1
|
Hu S, Zeng X, Liu Y, Li Y, Qu M, Jiao WB, Han Y, Kang C. Global characterization of somatic mutations and DNA methylation changes during vegetative propagation in strawberries. Genome Res 2024; 34:1582-1594. [PMID: 39406501 PMCID: PMC11529994 DOI: 10.1101/gr.279378.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/16/2024] [Indexed: 11/01/2024]
Abstract
Somatic mutations arise and accumulate during tissue culture and vegetative propagation, potentially affecting various traits in horticultural crops, but their characteristics are still unclear. Here, somatic mutations in regenerated woodland strawberry derived from tissue culture of shoot tips under different conditions and 12 cultivated strawberry individuals are analyzed by whole genome sequencing. The mutation frequency of single nucleotide variants is significantly increased with increased hormone levels or prolonged culture time in the range of 3.3 × 10-8-3.0 × 10-6 mutations per site. CG methylation shows a stable reduction (0.71%-8.03%) in regenerated plants, and hypoCG-DMRs are more heritable after sexual reproduction. A high-quality haplotype-resolved genome is assembled for the strawberry cultivar "Beni hoppe." The 12 "Beni hoppe" individuals randomly selected from different locations show 4731-6005 mutations relative to the reference genome, and the mutation frequency varies among the subgenomes. Our study has systematically characterized the genetic and epigenetic variants in regenerated woodland strawberry plants and different individuals of the same strawberry cultivar, providing an accurate assessment of somatic mutations at the genomic scale and nucleotide resolution in plants.
Collapse
Affiliation(s)
- Shaoqiang Hu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangguo Zeng
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Industrial Crops, Hubei Academy of Agricultural Sciences, Wuhan 430063, China
| | - Yuguo Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yongping Li
- School of Breeding and Multiplication, Hainan University, Sanya 572025, China
| | - Minghao Qu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Plant Germplasm Research Center, Wuhan Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
| | - Wen-Biao Jiao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yongchao Han
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Industrial Crops, Hubei Academy of Agricultural Sciences, Wuhan 430063, China;
| | - Chunying Kang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China;
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
2
|
Xiong Z, Zhang W, Yin H, Wan J, Wu Z, Gao Y. Diversity and Evolution of NLR Genes in Citrus Species. BIOLOGY 2024; 13:822. [PMID: 39452131 PMCID: PMC11504038 DOI: 10.3390/biology13100822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024]
Abstract
NLR genes are crucial components of the effector-triggered immunity (ETI) system, responsible for recognizing pathogens and initiating immune responses. Although NLR genes in many plant species have been extensively studied, the diversity of NLR genes in citrus remains largely unknown. Our analysis revealed significant variations in the copy numbers of NLR genes among these species. Gene duplication and recombination were identified as the major driving forces behind this diversity. Additionally, horizontal gene transfer (HGT) emerged as the principal mechanism responsible for the increase in NLR gene copy number in A. buxifolia. The citrus NLR genes were classified into four categories: TIR-NBS-LRR (TNL), CC-NBS-LRR (CNL), RPW8-NBS-LRR (RNL), and NL. Our findings indicate that TNL, RNL, and CNL genes originated from NL genes through the acquisition of TIR and RPW8 domains, along with CC motifs, followed by the random loss of corresponding domains. Phylogenetic analysis suggested that citrus NLR genes originated alongside the species and underwent adaptive evolution, potentially playing crucial roles in the global colonization of citrus. This study provides important insights into the diversity of citrus NLR genes and serves as a foundational dataset for future research aimed at breeding disease-resistant citrus varieties.
Collapse
Affiliation(s)
- Zhiwei Xiong
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China; (Z.X.); (W.Z.); (H.Y.); (J.W.); (Z.W.)
| | - Wanshan Zhang
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China; (Z.X.); (W.Z.); (H.Y.); (J.W.); (Z.W.)
| | - Hui Yin
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China; (Z.X.); (W.Z.); (H.Y.); (J.W.); (Z.W.)
| | - Jiaxing Wan
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China; (Z.X.); (W.Z.); (H.Y.); (J.W.); (Z.W.)
| | - Zhuozhuo Wu
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China; (Z.X.); (W.Z.); (H.Y.); (J.W.); (Z.W.)
| | - Yuxia Gao
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China; (Z.X.); (W.Z.); (H.Y.); (J.W.); (Z.W.)
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants (2024SSY04181), Ganzhou 341000, China
| |
Collapse
|
3
|
Li X, Zeng Y, Wang T, Jiang B, Liao M, Lv Y, Li J, Zhong Y. Dynamic Analysis of the Fruit Sugar-Acid Profile in a Fresh-Sweet Mutant and Wild Type in 'Shatangju' ( Citrus reticulata cv.). PLANTS (BASEL, SWITZERLAND) 2024; 13:2722. [PMID: 39409592 PMCID: PMC11478557 DOI: 10.3390/plants13192722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/22/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
Citrate is a major determinant of fruit flavor quality. Currently, citrus species and/or varieties with significant alterations in citrate level have greatly advanced the molecular basis of citrate accumulation in fruit. However, in-depth dissections of the molecular mechanism specific to citrate accumulation are still limited due to the lack of mutants, especially within one single variety. In this study, a fresh-sweet 'Shatangju' mutant (Citrus reticulata cv.) was obtained during a survey of citrus resources in Guangdong, China, and the phenotype, fruit morphology, and primary flavor profiles were comparatively analyzed. Unlike the wild-type 'Shatangju' (WT), the mutant (MT) material exhibited a dwarfed and multi-branched tree shape, delayed flowering and fruit ripening at maturity, a prolonged fruit tree-retention time, and a decreased single fruit weight at maturity. Dynamic measurement of the metabolite levels further suggested that the contents and fluctuation patterns of vitamin C, malate, quinate, and oxalate showed no obvious difference between MT and MT fruits, while the citrate level in MT fruits significantly decreased over various developmental stages, ranging from 0.356 to 1.91 mg g-1 FW. In addition, the accumulation patterns of the major soluble sugars (sucrose, fructose, and glucose), as well as the sugar/acid ratio, were also altered in MT fruits during development. Taken together, this study provides a novel acid-free 'Shatangju' mutant, which can serve as a powerful tool for the research of fruit flavor quality, especially for the comprehensive understanding of the molecular mechanism of citrate accumulation in fruits.
Collapse
Affiliation(s)
- Xiangyang Li
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.L.); (B.J.)
- Key Laboratory of South Subtropical Fruit Tree Biology and Genetic Resources Utilization, Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Guangzhou 510640, China; (Y.Z.); (T.W.); (M.L.); (Y.L.)
| | - Yuan Zeng
- Key Laboratory of South Subtropical Fruit Tree Biology and Genetic Resources Utilization, Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Guangzhou 510640, China; (Y.Z.); (T.W.); (M.L.); (Y.L.)
- College of Horticulture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Ting Wang
- Key Laboratory of South Subtropical Fruit Tree Biology and Genetic Resources Utilization, Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Guangzhou 510640, China; (Y.Z.); (T.W.); (M.L.); (Y.L.)
| | - Bo Jiang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.L.); (B.J.)
| | - Mingjing Liao
- Key Laboratory of South Subtropical Fruit Tree Biology and Genetic Resources Utilization, Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Guangzhou 510640, China; (Y.Z.); (T.W.); (M.L.); (Y.L.)
- College of Horticulture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yuanda Lv
- Key Laboratory of South Subtropical Fruit Tree Biology and Genetic Resources Utilization, Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Guangzhou 510640, China; (Y.Z.); (T.W.); (M.L.); (Y.L.)
| | - Juan Li
- College of Horticulture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yun Zhong
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.L.); (B.J.)
- Key Laboratory of South Subtropical Fruit Tree Biology and Genetic Resources Utilization, Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Guangzhou 510640, China; (Y.Z.); (T.W.); (M.L.); (Y.L.)
| |
Collapse
|
4
|
Nakandala U, Furtado A, Masouleh AK, Smith MW, Mason P, Williams DC, Henry RJ. The genomes of Australian wild limes. PLANT MOLECULAR BIOLOGY 2024; 114:102. [PMID: 39316221 PMCID: PMC11422456 DOI: 10.1007/s11103-024-01502-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024]
Abstract
Australian wild limes occur in highly diverse range of environments and are a unique genetic resource within the genus Citrus. Here we compare the haplotype-resolved genome assemblies of six Australian native limes, including four new assemblies generated using PacBio HiFi and Hi-C sequencing data. The size of the genomes was between 315 and 391 Mb with contig N50s from 29.5 to 35 Mb. Gene completeness of the assemblies was estimated to be from 98.4 to 99.3% and the annotations from 97.7 to 98.9% based upon BUSCO, confirming the high contiguity and completeness of the assembled genomes. High collinearity was observed among the genomes and the two haplotype assemblies for each species. Gene duplication and evolutionary analysis demonstrated that the Australian citrus have undergone only one ancient whole-genome triplication event during evolution. The highest number of species-specific and expanded gene families were found in C. glauca and they were primarily enriched in purine, thiamine metabolism, amino acids and aromatic amino acids metabolism which might help C. glauca to mitigate drought, salinity, and pathogen attacks in the drier environments in which this species is found. Unique genes related to terpene biosynthesis, glutathione metabolism, and toll-like receptors in C. australasica, and starch and sucrose metabolism genes in both C. australis and C. australasica might be important candidate genes for HLB tolerance in these species. Expanded gene families were not lineage specific, however, a greater number of genes related to plant-pathogen interactions, predominantly disease resistant protein, was found in C. australasica and C. australis.
Collapse
Affiliation(s)
- Upuli Nakandala
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane, 4072, Australia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane, 4072, Australia
| | - Ardashir Kharabian Masouleh
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane, 4072, Australia
| | - Malcolm W Smith
- Department of Agriculture and Fisheries, Bundaberg Research Station, Bundaberg, QLD, 4670, Australia
| | - Patrick Mason
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane, 4072, Australia
| | | | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia.
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
5
|
Wu Y, Wang F, Lyu K, Liu R. Comparative Analysis of Transposable Elements in the Genomes of Citrus and Citrus-Related Genera. PLANTS (BASEL, SWITZERLAND) 2024; 13:2462. [PMID: 39273946 PMCID: PMC11397423 DOI: 10.3390/plants13172462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024]
Abstract
Transposable elements (TEs) significantly contribute to the evolution and diversity of plant genomes. In this study, we explored the roles of TEs in the genomes of Citrus and Citrus-related genera by constructing a pan-genome TE library from 20 published genomes of Citrus and Citrus-related accessions. Our results revealed an increase in TE content and the number of TE types compared to the original annotations, as well as a decrease in the content of unclassified TEs. The average length of TEs per assembly was approximately 194.23 Mb, representing 41.76% (Murraya paniculata) to 64.76% (Citrus gilletiana) of the genomes, with a mean value of 56.95%. A significant positive correlation was found between genome size and both the number of TE types and TE content. Consistent with the difference in mean whole-genome size (39.83 Mb) between Citrus and Citrus-related genera, Citrus genomes contained an average of 34.36 Mb more TE sequences than Citrus-related genomes. Analysis of the estimated insertion time and half-life of long terminal repeat retrotransposons (LTR-RTs) suggested that TE removal was not the primary factor contributing to the differences among genomes. These findings collectively indicate that TEs are the primary determinants of genome size and play a major role in shaping genome structures. Principal coordinate analysis (PCoA) of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) identifiers revealed that the fragmented TEs were predominantly derived from ancestral genomes, while intact TEs were crucial in the recent evolutionary diversification of Citrus. Moreover, the presence or absence of intact TEs near the AdhE superfamily was closely associated with the bitterness trait in the Citrus species. Overall, this study enhances TE annotation in Citrus and Citrus-related genomes and provides valuable data for future genetic breeding and agronomic trait research in Citrus.
Collapse
Affiliation(s)
- Yilei Wu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fusheng Wang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Keliang Lyu
- Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Renyi Liu
- Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
6
|
Su H, Wang Y, Xu J, Omar AA, Grosser JW, Wang N. Cas12a RNP-mediated co-transformation enables transgene-free multiplex genome editing, long deletions, and inversions in citrus chromosome. FRONTIERS IN PLANT SCIENCE 2024; 15:1448807. [PMID: 39148610 PMCID: PMC11324552 DOI: 10.3389/fpls.2024.1448807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024]
Abstract
Introduction Citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), is a devastating disease worldwide. Previously, we successfully generated canker-resistant Citrus sinensis cv. Hamlin lines in the T0 generation. This was achieved through the transformation of embryogenic protoplasts using the ribonucleoprotein (RNP) containing Cas12a and one crRNA to edit the canker susceptibility gene, CsLOB1, which led to small indels. Methods Here, we transformed embryogenic protoplasts of Hamlin with RNP containing Cas12a and three crRNAs. Results Among the 10 transgene-free genome-edited lines, long deletions were obtained in five lines. Additionally, inversions were observed in three of the five edited lines with long deletions, but not in any edited lines with short indel mutations, suggesting long deletions maybe required for inversions. Biallelic mutations were observed for each of the three target sites in four of the 10 edited lines when three crRNAs were used, demonstrating that transformation of embryogenic citrus protoplasts with Cas12a and three crRNAs RNP can be very efficient for multiplex editing. Our analysis revealed the absence of off-target mutations in the edited lines. These cslob1 mutant lines were canker- resistant and no canker symptoms were observed after inoculation with Xcc and Xcc growth was significantly reduced in the cslob1 mutant lines compared to the wild type plants. Discussion Taken together, RNP (Cas12a and three crRNAs) transformation of embryogenic protoplasts of citrus provides a promising solution for transgene-free multiplex genome editing with high efficiency and for deletion of long fragments.
Collapse
Affiliation(s)
- Hang Su
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Yuanchun Wang
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Jin Xu
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Ahmad A Omar
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
- Department of Horticultural Sciences, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Jude W Grosser
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
- Department of Horticultural Sciences, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Nian Wang
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| |
Collapse
|
7
|
He J, Qin Z, Liu K, Li X, Kou Y, Jin Z, He R, Hong M, Xiong B, Liao L, Sun G, He S, Zhang M, Liang D, Lv X, Wang X, Wang Z. Volatile metabolomics and transcriptomics analyses provide insights into the mechanism of volatile changes during fruit development of 'Ehime 38' ( Citrus reticulata) and its bud mutant. FRONTIERS IN PLANT SCIENCE 2024; 15:1430204. [PMID: 38984161 PMCID: PMC11231921 DOI: 10.3389/fpls.2024.1430204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024]
Abstract
Volatile compounds are important determinants affecting fruit flavor. Previous study has identified a bud mutant of 'Ehime 38' (Citrus reticulata) with different volatile profile. However, the volatile changes between WT and MT during fruit development and underlying mechanism remain elusive. In this study, a total of 35 volatile compounds were identified in the pulps of WT and MT at five developmental stages. Both varieties accumulated similar and the highest levels of volatiles at stage S1, and showed a downward trend as the fruit develops. However, the total volatile contents in the pulps of MT were 1.4-2.5 folds higher than those in WT at stages S2-S5, which was mainly due to the increase in the content of d-limonene. Transcriptomic and RT-qPCR analysis revealed that most genes in MEP pathway were positively correlated with the volatile contents, of which DXS1 might mainly contribute to the elevated volatiles accumulation in MT by increasing the flux into the MEP pathway. Moreover, temporal expression analysis indicated that these MEP pathway genes functioned at different developmental stages. This study provided comprehensive volatile metabolomics and transcriptomics characterizations of a citrus mutant during fruit development, which is valuable for fruit flavor improvement in citrus.
Collapse
Affiliation(s)
- Jiaxian He
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Zeyu Qin
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Kexin Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xiangyi Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yiming Kou
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Zhenghua Jin
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Ruiyuan He
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Min Hong
- Citrus Research Institute, Southwest University, Chongqing, China
| | - Bo Xiong
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Ling Liao
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Guochao Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Siya He
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Mingfei Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Dong Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xiulan Lv
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xun Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Zhihui Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
8
|
Zhang Y, Jin J, Wang N, Sun Q, Feng D, Zhu S, Wang Z, Li S, Ye J, Chai L, Xie Z, Deng X. Cytochrome P450 CitCYP97B modulates carotenoid accumulation diversity by hydroxylating β-cryptoxanthin in Citrus. PLANT COMMUNICATIONS 2024; 5:100847. [PMID: 38379285 PMCID: PMC11211522 DOI: 10.1016/j.xplc.2024.100847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/21/2023] [Accepted: 02/18/2024] [Indexed: 02/22/2024]
Abstract
Carotenoids in plant foods provide health benefits by functioning as provitamin A. One of the vital provitamin A carotenoids, β-cryptoxanthin, is typically plentiful in citrus fruit. However, little is known about the genetic basis of β-cryptoxanthin accumulation in citrus. Here, we performed a widely targeted metabolomic analysis of 65 major carotenoids and carotenoid derivatives to characterize carotenoid accumulation in Citrus and determine the taxonomic profile of β-cryptoxanthin. We used data from 81 newly sequenced representative accessions and 69 previously sequenced Citrus cultivars to reveal the genetic basis of β-cryptoxanthin accumulation through a genome-wide association study. We identified a causal gene, CitCYP97B, which encodes a cytochrome P450 protein whose substrate and metabolic pathways in land plants were undetermined. We subsequently demonstrated that CitCYP97B functions as a novel monooxygenase that specifically hydroxylates the β-ring of β-cryptoxanthin in a heterologous expression system. In planta experiments provided further evidence that CitCYP97B negatively regulates β-cryptoxanthin content. Using the sequenced Citrus accessions, we found that two critical structural cis-element variations contribute to increased expression of CitCYP97B, thereby altering β-cryptoxanthin accumulation in fruit. Hybridization/introgression appear to have contributed to the prevalence of two cis-element variations in different Citrus types during citrus evolution. Overall, these findings extend our understanding of the regulation and diversity of carotenoid metabolism in fruit crops and provide a genetic target for production of β-cryptoxanthin-biofortified products.
Collapse
Affiliation(s)
- Yingzi Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiajing Jin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Nan Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Quan Sun
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Di Feng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Shenchao Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zexin Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Shunxin Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Junli Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Lijun Chai
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zongzhou Xie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| |
Collapse
|
9
|
Singh K, Huff M, Liu J, Park JW, Rickman T, Keremane M, Krueger RR, Kunta M, Roose ML, Dardick C, Staton M, Ramadugu C. Chromosome-Scale, De Novo, Phased Genome Assemblies of Three Australian Limes: Citrus australasica, C. inodora, and C. glauca. PLANTS (BASEL, SWITZERLAND) 2024; 13:1460. [PMID: 38891269 PMCID: PMC11174732 DOI: 10.3390/plants13111460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
Huanglongbing (HLB) is a severe citrus disease worldwide. Wild Australian limes like Citrus australasica, C. inodora, and C. glauca possess beneficial HLB resistance traits. Individual trees of the three taxa were extensively used in a breeding program for over a decade to introgress resistance traits into commercial-quality citrus germplasm. We generated high-quality, phased, de novo genome assemblies of the three Australian limes using PacBio long-read sequencing. The genome assembly sizes of the primary and alternate haplotypes were determined for C. australasica (337 Mb/335 Mb), C. inodora (304 Mb/299 Mb), and C. glauca (376 Mb/379 Mb). The nine chromosome-scale scaffolds included 86-91% of the genome sequences generated. The integrity and completeness of the assembled genomes were estimated to be at 97.2-98.8%. Gene annotation studies identified 25,461 genes in C. australasica, 27,665 in C. inodora, and 30,067 in C. glauca. Genes belonging to 118 orthogroups were specific to Australian lime genomes compared to other citrus genomes analyzed. Significantly fewer canonical resistance (R) genes were found in C. inodora and C. glauca (319 and 449, respectively) compared to C. australasica (576), C. clementina (579), and C. sinensis (651). Similar patterns were observed for other gene families associated with potential HLB resistance, including Phloem protein 2 (PP2) and Callose synthase (CalS) genes predicted in the Australian lime genomes. The genomic information on Australian limes developed in the present study will help understand the genetic basis of HLB resistance.
Collapse
Affiliation(s)
- Khushwant Singh
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA; (K.S.); (M.L.R.)
| | - Matthew Huff
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA; (M.H.); (T.R.); (M.S.)
| | - Jianyang Liu
- Innovative Fruit Production, Improvement, and Protection, Appalachian Fruit Research Station, USDA-ARS, Kearneysville, WV 25430, USA; (J.L.); (C.D.)
| | - Jong-Won Park
- Citrus Center, Texas A&M University-Kingsville, Weslaco, TX 78599, USA; (J.-W.P.); (M.K.)
| | - Tara Rickman
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA; (M.H.); (T.R.); (M.S.)
| | - Manjunath Keremane
- National Clonal Germplasm Repository for Citrus and Dates, USDA-ARS, Riverside, CA 92507, USA; (M.K.); (R.R.K.)
| | - Robert R. Krueger
- National Clonal Germplasm Repository for Citrus and Dates, USDA-ARS, Riverside, CA 92507, USA; (M.K.); (R.R.K.)
| | - Madhurababu Kunta
- Citrus Center, Texas A&M University-Kingsville, Weslaco, TX 78599, USA; (J.-W.P.); (M.K.)
| | - Mikeal L. Roose
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA; (K.S.); (M.L.R.)
| | - Chris Dardick
- Innovative Fruit Production, Improvement, and Protection, Appalachian Fruit Research Station, USDA-ARS, Kearneysville, WV 25430, USA; (J.L.); (C.D.)
| | - Margaret Staton
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA; (M.H.); (T.R.); (M.S.)
| | - Chandrika Ramadugu
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA; (K.S.); (M.L.R.)
| |
Collapse
|
10
|
Yang L, Deng H, Wang M, Li S, Wang W, Yang H, Pang C, Zhong Q, Sun Y, Hong L. A high-quality chromosome-scale genome assembly of blood orange, an important pigmented sweet orange variety. Sci Data 2024; 11:460. [PMID: 38710725 DOI: 10.1038/s41597-024-03313-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
Blood orange (BO) is a rare red-fleshed sweet orange (SWO) with a high anthocyanin content and is associated with numerous health-related benefits. Here, we reported a high-quality chromosome-scale genome assembly for Neixiu (NX) BO, reaching 336.63 Mb in length with contig and scaffold N50 values of 30.6 Mb. Furthermore, 96% of the assembled sequences were successfully anchored to 9 pseudo-chromosomes. The genome assembly also revealed the presence of 37.87% transposon elements and 7.64% tandem repeats, and the annotation of 30,395 protein-coding genes. A high level of genome synteny was observed between BO and SWO, further supporting their genetic similarity. The speciation event that gave rise to the Citrus species predated the duplication event found within them. The genome-wide variation between NX and SWO was also compared. This first high-quality BO genome will serve as a fundamental basis for future studies on functional genomics and genome evolution.
Collapse
Affiliation(s)
- Lei Yang
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China
| | - Honghong Deng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Min Wang
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China
| | - Shuang Li
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China
| | - Wu Wang
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China
| | - Haijian Yang
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China
| | - Changqing Pang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qi Zhong
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yue Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Hong
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China.
| |
Collapse
|
11
|
Ma X, Sheng L, Li F, Zhou T, Guo J, Chang Y, Yang J, Jin Y, Chen Y, Lu X. Seasonal drought promotes citrate accumulation in citrus fruit through the CsABF3-activated CsAN1-CsPH8 pathway. THE NEW PHYTOLOGIST 2024; 242:1131-1145. [PMID: 38482565 DOI: 10.1111/nph.19671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/12/2024] [Indexed: 04/12/2024]
Abstract
Plenty of rainfall but unevenly seasonal distribution happens regularly in southern China. Seasonal drought from summer to early autumn leads to citrus fruit acidification, but how seasonal drought regulates citrate accumulation remains unknown. Herein, we employed a set of physiological, biochemical, and molecular approaches to reveal that CsABF3 responds to seasonal drought stress and modulates citrate accumulation in citrus fruits by directly regulating CsAN1 and CsPH8. Here, we demonstrated that irreversible acidification of citrus fruits is caused by drought lasting for > 30 d during the fruit enlargement stage. We investigated the transcriptome characteristics of fruits affected by drought and corroborated the pivotal roles of a bHLH transcription factor (CsAN1) and a P3A-ATPase gene (CsPH8) in regulating citrate accumulation in response to drought. Abscisic acid (ABA)-responsive element binding factor 3 (CsABF3) was upregulated by drought in an ABA-dependent manner. CsABF3 activated CsAN1 and CsPH8 expression by directly and specifically binding to the ABA-responsive elements (ABREs) in the promoters and positively regulated citrate accumulation. Taken together, this study sheds new light on the regulatory module ABA-CsABF3-CsAN1-CsPH8 responsible for citrate accumulation under drought stress, which advances our understanding of quality formation of citrus fruit.
Collapse
Affiliation(s)
- Xiaochuan Ma
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- National Center for Citrus Improvement, 410128, Changsha, China
| | - Ling Sheng
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- National Center for Citrus Improvement, 410128, Changsha, China
| | - Feifei Li
- Institute of Horticulture, Hunan Academy of Agricultural Science, 410125, Changsha, China
| | - Tie Zhou
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- National Center for Citrus Improvement, 410128, Changsha, China
| | - Jing Guo
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- National Center for Citrus Improvement, 410128, Changsha, China
| | - Yuanyuan Chang
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- National Center for Citrus Improvement, 410128, Changsha, China
| | - Junfeng Yang
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- National Center for Citrus Improvement, 410128, Changsha, China
| | - Yan Jin
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- National Center for Citrus Improvement, 410128, Changsha, China
| | - Yuewen Chen
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- National Center for Citrus Improvement, 410128, Changsha, China
| | - Xiaopeng Lu
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- National Center for Citrus Improvement, 410128, Changsha, China
| |
Collapse
|
12
|
Song HY, Zhao K, Pei YG, Chen HX, Wang XA, Jiang GL, Xie HJ, Chen D, Gong RG. Multi-omics analysis provides new insights into the changes of important nutrients and fructose metabolism in loquat bud sport mutant. FRONTIERS IN PLANT SCIENCE 2024; 15:1374925. [PMID: 38606078 PMCID: PMC11008694 DOI: 10.3389/fpls.2024.1374925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024]
Abstract
Bud sport is a common and stable somatic variation in perennial fruit trees, and often leads to significant modification of fruit traits and affects the breeding value. To investigate the impact of bud sport on the main metabolites in the fruit of white-fleshed loquat, we conducted a multi-omics analysis of loquat fruits at different developmental stages of a white-fleshed bud sport mutant of Dongting loquat (TBW) and its wild type (TBY). The findings from the detection of main fruit quality indices and metabolites suggested that bud sport resulted in a reduction in the accumulation of carotenoids, fructose, titratable acid and terpenoids at the mature stage of TBW, while leading to the accumulation of flavonoids, phenolic acids, amino acids and lipids. The comparably low content of titratable acid further enhances the balanced and pleasent taste profile of TBW. Expression patterns of differentially expressed genes involved in fructose metabolism exhibited a significant increase in the expression level of S6PDH (EVM0006243, EVM0044405) prior to fruit maturation. The comparison of protein sequences and promoter region of S6PDH between TBY and TBW revealed no structural variations that would impact gene function or expression, indicating that transcription factors may be responsible for the rapid up-regulation of S6PDH before maturation. Furthermore, correlation analysis helped to construct a comprehensive regulatory network of fructose metabolism in loquat, including 23 transcription factors, six structural genes, and nine saccharides. Based on the regulatory network and existing studies, it could be inferred that transcription factors such as ERF, NAC, MYB, GRAS, and bZIP may promote fructose accumulation in loquat flesh by positively regulating S6PDH. These findings improve our understanding of the nutritional value and breeding potential of white-fleshed loquat bud sport mutant, as well as serve as a foundation for exploring the genes and transcription factors that regulate fructose metabolism in loquat.
Collapse
Affiliation(s)
- Hai-yan Song
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwestern China of the Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
- College of Life Science, Sichuan University, Chengdu, Sichuan, China
| | - Ke Zhao
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwestern China of the Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Yan-Gang Pei
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- College of Life Science, Sichuan University, Chengdu, Sichuan, China
| | - Hong-xu Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiao-an Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Guo-Liang Jiang
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwestern China of the Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Hong-Jiang Xie
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwestern China of the Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Dong Chen
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwestern China of the Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Rong-gao Gong
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Jia H, Omar AA, Xu J, Dalmendray J, Wang Y, Feng Y, Wang W, Hu Z, Grosser JW, Wang N. Generation of transgene-free canker-resistant Citrus sinensis cv. Hamlin in the T0 generation through Cas12a/CBE co-editing. FRONTIERS IN PLANT SCIENCE 2024; 15:1385768. [PMID: 38595767 PMCID: PMC11002166 DOI: 10.3389/fpls.2024.1385768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
Citrus canker disease affects citrus production. This disease is caused by Xanthomonas citri subsp. citri (Xcc). Previous studies confirmed that during Xcc infection, PthA4, a transcriptional activator like effector (TALE), is translocated from the pathogen to host plant cells. PthA4 binds to the effector binding elements (EBEs) in the promoter region of canker susceptibility gene LOB1 (EBEPthA4-LOBP) to activate its expression and subsequently cause canker symptoms. Previously, the Cas12a/CBE co-editing method was employed to disrupt EBEPthA4-LOBP of pummelo, which is highly homozygous. However, most commercial citrus cultivars are heterozygous hybrids and more difficult to generate homozygous/biallelic mutants. Here, we employed Cas12a/CBE co-editing method to edit EBEPthA4-LOBP of Hamlin (Citrus sinensis), a commercial heterozygous hybrid citrus cultivar grown worldwide. Binary vector GFP-p1380N-ttLbCas12a:LOBP1-mPBE:ALS2:ALS1 was constructed and shown to be functional via Xcc-facilitated agroinfiltration in Hamlin leaves. This construct allows the selection of transgene-free regenerants via GFP, edits ALS to generate chlorsulfuron-resistant regenerants as a selection marker for genome editing resulting from transient expression of the T-DNA via nCas9-mPBE:ALS2:ALS1, and edits gene(s) of interest (i.e., EBEPthA4-LOBP in this study) through ttLbCas12a, thus creating transgene-free citrus. Totally, 77 plantlets were produced. Among them, 8 plantlets were transgenic plants (#HamGFP1 - #HamGFP8), 4 plantlets were transgene-free (#HamNoGFP1 - #HamNoGFP4), and the rest were wild type. Among 4 transgene-free plantlets, three lines (#HamNoGFP1, #HamNoGFP2 and #HamNoGFP3) contained biallelic mutations in EBEpthA4, and one line (#HamNoGFP4) had homozygous mutations in EBEpthA4. We achieved 5.2% transgene-free homozygous/biallelic mutation efficiency for EBEPthA4-LOBP in C. sinensis cv. Hamlin, compared to 1.9% mutation efficiency for pummelo in a previous study. Importantly, the four transgene-free plantlets and 3 transgenic plantlets that survived were resistant against citrus canker. Taken together, Cas12a/CBE co-editing method has been successfully used to generate transgene-free canker-resistant C. sinensis cv. Hamlin in the T0 generation via biallelic/homozygous editing of EBEpthA4 of the canker susceptibility gene LOB1.
Collapse
Affiliation(s)
- Hongge Jia
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Ahmad A. Omar
- Citrus Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Jin Xu
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Javier Dalmendray
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Yuanchun Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Yu Feng
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Wenting Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Zhuyuan Hu
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Jude W. Grosser
- Citrus Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| |
Collapse
|
14
|
Dang J, Li C, Sun D, Guo Q, Liang G. A tetraploid-dominated cytochimera developed from a natural bud mutant of the nonapomictic mandarin variety 'Orah'. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:20. [PMID: 38404720 PMCID: PMC10891019 DOI: 10.1007/s11032-024-01456-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/10/2024] [Indexed: 02/27/2024]
Abstract
Nonapomictic citrus tetraploids are desirable in citrus breeding for the production of triploid, seedless varieties, and polyploid rootstocks. However, only a few lines have been reported, and they were all generated using chemical methods. A 2x + 4 × cytochimera of the nonapomictic citrus variety 'Orah' mandarin, which developed from a bud mutant, was found due to its morphology differing from that of diploid plants and characterised via ploidy analysis combining flow cytometry and chromosome observation. The chimaera was stable, and there were 1.86-1.90 times as tetraploid cells as diploid cells. Anatomical structure observation revealed that the 'Orah' chimaera may be a periclinal chimaera with diploid cells in the L1 layer and tetraploid cells in the L2 and L3 layers. The chimaera showed some typical traits of polyploid plants, including thicker shoots, wider and thicker leaves, larger flowers and fruits, and fewer but larger seeds in fruits than in diploid plants. Almost all the seeds of the chimaera were monoembryonic. Most of the self-pollinated progenies of the chimaera were identified as tetraploids, and some triploid, pentaploid, and hexaploid plants were found. As a female, the chimaera produced allotriploids when crossed with Australian finger lime. In addition, 6 plants developed from polyembryonic seeds of the chimaera were identified as sexual tetraploid progenies with low-level recombinant genomes. Therefore, the 'Orah' 2x + 4 × chimaera can be used as a female parent to produce hybrid triploid and tetraploid citrus plants with high efficiency. Identification of the chimaera demonstrated that tetraploid citrus plants, especially nonapomictic varieties, can be generated from shoot bud mutants. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01456-x.
Collapse
Affiliation(s)
- Jiangbo Dang
- College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, 400715 China
- Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing, 400715 China
| | - Cai Li
- Fuling Center for Cash Crop Development, Fuling, Chongqing, 408000 China
| | - Danni Sun
- College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, 400715 China
- Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing, 400715 China
| | - Qigao Guo
- College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, 400715 China
- Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing, 400715 China
| | - Guolu Liang
- College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, 400715 China
- Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing, 400715 China
| |
Collapse
|
15
|
Fan Z, Jeffries KA, Sun X, Olmedo G, Zhao W, Mattia MR, Stover E, Manthey JA, Baldwin EA, Lee S, Gmitter FG, Plotto A, Bai J. Chemical and genetic basis of orange flavor. SCIENCE ADVANCES 2024; 10:eadk2051. [PMID: 38416837 PMCID: PMC10901466 DOI: 10.1126/sciadv.adk2051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/26/2024] [Indexed: 03/01/2024]
Abstract
Sweet orange (Citrus sinensis) exhibits limited genetic diversity and high susceptibility to Huanglongbing (HLB). Breeding HLB-tolerant orange-like hybrids is in dire need. However, our understanding of the key compounds responsible for orange flavor and their genetic regulation remains elusive. Evaluating 179 juice samples, including oranges, mandarins, Poncirus trifoliata, and hybrids, distinct volatile compositions were found. A random forest model predicted untrained samples with 78% accuracy and identified 26 compounds crucial for orange flavor. Notably, seven esters differentiated orange from mandarin flavor. Cluster analysis showed six esters with shared genetic control. Differential gene expression analysis identified C. sinensis alcohol acyltransferase 1 (CsAAT1) responsible for ester production in orange. Its activity was validated through overexpression assays. Phylogeny revealed the functional allele was inherited from pummelo. A SNP-based DNA marker in the coding region accurately predicted phenotypes. This study enhances our understanding of orange flavor compounds and their biosynthetic pathways and expands breeding options for orange-like cultivars.
Collapse
Affiliation(s)
- Zhen Fan
- Horticultural Sciences Department, IFAS Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598, USA
| | | | - Xiuxiu Sun
- Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, USDA-ARS, Hilo, HI 96720, USA
| | - Gabriela Olmedo
- Horticultural Research Laboratory, USDA-ARS, Fort Pierce, FL, 34945, USA
| | - Wei Zhao
- Horticultural Research Laboratory, USDA-ARS, Fort Pierce, FL, 34945, USA
| | - Matthew R. Mattia
- Horticultural Research Laboratory, USDA-ARS, Fort Pierce, FL, 34945, USA
| | - Ed Stover
- Horticultural Research Laboratory, USDA-ARS, Fort Pierce, FL, 34945, USA
| | - John A. Manthey
- Horticultural Research Laboratory, USDA-ARS, Fort Pierce, FL, 34945, USA
| | | | - Seonghee Lee
- Horticultural Sciences Department, IFAS Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598, USA
| | - Frederick G. Gmitter
- Horticultural Sciences Department, IFAS Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA
| | - Anne Plotto
- Horticultural Research Laboratory, USDA-ARS, Fort Pierce, FL, 34945, USA
| | - Jinhe Bai
- Horticultural Research Laboratory, USDA-ARS, Fort Pierce, FL, 34945, USA
| |
Collapse
|
16
|
Hiraoka Y, Ferrante SP, Wu GA, Federici CT, Roose ML. Development and Assessment of SNP Genotyping Arrays for Citrus and Its Close Relatives. PLANTS (BASEL, SWITZERLAND) 2024; 13:691. [PMID: 38475537 DOI: 10.3390/plants13050691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Rapid advancements in technologies provide various tools to analyze fruit crop genomes to better understand genetic diversity and relationships and aid in breeding. Genome-wide single nucleotide polymorphism (SNP) genotyping arrays offer highly multiplexed assays at a relatively low cost per data point. We report the development and validation of 1.4M SNP Axiom® Citrus HD Genotyping Array (Citrus 15AX 1 and Citrus 15AX 2) and 58K SNP Axiom® Citrus Genotyping Arrays for Citrus and close relatives. SNPs represented were chosen from a citrus variant discovery panel consisting of 41 diverse whole-genome re-sequenced accessions of Citrus and close relatives, including eight progenitor citrus species. SNPs chosen mainly target putative genic regions of the genome and are accurately called in both Citrus and its closely related genera while providing good coverage of the nuclear and chloroplast genomes. Reproducibility of the arrays was nearly 100%, with a large majority of the SNPs classified as the most stringent class of markers, "PolyHighResolution" (PHR) polymorphisms. Concordance between SNP calls in sequence data and array data average 98%. Phylogenies generated with array data were similar to those with comparable sequence data and little affected by 3 to 5% genotyping error. Both arrays are publicly available.
Collapse
Affiliation(s)
- Yoko Hiraoka
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Sergio Pietro Ferrante
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Guohong Albert Wu
- US Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Claire T Federici
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Mikeal L Roose
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
17
|
Wang N, Chen P, Xu Y, Guo L, Li X, Yi H, Larkin RM, Zhou Y, Deng X, Xu Q. Phased genomics reveals hidden somatic mutations and provides insight into fruit development in sweet orange. HORTICULTURE RESEARCH 2024; 11:uhad268. [PMID: 38371640 PMCID: PMC10873711 DOI: 10.1093/hr/uhad268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/01/2023] [Indexed: 02/20/2024]
Abstract
Although revisiting the discoveries and implications of genetic variations using phased genomics is critical, such efforts are still lacking. Somatic mutations represent a crucial source of genetic diversity for breeding and are especially remarkable in heterozygous perennial and asexual crops. In this study, we focused on a diploid sweet orange (Citrus sinensis) and constructed a haplotype-resolved genome using high fidelity (HiFi) reads, which revealed 10.6% new sequences. Based on the phased genome, we elucidate significant genetic admixtures and haplotype differences. We developed a somatic detection strategy that reveals hidden somatic mutations overlooked in a single reference genome. We generated a phased somatic variation map by combining high-depth whole-genome sequencing (WGS) data from 87 sweet orange somatic varieties. Notably, we found twice as many somatic mutations relative to a single reference genome. Using these hidden somatic mutations, we separated sweet oranges into seven major clades and provide insight into unprecedented genetic mosaicism and strong positive selection. Furthermore, these phased genomics data indicate that genomic heterozygous variations contribute to allele-specific expression during fruit development. By integrating allelic expression differences and somatic mutations, we identified a somatic mutation that induces increases in fruit size. Applications of phased genomics will lead to powerful approaches for discovering genetic variations and uncovering their effects in highly heterozygous plants. Our data provide insight into the hidden somatic mutation landscape in the sweet orange genome, which will facilitate citrus breeding.
Collapse
Affiliation(s)
- Nan Wang
- Institute of Horticultural Research, Hunan Academy of Agricultural Sciences, Changsha, China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Peng Chen
- Institute of Horticultural Research, Hunan Academy of Agricultural Sciences, Changsha, China
- Yuelu Mountain Laboratory, Changsha, China
| | - Yuanyuan Xu
- Institute of Horticultural Research, Hunan Academy of Agricultural Sciences, Changsha, China
- Yuelu Mountain Laboratory, Changsha, China
| | - Lingxia Guo
- Institute of Horticultural Research, Hunan Academy of Agricultural Sciences, Changsha, China
- Yuelu Mountain Laboratory, Changsha, China
| | - Xianxin Li
- Institute of Horticultural Research, Hunan Academy of Agricultural Sciences, Changsha, China
- Yuelu Mountain Laboratory, Changsha, China
| | - Hualin Yi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Robert M Larkin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Yongfeng Zhou
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- National Key Laboratory of Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
18
|
Mao Z, Wang Y, Li M, Zhang S, Zhao Z, Xu Q, Liu JH, Li C. Vacuolar proteomic analysis reveals tonoplast transporters for accumulation of citric acid and sugar in citrus fruit. HORTICULTURE RESEARCH 2024; 11:uhad249. [PMID: 38288255 PMCID: PMC10822839 DOI: 10.1093/hr/uhad249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/13/2023] [Indexed: 01/31/2024]
Abstract
Vacuole largely dictates the fruit taste and flavor, as most of the sugars and organic acids are stored in the vacuoles of the fruit. However, difficulties associated with vacuole separation severely hinder identification and characterization of vacuolar proteins in fruit species. In this study, we established an effective approach for separating vacuoles and successfully purified vacuolar protein from six types of citrus fruit with varying patterns of sugar and organic acid contents. By using label-free LC-MS/MS proteomic analysis, 1443 core proteins were found to be associated with the essential functions of vacuole in citrus fruit. Correlation analysis of metabolite concentration with proteomic data revealed a transporter system for the accumulation of organic acid and soluble sugars in citrus. Furthermore, we characterized the physiological roles of selected key tonoplast transporters, ABCG15, Dict2.1, TMT2, and STP7 in the accumulation of citric acid and sugars. These findings provide a novel perspective and practical solution for investigating the transporters underlying the formation of citrus taste and flavor.
Collapse
Affiliation(s)
- Zuolin Mao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yue Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengdi Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuhang Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zeqi Zhao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Ji-Hong Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunlong Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
19
|
Zhou J, Yang S, Ma Y, Liu Z, Tu H, Wang H, Zhang J, Chen Q, He W, Li M, Lin Y, Zhang Y, Wu Z, Zhang Y, Luo Y, Tang H, Wang Y, Wang X. Soluble sugar and organic acid composition and flavor evaluation of Chinese cherry fruits. Food Chem X 2023; 20:100953. [PMID: 37929267 PMCID: PMC10622630 DOI: 10.1016/j.fochx.2023.100953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023] Open
Abstract
Chinese cherry is an economically important fruit crop native to China. Flavor quality is greatly influenced by compositions of soluble sugars and organic acids. To better understand the flavor quality of Chinese cherry, we determined sugar and acid components in thirty-eight landrace and cultivar collections, and two wild resources using the HPLC method. Glucose and fructose were the main components, accounting for 85.91% of soluble sugars. Malic acid was the predominant organic acid, with an average proportion of 65.73% of total acids. Correlation and PCA analysis revealed seven key indicators for evaluating fruit flavor. Compared with wild Chinese cherry, the cultivated collections exhibited higher levels of soluble sugars, especially fructose, and lower levels of organic acid, particularly malic acid in fruits. Finally, we have established grading criteria for seven flavor indicators in Chinese cherry. Our study provides valuable references for identifying flavor compounds and improving flavor quality of Chinese cherry.
Collapse
Affiliation(s)
- Jingting Zhou
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuaiwei Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Ma
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhenshan Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongxia Tu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Hao Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Chengdu 611130, China
| | - Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Chengdu 611130, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhiwei Wu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Chengdu 611130, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Chengdu 611130, China
| |
Collapse
|
20
|
Liu Y, Gao Y, Chen M, Jin Y, Qin Y, Hao G. GIFTdb: a useful gene database for plant fruit traits improving. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1030-1040. [PMID: 37856620 DOI: 10.1111/tpj.16506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/22/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Fruit traits are critical determinants of plant fitness, resource diversity, productive and quality. Gene regulatory networks in plants play an essential role in determining fruit traits, such as fruit size, yield, firmness, aroma and other important features. Many research studies have focused on elucidating the associated signaling pathways and gene interaction mechanism to better utilize gene resources for regulating fruit traits. However, the availability of specific database of genes related to fruit traits for use by the plant research community remains limited. To address this limitation, we developed the Gene Improvements for Fruit Trait Database (GIFTdb, http://giftdb.agroda.cn). GIFTdb contains 35 365 genes, including 896 derived from the FR database 1.0, 305 derived from 30 882 articles from 2014 to 2021, 236 derived from the Universal Protein Resource (UniProt) database, and 33 928 identified through homology analysis. The database supports several aided analysis tools, including signal transduction pathways, gene ontology terms, protein-protein interactions, DNAWorks, Basic Local Alignment Search Tool (BLAST), and Protein Subcellular Localization Prediction (WoLF PSORT). To provide information about genes currently unsupported in GIFTdb, potential fruit trait-related genes can be searched based on homology with the supported genes. GIFTdb can provide valuable assistance in determining the function of fruit trait-related genes, such as MYB306-like, by conducting a straightforward search. We believe that GIFTdb will be a valuable resource for researchers working on gene function annotation and molecular breeding to improve fruit traits.
Collapse
Affiliation(s)
- Yingwei Liu
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, 550025, Guiyang, P.R. China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, 550025, Guiyang, P.R. China
- Engineering Training Center, Guizhou Minzu University, Guiyang, 550025, P.R. China
| | - Yangyang Gao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, 550025, Guiyang, P.R. China
| | - Moxian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, 550025, Guiyang, P.R. China
| | - Yin Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, 550025, Guiyang, P.R. China
| | - Yongbin Qin
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, 550025, Guiyang, P.R. China
| | - Gefei Hao
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, 550025, Guiyang, P.R. China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, 550025, Guiyang, P.R. China
| |
Collapse
|
21
|
Huang Y, He J, Xu Y, Zheng W, Wang S, Chen P, Zeng B, Yang S, Jiang X, Liu Z, Wang L, Wang X, Liu S, Lu Z, Liu Z, Yu H, Yue J, Gao J, Zhou X, Long C, Zeng X, Guo YJ, Zhang WF, Xie Z, Li C, Ma Z, Jiao W, Zhang F, Larkin RM, Krueger RR, Smith MW, Ming R, Deng X, Xu Q. Pangenome analysis provides insight into the evolution of the orange subfamily and a key gene for citric acid accumulation in citrus fruits. Nat Genet 2023; 55:1964-1975. [PMID: 37783780 DOI: 10.1038/s41588-023-01516-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/28/2023] [Indexed: 10/04/2023]
Abstract
The orange subfamily (Aurantioideae) contains several Citrus species cultivated worldwide, such as sweet orange and lemon. The origin of Citrus species has long been debated and less is known about the Aurantioideae. Here, we compiled the genome sequences of 314 accessions, de novo assembled the genomes of 12 species and constructed a graph-based pangenome for Aurantioideae. Our analysis indicates that the ancient Indian Plate is the ancestral area for Citrus-related genera and that South Central China is the primary center of origin of the Citrus genus. We found substantial variations in the sequence and expression of the PH4 gene in Citrus relative to Citrus-related genera. Gene editing and biochemical experiments demonstrate a central role for PH4 in the accumulation of citric acid in citrus fruits. This study provides insights into the origin and evolution of the orange subfamily and a regulatory mechanism underpinning the evolution of fruit taste.
Collapse
Affiliation(s)
- Yue Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, People's Republic of China
| | - Jiaxian He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yuantao Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, People's Republic of China
| | - Weikang Zheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Shaohua Wang
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Yunnan, People's Republic of China
| | - Peng Chen
- Horticulture Institute, Hunan Academy of Agricultural Sciences, Changsha, People's Republic of China
| | - Bin Zeng
- Horticulture Institute, Hunan Academy of Agricultural Sciences, Changsha, People's Republic of China
| | - Shuizhi Yang
- Horticulture Institute, Hunan Academy of Agricultural Sciences, Changsha, People's Republic of China
| | - Xiaolin Jiang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Zishuang Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Lun Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Xia Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Shengjun Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Zhihao Lu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Ziang Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Huiwen Yu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jianqiang Yue
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Yunnan, People's Republic of China
| | - Junyan Gao
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Yunnan, People's Republic of China
| | - Xianyan Zhou
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Yunnan, People's Republic of China
| | - Chunrui Long
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Yunnan, People's Republic of China
| | - Xiuli Zeng
- Qinghai-Tibet Plateau Fruit Trees Scientific Observation Test Station, Ministry of Agriculture and Rural Affairs, Lhasa, People's Republic of China
| | - Yong-Jie Guo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Wen-Fu Zhang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, People's Republic of China
| | - Zongzhou Xie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Chunlong Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Zhaocheng Ma
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Wenbiao Jiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Fei Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Robert M Larkin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Robert R Krueger
- United States Department of Agriculture-Agricultural Research Service National Clonal Germplasm Repository for Citrus and Dates, Riverside, CA, USA
| | - Malcolm W Smith
- Department of Agriculture and Fisheries, Bundaberg, Queensland, Australia
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, People's Republic of China.
- Hubei Hongshan Laboratory, Wuhan, People's Republic of China.
| |
Collapse
|
22
|
Comai L. Unlikely heroes on the long and winding road to potato inbreeding. ABIOTECH 2023; 4:267-271. [PMID: 37970470 PMCID: PMC10638346 DOI: 10.1007/s42994-023-00109-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 06/15/2023] [Indexed: 11/17/2023]
Abstract
Conversion of potato from a tetraploid, heterozygous, vegetatively propagated crop to a diploid F1 hybrid, propagated via botanical seed, would constitute a considerable advance for global agriculture, but faces multiple challenges. One such challenge is the difficulty in inbreeding potato, which involves purging deleterious alleles from its genome. This commentary discusses possible reasons for this difficulty and highlights a recent sequence-based effort to classify SNP variation, in potato germplasm, according to its deleterious potential. Tools and strategies connected to this database may facilitate development of F1 hybrids.
Collapse
Affiliation(s)
- Luca Comai
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA 95616 USA
| |
Collapse
|
23
|
Wang Z, Zhang X, Lei W, Zhu H, Wu S, Liu B, Ru D. Chromosome-level genome assembly and population genomics of Robinia pseudoacacia reveal the genetic basis for its wide cultivation. Commun Biol 2023; 6:797. [PMID: 37524773 PMCID: PMC10390555 DOI: 10.1038/s42003-023-05158-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/19/2023] [Indexed: 08/02/2023] Open
Abstract
Urban greening provides important ecosystem services and ideal places for urban recreation and is a serious consideration for municipal decision-makers. Among the tree species cultivated in urban green spaces, Robinia pseudoacacia stands out due to its attractive flowers, fragrances, high trunks, wide adaptability, and essential ecosystem services. However, the genomic basis and consequences of its wide-planting in urban green spaces remains unknown. Here, we report the chromosome-level genome assembly of R. pseudoacacia, revealing a genome size of 682.4 Mb and 33,187 protein-coding genes. More than 99.3% of the assembly is anchored to 11 chromosomes with an N50 of 59.9 Mb. Comparative genomic analyses among 17 species reveal that gene families related to traits favoured by urbanites, such as wood formation, biosynthesis, and drought tolerance, are notably expanded in R. pseudoacacia. Our population genomic analyses further recover 11 genes that are under recent selection. Ultimately, these genes play important roles in the biological processes related to flower development, water retention, and immunization. Altogether, our results reveal the evolutionary forces that shape R. pseudoacacia cultivated for urban greening. These findings also present a valuable foundation for the future development of agronomic traits and molecular breeding strategies for R. pseudoacacia.
Collapse
Affiliation(s)
- Zefu Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiao Zhang
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China.
| | - Weixiao Lei
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Hui Zhu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Shengdan Wu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| | - Bingbing Liu
- Institute of Loess Plateau, Shanxi University, Taiyuan, 030006, China.
| | - Dafu Ru
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
24
|
Liu HN, Pei MS, Ampomah-Dwamena C, He GQ, Wei TL, Shi QF, Yu YH, Guo DL. Genome-wide characterization of long terminal repeat retrotransposons provides insights into trait evolution of four cucurbit species. Funct Integr Genomics 2023; 23:218. [PMID: 37393305 DOI: 10.1007/s10142-023-01128-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 05/22/2023] [Accepted: 06/07/2023] [Indexed: 07/03/2023]
Abstract
Cucurbits are a diverse plant family that includes economically important crops, such as cucumber, watermelon, melon, and pumpkin. Knowledge of the roles that long terminal repeat retrotransposons (LTR-RTs) have played in diversification of cucurbit species is limited; to add to understanding of the roles of LTR-RTs, we assessed their distributions in four cucurbit species. We identified 381, 578, 1086, and 623 intact LTR-RTs in cucumber (Cucumis sativus L. var. sativus cv. Chinese Long), watermelon (Citrullus lanatus subsp. vulgaris cv. 97103), melon (Cucumis melo cv. DHL92), and Cucurbita (Cucurbita moschata var. Rifu), respectively. Among these LTR-RTs, the Ale clade of the Copia superfamily was the most abundant in all the four cucurbit species. Insertion time and copy number analysis revealed that an LTR-RT burst occurred approximately 2 million years ago in cucumber, watermelon, melon, and Cucurbita, and may have contributed to their genome size variation. Phylogenetic and nucleotide polymorphism analyses suggested that most LTR-RTs were formed after species diversification. Analysis of gene insertions by LTR-RTs revealed that the most frequent insertions were of Ale and Tekay and that genes related to dietary fiber synthesis were the most commonly affected by LTR-RTs in Cucurbita. These results increase our understanding of LTR-RTs and their roles in genome evolution and trait characterization in cucurbits.
Collapse
Affiliation(s)
- Hai-Nan Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, China
| | - Mao-Song Pei
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, China
| | | | - Guang-Qi He
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, China
| | - Tong-Lu Wei
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, China
| | - Qiao-Fang Shi
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, China
| | - Yi-He Yu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, China
| | - Da-Long Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China.
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, China.
| |
Collapse
|
25
|
Qu M, Fan X, Hao C, Zheng Y, Guo S, Wang S, Li W, Xu Y, Gao L, Chen Y. Chromosome-level assemblies of cultivated water chestnut Trapa bicornis and its wild relative Trapa incisa. Sci Data 2023; 10:407. [PMID: 37355767 PMCID: PMC10290653 DOI: 10.1038/s41597-023-02270-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/26/2023] [Indexed: 06/26/2023] Open
Abstract
Water chestnut (Trapa L.) is a floating-leaved aquatic plant with high edible and medicinal value. In this study, we presented chromosome-level genome assemblies of cultivated large-seed species Trapa bicornis and its wild small-seed relative Trapa incisa by using PacBio HiFi long reads and Hi-C technology. The T. bicornis and T. incisa assemblies consisted of 479.90 Mb and 463.97 Mb contigs with N50 values of 13.52 Mb and 13.77 Mb, respectively, and repeat contents of 62.88% and 62.49%, respectively. A total of 33,306 and 33,315 protein-coding genes were predicted in T. bicornis and T. incisa assemblies, respectively. There were 159,232 structural variants affecting more than 11 thousand genes detected between the two genomes. The phylogenetic analysis indicated that the lineage leading to Trapa was diverged from the lineage to Sonneratia approximately 23 million years ago. These two assemblies provide valuable resources for future evolutionary and functional genomic research and molecular breeding of water chestnut.
Collapse
Affiliation(s)
- Minghao Qu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Plant Germplasm Research Center, Wuhan Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangrong Fan
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- Hubei Key laboratory of Wetland evolution & ecological restoration, Wuhan Botanical Garden, Chinese academy of sciences, Wuhan, Hubei, 430074, China
- Research Center for Ecology, College of Science, Tibet University, Lhasa, Tibet, 850000, China
| | - Chenlu Hao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Plant Germplasm Research Center, Wuhan Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Zheng
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
| | - Sumin Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Plant Germplasm Research Center, Wuhan Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Sen Wang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
| | - Wei Li
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- Hubei Key laboratory of Wetland evolution & ecological restoration, Wuhan Botanical Garden, Chinese academy of sciences, Wuhan, Hubei, 430074, China
- Research Center for Ecology, College of Science, Tibet University, Lhasa, Tibet, 850000, China
| | - Yanqin Xu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China.
| | - Lei Gao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Plant Germplasm Research Center, Wuhan Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China.
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China.
| | - Yuanyuan Chen
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China.
- Hubei Key laboratory of Wetland evolution & ecological restoration, Wuhan Botanical Garden, Chinese academy of sciences, Wuhan, Hubei, 430074, China.
| |
Collapse
|
26
|
Anthocyanins distribution, transcriptional regulation, epigenetic and post-translational modification in fruits. Food Chem 2023; 411:135540. [PMID: 36701918 DOI: 10.1016/j.foodchem.2023.135540] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/04/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
Anthocyanins have indispensable functions in plant resistance, human health, and fruit coloring, which arouse people's favorite. It has been reported that anthocyanins are widely found in fruits, and can be affected by numerous factors. In this review, we systematically summarize anthocyanin functions, classifications, distributions, biosynthesis, decoration, transportation, transcriptional regulation, DNA methylation, and post-translational regulation in fruits.
Collapse
|
27
|
Gao C, Li C, Li Z, Liu Y, Li J, Guo J, Mao J, Fang F, Wang C, Deng X, Zheng Z. Comparative transcriptome profiling of susceptible and tolerant citrus species at early and late stage of infection by " Candidatus Liberibacter asiaticus". FRONTIERS IN PLANT SCIENCE 2023; 14:1191029. [PMID: 37389294 PMCID: PMC10301834 DOI: 10.3389/fpls.2023.1191029] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/29/2023] [Indexed: 07/01/2023]
Abstract
Citrus Huanglongbing (HLB), caused by "Candidatus Liberibacter asiaticus" (CLas), is the most destructive disease threatening global citrus industry. Most commercial cultivars were susceptible to HLB, although some showed tolerant to HLB phenotypically. Identifying tolerant citrus genotypes and understanding the mechanism correlated with tolerance to HLB is essential for breeding citrus variety tolerance/resistance to HLB. In this study, the graft assay with CLas-infected bud were performed in four citrus genotypes, including Citrus reticulata Blanco, C. sinensis, C. limon, and C. maxima. HLB tolerance was observed in C. limon and C. maxima, while C. Blanco and C. sinensis were susceptible to HLB. The time-course transcriptomic analysis revealed a significant variation in differentially expressed genes (DEGs) related to HLB between susceptible and tolerant cultivar group at early and late infection stage. Functional analysis of DEGs indicated that the activation of genes involved in SA-mediated defense response, PTI, cell wall associated immunity, endochitinase, phenylpropanoid and alpha-linolenic/linoleic lipid metabolism played an important in the tolerance of C. limon and C. maxima to HLB at early infection stage. In addition, the overactive plant defense combined with the stronger antibacterial activity (antibacterial secondary and lipid metabolism) and the suppression of pectinesterase were contributed to the long-term tolerance to HLB in C. limon and C. maxima at late infection stage. Particularly, the activation of ROS scavenging genes (catalases and ascorbate peroxidases) could help to reduce HLB symptoms in tolerant cultivars. In contrast, the overexpression of genes involved in oxidative burst and ethylene metabolism, as well as the late inducing of defense related genes could lead to the early HLB symptom development in susceptible cultivars at early infection stage. The weak defense response and antibacterial secondary metabolism, and the induce of pectinesterase were responsible for sensitivity to HLB in C. reticulata Blanco and C. sinensis at late infection stage. This study provided new insights into the tolerance/sensitivity mechanism against HLB and valuable guidance for breeding of HLB-tolerant/resistant cultivars.
Collapse
Affiliation(s)
- Chenying Gao
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Cuixiao Li
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Ziyi Li
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Yaoxin Liu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Jiaming Li
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Jun Guo
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, Yunnan, China
| | - Jiana Mao
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Fang Fang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Cheng Wang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Xiaoling Deng
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Zheng Zheng
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| |
Collapse
|
28
|
Jin Y, Liao M, Li N, Ma X, Zhang H, Han J, Li D, Yang J, Lu X, Long G, Deng Z, Sheng L. Weighted gene coexpression correlation network analysis reveals the potential molecular regulatory mechanism of citrate and anthocyanin accumulation between postharvest 'Bingtangcheng' and 'Tarocco' blood orange fruit. BMC PLANT BIOLOGY 2023; 23:296. [PMID: 37268922 DOI: 10.1186/s12870-023-04309-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Organic acids and anthocyanins are the most important compounds for the flavor and nutritional quality of citrus fruit. However, there are few reports on the involvement of co-regulation of citrate and anthocyanin metabolism. Here, we performed a comparative transcriptome analysis to elucidate the genes and pathways involved in both citrate and anthocyanin accumulation in postharvest citrus fruit with 'Tarocco' blood orange (TBO; high accumulation) and 'Bingtangcheng' sweet orange (BTSO; low accumulation). RESULTS A robust core set of 825 DEGs were found to be temporally associated with citrate and anthocyanin accumulation throughout the storage period through transcriptome analysis. Further according to the results of weighted gene coexpression correlation network analysis (WGCNA), the turquoise and brown module was highly positively correlated with both of the content of citrate and anthocyanin, and p-type ATPase (PH8), phosphoenolpyruvate carboxylase kinase (PEPCK), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonoid 3'-hydroxylase (F3'H) and glutathione S transferase (GST) were considered key structural genes. Moreover, MYB family transcription factor (PH4), Zinc finger PHD-type transcription factor (CHR4, HAC12), Zinc finger SWIM-type transcription factor (FAR1) and Zinc finger C3H1-type transcription factor (ATC3H64) were considered hub genes related to these structural genes. Further qRT-PCR analysis verified that these transcription factors were highly expressed in TBO fruit and their expression profiles were significantly positively correlated with the structural genes of citrate and anthocyanin metabolism as well as the content of citrate and anthocyanin content. CONCLUSIONS The findings suggest that the CHR4, FAR1, ATC3H64 and HAC12 may be the new transcription regulators participate in controlling the level of citrate and anthocyanin in postharvest TBO fruit in addition to PH4. These results may providing new insight into the regulation mechanism of citrate and anthocyanin accumulation in citrus fruit.
Collapse
Affiliation(s)
- Yan Jin
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Manyu Liao
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Na Li
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Xiaoqian Ma
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Huimin Zhang
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Jian Han
- Hunan Horticultural Research Institute, Changsha, CS, China
| | - Dazhi Li
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Junfeng Yang
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Xiaopeng Lu
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Guiyou Long
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Ziniu Deng
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Ling Sheng
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China.
| |
Collapse
|
29
|
Ban S, Jung JH. Somatic Mutations in Fruit Trees: Causes, Detection Methods, and Molecular Mechanisms. PLANTS (BASEL, SWITZERLAND) 2023; 12:1316. [PMID: 36987007 PMCID: PMC10056856 DOI: 10.3390/plants12061316] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/11/2023] [Accepted: 03/12/2023] [Indexed: 06/19/2023]
Abstract
Somatic mutations are genetic changes that occur in non-reproductive cells. In fruit trees, such as apple, grape, orange, and peach, somatic mutations are typically observed as "bud sports" that remain stable during vegetative propagation. Bud sports exhibit various horticulturally important traits that differ from those of their parent plants. Somatic mutations are caused by internal factors, such as DNA replication error, DNA repair error, transposable elements, and deletion, and external factors, such as strong ultraviolet radiation, high temperature, and water availability. There are several methods for detecting somatic mutations, including cytogenetic analysis, and molecular techniques, such as PCR-based methods, DNA sequencing, and epigenomic profiling. Each method has its advantages and limitations, and the choice of method depends on the research question and the available resources. The purpose of this review is to provide a comprehensive understanding of the factors that cause somatic mutations, techniques used to identify them, and underlying molecular mechanisms. Furthermore, we present several case studies that demonstrate how somatic mutation research can be leveraged to discover novel genetic variations. Overall, considering the diverse academic and practical value of somatic mutations in fruit crops, especially those that require lengthy breeding efforts, related research is expected to become more active.
Collapse
|
30
|
Yin T, Han P, Xi D, Yu W, Zhu L, Du C, Yang N, Liu X, Zhang H. Genome-wide identification, characterization, and expression profile ofNBS-LRRgene family in sweet orange (Citrussinensis). Gene 2023; 854:147117. [PMID: 36526123 DOI: 10.1016/j.gene.2022.147117] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND The NBS-LRR (nucleotide-binding site-leucine-rich repeat gene) gene family, known as the plant R (resistance) gene family with the most members, plays a significant role in plant resistance to various external adversity stresses. The NBS-LRR gene family has been researched in many plant species. Citrus is one of the most vital global cash crops, the number one fruit group, and the third most traded agricultural product world wild. However, as one of the largest citrus species, a comprehensive study of the NBS-LRR gene family has not been reported on sweet oranges. METHODS In this study, NBS-LRR genes were identified from the Citrus sinensis genome (v3.0), with a comprehensive analysis of this gene family performed, including phylogenetic analysis, gene structure, cis-acting element of a promoter, and chromosomal localization, among others. The expression pattern of NBS-LRR genes was analyzed when sweet orange fruits were infected by Penicillium digitatum, employing experimental data from our research group. It first reported the expression patterns of NBS-LRR genes under abiotic stresses, using three transcript data from NCBI (National Center for Biotechnology Information). RESULTS In this study, 111 NBS-LRR genes were identified in the C. sinensis genome (v3.0) and classified into seven subfamilies according to their N-terminal and C-terminal domains. The phylogenetic tree results indicate that genes containing only the NBS structural domain are more ancient in the sweet orange NBS-LRR gene family. The chromosome localization results showed that 111 NBS-LRR genes were distributed unevenly on nine chromosomes, with the most genes distributed on chromosome 1. In addition, we identified a total of 18 tandem duplication gene pairs in the sweet orange NBS-LRR gene family, and based on the Ka/Ks ratio, all of the tandem duplication genes underwent purifying selection. Transcriptome data analysis showed a significant number of NBS-LRR genes expressed under biotic and abiotic stresses, and some reached significantly different levels of expression. It indicates that the NBS-LRR gene family is vital in resistance to biotic and abiotic stresses in sweet oranges. CONCLUSION Our study provides the first comprehensive framework on the NBS-LRR family of genes, which provides a basis for further in-depth studies on the biological functions of NBS-LRR in growth, development, and response to abiotic stresses in sweet orange.
Collapse
Affiliation(s)
- Tuo Yin
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China.
| | - Peichen Han
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China.
| | - Dengxian Xi
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China.
| | - Wencai Yu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China.
| | - Ling Zhu
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming 650224, China.
| | - Chaojin Du
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming 650224, China.
| | - Na Yang
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming 650224, China.
| | - Xiaozhen Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China.
| | - Hanyao Zhang
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
31
|
Gao Y, Xu J, Li Z, Zhang Y, Riera N, Xiong Z, Ouyang Z, Liu X, Lu Z, Seymour D, Zhong B, Wang N. Citrus genomic resources unravel putative genetic determinants of Huanglongbing pathogenicity. iScience 2023; 26:106024. [PMID: 36824272 PMCID: PMC9941208 DOI: 10.1016/j.isci.2023.106024] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/08/2022] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Citrus HLB caused by Candidatus Liberibacter asiaticus is a pathogen-triggered immune disease. Here, we identified putative genetic determinants of HLB pathogenicity by integrating citrus genomic resources to characterize the pan-genome of accessions that differ in their response to HLB. Genome-wide association mapping and analysis of allele-specific expression between susceptible, tolerant, and resistant accessions further refined candidates underlying the response to HLB. We first developed a phased diploid assembly of Citrus sinensis 'Newhall' genome and produced resequencing data for 91 citrus accessions that differ in their response to HLB. These data were combined with previous resequencing data from 356 accessions for genome-wide association mapping of the HLB response. Genes determinants for HLB pathogenicity were associated with host immune response, ROS production, and antioxidants. Overall, this study has provided a significant resource of citrus genomic data and identified candidate genes to be further explored to understand the genetic determinants of HLB pathogenicity.
Collapse
Affiliation(s)
- Yuxia Gao
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Jin Xu
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Zhilong Li
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Yunzeng Zhang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Nadia Riera
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Zhiwei Xiong
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Zhigang Ouyang
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Xinjun Liu
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Zhanjun Lu
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, Jiangxi, China
| | | | - Balian Zhong
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| |
Collapse
|
32
|
Song S, Liu H, Miao L, He L, Xie W, Lan H, Yu C, Yan W, Wu Y, Wen XP, Xu Q, Deng X, Chen C. Molecular cytogenetic map visualizes the heterozygotic genome and identifies translocation chromosomes in Citrus sinensis. J Genet Genomics 2023:S1673-8527(22)00283-1. [PMID: 36608932 DOI: 10.1016/j.jgg.2022.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/05/2023]
Abstract
Citrus sinensis is the most cultivated and economically valuable Citrus species in the world, whose genome has been assembled by three generation sequencings. However, chromosome recognition remains a problem due to the small size of chromosomes, and difficulty in differentiating between pseudo and real chromosomes because of a highly heterozygous genome. Here, we employ fluorescence in situ hybridization (FISH) with 9 chromosome painting probes, 30 oligo pools, and 8 repetitive sequences to visualize 18 chromosomes. Then, we develop an approach to identify each chromosome in one cell through single experiment of oligo-FISH and Chromoycin A3 (CMA) staining. By this approach, we construct a high-resolution molecular cytogenetic map containing the physical positions of CMA banding and 38 sequences of FISH including centromere regions, which enable us to visualize significant differences between homologous chromosomes. Based on the map, we locate several highly repetitive sequences on chromosomes and estimate sizes and copy numbers of each site. In particular, we discover the translocation regions of chromosomes 4 and 9 in C. sinensis "Valencia." The high-resolution molecular cytogenetic map will help improve understanding of sweet orange genome assembly and also provide a fundamental reference for investigating chromosome evolution and chromosome engineering for genetic improvement in Citrus.
Collapse
Affiliation(s)
- Shipeng Song
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hui Liu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Luke Miao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Li He
- National-local Joint Engineering Laboratory of Citrus Breeding and Cultivation/Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610066, China
| | - Wenzhao Xie
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; National Key Laboratory of Crop Genetics and Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hong Lan
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China; Hubei Province Engineering Research Center of Legume Plants, College of Life Science, Jianghan University, Wuhan, Hubei 430056, China
| | - Changxiu Yu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wenkai Yan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yufeng Wu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiao-Peng Wen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering, College of Life Science, Guizhou University, Guiyang, Guizhou 550025, China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Chunli Chen
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
33
|
Ji Y, Chen X, Lin S, Traw MB, Tian D, Yang S, Wang L, Huang J. High level of somatic mutations detected in a diploid banana wild relative Musa basjoo. Mol Genet Genomics 2023; 298:67-77. [PMID: 36283995 DOI: 10.1007/s00438-022-01959-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 09/27/2022] [Indexed: 01/10/2023]
Abstract
Plants are thought to lack an early segregating germline and often retain both asexual and sexual reproduction, both of which may allow somatic mutations to enter the gametes or clonal progeny, and thereby impact plant evolution. It is yet unclear how often these somatic mutations occur during plant development and what proportion is transmitted to their sexual or cloned offspring. Asexual "seedless" propagation has contributed greatly to the breeding in many fruit crops, such as citrus, grapes and bananas. Whether plants in these lineages experience substantial somatic mutation accumulation is unknown. To estimate the somatic mutation accumulation and inheritance among a clonal population of plant, here we assess somatic mutation accumulation in Musa basjoo, a diploid banana wild relative, using 30 whole-genome resequenced samples collected from five structures, including leaves, sheaths, panicle, roots and underground rhizome connecting three clonal individuals. We observed 18.5 high proportion de novo somatic mutations on average between each two adjacent clonal suckers, equivalent to ~ 2.48 × 10-8 per site per asexual generation, higher than the per site per sexual generation rates (< 1 × 10-8) reported in Arabidopsis and peach. Interestingly, most of these inter-ramet somatic mutations were shared simultaneously in different tissues of the same individual with a high level of variant allele fractions, suggesting that these somatic mutations arise early in ramet development and that each individual may develop only from a few apical stem cells. These results thus suggest substantial mutation accumulation in a wild relative of banana. Our work reveals the significance of somatic mutation in Musa basjoo genetics variations and contribute to the trait improvement breeding of bananas and other asexual clonal crops.
Collapse
Affiliation(s)
- Yilun Ji
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiaonan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shengqiu Lin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Milton Brian Traw
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Dacheng Tian
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Sihai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Long Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Ju Huang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
34
|
Wu B, Yu Q, Deng Z, Duan Y, Luo F, Gmitter Jr F. A chromosome-level phased genome enabling allele-level studies in sweet orange: a case study on citrus Huanglongbing tolerance. HORTICULTURE RESEARCH 2022; 10:uhac247. [PMID: 36643761 PMCID: PMC9832951 DOI: 10.1093/hr/uhac247] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/24/2022] [Indexed: 05/30/2023]
Abstract
Sweet orange originated from the introgressive hybridizations of pummelo and mandarin resulting in a highly heterozygous genome. How alleles from the two species cooperate in shaping sweet orange phenotypes under distinct circumstances is unknown. Here, we assembled a chromosome-level phased diploid Valencia sweet orange (DVS) genome with over 99.999% base accuracy and 99.2% gene annotation BUSCO completeness. DVS enables allele-level studies for sweet orange and other hybrids between pummelo and mandarin. We first configured an allele-aware transcriptomic profiling pipeline and applied it to 740 sweet orange transcriptomes. On average, 32.5% of genes have a significantly biased allelic expression in the transcriptomes. Different cultivars, transgenic lineages, tissues, development stages, and disease status all impacted allelic expressions and resulted in diversified allelic expression patterns in sweet orange, but particularly citrus Huanglongbing (HLB) shifted the allelic expression of hundreds of genes in leaves and calyx abscission zones. In addition, we detected allelic structural mutations in an HLB-tolerant mutant (T19) and a more sensitive mutant (T78) through long-read sequencing. The irradiation-induced structural mutations mostly involved double-strand breaks, while most spontaneous structural mutations were transposon insertions. In the mutants, most genes with significant allelic expression ratio alterations (≥1.5-fold) were directly affected by those structural mutations. In T19, alleles located at a translocated segment terminal were upregulated, including CsDnaJ, CsHSP17.4B, and CsCEBPZ. Their upregulation is inferred to keep phloem protein homeostasis under the stress from HLB and enable subsequent stress responses observed in T19. DVS will advance allelic level studies in citrus.
Collapse
Affiliation(s)
- Bo Wu
- School of Computing, Clemson University, 100 McAdams Hall, Clemson, SC 29643, USA
| | - Qibin Yu
- Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, IFAS, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| | - Zhanao Deng
- Department of Environmental Horticulture, Gulf Coast Research and Education Center, University of Florida, IFAS, 14625 County Road 672, Wimauma, FL 33598, USA
| | - Yongping Duan
- USDA-ARS, U.S. Horticultural Research Laboratory, 2001 South Rock Road, Fort Pierce, FL 34945, USA
| | - Feng Luo
- School of Computing, Clemson University, 100 McAdams Hall, Clemson, SC 29643, USA
| | - Frederick Gmitter Jr
- Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, IFAS, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| |
Collapse
|
35
|
Pan-mitogenomics reveals the genetic basis of cytonuclear conflicts in citrus hybridization, domestication, and diversification. Proc Natl Acad Sci U S A 2022; 119:e2206076119. [PMID: 36260744 PMCID: PMC9618123 DOI: 10.1073/pnas.2206076119] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Although interactions between the cytoplasmic and nuclear genomes occurred during diversification of many plants, the evolutionary conflicts due to cytonuclear interactions are poorly understood in crop breeding. Here, we constructed a pan-mitogenome and identified chimeric open reading frames (ORFs) generated by extensive structural variations (SVs). Meanwhile, short reads from 184 accessions of citrus species were combined to construct three variation maps for the nuclear, mitochondrial, and chloroplast genomes. The population genomic data showed discordant topologies between the cytoplasmic and nuclear genomes because of differences in mutation rates and levels of heteroplasmy from paternal leakage. An analysis of species-specific SVs indicated that mitochondrial heteroplasmy was common and that chloroplast heteroplasmy was undetectable. Interestingly, we found a prominent divergence in the mitogenomes and the highest genetic load in the, which may provide the basis for cytoplasmic male sterility (CMS) and thus influence the reshuffling of the cytoplasmic and nuclear genomes during hybridization. Using cytoplasmic replacement experiments, we identified a type of species-specific CMS in mandarin related to two chimeric mitochondrial genes. Our analyses indicate that cytoplasmic genomes from mandarin have rarely been maintained in hybrids and that paternal leakage produced very low levels of mitochondrial heteroplasmy in mandarin. A genome-wide association study (GWAS) provided evidence for three nuclear genes that encode pentatricopeptide repeat (PPR) proteins contributing to the cytonuclear interactions in the Citrus genus. Our study demonstrates the occurrence of evolutionary conflicts between cytoplasmic and nuclear genomes in citrus and has important implications for genetics and breeding.
Collapse
|
36
|
Feng MQ, Lu MD, Long JM, Yin ZP, Jiang N, Wang PB, Liu Y, Guo WW, Wu XM. miR156 regulates somatic embryogenesis by modulating starch accumulation in citrus. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6170-6185. [PMID: 35661206 DOI: 10.1093/jxb/erac248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 06/02/2022] [Indexed: 05/17/2023]
Abstract
Somatic embryogenesis (SE) is a major regeneration approach for in vitro cultured tissues of plants, including citrus. However, SE capability is difficult to maintain, and recalcitrance to SE has become a major obstacle to plant biotechnology. We previously reported that miR156-SPL modules regulate SE in citrus callus. However, the downstream regulatory pathway of the miR156-SPL module in SE remains unclear. In this study, we found that transcription factors CsAGL15 and CsFUS3 bind to the CsMIR156A promoter and activate its expression. Suppression of csi-miR156a function leads to up-regulation of four target genes, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (CsSPL) genes, and reduction of SE efficiency. In the short tandem target mimic (STTM)-miR156a overexpression callus (MIM156), the number of amyloplasts and starch content were significantly reduced, and genes involved in starch synthesis and transport were down-regulated. csi-miR172d was down-regulated, whereas the target genes, CsTOE1.1 and CsTOE1.2, which inhibit the expression of starch biosynthesis genes, were up-regulated. In our working model, CsAGL15 and CsFUS3 activate csi-miR156a, which represses CsSPLs and further regulates csi-miR172d and CsTOEs, thus altering starch accumulation in callus cells and regulating SE in citrus. This study elucidates the pathway of miR156-SPLs and miR172-TOEs-mediated regulation of SE, and provides new insights into enhancing SE capability in citrus.
Collapse
Affiliation(s)
- Meng-Qi Feng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Meng-Di Lu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Jian-Mei Long
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Zhao-Ping Yin
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Nan Jiang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Peng-Bo Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Yue Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Wen-Wu Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xiao-Meng Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
37
|
Liu H, Wang X, Liu S, Huang Y, Guo YX, Xie WZ, Liu H, Tahir Ul Qamar M, Xu Q, Chen LL. Citrus Pan-Genome to Breeding Database (CPBD): A comprehensive genome database for citrus breeding. MOLECULAR PLANT 2022; 15:1503-1505. [PMID: 36004795 DOI: 10.1016/j.molp.2022.08.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/25/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Hanmingzi Liu
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Xia Wang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Shengjun Liu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yue Huang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi-Xiong Guo
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Wen-Zhao Xie
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Liu
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Tahir Ul Qamar
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| | - Ling-Ling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
38
|
Wang N, Song X, Ye J, Zhang S, Cao Z, Zhu C, Hu J, Zhou Y, Huang Y, Cao S, Liu Z, Wu X, Chai L, Guo W, Xu Q, Gaut BS, Koltunow AMG, Zhou Y, Deng X. Structural variation and parallel evolution of apomixis in citrus during domestication and diversification. Natl Sci Rev 2022; 9:nwac114. [PMID: 36415319 PMCID: PMC9671666 DOI: 10.1093/nsr/nwac114] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 09/02/2023] Open
Abstract
Apomixis, or asexual seed formation, is prevalent in Citrinae via a mechanism termed nucellar or adventitious embryony. Here, multiple embryos of a maternal genotype form directly from nucellar cells in the ovule and can outcompete the developing zygotic embryo as they utilize the sexually derived endosperm for growth. Whilst nucellar embryony enables the propagation of clonal plants of maternal genetic constitution, it is also a barrier to effective breeding through hybridization. To address the genetics and evolution of apomixis in Citrinae, a chromosome-level genome of the Hongkong kumquat (Fortunella hindsii) was assembled following a genome-wide variation map including structural variants (SVs) based on 234 Citrinae accessions. This map revealed that hybrid citrus cultivars shelter genome-wide deleterious mutations and SVs into heterozygous states free from recessive selection, which may explain the capability of nucellar embryony in most cultivars during Citrinae diversification. Analyses revealed that parallel evolution may explain the repeated origin of apomixis in different genera of Citrinae. Within Fortunella, we found that apomixis of some varieties originated via introgression. In apomictic Fortunella, the locus associated with apomixis contains the FhRWP gene, encoding an RWP-RK domain-containing protein previously shown to be required for nucellar embryogenesis in Citrus. We found the heterozygous SV in the FhRWP and CitRWP promoters from apomictic Citrus and Fortunella, due to either two or three miniature inverted transposon element (MITE) insertions. A transcription factor, FhARID, encoding an AT-rich interaction domain-containing protein binds to the MITEs in the promoter of apomictic varieties, which facilitates induction of nucellar embryogenesis. This study provides evolutionary genomic and molecular insights into apomixis in Citrinae and has potential ramifications for citrus breeding.
Collapse
Affiliation(s)
- Nan Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Xietian Song
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Junli Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Siqi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Zhen Cao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Chenqiao Zhu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Jianbing Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Yin Zhou
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Yue Huang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Shuo Cao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Zhongjie Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Xiaomeng Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Lijun Chai
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Wenwu Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Brandon S Gaut
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Anna M G Koltunow
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
| | - Yongfeng Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
39
|
Perez-Roman E, Borredá C, Tadeo FR, Talon M. Transcriptome analysis of the pulp of citrus fruitlets suggests that domestication enhanced growth processes and reduced chemical defenses increasing palatability. FRONTIERS IN PLANT SCIENCE 2022; 13:982683. [PMID: 36119632 PMCID: PMC9478336 DOI: 10.3389/fpls.2022.982683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
To identify key traits brought about by citrus domestication, we have analyzed the transcriptomes of the pulp of developing fruitlets of inedible wild Ichang papeda (Citrus ichangensis), acidic Sun Chu Sha Kat mandarin (C. reticulata) and three palatable segregants of a cross between commercial Clementine (C. x clementina) and W. Murcott (C. x reticulata) mandarins, two pummelo/mandarin admixtures of worldwide distribution. RNA-seq comparison between the wild citrus and the ancestral sour mandarin identified 7267 differentially expressed genes, out of which 2342 were mapped to 117 KEGG pathways. From the remaining genes, a set of 2832 genes was functionally annotated and grouped into 45 user-defined categories. The data suggest that domestication promoted fundamental growth processes to the detriment of the production of chemical defenses, namely, alkaloids, terpenoids, phenylpropanoids, flavonoids, glucosinolates and cyanogenic glucosides. In the papeda, the generation of energy to support a more active secondary metabolism appears to be dependent upon upregulation of glycolysis, fatty acid degradation, Calvin cycle, oxidative phosphorylation, and ATP-citrate lyase and GABA pathways. In the acidic mandarin, downregulation of cytosolic citrate degradation was concomitant with vacuolar citrate accumulation. These changes affected nitrogen and carbon allocation in both species leading to major differences in organoleptic properties since the reduction of unpleasant secondary metabolites increases palatability while acidity reduces acceptability. The comparison between the segregants and the acidic mandarin identified 357 transcripts characterized by the occurrence in the three segregants of additional downregulation of secondary metabolites and basic structural cell wall components. The segregants also showed upregulation of genes involved in the synthesis of methyl anthranilate and furaneol, key substances of pleasant fruity aroma and flavor, and of sugar transporters relevant for sugar accumulation. Transcriptome and qPCR analysis in developing and ripe fruit of a set of genes previously associated with citric acid accumulation, demonstrated that lower acidity is linked to downregulation of these regulatory genes in the segregants. The results suggest that the transition of inedible papeda to sour mandarin implicated drastic gene expression reprograming of pivotal pathways of the primary and secondary metabolism, while palatable mandarins evolved through progressive refining of palatability properties, especially acidity.
Collapse
|
40
|
Ban S, El-Sharkawy I, Zhao J, Fei Z, Xu K. An apple somatic mutation of delayed fruit maturation date is primarily caused by a retrotransposon insertion-associated large deletion. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1609-1625. [PMID: 35861682 DOI: 10.1111/tpj.15911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/03/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Somatic mutations may alter important traits in tree fruits, such as fruit color, size and maturation date. Autumn Gala (AGala), a somatic mutation from apple cultivar Gala, matures 4 weeks later than Gala. To understand the mechanisms underlying the delayed maturation, RNA-seq analyses were conducted with fruit sampled at 13 (Gala) and 16 (AGala) time-points during their growth and development. Weighted gene co-expression network analysis (WGCNA) of 23 372 differentially expressed genes resulted in 25 WGCNA modules. Of these, modules 1 (r = -0.98, P = 2E-21) and 2 (r = -0.52, P = 0.004), which were suppressed in AGala, were correlated with fruit maturation date. Surprisingly, 77 of the 152 member genes in module 1 were harbored in a 2.8-Mb genomic region on chromosome 6 that was deleted and replaced by a 10.7-kb gypsy-like retrotransposon (Gy-36) from chromosome 7 in AGala. Among the 77 member genes, MdACT7 was the most suppressed (by 10.5-fold) in AGala due to a disruptive 2.5-kb insertion in coding sequence. Moreover, MdACT7 is the exclusive apple counterpart of Arabidopsis ACT7 known of essential roles in plant development, and the functional allele MdACT7, which was lost to the deletion in AGala, was associated with early fruit maturation in 268 apple accessions. Overexpressing alleles MdACT7 and Mdact7 in an Arabidopsis act7 line showed that MdACT7 largely rescued its stunted growth and delayed initial flowering while Mdact7 did not. Therefore, the 2.8-Mb hemizygous deletion is largely genetically causal for fruit maturation delay in AGala, and the total loss of MdACT7 might have contributed to the phenotype.
Collapse
Affiliation(s)
- Seunghyun Ban
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell Agritech, Geneva, New York, USA
| | - Islam El-Sharkawy
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell Agritech, Geneva, New York, USA
| | | | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, New York, USA
- US Department of Agriculture, Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York, USA
| | - Kenong Xu
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell Agritech, Geneva, New York, USA
| |
Collapse
|
41
|
Liu Y, Gao XH, Tong L, Liu MZ, Zhou XK, Tahir MM, Xing LB, Ma JJ, An N, Zhao CP, Yao JL, Zhang D. Multi-omics analyses reveal MdMYB10 hypermethylation being responsible for a bud sport of apple fruit color. HORTICULTURE RESEARCH 2022; 9:uhac179. [PMID: 36338840 PMCID: PMC9627520 DOI: 10.1093/hr/uhac179] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 08/02/2022] [Indexed: 06/16/2023]
Abstract
Apple bud sports offer a rich resource for clonal selection of numerous elite cultivars. The accumulation of somatic mutations as plants develop may potentially impact the emergence of bud sports. Previous studies focused on somatic mutation in the essential genes associated with bud sports. However, the rate and function of genome-wide somatic mutations that accumulate when a bud sport arises remain unclear. In this study, we identified a branch from a 10-year-old tree of the apple cultivar 'Oregon Spur II' as a bud sport. The mutant branch showed reduced red coloration on fruit skin. Using this plant material, we assembled a high-quality haplotype reference genome consisting of 649.61 Mb sequences with a contig N50 value of 2.04 Mb. We then estimated the somatic mutation rate of the apple tree to be 4.56 × 10 -8 per base per year, and further identified 253 somatic single-nucleotide polymorphisms (SNPs), including five non-synonymous SNPs, between the original type and mutant samples. Transcriptome analyses showed that 69 differentially expressed genes between the original type and mutant fruit skin were highly correlated with anthocyanin content. DNA methylation in the promoter of five anthocyanin-associated genes was increased in the mutant compared with the original type as determined using DNA methylation profiling. Among the genetic and epigenetic factors that directly and indirectly influence anthocyanin content in the mutant apple fruit skin, the hypermethylated promoter of MdMYB10 is important. This study indicated that numerous somatic mutations accumulated at the emergence of a bud sport from a genome-wide perspective, some of which contribute to the low coloration of the bud sport.
Collapse
Affiliation(s)
- Yu Liu
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiu-hua Gao
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi, China
| | - Lu Tong
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi, China
| | - Mei-zi Liu
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi, China
| | | | - Muhammad Mobeen Tahir
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi, China
| | - Li-bo Xing
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi, China
| | - Juan-juan Ma
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi, China
| | - Na An
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi, China
| | - Cai-ping Zhao
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi, China
| | - Jia-Long Yao
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 92169, Auckland 1142, New Zealand
| | - Dong Zhang
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|