1
|
Webi E, Abkallo HM, Obiero G, Ndegwa P, Xie S, Zhao S, Nene V, Steinaa L. Genome Editing in Apicomplexan Parasites: Current Status, Challenges, and Future Possibilities. CRISPR J 2024. [PMID: 39387255 DOI: 10.1089/crispr.2024.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) technology has revolutionized genome editing across various biological systems, including the Apicomplexa phylum. This review describes the status, challenges, and applications of CRISPR-Cas9 editing technology in apicomplexan parasites, such as Plasmodium, Toxoplasma, Theileria, Babesia, and Cryptosporidium. The discussion encompasses successfully implemented CRISPR-Cas9-based techniques in these parasites, highlighting the achieved milestones, from precise gene modifications to genome-wide screening. In addition, the review addresses the challenges hampering efficient genome editing, including the parasites' complex life cycles, multiple intracellular stages, and the lack of robust genetic tools. It further explores the ethical and policy considerations surrounding genome editing and the future perspectives of CRISPR-Cas applications in apicomplexan parasites.
Collapse
Affiliation(s)
- Ethel Webi
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | - Hussein M Abkallo
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
| | - George Obiero
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | - Paul Ndegwa
- Department of Biology, University of Nairobi, Nairobi, Kenya
| | - Shengsong Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, P. R. China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, P. R. China
| | - Vishvanath Nene
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
| | - Lucilla Steinaa
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
| |
Collapse
|
2
|
Shaikh R, Kanjaksha G, Kashivishwanath V, Kulkarni S, Jadhav S, Maru H, Gorakshakar A. ACKR1 gene polymorphisms in Bombay blood group (O h) individuals of Indian origin. Transfus Apher Sci 2024; 63:103975. [PMID: 39126827 DOI: 10.1016/j.transci.2024.103975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/02/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND ACKR1 blood group genes exhibit a high degree of polymorphisms with varying allele distribution seen among different populations and ethnic groups. The study aimed to genotype ACKR1 antigens and to establish FY allele frequency among the individuals with the Bombay (Oh) blood group phenotype. MATERIALS AND METHODS ACKR1 phenotype and genotype frequencies were estimated on 160 individuals typed as Oh and were compared with 100 non-oh blood donors from Mumbai, India by molecularly genotyping via PCR-RFLP. RESULTS The allelic and genotypic frequency of T(-67)C polymorphism showed the dominance of T allele and TT genotype [OR= 3.26 (0.59-17.99)] in both the study groups. The ACKR1 null (Fya-b-) phenotype was not found in the tested group. While the genotypic combination among the Oh group individuals was FYA/FYB (45.3 %), FYA/FYA (42.7 %), and FYB/FYB (12 %), in the non-Oh group donors, it was observed as FYA/FYB (53.3 %), FYA/FYA (39.1 %), and FYB/FYB (7.6 %). The haplotype TGGGC occurred in 38.4 % of the Oh group, but in non-Oh donors, it was found to be 50.9 % [OR = 1.820 (1.196-2.771)], and the difference was statistically significant (p = 0.005). Similarly, the TGGGT haplotype was found at a frequency of 12.7 % in non-Oh donors and 27.1 % in Oh group [OR= 0.411 (0.234-0.722)] (p = 0.001). CONCLUSIONS This study shows the prevalence of ACKR1 gene polymorphisms, including weak ACKR1 antigens in Oh individuals with a high frequency of haplotype TGGGC. The present study demonstrated for the first time the genotypes FyBweak, FyAweak and Fy Aweak/FyBESon RBC membranes in Indian subjects with Oh phenotype.
Collapse
Affiliation(s)
| | - Ghosh Kanjaksha
- Former Director - ICMR - National Institute of Immunohematology, India
| | | | | | | | | | | |
Collapse
|
3
|
Thawornpan P, Kochayoo P, Salsabila ZZ, Chootong P. Development and longevity of naturally acquired antibody and memory B cell responses against Plasmodium vivax infection. PLoS Negl Trop Dis 2024; 18:e0012600. [PMID: 39446698 PMCID: PMC11500939 DOI: 10.1371/journal.pntd.0012600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
Plasmodium vivax malaria causes significant public health problems in endemic regions. Considering the rapid spread of drug-resistant parasite strains and the development of hypnozoites in the liver with potential for relapse, development of a safe and effective vaccine for preventing, controlling, and eliminating the infection is critical. Immunity to malaria is mediated by antibodies that inhibit sporozoite or merozoite invasion into host cells and protect against clinical disease. Epidemiologic data from malaria endemic regions show the presence of naturally acquired antibodies to P. vivax antigens during and following infection. But data on the persistence of these antibodies, development of P. vivax-specific memory B cells (MBCs), and their relation to reduction of malaria severity and risk is limited. This review provides an overview of the acquisition and persistence of naturally acquired humoral immunity to P. vivax infection. Also, we summarize and discuss current progress in assessment of immune responses to candidate vaccine antigens in P. vivax patients from different transmission settings. Longitudinal studies of MBC and antibody responses to these antigens will open new avenues for developing vaccines against malaria infection and its transmission.
Collapse
Affiliation(s)
- Pongsakorn Thawornpan
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Piyawan Kochayoo
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Zulfa Zahra Salsabila
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Patchanee Chootong
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| |
Collapse
|
4
|
Dickey TH, McAleese H, Salinas ND, Lambert LE, Tolia NH. Structure-based design of a Plasmodium vivax Duffy-binding protein immunogen focuses the antibody response to functional epitopes. Protein Sci 2024; 33:e5095. [PMID: 38988315 PMCID: PMC11237555 DOI: 10.1002/pro.5095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 07/12/2024]
Abstract
The Duffy-binding protein (DBP) is a promising antigen for a malaria vaccine that would protect against clinical symptoms caused by Plasmodium vivax infection. Region II of DBP (DBP-II) contains the receptor-binding domain that engages host red blood cells, but DBP-II vaccines elicit many non-neutralizing antibodies that bind distal to the receptor-binding surface. Here, we engineered a truncated DBP-II immunogen that focuses the immune response to the receptor-binding surface. This immunogen contains the receptor-binding subdomain S1S2 and lacks the immunodominant subdomain S3. Structure-based computational design of S1S2 identified combinatorial amino acid changes that stabilized the isolated S1S2 without perturbing neutralizing epitopes. This immunogen elicited DBP-II-specific antibodies in immunized mice that were significantly enriched for blocking activity compared to the native DBP-II antigen. This generalizable design process successfully stabilized an integral core fragment of a protein and focused the immune response to desired epitopes to create a promising new antigen for malaria vaccine development.
Collapse
MESH Headings
- Protozoan Proteins/immunology
- Protozoan Proteins/chemistry
- Protozoan Proteins/genetics
- Antigens, Protozoan/immunology
- Antigens, Protozoan/chemistry
- Antigens, Protozoan/genetics
- Plasmodium vivax/immunology
- Animals
- Malaria Vaccines/immunology
- Malaria Vaccines/chemistry
- Epitopes/immunology
- Epitopes/chemistry
- Mice
- Antibodies, Protozoan/immunology
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Models, Molecular
- Malaria, Vivax/immunology
- Malaria, Vivax/prevention & control
- Mice, Inbred BALB C
Collapse
Affiliation(s)
- Thayne H. Dickey
- Host‐Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious DiseasesNational Institutes of Health (NIH)BethesdaMarylandUSA
| | - Holly McAleese
- Vaccine Development Unit, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious DiseasesNational Institutes of Health (NIH)BethesdaMarylandUSA
| | - Nichole D. Salinas
- Host‐Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious DiseasesNational Institutes of Health (NIH)BethesdaMarylandUSA
| | - Lynn E. Lambert
- Vaccine Development Unit, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious DiseasesNational Institutes of Health (NIH)BethesdaMarylandUSA
| | - Niraj H. Tolia
- Host‐Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious DiseasesNational Institutes of Health (NIH)BethesdaMarylandUSA
| |
Collapse
|
5
|
Miura K, Flores-Garcia Y, Long CA, Zavala F. Vaccines and monoclonal antibodies: new tools for malaria control. Clin Microbiol Rev 2024; 37:e0007123. [PMID: 38656211 PMCID: PMC11237600 DOI: 10.1128/cmr.00071-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
SUMMARYMalaria remains one of the biggest health problems in the world. While significant reductions in malaria morbidity and mortality had been achieved from 2000 to 2015, the favorable trend has stalled, rather significant increases in malaria cases are seen in multiple areas. In 2022, there were 249 million estimated cases, and 608,000 malaria-related deaths, mostly in infants and children aged under 5 years, globally. Therefore, in addition to the expansion of existing anti-malarial control measures, it is critical to develop new tools, such as vaccines and monoclonal antibodies (mAbs), to fight malaria. In the last 2 years, the first and second malaria vaccines, both targeting Plasmodium falciparum circumsporozoite proteins (PfCSP), have been recommended by the World Health Organization to prevent P. falciparum malaria in children living in moderate to high transmission areas. While the approval of the two malaria vaccines is a considerable milestone in vaccine development, they have much room for improvement in efficacy and durability. In addition to the two approved vaccines, recent clinical trials with mAbs against PfCSP, blood-stage vaccines against P. falciparum or P. vivax, and transmission-blocking vaccine or mAb against P. falciparum have shown promising results. This review summarizes the development of the anti-PfCSP vaccines and mAbs, and recent topics in the blood- and transmission-blocking-stage vaccine candidates and mAbs. We further discuss issues of the current vaccines and the directions for the development of next-generation vaccines.
Collapse
Affiliation(s)
- Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Yevel Flores-Garcia
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Malaria Research Institute, Baltimore, Maryland, USA
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Malaria Research Institute, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Mertens JE, Rigby CA, Bardelli M, Quinkert D, Hou MM, Diouf A, Silk SE, Chitnis CE, Minassian AM, Moon RW, Long CA, Draper SJ, Miura K. Evaluation of the precision of the Plasmodium knowlesi growth inhibition assay for Plasmodium vivax Duffy-binding protein-based malaria vaccine development. Vaccine 2024; 42:3621-3629. [PMID: 38704253 PMCID: PMC11128340 DOI: 10.1016/j.vaccine.2024.04.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024]
Abstract
Recent data indicate increasing disease burden and importance of Plasmodium vivax (Pv) malaria. A robust assay will be essential for blood-stage Pv vaccine development. Results of the in vitro growth inhibition assay (GIA) with transgenic P. knowlesi (Pk) parasites expressing the Pv Duffy-binding protein region II (PvDBPII) correlate with in vivo protection in the first PvDBPII controlled human malaria infection (CHMI) trials, making the PkGIA an ideal selection tool once the precision of the assay is defined. To determine the precision in percentage of inhibition in GIA (%GIA) and in GIA50 (antibody concentration that gave 50 %GIA), ten GIAs with transgenic Pk parasites were conducted with four different anti-PvDBPII human monoclonal antibodies (mAbs) at concentrations of 0.016 to 2 mg/mL, and three GIAs with eighty anti-PvDBPII human polyclonal antibodies (pAbs) at 10 mg/mL. A significant assay-to-assay variation was observed, and the analysis revealed a standard deviation (SD) of 13.1 in the mAb and 5.94 in the pAb dataset for %GIA, with a LogGIA50 SD of 0.299 (for mAbs). Moreover, the ninety-five percent confidence interval (95 %CI) for %GIA or GIA50 in repeat assays was calculated in this investigation. The error range determined in this study will help researchers to compare PkGIA results from different assays and studies appropriately, thus supporting the development of future blood-stage malaria vaccine candidates, specifically second-generation PvDBPII-based formulations.
Collapse
Affiliation(s)
- Jonas E Mertens
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, United Kingdom; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, United Kingdom; Institute for Infection Research and Vaccine Development (IIRVD), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Cassandra A Rigby
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, United Kingdom; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, United Kingdom
| | - Martino Bardelli
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, United Kingdom; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, United Kingdom
| | - Doris Quinkert
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, United Kingdom; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, United Kingdom
| | - Mimi M Hou
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, United Kingdom; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, United Kingdom
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville 20852, MD, United States
| | - Sarah E Silk
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, United Kingdom; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, United Kingdom
| | - Chetan E Chitnis
- Unité de Biologie de Plasmodium et Vaccins, Institut Pasteur, Université Paris Cité, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Angela M Minassian
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, United Kingdom; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, United Kingdom; NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Robert W Moon
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville 20852, MD, United States
| | - Simon J Draper
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, United Kingdom; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, United Kingdom; NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom.
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville 20852, MD, United States.
| |
Collapse
|
7
|
Marques RF, Gimenez AM, Caballero O, Simpson A, Salazar AM, Amino R, Godin S, Gazzinelli RT, Soares IS. Non-clinical toxicity and immunogenicity evaluation of a Plasmodium vivax malaria vaccine using Poly-ICLC (Hiltonol®) as adjuvant. Vaccine 2024; 42:2394-2406. [PMID: 38448321 DOI: 10.1016/j.vaccine.2024.02.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/08/2024]
Abstract
Malaria caused byPlasmodium vivaxis a pressing public health problem in tropical and subtropical areas.However, little progress has been made toward developing a P. vivaxvaccine, with only three candidates being tested in clinical studies. We previously reported that one chimeric recombinant protein (PvCSP-All epitopes) containing the conserved C-terminus of the P. vivax Circumsporozoite Protein (PvCSP), the three variant repeat domains, and aToll-like receptor-3 agonist,Poly(I:C), as an adjuvant (polyinosinic-polycytidylic acid, a dsRNA analog mimicking viral RNA), elicits strong antibody-mediated immune responses in mice to each of the three allelic forms of PvCSP. In the present study, a pre-clinical safety evaluation was performed to identify potential local and systemic toxic effects of the PvCSP-All epitopes combined with the Poly-ICLC (Poly I:C plus poly-L-lysine, Hiltonol®) or Poly-ICLC when subcutaneously injected into C57BL/6 mice and New Zealand White Rabbits followed by a 21-day recovery period. Overall, all observations were considered non-adverse and were consistent with the expected inflammatory response and immune stimulation following vaccine administration. High levels of vaccine-induced specific antibodies were detected both in mice and rabbits. Furthermore, mice that received the vaccine formulation were protected after the challenge with Plasmodium berghei sporozoites expressing CSP repeats from P. vivax sporozoites (Pb/Pv-VK210). In conclusion, in these non-clinical models, repeated dose administrations of the PvCSP-All epitopes vaccine adjuvanted with a Poly-ICLC were immunogenic, safe, and well tolerated.
Collapse
Affiliation(s)
- Rodolfo F Marques
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, SP, Brazil
| | - Alba M Gimenez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, SP, Brazil
| | | | | | - Andres M Salazar
- Oncovir, Inc. Washington, Washington, DC, United States of America
| | - Rogerio Amino
- Department of Parasites and Insect Vectors, Pasteur Institute, Paris, France
| | - Steven Godin
- Smithers Avanza Toxicology Services, Gaithersburg, MD, United States of America
| | - Ricardo T Gazzinelli
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte, MG, Brazil
| | - Irene S Soares
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
8
|
Martinez FJ, White M, Guillotte-Blisnick M, Huon C, Boucharlat A, Agou F, England P, Popovici J, Hou MM, Silk SE, Barrett JR, Nielsen CM, Reimer JM, Mukherjee P, Chauhan VS, Minassian AM, Draper SJ, Chitnis CE. PvDBPII elicits multiple antibody-mediated mechanisms that reduce growth in a Plasmodium vivax challenge trial. NPJ Vaccines 2024; 9:10. [PMID: 38184681 PMCID: PMC10771494 DOI: 10.1038/s41541-023-00796-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/07/2023] [Indexed: 01/08/2024] Open
Abstract
The receptor-binding domain, region II, of the Plasmodium vivax Duffy binding protein (PvDBPII) binds the Duffy antigen on the reticulocyte surface to mediate invasion. A heterologous vaccine challenge trial recently showed that a delayed dosing regimen with recombinant PvDBPII SalI variant formulated with adjuvant Matrix-MTM reduced the in vivo parasite multiplication rate (PMR) in immunized volunteers challenged with the Thai P. vivax isolate PvW1. Here, we describe extensive analysis of the polyfunctional antibody responses elicited by PvDBPII immunization and identify immune correlates for PMR reduction. A classification algorithm identified antibody features that significantly contribute to PMR reduction. These included antibody titre, receptor-binding inhibitory titre, dissociation constant of the PvDBPII-antibody interaction, complement C1q and Fc gamma receptor binding and specific IgG subclasses. These data suggest that multiple immune mechanisms elicited by PvDBPII immunization are likely to be associated with protection and the immune correlates identified could guide the development of an effective vaccine for P. vivax malaria. Importantly, all the polyfunctional antibody features that correlated with protection cross-reacted with both PvDBPII SalI and PvW1 variants, suggesting that immunization with PvDBPII should protect against diverse P. vivax isolates.
Collapse
Affiliation(s)
- Francisco J Martinez
- Unité de Biologie de Plasmodium et Vaccins, Institut Pasteur, Université Paris Cité, Paris, France
| | - Michael White
- Infectious Disease Epidemiology and Analytics G5 Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | | | - Christèle Huon
- Unité de Biologie de Plasmodium et Vaccins, Institut Pasteur, Université Paris Cité, Paris, France
| | - Alix Boucharlat
- Chemogenomic and Biological Screening Core Facility, C2RT, Institut Pasteur, Université Paris Cité, CNRS UMR 3523, Paris, France
| | - Fabrice Agou
- Chemogenomic and Biological Screening Core Facility, C2RT, Institut Pasteur, Université Paris Cité, CNRS UMR 3523, Paris, France
| | - Patrick England
- Molecular Biophysics Facility, CNRS UMR 3528, Institut Pasteur, Paris, France
| | - Jean Popovici
- Malaria Reasearch Unit, Institut Pasteur du Cambodge, Pnom Penh, Cambodia
| | - Mimi M Hou
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK
| | - Sarah E Silk
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK
| | - Jordan R Barrett
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK
| | - Carolyn M Nielsen
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK
| | | | | | - Virander S Chauhan
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Angela M Minassian
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Simon J Draper
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Chetan E Chitnis
- Unité de Biologie de Plasmodium et Vaccins, Institut Pasteur, Université Paris Cité, Paris, France.
| |
Collapse
|
9
|
Poespoprodjo JR, Douglas NM, Ansong D, Kho S, Anstey NM. Malaria. Lancet 2023; 402:2328-2345. [PMID: 37924827 DOI: 10.1016/s0140-6736(23)01249-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 05/22/2023] [Accepted: 06/16/2023] [Indexed: 11/06/2023]
Abstract
Malaria is resurging in many African and South American countries, exacerbated by COVID-19-related health service disruption. In 2021, there were an estimated 247 million malaria cases and 619 000 deaths in 84 endemic countries. Plasmodium falciparum strains partly resistant to artemisinins are entrenched in the Greater Mekong region and have emerged in Africa, while Anopheles mosquito vectors continue to evolve physiological and behavioural resistance to insecticides. Elimination of Plasmodium vivax malaria is hindered by impractical and potentially toxic antirelapse regimens. Parasitological diagnosis and treatment with oral or parenteral artemisinin-based therapy is the mainstay of patient management. Timely blood transfusion, renal replacement therapy, and restrictive fluid therapy can improve survival in severe malaria. Rigorous use of intermittent preventive treatment in pregnancy and infancy and seasonal chemoprevention, potentially combined with pre-erythrocytic vaccines endorsed by WHO in 2021 and 2023, can substantially reduce malaria morbidity. Improved surveillance, better access to effective treatment, more labour-efficient vector control, continued drug development, targeted mass drug administration, and sustained political commitment are required to achieve targets for malaria reduction by the end of this decade.
Collapse
Affiliation(s)
- Jeanne Rini Poespoprodjo
- Centre for Child Health and Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia; Timika Malaria Research Facility, Papuan Health and Community Development Foundation, Timika, Indonesia; Mimika District Hospital and District Health Authority, Timika, Indonesia; Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia.
| | - Nicholas M Douglas
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia; Department of Infectious Diseases, Christchurch Hospital, Te Whatu Ora Waitaha, Christchurch, New Zealand; Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Daniel Ansong
- School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Steven Kho
- Timika Malaria Research Facility, Papuan Health and Community Development Foundation, Timika, Indonesia; Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia; Department of Infectious Diseases, Royal Darwin Hospital, Darwin, NT, Australia
| |
Collapse
|
10
|
Bouyssou I, El Hoss S, Doderer-Lang C, Schoenhals M, Rasoloharimanana LT, Vigan-Womas I, Ratsimbasoa A, Abate A, Golassa L, Mabilotte S, Kessler P, Guillotte-Blisnick M, Martinez FJ, Chitnis CE, Strouboulis J, Ménard D. Unveiling P. vivax invasion pathways in Duffy-negative individuals. Cell Host Microbe 2023; 31:2080-2092.e5. [PMID: 38056460 PMCID: PMC10727064 DOI: 10.1016/j.chom.2023.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/01/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
Vivax malaria has long been thought to be absent from sub-Saharan Africa owing to the high proportion of individuals lacking the Duffy antigen receptor for chemokines (DARC) in their erythrocytes. The interaction between P. vivax Duffy-binding protein (PvDBP) and DARC is assumed to be the main pathway used by merozoites to invade reticulocytes. However, the increasing number of reports of vivax malaria cases in genotypically Duffy-negative (DN) individuals has raised questions regarding the P. vivax invasion pathway(s). Here, we show that a subset of DN erythroblasts transiently express DARC during terminal erythroid differentiation and that P. vivax merozoites, irrespective of their origin, can invade DARC+ DN erythroblasts. These findings reveal that a large number of DN individuals may represent a silent reservoir of deep P. vivax infections at the sites of active erythropoiesis with low or no parasitemia, and it may represent an underestimated biological problem with potential clinical consequences in sub-Saharan Africa.
Collapse
Affiliation(s)
- Isabelle Bouyssou
- Malaria Genetics and Resistance Unit, INSERM U1201, Institut Pasteur, Université Paris Cité, 75015 Paris, France; École Doctorale ED515 "Complexité du Vivant", Sorbonne Université, 75005 Paris, France; Malaria Parasite Biology and Vaccines Unit, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Sara El Hoss
- Red Cell Haematology Laboratory, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London SE5 9NU, UK.
| | - Cécile Doderer-Lang
- Institute of Parasitology and Tropical Diseases, UR7292 Dynamics of Host-Pathogen Interactions, Université de Strasbourg, 67000 Strasbourg, France
| | - Matthieu Schoenhals
- Immunology of Infectious Diseases, Institut Pasteur of Madagascar, Antananarivo 101, Madagasca
| | | | | | - Arsène Ratsimbasoa
- Faculté de Médecine, Université de Fianarantsoa, Fianarantsoa 301, Madagascar
| | - Andargie Abate
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia
| | - Solenne Mabilotte
- Institute of Parasitology and Tropical Diseases, UR7292 Dynamics of Host-Pathogen Interactions, Université de Strasbourg, 67000 Strasbourg, France
| | - Pascal Kessler
- Centre de Recherche en Biomédecine de Strasbourg, Université de Strasbourg, 67000 Strasbourg, France
| | | | - Francisco J Martinez
- Malaria Parasite Biology and Vaccines Unit, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Chetan E Chitnis
- Malaria Parasite Biology and Vaccines Unit, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - John Strouboulis
- Red Cell Haematology Laboratory, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London SE5 9NU, UK.
| | - Didier Ménard
- Malaria Genetics and Resistance Unit, INSERM U1201, Institut Pasteur, Université Paris Cité, 75015 Paris, France; Malaria Parasite Biology and Vaccines Unit, Institut Pasteur, Université Paris Cité, 75015 Paris, France; Institute of Parasitology and Tropical Diseases, UR7292 Dynamics of Host-Pathogen Interactions, Université de Strasbourg, 67000 Strasbourg, France; Laboratory of Parasitology and Medical Mycology, CHU Strasbourg, 67000 Strasbourg, France.
| |
Collapse
|
11
|
Watson QD, Carias LL, Malachin A, Redinger KR, Bosch J, Bardelli M, Baldor L, Feufack-Donfack LB, Popovici J, Moon RW, Draper SJ, Zimmerman PA, King CL. Human monoclonal antibodies inhibit invasion of transgenic Plasmodium knowlesi expressing Plasmodium vivax Duffy binding protein. Malar J 2023; 22:369. [PMID: 38049801 PMCID: PMC10696754 DOI: 10.1186/s12936-023-04766-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/24/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Plasmodium vivax has been more resistant to various control measures than Plasmodium falciparum malaria because of its greater transmissibility and ability to produce latent parasite forms. Therefore, developing P. vivax vaccines and therapeutic monoclonal antibodies (humAbs) remains a high priority. The Duffy antigen receptor for chemokines (DARC) expressed on erythrocytes is central to P. vivax invasion of reticulocytes. P. vivax expresses a Duffy binding protein (PvDBP) on merozoites, a DARC ligand, and the DARC: PvDBP interaction is critical for P. vivax blood stage malaria. Therefore, PvDBP is a leading vaccine candidate for P. vivax and a target for therapeutic human monoclonal antibodies (humAbs). METHODS Here, the functional activity of humAbs derived from naturally exposed and vaccinated individuals are compared for the first time using easily cultured Plasmodium knowlesi (P. knowlesi) that had been genetically modified to replace its endogenous PkDBP orthologue with PvDBP to create a transgenic parasite, PkPvDBPOR. This transgenic parasite requires DARC to invade human erythrocytes but is not reticulocyte restricted. This model was used to evaluate the invasion inhibition potential of 12 humAbs (9 naturally acquired; 3 vaccine-induced) targeting PvDBP individually and in combinations using growth inhibition assays (GIAs). RESULTS The PvDBP-specific humAbs demonstrated 70-100% inhibition of PkPvDBPOR invasion with the IC50 values ranging from 51 to 338 µg/mL for the 9 naturally acquired (NA) humAbs and 33 to 99 µg/ml for the 3 vaccine-induced (VI) humAbs. To evaluate antagonistic, additive, or synergistic effects, six pairwise combinations were performed using select humAbs. Of these combinations tested, one NA/NA (099100/094083) combination demonstrated relatively strong additive inhibition between 10 and 100 µg/mL; all combinations of NA and VI humAbs showed additive inhibition at concentrations below 25 µg/mL and antagonism at higher concentrations. None of the humAb combinations showed synergy. Invasion inhibition efficacy by some mAbs shown with PkPvDBPOR was closely replicated using P. vivax clinical isolates. CONCLUSION The PkPvDBPOR transgenic model is a robust surrogate of P. vivax to assess invasion and growth inhibition of human monoclonal Abs recognizing PvDBP individually and in combination. There was no synergistic interaction for growth inhibition with the humAbs tested here that target different epitopes or subdomains of PvDBP, suggesting little benefit in clinical trials using combinations of these humAbs.
Collapse
Affiliation(s)
- Quentin D Watson
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Lenore L Carias
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Alyssa Malachin
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Karli R Redinger
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jürgen Bosch
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | - Lea Baldor
- Malaria Research Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | | | - Jean Popovici
- Malaria Research Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Robert W Moon
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Simon J Draper
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Peter A Zimmerman
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | - Christopher L King
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Veterans Affairs Medical Center, Cleveland, OH, USA.
| |
Collapse
|
12
|
Nguyen TS, Park JH, Nguyen TK, Nguyen TV, Lee SK, Na SH, Han JH, Park WS, Chun W, Lu F, Han ET. Plasmodium vivax merozoite-specific thrombospondin-related anonymous protein (PvMTRAP) interacts with human CD36, suggesting a novel ligand-receptor interaction for reticulocyte invasion. Parasit Vectors 2023; 16:426. [PMID: 37981686 PMCID: PMC10658926 DOI: 10.1186/s13071-023-06031-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/24/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND The Plasmodium vivax merozoite restrictively invades immature erythrocytes, suggesting that its ligand(s) might interact with corresponding receptor(s) that are selectively abundant on reticulocytes to complete the invasion. Finding the ligand‒receptor interaction involved in P. vivax invasion is critical to vivax malaria management; nevertheless, it remains to be unraveled. METHODS A library of reticulocyte receptors and P. vivax ligands were expressed by a HEK293E mammalian cell expression system and were then used to screen the interaction using enzyme-linked immunosorbent assay (ELISA). A flow cytometry-based erythrocyte binding assay and bio-layer interferometry experiment were further utilized to cellularly and quantitatively identify the ligand‒receptor interaction, respectively. RESULTS Plasmodium vivax merozoite-specific thrombospondin-related anonymous protein (PvMTRAP) was found to interact with human CD36 using systematic screening. This interaction was specific at a molecular level from in vitro analysis and comparable to that of P. vivax Duffy binding protein (PvDBP) and Duffy antigen receptor for chemokines (DARC) (KD: 37.0 ± 1.4 nM and 7.7 ± 0.5 nM, respectively). Flow cytometry indicated that PvMTRAP preferentially binds to reticulocytes, on which CD36 is selectively present. CONCLUSIONS Human CD36 is selectively abundant on reticulocytes and is able to interact specifically with PvMTRAP, suggesting that it may function as a ligand and receptor during the invasion of reticulocytes by P. vivax.
Collapse
Affiliation(s)
- Thau Sy Nguyen
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-Do, 24341, Republic of Korea
| | - Ji-Hoon Park
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-Do, 24341, Republic of Korea
- Host-Parasite Research Laboratory, Institut Pasteur Korea, Seongnam-Si, 13488, Republic of Korea
| | - Tuyet-Kha Nguyen
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-Do, 24341, Republic of Korea
| | - Truong Van Nguyen
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-Do, 24341, Republic of Korea
| | - Seong-Kyun Lee
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-Do, 24341, Republic of Korea
| | - Sung-Hun Na
- Department of Obstetrics and Gynecology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-Do, 24341, Republic of Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-Do, 24341, Republic of Korea
| | - Won-Sun Park
- Department of Physiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-Do, 24341, Republic of Korea
| | - Wanjoo Chun
- Department of Pharmacology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-Do, 24341, Republic of Korea
| | - Feng Lu
- Department of Pathogen Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-Do, 24341, Republic of Korea.
| |
Collapse
|
13
|
Differding E. Biotechnology in India: An Analysis of 'Biotechnology Industry Research Assistance Council' (BIRAC)-Supported Projects. Chembiochem 2023; 24:e202300302. [PMID: 37668561 DOI: 10.1002/cbic.202300302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/06/2023]
Abstract
A comprehensive analysis of 2165 projects funded by India's Department of Biotechnology since 2005 through private-public partnerships, and as of 2012 through the 'Biotechnology Industry Research Assistance Council (BIRAC)' until BIRAC's tenth anniversary at the end of March 2022 reveals details of the science and technology underpinning past and current biotechnology research and development projects in the country. They are led by human healthcare projects (74.9 % overall), of which medical technology (58.7 %) and therapeutics (24.5 %) are the main drivers, ahead of vaccines (4.3 %), regenerative medicine (3.9 %), public health (3.5 %) and others (5.1 %). Agricultural projects (15.2 % overall) have mainly been driven by plant breeding and cloning (24.6 %), animal biotechnology (20.4 %), agri-informatics (13.4 %), aquaculture (6.1 %), and (bio)fertilizers (4.3 %). The key components of industrial biotechnology (9.9 % overall) have been fine chemicals (44.7 %), environmental projects (23.3 %), clean energy (18.1 %) and industrial enzymes (12.1 %). Analysis of the projects funded pre- versus post-2017, compared to the distribution of equity funding as of early 2022 identifies trends in terms of growth areas and locations of industrial biotechnology projects and activities in India.
Collapse
Affiliation(s)
- Edmond Differding
- Differding Consulting, 12, Rue de Moutfort, L-5310, Contern, Luxembourg
| |
Collapse
|
14
|
Rajneesh, Tiwari R, Singh VK, Kumar A, Gupta RP, Singh AK, Gautam V, Kumar R. Advancements and Challenges in Developing Malaria Vaccines: Targeting Multiple Stages of the Parasite Life Cycle. ACS Infect Dis 2023; 9:1795-1814. [PMID: 37708228 DOI: 10.1021/acsinfecdis.3c00332] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Malaria, caused by Plasmodium species, remains a major global health concern, causing millions of deaths annually. While the introduction of the RTS,S vaccine has shown promise, there is a pressing need for more effective vaccines due to the emergence of drug-resistant parasites and insecticide-resistant vectors. However, the complex life cycle and genetic diversity of the parasite, technical obstacles, limited funding, and the impact of the 2019 pandemic have hindered progress in malaria vaccine development. This review focuses on advancements in malaria vaccine development, particularly the ongoing clinical trials targeting antigens from different stages of the Plasmodium life cycle. Additionally, we discuss the rationale, strategies, and challenges associated with vaccine design, aiming to enhance the immune response and protective efficacy of vaccine candidates. A cost-effective and multistage vaccine could hold the key to controlling and eradicating malaria.
Collapse
Affiliation(s)
- Rajneesh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Rahul Tiwari
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Vishal K Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Awnish Kumar
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Rohit P Gupta
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
- Department of Applied Microbiology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Akhilesh K Singh
- Faculty of Dental Science, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Vibhav Gautam
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Rajiv Kumar
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
15
|
Kundu P, Naskar D, McKie SJ, Dass S, Kanjee U, Introini V, Ferreira MU, Cicuta P, Duraisingh M, Deane JE, Rayner JC. The structure of a Plasmodium vivax Tryptophan Rich Antigen domain suggests a lipid binding function for a pan-Plasmodium multi-gene family. Nat Commun 2023; 14:5703. [PMID: 37709739 PMCID: PMC10502043 DOI: 10.1038/s41467-023-40885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 08/10/2023] [Indexed: 09/16/2023] Open
Abstract
Tryptophan Rich Antigens (TRAgs) are encoded by a multi-gene family found in all Plasmodium species, but are significantly expanded in P. vivax and closely related parasites. We show that multiple P. vivax TRAgs are expressed on the merozoite surface and that one, PVP01_0000100 binds red blood cells with a strong preference for reticulocytes. Using X-ray crystallography, we solved the structure of the PVP01_0000100 C-terminal tryptophan rich domain, which defines the TRAg family, revealing a three-helical bundle that is conserved across Plasmodium and has structural homology with lipid-binding BAR domains involved in membrane remodelling. Biochemical assays confirm that the PVP01_0000100 C-terminal domain has lipid binding activity with preference for sulfatide, a glycosphingolipid present in the outer leaflet of plasma membranes. Deletion of the putative orthologue in P. knowlesi, PKNH_1300500, impacts invasion in reticulocytes, suggesting a role during this essential process. Together, this work defines an emerging molecular function for the Plasmodium TRAg family.
Collapse
Affiliation(s)
- Prasun Kundu
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Deboki Naskar
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Shannon J McKie
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Sheena Dass
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Usheer Kanjee
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Viola Introini
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Marcelo U Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Global Health and Tropical Medicine, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Lisbon, Portugal
| | - Pietro Cicuta
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Manoj Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Janet E Deane
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
| | - Julian C Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
16
|
Martinez FJ, Guillotte-Blisnick M, Huon C, England P, Popovici J, Laude H, Arowas L, Ungeheuer MN, Reimer JM, Carter D, Reed S, Mukherjee P, Chauhan VS, Chitnis CE. Immunogenicity of a Plasmodium vivax vaccine based on the duffy binding protein formulated using adjuvants compatible for use in humans. Sci Rep 2023; 13:13904. [PMID: 37626150 PMCID: PMC10457348 DOI: 10.1038/s41598-023-40043-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
The invasion of reticulocytes by Plasmodium vivax merozoites is dependent on the interaction of the Plasmodium vivax Duffy Binding Protein (PvDBP) with the Duffy antigen receptor for chemokines (DARC). The N-terminal cysteine-rich region II of PvDBP (PvDBPII), which binds DARC, is a leading P. vivax malaria vaccine candidate. Here, we have evaluated the immunogenicity of recombinant PvDBPII formulated with the adjuvants Matrix-M and GLA-SE in mice. Analysis of the antibody responses revealed comparable ELISA recognition titres as well as similar recognition of native PvDBP in P. vivax schizonts by immunofluorescence assay. Moreover, antibodies elicited by the two adjuvant formulations had similar functional properties such as avidity, isotype profile and inhibition of PvDBPII-DARC binding. Furthermore, the anti-PvDBPII antibodies were able to block the interaction of DARC with the homologous PvDBPII SalI allele as well as the heterologous PvDBPII PvW1 allele from a Thai clinical isolate that is used for controlled human malaria infections (CHMI). The cross-reactivity of these antibodies with PvW1 suggest that immunization with the PvDBPII SalI strain should neutralize reticulocyte invasion by the challenge P. vivax strain PvW1.
Collapse
Affiliation(s)
- Francisco J Martinez
- Unité de Biologie de Plasmodium et Vaccins, Institut Pasteur, Université Paris Cité, 25-28 Rue du Dr. Roux, 75015, Paris, France
| | - Micheline Guillotte-Blisnick
- Unité de Biologie de Plasmodium et Vaccins, Institut Pasteur, Université Paris Cité, 25-28 Rue du Dr. Roux, 75015, Paris, France
| | - Christèle Huon
- Unité de Biologie de Plasmodium et Vaccins, Institut Pasteur, Université Paris Cité, 25-28 Rue du Dr. Roux, 75015, Paris, France
| | - Patrick England
- Plate-Forme de Biophysique Moléculaire, CNRS UMR 3528, Institut Pasteur, Université Paris Cité, Paris, France
| | - Jean Popovici
- Malaria Research Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Hélène Laude
- Investigational Clinical Service and Access to Research Bio-Resources (ICAReB), Institut Pasteur, Paris, France
| | - Laurence Arowas
- Investigational Clinical Service and Access to Research Bio-Resources (ICAReB), Institut Pasteur, Paris, France
| | - Marie-Noëlle Ungeheuer
- Investigational Clinical Service and Access to Research Bio-Resources (ICAReB), Institut Pasteur, Paris, France
| | | | - Darrick Carter
- HDT Bio, Seattle, WA, USA
- PAI Life Sciences Inc., Seattle, WA, USA
| | | | | | - Virander S Chauhan
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Chetan E Chitnis
- Unité de Biologie de Plasmodium et Vaccins, Institut Pasteur, Université Paris Cité, 25-28 Rue du Dr. Roux, 75015, Paris, France.
| |
Collapse
|
17
|
Hou MM, Barrett JR, Themistocleous Y, Rawlinson TA, Diouf A, Martinez FJ, Nielsen CM, Lias AM, King LDW, Edwards NJ, Greenwood NM, Kingham L, Poulton ID, Khozoee B, Goh C, Hodgson SH, Mac Lochlainn DJ, Salkeld J, Guillotte-Blisnick M, Huon C, Mohring F, Reimer JM, Chauhan VS, Mukherjee P, Biswas S, Taylor IJ, Lawrie AM, Cho JS, Nugent FL, Long CA, Moon RW, Miura K, Silk SE, Chitnis CE, Minassian AM, Draper SJ. Vaccination with Plasmodium vivax Duffy-binding protein inhibits parasite growth during controlled human malaria infection. Sci Transl Med 2023; 15:eadf1782. [PMID: 37437014 PMCID: PMC7615121 DOI: 10.1126/scitranslmed.adf1782] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 06/05/2023] [Indexed: 07/14/2023]
Abstract
There are no licensed vaccines against Plasmodium vivax. We conducted two phase 1/2a clinical trials to assess two vaccines targeting P. vivax Duffy-binding protein region II (PvDBPII). Recombinant viral vaccines using chimpanzee adenovirus 63 (ChAd63) and modified vaccinia virus Ankara (MVA) vectors as well as a protein and adjuvant formulation (PvDBPII/Matrix-M) were tested in both a standard and a delayed dosing regimen. Volunteers underwent controlled human malaria infection (CHMI) after their last vaccination, alongside unvaccinated controls. Efficacy was assessed by comparisons of parasite multiplication rates in the blood. PvDBPII/Matrix-M, given in a delayed dosing regimen, elicited the highest antibody responses and reduced the mean parasite multiplication rate after CHMI by 51% (n = 6) compared with unvaccinated controls (n = 13), whereas no other vaccine or regimen affected parasite growth. Both viral-vectored and protein vaccines were well tolerated and elicited expected, short-lived adverse events. Together, these results support further clinical evaluation of the PvDBPII/Matrix-M P. vivax vaccine.
Collapse
Affiliation(s)
- Mimi M Hou
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Jordan R Barrett
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | | | | | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Francisco J Martinez
- Unité de Biologie de Plasmodium et Vaccins, Institut Pasteur, Université Paris Cité, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Carolyn M Nielsen
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Amelia M Lias
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Lloyd D W King
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Nick J Edwards
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Lucy Kingham
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Ian D Poulton
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Cyndi Goh
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Susanne H Hodgson
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Dylan J Mac Lochlainn
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Jo Salkeld
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Micheline Guillotte-Blisnick
- Unité de Biologie de Plasmodium et Vaccins, Institut Pasteur, Université Paris Cité, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Christèle Huon
- Unité de Biologie de Plasmodium et Vaccins, Institut Pasteur, Université Paris Cité, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Franziska Mohring
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | | | - Virander S Chauhan
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | | | - Sumi Biswas
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Iona J Taylor
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Jee-Sun Cho
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Fay L Nugent
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Carole A Long
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Robert W Moon
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Sarah E Silk
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Chetan E Chitnis
- Unité de Biologie de Plasmodium et Vaccins, Institut Pasteur, Université Paris Cité, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Angela M Minassian
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Simon J Draper
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
18
|
El-Moamly AA, El-Sweify MA. Malaria vaccines: the 60-year journey of hope and final success-lessons learned and future prospects. Trop Med Health 2023; 51:29. [PMID: 37198702 DOI: 10.1186/s41182-023-00516-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/18/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND The world has made great strides towards beating malaria, although about half of the world population is still exposed to the risk of contracting malaria. Developing an effective malaria vaccine was a huge challenge for medical science. In 2021 the World Health Organization (WHO) approved the first malaria vaccine, RTS,S/AS01 vaccine (Mosquirix™), for widespread use. This review highlights the history of development, and the different approaches and types of malaria vaccines, and the literature to date. It covers the developmental stages of RTS,S/AS01 and recommends steps for its deployment. The review explores other potential vaccine candidates and their status, and suggests options for their further development. It also recommends future roles for vaccines in eradicating malaria. Questions remain on how RTS,S vaccine will work in widespread use and how it can best be utilized to benefit vulnerable communities. CONCLUSION Malaria vaccines have been in development for almost 60 years. The RTS,S/AS01 vaccine has now been approved, but cannot be a stand-alone solution. Development should continue on promising candidates such as R21, PfSPZ and P. vivax vaccines. Multi-component vaccines may be a useful addition to other malaria control techniques in achieving eradication of malaria.
Collapse
Affiliation(s)
- Amal A El-Moamly
- Department of Medical Parasitology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | - Mohamed A El-Sweify
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
19
|
Choi YH, Kang YA, Park KJ, Choi JC, Cho KG, Ko DY, Ahn JH, Lee B, Ahn E, Woo YJ, Jung K, Kim NY, Reese VA, Larsen SE, Baldwin SL, Reed SG, Coler RN, Lee H, Cho SN. Safety and Immunogenicity of the ID93 + GLA-SE Tuberculosis Vaccine in BCG-Vaccinated Healthy Adults: A Randomized, Double-Blind, Placebo-Controlled Phase 2 Trial. Infect Dis Ther 2023:10.1007/s40121-023-00806-0. [PMID: 37166567 PMCID: PMC10173211 DOI: 10.1007/s40121-023-00806-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/11/2023] [Indexed: 05/12/2023] Open
Abstract
INTRODUCTION This randomized, double-blind, placebo-controlled, phase 2a trial was conducted to evaluate the safety and immunogenicity of the ID93 + glucopyranosyl lipid adjuvant (GLA)-stable emulsion (SE) vaccine in human immunodeficiency virus (HIV)-negative, previously Bacillus Calmette-Guérin (BCG)-vaccinated, and QuantiFERON-TB-negative healthy adults in South Korea. METHODS Adults (n = 107) with no signs or symptoms of tuberculosis were randomly assigned to receive three intramuscular injections of 2 μg ID93 + 5 μg GLA-SE, 10 μg ID93 + 5 μg GLA-SE, or 0.9% normal saline placebo on days 0, 28, and 56. For safety assessment, data on solicited adverse events (AEs), unsolicited AEs, serious AEs (SAEs), and special interest AEs were collected. Antigen-specific antibody responses were measured using serum enzyme-linked immunosorbent assay. T-cell immune responses were measured using enzyme-linked immunospot and intracellular cytokine staining. RESULTS No SAEs, deaths, or AEs leading to treatment discontinuation were found. The solicited local and systemic AEs observed were consistent with those previously reported. Compared with adults administered with the placebo, those administered with three intramuscular vaccine injections exhibited significantly higher antigen-specific antibody levels and Type 1 T-helper cellular immune responses. CONCLUSION The ID93 + GLA-SE vaccine induced antigen-specific cellular and humoral immune responses, with an acceptable safety profile in previously healthy, BCG-vaccinated, Mycobacterium tuberculosis-uninfected adult healthcare workers. TRIAL REGISTRATION This clinical trial was retrospectively registered on 16 January 2019 at Clinicaltrials.gov (NCT03806686).
Collapse
Affiliation(s)
| | - Young Ae Kang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kwang Joo Park
- Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jae Chol Choi
- Pulmonology Department, Chung-Ang University Hospital, Seoul, Republic of Korea
| | | | | | | | - Boram Lee
- Quratis Inc., Seoul, Republic of Korea
| | | | | | | | | | - Valerie A Reese
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Sasha E Larsen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Susan L Baldwin
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | | | - Rhea N Coler
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA.
| | - Hyejon Lee
- Quratis Inc., Seoul, Republic of Korea.
- Institute of Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Division of Vaccine Research, International Tuberculosis Research Center, Seoul, Republic of Korea.
| | - Sang-Nae Cho
- Quratis Inc., Seoul, Republic of Korea.
- Institute of Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
20
|
da Veiga GTS, Moriggi MR, Vettorazzi JF, Müller-Santos M, Albrecht L. Plasmodium vivax vaccine: What is the best way to go? Front Immunol 2023; 13:910236. [PMID: 36726991 PMCID: PMC9885200 DOI: 10.3389/fimmu.2022.910236] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023] Open
Abstract
Malaria is one of the most devastating human infectious diseases caused by Plasmodium spp. parasites. A search for an effective and safe vaccine is the main challenge for its eradication. Plasmodium vivax is the second most prevalent Plasmodium species and the most geographically distributed parasite and has been neglected for decades. This has a massive gap in knowledge and consequently in the development of vaccines. The most significant difficulties in obtaining a vaccine against P. vivax are the high genetic diversity and the extremely complex life cycle. Due to its complexity, studies have evaluated P. vivax antigens from different stages as potential targets for an effective vaccine. Therefore, the main vaccine candidates are grouped into preerythrocytic stage vaccines, blood-stage vaccines, and transmission-blocking vaccines. This review aims to support future investigations by presenting the main findings of vivax malaria vaccines to date. There are only a few P. vivax vaccines in clinical trials, and thus far, the best protective efficacy was a vaccine formulated with synthetic peptide from a circumsporozoite protein and Montanide ISA-51 as an adjuvant with 54.5% efficacy in a phase IIa study. In addition, the majority of P. vivax antigen candidates are polymorphic, induce strain-specific and heterogeneous immunity and provide only partial protection. Nevertheless, immunization with recombinant proteins and multiantigen vaccines have shown promising results and have emerged as excellent strategies. However, more studies are necessary to assess the ideal vaccine combination and test it in clinical trials. Developing a safe and effective vaccine against vivax malaria is essential for controlling and eliminating the disease. Therefore, it is necessary to determine what is already known to propose and identify new candidates.
Collapse
Affiliation(s)
- Gisele Tatiane Soares da Veiga
- Laboratory of Apicomplexan Parasites Research, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Brazil,Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná (UFPR), Curitiba, Brazil
| | | | | | - Marcelo Müller-Santos
- Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Letusa Albrecht
- Laboratory of Apicomplexan Parasites Research, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Brazil,*Correspondence: Letusa Albrecht,
| |
Collapse
|
21
|
Roobsoong W, Yadava A, Draper SJ, Minassian AM, Sattabongkot J. The challenges of Plasmodium vivax human malaria infection models for vaccine development. Front Immunol 2023; 13:1006954. [PMID: 36685545 PMCID: PMC9849360 DOI: 10.3389/fimmu.2022.1006954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/09/2022] [Indexed: 01/07/2023] Open
Abstract
Controlled Human Malaria Infection models (CHMI) have been critical to advancing new vaccines for malaria. Stringent and safe preparation of a challenge agent is key to the success of any CHMI. Difficulty producing the Plasmodium vivax parasite in vitro has limited production of qualified parasites for CHMI as well as the functional assays required to screen and down-select candidate vaccines for this globally distributed parasite. This and other challenges to P. vivax CHMI (PvCHMI), including scientific, logistical, and ethical obstacles, are common to P. vivax research conducted in both non-endemic and endemic countries, with additional hurdles unique to each. The challenges of using CHMI for P. vivax vaccine development and evaluation, lessons learned from previous and ongoing clinical trials, and the way forward to effectively perform PvCHMI to support vaccine development, are discussed.
Collapse
Affiliation(s)
- Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Anjali Yadava
- Biologics Research & Development, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Simon J. Draper
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
22
|
Molina-Franky J, Reyes C, Picón Jaimes YA, Kalkum M, Patarroyo MA. The Black Box of Cellular and Molecular Events of Plasmodium vivax Merozoite Invasion into Reticulocytes. Int J Mol Sci 2022; 23:ijms232314528. [PMID: 36498854 PMCID: PMC9739029 DOI: 10.3390/ijms232314528] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
Plasmodium vivax is the most widely distributed malaria parasite affecting humans worldwide, causing ~5 million cases yearly. Despite the disease's extensive burden, there are gaps in the knowledge of the pathophysiological mechanisms by which P. vivax invades reticulocytes. In contrast, this crucial step is better understood for P. falciparum, the less widely distributed but more often fatal malaria parasite. This discrepancy is due to the difficulty of studying P. vivax's exclusive invasion of reticulocytes, which represent 1-2% of circulating cells. Its accurate targeting mechanism has not yet been clarified, hindering the establishment of long-term continuous in vitro culture systems. So far, only three reticulocyte invasion pathways have been characterised based on parasite interactions with DARC, TfR1 and CD98 host proteins. However, exposing the parasite's alternative invasion mechanisms is currently being considered, opening up a large field for exploring the entry receptors used by P. vivax for invading host cells. New methods must be developed to ensure better understanding of the parasite to control malarial transmission and to eradicate the disease. Here, we review the current state of knowledge on cellular and molecular mechanisms of P. vivax's merozoite invasion to contribute to a better understanding of the parasite's biology, pathogenesis and epidemiology.
Collapse
Affiliation(s)
- Jessica Molina-Franky
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 112111, Colombia
- Biotechnology, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - César Reyes
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 112111, Colombia
- Biotechnology, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Animal Sciences Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá 111166, Colombia
| | | | - Markus Kalkum
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Correspondence: (M.K.); (M.A.P.)
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 112111, Colombia
- Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Correspondence: (M.K.); (M.A.P.)
| |
Collapse
|
23
|
Kar S, Sinha A. Plasmodium vivax Duffy Binding Protein-Based Vaccine: a Distant Dream. Front Cell Infect Microbiol 2022; 12:916702. [PMID: 35909975 PMCID: PMC9325973 DOI: 10.3389/fcimb.2022.916702] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
The neglected but highly prevalent Plasmodium vivax in South-east Asia and South America poses a great challenge, with regards to long-term in-vitro culturing and heavily limited functional assays. Such visible challenges as well as narrowed progress in development of experimental research tools hinders development of new drugs and vaccines. The leading vaccine candidate antigen Plasmodium vivax Duffy Binding Protein (PvDBP), is essential for reticulocyte invasion by binding to its cognate receptor, the Duffy Antigen Receptor for Chemokines (DARC), on the host’s reticulocyte surface. Despite its highly polymorphic nature, the amino-terminal cysteine-rich region II of PvDBP (PvDBPII) has been considered as an attractive target for vaccine-mediated immunity and has successfully completed the clinical trial Phase 1. Although this molecule is an attractive vaccine candidate against vivax malaria, there is still a question on its viability due to recent findings, suggesting that there are still some aspects which needs to be looked into further. The highly polymorphic nature of PvDBPII and strain-specific immunity due to PvDBPII allelic variation in Bc epitopes may complicate vaccine efficacy. Emergence of various blood-stage antigens, such as PvRBP, PvEBP and supposedly many more might stand in the way of attaining full protection from PvDBPII. As a result, there is an urgent need to assess and re-assess various caveats connected to PvDBP, which might help in designing a long-term promising vaccine for P. vivax malaria. This review mainly deals with a bunch of rising concerns for validation of DBPII as a vaccine candidate antigen for P. vivax malaria.
Collapse
|
24
|
Park JH, Kim MH, Sutanto E, Na SW, Kim MJ, Yeom JS, Nyunt MH, Abbas Elfaki MM, Abdel Hamid MM, Cha SH, Alemu SG, Sriprawat K, Anstey NM, Grigg MJ, Barber BE, William T, Gao Q, Liu Y, Pearson RD, Price RN, Nosten F, Yoon SI, No JH, Han ET, Auburn S, Russell B, Han JH. Geographical distribution and genetic diversity of Plasmodium vivax reticulocyte binding protein 1a correlates with patient antigenicity. PLoS Negl Trop Dis 2022; 16:e0010492. [PMID: 35737709 PMCID: PMC9258880 DOI: 10.1371/journal.pntd.0010492] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 07/06/2022] [Accepted: 05/12/2022] [Indexed: 01/12/2023] Open
Abstract
Plasmodium vivax is the most widespread cause of human malaria. Recent reports of drug resistant vivax malaria and the challenge of eradicating the dormant liver forms increase the importance of vaccine development against this relapsing disease. P. vivax reticulocyte binding protein 1a (PvRBP1a) is a potential vaccine candidate, which is involved in red cell tropism, a crucial step in the merozoite invasion of host reticulocytes. As part of the initial evaluation of the PvRBP1a vaccine candidate, we investigated its genetic diversity and antigenicity using geographically diverse clinical isolates. We analysed pvrbp1a genetic polymorphisms using 202 vivax clinical isolates from six countries. Pvrbp1a was separated into six regions based on specific domain features, sequence conserved/polymorphic regions, and the reticulocyte binding like (RBL) domains. In the fragmented gene sequence analysis, PvRBP1a region II (RII) and RIII (head and tail structure homolog, 152-625 aa.) showed extensive polymorphism caused by random point mutations. The haplotype network of these polymorphic regions was classified into three clusters that converged to independent populations. Antigenicity screening was performed using recombinant proteins PvRBP1a-N (157-560 aa.) and PvRBP1a-C (606-962 aa.), which contained head and tail structure region and sequence conserved region, respectively. Sensitivity against PvRBP1a-N (46.7%) was higher than PvRBP1a-C (17.8%). PvRBP1a-N was reported as a reticulocyte binding domain and this study identified a linear epitope with moderate antigenicity, thus an attractive domain for merozoite invasion-blocking vaccine development. However, our study highlights that a global PvRBP1a-based vaccine design needs to overcome several difficulties due to three distinct genotypes and low antigenicity levels.
Collapse
Affiliation(s)
- Ji-Hoon Park
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Min-Hee Kim
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Edwin Sutanto
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Seok-Won Na
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Min-Jae Kim
- Department of Infectious Diseases, Asan Medical Center, Seoul, Republic of Korea
| | - Joon Sup Yeom
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | - Mohammed Mohieldien Abbas Elfaki
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
- Department of Microbiology and Parasitology, Faculty of Medicine, Jazan University, Jizan, Saudi Arabia
| | - Muzamil Mahdi Abdel Hamid
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Seok Ho Cha
- Department of Parasitology and Tropical Medicine, Inha University School of Medicine, Incheon, Republic of Korea
| | - Sisay Getachew Alemu
- College of Natural Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Armauer Hansen Research Institute, Jimma Road, Addis Ababa, Ethiopia
- Bioreliance, Rockville, Maryland, United States of America
| | - Kanlaya Sriprawat
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand
| | - Nicholas M. Anstey
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Matthew J. Grigg
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Sabah, Malaysia
| | - Bridget E. Barber
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Sabah, Malaysia
| | - Timothy William
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Sabah, Malaysia
- Clinical Research Centre, Queen Elizabeth Hospital, Sabah, Malaysia
- Gleneagles Hospital, Sabah, Malaysia
| | - Qi Gao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Yaobao Liu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
- School of Public Health, Nanjing Medical University, Nanjing, China
| | | | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine Research Building, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine Research Building, University of Oxford, Oxford, United Kingdom
| | - Sung-Il Yoon
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Joo Hwan No
- Host-Parasite Research Laboratory, Institut Pasteur Korea, Seongnam, Republic of Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine Research Building, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Bruce Russell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
- * E-mail:
| |
Collapse
|
25
|
Hou MM, Barrett JR, Themistocleous Y, Rawlinson TA, Diouf A, Martinez FJ, Nielsen CM, Lias AM, King LDW, Edwards NJ, Greenwood NM, Kingham L, Poulton ID, Khozoee B, Goh C, Mac Lochlainn DJ, Salkeld J, Guilotte-Blisnick M, Huon C, Mohring F, Reimer JM, Chauhan VS, Mukherjee P, Biswas S, Taylor IJ, Lawrie AM, Cho JS, Nugent FL, Long CA, Moon RW, Miura K, Silk SE, Chitnis CE, Minassian AM, Draper SJ. Impact of a blood-stage vaccine on Plasmodium vivax malaria. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.05.27.22275375. [PMID: 35664997 PMCID: PMC9164524 DOI: 10.1101/2022.05.27.22275375] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background There are no licensed vaccines against Plasmodium vivax , the most common cause of malaria outside of Africa. Methods We conducted two Phase I/IIa clinical trials to assess the safety, immunogenicity and efficacy of two vaccines targeting region II of P. vivax Duffy-binding protein (PvDBPII). Recombinant viral vaccines (using ChAd63 and MVA vectors) were administered at 0, 2 months or in a delayed dosing regimen (0, 17, 19 months), whilst a protein/adjuvant formulation (PvDBPII/Matrix-M™) was administered monthly (0, 1, 2 months) or in a delayed dosing regimen (0, 1, 14 months). Delayed regimens were due to trial halts during the COVID-19 pandemic. Volunteers underwent heterologous controlled human malaria infection (CHMI) with blood-stage P. vivax parasites at 2-4 weeks following their last vaccination, alongside unvaccinated controls. Efficacy was assessed by comparison of parasite multiplication rate (PMR) in blood post-CHMI, modelled from parasitemia measured by quantitative polymerase-chain-reaction (qPCR). Results Thirty-two volunteers were enrolled and vaccinated (n=16 for each vaccine). No safety concerns were identified. PvDBPII/Matrix-M™, given in the delayed dosing regimen, elicited the highest antibody responses and reduced the mean PMR following CHMI by 51% (range 36-66%; n=6) compared to unvaccinated controls (n=13). No other vaccine or regimen impacted parasite growth. In vivo growth inhibition of blood-stage P. vivax correlated with functional antibody readouts of vaccine immunogenicity. Conclusions Vaccination of malaria-naïve adults with a delayed booster regimen of PvDBPII/ Matrix-M™ significantly reduces the growth of blood-stage P. vivax . Funded by the European Commission and Wellcome Trust; VAC069, VAC071 and VAC079 ClinicalTrials.gov numbers NCT03797989 , NCT04009096 and NCT04201431 .
Collapse
Affiliation(s)
- Mimi M Hou
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | - Jordan R Barrett
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | | | | | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Francisco J Martinez
- Unité de Biologie de Plasmodium et Vaccins, Institut Pasteur, Université Paris Cité, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Carolyn M Nielsen
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | - Amelia M Lias
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | - Lloyd D W King
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | - Nick J Edwards
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | | | - Lucy Kingham
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | - Ian D Poulton
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | - Baktash Khozoee
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | - Cyndi Goh
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | - Dylan J Mac Lochlainn
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | - Jo Salkeld
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | - Micheline Guilotte-Blisnick
- Unité de Biologie de Plasmodium et Vaccins, Institut Pasteur, Université Paris Cité, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Christèle Huon
- Unité de Biologie de Plasmodium et Vaccins, Institut Pasteur, Université Paris Cité, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Franziska Mohring
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | | | - Virander S Chauhan
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | | | - Sumi Biswas
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | - Iona J Taylor
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | - Alison M Lawrie
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | - Jee-Sun Cho
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | - Fay L Nugent
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | - Carole A Long
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Robert W Moon
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Sarah E Silk
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | - Chetan E Chitnis
- Unité de Biologie de Plasmodium et Vaccins, Institut Pasteur, Université Paris Cité, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Angela M Minassian
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | - Simon J Draper
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| |
Collapse
|
26
|
White M, Chitnis CE. Potential role of vaccines in elimination of Plasmodium vivax. Parasitol Int 2022; 90:102592. [PMID: 35489701 DOI: 10.1016/j.parint.2022.102592] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
The unique biology of Plasmodium vivax, with its ability to form latent hypnozoites in the liver stage and the early appearance of gametocytes during blood stage infection, makes it difficult to target for elimination with standard malaria control tools. Here, we use modelling studies to demonstrate that vaccines that target different stages of P. vivax could greatly assist efforts to eliminate P. vivax. Combination of vaccines that target different P. vivax life cycle stages may be required to achieve high efficacy. Our simulations demonstrate that repeated rounds of mass vaccination with multi-stage vaccines can help achieve pre-elimination levels of P. vivax in both low and high transmission settings. We review the status of global efforts to develop vaccines for P. vivax malaria. We describe the status of the leading P. vivax vaccine candidates and share some thoughts on the prospects for availability of an effective vaccine for P. vivax malaria.
Collapse
Affiliation(s)
- Michael White
- Infectious Disease Epidemiology and Analytics G5 Unit, Department of Global Health, Institut Pasteur, Université de Paris, Paris, France
| | - Chetan E Chitnis
- Malaria Parasite Biology and Vaccines Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Université de Paris, Paris, France.
| |
Collapse
|
27
|
Ranade D, Jena R, Sancheti S, Deore V, Dogar V, Gairola S. Rapid, high throughput protein estimation method for saponin and alhydrogel adjuvanted R21 VLP Malaria vaccine based on intrinsic fluorescence. Vaccine 2021; 40:601-611. [PMID: 34933766 DOI: 10.1016/j.vaccine.2021.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/30/2021] [Accepted: 12/09/2021] [Indexed: 11/27/2022]
Abstract
Protein content estimation of recombinant vaccines at drug product (DP) stage is a crucial lot release and stability indicating assay in biopharmaceutical industries. Regulatory bodies such as US-FDA and WHO necessitates the quantitation of protein content to assess process parameters as well as formulation losses. Estimation of protein content at DP stage in presence of adjuvants (e.g AlOOH, AlPO4, saponin and squalene) is quite challenging, and the challenge intensifies when the target protein is in Virus like particles (VLP) form, owing to its size and structural complexity. Methods available for protein estimation of adjuvanted vaccines mostly suffer from inaccuracy at lower protein concentrations and in most cases require antigen desorption before analysis. Present research work is based on the development of a rapid plate-based method for protein estimation through intrinsic fluorescence by using Malaria vaccine R21 VLP as a model protein. Present method exhibited linearity for protein estimation of R21, in the range of 5-30 µg/mL in Alhydrogel and 4-20 µg/mL for Matrix M adjuvant. The method was validated as per ICH guidelines. The limit of quantification was found to be 0.94 µg/mL for both Alhydrogel and Matrix M adjuvanted R21. The method was found specific, precise and repeatable. This method is superior in terms of less sample quantity requirement, multiple sample analysis, short turnaround time and is non-invasive. This method was found to be stability indicating, works for other proteins containing tryptophan residues and operates well even in presence of host cell proteins. Based on the study, present method can be used in vaccine industries for routine in-process sample analysis (both inline and offline), lot release of VLP based drug products in presence of Alhydrogel and saponin based adjuvant systems.
Collapse
Affiliation(s)
- Dnyanesh Ranade
- Quality Control Department, Serum Institute of India Pvt. Ltd, 212/2, Soli Poonawalla Rd, JJC Colony, Suryalok Nagari, Hadapsar, Pune, Maharashtra 411028, India
| | - Rajender Jena
- Quality Control Department, Serum Institute of India Pvt. Ltd, 212/2, Soli Poonawalla Rd, JJC Colony, Suryalok Nagari, Hadapsar, Pune, Maharashtra 411028, India
| | - Shubham Sancheti
- Quality Control Department, Serum Institute of India Pvt. Ltd, 212/2, Soli Poonawalla Rd, JJC Colony, Suryalok Nagari, Hadapsar, Pune, Maharashtra 411028, India
| | - Vicky Deore
- Quality Control Department, Serum Institute of India Pvt. Ltd, 212/2, Soli Poonawalla Rd, JJC Colony, Suryalok Nagari, Hadapsar, Pune, Maharashtra 411028, India
| | - Vikas Dogar
- Quality Control Department, Serum Institute of India Pvt. Ltd, 212/2, Soli Poonawalla Rd, JJC Colony, Suryalok Nagari, Hadapsar, Pune, Maharashtra 411028, India
| | - Sunil Gairola
- Quality Control Department, Serum Institute of India Pvt. Ltd, 212/2, Soli Poonawalla Rd, JJC Colony, Suryalok Nagari, Hadapsar, Pune, Maharashtra 411028, India.
| |
Collapse
|
28
|
Minassian AM, Themistocleous Y, Silk SE, Barrett JR, Kemp A, Quinkert D, Nielsen CM, Edwards NJ, Rawlinson TA, Ramos Lopez F, Roobsoong W, Ellis KJ, Cho JS, Aunin E, Otto TD, Reid AJ, Bach FA, Labbé GM, Poulton ID, Marini A, Zaric M, Mulatier M, Lopez Ramon R, Baker M, Mitton CH, Sousa JC, Rachaphaew N, Kumpitak C, Maneechai N, Suansomjit C, Piteekan T, Hou MM, Khozoee B, McHugh K, Roberts DJ, Lawrie AM, Blagborough AM, Nugent FL, Taylor IJ, Johnson KJ, Spence PJ, Sattabongkot J, Biswas S, Rayner JC, Draper SJ. Controlled human malaria infection with a clone of Plasmodium vivax with high quality genome assembly. JCI Insight 2021; 6:152465. [PMID: 34609964 PMCID: PMC8675201 DOI: 10.1172/jci.insight.152465] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Controlled human malaria infection (CHMI) provides a highly informative means to investigate host-pathogen interactions and enable in vivo proof-of-concept efficacy testing of new drugs and vaccines. However, unlike Plasmodium falciparum, well-characterized P. vivax parasites that are safe and suitable for use in modern CHMI models are limited. Here, two healthy malaria-naïve UK adults with universal donor blood group were safely infected with a clone of P. vivax from Thailand by mosquito-bite CHMI. Parasitemia developed in both volunteers and, prior to treatment, each volunteer donated blood to produce a cryopreserved stabilate of infected red blood cells. Following stringent safety screening, the parasite stabilate from one of these donors ("PvW1") was thawed and used to inoculate six healthy malaria-naïve UK adults by blood-stage CHMI, at three different dilutions. Parasitemia developed in all volunteers, who were then successfully drug treated. PvW1 parasite DNA was isolated and sequenced to produce a high quality genome assembly by using a hybrid assembly method. We analysed leading vaccine candidate antigens and multigene families, including the Vivax interspersed repeat (VIR) genes of which we identified 1145 in the PvW1 genome. Our genomic analysis will guide future assessment of candidate vaccines and drugs, as well as experimental medicine studies.
Collapse
Affiliation(s)
| | | | - Sarah E Silk
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Jordan R Barrett
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Alison Kemp
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Doris Quinkert
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Nick J Edwards
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | - Jee-Sun Cho
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Eerik Aunin
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Thomas D Otto
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Adam J Reid
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Florian A Bach
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Ian D Poulton
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Arianna Marini
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Marija Zaric
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Margaux Mulatier
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Megan Baker
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Celia H Mitton
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Jason C Sousa
- Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Maryland, United States of America
| | | | | | | | | | - Tianrat Piteekan
- Mahidol Vivax Research Unit, Mahidol University, Bangkok, Thailand
| | - Mimi M Hou
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Baktash Khozoee
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Kirsty McHugh
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - David J Roberts
- Nuffield Division of Clinical Laboratory Sciences, University of Oxford, Oxford, United Kingdom
| | - Alison M Lawrie
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Fay L Nugent
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Iona J Taylor
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Philip J Spence
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Sumi Biswas
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Julian C Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Simon J Draper
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
29
|
Pirahmadi S, Afzali S, Zargar M, Zakeri S, Mehrizi AA. How can we develop an effective subunit vaccine to achieve successful malaria eradication? Microb Pathog 2021; 160:105203. [PMID: 34547408 DOI: 10.1016/j.micpath.2021.105203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/05/2021] [Accepted: 09/17/2021] [Indexed: 12/16/2022]
Abstract
Malaria, a mosquito-borne infection, is the most widespread parasitic disease. Despite numerous efforts to eradicate malaria, this disease is still a health concern worldwide. Owing to insecticide-resistant vectors and drug-resistant parasites, available controlling measures are insufficient to achieve a malaria-free world. Thus, there is an urgent need for new intervention tools such as efficient malaria vaccines. Subunit vaccines are the most promising malaria vaccines under development. However, one of the major drawbacks of subunit vaccines is the lack of efficient and durable immune responses including antigen-specific antibody, CD4+, and CD8+ T-cell responses, long-lived plasma cells, memory cells, and functional antibodies for parasite neutralization or inhibition of parasite invasion. These types of responses could be induced by whole organism vaccines, but eliciting these responses with subunit vaccines has been proven to be more challenging. Consequently, subunit vaccines require several policies to overcome these challenges. In this review, we address common approaches that can improve the efficacy of subunit vaccines against malaria.
Collapse
Affiliation(s)
- Sakineh Pirahmadi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Shima Afzali
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Mostafa Zargar
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran.
| | - Akram Abouie Mehrizi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
30
|
Ndegwa DN, Kundu P, Hostetler JB, Marin-Menendez A, Sanderson T, Mwikali K, Verzier LH, Coyle R, Adjalley S, Rayner JC. Using Plasmodium knowlesi as a model for screening Plasmodium vivax blood-stage malaria vaccine targets reveals new candidates. PLoS Pathog 2021; 17:e1008864. [PMID: 34197567 PMCID: PMC8279373 DOI: 10.1371/journal.ppat.1008864] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 07/14/2021] [Accepted: 06/01/2021] [Indexed: 11/18/2022] Open
Abstract
Plasmodium vivax is responsible for the majority of malaria cases outside Africa. Unlike P. falciparum, the P. vivax life-cycle includes a dormant liver stage, the hypnozoite, which can cause infection in the absence of mosquito transmission. An effective vaccine against P. vivax blood stages would limit symptoms and pathology from such recurrent infections, and therefore could play a critical role in the control of this species. Vaccine development in P. vivax, however, lags considerably behind P. falciparum, which has many identified targets with several having transitioned to Phase II testing. By contrast only one P. vivax blood-stage vaccine candidate based on the Duffy Binding Protein (PvDBP), has reached Phase Ia, in large part because the lack of a continuous in vitro culture system for P. vivax limits systematic screening of new candidates. We used the close phylogenetic relationship between P. vivax and P. knowlesi, for which an in vitro culture system in human erythrocytes exists, to test the scalability of systematic reverse vaccinology to identify and prioritise P. vivax blood-stage targets. A panel of P. vivax proteins predicted to function in erythrocyte invasion were expressed as full-length recombinant ectodomains in a mammalian expression system. Eight of these antigens were used to generate polyclonal antibodies, which were screened for their ability to recognize orthologous proteins in P. knowlesi. These antibodies were then tested for inhibition of growth and invasion of both wild type P. knowlesi and chimeric P. knowlesi lines modified using CRISPR/Cas9 to exchange P. knowlesi genes with their P. vivax orthologues. Candidates that induced antibodies that inhibited invasion to a similar level as PvDBP were identified, confirming the utility of P. knowlesi as a model for P. vivax vaccine development and prioritizing antigens for further follow up.
Collapse
Affiliation(s)
- Duncan N. Ndegwa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Department of Biological Sciences, University of Embu, Embu, Kenya
| | - Prasun Kundu
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, United Kingdom
| | - Jessica B. Hostetler
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | | | - Theo Sanderson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Kioko Mwikali
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Lisa H. Verzier
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Rachael Coyle
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Sophie Adjalley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Julian C. Rayner
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, United Kingdom
| |
Collapse
|
31
|
Yuguchi T, Kanoi BN, Nagaoka H, Miura T, Ito D, Takeda H, Tsuboi T, Takashima E, Otsuki H. Plasmodium yoelii Erythrocyte Binding Like Protein Interacts With Basigin, an Erythrocyte Surface Protein. Front Cell Infect Microbiol 2021; 11:656620. [PMID: 33937099 PMCID: PMC8079763 DOI: 10.3389/fcimb.2021.656620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/25/2021] [Indexed: 11/30/2022] Open
Abstract
Erythrocyte recognition and invasion is critical for the intra-erythrocytic development of Plasmodium spp. parasites. The multistep invasion process involves specific interactions between parasite ligands and erythrocyte receptors. Erythrocyte-binding-like (EBL) proteins, type I integral transmembrane proteins released from the merozoite micronemes, are known to play an important role in the initiation and formation of tight junctions between the apical end of the merozoite and the erythrocyte surface. In Plasmodium yoelii EBL (PyEBL), a single amino acid substitution in the putative Duffy binding domain dramatically changes parasite growth rate and virulence. This suggests that PyEBL is important for modulating the virulence of P. yoelii parasites. Based on these observations, we sought to elucidate the receptor of PyEBL that mediates its role as an invasion ligand. Using the eukaryotic wheat germ cell-free system, we systematically developed and screened a library of mouse erythrocyte proteins against native PyEBL using AlphaScreen technology. We report that PyEBL specifically interacts with basigin, an erythrocyte surface protein. We further confirmed that the N-terminal cysteine-rich Duffy binding-like region (EBL region 2), is responsible for the interaction, and that the binding is not affected by the C351Y mutation, which was previously shown to modulate virulence of P. yoelii. The identification of basigin as the putative PyEBL receptor offers new insights into the role of this molecule and provides an important base for in-depth studies towards developing novel interventions against malaria.
Collapse
Affiliation(s)
- Takaaki Yuguchi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Bernard N Kanoi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Toyokazu Miura
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Daisuke Ito
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Hiroyuki Takeda
- Division of Proteo-Drug-Discovery Sciences, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Hitoshi Otsuki
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
32
|
Pirahmadi S, Zakeri S, Djadid ND, Mehrizi AA. A review of combination adjuvants for malaria vaccines: a promising approach for vaccine development. Int J Parasitol 2021; 51:699-717. [PMID: 33798560 DOI: 10.1016/j.ijpara.2021.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/18/2020] [Accepted: 01/28/2021] [Indexed: 01/16/2023]
Abstract
It is obvious that there is a critical need for an efficient malaria vaccine to accelerate malaria eradication. Currently, recombinant subunit vaccination against malaria using proteins and peptides is gaining attention. However, one of the major drawbacks of this approach is the lack of an efficient and durable immune response. Therefore, subunit vaccines require adjuvants to make the vaccine sufficiently immunogenic. Considering the history of the RTS,S vaccine, it seems likely that no single adjuvant is capable of eliciting all the protective immune responses required in many malarial subunit vaccines and the use of combination adjuvants will be increasingly important as the science of malaria vaccines advances. In light of this, it appears that identifying the most effective mixture of adjuvants with minimal adverse effects offers tremendous opportunities in improving the efficacy of vaccines against malaria. Owing to the importance of a multi-adjuvanted approach in subunit malaria vaccine development, this review paper outlines some of the best known combination adjuvants used in malaria subunit vaccines, focusing on their proposed mechanisms of action, their immunological properties, and their notable results. The aim of the present review is to consolidate these findings to aid the application of these combination adjuvants in experimental malaria vaccines.
Collapse
Affiliation(s)
- Sakineh Pirahmadi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran.
| | - Navid D Djadid
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Akram A Mehrizi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
33
|
Doritchamou JYA, Suurbaar J, Tuikue Ndam N. Progress and new horizons toward a VAR2CSA-based placental malaria vaccine. Expert Rev Vaccines 2021; 20:215-226. [PMID: 33472449 DOI: 10.1080/14760584.2021.1878029] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Several malaria vaccines are under various phases of development with some promising results. In placental malaria (PM) a deliberately anti-disease approach is considered as many studies have underlined the key role of VAR2CSA protein, which therefore represents the leading vaccine candidate. However, evidence indicates that VAR2CSA antigenic polymorphism remains an obstacle to overcome.Areas covered: This review analyzes the progress made thus far in developing a VAR2CSA-based vaccine, and addresses the current issues and challenges that must be overcome to develop an effective PM vaccine.Expert opinion: Phase I trials of PAMVAC and PRIMVAC VAR2CSA vaccines have shown more or less satisfactory results with regards to safety and immunogenicity. The second generation of VAR2CSA-based vaccines could benefit from optimization approaches to broaden the activity spectrum against various placenta-binding isolates through continued advances in the structural understanding of the interaction with CSA.
Collapse
Affiliation(s)
- Justin Yai Alamou Doritchamou
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer Suurbaar
- Université de Paris, MERIT, IRD, F-75006 Paris, France.,Noguchi Memorial Institute for Medical Research, Department of Immunology, University of Ghana, Accra, Ghana
| | - Nicaise Tuikue Ndam
- Université de Paris, MERIT, IRD, F-75006 Paris, France.,Noguchi Memorial Institute for Medical Research, Department of Immunology, University of Ghana, Accra, Ghana
| |
Collapse
|
34
|
De SL, Ntumngia FB, Nicholas J, Adams JH. Progress towards the development of a P. vivax vaccine. Expert Rev Vaccines 2021; 20:97-112. [PMID: 33481638 PMCID: PMC7994195 DOI: 10.1080/14760584.2021.1880898] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Plasmodium vivax causes significant public health problems in endemic regions. A vaccine to prevent disease is critical, considering the rapid spread of drug-resistant parasite strains, and the development of hypnozoites in the liver with potential for relapse. A minimally effective vaccine should prevent disease and transmission while an ideal vaccine provides sterile immunity. AREAS COVERED Despite decades of research, the complex life cycle, technical challenges and a lack of funding have hampered progress of P. vivax vaccine development. Here, we review the progress of potential P. vivax vaccine candidates from different stages of the parasite life cycle. We also highlight the challenges and important strategies for rational vaccine design. These factors can significantly increase immune effector mechanisms and improve the protective efficacy of these candidates in clinical trials to generate sustained protection over longer periods of time. EXPERT OPINION A vaccine that presents functionally-conserved epitopes from multiple antigens from various stages of the parasite life cycle is key to induce broadly neutralizing strain-transcending protective immunity to effectively disrupt parasite development and transmission.
Collapse
Affiliation(s)
- Sai Lata De
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa – 33612, FL
| | - Francis B. Ntumngia
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa – 33612, FL
| | - Justin Nicholas
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa – 33612, FL
| | - John H. Adams
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa – 33612, FL
| |
Collapse
|
35
|
Kaslow DC. Malaria vaccine research & innovation: the intersection of IA2030 and zero malaria. NPJ Vaccines 2020; 5:109. [PMID: 33298967 PMCID: PMC7677906 DOI: 10.1038/s41541-020-00259-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022] Open
Affiliation(s)
- David C Kaslow
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA, 98121, USA.
| |
Collapse
|
36
|
Schäfer C, Roobsoong W, Kangwanrangsan N, Bardelli M, Rawlinson TA, Dambrauskas N, Trakhimets O, Parthiban C, Goswami D, Reynolds LM, Kennedy SY, Flannery EL, Murphy SC, Sather DN, Draper SJ, Sattabongkot J, Mikolajczak SA, Kappe SHI. A Humanized Mouse Model for Plasmodium vivax to Test Interventions that Block Liver Stage to Blood Stage Transition and Blood Stage Infection. iScience 2020; 23:101381. [PMID: 32739836 PMCID: PMC7399188 DOI: 10.1016/j.isci.2020.101381] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/02/2020] [Accepted: 07/15/2020] [Indexed: 12/20/2022] Open
Abstract
The human malaria parasite Plasmodium vivax remains vastly understudied, mainly due to the lack of suitable laboratory models. Here, we report a humanized mouse model to test interventions that block P. vivax parasite transition from liver stage infection to blood stage infection. Human liver-chimeric FRGN huHep mice infected with P. vivax sporozoites were infused with human reticulocytes, allowing transition of exo-erythrocytic merozoites to reticulocyte infection and development into all erythrocytic forms, including gametocytes, in vivo. In order to test the utility of this model for preclinical assessment of interventions, the invasion blocking potential of a monoclonal antibody targeting the essential interaction of the P. vivax Duffy Binding Protein with the Duffy antigen receptor was tested by passive immunization. This antibody inhibited invasion by over 95%, providing unprecedented in vivo evidence that PvDBP constitutes a promising blood stage vaccine candidate and proving our model highly suitable to test blood stage interventions.
Collapse
Affiliation(s)
- Carola Schäfer
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Niwat Kangwanrangsan
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | | | - Nicholas Dambrauskas
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Olesya Trakhimets
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Chaitra Parthiban
- Departments of Laboratory Medicine and Microbiology and Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Debashree Goswami
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Laura M Reynolds
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Spencer Y Kennedy
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Erika L Flannery
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Sean C Murphy
- Departments of Laboratory Medicine and Microbiology and Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - D Noah Sather
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA; Department of Pediatrics, University of Washington, Seattle, WA 98105, USA; Department of Global Health, University of Washington, Seattle, WA 98105, USA
| | - Simon J Draper
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Sebastian A Mikolajczak
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Stefan H I Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA; Department of Pediatrics, University of Washington, Seattle, WA 98105, USA; Department of Global Health, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
37
|
Hotspots in Plasmodium and RBC Receptor-Ligand Interactions: Key Pieces for Inhibiting Malarial Parasite Invasion. Int J Mol Sci 2020; 21:ijms21134729. [PMID: 32630804 PMCID: PMC7370042 DOI: 10.3390/ijms21134729] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/15/2020] [Accepted: 05/24/2020] [Indexed: 11/17/2022] Open
Abstract
Protein-protein interactions (IPP) play an essential role in practically all biological processes, including those related to microorganism invasion of their host cells. It has been found that a broad repertoire of receptor-ligand interactions takes place in the binding interphase with host cells in malaria, these being vital interactions for successful parasite invasion. Several trials have been conducted for elucidating the molecular interface of interactions between some Plasmodium falciparum and Plasmodium vivax antigens with receptors on erythrocytes and/or reticulocytes. Structural information concerning these complexes is available; however, deeper analysis is required for correlating structural, functional (binding, invasion, and inhibition), and polymorphism data for elucidating new interaction hotspots to which malaria control methods can be directed. This review describes and discusses recent structural and functional details regarding three relevant interactions during erythrocyte invasion: Duffy-binding protein 1 (DBP1)–Duffy antigen receptor for chemokines (DARC); reticulocyte-binding protein homolog 5 (PfRh5)-basigin, and erythrocyte binding antigen 175 (EBA175)-glycophorin A (GPA).
Collapse
|
38
|
Han JH, Cho JS, Ong JJY, Park JH, Nyunt MH, Sutanto E, Trimarsanto H, Petros B, Aseffa A, Getachew S, Sriprawat K, Anstey NM, Grigg MJ, Barber BE, William T, Qi G, Liu Y, Pearson RD, Auburn S, Price RN, Nosten F, Rénia L, Russell B, Han ET. Genetic diversity and neutral selection in Plasmodium vivax erythrocyte binding protein correlates with patient antigenicity. PLoS Negl Trop Dis 2020; 14:e0008202. [PMID: 32645098 PMCID: PMC7347095 DOI: 10.1371/journal.pntd.0008202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/08/2020] [Indexed: 01/13/2023] Open
Abstract
Plasmodium vivax is the most widespread and difficult to treat cause of human malaria. The development of vaccines against the blood stages of P. vivax remains a key objective for the control and elimination of vivax malaria. Erythrocyte binding-like (EBL) protein family members such as Duffy binding protein (PvDBP) are of critical importance to erythrocyte invasion and have been the major target for vivax malaria vaccine development. In this study, we focus on another member of EBL protein family, P. vivax erythrocyte binding protein (PvEBP). PvEBP was first identified in Cambodian (C127) field isolates and has subsequently been showed its preferences for binding reticulocytes which is directly inhibited by antibodies. We analysed PvEBP sequence from 316 vivax clinical isolates from eight countries including China (n = 4), Ethiopia (n = 24), Malaysia (n = 53), Myanmar (n = 10), Papua New Guinea (n = 16), Republic of Korea (n = 10), Thailand (n = 174), and Vietnam (n = 25). PvEBP gene exhibited four different phenotypic clusters based on the insertion/deletion (indels) variation. PvEBP-RII (179-479 aa.) showed highest polymorphism similar to other EBL family proteins in various Plasmodium species. Whereas even though PvEBP-RIII-V (480-690 aa.) was the most conserved domain, that showed strong neutral selection pressure for gene purifying with significant population expansion. Antigenicity of both of PvEBP-RII (16.1%) and PvEBP-RIII-V (21.5%) domains were comparatively lower than other P. vivax antigen which expected antigens associated with merozoite invasion. Total IgG recognition level of PvEBP-RII was stronger than PvEBP-RIII-V domain, whereas total IgG inducing level was stronger in PvEBP-RIII-V domain. These results suggest that PvEBP-RII is mainly recognized by natural IgG for innate protection, whereas PvEBP-RIII-V stimulates IgG production activity by B-cell for acquired immunity. Overall, the low antigenicity of both regions in patients with vivax malaria likely reflects genetic polymorphism for strong positive selection in PvEBP-RII and purifying selection in PvEBP-RIII-V domain. These observations pose challenging questions to the selection of EBP and point out the importance of immune pressure and polymorphism required for inclusion of PvEBP as a vaccine candidate.
Collapse
Affiliation(s)
- Jin-Hee Han
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Jee-Sun Cho
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
- Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford, United Kingdom
| | - Jessica J. Y. Ong
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Ji-Hoon Park
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | | | - Edwin Sutanto
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | | | - Beyene Petros
- College of Natural Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Jimma Road, Addis Ababa, Ethiopia
| | - Sisay Getachew
- College of Natural Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Armauer Hansen Research Institute, Jimma Road, Addis Ababa, Ethiopia
| | - Kanlaya Sriprawat
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Nicholas M. Anstey
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Matthew J. Grigg
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Sabah, Malaysia
| | - Bridget E. Barber
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Sabah, Malaysia
| | - Timothy William
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Sabah, Malaysia
- Clinical Research Centre, Queen Elizabeth Hospital, Sabah, Malaysia
- Gleneagles Hospital, Sabah, Malaysia
| | - Gao Qi
- Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, People's Republic of China
| | - Yaobao Liu
- Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, People's Republic of China
- Medical College of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Richard D. Pearson
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford, United Kingdom
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine Research Building, University of Oxford Old Road Campus, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine Research Building, University of Oxford Old Road Campus, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine Research Building, University of Oxford Old Road Campus, Oxford, United Kingdom
| | - Laurent Rénia
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Bruce Russell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| |
Collapse
|
39
|
Duffy PE, Patrick Gorres J. Malaria vaccines since 2000: progress, priorities, products. NPJ Vaccines 2020; 5:48. [PMID: 32566259 PMCID: PMC7283239 DOI: 10.1038/s41541-020-0196-3] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
Malaria vaccine development entered a new era in 2015 when the pre-erythrocytic Plasmodium falciparum candidate RTS,S was favorably reviewed by the European Medicines Agency and subsequently introduced into national pilot implementation programs, marking the first human anti-parasite vaccine to pass regulatory scrutiny. Since the first trials published in 1997, RTS,S has been evaluated in a series of clinical trials culminating in Phase 3 testing, while testing of other pre-erythrocytic candidates (that target sporozoite- or liver-stage parasites), particularly whole sporozoite vaccines, has also increased. Interest in blood-stage candidates (that limit blood-stage parasite growth) subsided after disappointing human efficacy results, although new blood-stage targets and concepts may revive activity in this area. Over the past decade, testing of transmission-blocking vaccines (that kill mosquito/sexual-stage parasites) advanced to field trials and the first generation of placental malaria vaccines (that clear placenta-sequestering parasites) entered the clinic. Novel antigen discovery, human monoclonal antibodies, structural vaccinology, and improved platforms promise to expand on RTS,S and improve existing vaccine candidates.
Collapse
Affiliation(s)
- Patrick E. Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - J. Patrick Gorres
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
40
|
PRIMVAC vaccine adjuvanted with Alhydrogel or GLA-SE to prevent placental malaria: a first-in-human, randomised, double-blind, placebo-controlled study. THE LANCET. INFECTIOUS DISEASES 2020; 20:585-597. [DOI: 10.1016/s1473-3099(19)30739-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/22/2019] [Accepted: 12/03/2019] [Indexed: 10/25/2022]
|
41
|
Amplification of Duffy binding protein-encoding gene allows Plasmodium vivax to evade host anti-DBP humoral immunity. Nat Commun 2020; 11:953. [PMID: 32075983 PMCID: PMC7031336 DOI: 10.1038/s41467-020-14574-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/18/2020] [Indexed: 01/02/2023] Open
Abstract
Antigenic variation, the capacity to produce a range of variable antigens, is a well-described strategy of Plasmodium and other parasites to evade host immunity. Here, we show that gene amplification is an additional evasion mechanism used by Plasmodium vivax to escape humoral immunity targeting PvDBP, the key ligand involved in reticulocyte invasion. PvDBP gene amplification leads to increased mRNA levels and protects P. vivax in vitro against invasion inhibitory human monoclonal antibodies targeting a conserved binding domain of DBP. Patient samples suggest that parasites with increased pvdbp copy number are able to infect individuals with naturally acquired antibodies highly blocking the binding of PvDBP to the Duffy receptor. These results show that gene copy number variation affect the parasite’s ability to evade anti-PvDBP humoral immunity. Duffy binding protein (DBP) of Plasmodium vivax is important for invasion and is a potential vaccine candidate. Here, the authors show that PvDBP gene amplification protects P vivax in vitro against invasion inhibitory human monoclonal antibodies and is associated to infection of patients with PvDBP binding inhibitory antibodies.
Collapse
|
42
|
Popovici J, Roesch C, Rougeron V. The enigmatic mechanisms by which Plasmodium vivax infects Duffy-negative individuals. PLoS Pathog 2020; 16:e1008258. [PMID: 32078643 PMCID: PMC7032691 DOI: 10.1371/journal.ppat.1008258] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The absence of the Duffy protein at the surface of erythrocytes was considered for decades to confer full protection against Plasmodium vivax as this blood group is the receptor for the key parasite ligand P. vivax Duffy binding protein (PvDBP). However, it is now clear that the parasite is able to break through this protection and induce clinical malaria in Duffy-negative people, although the underlying mechanisms are still not understood. Here, we briefly review the evidence of Duffy-negative infections by P. vivax and summarize the current hypothesis at the basis of this invasion process. We discuss those in the perspective of malaria-elimination challenges, notably in African countries.
Collapse
Affiliation(s)
- Jean Popovici
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh Cambodia
- Malaria Translational Research Unit, Institut Pasteur, Paris & Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Camille Roesch
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh Cambodia
- Malaria Translational Research Unit, Institut Pasteur, Paris & Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Virginie Rougeron
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), Montpellier, France
| |
Collapse
|
43
|
Gitta B, Kilian N. Diagnosis of Malaria Parasites Plasmodium spp. in Endemic Areas: Current Strategies for an Ancient Disease. Bioessays 2019; 42:e1900138. [PMID: 31830324 DOI: 10.1002/bies.201900138] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/05/2019] [Indexed: 12/14/2022]
Abstract
Fast and effective detection of the causative agent of malaria in humans, protozoan Plasmodium parasites, is of crucial importance for increasing the effectiveness of treatment and to control a devastating disease that affects millions of people living in endemic areas. The microscopic examination of Giemsa-stained blood films still remains the gold-standard in Plasmodium detection today. However, there is a high demand for alternative diagnostic methods that are simple, fast, highly sensitive, ideally do not rely on blood-drawing and can potentially be conducted by the patients themselves. Here, the history of Plasmodium detection is discussed, and advantages and disadvantages of diagnostic methods that are currently being applied are assessed.
Collapse
Affiliation(s)
- Brian Gitta
- Matibabu, 120 Semawata Rd, Ntinda, Kampala, 00256, Uganda
| | - Nicole Kilian
- Centre for Infectious Diseases, Parasitology Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| |
Collapse
|
44
|
Antonelli LR, Junqueira C, Vinetz JM, Golenbock DT, Ferreira MU, Gazzinelli RT. The immunology of Plasmodium vivax malaria. Immunol Rev 2019; 293:163-189. [PMID: 31642531 DOI: 10.1111/imr.12816] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 09/10/2019] [Indexed: 12/13/2022]
Abstract
Plasmodium vivax infection, the predominant cause of malaria in Asia and Latin America, affects ~14 million individuals annually, with considerable adverse effects on wellbeing and socioeconomic development. A clinical hallmark of Plasmodium infection, the paroxysm, is driven by pyrogenic cytokines produced during the immune response. Here, we review studies on the role of specific immune cell types, cognate innate immune receptors, and inflammatory cytokines on parasite control and disease symptoms. This review also summarizes studies on recurrent infections in individuals living in endemic regions as well as asymptomatic infections, a serious barrier to eliminating this disease. We propose potential mechanisms behind these repeated and subclinical infections, such as poor induction of immunological memory cells and inefficient T effector cells. We address the role of antibody-mediated resistance to P. vivax infection and discuss current progress in vaccine development. Finally, we review immunoregulatory mechanisms, such as inhibitory receptors, T regulatory cells, and the anti-inflammatory cytokine, IL-10, that antagonizes both innate and acquired immune responses, interfering with the development of protective immunity and parasite clearance. These studies provide new insights for the clinical management of symptomatic as well as asymptomatic individuals and the development of an efficacious vaccine for vivax malaria.
Collapse
Affiliation(s)
- Lis R Antonelli
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Caroline Junqueira
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Joseph M Vinetz
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Douglas T Golenbock
- Division of Infectious Disease and immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Marcelo U Ferreira
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Ricardo T Gazzinelli
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil.,Division of Infectious Disease and immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.,Plataforma de Medicina Translacional, Fundação Oswaldo Cruz, Ribeirão Preto, Brazil
| |
Collapse
|
45
|
Gai PP, van Loon W, Siegert K, Wedam J, Kulkarni SS, Rasalkar R, Boloor A, Kumar A, Jain A, Mahabala C, Baliga S, Devi R, Shenoy D, Gai P, Mockenhaupt FP. Duffy antigen receptor for chemokines gene polymorphisms and malaria in Mangaluru, India. Malar J 2019; 18:328. [PMID: 31551092 PMCID: PMC6760058 DOI: 10.1186/s12936-019-2966-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/16/2019] [Indexed: 11/18/2022] Open
Abstract
Background Duffy blood group antigens serve as receptors for Plasmodium vivax invasion into erythrocytes, and they are determined by polymorphisms of the Duffy antigen receptor for chemokines (DARC), also known as Fy glycoprotein (FY). Duffy negativity, i.e., absence of the antigens, protects against P. vivax infection and is rare among non-African populations. However, data on DARC polymorphisms and their impact on Plasmodium infection in India are scarce. Methods In a case–control study among 909 malaria patients and 909 healthy community controls in Mangaluru, southwestern India, DARC polymorphisms T-33C (rs2814778), G125A (rs12075), C265T (rs34599082), and G298A (rs13962) were genotyped. Associations of the polymorphisms with the odds of malaria, parasite species and manifestation were assessed. Results Among patients, vivax malaria (70%) predominated over falciparum malaria (9%) and mixed species infections (21%). DARC T-33C was absent and C265T was rare (1%). FYB carriage (deduced from DARC G125A) was not associated with the risk of malaria per se but it protected against severe falciparum malaria (P = 0.03), and hospitalization (P = 0.006) due to falciparum malaria. Vice versa, carriage of DARC 298A was associated with increased odds of malaria (aOR, 1.46 (1.07–1.99), P = 0.015) and vivax malaria (aOR, 1.60 (1.14–2.22), P = 0.006) and with several reported symptoms and findings of the patients. Conclusion This report from southern India is the first to show an independent effect of the DARC 298A polymorphism on the risk of malaria. Functional studies are required to understand the underlying mechanism. Moreover, FYB carriage appears to protect against severe falciparum malaria in southern India.
Collapse
Affiliation(s)
- Prabhanjan P Gai
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Institute of Tropical Medicine and International Health, Berlin, Germany.
| | - Welmoed van Loon
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Institute of Tropical Medicine and International Health, Berlin, Germany
| | - Konrad Siegert
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Institute of Tropical Medicine and International Health, Berlin, Germany
| | - Jakob Wedam
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Institute of Tropical Medicine and International Health, Berlin, Germany
| | | | - Rashmi Rasalkar
- Karnataka Institute for DNA Research, Dharwad, Karnataka, India
| | - Archith Boloor
- Kasturba Medical College, Mangalore, India.,Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Arun Kumar
- District Vector Borne Disease Control Programme Office, Dakshina Kannada, Mangaluru, Karnataka, India
| | - Animesh Jain
- Kasturba Medical College, Mangalore, India.,Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Chakrapani Mahabala
- Kasturba Medical College, Mangalore, India.,Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shantaram Baliga
- Kasturba Medical College, Mangalore, India.,Manipal Academy of Higher Education, Manipal, Karnataka, India
| | | | - Damodara Shenoy
- Kasturba Medical College, Mangalore, India.,Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Pramod Gai
- Karnataka Institute for DNA Research, Dharwad, Karnataka, India
| | - Frank P Mockenhaupt
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Institute of Tropical Medicine and International Health, Berlin, Germany
| |
Collapse
|
46
|
Urusova D, Carias L, Huang Y, Nicolete VC, Popovici J, Roesch C, Salinas ND, Dechavanne S, Witkowski B, Ferreira MU, Adams JH, Gross ML, King CL, Tolia NH. Structural basis for neutralization of Plasmodium vivax by naturally acquired human antibodies that target DBP. Nat Microbiol 2019; 4:1486-1496. [PMID: 31133752 PMCID: PMC6707876 DOI: 10.1038/s41564-019-0461-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/16/2019] [Indexed: 12/21/2022]
Abstract
The Plasmodium vivax Duffy-binding protein (DBP) is a prime target of the protective immune response and a promising vaccine candidate for P. vivax malaria. Naturally acquired immunity (NAI) protects against malaria in adults residing in infection-endemic regions, and the passive transfer of malarial immunity confers protection. A vaccine that replicates NAI will effectively prevent disease. Here, we report the structures of DBP region II in complex with human-derived, neutralizing monoclonal antibodies obtained from an individual in a malaria-endemic area with NAI. We identified protective epitopes using X-ray crystallography, hydrogen-deuterium exchange mass spectrometry, mutational mapping and P. vivax invasion studies. These approaches reveal that naturally acquired human antibodies neutralize P. vivax by targeting the binding site for Duffy antigen receptor for chemokines (DARC) and the dimer interface of P. vivax DBP. Antibody binding is unaffected by polymorphisms in the vicinity of epitopes, suggesting that the antibodies have evolved to engage multiple polymorphic variants of DBP. The human antibody epitopes are broadly conserved and are distinct from previously defined epitopes for broadly conserved murine monoclonal antibodies. A library of globally conserved epitopes of neutralizing human antibodies offers possibilities for rational design of strain-transcending DBP-based vaccines and therapeutics against P. vivax.
Collapse
MESH Headings
- Amino Acid Sequence
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/immunology
- Antigens, Protozoan/chemistry
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Antigens, Protozoan/metabolism
- Binding Sites
- Crystallography, X-Ray
- Duffy Blood-Group System/metabolism
- Epitopes, B-Lymphocyte
- Erythrocytes/metabolism
- Erythrocytes/parasitology
- Genetic Variation
- Humans
- Malaria Vaccines/immunology
- Malaria, Vivax/parasitology
- Malaria, Vivax/prevention & control
- Plasmodium vivax/genetics
- Plasmodium vivax/immunology
- Protein Binding
- Protozoan Proteins/chemistry
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Protozoan Proteins/metabolism
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/metabolism
Collapse
Affiliation(s)
- Darya Urusova
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Lenore Carias
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
| | - Yining Huang
- Department of Chemistry, Washington University in St Louis, St Louis, MO, USA
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Jean Popovici
- Malaria Molecular Epidemiology Unit, Pasteur Institute in Cambodia, Phnom Penh, Cambodia
| | - Camille Roesch
- Malaria Molecular Epidemiology Unit, Pasteur Institute in Cambodia, Phnom Penh, Cambodia
| | - Nichole D Salinas
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sebastien Dechavanne
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
| | - Benoit Witkowski
- Malaria Molecular Epidemiology Unit, Pasteur Institute in Cambodia, Phnom Penh, Cambodia
| | | | - John H Adams
- Department of Global Health, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St Louis, St Louis, MO, USA
| | - Christopher L King
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
| | - Niraj H Tolia
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, USA.
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
47
|
|
48
|
Mohring F, Hart MN, Rawlinson TA, Henrici R, Charleston JA, Diez Benavente E, Patel A, Hall J, Almond N, Campino S, Clark TG, Sutherland CJ, Baker DA, Draper SJ, Moon RW. Rapid and iterative genome editing in the malaria parasite Plasmodium knowlesi provides new tools for P. vivax research. eLife 2019; 8:45829. [PMID: 31205002 PMCID: PMC6579517 DOI: 10.7554/elife.45829] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/28/2019] [Indexed: 12/14/2022] Open
Abstract
Tackling relapsing Plasmodium vivax and zoonotic Plasmodium knowlesi infections is critical to reducing malaria incidence and mortality worldwide. Understanding the biology of these important and related parasites was previously constrained by the lack of robust molecular and genetic approaches. Here, we establish CRISPR-Cas9 genome editing in a culture-adapted P. knowlesi strain and define parameters for optimal homology-driven repair. We establish a scalable protocol for the production of repair templates by PCR and demonstrate the flexibility of the system by tagging proteins with distinct cellular localisations. Using iterative rounds of genome-editing we generate a transgenic line expressing P. vivax Duffy binding protein (PvDBP), a lead vaccine candidate. We demonstrate that PvDBP plays no role in reticulocyte restriction but can alter the macaque/human host cell tropism of P. knowlesi. Critically, antibodies raised against the P. vivax antigen potently inhibit proliferation of this strain, providing an invaluable tool to support vaccine development.
Collapse
Affiliation(s)
- Franziska Mohring
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Melissa Natalie Hart
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | - Ryan Henrici
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - James A Charleston
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Ernest Diez Benavente
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Avnish Patel
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Joanna Hall
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control, Health Protection Agency, Hertfordshire, United Kingdom
| | - Neil Almond
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control, Health Protection Agency, Hertfordshire, United Kingdom
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Colin J Sutherland
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - David A Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Simon J Draper
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Robert William Moon
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
49
|
Structural basis for inhibition of Plasmodium vivax invasion by a broadly neutralizing vaccine-induced human antibody. Nat Microbiol 2019; 4:1497-1507. [PMID: 31133755 PMCID: PMC6711757 DOI: 10.1038/s41564-019-0462-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/16/2019] [Indexed: 12/21/2022]
Abstract
The most widespread form of malaria is caused by Plasmodium vivax. To replicate, this parasite must invade immature red blood cells, through a process which requires interaction of the Plasmodium vivax Duffy binding protein, PvDBP with its human receptor, the Duffy antigen receptor for chemokines, DARC. Naturally acquired antibodies that inhibit this interaction associate with clinical immunity, suggesting PvDBP as a leading candidate for inclusion in a vaccine to prevent malaria due to Plasmodium vivax. Here, we isolated a panel of monoclonal antibodies from human volunteers immunised in a clinical vaccine trial of PvDBP. We screened their ability to prevent PvDBP from binding to DARC, and their capacity to block red blood cell invasion by a transgenic Plasmodium knowlesi parasite genetically modified to express PvDBP and to prevent reticulocyte invasion by multiple clinical isolates of Plasmodium vivax. This identified a broadly neutralising human monoclonal antibody which inhibited invasion of all tested strains of Plasmodium vivax. Finally, we determined the structure of a complex of this antibody bound to PvDBP, indicating the molecular basis for inhibition. These findings will guide future vaccine design strategies and open up possibilities for testing the prophylactic use of such an antibody.
Collapse
|
50
|
Salinas ND, Tang WK, Tolia NH. Blood-Stage Malaria Parasite Antigens: Structure, Function, and Vaccine Potential. J Mol Biol 2019; 431:4259-4280. [PMID: 31103771 DOI: 10.1016/j.jmb.2019.05.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/22/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
Abstract
Plasmodium parasites are the causative agent of malaria, a disease that kills approximately 450,000 individuals annually, with the majority of deaths occurring in children under the age of 5 years and the development of a malaria vaccine is a global health priority. Plasmodium parasites undergo a complex life cycle requiring numerous diverse protein families. The blood stage of parasite development results in the clinical manifestation of disease. A vaccine that disrupts the blood stage is highly desired and will aid in the control of malaria. The blood stage comprises multiple steps: invasion of, asexual growth within, and egress from red blood cells. This review focuses on blood-stage antigens with emphasis on antigen structure, antigen function, neutralizing antibodies, and vaccine potential.
Collapse
Affiliation(s)
- Nichole D Salinas
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD,, 20892, USA
| | - Wai Kwan Tang
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD,, 20892, USA
| | - Niraj H Tolia
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD,, 20892, USA.
| |
Collapse
|