. Our data revealed a similar tuber-formation signaling pathway in chayote as in potatoes, including complexes BEL1/KNOX and SP6A/14-3-3/FDL. Down-regulation of the BEL1/KNOX complex and upregulation of 14-3-3 protein implied that these two complexes might have distinct functions in tuber formation. Finally, gene expression and microscopic analysis indicated active cell division during the initial stages of tuber formation. Altogether, the integration of transcriptome and metabolome analyses unraveled an overall molecular network of chayote tuberization that might facilitate its utilization.
Collapse
Affiliation(s)
- Lihong Su
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (L.S.); (S.C.); (Y.L.); (M.J.); (X.Z.); (R.Z.); (C.L.)
| | - Shaobo Cheng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (L.S.); (S.C.); (Y.L.); (M.J.); (X.Z.); (R.Z.); (C.L.)
| | - Yuhang Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (L.S.); (S.C.); (Y.L.); (M.J.); (X.Z.); (R.Z.); (C.L.)
| | - Yongdong Xie
- Institute for Processing and Storage of Agricultural Products, Chengdu Academy of Agricultural and Forest Sciences, Chengdu 611130, China;
| | - Zhongqun He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (L.S.); (S.C.); (Y.L.); (M.J.); (X.Z.); (R.Z.); (C.L.)
- Correspondence:
| | - Mingyue Jia
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (L.S.); (S.C.); (Y.L.); (M.J.); (X.Z.); (R.Z.); (C.L.)
| | - Xiaoting Zhou
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (L.S.); (S.C.); (Y.L.); (M.J.); (X.Z.); (R.Z.); (C.L.)
| | - Ruijie Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (L.S.); (S.C.); (Y.L.); (M.J.); (X.Z.); (R.Z.); (C.L.)
| | - Chunyan Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (L.S.); (S.C.); (Y.L.); (M.J.); (X.Z.); (R.Z.); (C.L.)
| |
Collapse
|
25
|
Li J, Zou X, Chen G, Meng Y, Ma Q, Chen Q, Wang Z, Li F. Potential Roles of 1-Aminocyclopropane-1-carboxylic Acid Synthase Genes in the Response of Gossypium Species to Abiotic Stress by Genome-Wide Identification and Expression Analysis. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11111524. [PMID: 35684296 PMCID: PMC9183111 DOI: 10.3390/plants11111524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/23/2022] [Accepted: 06/02/2022] [Indexed: 06/12/2023]
Abstract
Ethylene plays a pivotal role in plant stress resistance and 1-aminocyclopropane-1-carboxylic acid synthase (ACS) is the rate-limiting enzyme in ethylene biosynthesis. Upland cotton (Gossypium hirsutum L.) is the most important natural fiber crop, but the function of ACS in response to abiotic stress has rarely been reported in this plant. We identified 18 GaACS, 18 GrACS, and 35 GhACS genes in Gossypiumarboreum, Gossypium raimondii and Gossypiumhirsutum, respectively, that were classified as types I, II, III, or IV. Collinearity analysis showed that the GhACS genes were expanded from diploid cotton by the whole-genome-duplication. Multiple alignments showed that the C-terminals of the GhACS proteins were conserved, whereas the N-terminals of GhACS10 and GhACS12 were different from the N-terminals of AtACS10 and AtACS12, probably diverging during evolution. Most type II ACS genes were hardly expressed, whereas GhACS10/GhACS12 were expressed in many tissues and in response to abiotic stress; for example, they were highly and hardly expressed at the early stages of cold and heat exposure, respectively. The GhACS genes showed different expression profiles in response to cold, heat, drought, and salt stress by quantitative PCR analysis, which indicate the potential roles of them when encountering the various adverse conditions, and provide insights into GhACS functions in cotton’s adaptation to abiotic stress.
Collapse
Affiliation(s)
- Jie Li
- Xinjiang Research Base, State Key Laboratory of Cotton Biology, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (Q.C.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.Z.); (Z.W.)
| | - Xianyan Zou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.Z.); (Z.W.)
| | - Guoquan Chen
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Yongming Meng
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China;
| | - Qi Ma
- Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture and Rural Affairs, Cotton Research Institute of Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832003, China;
| | - Quanjia Chen
- Xinjiang Research Base, State Key Laboratory of Cotton Biology, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (Q.C.)
| | - Zhi Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.Z.); (Z.W.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.Z.); (Z.W.)
| |
Collapse
|
26
|
Su R, Dossou SSK, Dossa K, Zhou R, Liu A, Zhong Y, Fang S, Zhang X, Wu Z, You J. Genome-wide characterization and identification of candidate ERF genes involved in various abiotic stress responses in sesame (Sesamum indicum L.). BMC PLANT BIOLOGY 2022; 22:256. [PMID: 35606719 PMCID: PMC9128266 DOI: 10.1186/s12870-022-03632-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The adverse effects of climate change on crop production are constraining breeders to develop high-quality environmentally stable varieties. Hence, efforts are being made to identify key genes that could be targeted for enhancing crop tolerance to environmental stresses. ERF transcription factors play an important role in various abiotic stresses in plants. However, the roles of the ERF family in abiotic stresses tolerance are still largely unknown in sesame, the "queen" of oilseed crops. RESULTS In total, 114 sesame ERF genes (SiERFs) were identified and characterized. 96.49% of the SiERFs were distributed unevenly on the 16 linkage groups of the sesame genome. The phylogenetic analysis with the Arabidopsis ERFs (AtERFs) subdivided SiERF subfamily proteins into 11 subgroups (Groups I to X; and VI-L). Genes in the same subgroup exhibited similar structure and conserved motifs. Evolutionary analysis showed that the expansion of ERF genes in sesame was mainly induced by whole-genome duplication events. Moreover, cis-acting elements analysis showed that SiERFs are mostly involved in environmental responses. Gene expression profiles analysis revealed that 59 and 26 SiERFs are highly stimulated under drought and waterlogging stress, respectively. In addition, qRT-PCR analyses indicated that most of SiERFs are also significantly up-regulated under osmotic, submerge, ABA, and ACC stresses. Among them, SiERF23 and SiERF54 were the most induced by both the abiotic stresses, suggesting their potential for targeted improvement of sesame response to multiple abiotic stresses. CONCLUSION This study provides a comprehensive understanding of the structure, classification, evolution, and abiotic stresses response of ERF genes in sesame. Moreover, it offers valuable gene resources for functional characterization towards enhancing sesame tolerance to multiple abiotic stresses.
Collapse
Affiliation(s)
- Ruqi Su
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062 China
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, 430062 China
| | - Senouwa Segla Koffi Dossou
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, 430062 China
| | - Komivi Dossa
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Rong Zhou
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, 430062 China
| | - Aili Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, 430062 China
| | - Yanping Zhong
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062 China
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, 430062 China
| | - Sheng Fang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062 China
| | - Xiurong Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, 430062 China
| | - Ziming Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062 China
| | - Jun You
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, 430062 China
| |
Collapse
|
27
|
Tong M, Wen CK. Rise of the ethylene biosynthesis machinery from the C β-S lyase. MOLECULAR PLANT 2022; 15:784-787. [PMID: 35405325 DOI: 10.1016/j.molp.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/14/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Mengchen Tong
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chi-Kuang Wen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
28
|
Uji T, Kandori T, Konishi S, Mizuta H. Phospholipase D activation is required for 1-aminocyclopropane 1-carboxylic acid signaling during sexual reproduction in the marine red alga Neopyropia yezoensis (Rhodophyta). BMC PLANT BIOLOGY 2022; 22:181. [PMID: 35395727 PMCID: PMC8991923 DOI: 10.1186/s12870-022-03575-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/31/2022] [Indexed: 05/15/2023]
Abstract
BACKGROUND 1-aminocyclopropane 1-carboxylic acid (ACC) is the immediate precursor of the plant hormone ethylene. However, recent studies have suggested that ACC also acts as a signaling molecule to regulate development and growth independently from ethylene biosynthesis. In red algae, ACC stimulates the switch from a vegetative to a sexual reproductive phase. However, despite evidence that ACC signaling in plants and algae is widespread, the mechanistic basis of the ACC signaling pathway remains unknown. RESULTS We demonstrate that exogenous ACC increased the activity of phospholipase D (PLD) and induced the accumulation of PLD transcripts in the marine red alga Neopyropia yezoensis. The product of PLD, the lipid second messenger phosphatidic acid (PA), also increased in response to ACC. Furthermore, the pharmacological inhibition of PLD by 1-butanol blocked ACC-induced spermatangia and carpospore production, but the inactive isomer t-butanol did not. In addition, 1-butanol prevented ACC-induced growth inhibition and inhibited transcript accumulation of genes upregulated by ACC, including extracellular matrix (ECM)-related genes, and alleviated the transcriptional decrease of genes downregulated by ACC, including photosynthesis-related genes. CONCLUSIONS These results indicate that PLD is a positive regulator of sexual cell differentiation and a negative regulator of growth. This study demonstrates that PLD and its product, PA, are components of ACC signaling during sexual reproduction in N. yezoensis.
Collapse
Affiliation(s)
- Toshiki Uji
- Laboratory of Aquaculture Genetics and Genomics, Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, 041-8611, Japan.
| | - Takuya Kandori
- Laboratory of Aquaculture Genetics and Genomics, Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, 041-8611, Japan
| | - Shiho Konishi
- Laboratory of Aquaculture Genetics and Genomics, Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, 041-8611, Japan
| | - Hiroyuki Mizuta
- Laboratory of Aquaculture Genetics and Genomics, Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, 041-8611, Japan
| |
Collapse
|
29
|
López ME, Silva Santos I, Marquez Gutiérrez R, Jaramillo Mesa A, Cardon CH, Espíndola Lima JM, Almeida Lima A, Chalfun-Junior A. Crosstalk Between Ethylene and Abscisic Acid During Changes in Soil Water Content Reveals a New Role for 1-Aminocyclopropane-1- Carboxylate in Coffee Anthesis Regulation. FRONTIERS IN PLANT SCIENCE 2022; 13:824948. [PMID: 35463406 PMCID: PMC9019592 DOI: 10.3389/fpls.2022.824948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Coffee (Coffea arabica L.) presents an asynchronous flowering regulated by an endogenous and environmental stimulus, and anthesis occurs once plants are rehydrated after a period of water deficit. We evaluated the evolution of Abscisic Acid (ABA), ethylene, 1-aminocyclopropane-1-carboxylate (ACC) content, ACC oxidase (ACO) activity, and expression analysis of the Lysine Histidine Transporter 1 (LHT1) transporter, in the roots, leaves, and flower buds from three coffee genotypes (C. arabica L. cv Oeiras, Acauã, and Semperflorens) cultivated under field conditions with two experiments. In a third field experiment, the effect of the exogenous supply of ACC in coffee anthesis was evaluated. We found an increased ACC level, low ACO activity, decreased level of ethylene, and a decreased level of ABA in all tissues from the three coffee genotypes in the re-watering period just before anthesis, and a high expression of the LHT1 in flower buds and leaves. The ethylene content and ACO activity decreased from rainy to dry period whereas the ABA content increased. A higher number of opened and G6 stage flower buds were observed in the treatment with exogenous ACC. The results showed that the interaction of ABA-ACO-ethylene and intercellular ACC transport among the leaves, buds, and roots in coffee favors an increased level of ACC that is most likely, involved as a modulator in coffee anthesis. This study provides evidence that ACC can play an important role independently of ethylene in the anthesis process in a perennial crop.
Collapse
|
30
|
Li D, Mou W, Van de Poel B, Chang C. Something old, something new: Conservation of the ethylene precursor 1-amino-cyclopropane-1-carboxylic acid as a signaling molecule. CURRENT OPINION IN PLANT BIOLOGY 2022; 65:102116. [PMID: 34653952 DOI: 10.1016/j.pbi.2021.102116] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/22/2021] [Accepted: 08/29/2021] [Indexed: 05/07/2023]
Abstract
In seed plants, 1-amino-cyclopropane-1-carboxylic acid (ACC) is the well-known precursor of the plant hormone ethylene. In nonseed plants, the current view is that ACC is produced but is inefficiently converted to ethylene. Distinct responses to ACC that are uncoupled from ethylene biosynthesis have been discovered in diverse aspects of growth and development in liverworts and angiosperms, indicating that ACC itself can function as a signal. Evolutionarily, ACC may have served as a signal before acquiring its role as the ethylene precursor in seed plants. These findings pave the way for unraveling a potentially conserved ACC signaling pathway in plants and have ramifications for the use of ACC as a substitute for ethylene treatment in seed plants.
Collapse
Affiliation(s)
- Dongdong Li
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Leuven, Belgium
| | - Wangshu Mou
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Leuven, Belgium
| | - Bram Van de Poel
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Leuven, Belgium.
| | - Caren Chang
- Dept of Cell Biology and Molecular Genetics, Bioscience Research Building, University of Maryland, College Park, MD 20742 USA.
| |
Collapse
|
31
|
Zhang Y, Ming R, Khan M, Wang Y, Dahro B, Xiao W, Li C, Liu J. ERF9 of Poncirus trifoliata (L.) Raf. undergoes feedback regulation by ethylene and modulates cold tolerance via regulating a glutathione S-transferase U17 gene. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:183-200. [PMID: 34510677 PMCID: PMC8710834 DOI: 10.1111/pbi.13705] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/17/2021] [Accepted: 09/03/2021] [Indexed: 05/22/2023]
Abstract
Plant ethylene-responsive factors (ERFs) play essential roles in cold stress response, but the molecular mechanisms underlying this process remain poorly understood. In this study, we characterized PtrERF9 from trifoliate orange (Poncirus trifoliata (L.) Raf.), a cold-hardy plant. PtrERF9 was up-regulated by cold in an ethylene-dependent manner. Overexpression of PtrERF9 conferred prominently enhanced freezing tolerance, which was drastically impaired when PtrERF9 was knocked down by virus-induced gene silencing. Global transcriptome profiling indicated that silencing of PtrERF9 resulted in substantial transcriptional reprogramming of stress-responsive genes involved in different biological processes. PtrERF9 was further verified to directly and specifically bind with the promoters of glutathione S-transferase U17 (PtrGSTU17) and ACC synthase1 (PtrACS1). Consistently, PtrERF9-overexpressing plants had higher levels of PtrGSTU17 transcript and GST activity, but accumulated less ROS, whereas the silenced plants showed the opposite changes. Meanwhile, knockdown of PtrERF9 decreased PtrACS1 expression, ACS activity and ACC content. However, overexpression of PtrERF9 in lemon, a cold-sensitive species, caused negligible alterations of ethylene biosynthesis, which was attributed to perturbed interaction between PtrERF9, along with lemon homologue ClERF9, and the promoter of lemon ACS1 gene (ClACS1) due to mutation of the cis-acting element. Taken together, these results indicate that PtrERF9 acts downstream of ethylene signalling and functions positively in cold tolerance via modulation of ROS homeostasis by regulating PtrGSTU17. In addition, PtrERF9 regulates ethylene biosynthesis by activating PtrACS1 gene, forming a feedback regulation loop to reinforce the transcriptional regulation of its target genes, which may contribute to the elite cold tolerance of Poncirus trifoliata.
Collapse
Affiliation(s)
- Yang Zhang
- Key Laboratory of Horticultural Plant BiologyCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Ruhong Ming
- Key Laboratory of Horticultural Plant BiologyCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Madiha Khan
- Key Laboratory of Horticultural Plant BiologyCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Yue Wang
- Key Laboratory of Horticultural Plant BiologyCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Bachar Dahro
- Key Laboratory of Horticultural Plant BiologyCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Wei Xiao
- Key Laboratory of Horticultural Plant BiologyCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Chunlong Li
- Key Laboratory of Horticultural Plant BiologyCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Ji‐Hong Liu
- Key Laboratory of Horticultural Plant BiologyCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
32
|
Althiab-Almasaud R, Sallanon H, Chang C, Chervin C. 1-Aminocyclopropane-1-carboxylic acid stimulates tomato pollen tube growth independently of ethylene receptors. PHYSIOLOGIA PLANTARUM 2021; 173:2291-2297. [PMID: 34609746 DOI: 10.1111/ppl.13579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/22/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
The plant hormone ethylene plays vital roles in plant development, including pollen tube (PT) growth. Many studies have used the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), as a tool to trigger ethylene signaling. Several studies have suggested that ACC can act as a signal molecule independently of ethylene, inducing responses that are distinct from those induced by ethylene. In this study, we confirmed that ethylene receptor function is essential for promoting PT growth in tomato, but interestingly, we discovered that ACC itself can act as a signal that also promotes PT growth. Exogenous ACC stimulated PT growth even when ethylene perception was inhibited either chemically by treating with 1-methylcyclopropene (1-MCP) or genetically by using the ethylene-insensitive Never Ripe (NR) mutant. Treatment with aminoethoxyvinylglycine, which reduces endogenous ACC levels, led to a reduction of PT growth, even in the NR mutants. Furthermore, GUS activity driven by an EIN3 Binding Site promoter (EBS:GUS transgene) was triggered by ACC in the presence of 1-MCP. Taken together, these results suggest that ACC signaling can bypass the ethylene receptor step to stimulate PT growth and EBS driven gene expression.
Collapse
Affiliation(s)
- Rasha Althiab-Almasaud
- Laboratoire de Recherche en Sciences Végétales, GBF, Université de Toulouse, Toulouse, France
| | - Huguette Sallanon
- Université d'Avignon, Avignon, France
- Qualisud, Université d'Avignon, Université Montpellier, CIRAD, Montpellier SupAgro, Université de La Réunion, Montpellier, France
| | - Caren Chang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Christian Chervin
- Laboratoire de Recherche en Sciences Végétales, GBF, Université de Toulouse, Toulouse, France
| |
Collapse
|
33
|
Pseudomonas 1-Aminocyclopropane-1-carboxylate (ACC) Deaminase and Its Role in Beneficial Plant-Microbe Interactions. Microorganisms 2021; 9:microorganisms9122467. [PMID: 34946069 PMCID: PMC8707671 DOI: 10.3390/microorganisms9122467] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 12/02/2022] Open
Abstract
The expression of the enzyme 1-aminocylopropane-1-carboxylate (ACC) deaminase, and the consequent modulation of plant ACC and ethylene concentrations, is one of the most important features of plant-associated bacteria. By decreasing plant ACC and ethylene concentrations, ACC deaminase-producing bacteria can overcome some of the deleterious effects of inhibitory levels of ACC and ethylene in various aspects of plant-microbe interactions, as well as plant growth and development (especially under stressful conditions). As a result, the acdS gene, encoding ACC deaminase, is often prevalent and positively selected in the microbiome of plants. Several members of the genus Pseudomonas are widely prevalent in the microbiome of plants worldwide. Due to its adaptation to a plant-associated lifestyle many Pseudomonas strains are of great interest for the development of novel sustainable agricultural and biotechnological solutions, especially those presenting ACC deaminase activity. This manuscript discusses several aspects of ACC deaminase and its role in the increased plant growth promotion, plant protection against abiotic and biotic stress and promotion of the rhizobial nodulation process by Pseudomonas. Knowledge regarding the properties and actions of ACC deaminase-producing Pseudomonas is key for a better understanding of plant-microbe interactions and the selection of highly effective strains for various applications in agriculture and biotechnology.
Collapse
|
34
|
Xu C, Hao B, Sun G, Mei Y, Sun L, Sun Y, Wang Y, Zhang Y, Zhang W, Zhang M, Zhang Y, Wang D, Rao Z, Li X, Shen QJ, Wang NN. Dual activities of ACC synthase: Novel clues regarding the molecular evolution of ACS genes. SCIENCE ADVANCES 2021; 7:eabg8752. [PMID: 34757795 PMCID: PMC8580319 DOI: 10.1126/sciadv.abg8752] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Ethylene plays profound roles in plant development. The rate-limiting enzyme of ethylene biosynthesis is 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS), which is generally believed to be a single-activity enzyme evolving from aspartate aminotransferases. Here, we demonstrate that, in addition to catalyzing the conversion of S-adenosyl-methionine to the ethylene precursor ACC, genuine ACSs widely have Cβ-S lyase activity. Two N-terminal motifs, including a glutamine residue, are essential for conferring ACS activity to ACS-like proteins. Motif and activity analyses of ACS-like proteins from plants at different evolutionary stages suggest that the ACC-dependent pathway is uniquely developed in seed plants. A putative catalytic mechanism for the dual activities of ACSs is proposed on the basis of the crystal structure and biochemical data. These findings not only expand our current understanding of ACS functions but also provide novel insights into the evolutionary origin of ACS genes.
Collapse
Affiliation(s)
- Chang Xu
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Bowei Hao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Gongling Sun
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuanyuan Mei
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lifang Sun
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yunmei Sun
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yibo Wang
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yongyan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wei Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mengyuan Zhang
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yue Zhang
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Dan Wang
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zihe Rao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xin Li
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | | | - Ning Ning Wang
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
35
|
Guillory A, Bonhomme S. Phytohormone biosynthesis and signaling pathways of mosses. PLANT MOLECULAR BIOLOGY 2021; 107:245-277. [PMID: 34245404 DOI: 10.1007/s11103-021-01172-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Most known phytohormones regulate moss development. We present a comprehensive view of the synthesis and signaling pathways for the most investigated of these compounds in mosses, focusing on the model Physcomitrium patens. The last 50 years of research have shown that most of the known phytohormones are synthesized by the model moss Physcomitrium patens (formerly Physcomitrella patens) and regulate its development, in interaction with responses to biotic and abiotic stresses. Biosynthesis and signaling pathways are best described in P. patens for the three classical hormones auxins, cytokinins and abscisic acid. Furthermore, their roles in almost all steps of development, from early filament growth to gametophore development and sexual reproduction, have been the focus of much research effort over the years. Evidence of hormonal roles exist for ethylene and for CLE signaling peptides, as well as for salicylic acid, although their possible effects on development remain unclear. Production of brassinosteroids by P. patens is still debated, and modes of action for these compounds are even less known. Gibberellin biosynthesis and signaling may have been lost in P. patens, while gibberellin precursors such as ent-kaurene derivatives could be used as signals in a yet to discover pathway. As for jasmonic acid, it is not used per se as a hormone in P. patens, but its precursor OPDA appears to play a corresponding role in defense against abiotic stress. We have tried to gather a comprehensive view of the biosynthesis and signaling pathways for all these compounds in mosses, without forgetting strigolactones, the last class of plant hormones to be reported. Study of the strigolactone response in P. patens points to a novel signaling compound, the KAI2-ligand, which was likely employed as a hormone prior to land plant emergence.
Collapse
Affiliation(s)
- Ambre Guillory
- INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, 78000, Versailles, France
| | - Sandrine Bonhomme
- INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, 78000, Versailles, France.
| |
Collapse
|
36
|
An ethylene biosynthesis enzyme controls quantitative variation in maize ear length and kernel yield. Nat Commun 2021; 12:5832. [PMID: 34611160 PMCID: PMC8492687 DOI: 10.1038/s41467-021-26123-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/14/2021] [Indexed: 02/05/2023] Open
Abstract
Maize ear size and kernel number differ among lines, however, little is known about the molecular basis of ear length and its impact on kernel number. Here, we characterize a quantitative trait locus, qEL7, to identify a maize gene controlling ear length, flower number and fertility. qEL7 encodes 1-aminocyclopropane-1- carboxylate oxidase2 (ACO2), a gene that functions in the final step of ethylene biosynthesis and is expressed in specific domains in developing inflorescences. Confirmation of qEL7 by gene editing of ZmACO2 leads to a reduction in ethylene production in developing ears, and promotes meristem and flower development, resulting in a ~13.4% increase in grain yield per ear in hybrids lines. Our findings suggest that ethylene serves as a key signal in inflorescence development, affecting spikelet number, floral fertility, ear length and kernel number, and also provide a tool to improve grain productivity by optimizing ethylene levels in maize or in other cereals. Considerable genetic variation exists in maize ear size and kernel number. Here the authors show that variation in a gene encoding an ethylene biosynthetic enzyme impacts ear length, flower fertility and kernel yield suggesting an important role for ethylene signaling during inflorescence development.
Collapse
|
37
|
Park C, Lee HY, Yoon GM. The regulation of ACC synthase protein turnover: a rapid route for modulating plant development and stress responses. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102046. [PMID: 33965697 DOI: 10.1016/j.pbi.2021.102046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
The phytohormone ethylene regulates plant growth, development, and stress responses. The strict fine-tuning of the regulation of ethylene biosynthesis contributes to the diverse roles of ethylene in plants. Pyridoxal 5'-phosphate-dependent 1-aminocyclopropane-1-carboxylic acid synthase, a rate-limiting enzyme in ethylene biosynthesis, is central and often rate-limiting to regulate ethylene concentration in plants. The post-translational regulation of ACS is a major pathway controlling ethylene biosynthesis in response to various stimuli. We conclude that the regulation of ACS turnover may serve as a central hub for the rapid integration of developmental, environmental, and hormonal signals, all of which influence plant growth and stress responses.
Collapse
Affiliation(s)
- Chanung Park
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Han Yong Lee
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Gyeong Mee Yoon
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
38
|
Katayose A, Kanda A, Kubo Y, Takahashi T, Motose H. Distinct Functions of Ethylene and ACC in the Basal Land Plant Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2021; 62:858-871. [PMID: 33768225 DOI: 10.1093/pcp/pcab042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 05/16/2023]
Abstract
Ethylene is a gaseous phytohormone involved in various physiological processes, including fruit ripening, senescence, root hair development and stress responses. Recent genomics studies have suggested that most homologous genes of ethylene biosynthesis and signaling are conserved from algae to angiosperms, whereas the function and biosynthesis of ethylene remain unknown in basal plants. Here, we examined the physiological effects of ethylene, an ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC) and an inhibitor of ethylene perception, silver thiosulfate (STS), in a basal land plant, Marchantia polymorpha. M. polymorpha plants biosynthesized ethylene, and treatment with high concentrations of ACC slightly promoted ethylene production. ACC remarkably suppressed the growth of thalli (vegetative organs) and rhizoids (root-hair-like cells), whereas exogenous ethylene slightly promoted thallus growth. STS suppressed thallus growth and induced ectopic rhizoid formation on the dorsal surface of thalli. Thus, ACC and ethylene have different effects on the vegetative growth of M. polymorpha. We generated single and double mutants of ACC synthase-like (ACSL) genes, MpACSL1 and MpACSL2. The mutants did not show obvious defects in thallus growth, ACC content and ethylene production, indicating that MpACSL genes are not essential for the vegetative growth and biosynthesis of ACC and ethylene. Gene expression analysis suggested the involvement of MpACSL1 and MpACSL2 in stress responses. Collectively, our results imply ethylene-independent function of ACC and the absence of ACC-mediated ethylene biosynthesis in M. polymorpha.
Collapse
Affiliation(s)
- Asuka Katayose
- Department of Biology, Faculty of Science, Okayama University, Okayama, 700-8530 Japan
| | - Asaka Kanda
- Department of Biological Science, Graduate School of Natural Science Technology, Okayama University, Okayama, 700-8530 Japan
| | - Yasutaka Kubo
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530 Japan
| | - Taku Takahashi
- Department of Biology, Faculty of Science, Okayama University, Okayama, 700-8530 Japan
- Department of Biological Science, Graduate School of Natural Science Technology, Okayama University, Okayama, 700-8530 Japan
| | | |
Collapse
|
39
|
Fu BL, Wang WQ, Liu XF, Duan XW, Allan AC, Grierson D, Yin XR. An ethylene-hypersensitive methionine sulfoxide reductase regulated by NAC transcription factors increases methionine pool size and ethylene production during kiwifruit ripening. THE NEW PHYTOLOGIST 2021; 232:237-251. [PMID: 34137052 DOI: 10.1111/nph.17560] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/11/2021] [Indexed: 06/12/2023]
Abstract
Ethylene plays an important role in regulating fruit ripening by triggering dynamic changes in expression of ripening-associated genes, but the functions of many of these genes are still unknown. Here, a methionine sulfoxide reductase gene (AdMsrB1) was identified by transcriptomics-based analysis as the gene most responsive to ethylene treatment in ripening kiwifruit. The AdMsrB1 protein exhibits a stereospecific activity toward the oxidative stress-induced R enantiomer of methionine sulfoxide (MetSO), reducing it to methionine (Met). Stable overexpression of AdMsrB1 in kiwifruit significantly increased the content of free Met and 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene, and increased ethylene production. Dual-luciferase assays indicated that the AdMsrB1 promoter was not directly upregulated by ethylene treatment but was modulated by two ethylene-inducible NAM/ATAF/CUC transcription factors (AdNAC2 and AdNAC72) that bind directly to the AdMsrB1 promoter. Overexpression of AdNAC72 in kiwifruit not only enhanced AdMsrB1 expression, but also increased free Met and ACC content and ethylene production rates. This finding establishes an unexpected regulatory loop that enhances ethylene production and the concentration of its biosynthetic intermediates.
Collapse
Affiliation(s)
- Bei-Ling Fu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Wen-Qiu Wang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Xiao-Fen Liu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Xue-Wu Duan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Andrew C Allan
- New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Donald Grierson
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Plant & Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Xue-Ren Yin
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| |
Collapse
|
40
|
Romani F, Moreno JE. Molecular mechanisms involved in functional macroevolution of plant transcription factors. THE NEW PHYTOLOGIST 2021; 230:1345-1353. [PMID: 33368298 DOI: 10.1111/nph.17161] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/17/2020] [Indexed: 05/04/2023]
Abstract
Transcription factors (TFs) are key components of the transcriptional regulation machinery. In plants, they accompanied the evolution from unicellular aquatic algae to complex flowering plants that dominate the land environment. The adaptations of the body plan and physiological responses required changes in the biological functions of TFs. Some ancestral gene regulatory networks are highly conserved, while others evolved more recently and only exist in particular lineages. The recent emergence of novel model organisms provided the opportunity for comparative studies, producing new insights to infer these evolutionary trajectories. In this review, we comprehensively revisit the recent literature on TFs of nonseed plants and algae, focusing on the molecular mechanisms driving their functional evolution. We discuss the particular contribution of changes in DNA-binding specificity, protein-protein interactions and cis-regulatory elements to gene regulatory networks. Current advances have shown that these evolutionary processes were shaped by changes in TF expression pattern, not through great innovation in TF protein sequences. We propose that the role of TFs associated with environmental and developmental regulation was unevenly conserved during land plant evolution.
Collapse
Affiliation(s)
- Facundo Romani
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral, Centro Científico Tecnológico CONICET Santa Fe, Universidad Nacional del Litoral - CONICET, Colectora RN 168 km. 0, Paraje El Pozo, Santa Fe, 3000, Argentina
| | - Javier E Moreno
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral, Centro Científico Tecnológico CONICET Santa Fe, Universidad Nacional del Litoral - CONICET, Colectora RN 168 km. 0, Paraje El Pozo, Santa Fe, 3000, Argentina
| |
Collapse
|
41
|
Takahashi G, Betsuyaku S, Okuzumi N, Kiyosue T, Hirakawa Y. An Evolutionarily Conserved Coreceptor Gene Is Essential for CLAVATA Signaling in Marchantia polymorpha. FRONTIERS IN PLANT SCIENCE 2021; 12:657548. [PMID: 33927741 PMCID: PMC8076897 DOI: 10.3389/fpls.2021.657548] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/22/2021] [Indexed: 05/05/2023]
Abstract
Growth and development of land plants are controlled by CLAVATA3/EMBRYO SURROUNDING REGION-related (CLE) family of peptide hormones. In contrast to the genetic diversity of CLE family in flowering plants, the liverwort Marchantia polymorpha possesses a minimal set of CLE, MpCLE1(TDIF homolog), and MpCLE2 (CLV3 homolog). MpCLE1 and MpCLE2 peptides exert distinct function at the apical meristem of M. polymorpha gametophyte via specific receptors, MpTDIF RECEPTOR (MpTDR) and MpCLAVATA1 (MpCLV1), respectively, both belonging to the subclass XI of leucine-rich repeat receptor-like kinases (LRR-RLKs). Biochemical and genetic studies in Arabidopsis have shown that TDR/PXY family and CLV1/BAM family recognize the CLE peptide ligand in a heterodimeric complex with a member of subclass-II coreceptors. Here we show that three LRR-RLK genes of M. polymorpha are classified into subclass II, representing three distinct subgroups evolutionarily conserved in land plants. To address the involvement of subclass-II coreceptors in M. polymorpha CLE signaling, we performed molecular genetic analysis on one of them, MpCLAVATA3 INSENSITIVE RECEPTOR KINASE (MpCIK). Two knockout alleles for MpCIK formed narrow apical meristems marked by prom MpYUC2:GUS marker, which were not expanded by MpCLE2 peptide treatment, phenocopying Mpclv1. Loss of sensitivity to MpCLE2 peptide was also observed in gemma cup formation in both Mpclv1 and Mpcik. Biochemical analysis using a Nicotiana benthamiana transient expression system revealed weak association between MpCIK and MpCLV1, as well as MpCIK and MpTDR. While MpCIK may also participate in MpCLE1 signaling, our data show that the conserved CLV3-CLV1-CIK module functions in M. polymorpha, controlling meristem activity for development and organ formation for asexual reproduction.
Collapse
Affiliation(s)
- Go Takahashi
- Graduate School of Science, Gakushuin University, Tokyo, Japan
| | | | - Natsuki Okuzumi
- Graduate School of Science, Gakushuin University, Tokyo, Japan
| | | | - Yuki Hirakawa
- Graduate School of Science, Gakushuin University, Tokyo, Japan
- *Correspondence: Yuki Hirakawa,
| |
Collapse
|
42
|
Affiliation(s)
- Bram Van de Poel
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Leuven, Belgium.
| |
Collapse
|