1
|
Qin S, Liu Y, He G, Yang J, Zeng F, Lu Q, Wang M, He B, Song Y. Spatiotemporal Delivery of Dual Nanobodies by Engineered Probiotics to Reverse Tumor Immunosuppression via Targeting Tumor-Derived Exosomes. ACS NANO 2024; 18:26858-26871. [PMID: 39308426 DOI: 10.1021/acsnano.4c08117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
The anti-PD-L1 and its bispecific antibodies have exhibited durable antitumor immunity but still elicit immunosuppression mainly caused by tumor-derived exosomes (TDEs), leading to difficulty in clinical transformation. Herein, engineered Escherichia coli Nissle 1917 (EcN) coexpressing anti-PD-L1 and anti-CD9 nanobodies (EcN-Nb) are developed and decorated with zinc-based metal-organic frameworks (MOFs) loaded with indocyanine green (ICG), to generate EcN-Nb-ZIF-8CHO-ICG (ENZC) for spatiotemporal lysis of bacteria for immunotherapy. The tumor-homing hybrid system can specifically release nanobodies in response to near-infrared (NIR) radiation, thereby targeting TDEs and changing their biological distribution, remodeling tumor-associated macrophages to M1 states, activating more effective and cytotoxic T lymphocytes, and finally, leading to the inhibition of tumor proliferation and metastasis. Altogether, the microfluidic-enabled MOF-modified engineered probiotics target TDEs and activate the antitumor immune response in a spatiotemporally manipulated manner, offering promising TDE-targeted immune therapy.
Collapse
Affiliation(s)
- Shurong Qin
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Yuta Liu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Guanzhong He
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Jingjing Yang
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fei Zeng
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Qianglan Lu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Meng Wang
- Department of Gastric and Hernia Surgery, Nanjing University Medical School Affiliated Drum Tower Hospital, Nanjing 210023, China
| | - Bangshun He
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Yujun Song
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Kong W, Gao Y, Zhao S, Yang H. Cancer stem cells: advances in the glucose, lipid and amino acid metabolism. Mol Cell Biochem 2024; 479:2545-2563. [PMID: 37882986 DOI: 10.1007/s11010-023-04861-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/13/2023] [Indexed: 10/27/2023]
Abstract
Cancer stem cells (CSCs) are a class of cells with self-renewal and multi-directional differentiation potential, which are present in most tumors, particularly in aggressive tumors, and perform a pivotal role in recurrence and metastasis and are expected to be one of the important targets for tumor therapy. Studies of tumor metabolism in recent years have found that the metabolic characteristics of CSCs are distinct from those of differentiated tumor cells, which are unique to CSCs and contribute to the maintenance of the stemness characteristics of CSCs. Moreover, these altered metabolic profiles can drive the transformation between CSCs and non-CSCs, implying that these metabolic alterations are important markers for CSCs to play their biological roles. The identification of metabolic changes in CSCs and their metabolic plasticity mechanisms may provide some new opportunities for tumor therapy. In this paper, we review the metabolism-related mechanisms of CSCs in order to provide a theoretical basis for their potential application in tumor therapy.
Collapse
Affiliation(s)
- Weina Kong
- Department of Obstetrics and Gynecology, Xijing Hospital, Air Forth Military Medical University, 127 Changle West Road, Xincheng District, Xi'an City, Shaanxi Province, China
| | - Yunge Gao
- Department of Obstetrics and Gynecology, Xijing Hospital, Air Forth Military Medical University, 127 Changle West Road, Xincheng District, Xi'an City, Shaanxi Province, China
| | - Shuhua Zhao
- Department of Obstetrics and Gynecology, Xijing Hospital, Air Forth Military Medical University, 127 Changle West Road, Xincheng District, Xi'an City, Shaanxi Province, China
| | - Hong Yang
- Department of Obstetrics and Gynecology, Xijing Hospital, Air Forth Military Medical University, 127 Changle West Road, Xincheng District, Xi'an City, Shaanxi Province, China.
| |
Collapse
|
3
|
Wu H, Fu M, Wu M, Cao Z, Zhang Q, Liu Z. Emerging mechanisms and promising approaches in pancreatic cancer metabolism. Cell Death Dis 2024; 15:553. [PMID: 39090116 PMCID: PMC11294586 DOI: 10.1038/s41419-024-06930-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Pancreatic cancer is an aggressive cancer with a poor prognosis. Metabolic abnormalities are one of the hallmarks of pancreatic cancer, and pancreatic cancer cells can adapt to biosynthesis, energy intake, and redox needs through metabolic reprogramming to tolerate nutrient deficiency and hypoxic microenvironments. Pancreatic cancer cells can use glucose, amino acids, and lipids as energy to maintain malignant growth. Moreover, they also metabolically interact with cells in the tumour microenvironment to change cell fate, promote tumour progression, and even affect immune responses. Importantly, metabolic changes at the body level deserve more attention. Basic research and clinical trials based on targeted metabolic therapy or in combination with other treatments are in full swing. A more comprehensive and in-depth understanding of the metabolic regulation of pancreatic cancer cells will not only enrich the understanding of the mechanisms of disease progression but also provide inspiration for new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Hao Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Mengdi Fu
- Department of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Mengwei Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhen Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Qiyao Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ziwen Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
4
|
Zheng Y, Wang Y, Xiong X, Zhang L, Zhu J, Huang B, Liu X, Liu J, Zhu Z, Yang G, Qu H, Zheng H. CD9 Counteracts Liver Steatosis and Mediates GCGR Agonist Hepatic Effects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400819. [PMID: 38837628 PMCID: PMC11304330 DOI: 10.1002/advs.202400819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/04/2024] [Indexed: 06/07/2024]
Abstract
Glucagon receptor (GCGR) agonism offers potentially greater effects on the mitigation of hepatic steatosis. However, its underlying mechanism is not fully understood. Here, it screened tetraspanin CD9 might medicate hepatic effects of GCGR agonist. CD9 is decreased in the fatty livers of patients and upregulated upon GCGR activation. Deficiency of CD9 in the liver exacerbated diet-induced hepatic steatosis via complement factor D (CFD) regulated fatty acid metabolism. Specifically, CD9 modulated hepatic fatty acid synthesis and oxidation genes through regulating CFD expression via the ubiquitination-proteasomal degradation of FLI1. In addition, CD9 influenced body weight by modulating lipogenesis and thermogenesis of adipose tissue through CFD. Moreover, CD9 reinforcement in the liver alleviated hepatic steatosis, and blockage of CD9 abolished the remission of hepatic steatosis induced by cotadutide treatment. Thus, CD9 medicates the hepatic beneficial effects of GCGR signaling, and may server as a promising therapeutic target for hepatic steatosis.
Collapse
Affiliation(s)
- Yi Zheng
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Yuren Wang
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Xin Xiong
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Linlin Zhang
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Jiaran Zhu
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Bangliang Huang
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Xiufei Liu
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Jinbo Liu
- Department of EndocrinologyQilu Hospital of Shandong UniversityJinan250012China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinologythe Third Affiliated Hospital of Army Medical UniversityChongqing400042China
| | - Gangyi Yang
- Department of Endocrinologythe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Hua Qu
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Hongting Zheng
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| |
Collapse
|
5
|
Loh JJ, Ma S. Hallmarks of cancer stemness. Cell Stem Cell 2024; 31:617-639. [PMID: 38701757 DOI: 10.1016/j.stem.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/11/2024] [Accepted: 04/03/2024] [Indexed: 05/05/2024]
Abstract
Cancer stemness is recognized as a key component of tumor development. Previously coined "cancer stem cells" (CSCs) and believed to be a rare population with rigid hierarchical organization, there is good evidence to suggest that these cells exhibit a plastic cellular state influenced by dynamic CSC-niche interplay. This revelation underscores the need to reevaluate the hallmarks of cancer stemness. Herein, we summarize the techniques used to identify and characterize the state of these cells and discuss their defining and emerging hallmarks, along with their enabling and associated features. We also highlight potential future directions in this field of research.
Collapse
Affiliation(s)
- Jia-Jian Loh
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Stephanie Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong SAR, China; Laboratory of Synthetic Chemistry and Chemical Biology, Hong Kong Science and Technology Park, Hong Kong SAR, China; Centre for Translational and Stem Cell Biology, Hong Kong Science and Technology Park, Hong Kong SAR, China.
| |
Collapse
|
6
|
Yuan L, Liu Y, Fan L, Sun C, Ran S, Huang K, Shen Y. Identification of Potential Hub Genes Related to Acute Pancreatitis and Chronic Pancreatitis via Integrated Bioinformatics Analysis and In Vitro Analysis. Mol Biotechnol 2024:10.1007/s12033-024-01118-5. [PMID: 38520499 DOI: 10.1007/s12033-024-01118-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/02/2024] [Indexed: 03/25/2024]
Abstract
Acute pancreatitis (AP) and chronic pancreatitis (CP) are considered to be two separate pancreatic diseases in most studies, but some clinical retrospective analyses in recent years have found some degree of correlation between the two in actual treatment, however, the exact association is not clear. In this study, bioinformatics analysis was utilized to examine microarray sequencing data in mice, with the aim of elucidating the critical signaling pathways and genes involved in the progression from AP to CP. Differential gene expression analyses on murine transcriptomes were conducted using the R programming language and the R/Bioconductor package. Additionally, gene network analysis was performed using the STRING database to predict correlations among genes in the context of pancreatic diseases. Functional enrichment and gene ontology pathways common to both diseases were identified using Metascape. The hub genes were screened in the cytoscape algorithm, and the mRNA levels of the hub genes were verified in mice pancreatic tissues of AP and CP. Then the drugs corresponding to the hub genes were obtained in the drug-gene relationship. A set of hub genes, including Jun, Cd44, Epcam, Spp1, Anxa2, Hsp90aa1, and Cd9, were identified through analysis, demonstrating their pivotal roles in the progression from AP to CP. Notably, these genes were found to be enriched in the Helper T-cell factor (Th17) signaling pathway. Up-regulation of these genes in both AP and CP mouse models was validated through quantitative real-time polymerase chain reaction (qRT-PCR) results. The significance of the Th17 signaling pathway in the transition from AP to CP was underscored by our findings. Specifically, the essential genes driving this progression were identified as Jun, Cd44, Epcam, Spp1, Anxa2, Hsp90aa1, and Cd9. Crucial insights into the molecular mechanisms underlying pancreatitis progression were provided by this research, offering promising avenues for the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Lu Yuan
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yiyuan Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Lingyan Fan
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, 266042, China
| | - Cai Sun
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Sha Ran
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Kuilong Huang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yan Shen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| |
Collapse
|
7
|
Teng T, Shi H, Fan Y, Guo P, Zhang J, Qiu X, Feng J, Huang H. Metabolic responses to the occurrence and chemotherapy of pancreatic cancer: biomarker identification and prognosis prediction. Sci Rep 2024; 14:6938. [PMID: 38521793 PMCID: PMC10960848 DOI: 10.1038/s41598-024-56737-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024] Open
Abstract
As the most malignant tumor, the prognosis of pancreatic cancer is not ideal even in the small number of patients who can undergo radical surgery. As a highly heterogeneous tumor, chemotherapy resistance is a major factor leading to decreased efficacy and postoperative recurrence of pancreatic cancer. In this study, nuclear magnetic resonance (NMR)-based metabolomics was applied to identify serum metabolic characteristics of pancreatic ductal adenocarcinoma (PDAC) and screen the potential biomarkers for its diagnosis. Metabolic changes of patients with different CA19-9 levels during postoperative chemotherapy were also monitored and compared to identify the differential metabolites that may affect the efficacy of chemotherapy. Finally, 19 potential serum biomarkers were screened to serve the diagnosis of PDAC, and significant metabolic differences between the two CA19-9 stratifications of PDAC were involved in energy metabolism, lipid metabolism, amino acid metabolism, and citric acid metabolism. Enrichment analysis of metabolic pathways revealed six shared pathways by PDAC and chemotherapy such as alanine, aspartate and glutamate metabolism, arginine biosynthesis, glutamine and glutamate metabolism, citrate cycle, pyruvate metabolism, and glycogolysis/gluconeogeneis. The similarity between the metabolic characteristics of PDAC and the metabolic responses to chemotherapy provided a reference for clinical prediction of benefits of postoperative chemotherapy in PDAC patients.
Collapse
Affiliation(s)
- Tianhong Teng
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Han Shi
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Yanying Fan
- Fuzhou Children Hospital of Fujian Province, Fuzhou, Fujian, China
| | - Pengfei Guo
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Jin Zhang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Xinyu Qiu
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Jianghua Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China.
| | - Heguang Huang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China.
| |
Collapse
|
8
|
Deng Z, Loyher PL, Lazarov T, Li L, Shen Z, Bhinder B, Yang H, Zhong Y, Alberdi A, Massague J, Sun JC, Benezra R, Glass CK, Elemento O, Iacobuzio-Donahue CA, Geissmann F. The nuclear factor ID3 endows macrophages with a potent anti-tumour activity. Nature 2024; 626:864-873. [PMID: 38326607 PMCID: PMC10881399 DOI: 10.1038/s41586-023-06950-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 12/07/2023] [Indexed: 02/09/2024]
Abstract
Macrophage activation is controlled by a balance between activating and inhibitory receptors1-7, which protect normal tissues from excessive damage during infection8,9 but promote tumour growth and metastasis in cancer7,10. Here we report that the Kupffer cell lineage-determining factor ID3 controls this balance and selectively endows Kupffer cells with the ability to phagocytose live tumour cells and orchestrate the recruitment, proliferation and activation of natural killer and CD8 T lymphoid effector cells in the liver to restrict the growth of a variety of tumours. ID3 shifts the macrophage inhibitory/activating receptor balance to promote the phagocytic and lymphoid response, at least in part by buffering the binding of the transcription factors ELK1 and E2A at the SIRPA locus. Furthermore, loss- and gain-of-function experiments demonstrate that ID3 is sufficient to confer this potent anti-tumour activity to mouse bone-marrow-derived macrophages and human induced pluripotent stem-cell-derived macrophages. Expression of ID3 is therefore necessary and sufficient to endow macrophages with the ability to form an efficient anti-tumour niche, which could be harnessed for cell therapy in cancer.
Collapse
Affiliation(s)
- Zihou Deng
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pierre-Louis Loyher
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tomi Lazarov
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Li Li
- Graduate Center, City University of New York, New York, NY, USA
| | - Zeyang Shen
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Bhavneet Bhinder
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell, New York, NY, USA
| | - Hairu Yang
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yi Zhong
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Araitz Alberdi
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joan Massague
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joseph C Sun
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert Benezra
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christopher K Glass
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell, New York, NY, USA
| | | | - Frederic Geissmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
9
|
Wei Y, Geng S, Si Y, Yang Y, Chen Q, Huang S, Chen X, Xu W, Liu Y, Jiang J. The Interaction between Collagen 1 and High Mannose Type CD133 Up-Regulates Glutamine Transporter SLC1A5 to Promote the Tumorigenesis of Glioblastoma Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306715. [PMID: 37997289 PMCID: PMC10797482 DOI: 10.1002/advs.202306715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Indexed: 11/25/2023]
Abstract
Targeting the niche components surrounding glioblastoma stem cells (GSCs) helps to develop more effective glioblastoma treatments. However, the mechanisms underlying the crosstalk between GSCs and microenvironment remain largely unknown. Clarifying the extracellular molecules binding to GSCs marker CD133 helps to elucidate the mechanism of the communication between GSCs and the microenvironment. Here, it is found that the extracellular domain of high mannose type CD133 physically interacts with Collagen 1 (COL1) in GSCs. COL1, mainly secreted by cancer-associated fibroblasts, is a niche component for GSCs. COL1 enhances the interaction between CD133 and p85 and activates Akt phosphorylation. Activation of Akt pathway increases transcription factor ATF4 protein level, subsequently enhances SLC1A5-dependent glutamine uptake and glutathione synthesis. The inhibition of CD133-COL1 interaction or down-regulation of SLC1A5 reduces COL1-accelerated GSCs self-renewal and tumorigenesis. Analysis of glioma samples reveals that the level of COL1 is correlated with histopathological grade of glioma and the expression of SLC1A5. Collectively, COL1, a niche component for GSCs, enhances the tumorigenesis of GSCs partially through CD133-Akt-SLC1A5 signaling axis, providing a new mechanism underlying the cross-talk between GSCs and extracellular matrix (ECM) microenvironment.
Collapse
Affiliation(s)
- Yuanyan Wei
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Shuting Geng
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Yu Si
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Yuerong Yang
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Qihang Chen
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Sijing Huang
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Xiaoning Chen
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Wenlong Xu
- Division of NeurosurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Yinchao Liu
- Department of NeurosurgeryProvincial Hospital Affiliated to Shandong First Medical UniversityJinanShandong250021P. R. China
| | - Jianhai Jiang
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| |
Collapse
|
10
|
Wang C, Yi T, Li X, Cui J, Li B, Qin Y, Tang S, Zhang J. Ailanthone synergizes with PARP1 inhibitor in tumour growth inhibition through crosstalk of DNA repair pathways in gastric cancer. J Cell Mol Med 2024; 28:e18033. [PMID: 38009603 PMCID: PMC10826444 DOI: 10.1111/jcmm.18033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/29/2023] Open
Abstract
In our previous research, we proved that ailanthone (AIL) inhibits the growth of gastric cancer (GC) cells and causes apoptosis by inhibiting P23. However, we still find some GC organoids are insensitive to AIL. We have done some sequencing analysis and found that the insensitive strains are highly expressed in PARP1. In this study, we investigated whether AIL can enhance the anti-tumour effect of PARPi in GC. CCK8 and spheroid colony formation assay were used to measure anti-tumour effects. SynergyFinder software was used to calculate the synergy score of the drug combination and flow cytometry was used to detect apoptosis. Western blot, IHC, IF tests were used to measure protein expression. Finally, nude mouse xenograft models were used to verify the in vitro mechanisms. High expression of PARP1 was found to be the cause of drug insensitivity. When AIL is paired with a PARP1 inhibitor, olaparib (OLP), drug sensitivity improves. We discovered that this combination functions by blocking off HSP90-BRCA1 interaction and inhibiting the activity of PARP1, thus in turn inhibiting the homologous recombination deficiency and base excision repair pathway to finally achieve synthetic lethality through increased sensitivity. Moreover, P23 can regulate BRCA1 in GC in vitro. This study proves that the inhibitory effect of AIL on BRCA1 allowed even cancer cells with normal BRCA1 function to be sensitive to PARP inhibitors when it is simultaneously administered with OLP. The results greatly expanded the scope of the application of PARPi.
Collapse
Affiliation(s)
- Chunming Wang
- Department of General SurgeryThe Second Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Tingzhuang Yi
- Department of OncologyAffiliated Hospital of YouJiang Medical University For NationalitiesBaiseChina
| | - Xiangde Li
- Department of RadiotherapyThe Second Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Jiarui Cui
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
| | - Biqi Li
- Department of PathologyThe Second Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Yankai Qin
- Department of General SurgeryThe Second Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Shixiong Tang
- Department of General SurgeryThe Second Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Jianfeng Zhang
- Department of EmergencyThe Second Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| |
Collapse
|
11
|
Xu J, Zhou L, Du X, Qi Z, Chen S, Zhang J, Cao X, Xia J. Transcriptome and Lipidomic Analysis Suggests Lipid Metabolism Reprogramming and Upregulating SPHK1 Promotes Stemness in Pancreatic Ductal Adenocarcinoma Stem-like Cells. Metabolites 2023; 13:1132. [PMID: 37999228 PMCID: PMC10673379 DOI: 10.3390/metabo13111132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
Cancer stem cells (CSCs) are considered to play a key role in the development and progression of pancreatic ductal adenocarcinoma (PDAC). However, little is known about lipid metabolism reprogramming in PDAC CSCs. Here, we assigned stemness indices, which were used to describe and quantify CSCs, to every patient from the Cancer Genome Atlas (TCGA-PAAD) database and observed differences in lipid metabolism between patients with high and low stemness indices. Then, tumor-repopulating cells (TRCs) cultured in soft 3D (three-dimensional) fibrin gels were demonstrated to be an available PDAC cancer stem-like cell (CSLCs) model. Comprehensive transcriptome and lipidomic analysis results suggested that fatty acid metabolism, glycerophospholipid metabolism, and, especially, the sphingolipid metabolism pathway were mostly associated with CSLCs properties. SPHK1 (sphingosine kinases 1), one of the genes involved in sphingolipid metabolism and encoding the key enzyme to catalyze sphingosine to generate S1P (sphingosine-1-phosphate), was identified to be the key gene in promoting the stemness of PDAC. In summary, we explored the characteristics of lipid metabolism both in patients with high stemness indices and in novel CSLCs models, and unraveled a molecular mechanism via which sphingolipid metabolism maintained tumor stemness. These findings may contribute to the development of a strategy for targeting lipid metabolism to inhibit CSCs in PDAC treatment.
Collapse
Affiliation(s)
- Jinzhi Xu
- National Medical Center and National Clinical Research Center for Interventional Medicine, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Lina Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaojing Du
- Endoscopy Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zhuoran Qi
- National Medical Center and National Clinical Research Center for Interventional Medicine, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Sinuo Chen
- National Medical Center and National Clinical Research Center for Interventional Medicine, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Jian Zhang
- National Medical Center and National Clinical Research Center for Interventional Medicine, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Xin Cao
- National Medical Center and National Clinical Research Center for Interventional Medicine, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jinglin Xia
- National Medical Center and National Clinical Research Center for Interventional Medicine, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
12
|
Doustmihan A, Fathi M, Mazloomi M, Salemi A, Hamblin MR, Jahanban-Esfahlan R. Molecular targets, therapeutic agents and multitasking nanoparticles to deal with cancer stem cells: A narrative review. J Control Release 2023; 363:57-83. [PMID: 37739017 DOI: 10.1016/j.jconrel.2023.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/08/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
There is increasing evidence that malignant tumors are initiated and maintained by a sub-population of tumor cells that have similar biological properties to normal adult stem cells. This very small population of Cancer Stem Cells (CSC) comprises tumor initiating cells responsible for cancer recurrence, drug resistance and metastasis. Conventional treatments such as chemotherapy, radiotherapy and surgery, in addition to being potentially toxic and non-specific, may paradoxically increase the population, spread and survival of CSCs. Next-generation sequencing and omics technologies are increasing our understanding of the pathways and factors involved in the development of CSCs, and can help to discover new therapeutic targets against CSCs. In addition, recent advances in nanomedicine have provided hope for the development of optimal specific therapies to eradicate CSCs. Moreover, the use of artificial intelligence and nano-informatics can elucidate new drug targets, and help to design drugs and nanoparticles (NPs) to deal with CSCs. In this review, we first summarize the properties of CSCs and describe the signaling pathways and molecular characteristics responsible for the emergence and survival of CSCs. Also, the location of CSCs within the tumor and the effect of host factors on the creation and maintenance of CSCs are discussed. Newly discovered molecular targets involved in cancer stemness and some novel therapeutic compounds to combat CSCs are highlighted. The optimum properties of anti-CSC NPs, including blood circulation and stability, tumor accumulation and penetration, cellular internalization, drug release, endosomal escape, and aptamers designed for specific targeting of CSCs are covered. Finally, some recent smart NPs designed for therapeutic and theranostic purposes to overcome CSCs are discussed.
Collapse
Affiliation(s)
- Abolfazl Doustmihan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - MirAhmad Mazloomi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysan Salemi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
13
|
Cui B, He B, Huang Y, Wang C, Luo H, Lu J, Su K, Zhang X, Luo Y, Zhao Z, Yang Y, Zhang Y, An F, Wang H, Lam EWF, Kelley KW, Wang L, Liu Q, Peng F. Pyrroline-5-carboxylate reductase 1 reprograms proline metabolism to drive breast cancer stemness under psychological stress. Cell Death Dis 2023; 14:682. [PMID: 37845207 PMCID: PMC10579265 DOI: 10.1038/s41419-023-06200-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/18/2023]
Abstract
Cancer stem-like cells (CSCs) contribute to cancer metastasis, drug resistance and tumor relapse, yet how amino acid metabolism promotes CSC maintenance remains exclusive. Here, we identify that proline synthetase PYCR1 is critical for breast cancer stemness and tumor growth. Mechanistically, PYCR1-synthesized proline activates cGMP-PKG signaling to enhance cancer stem-like traits. Importantly, cGMP-PKG signaling mediates psychological stress-induced cancer stem-like phenotypes and tumorigenesis. Ablation of PYCR1 markedly reverses psychological stress-induced proline synthesis, cGMP-PKG signaling activation and cancer progression. Clinically, PYCR1 and cGMP-PKG signaling components are highly expressed in breast tumor specimens, conferring poor survival in breast cancer patients. Targeting proline metabolism or cGMP-PKG signaling pathway provides a potential therapeutic strategy for breast patients undergoing psychological stress. Collectively, our findings unveil that PYCR1-enhanced proline synthesis displays a critical role in maintaining breast cancer stemness.
Collapse
Affiliation(s)
- Bai Cui
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Bin He
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Yanping Huang
- Department of Oncology, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Cenxin Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Huandong Luo
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jinxin Lu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Keyu Su
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xiaoyu Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yuanyuan Luo
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Zhuoran Zhao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yuqing Yang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yunkun Zhang
- Department of Pathology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Fan An
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Hong Wang
- Department of Orthopaedics, The Central Hospital of Dalian University of Technology, Dalian, China
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Keith W Kelley
- Department of Pathology, College of Medicine and Department of Animal Sciences, College of ACES, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ling Wang
- Department of Oncology, the First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Quentin Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China.
| | - Fei Peng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
| |
Collapse
|
14
|
Anastasi F, Botto A, Immordino B, Giovannetti E, McDonnell LA. Proteomics analysis of circulating small extracellular vesicles: Focus on the contribution of EVs to tumor metabolism. Cytokine Growth Factor Rev 2023; 73:3-19. [PMID: 37652834 DOI: 10.1016/j.cytogfr.2023.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023]
Abstract
The term small extracellular vesicle (sEV) is a comprehensive term that includes any type of cell-derived, membrane-delimited particle that has a diameter < 200 nm, and which includes exosomes and smaller microvesicles. sEVs transfer bioactive molecules between cells and are crucial for cellular homeostasis and particularly during tumor development, where sEVs provide important contributions to the formation of the premetastic niche and to their altered metabolism. sEVs are thus legitimate targets for intervention and have also gained increasing interest as an easily accessible source of biomarkers because they can be rapidly isolated from serum/plasma and their molecular cargo provides information on their cell-of origin. To target sEVs that are specific for a given cell/disease it is essential to identify EV surface proteins that are characteristic of that cell/disease. Mass-spectrometry based proteomics is widely used for the identification and quantification of sEV proteins. The methods used for isolating the sEVs, preparing the sEV sample for proteomics analysis, and mass spectrometry analysis, can have a strong influence on the results and requires careful consideration. This review provides an overview of the approaches used for sEV proteomics and discusses the inherent compromises regarding EV purity versus depth of coverage. Additionally, it discusses the practical applications of the methods to unravel the involvement of sEVs in regulating the metabolism of pancreatic ductal adenocarcinoma (PDAC). The metabolic reprogramming in PDAC includes enhanced glycolysis, elevated glutamine metabolism, alterations in lipid metabolism, mitochondrial dysfunction and hypoxia, all of which are crucial in promoting tumor cell growth. A thorough understanding of these metabolic adaptations is imperative for the development of targeted therapies to exploit PDAC's vulnerabilities.
Collapse
Affiliation(s)
- Federica Anastasi
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, PI, Italy; National Enterprise for NanoScience and NanoTechnology, Scuola Normale Superiore, Pisa, Italy; BarcelonaBeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - Asia Botto
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, PI, Italy; Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Benoit Immordino
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, PI, Italy; Scuola Superiore Sant'Anna, Pisa, Italy
| | - Elisa Giovannetti
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, PI, Italy; Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Vrije Universiteit, Amsterdam, the Netherlands
| | - Liam A McDonnell
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, PI, Italy.
| |
Collapse
|
15
|
Li X, Poire A, Jeong KJ, Zhang D, Chen G, Sun C, Mills GB. Single-cell trajectory analysis reveals a CD9 positive state to contribute to exit from stem cell-like and embryonic diapause states and transit to drug-resistant states. Cell Death Discov 2023; 9:285. [PMID: 37542044 PMCID: PMC10403509 DOI: 10.1038/s41420-023-01586-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/12/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023] Open
Abstract
Bromo- and extra-terminal domain (BET) inhibitors (BETi) have been shown to decrease tumor growth in preclinical models and clinical trials. However, toxicity and rapid emergence of resistance have limited their clinical implementation. To identify state changes underlying acquisition of resistance to the JQ1 BETi, we reanalyzed single-cell RNAseq data from JQ1 sensitive and resistant SUM149 and SUM159 triple-negative breast cancer cell lines. Parental and JQ1-resistant SUM149 and SUM159 exhibited a stem cell-like and embryonic diapause (SCLED) cell state as well as a transitional cell state between the SCLED state that is present in both treatment naïve and JQ1 treated cells, and a number of JQ1 resistant cell states. A transitional cell state transcriptional signature but not a SCLED state transcriptional signature predicted worsened outcomes in basal-like breast cancer patients suggesting that transit from the SCLED state to drug-resistant states contributes to patient outcomes. Entry of SUM149 and SUM159 into the transitional cell state was characterized by elevated expression of the CD9 tetraspanin. Knockdown or inhibition of CD9-sensitized cells to multiple targeted and cytotoxic drugs in vitro. Importantly, CD9 knockdown or blockade sensitized SUM149 to JQ1 in vivo by trapping cells in the SCLED state and limiting transit to resistant cell states. Thus, CD9 appears to be critical for the transition from a SCLED state into treatment-resistant cell states and warrants exploration as a therapeutic target in basal-like breast cancer.
Collapse
Affiliation(s)
- Xi Li
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA.
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| | - Alfonso Poire
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Kang Jin Jeong
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Dong Zhang
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Gang Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Chaoyang Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Gordon B Mills
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA
| |
Collapse
|
16
|
Tavares-Valente D, Cannone S, Greco MR, Carvalho TMA, Baltazar F, Queirós O, Agrimi G, Reshkin SJ, Cardone RA. Extracellular Matrix Collagen I Differentially Regulates the Metabolic Plasticity of Pancreatic Ductal Adenocarcinoma Parenchymal Cell and Cancer Stem Cell. Cancers (Basel) 2023; 15:3868. [PMID: 37568684 PMCID: PMC10417137 DOI: 10.3390/cancers15153868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a 5-year survival rate of less than 10 percent largely due to the intense fibrotic desmoplastic reaction, characterized by high levels of extracellular matrix (ECM) collagen I that constitutes a niche for a subset of cancer cells, the cancer stem cells (CSCs). Cancer cells undergo a complex metabolic adaptation characterized by changes in metabolic pathways and biosynthetic processes. The use of the 3D organotypic model in this study allowed us to manipulate the ECM constituents and mimic the progression of PDAC from an early tumor to an ever more advanced tumor stage. To understand the role of desmoplasia on the metabolism of PDAC parenchymal (CPC) and CSC populations, we studied their basic metabolic parameters in organotypic cultures of increasing collagen content to mimic in vivo conditions. We further measured the ability of the bioenergetic modulators (BMs), 2-deoxyglucose, dichloroacetate and phenformin, to modify their metabolic dependence and the therapeutic activity of paclitaxel albumin nanoparticles (NAB-PTX). While all the BMs decreased cell viability and increased cell death in all ECM types, a distinct, collagen I-dependent profile was observed in CSCs. As ECM collagen I content increased (e.g., more aggressive conditions), the CSCs switched from glucose to mostly glutamine metabolism. All three BMs synergistically potentiated the cytotoxicity of NAB-PTX in both cell lines, which, in CSCs, was collagen I-dependent and the strongest when treated with phenformin + NAB-PTX. Metabolic disruption in PDAC can be useful both as monotherapy or combined with conventional drugs to more efficiently block tumor growth.
Collapse
Affiliation(s)
- Diana Tavares-Valente
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga, Portugal
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal;
| | - Stefania Cannone
- Department of Biosciences, Biotechnology and Environment, University of Bari, 70125 Bari, Italy; (S.C.); (M.R.G.); (T.M.A.C.); (G.A.); (R.A.C.)
| | - Maria Raffaella Greco
- Department of Biosciences, Biotechnology and Environment, University of Bari, 70125 Bari, Italy; (S.C.); (M.R.G.); (T.M.A.C.); (G.A.); (R.A.C.)
| | - Tiago Miguel Amaral Carvalho
- Department of Biosciences, Biotechnology and Environment, University of Bari, 70125 Bari, Italy; (S.C.); (M.R.G.); (T.M.A.C.); (G.A.); (R.A.C.)
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga, Portugal
| | - Odília Queirós
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal;
| | - Gennaro Agrimi
- Department of Biosciences, Biotechnology and Environment, University of Bari, 70125 Bari, Italy; (S.C.); (M.R.G.); (T.M.A.C.); (G.A.); (R.A.C.)
| | - Stephan J. Reshkin
- Department of Biosciences, Biotechnology and Environment, University of Bari, 70125 Bari, Italy; (S.C.); (M.R.G.); (T.M.A.C.); (G.A.); (R.A.C.)
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnology and Environment, University of Bari, 70125 Bari, Italy; (S.C.); (M.R.G.); (T.M.A.C.); (G.A.); (R.A.C.)
| |
Collapse
|
17
|
Wang H, Liu Y, Wang Y, Xu T, Xia G, Huang X. Umbelliprenin induces autophagy and apoptosis while inhibits cancer cell stemness in pancreatic cancer cells. Cancer Med 2023; 12:15277-15288. [PMID: 37409635 PMCID: PMC10417289 DOI: 10.1002/cam4.6170] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Umbelliprenin is a sesquiterpene coumarin isolated from Artemisia absinthium L. and shows antitumor effects in various cancers by inducing apoptosis. However, the antitumor effect of umbelliprenin in human pancreatic cancer has not been clarified. METHODS The antitumor effects were determined by MTT and AnnexinV/PI double staining assay in vitro and xenograft mice in vivo. Autophagy was determined via immunofluorescence analysis. Apoptotic or autophagic related proteins were measured by immunoblotting. The pancreatic cancer cell stemness were determined by mammosphere formation and ALDEFLUOR assay. RESULTS It revealed that umbelliprenin inhibited pancreatic cancer cell proliferation in vitro and pancreatic cancer tumor growth in vivo. Moreover, umbelliprenin induced pancreatic cancer cell BxPC3 apoptosis and autophagy as evidenced by upregulated apoptosis and autophagy- related protein expression (p < 0.01). Blocking autophagy by 3-MA or Atg7 knockout enhanced umbelliprenin-induced apoptosis (p < 0.05). Umbelliprenin also reduced pancreatic cancer cell stemness by reducing Oct4, Nanog, and Sox2 mRNA levels (p < 0.01). Mechanistically, umbelliprenin greatly inhibited Akt/mTOR and Notch1 signal pathway. CONCLUSION Umbelliprenin may be a novel therapeutic approach for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Hongcheng Wang
- Department of Hepatobiliary and Pancreatic SurgerySixth People's Hospital Affiliated Shanghai Jiao Tong UniversityShanghaiChina
- Department of General SurgeryThe Second People’ Hospital of Kashgar, 1SKashgarXinjiangChina
| | - Yongzhi Liu
- Affiliated Xiaoshan Hospital Hangzhou Normal UniversityZhejiangChina
| | - Yiwei Wang
- Department of Hepatobiliary and Pancreatic SurgerySixth People's Hospital Affiliated Shanghai Jiao Tong UniversityShanghaiChina
| | - Ting Xu
- Department of Hepatobiliary and Pancreatic SurgerySixth People's Hospital Affiliated Shanghai Jiao Tong UniversityShanghaiChina
| | - Guanggai Xia
- Department of Hepatobiliary and Pancreatic SurgerySixth People's Hospital Affiliated Shanghai Jiao Tong UniversityShanghaiChina
| | - Xinyu Huang
- Department of Hepatobiliary and Pancreatic SurgerySixth People's Hospital Affiliated Shanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
18
|
Li L, Ni R, Zheng D, Chen L. Eradicating the tumor "seeds": nanomedicines-based therapies against cancer stem cells. Daru 2023; 31:83-94. [PMID: 36971921 PMCID: PMC10238364 DOI: 10.1007/s40199-023-00456-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/05/2023] [Indexed: 03/29/2023] Open
Abstract
OBJECTIVES Cancer stem cells (CSCs), a small subpopulation of cells with high tumorigenesis and strong intrinsic drug resistance, exhibit self-renewal and differentiation abilities. CSCs play a crucial role in tumor progression, drug resistance, recurrence and metastasis,and conventional therapy is not enough to eradicate them. Therefore, developing novel therapies targeting CSCs to increase drug sensitivity and preventing relapse is essential. The objective of this review is to present nanotherapies that target and eradicate the tumor "seeds". EVIDENCE ACQUISITION Evidence was collected and sorted from the literature ranging from 2000 to 2022, using appropriate keywords and key phrases as search terms within scientific databases such as Web of Science, PubMed and Google Scholar. RESULTS Nanoparticle drug delivery systems have been successfully applied to gain longer circulation time, more precise targeting capability and better stability during cancer treatment. Nanotechnology-based strategies that have been used to target CSCs, include (1) encapsulating small molecular drugs and genes by nanotechnology, (2) targeting CSC signaling pathways, (3) utilizing nanocarriers targeting for specific markers of CSCs, (4) improving photothermal/ photodynamic therapy (PTT/PDT), 5)targeting the metabolism of CSCs and 6) enhancing nanomedicine-aided immunotherapy. CONCLUSION This review summarizes the biological hallmarks and markers of CSCs, and the nanotechnology-based therapies to kill them. Nanoparticle drug delivery systems are appropriate means for delivering drugs to tumors through enhanced permeability and retention (EPR) effect. Furthermore, surface modification with special ligands or antibodies improves the recognition and uptake of tumor cells or CSCs. It is expected that this review can offer insights into features of CSCs and the exploration of targeting nanodrug delivery systems.
Collapse
Affiliation(s)
- Lin Li
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, 401147, Chongqing, China
| | - Rui Ni
- Department of Pharmacy, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Dan Zheng
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, 401147, Chongqing, China
| | - Lin Chen
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, 401147, Chongqing, China.
| |
Collapse
|
19
|
Bandi DSR, Sarvesh S, Farran B, Nagaraju GP, El-Rayes BF. Targeting the metabolism and immune system in pancreatic ductal adenocarcinoma: Insights and future directions. Cytokine Growth Factor Rev 2023; 71-72:26-39. [PMID: 37407355 DOI: 10.1016/j.cytogfr.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
Pancreatic cancer, specifically pancreatic ductal adenocarcinoma (PDAC), presents a challenging landscape due to its complex nature and the highly immunosuppressive tumor microenvironment (TME). This immunosuppression severely limits the effectiveness of immune-based therapies. Studies have revealed the critical role of immunometabolism in shaping the TME and influencing PDAC progression. Genetic alterations, lysosomal dysfunction, gut microbiome dysbiosis, and altered metabolic pathways have been shown to modulate immunometabolism in PDAC. These metabolic alterations can significantly impact immune cell functions, including T-cells, myeloid-derived suppressor cells (MDSCs), and macrophages, evading anti-tumor immunity. Advances in immunotherapy offer promising avenues for overcoming immunosuppressive TME and enhancing patient outcomes. This review highlights the challenges and opportunities for future research in this evolving field. By exploring the connections between immunometabolism, genetic alterations, and the microbiome in PDAC, it is possible to tailor novel approaches capable of improving immunotherapy outcomes and addressing the limitations posed by immunosuppressive TME. Ultimately, these insights may pave the way for improved treatment options and better outcomes for PDAC patients.
Collapse
Affiliation(s)
- Dhana Sekhar Reddy Bandi
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA
| | - Sujith Sarvesh
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA
| | - Batoul Farran
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA.
| | - Bassel F El-Rayes
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA.
| |
Collapse
|
20
|
Huang P, Gao W, Fu C, Tian R. Functional and Clinical Proteomic Exploration of Pancreatic Cancer. Mol Cell Proteomics 2023:100575. [PMID: 37209817 PMCID: PMC10388587 DOI: 10.1016/j.mcpro.2023.100575] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/18/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023] Open
Abstract
Pancreatic cancer, most cases being pancreatic ductal adenocarcinoma (PDAC), is one of the most lethal cancers with a median survival time of less than 6 months. Therapeutic options are very limited for PDAC patients, and surgery is still the most effective treatment, making improvements in early diagnosis critical. One typical characteristic of PDAC is the desmoplastic reaction of its stroma microenvironment, which actively interacts with cancer cells to orchestrate key components in tumorigenesis, metastasis, and chemoresistance. Global exploration of cancer-stroma crosstalk is essential to decipher PDAC biology and design intervention strategies. Over the past decade, the dramatic improvement of proteomics technologies has enabled profiling of proteins, post-translational modifications (PTMs), and their protein complexes at unprecedented sensitivity and dimensionality. Here, starting with our current understanding of PDAC characteristics, including precursor lesions, progression models, tumor microenvironment, and therapeutic advancements, we describe how proteomics contributes to the functional and clinical exploration of PDAC, providing insights into PDAC carcinogenesis, progression, and chemoresistance. We summarize recent achievements enabled by proteomics to systematically investigate PTMs-mediated intracellular signaling in PDAC, cancer-stroma interactions, and potential therapeutic targets revealed by these functional studies. We also highlight proteomic profiling of clinical tissue and plasma samples to discover and verify useful biomarkers that can aid early detection and molecular classification of patients. In addition, we introduce spatial proteomic technology and its applications in PDAC for deconvolving tumor heterogeneity. Finally, we discuss future prospects of applying new proteomic technologies in comprehensively understanding PDAC heterogeneity and intercellular signaling networks. Importantly, we expect advances in clinical functional proteomics for exploring mechanisms of cancer biology directly by high-sensitivity functional proteomic approaches starting from clinical samples.
Collapse
Affiliation(s)
- Peiwu Huang
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Weina Gao
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Changying Fu
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruijun Tian
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
21
|
Ogunleye AO, Nimmakayala RK, Batra SK, Ponnusamy MP. Metabolic Rewiring and Stemness: A Critical Attribute of Pancreatic Cancer Progression. Stem Cells 2023; 41:417-430. [PMID: 36869789 PMCID: PMC10183971 DOI: 10.1093/stmcls/sxad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/30/2023] [Indexed: 03/05/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive diseases with a poor 5-year survival rate. PDAC cells rely on various metabolic pathways to fuel their unlimited proliferation and metastasis. Reprogramming glucose, fatty acid, amino acid, and nucleic acid metabolisms contributes to PDAC cell growth. Cancer stem cells are the primary cell types that play a critical role in the progression and aggressiveness of PDAC. Emerging studies indicate that the cancer stem cells in PDAC tumors are heterogeneous and show specific metabolic dependencies. In addition, understanding specific metabolic signatures and factors that regulate these metabolic alterations in the cancer stem cells of PDAC paves the way for developing novel therapeutic strategies targeting CSCs. In this review, we discuss the current understanding of PDAC metabolism by specifically exploring the metabolic dependencies of cancer stem cells. We also review the current knowledge of targeting these metabolic factors that regulate CSC maintenance and PDAC progression.
Collapse
Affiliation(s)
- Ayoola O Ogunleye
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rama Krishna Nimmakayala
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
22
|
Zhao Y, Qin C, Zhao B, Wang Y, Li Z, Li T, Yang X, Wang W. Pancreatic cancer stemness: dynamic status in malignant progression. J Exp Clin Cancer Res 2023; 42:122. [PMID: 37173787 PMCID: PMC10182699 DOI: 10.1186/s13046-023-02693-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most aggressive malignancies worldwide. Increasing evidence suggests that the capacity for self-renewal, proliferation, and differentiation of pancreatic cancer stem cells (PCSCs) contribute to major challenges with current PC therapies, causing metastasis and therapeutic resistance, leading to recurrence and death in patients. The concept that PCSCs are characterized by their high plasticity and self-renewal capacities is central to this review. We focused specifically on the regulation of PCSCs, such as stemness-related signaling pathways, stimuli in tumor cells and the tumor microenvironment (TME), as well as the development of innovative stemness-targeted therapies. Understanding the biological behavior of PCSCs with plasticity and the molecular mechanisms regulating PC stemness will help to identify new treatment strategies to treat this horrible disease.
Collapse
Affiliation(s)
- Yutong Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Cheng Qin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Bangbo Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Yuanyang Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Zeru Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Tianyu Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Xiaoying Yang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Weibin Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China.
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China.
| |
Collapse
|
23
|
Palma AM, Bushnell GG, Wicha MS, Gogna R. Tumor microenvironment interactions with cancer stem cells in pancreatic ductal adenocarcinoma. Adv Cancer Res 2023; 159:343-372. [PMID: 37268400 PMCID: PMC11218813 DOI: 10.1016/bs.acr.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer in the United States. Additionally, the low survival rate makes PDAC the third-leading cause of cancer-related mortality in the United States, and it is projected that by 2030, it will become the second-leading cause of cancer mortality. Several biological factors contribute to PDAC aggressiveness, and their understanding will narrow the gap from biology to clinical care of PDAC, leading to earlier diagnoses and the development of better treatment options. In this review, we describe the origins of PDAC highlighting the role of cancer stem cells (CSC). CSC, also known as tumor initiating cells, which exhibit a unique metabolism that allows them to maintain a highly plastic, quiescent, immune- and therapy-evasive state. However, CSCs can exit quiescence during proliferation and differentiation, with the capacity to form tumors while constituting a small population in tumor tissues. Tumorigenesis depends on the interactions between CSCs and other cellular and non-cellular components in the microenvironment. These interactions are fundamental to support CSC stemness and are maintained throughout tumor development and metastasis. PDAC is characterized by a massive desmoplastic reaction, which result from the deposition of high amounts of extracellular matrix components by stromal cells. Here we review how this generates a favorable environment for tumor growth by protecting tumor cells from immune responses and chemotherapy and inducing tumor cell proliferation and migration, leading to metastasis formation ultimately leading to death. We emphasize the interactions between CSCs and the tumor microenvironment leading to metastasis formation and posit that better understanding and targeting of these interactions will improve patient outcomes.
Collapse
Affiliation(s)
| | - Grace G Bushnell
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Max S Wicha
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States.
| | - Rajan Gogna
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
24
|
Xuan SH, Hua ML, Xiang Z, He XL, Huang L, Jiang C, Dong P, Wu J. Roles of cancer stem cells in gastrointestinal cancers. World J Stem Cells 2023; 15:209-220. [PMID: 37181004 PMCID: PMC10173810 DOI: 10.4252/wjsc.v15.i4.209] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/25/2023] [Accepted: 03/27/2023] [Indexed: 04/26/2023] Open
Abstract
Cancer stem cells (CSCs) are the main cause of tumor growth, invasion, metastasis and recurrence. Recently, CSCs have been extensively studied to identify CSC-specific surface markers as well as signaling pathways that play key roles in CSCs self-renewal. The involvement of CSCs in the pathogenesis of gastrointestinal (GI) cancers also highlights these cells as a priority target for therapy. The diagnosis, prognosis and treatment of GI cancer have always been a focus of attention. Therefore, the potential application of CSCs in GI cancers is receiving increasing attention. This review summarizes the role of CSCs in GI cancers, focusing on esophageal cancer, gastric cancer, liver cancer, colorectal cancer, and pancreatic cancer. In addition, we propose CSCs as potential targets and therapeutic strategies for the effective treatment of GI cancers, which may provide better guidance for clinical treatment of GI cancers.
Collapse
Affiliation(s)
- Shi-Hai Xuan
- Department of Laboratory Medicine, The People’s Hospital of Dongtai City, Dongtai 224299, Jiangsu Province, China
| | - Meng-Lu Hua
- School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China
| | - Ze Xiang
- School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China
| | - Xiang-Lin He
- School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China
| | - Lan Huang
- Department of Clinical Laboratory, Suzhou Municipal Hospital, Suzhou 215008, Jiangsu Province, China
| | - Chun Jiang
- Department of Clinical Laboratory, Suzhou Municipal Hospital, Suzhou 215008, Jiangsu Province, China
| | - Peng Dong
- Hangzhou Institute of Cardiovascular Diseases, Hangzhou Normal University, Hangzhou 310015, Zhejiang Province, China
| | - Jian Wu
- Department of Clinical Laboratory, Suzhou Municipal Hospital, Suzhou 215008, Jiangsu Province, China
| |
Collapse
|
25
|
Xiao C, Li J, Wang X, Li S, Xu C, Zhang Z, Hua A, Ding ZY, Zhang BX, Yang X, Li Z. Hydroxyethyl starch stabilized copper-diethyldithiocarbamate nanocrystals for cancer therapy. J Control Release 2023; 356:288-305. [PMID: 36870542 DOI: 10.1016/j.jconrel.2023.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/19/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Cancer stem cells (CSCs) have been recognized as the culprit for tumor progression, treatment resistance, metastasis, and recurrence while redox homeostasis represents the Achilles' Heel of CSCs. However, few drugs or formulations that are capable of elevating oxidative stress have achieved clinical success for eliminating CSCs. Here, we report hydroxyethyl starch stabilized copper-diethyldithiocarbamate nanoparticles (CuET@HES NPs), which conspicuously suppress CSCs not only in vitro but also in numerous tumor models in vivo. Furthermore, CuET@HES NPs effectively inhibit CSCs in fresh tumor tissues surgically excised from hepatocellular carcinoma patients. Mechanistically, we uncover that hydroxyethyl starch stabilized copper-diethyldithiocarbamate nanocrystals via copper‑oxygen coordination interactions, thereby promoting copper-diethyldithiocarbamate colloidal stability, cellular uptake, intracellular reactive oxygen species production, and CSCs apoptosis. As all components are widely used in clinics, CuET@HES NPs represent promising treatments for CSCs-rich solid malignancies and hold great clinical translational potentials. This study has critical implications for design of CSCs targeting nanomedicines.
Collapse
Affiliation(s)
- Chen Xiao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jiayuan Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Xing Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Shiyou Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Chen Xu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zhijie Zhang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Ao Hua
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Ze-Yang Ding
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Bi-Xiang Zhang
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; GBA Research Innovation Institute for Nanotechnology, Guangdong 510530, PR China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
26
|
Fu S, Xu S, Zhang S. The role of amino acid metabolism alterations in pancreatic cancer: From mechanism to application. Biochim Biophys Acta Rev Cancer 2023; 1878:188893. [PMID: 37015314 DOI: 10.1016/j.bbcan.2023.188893] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/13/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
The incidence of pancreatic cancer is increasing in both developed and developing Nations. In recent years, various research evidence suggested that reprogrammed metabolism may play a key role in pancreatic cancer tumorigenesis and development. Therefore, it has great potential as a diagnostic, prognostic and therapeutic target. Amino acid metabolism is deregulated in pancreatic cancer, and changes in amino acid metabolism can affect cancer cell status, systemic metabolism in malignant tumor patients and mistakenly involved in different biological processes including stemness, proliferation and growth, invasion and migration, redox state maintenance, autophagy, apoptosis and even tumor microenvironment interaction. Generally, the above effects are achieved through two pathways, energy metabolism and signal transduction. This review aims to highlight the current research progress on the abnormal alterations of amino acids metabolism in pancreatic cancer, how they affect tumorigenesis and development of pancreatic cancer and the application prospects of them as diagnostic, prognostic and therapeutic targets.
Collapse
Affiliation(s)
- Shenao Fu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, PR China; Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Shaokang Xu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, PR China; Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, PR China.
| |
Collapse
|
27
|
Zhou Z, Yang Z, Zhou L, Yang M, He S. The versatile roles of testrapanins in cancer from intracellular signaling to cell-cell communication: cell membrane proteins without ligands. Cell Biosci 2023; 13:59. [PMID: 36941633 PMCID: PMC10025802 DOI: 10.1186/s13578-023-00995-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/21/2023] [Indexed: 03/23/2023] Open
Abstract
The tetraspanins (TSPANs) are a family of four-transmembrane proteins with 33 members in mammals. They are variably expressed on the cell surface, various intracellular organelles and vesicles in nearly all cell types. Different from the majority of cell membrane proteins, TSPANs do not have natural ligands. TSPANs typically organize laterally with other membrane proteins to form tetraspanin-enriched microdomains (TEMs) to influence cell adhesion, migration, invasion, survival and induce downstream signaling. Emerging evidence shows that TSPANs can regulate not only cancer cell growth, metastasis, stemness, drug resistance, but also biogenesis of extracellular vesicles (exosomes and migrasomes), and immunomicroenvironment. This review summarizes recent studies that have shown the versatile function of TSPANs in cancer development and progression, or the molecular mechanism of TSPANs. These findings support the potential of TSPANs as novel therapeutic targets against cancer.
Collapse
Affiliation(s)
- Zhihang Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Department of Biomedical Sciences, and Tung Biomedical Sciences Center, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, SAR, People's Republic of China.
| | - Zihan Yang
- Department of Biomedical Sciences, and Tung Biomedical Sciences Center, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, SAR, People's Republic of China
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Futian Research Institute, Shenzhen, Guangdong, China
| | - Li Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Center, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, SAR, People's Republic of China
| | - Mengsu Yang
- Department of Biomedical Sciences, and Tung Biomedical Sciences Center, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, SAR, People's Republic of China
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Futian Research Institute, Shenzhen, Guangdong, China
| | - Song He
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
28
|
Ondruššek R, Kvokačková B, Kryštofová K, Brychtová S, Souček K, Bouchal J. Prognostic value and multifaceted roles of tetraspanin CD9 in cancer. Front Oncol 2023; 13:1140738. [PMID: 37007105 PMCID: PMC10063841 DOI: 10.3389/fonc.2023.1140738] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
CD9 is a crucial regulator of cell adhesion in the immune system and plays important physiological roles in hematopoiesis, blood coagulation or viral and bacterial infections. It is involved in the transendothelial migration of leukocytes which might also be hijacked by cancer cells during their invasion and metastasis. CD9 is found at the cell surface and the membrane of exosomes affecting cancer progression and therapy resistance. High expression of CD9 is mostly associated with good patients outcome, with a few exceptions. Discordant findings have been reported for breast, ovarian, melanoma, pancreatic and esophageal cancer, which might be related to using different antibodies or inherent cancer heterogeneity. According to in vitro and in vivo studies, tetraspanin CD9 is not clearly associated with either tumor suppression or promotion. Further mechanistic experiments will elucidate the role of CD9 in particular cancer types and specific conditions.
Collapse
Affiliation(s)
- Róbert Ondruššek
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
- Department of Pathology, EUC Laboratore CGB a.s., Ostrava, Czechia
| | - Barbora Kvokačková
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Karolína Kryštofová
- Proteomics Core Facility Central European Institute of Technology, Masaryk University, Brno, Czechia
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | - Světlana Brychtová
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
| | - Karel Souček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jan Bouchal
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
- Department of Clinical and Molecular Pathology, University Hospital Olomouc, Olomouc, Czechia
- *Correspondence: Jan Bouchal,
| |
Collapse
|
29
|
Nwosu ZC, Song MG, di Magliano MP, Lyssiotis CA, Kim SE. Nutrient transporters: connecting cancer metabolism to therapeutic opportunities. Oncogene 2023; 42:711-724. [PMID: 36739364 PMCID: PMC10266237 DOI: 10.1038/s41388-023-02593-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 02/05/2023]
Abstract
Cancer cells rely on certain extracellular nutrients to sustain their metabolism and growth. Solute carrier (SLC) transporters enable cells to acquire extracellular nutrients or shuttle intracellular nutrients across organelles. However, the function of many SLC transporters in cancer is unknown. Determining the key SLC transporters promoting cancer growth could reveal important therapeutic opportunities. Here we summarize recent findings and knowledge gaps on SLC transporters in cancer. We highlight existing inhibitors for studying these transporters, clinical trials on treating cancer by blocking transporters, and compensatory transporters used by cancer cells to evade treatment. We propose targeting transporters simultaneously or in combination with targeted therapy or immunotherapy as alternative strategies for effective cancer therapy.
Collapse
Affiliation(s)
- Zeribe Chike Nwosu
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Mun Gu Song
- Department of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul, 02841, Republic of Korea
- Department of Integrated Biomedical and Life Sciences, College of Health Sciences, Korea University, Seoul, 02841, Republic of Korea
| | | | - Costas A Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Sung Eun Kim
- Department of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul, 02841, Republic of Korea.
- Department of Integrated Biomedical and Life Sciences, College of Health Sciences, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
30
|
Glutamine Metabolism in Cancer Stem Cells: A Complex Liaison in the Tumor Microenvironment. Int J Mol Sci 2023; 24:ijms24032337. [PMID: 36768660 PMCID: PMC9916789 DOI: 10.3390/ijms24032337] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
In this review we focus on the role of glutamine in control of cancer stem cell (CSC) fate. We first provide an overview of glutamine metabolism, and then summarize relevant studies investigating how glutamine metabolism modulates the CSC compartment, concentrating on solid tumors. We schematically describe how glutamine in CSC contributes to several metabolic pathways, such as redox metabolic pathways, ATP production, non-essential aminoacids and nucleotides biosynthesis, and ammonia production. Furthermore, we show that glutamine metabolism is a key regulator of epigenetic modifications in CSC. Finally, we briefly discuss how cancer-associated fibroblasts, adipocytes, and senescent cells in the tumor microenvironment may indirectly influence CSC fate by modulating glutamine availability. We aim to highlight the complexity of glutamine's role in CSC, which supports our knowledge about metabolic heterogeneity within the CSC population.
Collapse
|
31
|
Kohil A, Amir SS, Behrens A, Khan OM. A small Rho GTPase RAB25 with a potential role in chemotherapy resistance in pancreatic cancer. Cancer Biomark 2022; 36:133-145. [PMID: 36565104 DOI: 10.3233/cbm-220214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDA) is one of the major human health challenges with minimal therapeutic benefits due to its late detection, and de novo - and acquired chemotherapy resistance. OBJECTIVE In this work we unravel the potential pro-survival role of RAB25 in pancreatic cancer chemotherapy resistance and aim to identify if RAB25 is a prognostic marker of patients' survival in PDA. METHODS We used RNA sequencing, shRNA mediated gene knockdown, BioGRID open repository of CRISPR screens (ORCS), GEPIA, kmplot.com, and cBioPortal.org databases to identify the role of RAB25 in PDA cell proliferation, chemotherapy response, expression in tumour versus normal tissues, and overall patients' survival. RESULTS RNA sequencing show Rab25 to be one of the top upregulated genes in gemcitabine resistance mouse PDA cells. Knockdown of Rab25 in these cells enhanced gemcitabine toxicity. In addition, re-analysis of previously published CRISPR/Cas9 data confirm RAB25 to be responsible for chemotherapy resistance in KRASG12D mutant human pancreatic cancer cell line. Finally, we used publicly available TCGA datasets and identify the upregulation of RAB25 in tumour tissues compared to the adjacent normal tissue, co-occurrence of KRASG12 mutations with RAB25 amplifications, and poor patients' survival in cohorts with higher mRNA expression of RAB25. CONCLUSION RAB25 expression is a prognostic marker for patient's survival and gemcitabine resistance in PDA.
Collapse
Affiliation(s)
- Amira Kohil
- Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Sayeda S Amir
- Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Axel Behrens
- The Francis Crick Institute, London, UK.,Cancer Stem Cell Team, Institute of Cancer Research, London, UK
| | - Omar M Khan
- Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
32
|
Yang H, Wang J, Huang G. Small extracellular vesicles in metabolic remodeling of tumor cells: Cargos and translational application. Front Pharmacol 2022; 13:1009952. [PMID: 36588730 PMCID: PMC9800502 DOI: 10.3389/fphar.2022.1009952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Warburg effect is characterized by excessive consumption of glucose by the tumor cells under both aerobic and hypoxic conditions. This metabolic reprogramming allows the tumor cells to adapt to the unique microenvironment and proliferate rapidly, and also promotes tumor metastasis and therapy resistance. Metabolic reprogramming of tumor cells is driven by the aberrant expression and activity of metabolic enzymes, which results in the accumulation of oncometabolites, and the hyperactivation of intracellular growth signals. Recent studies suggest that tumor-associated metabolic remodeling also depends on intercellular communication within the tumor microenvironment (TME). Small extracellular vesicles (sEVs), also known as exosomes, are smaller than 200 nm in diameter and are formed by the fusion of multivesicular bodies with the plasma membrane. The sEVs are instrumental in transporting cargoes such as proteins, nucleic acids or metabolites between the tumor, stromal and immune cells of the TME, and are thus involved in reprogramming the glucose metabolism of recipient cells. In this review, we have summarized the biogenesis and functions of sEVs and metabolic cargos, and the mechanisms through they drive the Warburg effect. Furthermore, the potential applications of targeting sEV-mediated metabolic pathways in tumor liquid biopsy, imaging diagnosis and drug development have also been discussed.
Collapse
Affiliation(s)
- Hao Yang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China,*Correspondence: Gang Huang, ; Hao Yang,
| | - Jingyi Wang
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China,Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Gang Huang, ; Hao Yang,
| |
Collapse
|
33
|
Shi H, Tsang Y, Yang Y. Identification of CEACAM5 as a stemness-related inhibitory immune checkpoint in pancreatic cancer. BMC Cancer 2022; 22:1291. [PMID: 36494785 PMCID: PMC9733357 DOI: 10.1186/s12885-022-10397-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Immunotherapy has emerged as a new cancer treatment modality. However, tumour heterogeneity can diminish checkpoint blockade response and shorten patient survival. As a source of tumour heterogeneity, cancer stem cells act as an indispensable reservoir for local recurrence and distant metastasis. Thus, precision immunotherapy targeting tumour heterogeneity requires a comprehensive understanding of cancer stem cell immunology. Our study aimed to identify stemness-related inhibitory immune checkpoints and relevant regulatory pathways in pancreatic cancer. METHODS Pancreatic cancer-specific datasets in The Cancer Genome Atlas and the Cancer Therapeutics Response Portal were collected for in-depth bioinformatic analysis. Differentially expressed genes between pancreatic cancers with high and low stemness index (mRNAsi) scores were compared to screen out inhibitory immune checkpoints. Survival analysis was used to predict the prognostic value of immune checkpoint plus immune infiltrate in patients with pancreatic cancer. The expression of stemness-related immune checkpoint across immune subtypes of pancreatic cancer was detected and gene set enrichment analysis was performed to figure out the relevant regulatory signallings. RESULTS The abundance of cancer stemness predicted a low immunotherapy response to pancreatic cancer. The inhibitory immune checkpoint CEACAM5 that was enriched in pancreatic cancers with high mRNAsi scores also exhibited a strong correlation with invasive cell-enriched signature and Msi+ tumour-initiating cell-enriched signature. Levels of CEACAM5 expression were higher in the interferon-γ dominant immune subtype of pancreatic cancers that are characterized by high M1 macrophage infiltration. The patient group with high levels of CEACAM5 expression had a high risk of poor overall survival, even if accompanied by high infiltration of M1 macrophages. Furthermore, prostanoid and long-chain unsaturated fatty acid metabolic processes showed a significant association with cancer stemness and CEACAM5 expression. CONCLUSIONS Our findings suggest that CEACAM5 is a candidate stemness-related innate immune checkpoint in pancreatic cancer, and is potentially regulated by prostanoid and long-chain unsaturated fatty acid metabolic processes. Immune checkpoint blockade of CEACAM5, which synergizes with inhibition of those regulatory pathways, may improve the efficacy of precision immunotherapy targeting tumour heterogeneity caused by cancer stem cells.
Collapse
Affiliation(s)
- Haojun Shi
- grid.412277.50000 0004 1760 6738Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,grid.412277.50000 0004 1760 6738Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiusing Tsang
- grid.412277.50000 0004 1760 6738Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yisi Yang
- grid.5290.e0000 0004 1936 9975Graduate School of Asia-Pacific Studies, Waseda University, Tokyo, Japan
| |
Collapse
|
34
|
Chondronasiou D, Martínez de Villarreal J, Melendez E, Lynch CJ, Pozo ND, Kovatcheva M, Aguilera M, Prats N, Real FX, Serrano M. Deciphering the roadmap of in vivo reprogramming toward pluripotency. Stem Cell Reports 2022; 17:2501-2517. [DOI: 10.1016/j.stemcr.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/09/2022] Open
|
35
|
Cave DD, Buonaiuto S, Sainz B, Fantuz M, Mangini M, Carrer A, Di Domenico A, Iavazzo TT, Andolfi G, Cortina C, Sevillano M, Heeschen C, Colonna V, Corona M, Cucciardi A, Di Guida M, Batlle E, De Luca A, Lonardo E. LAMC2 marks a tumor-initiating cell population with an aggressive signature in pancreatic cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:315. [PMID: 36289544 PMCID: PMC9609288 DOI: 10.1186/s13046-022-02516-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/09/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Tumor-initiating cells (TIC), also known as cancer stem cells, are considered a specific subpopulation of cells necessary for cancer initiation and metastasis; however, the mechanisms by which they acquire metastatic traits are not well understood. METHODS LAMC2 transcriptional levels were evaluated using publicly available transcriptome data sets, and LAMC2 immunohistochemistry was performed using a tissue microarray composed of PDAC and normal pancreas tissues. Silencing and tracing of LAMC2 was performed using lentiviral shRNA constructs and CRISPR/Cas9-mediated homologous recombination, respectively. The contribution of LAMC2 to PDAC tumorigenicity was explored in vitro by tumor cell invasion, migration, sphere-forming and organoids assays, and in vivo by tumor growth and metastatic assays. mRNA sequencing was performed to identify key cellular pathways upregulated in LAMC2 expressing cells. Metastatic spreading induced by LAMC2- expressing cells was blocked by pharmacological inhibition of transforming growth factor beta (TGF-β) signaling. RESULTS We report a LAMC2-expressing cell population, which is endowed with enhanced self-renewal capacity, and is sufficient for tumor initiation and differentiation, and drives metastasis. mRNA profiling of these cells indicates a prominent squamous signature, and differentially activated pathways critical for tumor growth and metastasis, including deregulation of the TGF-β signaling pathway. Treatment with Vactosertib, a new small molecule inhibitor of the TGF-β type I receptor (activin receptor-like kinase-5, ALK5), completely abrogated lung metastasis, primarily originating from LAMC2-expressing cells. CONCLUSIONS We have identified a highly metastatic subpopulation of TICs marked by LAMC2. Strategies aimed at targeting the LAMC2 population may be effective in reducing tumor aggressiveness in PDAC patients. Our results prompt further study of this TIC population in pancreatic cancer and exploration as a potential therapeutic target and/or biomarker.
Collapse
Affiliation(s)
- Donatella Delle Cave
- grid.5326.20000 0001 1940 4177Institute of Genetics and Biophysics “A. Buzzati-Traverso”, National Research Council (CNR-IGB), 80131 Naples, Italy
| | - Silvia Buonaiuto
- grid.5326.20000 0001 1940 4177Institute of Genetics and Biophysics “A. Buzzati-Traverso”, National Research Council (CNR-IGB), 80131 Naples, Italy
| | - Bruno Sainz
- grid.466793.90000 0004 1803 1972Department of Cancer Biology, Instituto de Investigaciones Biomedicas “Alberto Sols” (IIBM), CSIC-UAM, 28029 Madrid, Spain ,grid.420232.50000 0004 7643 3507Chronic Diseases and Cancer, Area 3-Instituto Ramon Y Cajal de Investigacion Sanitaria (IRYCIS), 28034 Madrid, Spain ,grid.510933.d0000 0004 8339 0058Centro de Investigación Biomédica en Red, Área Cáncer, CIBERONC, ISCIII, 28029 Madrid, Spain
| | - Marco Fantuz
- grid.5608.b0000 0004 1757 3470Department of Biology, University of Padova, 35129 Padova, Italy ,grid.428736.cVeneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Maria Mangini
- grid.5326.20000 0001 1940 4177Institute for Experimental Endocrinology and Oncology, “G. Salvatore” (IEOS), Second Unit, Consiglio Nazionale Delle Ricerche (CNR), 801310 Naples, Italy
| | - Alessandro Carrer
- grid.5608.b0000 0004 1757 3470Department of Biology, University of Padova, 35129 Padova, Italy ,grid.428736.cVeneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Annalisa Di Domenico
- grid.5326.20000 0001 1940 4177Institute of Genetics and Biophysics “A. Buzzati-Traverso”, National Research Council (CNR-IGB), 80131 Naples, Italy
| | - Tea Teresa Iavazzo
- grid.5326.20000 0001 1940 4177Institute of Genetics and Biophysics “A. Buzzati-Traverso”, National Research Council (CNR-IGB), 80131 Naples, Italy
| | - Gennaro Andolfi
- grid.5326.20000 0001 1940 4177Institute of Genetics and Biophysics “A. Buzzati-Traverso”, National Research Council (CNR-IGB), 80131 Naples, Italy
| | - Carme Cortina
- grid.7722.00000 0001 1811 6966Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain ,grid.510933.d0000 0004 8339 0058Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 08028 Barcelona, Spain
| | - Marta Sevillano
- grid.7722.00000 0001 1811 6966Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain ,grid.510933.d0000 0004 8339 0058Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 08028 Barcelona, Spain
| | - Christopher Heeschen
- grid.16821.3c0000 0004 0368 8293State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Vincenza Colonna
- grid.5326.20000 0001 1940 4177Institute of Genetics and Biophysics “A. Buzzati-Traverso”, National Research Council (CNR-IGB), 80131 Naples, Italy
| | - Marco Corona
- grid.5326.20000 0001 1940 4177Institute of Genetics and Biophysics “A. Buzzati-Traverso”, National Research Council (CNR-IGB), 80131 Naples, Italy
| | - Antonio Cucciardi
- grid.5326.20000 0001 1940 4177Institute of Genetics and Biophysics “A. Buzzati-Traverso”, National Research Council (CNR-IGB), 80131 Naples, Italy
| | - Martina Di Guida
- grid.5326.20000 0001 1940 4177Institute of Genetics and Biophysics “A. Buzzati-Traverso”, National Research Council (CNR-IGB), 80131 Naples, Italy
| | - Eduard Batlle
- grid.7722.00000 0001 1811 6966Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain ,grid.510933.d0000 0004 8339 0058Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 08028 Barcelona, Spain
| | - Annachiara De Luca
- grid.5326.20000 0001 1940 4177Institute for Experimental Endocrinology and Oncology, “G. Salvatore” (IEOS), Second Unit, Consiglio Nazionale Delle Ricerche (CNR), 801310 Naples, Italy
| | - Enza Lonardo
- grid.5326.20000 0001 1940 4177Institute of Genetics and Biophysics “A. Buzzati-Traverso”, National Research Council (CNR-IGB), 80131 Naples, Italy
| |
Collapse
|
36
|
Luo Q, Liu J, Fu Q, Zhang X, Yu P, Liu P, Zhang J, Tian H, Chen S, Zhang H, Qin T. Identifying cancer cell‐secreted proteins that activate cancer‐associated fibroblasts as prognostic factors for patients with pancreatic cancer. J Cell Mol Med 2022; 26:5657-5669. [DOI: 10.1111/jcmm.17596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/26/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Qiankun Luo
- Department of Hepatobilliary and Pancreatic surgery Zhengzhou University People's Hospital, Henan Provincial People's Hospital Zhengzhou China
| | - Jiayin Liu
- Department of Hepatobilliary and Pancreatic surgery Zhengzhou University People's Hospital, Henan Provincial People's Hospital Zhengzhou China
| | - Qiang Fu
- Department of Hepatobilliary and Pancreatic surgery Zhengzhou University People's Hospital, Henan Provincial People's Hospital Zhengzhou China
| | - Xu Zhang
- Department of Hepatobilliary and Pancreatic surgery Zhengzhou University People's Hospital, Henan Provincial People's Hospital Zhengzhou China
| | - Pengfei Yu
- Department of Hepatobilliary and Pancreatic surgery Zhengzhou University People's Hospital, Henan Provincial People's Hospital Zhengzhou China
| | - Pan Liu
- Department of Hepatobilliary and Pancreatic surgery Zhengzhou University People's Hospital, Henan Provincial People's Hospital Zhengzhou China
| | - Jiali Zhang
- Academy of Medical Sciences, Zhengzhou University Zhengzhou China
| | - Huiyuan Tian
- Department of Research and Discipline Development Henan Provincial People's Hospital, Zhengzhou University People's Hospital Zhengzhou China
| | - Song Chen
- Translational Research Institute, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, and Molecular Pathology Center Academy of Medical Sciences, Zhengzhou University Zhengzhou China
| | - Hongwei Zhang
- Department of Hepatobilliary and Pancreatic surgery Zhengzhou University People's Hospital, Henan Provincial People's Hospital Zhengzhou China
- Henan University People's Hospital Zhengzhou China
| | - Tao Qin
- Department of Hepatobilliary and Pancreatic surgery Zhengzhou University People's Hospital, Henan Provincial People's Hospital Zhengzhou China
- Henan University People's Hospital Zhengzhou China
| |
Collapse
|
37
|
Liu J, Tao M, Zhao W, Song Q, Yang X, Li M, Zhang Y, Xiu D, Zhang Z. Calcium Channel α2δ1 is Essential for Pancreatic Tumor-Initiating Cells through Sequential Phosphorylation of PKM2. Cell Mol Gastroenterol Hepatol 2022; 15:373-392. [PMID: 36244646 PMCID: PMC9791133 DOI: 10.1016/j.jcmgh.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND & AIMS Tumor-initiating cells (TICs) drive pancreatic cancer tumorigenesis, therapeutic resistance, and metastasis. However, TICs are highly plastic and heterogenous, which impede the robust identification and targeted therapy of such a population. The aim of this study is to identify the surface marker and therapeutic target for pancreatic TICs. METHODS We isolated voltage-gated calcium channel α2δ1 subunit (isoform 5)-positive subpopulation from pancreatic cancer cell lines and freshly resected primary tissues by fluorescence-activated cell sorting and evaluated their TIC properties by spheroid formation and tumorigenic assays. Coimmunoprecipitation was used to identify the direct substrate of CaMKⅡδ. RESULTS We demonstrate that the voltage-gated calcium channel α2δ1 subunit (isoform 5) marks a subpopulation of pancreatic TICs with the highest TIC frequency among the known pancreatic TIC markers tested. Furthermore, α2δ1 is functionally sufficient and indispensable to promote TIC properties by mediating Ca2+ influx, which activates CaMKⅡδ to directly phosphorylate PKM2 at T454 that results in subsequent phosphorylation at Y105 to translocate into nucleus, enhancing the stem-like properties. Interestingly, blocking α2δ1 with its specific antibody has remarkably therapeutic effects on pancreatic cancer xenografts by reducing TICs. CONCLUSIONS α2δ1 promotes pancreatic TIC properties through sequential phosphorylation of PKM2 mediated by CaMKⅡδ, and targeting α2δ1 provides a therapeutic strategy against TICs for pancreatic cancer.
Collapse
Affiliation(s)
- Jingtao Liu
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Department of Cell Biology, Peking University Cancer Hospital and Institute, Beijing, P.R. China; Department of Pharmacology, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Ming Tao
- Department of General Surgery, Peking University Third Hospital, Beijing, P.R. China
| | - Wei Zhao
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Department of Cell Biology, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Qingru Song
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Department of Cell Biology, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Xiaodan Yang
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Department of Cell Biology, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Meng Li
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Department of Cell Biology, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Yanhua Zhang
- Department of Pharmacology, Peking University Cancer Hospital and Institute, Beijing, P.R. China.
| | - Dianrong Xiu
- Department of General Surgery, Peking University Third Hospital, Beijing, P.R. China.
| | - Zhiqian Zhang
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Department of Cell Biology, Peking University Cancer Hospital and Institute, Beijing, P.R. China.
| |
Collapse
|
38
|
Evan T, Wang VMY, Behrens A. The roles of intratumour heterogeneity in the biology and treatment of pancreatic ductal adenocarcinoma. Oncogene 2022; 41:4686-4695. [PMID: 36088504 PMCID: PMC9568427 DOI: 10.1038/s41388-022-02448-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022]
Abstract
Intratumour heterogeneity (ITH) has become an important focus of cancer research in recent years. ITH describes the cellular variation that enables tumour evolution, including tumour progression, metastasis and resistance to treatment. The selection and expansion of genetically distinct treatment-resistant cancer cell clones provides one explanation for treatment failure. However, tumour cell variation need not be genetically encoded. In pancreatic ductal adenocarcinoma (PDAC) in particular, the complex tumour microenvironment as well as crosstalk between tumour and stromal cells result in exceptionally variable tumour cell phenotypes that are also highly adaptable. In this review we discuss four different types of phenotypic heterogeneity within PDAC, from morphological to metabolic heterogeneity. We suggest that these different types of ITH are not independent, but, rather, can inform one another. Lastly, we highlight recent findings that suggest how therapeutic efforts may halt PDAC progression by constraining cellular heterogeneity.
Collapse
Affiliation(s)
- Theodore Evan
- Cancer Stem Cell Laboratory, The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW3 6JB, UK
| | | | - Axel Behrens
- Cancer Stem Cell Laboratory, The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW3 6JB, UK.
- Department of Surgery and Cancer, Imperial College London, London, SW7 2AZ, UK.
- CRUK Convergence Science Centre, Imperial College London, SW7 2AZ, London, UK.
| |
Collapse
|
39
|
Li B, Wang J, Liao J, Wu M, Yuan X, Fang H, Shen L, Jiang M. YY1 promotes pancreatic cancer cell proliferation by enhancing mitochondrial respiration. Cancer Cell Int 2022; 22:287. [PMID: 36123703 PMCID: PMC9484254 DOI: 10.1186/s12935-022-02712-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
KRAS-driven metabolic reprogramming is a known peculiarity features of pancreatic ductal adenocarcinoma (PDAC) cells. However, the metabolic roles of other oncogenic genes, such as YY1, in PDAC development are still unclear. In this study, we observed significantly elevated expression of YY1 in human PDAC tissues, which positively correlated with a poor disease progression. Furthermore, in vitro studies confirmed that YY1 deletion inhibited PDAC cell proliferation and tumorigenicity. Moreover, YY1 deletion led to impaired mitochondrial RNA expression, which further inhibited mitochondrial oxidative phosphorylation (OXPHOS) complex assembly and altered cellular nucleotide homeostasis. Mechanistically, the impairment of mitochondrial OXPHOS function reduced the generation of aspartate, an output of the tricarboxylic acid cycle (TCA), and resulted in the inhibition of cell proliferation owing to unavailability of aspartate-associated nucleotides. Conversely, exogenous supplementation with aspartate fully restored PDAC cell proliferation. Our findings suggest that YY1 promotes PDAC cell proliferation by enhancing mitochondrial respiration and the TCA, which favors aspartate-associated nucleotide synthesis. Thus, targeting nucleotide biosynthesis is a promising strategy for PDAC treatment.
Collapse
Affiliation(s)
- Bin Li
- Department of Laboratory Medicine, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Junyi Wang
- Department of Clinical Laboratory Examination, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518000, China
| | - Jing Liao
- Key Laboratory of Laboratory Medicine, Ministry of Education; Zhejiang Provincial Key Laboratory of Medical Genetics; College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Minghui Wu
- Department of Laboratory Medicine, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Xiangshu Yuan
- Key Laboratory of Laboratory Medicine, Ministry of Education; Zhejiang Provincial Key Laboratory of Medical Genetics; College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hezhi Fang
- Key Laboratory of Laboratory Medicine, Ministry of Education; Zhejiang Provincial Key Laboratory of Medical Genetics; College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Lijun Shen
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Minghua Jiang
- Department of Laboratory Medicine, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
40
|
Yang Y, Meng WJ, Wang ZQ. The origin of gastric cancer stem cells and their effects on gastric cancer: Novel therapeutic targets for gastric cancer. Front Oncol 2022; 12:960539. [PMID: 36185219 PMCID: PMC9520244 DOI: 10.3389/fonc.2022.960539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022] Open
Abstract
Gastric cancer (GC) is one of the most prevalent malignancies and the most common causes of cancer-related mortality worldwide. Furthermore, the prognosis of advanced GC remains poor even after surgery combined with chemoradiotherapy. As a small group of cells with unlimited differentiation and self-renewal ability in GC, accumulating evidence shows that GC stem cells (GCSCs) are closely associated with the refractory characteristics of GC, such as drug resistance, recurrence, and metastasis. With the extensive development of research on GCSCs, GCSCs seem to be promising therapeutic targets for GC. However, the relationship between GCSCs and GC is profound and intricate, and its mechanism of action is still under exploration. In this review, we elaborate on the source and key concepts of GCSCs, systematically summarize the role of GCSCs in GC and their underlying mechanisms. Finally, we review the latest information available on the treatment of GC by targeting GCSCs. Thus, this article may provide a theoretical basis for the future development of the novel targets based on GCSCs for the treatment of GC.
Collapse
|
41
|
Fatty acid metabolism in aggressive B-cell lymphoma is inhibited by tetraspanin CD37. Nat Commun 2022; 13:5371. [PMID: 36100608 PMCID: PMC9470561 DOI: 10.1038/s41467-022-33138-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/30/2022] [Indexed: 11/09/2022] Open
Abstract
The importance of fatty acid (FA) metabolism in cancer is well-established, yet the mechanisms underlying metabolic reprogramming remain elusive. Here, we identify tetraspanin CD37, a prognostic marker for aggressive B-cell lymphoma, as essential membrane-localized inhibitor of FA metabolism. Deletion of CD37 on lymphoma cells results in increased FA oxidation shown by functional assays and metabolomics. Furthermore, CD37-negative lymphomas selectively deplete palmitate from serum in mouse studies. Mechanistically, CD37 inhibits the FA transporter FATP1 through molecular interaction. Consequently, deletion of CD37 induces uptake and processing of exogenous palmitate into energy and essential building blocks for proliferation, and inhibition of FATP1 reverses this phenotype. Large lipid deposits and intracellular lipid droplets are observed in CD37-negative lymphoma tissues of patients. Moreover, inhibition of carnitine palmitoyl transferase 1 A significantly compromises viability and proliferation of CD37-deficient lymphomas. Collectively, our results identify CD37 as a direct gatekeeper of the FA metabolic switch in aggressive B-cell lymphoma. Tetraspanin CD37 deficiency has been reported as a prognostic marker for aggressive B-cell lymphoma. Here, the authors show that CD37 interacts with the fatty acid transporter 1 to inhibit palmitate uptake and its deficiency leads to increased fatty acid metabolism which promotes tumorigenesis in B-cell lymphoma.
Collapse
|
42
|
Formyl-Peptide Receptor 2 Signaling Redirects Glucose and Glutamine into Anabolic Pathways in Metabolic Reprogramming of Lung Cancer Cells. Antioxidants (Basel) 2022; 11:antiox11091692. [PMID: 36139766 PMCID: PMC9495820 DOI: 10.3390/antiox11091692] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022] Open
Abstract
Glucose and glutamine play a crucial role in the metabolic reprogramming of cancer cells. Proliferating cells metabolize glucose in the aerobic glycolysis for energy supply, and glucose and glutamine represent the primary sources of carbon atoms for the biosynthesis of nucleotides, amino acids, and lipids. Glutamine is also an important nitrogen donor for the production of nucleotides, amino acids, and nicotinamide. Several membrane receptors strictly control metabolic reprogramming in cancer cells and are considered new potential therapeutic targets. Formyl-peptide receptor 2 (FPR2) belongs to a small family of GPCRs and is implicated in many physiopathological processes. Its stimulation induces, among other things, NADPH oxidase-dependent ROS generation that, in turn, contributes to intracellular signaling. Previously, by phosphoproteomic analysis, we observed that numerous proteins involved in energetic metabolism are uniquely phosphorylated upon FPR2 stimulation. Herein, we investigated the role of FPR2 in cell metabolism, and we observed that the concentrations of several metabolites associated with the pentose phosphate pathway (PPP), tricarboxylic acid cycle, nucleotide synthesis, and glutamine metabolism, were significantly enhanced in FPR2-stimulated cells. In particular, we found that the binding of specific FPR2 agonists: (i) promotes NADPH production; (ii) activates the non-oxidative phase of PPP; (iii) induces the expression of the ASCT2 glutamine transporter; (iv) regulates oxidative phosphorylation; and (v) induces the de novo synthesis of pyrimidine nucleotides, which requires FPR2-dependent ROS generation.
Collapse
|
43
|
ALCAM: A Novel Surface Marker on EpCAMlow Circulating Tumor Cells. Biomedicines 2022; 10:biomedicines10081983. [PMID: 36009530 PMCID: PMC9405826 DOI: 10.3390/biomedicines10081983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Current strategies in circulating tumor cell (CTC) isolation in pancreatic cancer heavily rely on the EpCAM and cytokeratin cell status. EpCAM is generally not considered a good marker given its transitory change during Epithelial to Mesenchymal Transition (EMT) or reverse EMT. There is a need to identify other surface markers to capture the complete repertoire of PDAC CTCs. The primary objective of the study is to characterize alternate surface biomarkers to EpCAM on CTCs that express low or negligible levels of surface EpCAM in pancreatic cancer patients. Methods: Flow cytometry and surface mass spectrometry were used to identify proteins expressed on the surface of PDAC CTCs in culture. CTCs were grown under conditions of attachment and in co-culture with naïve neutrophils. Putative biomarkers were then validated in GEMMs and patient samples. Results: Surface proteomic profiling of CTCs identified several novel protein biomarkers. ALCAM was identified as a novel robust marker in GEMM models and in patient samples. Conclusions: We identified several novel surface biomarkers on CTCs expressed under differing conditions of culture. ALCAM was validated and identified as a novel alternate surface marker on EpCAMlow CTCs.
Collapse
|
44
|
Dong M, Wang W, Wang L, Liu Y, Ma Y, Li M, Liu H, Wang K, Song L. The characterization of an agranulocyte-specific marker (CgCD9) in the Pacific oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2022; 127:446-454. [PMID: 35792345 DOI: 10.1016/j.fsi.2022.06.067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/16/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
The agranulocytes in the Pacific oyster Crassostrea gigas are a group of haemocytes that are significantly different from semi-granulocytes and granulocytes on the morphology. Agranulocytes are the smallest haemocytes characterized by a spherical shape, the largest ratio of nucleus to cytoplasm, and no granules in the cytoplasm. The lack of unique cell surface markers impedes the isolation of agranulocytes from total haemocytes. Previous transcriptome sequencing analysis of three subpopulations of haemocytes revealed that a homologue of CD9 (designed as CgCD9) was highly expressed in agranulocytes of oyster C. gigas (data not shown). In the present study, CgCD9 was identified to share a similarity of 60% with other vertebrates CD9s, and it harbored a typical four transmembrane domain and a conserved Cys-Cys-Gly (CCG) motif. The mRNA transcript of CgCD9 was found to be highly expressed in agranulocytes, which was 6.63-fold (p < 0.05) and 3.68-fold (p < 0.05) of that in granulocytes and semi-granulocytes, respectively. A specific monoclonal antibody of CgCD9 (named 3D8) was successfully prepared by traditional hybridoma technology, and a single positive band at 25.2 kDa was detected in the haemocyte proteins by Western Blotting, indicating that this monoclonal antibody exhibited high specificity and sensitivity to CgCD9 protein. The ELISA positive value of 3D8 monoclonal antibody to recognize agranulocytes, semi-granulocytes and granulocytes was 17.35, 4.48 and 1.55, respectively, indicating that monoclonal antibody was specific to agranulocytes. Immunocytochemistry assay revealed that CgCD9 was specifically distributed on the membrane of agranulocytes. Using immunomagnetic beads coated with 3D8 monoclonal antibody, CgCD9+cells with a purity of 94.53 ± 5.60% were successfully isolated with a smaller diameter, a larger N:C ratio and no granules in cytoplasm, and could be primary culture in the modified L-15 medium in vitro. Collectively, these results suggested that CgCD9 was a specific cell surface marker for agranulocytes, which offered a tool for high-purity capture of agranulocytes from total haemocytes in C. gigas.
Collapse
Affiliation(s)
- Miren Dong
- College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yu Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Youwen Ma
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Meijia Li
- College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Haipeng Liu
- College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China
| | - Kejian Wang
- College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
45
|
Tetraspanins interweave EV secretion, endosomal network dynamics and cellular metabolism. Eur J Cell Biol 2022; 101:151229. [DOI: 10.1016/j.ejcb.2022.151229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/07/2022] [Accepted: 04/24/2022] [Indexed: 12/19/2022] Open
|
46
|
hsa_circ_0000518 Facilitates Non-Small-Cell Lung Cancer Progression via Moderating miR-330-3p and Positively Regulating SLC1A5. J Immunol Res 2022; 2022:4996980. [PMID: 35874898 PMCID: PMC9307375 DOI: 10.1155/2022/4996980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
Background/Aim Non-small-cell lung cancer (NSCLC) is the principal agent of cancer deaths globally. The goal of this study was to determine how circular RNA_0000518 (circ_0000518) regulates tumor progression. Materials/Methods. circ_0000518 was selected as a study target involved in NSCLC from GEO (Gene Expression Omnibus) database. circ_0000518 level was gauged by qRT-PCR. It was confirmed as circRNA by actinomycin D inhibition and RNase R assay. Subcellular localization of circ_0000518 was identified by FISH. Cell function was determined by CCK-8, Transwell, and western blot. Glutamine metabolic factors were detected by ELISA. The target regulation relationship between genes was clarified by dual-luciferase reporter assay. In vivo models were established to evaluate the impact of circ_0000518 on tumor growth. Immunohistochemical staining for Ki67, vimentin, and E-cadherin was used to detect cell proliferation and metastasis, respectively. Results circ_0000518 expression was enhanced in NSCLC. si-circ_0000518 inhibited cell proliferation, invasion, and glutamine metabolism. circ_0000518 functioned as a molecular sponge for miR-330-3p, and inhibition of miR-330-3p in cells markedly reversed circ_0000518 interference-mediated antitumor effects. miR-330-3p interacted with 3′-UTR of SLC1A5. miR-330-3p inhibitor-mediated protumor effect was remarkably reversed in cells after the knockdown of SLC1A5. circ_0000518 knockdown reduced glutamine, glutamate, and α-KG by targeting miR-330-3p. Intertumoral injection of circ_0000518 shRNA adeno-associated virus effectively halted xenograft tumor growth. Conclusion The current study revealed that circ_0000518 may have a prooncogenic function in the formation and progression of NSCLC, which might be achieved through moderating the miR-330-3p/SLC1A5 axis.
Collapse
|
47
|
Zhang H, Chen P, Yan H, Fu G, Luo F, Zhang J, Zhao S, Zhai B, Yu J, Chen L, Cui H, Chen J, Huang S, Zeng J, Xu W, Wang H, Liu J. Targeting mTORC2/HDAC3 Inhibits Stemness of Liver Cancer Cells Against Glutamine Starvation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103887. [PMID: 35187863 PMCID: PMC9284171 DOI: 10.1002/advs.202103887] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 01/27/2022] [Indexed: 06/12/2023]
Abstract
Cancer cells are addicted to glutamine. However, cancer cells often suffer from glutamine starvation, which largely results from the fast growth of cancer cells and the insufficient vascularization in the interior of cancer tissues. Herein, based on clinical samples, patient-derived cells (PDCs), and cell lines, it is found that liver cancer cells display stem-like characteristics upon glutamine shortage due to maintaining the stemness of tumor initiating cells (TICs) and even promoting transformation of non-TICs into stem-like cells by glutamine starvation. Increased expression of glutamine synthetase (GS) is essential for maintaining and promoting stem-like characteristics of liver cancer cells during glutamine starvation. Mechanistically, glutamine starvation activates Rictor/mTORC2 to induce HDAC3-mediated deacetylation and stabilization of GS. Rictor is significantly correlated with the expression of GS and stem marker OCT4 at tumor site, and closely correlates with poor prognosis of hepatocellular carcinomas. Inhibiting components of mTORC2-HDAC3-GS axis decrease TICs and promote xenografts regression upon glutamine-starvation therapy. Collectively, the data provides novel insights into the role of Rictor/mTORC2-HDAC3 in reprogramming glutamine metabolism to sustain stemness of cancer cells. Targeting Rictor/HDAC3 may enhance the efficacy of glutamine-starvation therapy and limit the rapid growth and malignant progression of tumors.
Collapse
Affiliation(s)
- Hui‐Lu Zhang
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical SciencesFudan UniversityShanghai200040China
| | - Ping Chen
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical SciencesFudan UniversityShanghai200040China
| | - He‐Xin Yan
- Renji HospitalSchool of MedicineShanghai Jiaotong UniversityShanghai200120China
| | - Gong‐Bo Fu
- Department of Medical OncologyAffiliated Jinling HospitalMedical School of Nanjing UniversityNanjing210093China
| | - Fei‐Fei Luo
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical SciencesFudan UniversityShanghai200040China
| | - Jun Zhang
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical SciencesFudan UniversityShanghai200040China
| | - Shi‐Min Zhao
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical SciencesFudan UniversityShanghai200040China
| | - Bo Zhai
- Renji HospitalSchool of MedicineShanghai Jiaotong UniversityShanghai200120China
| | - Jiang‐Hong Yu
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical SciencesFudan UniversityShanghai200040China
| | - Lin Chen
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical SciencesFudan UniversityShanghai200040China
| | - Hao‐Shu Cui
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical SciencesFudan UniversityShanghai200040China
| | - Jian Chen
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical SciencesFudan UniversityShanghai200040China
| | - Shuai Huang
- Renji HospitalSchool of MedicineShanghai Jiaotong UniversityShanghai200120China
| | - Jun Zeng
- Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Wei Xu
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical SciencesFudan UniversityShanghai200040China
| | - Hong‐Yang Wang
- Eastern Hepatobiliary Surgery HospitalSecond Military Medical UniversityShanghai200433China
- National Center for Liver CancerShanghai200433China
| | - Jie Liu
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical SciencesFudan UniversityShanghai200040China
| |
Collapse
|
48
|
GREM1 is required to maintain cellular heterogeneity in pancreatic cancer. Nature 2022; 607:163-168. [PMID: 35768509 DOI: 10.1038/s41586-022-04888-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 05/20/2022] [Indexed: 12/14/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) shows pronounced epithelial and mesenchymal cancer cell populations1-4. Cellular heterogeneity in PDAC is an important feature in disease subtype specification3-5, but how distinct PDAC subpopulations interact, and the molecular mechanisms that underlie PDAC cell fate decisions, are incompletely understood. Here we identify the BMP inhibitor GREM16,7 as a key regulator of cellular heterogeneity in pancreatic cancer in human and mouse. Grem1 inactivation in established PDAC in mice resulted in a direct conversion of epithelial into mesenchymal PDAC cells within days, suggesting that persistent GREM1 activity is required to maintain the epithelial PDAC subpopulations. By contrast, Grem1 overexpression caused an almost complete 'epithelialization' of highly mesenchymal PDAC, indicating that high GREM1 activity is sufficient to revert the mesenchymal fate of PDAC cells. Mechanistically, Grem1 was highly expressed in mesenchymal PDAC cells and inhibited the expression of the epithelial-mesenchymal transition transcription factors Snai1 (also known as Snail) and Snai2 (also known as Slug) in the epithelial cell compartment, therefore restricting epithelial-mesenchymal plasticity. Thus, constant suppression of BMP activity is essential to maintain epithelial PDAC cells, indicating that the maintenance of the cellular heterogeneity of pancreatic cancer requires continuous paracrine signalling elicited by a single soluble factor.
Collapse
|
49
|
Han X, Zhang W, Gao H, Li T, Xu H, Li H, Li P, Wang X, Yu X, Wang W, Liu L. Neoadjuvant chemotherapy endows CD9 with prognostic value that differs between tumor and stromal areas in patients with pancreatic cancer. J Clin Lab Anal 2022; 36:e24517. [PMID: 35622458 PMCID: PMC9279986 DOI: 10.1002/jcla.24517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/13/2022] [Accepted: 05/12/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The selective pressure imposed by chemotherapy creates a barrier to tumor eradication and an opportunity for metastasis and recurrence. As a newly discovered stemness marker of pancreatic ductal adenocarcinoma (PDAC), the impact of CD9 on tumor progression and patient's prognosis remain controversial. METHODS A total of 179 and 211 PDAC patients who underwent surgical resection with or without neoadjuvant chemotherapy, respectively, were recruited for immunohistochemical analyses of CD9 expression in both tumor and stromal areas prior to statistical analyses to determine the prognostic impact and predictive accuracy of CD9. RESULTS The relationship between CD9 and prognostic indicators was not significant in the non-neoadjuvant group. Nevertheless, CD9 expression in both tumor (T-CD9) and stromal areas (S-CD9) was significantly correlated with the clinicopathological features in the neoadjuvant group. High levels of T-CD9 were significantly associated with worse OS (p = 0.005) and RFS (p = 0.007), while positive S-CD9 showed the opposite results (OS: p = 0.024; RFS: p = 0.008). Cox regression analyses identified CD9 in both areas as an independent prognostic factor. The T&S-CD9 risk-level system was used to stratify patients with different survival levels. The combination of T&S-CD9 risk level and TNM stage were accurate predictors of OS (C-index: 0.676; AIC: 512.51) and RFS (C-index: 0.680; AIC: 519.53). The calibration curve of the nomogram composed of the combined parameters showed excellent predictive consistency for 1-year RFS. These results were verified using a validation cohort. CONCLUSION Neoadjuvant chemotherapy endows CD9 with a significant prognostic value that differs between tumor and stromal areas in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Xuan Han
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Wu‐Hu Zhang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - He‐Li Gao
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Tian‐Jiao Li
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Hua‐Xiang Xu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Hao Li
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Peng‐Cheng Li
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Xu Wang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Xian‐Jun Yu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Wen‐Quan Wang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Liang Liu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| |
Collapse
|
50
|
IDH mutation and cancer stem cell. Essays Biochem 2022; 66:413-422. [PMID: 35611837 DOI: 10.1042/ebc20220008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/04/2022] [Accepted: 05/12/2022] [Indexed: 12/11/2022]
Abstract
Cancer stem cells (CSCs) are a small population of cells in human malignancies that resemble the biology of human pluripotent stem cells. CSCs are closely related to the critical hallmarks in human cancers, ranging from oncogenesis to disease progression, therapeutic resistance, and overall outcome. Mutations in isocitrate dehydrogenase (IDH) were recently identified as founder mutations for human cancers. An increasing amount of evidence indicates that IDH mutations are closely related to the establishment and maintenance of CSCs. Biosynthesis of oncometabolite, metabolic reprogramming, and epigenetic shifts establish distinctive molecular signatures in IDH-mutated CSCs. Additionally, IDH mutation and IDH-related pathways could be valuable molecular targets to impact the CSC components in human cancers and to improve the disease outcome.
Collapse
|