1
|
Arndt T, Breugst M. Iodine-Catalyzed Carbonyl-Alkyne Metathesis Reactions. Chemistry 2024; 30:e202402424. [PMID: 39037953 DOI: 10.1002/chem.202402424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 07/24/2024]
Abstract
The reaction between aldehydes or ketones and alkynes-the carbonyl-alkyne metathesis-constitutes a very useful strategy for the synthesis of α,β-unsaturated carbonyls. We now demonstrate that iodine is a highly efficient catalyst for both the intra- and intermolecular metathesis reaction in very small concentrations (0.1-1 mol %). Our protocol outperforms other catalytic systems, is operationally very simple, cheap, metal-free, and tolerates a large variety of functional groups (e. g., -CN, -CO2Me, -Br, -OH) at very low catalyst loadings. We can furthermore show that iodine-catalyzed carbonyl-alkyne metatheses can be combined with other iodine-catalyzed reactions in one-pot procedures to afford larger and more complex molecular structures. Finally, our mechanistic studies indicate that the iodonium ion is the active catalyst under the reaction conditions.
Collapse
Affiliation(s)
- Thiemo Arndt
- Institut für Chemie, TU Chemnitz, Straße der Nationen 62, 09111, Chemnitz, Germany
| | - Martin Breugst
- Institut für Chemie, TU Chemnitz, Straße der Nationen 62, 09111, Chemnitz, Germany
| |
Collapse
|
2
|
Scharf M, Tsuji N, Lindner MM, Leutzsch M, Lõkov M, Parman E, Leito I, List B. Highly Acidic Electron-Rich Brønsted Acids Accelerate Asymmetric Pictet-Spengler Reactions by Virtue of Stabilizing Cation-π Interactions. J Am Chem Soc 2024; 146. [PMID: 39361889 PMCID: PMC11487569 DOI: 10.1021/jacs.4c09421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
Electron-rich heteroaromatic imidodiphosphorimidates (IDPis) catalyze the asymmetric Pictet-Spengler reaction of N-carbamoyl-β-arylethylamines with high stereochemical precision. This particular class of catalysts furthermore provides a vital rate enhancement compared to related Brønsted acids. Here we present experimental studies on the underlying reaction kinetics that shed light on the specific origins of rate acceleration. Analysis of Hammett plots, kinetic isotope effects, reaction orders, Eyring plots, and isotopic scrambling experiments, allowed us to gather insights into the molecular interactions between the chiral Brønsted acid and catalytically formed intermediates. Based on rigorously determined pKa values as well as the experimental evidence, we propose that attractive intermolecular forces offered by electron-rich π-surfaces of the chiral counteranion enthalpically stabilize cationic intermediates and transition states by way of cation-π interactions. This view is furthermore supported by in-depth density functional theory calculations. Our deepened understanding of the reaction mechanism allowed us to develop a method for accessing 1-aryltetrahydroisoquinolines from aromatic dimethyl acetals, a substrate class that was thus far inaccessible via catalytic asymmetric Pictet-Spengler reactions.
Collapse
Affiliation(s)
- Manuel
J. Scharf
- Max-Planck-Institut
für Kohlenforschung, Mülheim
an der Ruhr 45470, Germany
| | - Nobuya Tsuji
- Institute
for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo 001-0021, Japan
| | - Monika M. Lindner
- Max-Planck-Institut
für Kohlenforschung, Mülheim
an der Ruhr 45470, Germany
| | - Markus Leutzsch
- Max-Planck-Institut
für Kohlenforschung, Mülheim
an der Ruhr 45470, Germany
| | - Märt Lõkov
- Institute
of Chemistry, University of Tartu, Tartu 50411, Estonia
| | - Elisabeth Parman
- Institute
of Chemistry, University of Tartu, Tartu 50411, Estonia
| | - Ivo Leito
- Institute
of Chemistry, University of Tartu, Tartu 50411, Estonia
| | - Benjamin List
- Max-Planck-Institut
für Kohlenforschung, Mülheim
an der Ruhr 45470, Germany
- Institute
for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
3
|
Shen Y, Zhang Y, Zhang C, Li H, Hu C, Yu Z, Zheng K, Su Z. Elucidating Mechanism and Selectivity in Pyridine Functionalization Through Silylium Catalysis. Chemistry 2024; 30:e202402078. [PMID: 38976314 DOI: 10.1002/chem.202402078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/09/2024]
Abstract
The functionalization of aromatic N-heterocycles through silylium activation demonstrates exceptional selectivity and efficiency. Density functional theory (DFT) calculations unveil the detailed silylium catalysis mechanism and elucidate the origins of selectivity in this reaction. The phosphoramidimidate sulfonamide (PADI) precatalyst orchestrates of the catalytic cycle via three elementary steps. The Brønsted acidity of precatalyst significantly influences both the formation of silylium-based Lewis acid active species and the silylium activation of pyridine. Unlike disulfonimide (DSI)-type precatalysts, both Tf2NH and PADI precatalysts with strong acidities can easily promote the generation of activated silylium pyridine species. A semi-enclosed 'rigid' electronegative cavity in PADI-type anions constructs a well-defined recognition site, facilitating engagement with the positively charged silylium pyridine species. Due to the high electrophilicity and less steric demand at the C4-position of the pyridine substrate, the product with C4-regioselectivity was predominantly generated.
Collapse
Affiliation(s)
- Yanling Shen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Yan Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Cefei Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Haoze Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Changwei Hu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Zhipeng Yu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Ke Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
4
|
Wang M, Liu S, Liu H, Wang Y, Lan Y, Liu Q. Asymmetric hydrogenation of ketimines with minimally different alkyl groups. Nature 2024; 631:556-562. [PMID: 38806060 DOI: 10.1038/s41586-024-07581-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024]
Abstract
Asymmetric catalysis enables the synthesis of optically active compounds, often requiring the differentiation between two substituents on prochiral substrates1. Despite decades of development of mainly noble metal catalysts, achieving differentiation between substituents with similar steric and electronic properties remains a notable challenge2,3. Here we introduce a class of Earth-abundant manganese catalysts for the asymmetric hydrogenation of dialkyl ketimines to give a range of chiral amine products. These catalysts distinguish between pairs of minimally differentiated alkyl groups bound to the ketimine, such as methyl and ethyl, and even subtler distinctions, such as ethyl and n-propyl. The degree of enantioselectivity can be adjusted by modifying the components of the chiral manganese catalyst. This reaction demonstrates a wide substrate scope and achieves a turnover number of up to 107,800. Our mechanistic studies indicate that exceptional stereoselectivity arises from the modular assembly of confined chiral catalysts and cooperative non-covalent interactions between the catalyst and the substrate.
Collapse
Affiliation(s)
- Mingyang Wang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, China
| | - Shihan Liu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, China
| | - Hao Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, China
| | - Yujie Wang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, China.
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, China.
- Pingyuan Laboratory, Xinxiang, Henan, China.
| | - Qiang Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, China.
| |
Collapse
|
5
|
Lu J, Yu Y, Li Z, Luo J, Deng L. Practical Synthesis of Chiral α-Aminophosphonates with Weak Bonding Organocatalysis at ppm Loading. J Am Chem Soc 2024. [PMID: 38762889 DOI: 10.1021/jacs.4c04129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
α-Aminophosphonic acids as an important class of bioisosteres of α-amino acids demonstrate various biologically important activities. We report here the development of a highly enantioselective isomerization of α-iminophosphonates enabled by an extraordinarily efficient organocatalyst. This organocatalyst afforded a total turnover number (TON) of 20,000-1,000,000 for a wide range of α-alkyl iminophosphonates. Even at a parts-per-million (ppm) loading, this catalyst achieved a complete reaction in greater than 93% enantiomeric excess (ee). Computational studies revealed that this small-molecule catalyst achieved enzyme-like efficiency via a network of weak bonding interactions that effectively preorganized the substrate and catalyst toward a transition-state-like complex. Considering the substrate tolerance, catalytic efficiency, and mechanism, this organocatalyst could be regarded as a small-molecule isomerase.
Collapse
Affiliation(s)
- Jiaxiang Lu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
| | - Yang Yu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
| | - Zhenghua Li
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
| | - Jisheng Luo
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
| | - Li Deng
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
| |
Collapse
|
6
|
Garg A, Rendina D, Bendale H, Akiyama T, Ojima I. Recent advances in catalytic asymmetric synthesis. Front Chem 2024; 12:1398397. [PMID: 38783896 PMCID: PMC11112575 DOI: 10.3389/fchem.2024.1398397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Asymmetric catalysis stands at the forefront of modern chemistry, serving as a cornerstone for the efficient creation of enantiopure chiral molecules characterized by their high selectivity. In this review, we delve into the realm of asymmetric catalytic reactions, which spans various methodologies, each contributing to the broader landscape of the enantioselective synthesis of chiral molecules. Transition metals play a central role as catalysts for a wide range of transformations with chiral ligands such as phosphines, N-heterocyclic carbenes (NHCs), etc., facilitating the formation of chiral C-C and C-X bonds, enabling precise control over stereochemistry. Enantioselective photocatalytic reactions leverage the power of light as a driving force for the synthesis of chiral molecules. Asymmetric electrocatalysis has emerged as a sustainable approach, being both atom-efficient and environmentally friendly, while offering a versatile toolkit for enantioselective reductions and oxidations. Biocatalysis relies on nature's most efficient catalysts, i.e., enzymes, to provide exquisite selectivity, as well as a high tolerance for diverse functional groups under mild conditions. Thus, enzymatic optical resolution, kinetic resolution and dynamic kinetic resolution have revolutionized the production of enantiopure compounds. Enantioselective organocatalysis uses metal-free organocatalysts, consisting of modular chiral phosphorus, sulfur and nitrogen components, facilitating remarkably efficient and diverse enantioselective transformations. Additionally, unlocking traditionally unreactive C-H bonds through selective functionalization has expanded the arsenal of catalytic asymmetric synthesis, enabling the efficient and atom-economical construction of enantiopure chiral molecules. Incorporating flow chemistry into asymmetric catalysis has been transformative, as continuous flow systems provide precise control over reaction conditions, enhancing the efficiency and facilitating optimization. Researchers are increasingly adopting hybrid approaches that combine multiple strategies synergistically to tackle complex synthetic challenges. This convergence holds great promise, propelling the field of asymmetric catalysis forward and facilitating the efficient construction of complex molecules in enantiopure form. As these methodologies evolve and complement one another, they push the boundaries of what can be accomplished in catalytic asymmetric synthesis, leading to the discovery of novel, highly selective transformations which may lead to groundbreaking applications across various industries.
Collapse
Affiliation(s)
- Ashna Garg
- Stony Brook University, Department of Chemistry, Stony Brook, NY, United States
| | - Dominick Rendina
- Stony Brook University, Department of Chemistry, Stony Brook, NY, United States
| | - Hersh Bendale
- Stony Brook University, Department of Chemistry, Stony Brook, NY, United States
| | | | - Iwao Ojima
- Stony Brook University, Department of Chemistry, Stony Brook, NY, United States
- Stony Brook University, Institute of Chemical Biology and Drug Discovery, Stony Brook, NY, United States
| |
Collapse
|
7
|
Gao Y, Zeng Y, Deng T, Deng Y, Cheng C, Luo J, Deng L. Catalytic Asymmetric Synthesis of Chiral α,α-Dialkyl Aminonitriles via Reaction of Cyanoketimines. J Am Chem Soc 2024; 146:12329-12337. [PMID: 38662599 DOI: 10.1021/jacs.4c03333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Chiral aminonitriles not only are broadly useful building blocks but also increasingly appear as structural motifs in bioactive molecules and pharmaceuticals. The catalytic asymmetric synthesis of chiral aminonitriles, therefore, has been intensively investigated, as reflected in numerous reports of catalytic asymmetric Strecker reactions. Despite such great progress, the catalytic asymmetric synthesis of chiral α,α-dialkyl aminonitriles in a highly selective and efficient manner is still a formidable challenge. Here, we report a new approach for the catalytic asymmetric synthesis of chiral α,α-dialkyl aminonitriles via reaction of cyanoketimines with enals. We demonstrate that this reaction could be carried out with as low as 20 ppm catalyst loading.
Collapse
Affiliation(s)
- Yuhong Gao
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University; 600 Dunyu Road, Hangzhou 310030, China
| | - Yiqun Zeng
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University; 600 Dunyu Road, Hangzhou 310030, China
| | - Tianran Deng
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University; 600 Dunyu Road, Hangzhou 310030, China
| | - Yu Deng
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University; 600 Dunyu Road, Hangzhou 310030, China
| | - Cheng Cheng
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University; 600 Dunyu Road, Hangzhou 310030, China
| | - Jisheng Luo
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University; 600 Dunyu Road, Hangzhou 310030, China
| | - Li Deng
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University; 600 Dunyu Road, Hangzhou 310030, China
- Research Center for Industries of the Future, Westlake University; Hangzhou 310030, Zhejiang Province China
| |
Collapse
|
8
|
Maestro A, Malviya BK, Auer G, Ötvös SB, Kappe CO. A robust heterogeneous chiral phosphoric acid enables multi decagram scale production of optically active N, S-ketals. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2024; 26:4593-4599. [PMID: 38654978 PMCID: PMC11033974 DOI: 10.1039/d4gc00019f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/05/2024] [Indexed: 04/26/2024]
Abstract
Asymmetric organocatalysis has been recognized as one of the "top 10 emerging technologies" in chemistry by IUPAC in 2019. Its potential to make chemical processes more sustainable is promising, but there are still challenges that need to be addressed. Developing new and reliable enantioselective processes for reproducing batch reactions on a large scale requires a combination of chemical and technical solutions. In this manuscript, we combine a robust immobilized chiral phosphoric acid with a new packed-bed reactor design. This combination allows scaling up of the enantioselective addition of thiols to imines from a few milligrams to a multi-decagram scale in a continuous flow process without physical or chemical degradation of the catalyst.
Collapse
Affiliation(s)
- Aitor Maestro
- Department of Organic Chemistry I, University of the Basque Country, UPV/EHU Paseo de la Universidad 7 01006 Vitoria-Gasteiz Spain
- Institute of Chemistry, University of Graz, NAWI Graz A-8010 Graz Austria
| | - Bhanwar K Malviya
- Institute of Chemistry, University of Graz, NAWI Graz A-8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE) A-8010 Graz Austria
| | - Gerald Auer
- Department of Earth Sciences, University of Graz, NAWI Graz Geocenter A-8010 Graz Austria
| | - Sándor B Ötvös
- Institute of Chemistry, University of Graz, NAWI Graz A-8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE) A-8010 Graz Austria
| | - C Oliver Kappe
- Institute of Chemistry, University of Graz, NAWI Graz A-8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE) A-8010 Graz Austria
| |
Collapse
|
9
|
Banerjee S, Vanka K. The Role of Aromatic Alcohol Additives on Asymmetric Organocatalysis Reactions: Insights from Theory. Chem Asian J 2024; 19:e202300997. [PMID: 38270228 DOI: 10.1002/asia.202300997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 01/26/2024]
Abstract
The presence of an aromatic additive has been seen to enhance, often significantly, the enantioselectivity and yield in asymmetric organocatalysis. Considering their success across a dizzying range of organocatalysts and organic transformations, it would seem unlikely that a common principle exists for their functioning. However, the current investigations with DFT suggest a general principle: the phenolic additive sandwiches itself, through hydrogen bonding and π⋅⋅⋅π stacking, between the organocatalyst coordinated electrophile and nucleophile. This is seen for a wide range of experimentally reported systems. That such complex formation leads to enhanced stereoselectivity is then demonstrated for two cases: the cinchona alkaloid complex (BzCPD), catalysing thiocyanation (2-naphthol additive employed), as well as for L-pipecolicacid catalysing the asymmetric nitroaldol reaction with a range of nitro-substituted phenol additives. These findings, indicating that dual catalysis takes place when phenolic additives are employed, are likely to have a significant impact on the field of asymmetric organocatalysis.
Collapse
Affiliation(s)
- Subhrashis Banerjee
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr.Homi Bhabha Road, Pune, 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kumar Vanka
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr.Homi Bhabha Road, Pune, 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
10
|
Wakchaure VN, DeSnoo W, Laconsay CJ, Leutzsch M, Tsuji N, Tantillo DJ, List B. Catalytic asymmetric cationic shifts of aliphatic hydrocarbons. Nature 2024; 625:287-292. [PMID: 38200298 PMCID: PMC10781632 DOI: 10.1038/s41586-023-06826-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/02/2023] [Indexed: 01/12/2024]
Abstract
Asymmetric catalysis is an advanced area of chemical synthesis, but the handling of abundantly available, purely aliphatic hydrocarbons has proven to be challenging. Typically, heteroatoms or aromatic substructures are required in the substrates and reagents to facilitate an efficient interaction with the chiral catalyst. Confined acids have recently been introduced as tools for homogenous asymmetric catalysis, specifically to enable the processing of small unbiased substrates1. However, asymmetric reactions in which both substrate and product are purely aliphatic hydrocarbons have not previously been catalysed by such super strong and confined acids. We describe here an imidodiphosphorimidate-catalysed asymmetric Wagner-Meerwein shift of aliphatic alkenyl cycloalkanes to cycloalkenes with excellent regio- and enantioselectivity. Despite their long history and high relevance for chemical synthesis and biosynthesis, Wagner-Meerwein reactions utilizing purely aliphatic hydrocarbons, such as those originally reported by Wagner and Meerwein, had previously eluded asymmetric catalysis.
Collapse
Affiliation(s)
- Vijay N Wakchaure
- Max Planck Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - William DeSnoo
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Croix J Laconsay
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Markus Leutzsch
- Max Planck Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Nobuya Tsuji
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, Davis, CA, USA.
| | - Benjamin List
- Max Planck Institut für Kohlenforschung, Mülheim an der Ruhr, Germany.
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan.
| |
Collapse
|
11
|
Tönjes J, Kell L, Werner T. Organocatalytic Stereospecific Appel Reaction. Org Lett 2023; 25:9114-9118. [PMID: 38113448 DOI: 10.1021/acs.orglett.3c03463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Herein we report a new method for the catalytic Appel reaction by P(III)/P(V) redox cycling at very low catalyst loadings of 1-2 mol % using low amounts of hexachloroacetone as the halogen source and phenylsilane as the terminal reductant. Twenty-six alcohols and nine epoxides containing a wide variety of functional groups were converted to the respective chlorides and dichlorides in yields of up to 97%, enantiospecificities of up to >99%, and enantiomeric ratios of up to >99:1.
Collapse
Affiliation(s)
- Jan Tönjes
- Leibniz Institute for Catalysis at the University of Rostock (LIKAT Rostock), Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Lukas Kell
- Leibniz Institute for Catalysis at the University of Rostock (LIKAT Rostock), Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Thomas Werner
- Leibniz Institute for Catalysis at the University of Rostock (LIKAT Rostock), Albert-Einstein-Str. 29a, 18059 Rostock, Germany
- Department of Chemistry and Center for Sustainable Systems Design (CSSD), Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany
| |
Collapse
|
12
|
Brunen S, Mitschke B, Leutzsch M, List B. Asymmetric Catalytic Friedel-Crafts Reactions of Unactivated Arenes. J Am Chem Soc 2023. [PMID: 37440437 PMCID: PMC10375537 DOI: 10.1021/jacs.3c05148] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Since its discovery more than a century ago, the Friedel-Crafts reaction has manifested itself as a powerful method for the introduction of carbon substituents to arenes. Despite its potential generality, the scope of the reaction is intrinsically limited by the arene's nucleophilicity, which has previously restrained the applicability of asymmetric variants to activated substrates. To overcome this fundamental limitation, we report herein an asymmetric Friedel-Crafts reaction of unactivated, purely hydrocarbon arenes, alkoxybenzenes, and heteroarenes with N,O-acetals to give enantioenriched arylglycine esters. Highly regio- and stereoselective C-C bond formation was achieved using strong and confined Brønsted acid organocatalysts, enabling the first asymmetric catalytic Friedel-Crafts reaction of simple alkylbenzenes.
Collapse
Affiliation(s)
- Sebastian Brunen
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
| | - Benjamin Mitschke
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
| | - Benjamin List
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
13
|
Tyler JL, Katzenburg F, Glorius F. A focus on sustainable method development for greener synthesis. Chem Sci 2023; 14:7408-7410. [PMID: 37449072 PMCID: PMC10337756 DOI: 10.1039/d3sc90120c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Given the current global climate and health challenges, sustainability and cost-effectiveness are becoming unavoidable factors that must be considered in the development of new synthetic methodologies. In a recent publication, Kavthe et al. (R. D. Kavthe, K. S. Iyer, J. C. Caravez and B. H. Lipshutz, Chem. Sci., 2023, 14, 6399, https://doi.org/10.1039/D3SC01699D) have succinctly demonstrated how employing more sustainable methodology can vastly reduce the environmental impact associated with the synthesis of the antimalarial drug candidate MMV688533. The most notable feature of this newly reported synthetic route is the application of aqueous micellar conditions to two Sonogashira coupling reactions that simultaneously improve the yield, catalyst loading and sustainability of these key steps.
Collapse
Affiliation(s)
- Jasper L Tyler
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut Corrensstraße 36 48149 Munster Germany
| | - Felix Katzenburg
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut Corrensstraße 36 48149 Munster Germany
| | - Frank Glorius
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut Corrensstraße 36 48149 Munster Germany
| |
Collapse
|
14
|
Zhou H, Properzi R, Leutzsch M, Belanzoni P, Bistoni G, Tsuji N, Han JT, Zhu C, List B. Organocatalytic DYKAT of Si-Stereogenic Silanes. J Am Chem Soc 2023; 145:4994-5000. [PMID: 36826435 PMCID: PMC9999423 DOI: 10.1021/jacs.3c00858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Indexed: 02/25/2023]
Abstract
Chiral organosilanes do not exist in nature and are therefore absent from the "chiral pool". As a consequence, synthetic approaches toward enantiopure silanes, stereogenic at silicon, are rather limited. While catalytic asymmetric desymmetrization reactions of symmetric organosilicon compounds have been developed, the utilization of racemic silanes in a dynamic kinetic asymmetric transformation (DYKAT) or dynamic kinetic resolution (DKR) would significantly expand the breadth of accessible Si-stereogenic compounds. We now report a DYKAT of racemic allyl silanes enabled by strong and confined imidodiphosphorimidate (IDPi) catalysts, providing access to Si-stereogenic silyl ethers. The products of this reaction are easily converted into useful enantiopure monohydrosilanes. We propose a spectroscopically and experimentally supported mechanism involving the epimerization of a catalyst-bound intermediate.
Collapse
Affiliation(s)
- Hui Zhou
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Roberta Properzi
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Markus Leutzsch
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Paola Belanzoni
- University
of Perugia, Department of Chemistry,
Biology and Biotechnology, 06122 Perugia, Italy
| | - Giovanni Bistoni
- University
of Perugia, Department of Chemistry,
Biology and Biotechnology, 06122 Perugia, Italy
| | - Nobuya Tsuji
- Institute
for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Jung Tae Han
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Chendan Zhu
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Benjamin List
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Institute
for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
15
|
Cross-assembly confined bifunctional catalysis via non-covalent interactions for asymmetric halogenation. Chem 2023. [DOI: 10.1016/j.chempr.2023.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
16
|
Rose BT, Timmerman JC, Bawel SA, Chin S, Zhang H, Denmark SE. High-Level Data Fusion Enables the Chemoinformatically Guided Discovery of Chiral Disulfonimide Catalysts for Atropselective Iodination of 2-Amino-6-arylpyridines. J Am Chem Soc 2022; 144:22950-22964. [DOI: 10.1021/jacs.2c08820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Brennan T. Rose
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IIllinois 61801, United States
| | - Jacob C. Timmerman
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Seth A. Bawel
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IIllinois 61801, United States
| | - Steven Chin
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Haiming Zhang
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Scott E. Denmark
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IIllinois 61801, United States
| |
Collapse
|
17
|
Mayer RJ, Hampel N, Ofial AR, Mayr H. Resolving the Mechanistic Complexity in Triarylborane-Induced Conjugate Additions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Robert J. Mayer
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377München, Germany
| | - Nathalie Hampel
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377München, Germany
| | - Armin R. Ofial
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377München, Germany
| | - Herbert Mayr
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377München, Germany
| |
Collapse
|
18
|
Asymmetric Organocatalysis—A Powerful Technology Platform for Academia and Industry: Pregabalin as a Case Study. Catalysts 2022. [DOI: 10.3390/catal12080912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Enantioselective organocatalysis has quickly established itself as the third pillar of asymmetric catalysis. It is a powerful technology platform, and it has a tremendous impact in both academic and industrial settings. By focusing on pregabalin, as a case study, this Perspective aims to show how a process amenable to industry of a simple chiral molecule can be tackled in several different ways using organocatalysis.
Collapse
|
19
|
Lee SB, Park JH, Bae HY. Hydrophobic Amplification Enabled High-Turnover Phosphazene Superbase Catalysis. CHEMSUSCHEM 2022; 15:e202200634. [PMID: 35638148 DOI: 10.1002/cssc.202200634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/26/2022] [Indexed: 06/15/2023]
Abstract
β-Sulfido sulfonyl fluoride and its derivatives have been gaining attention recently in the fields of medicinal chemistry and material science. The conventional method for the synthesis of functionalized alkyl sulfonyl fluorides requires several chemical transformations. Therefore, a direct establishment of such chemical structures remains challenging, and an efficient catalytic approach is highly desired. Herein a significant "on-water" hydrophobic amplification was achieved, enabling a high-turnover catalytic thia-Michael addition to produce unprecedented β-arylated-β-sulfido sulfonyl fluorides. Amounts as low as 100 ppm (0.01 mol %) of the phosphazene superbase were sufficient to successfully catalyze the reaction with excellent chemo-/site-selectivity and with optimal functional group tolerance. Several β-arylated ethene sulfonyl fluorides were converted into thia-Michael adducts up to >99 % yields. The mild conditions, high turnover, neutral pH, and scalability of the sustainable catalytic process benefit the preparation of potential pharmaceuticals (e. g., polyisoprenylated methylated protein methyl esterase inhibitors) and organic materials (e. g., electrolyte additives).
Collapse
Affiliation(s)
- Sun Bu Lee
- Department of Chemistry, Sungkyunkwan University 2066, Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Jin Hyun Park
- Department of Chemistry, Sungkyunkwan University 2066, Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Han Yong Bae
- Department of Chemistry, Sungkyunkwan University 2066, Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| |
Collapse
|
20
|
Luo W, Zhang LM, Zhang ZM, Zhang J. Synthesis of W-Phos Ligand and Its Application in the Copper-Catalyzed Enantioselective Addition of Linear Grignard Reagents to Ketones. Angew Chem Int Ed Engl 2022; 61:e202204443. [PMID: 35555954 DOI: 10.1002/anie.202204443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Indexed: 12/31/2022]
Abstract
The asymmetric catalytic addition of linear Grignard reagents to ketones has been a long-standing challenge in organic synthesis. Herein, a novel family of PNP ligands (W-Phos) was designed and applied in copper-catalyzed asymmetric addition of linear Grignard reagents to aryl alkyl ketones, allowing facile access to versatile chiral tertiary alcohols in good to high yields with excellent enantioselectivities (up to 94 % yield, 96 % ee). The process can also be used to synthesize chiral allylic tertiary alcohols from more challenging α,β-unsaturated ketones. Notably, the potential utility of this method is demonstrated in the gram-scale synthesis and modification of various densely functionalized medicinally relevant molecules.
Collapse
Affiliation(s)
- Wenjun Luo
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.,Zhuhai Fudan Innovation Institute, Hengqin NewArea, Zhuhai, 519000, P.R. China
| | - Li-Ming Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Zhan-Ming Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.,Zhuhai Fudan Innovation Institute, Hengqin NewArea, Zhuhai, 519000, P.R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, P. R. China
| |
Collapse
|
21
|
Zhou H, Han JT, Nöthling N, Lindner MM, Jenniches J, Kühn C, Tsuji N, Zhang L, List B. Organocatalytic Asymmetric Synthesis of Si-Stereogenic Silyl Ethers. J Am Chem Soc 2022; 144:10156-10161. [PMID: 35649270 PMCID: PMC9490845 DOI: 10.1021/jacs.2c04261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Indexed: 01/15/2023]
Abstract
Functionalized enantiopure organosilanes are important building blocks with applications in various fields of chemistry; nevertheless, asymmetric synthetic methods for their preparation are rare. Here we report the first organocatalytic enantioselective synthesis of tertiary silyl ethers possessing "central chirality" on silicon. The reaction proceeds via a desymmetrizing carbon-carbon bond forming silicon-hydrogen exchange reaction of symmetrical bis(methallyl)silanes with phenols using newly developed imidodiphosphorimidate (IDPi) catalysts. A variety of enantiopure silyl ethers was obtained in high yields with good chemo- and enantioselectivities and could be readily derivatized to several useful chiral silicon compounds, leveraging the olefin functionality and the leaving group nature of the phenoxy substituent.
Collapse
Affiliation(s)
- Hui Zhou
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Jung Tae Han
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Nils Nöthling
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Monika M. Lindner
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Judith Jenniches
- Innovation
Center, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Clemens Kühn
- Innovation
Center, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Nobuya Tsuji
- Institute
for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Li Zhang
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Benjamin List
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Institute
for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
22
|
Copper complex featuring Cation-Excess alternation counterion catalyzing Mukaiyama-Aldol reaction of ketene silyl acetals and ketones. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Zhang J, Luo W, Zhang LM, Zhang ZM. Design and Synthesis of W‐Phos and Application in Copper‐Catalyzed Enantioselective Addition of Linear Grignard Reagents to Ketones. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Junliang Zhang
- Fudan University Department of Chemistry 200062 Shanghai CHINA
| | - Wenjun Luo
- Fudan University Department of Chemistry CHINA
| | | | | |
Collapse
|
24
|
Ouyang J, Maji R, Leutzsch M, Mitschke B, List B. Design of an Organocatalytic Asymmetric (4 + 3) Cycloaddition of 2-Indolylalcohols with Dienolsilanes. J Am Chem Soc 2022; 144:8460-8466. [PMID: 35523203 PMCID: PMC9121375 DOI: 10.1021/jacs.2c02216] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
![]()
Here we present the
design of a highly enantioselective, catalytic
(4 + 3) cycloaddition of gem-dialkyl 2-indolyl alcohols
and dienolsilanes, enabled by strong and confined IDPi Lewis acids.
The method furnishes novel bicyclo[3.2.2]cyclohepta[b]indoles with up to three stereogenic centers, one of which is quaternary.
A broad substrate scope is accompanied by versatile downstream chemical
modifications. Density functional theory-supported mechanistic studies
shed light on the importance of the in situ generated silylium species
in an overall concerted yet asynchronous cycloaddition.
Collapse
Affiliation(s)
- Jie Ouyang
- Max-Planck-Institut für Kohlenforschung, D45470 Mülheim an der Ruhr, Germany
| | - Rajat Maji
- Max-Planck-Institut für Kohlenforschung, D45470 Mülheim an der Ruhr, Germany
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung, D45470 Mülheim an der Ruhr, Germany
| | - Benjamin Mitschke
- Max-Planck-Institut für Kohlenforschung, D45470 Mülheim an der Ruhr, Germany
| | - Benjamin List
- Max-Planck-Institut für Kohlenforschung, D45470 Mülheim an der Ruhr, Germany.,Institute for Chemical Reaction Design and Discovery (WPI-ICRedd), Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
25
|
Ghosh S, Erchinger JE, Maji R, List B. Catalytic Asymmetric Spirocyclizing Diels-Alder Reactions of Enones: Stereoselective Total and Formal Syntheses of α-Chamigrene, β-Chamigrene, Laurencenone C, Colletoic Acid, and Omphalic Acid. J Am Chem Soc 2022; 144:6703-6708. [PMID: 35389217 PMCID: PMC9026245 DOI: 10.1021/jacs.2c01971] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
We disclose a general
catalytic enantioselective Diels–Alder
reaction of exo-enones with dienes to give spirocyclanes.
The obtained products feature highly congested quaternary stereogenic
spirocenters and are used in concise total and formal syntheses of
several sesquiterpenes, including of α-chamigrene, β-chamigrene,
laurencenone C, colletoic acid, and omphalic acid. The stereo- and
regioselectivities of our spirocyclizing cycloaddition are effectively
controlled by strongly acidic and confined imidodiphosphorimidate
catalysts. Computational studies shed light on the origin of reactivity
and selectivity.
Collapse
Affiliation(s)
- Santanu Ghosh
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
| | | | - Rajat Maji
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
| | - Benjamin List
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
26
|
Grossmann O, Maji R, Aukland MH, Lee S, List B. Catalytic Asymmetric Additions of Enol Silanes to In Situ Generated Cyclic, Aliphatic N-Acyliminium Ions. Angew Chem Int Ed Engl 2022; 61:e202115036. [PMID: 34897932 PMCID: PMC9303265 DOI: 10.1002/anie.202115036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Indexed: 12/02/2022]
Abstract
Strong and confined imidodiphosphorimidate (IDPi) catalysts enable highly enantioselective substitutions of cyclic, aliphatic hemiaminal ethers with enol silanes. 2-Substituted pyrrolidines, piperidines, and azepanes are obtained with high enantioselectivities, and the method displays a broad tolerance of various enol silane nucleophiles. Several natural products can be accessed using this methodology. Mechanistic studies support the intermediacy of non-stabilized, cyclic N-(exo-acyl)iminium ions, paired with the confined chiral counteranion. Computational studies suggest transition states that explain the observed enantioselectivity.
Collapse
Affiliation(s)
- Oleg Grossmann
- Homogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an derRuhrGermany
| | - Rajat Maji
- Homogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an derRuhrGermany
| | - Miles H. Aukland
- Homogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an derRuhrGermany
| | - Sunggi Lee
- Department of Emerging Materials ScienceDaegu Gyeongbuk Institute of Science and Technology (DGIST)333, Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gunDaegu (Republik ofKorea
| | - Benjamin List
- Homogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der Ruhr (Germany)
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD)Hokkaido UniversitySapporo001-0021Japan
| |
Collapse
|
27
|
Arii H, Nakao K, Masuda H, Kawashima T. Synthesis of 1-Silabenzo[ d, e]isochromanes via Electrophilic Aromatic Substitution of Aldehydes Activated by Silylium Ion. ACS OMEGA 2022; 7:5166-5175. [PMID: 35187332 PMCID: PMC8851623 DOI: 10.1021/acsomega.1c06228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
A strong Lewis acid silylium ion was utilized for dehydrogenative annulation between dialkyl(1-naphthyl)silanes 1 and aldehydes 2. Silane 1a was reacted with [Ph3C][B(C6F5)4] in the presence of 2,6-di-tert-butyl-4-methylpyridine and aldehydes 2 to afford the annulation product, 1-silabenzo[d,e]isochromanes 3, in moderate isolated yields. The annulation occurred only at the 8-position on the 1-naphthyl group. The silylium ion-promoted hydrosilylation proceeded competitively to afford silyl ethers 4 via the same intermediates, silylcarboxonium ions, in the dehydrogenative annulation. The ratio of 3 and 4 was affected by solvents and the electronic properties of aromatic aldehydes; for example, the use of less polar solvents and that of benzaldehydes with an electron-withdrawing group at the para-position predominantly yielded 3. This annulation reaction was applicable to aldehydes bearing a heteroaromatic group and aliphatic alkyl groups. Judging from these results, both the formation of silylcarboxonium ions by in situ-generated silylium ions and the electrophilic aromatic substitution are important for this annulation reaction.
Collapse
Affiliation(s)
- Hidekazu Arii
- Faculty
of Education, University of Miyazaki, 1-1 Gakuen Kibanadai Nishi, Miyazaki 889-2192, Japan
| | - Kenichi Nakao
- Department
of Life Science and Applied Chemistry, Nagoya
Institute of Technology, Gokiso-cho,
Showa-ku, Nagoya 466-8555, Japan
| | - Hideki Masuda
- Department
of Life Science and Applied Chemistry, Nagoya
Institute of Technology, Gokiso-cho,
Showa-ku, Nagoya 466-8555, Japan
| | - Takayuki Kawashima
- Graduate
School of Science and Technology, Gunma
University, 1-5-1 Tenjin-cho, Kiryu, 376-8515 Gunma, Japan
| |
Collapse
|
28
|
Peng B, Ma J, Guo J, Gong Y, Wang R, Zhang Y, Zeng J, Chen WW, Ding K, Zhao B. A Powerful Chiral Super Brønsted C-H Acid for Asymmetric Catalysis. J Am Chem Soc 2022; 144:2853-2860. [PMID: 35143204 DOI: 10.1021/jacs.1c12723] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new type of chiral super Brønsted C-H acids, BINOL-derived phosphoryl bis((trifluoromethyl)sulfonyl) methanes (BPTMs), were developed. As compared to widely utilized BINOL-derived chiral phosphoric acids (BPAs) and N-triflyl phosphoramides (NTPAs), BPTMs displayed much higher Brønsted acidity, resulting in dramatically improved activity and excellent enantioselectivity as demonstrated in catalytic asymmetric Mukaiyama-Mannich reaction, allylic amination, three-component coupling of allyltrimethylsilane with 9-fluorenylmethyl carbamate and aldehydes, and protonation of silyl enol ether. These new strong Brønsted C-H acids have provided a platform for expanding the chemistry of asymmetric Brønsted acid catalysis.
Collapse
Affiliation(s)
- Bingfei Peng
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Jiguo Ma
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China.,State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jianhua Guo
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Yating Gong
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Ronghao Wang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Yi Zhang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China.,State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jinlong Zeng
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Wen-Wen Chen
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Kuiling Ding
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Baoguo Zhao
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
29
|
Grossmann O, Maji R, Aukland MH, Lee S, List B. Katalytische asymmetrische Additionen von Enolsilanen an in situ erzeugte zyklische, aliphatische
N
‐Acyliminiumionen. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Oleg Grossmann
- Homogene Katalyse Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - Rajat Maji
- Homogene Katalyse Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - Miles H. Aukland
- Homogene Katalyse Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - Sunggi Lee
- Department of Emerging Materials Science Daegu Gyeongbuk Institute of Science and Technology (DGIST) 333, Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun Daegu (Republik Korea
| | - Benjamin List
- Homogene Katalyse Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr (Germany)
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo 001-0021 Japan
| |
Collapse
|
30
|
Kennemur J, Maji R, Scharf MJ, List B. Catalytic Asymmetric Hydroalkoxylation of C-C Multiple Bonds. Chem Rev 2021; 121:14649-14681. [PMID: 34860509 PMCID: PMC8704240 DOI: 10.1021/acs.chemrev.1c00620] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 01/30/2023]
Abstract
Asymmetric hydroalkoxylation of alkenes constitutes a redox-neutral and 100% atom-economical strategy toward enantioenriched oxygenated building blocks from readily available starting materials. Despite their great potential, catalytic enantioselective additions of alcohols across a C-C multiple bond are particularly underdeveloped, especially compared to other hydrofunctionalization methods such as hydroamination. However, driven by some recent innovations, e.g., asymmetric MHAT methods, asymmetric photocatalytic methods, and the development of extremely strong chiral Brønsted acids, there has been a gratifying surge of reports in this burgeoning field. The goal of this review is to survey the growing landscape of asymmetric hydroalkoxylation by highlighting exciting new advances, deconstructing mechanistic underpinnings, and drawing insight from related asymmetric hydroacyloxylation and hydration. A deep appreciation of the underlying principles informs an understanding of the various selectivity parameters and activation modes in the realm of asymmetric alkene hydrofunctionalization while simultaneously evoking the outstanding challenges to the field moving forward. Overall, we aim to lay a foundation for cross-fertilization among various catalytic fields and spur further innovation in asymmetric hydroalkoxylations of C-C multiple bonds.
Collapse
Affiliation(s)
| | | | - Manuel J. Scharf
- Max-Planck-Institut für
Kohlenforschung, Kaiser Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Benjamin List
- Max-Planck-Institut für
Kohlenforschung, Kaiser Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
31
|
Das S, Mitschke B, De CK, Harden I, Bistoni G, List B. Harnessing the ambiphilicity of silyl nitronates in a catalytic asymmetric approach to aliphatic β3-amino acids. Nat Catal 2021. [DOI: 10.1038/s41929-021-00714-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractNitronate anions, formally generated by α-deprotonating the corresponding nitroalkanes, are highly nucleophilic and versatile intermediates in many carbon–carbon bond-forming reactions. In contrast, the corresponding silyl nitronates are ambiphilic and react, at the same carbon atom, with both electrophiles and nucleophiles. However, while their nucleophilicity has been well exploited in catalytic enantioselective reactions with imines and aldehydes, utilizing the electrophilicity of silyl nitronates in asymmetric synthesis has remained elusive. Here we report the facile, efficient and general reactivity of readily available silyl nitronates with silyl ketene acetals, catalysed by highly Lewis-acidic and confined silylium imidodiphosphorimidate catalysts. The products of this reaction, so-called nitroso acetals, are obtained in excellent enantioselectivity and can be easily converted into N-Boc-β3-amino acid esters in a single step.
Collapse
|
32
|
Thirupathi G, Ashok E, Suresh Kumar A, Ramachary DB. Parts-per-Million-Level, Catalytic [3+2]-Annulations for the Asymmetric Synthesis of Methanobenzo[7]annulenes. Chemistry 2021; 27:18033-18038. [PMID: 34677886 DOI: 10.1002/chem.202103254] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Indexed: 12/11/2022]
Abstract
3-Alkyl-lawsones selectively reacted with α-alkyl-nitroethylenes under 500 parts-per-million (ppm) quinine-NH-thiourea-catalysis to furnish the chiral methanobenzo[7]annulenes in up to >99 % ee with >20 : 1 dr and TON up to 1820 through tandem Michael/Henry [3+2]-annulations. These asymmetric ppm-level, catalytic tandem [3+2]-annulations would be highly inspirational for the design of many more ppm-level organocatalytic reactions, and at the same time these final molecules are basic skeletons of antibiotics.
Collapse
Affiliation(s)
- Guguloth Thirupathi
- Catalysis Laboratory, School of Chemistry, University of Hyderabad, Hyderabad, 500 046, India
| | - Etikala Ashok
- Catalysis Laboratory, School of Chemistry, University of Hyderabad, Hyderabad, 500 046, India
| | - A Suresh Kumar
- Catalysis Laboratory, School of Chemistry, University of Hyderabad, Hyderabad, 500 046, India
| | | |
Collapse
|
33
|
Amatov T, Tsuji N, Maji R, Schreyer L, Zhou H, Leutzsch M, List B. Confinement-Controlled, Either syn- or anti-Selective Catalytic Asymmetric Mukaiyama Aldolizations of Propionaldehyde Enolsilanes. J Am Chem Soc 2021; 143:14475-14481. [PMID: 34436899 PMCID: PMC8447262 DOI: 10.1021/jacs.1c07447] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Protected aldols
(i.e., true aldols derived from aldehydes) with
either syn- or anti- stereochemistry
are versatile intermediates in many oligopropionate syntheses. Traditional
stereoselective approaches to such aldols typically require several
nonstrategic operations. Here we report two highly enantioselective
and diastereoselective catalytic Mukaiyama aldol reactions of the
TBS- or TES- enolsilanes of propionaldehyde with aromatic aldehydes.
Our reactions directly deliver valuable silyl protected propionaldehyde
aldols in a catalyst controlled manner, either as syn- or anti- isomer. We have identified a privileged
IDPi catalyst motif that is tailored for controlling these aldolizations
with exceptional selectivities. We demonstrate how a single atom modification
in the inner core of the IDPi catalyst, replacing a CF3-group with a CF2H-group, leads to a dramatic switch in
enantiofacial differentiation of the aldehyde. The origin of this
remarkable effect was attributed to tightening of the catalytic cavity
via unconventional C–H hydrogen bonding of the CF2H group.
Collapse
Affiliation(s)
- Tynchtyk Amatov
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Nobuya Tsuji
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Rajat Maji
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Lucas Schreyer
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Hui Zhou
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Benjamin List
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
34
|
Schwengers SA, De CK, Grossmann O, Grimm JAA, Sadlowski NR, Gerosa GG, List B. Unified Approach to Imidodiphosphate-Type Brønsted Acids with Tunable Confinement and Acidity. J Am Chem Soc 2021; 143:14835-14844. [PMID: 34478297 PMCID: PMC8447263 DOI: 10.1021/jacs.1c07067] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
![]()
We
have designed
and realized an efficient and operationally simple
single-flask synthesis of imidodiphosphate-based Brønsted acids.
The methodology proceeds via consecutive chloride
substitutions of hexachlorobisphosphazonium salts, providing rapid
access to imidodiphosphates (IDP), iminoimidodiphosphates (iIDP), and imidodiphosphorimidates (IDPi). These privileged
acid catalysts feature a broad acidity range (pKa from ∼11 to <2 in MeCN) and a readily tunable confined
active site. Our approach enables access to previously elusive catalyst
scaffolds with particularly high structural confinement, one of which
catalyzes the first highly enantioselective
(>95:5 er) sulfoxidation of methyl n-propyl sulfide.
Furthermore, the methodology delivers a novel, rationally designed
super acidic catalyst motif, imidodiphosphorbis(iminosulfonylimino)imidate
(IDPii), the extreme reactivity of which exceeds commonly employed
super-Brønsted acids, such as trifluoromethanesulfonic acid.
The unique reactivity of one such IDPii catalyst has been demonstrated
in the first α-methylation of a silyl ketene acetal with methanol
as the electrophilic alkylating reagent.
Collapse
Affiliation(s)
- Sebastian A Schwengers
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Chandra Kanta De
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Oleg Grossmann
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Joyce A A Grimm
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Natascha R Sadlowski
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Gabriela G Gerosa
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Benjamin List
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
35
|
Larionov VA, Feringa BL, Belokon YN. Enantioselective "organocatalysis in disguise" by the ligand sphere of chiral metal-templated complexes. Chem Soc Rev 2021; 50:9715-9740. [PMID: 34259242 DOI: 10.1039/d0cs00806k] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Asymmetric catalysis holds a prominent position among the important developments in chemistry during the 20th century. This was acknowledged by the 2001 Nobel Prize in chemistry awarded to Knowles, Noyori, and Sharpless for their development of chiral metal catalysts for organic transformations. The key feature of the catalysts was the crucial role of the chiral ligand and the nature of the metal ions, which promoted the catalytic conversions of the substrates via direct coordination. Subsequently the development of asymmetric organic catalysis opened new avenues to the synthesis of enantiopure compounds, avoiding any use of metal ions. Recently, an alternative approach to asymmetric catalysis emerged that relied on the catalytic functions of the ligands themselves boosted by coordination to metal ions. In other words, in these hybrid chiral catalysts the substrates are activated not by the metal ions but by the ligands. The activation and enantioselective control occurred via well-orchestrated and custom-tailored non-covalent interactions of the substrates with the ligand sphere of chiral metal complexes. In these metal-templated catalysts, the metal served either as a template (a purely structural role), or it constituted the exclusive source of chirality (metal-centred chirality due to the spatial arrangement of achiral or chiral bi-/tridentate ligands around an octahedral metal centre), and/or it increased the Brønsted acidity of the ligands. Although the field is still in its infancy, it represents an inspiring combination of both metal and organic catalysis and holds major unexplored potential to push the frontiers of asymmetric catalysis. Here we present an overview of this emerging field discussing the principles, applications and perspectives on the catalytic use of chiral metal complexes that operate as "organocatalysts in disguise". It has been demonstrated that these chiral metal complexes are efficient and provide high stereoselective control in asymmetric hydrogen bonding catalysis, phase-transfer catalysis, Brønsted acid/base catalysis, enamine catalysis, nucleophilic catalysis, and photocatalysis as well as bifunctional catalysis. Also, many of the catalysts have been identified as highly effective catalysts at remarkably low catalyst loadings. These hybrid systems offer many opportunities in the synthesis of chiral compounds and represent promising alternatives to metal-based and organocatalytic asymmetric transformations.
Collapse
Affiliation(s)
- Vladimir A Larionov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russian Federation.
| | | | | |
Collapse
|
36
|
Cheng A, Zhang L, Zhou Q, Liu T, Cao J, Zhao G, Zhang K, Song G, Zhao B. Efficient Asymmetric Biomimetic Aldol Reaction of Glycinates and Trifluoromethyl Ketones by Carbonyl Catalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Aolin Cheng
- The Education Ministry Key Lab of Resource Chemistry Joint International Research Laboratory of Resource Chemistry Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
| | - Liangliang Zhang
- The Education Ministry Key Lab of Resource Chemistry Joint International Research Laboratory of Resource Chemistry Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
| | - Qinghai Zhou
- The Education Ministry Key Lab of Resource Chemistry Joint International Research Laboratory of Resource Chemistry Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
| | - Tao Liu
- The Education Ministry Key Lab of Resource Chemistry Joint International Research Laboratory of Resource Chemistry Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
| | - Jing Cao
- The Education Ministry Key Lab of Resource Chemistry Joint International Research Laboratory of Resource Chemistry Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
| | - Guoqing Zhao
- The Education Ministry Key Lab of Resource Chemistry Joint International Research Laboratory of Resource Chemistry Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
| | - Kun Zhang
- The Education Ministry Key Lab of Resource Chemistry Joint International Research Laboratory of Resource Chemistry Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
| | - Guanshui Song
- The Education Ministry Key Lab of Resource Chemistry Joint International Research Laboratory of Resource Chemistry Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
| | - Baoguo Zhao
- The Education Ministry Key Lab of Resource Chemistry Joint International Research Laboratory of Resource Chemistry Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
| |
Collapse
|
37
|
Cheng A, Zhang L, Zhou Q, Liu T, Cao J, Zhao G, Zhang K, Song G, Zhao B. Efficient Asymmetric Biomimetic Aldol Reaction of Glycinates and Trifluoromethyl Ketones by Carbonyl Catalysis. Angew Chem Int Ed Engl 2021; 60:20166-20172. [PMID: 34139067 DOI: 10.1002/anie.202104031] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/04/2021] [Indexed: 01/26/2023]
Abstract
The direct asymmetric aldol reaction of glycinates represents an intriguing and straightforward strategy to make biologically significant chiral β-hydroxy-α-amino-acid derivatives. But it is not easy to realize the transformation due to the disruption of the reactive NH2 group of glycinates. Inspired by the enzymatic aldol reaction of glycine, we successfully developed an asymmetric aldol reaction of glycinate 5 and trifluoromethyl ketones 4 with 0.1-0.0033 mol % of chiral N-methyl pyridoxal 7 a as the catalyst, producing chiral β-trifluoromethyl-β-hydroxy-α-amino-acid esters 6 in 55-82 % yields (for the syn-diastereomers) with up to >20:1 dr and 99 % ee under very mild conditions. The reaction proceeds via a catalytic cycle similar to the enzymatic aldol reaction of glycine. Pyridoxal catalyst 7 a activates both reactants at the same time and brings them together in a specific spatial orientation, accounting for the high efficiency as well as excellent diastereo- and enantioselectivities.
Collapse
Affiliation(s)
- Aolin Cheng
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Liangliang Zhang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Qinghai Zhou
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Tao Liu
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Jing Cao
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Guoqing Zhao
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Kun Zhang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Guanshui Song
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Baoguo Zhao
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
38
|
Zhang R, Ge S, Sun J. SPHENOL, A New Chiral Framework for Asymmetric Synthesis. J Am Chem Soc 2021; 143:12445-12449. [PMID: 34358424 DOI: 10.1021/jacs.1c05709] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Privileged chiral catalysts have found tremendous applications and thus immensely advanced asymmetric synthesis in the past few decades. However, truly privileged chiral frameworks are still extremely limited. Thus, the search for and development of new versatile members remain in high demand but challenging. Herein we report the design, synthesis, and application of a new chiral framework, SPHENOL, which features combined advantages of BINOL and SPINOL. This unique feature enables SPHENOL to serve as a new platform for the development of chiral ligands and catalysts. Its superior performance has been demonstrated in mechanistically unrelated reactions, including asymmetric hydrogenation, hydroacylation, and spirocyclization for the practical asymmetric synthesis of SPHENOL itself. These results indicated the great potential of SPHENOL as a useful chiral framework.
Collapse
Affiliation(s)
- Ronghua Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Shulin Ge
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.,The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
39
|
Antenucci A, Dughera S, Renzi P. Green Chemistry Meets Asymmetric Organocatalysis: A Critical Overview on Catalysts Synthesis. CHEMSUSCHEM 2021; 14:2785-2853. [PMID: 33984187 PMCID: PMC8362219 DOI: 10.1002/cssc.202100573] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Indexed: 05/30/2023]
Abstract
Can green chemistry be the right reading key to let organocatalyst design take a step forward towards sustainable catalysis? What if the intriguing chemistry promoted by more engineered organocatalysts was carried on by using renewable and naturally occurring molecular scaffolds, or at least synthetic catalysts more respectful towards the principles of green chemistry? Within the frame of these questions, this Review will tackle the most commonly occurring organic chiral catalysts from the perspective of their synthesis rather than their employment in chemical methodologies or processes. A classification of the catalyst scaffolds based on their E factor will be provided, and the global E factor (EG factor) will be proposed as a new green chemistry metric to consider, also, the synthetic route to the catalyst within a given organocatalytic process.
Collapse
Affiliation(s)
- Achille Antenucci
- Department of ChemistryUniversity of TurinVia Pietro Giuria, 710125TurinItaly
- NIS Interdeprtmental CentreINSTM Reference CentreUniversity of TurinVia Gioacchino Quarello 15/A10135TurinItaly
| | - Stefano Dughera
- Department of ChemistryUniversity of TurinVia Pietro Giuria, 710125TurinItaly
| | - Polyssena Renzi
- Department of ChemistryUniversity of TurinVia Pietro Giuria, 710125TurinItaly
| |
Collapse
|
40
|
Abstract
Abstract
During the last 20 years, organocatalysis has significantly advanced as a field. Thanks to contributions from hundreds of groups and companies around the world, the area has risen from a few mechanistically ill-defined niche reactions, to one of the most vibrant and innovative fields in chemistry, providing several well-defined generic activation modes for selective catalysis. Organocatalysis is also on the rise in industrial settings, especially for the production of enantiomers, which are of use in fine chemistry, pharma, crop-protection, and fragrance chemistry. Here we will look at some of the specific elements of organocatalysis that we think are particularly attractive and contribute to this successful development.
Collapse
Affiliation(s)
- Miles H. Aukland
- Max-Planck-Institut für Kohlenforschung , Mulheim an der Ruhr , Germany
| | - Benjamin List
- Max-Planck-Institut für Kohlenforschung , Mulheim an der Ruhr , Germany
| |
Collapse
|
41
|
Da B, Xiang S, Li S, Tan B. Chiral Phosphoric Acid Catalyzed Asymmetric Synthesis of Axially Chiral Compounds
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000751] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Bing‐Chao Da
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen Guangdong 518055 China
| | - Shao‐Hua Xiang
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen Guangdong 518055 China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen Guangdong 518055 China
| | - Shaoyu Li
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen Guangdong 518055 China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen Guangdong 518055 China
| | - Bin Tan
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen Guangdong 518055 China
| |
Collapse
|
42
|
Klare HFT, Albers L, Süsse L, Keess S, Müller T, Oestreich M. Silylium Ions: From Elusive Reactive Intermediates to Potent Catalysts. Chem Rev 2021; 121:5889-5985. [PMID: 33861564 DOI: 10.1021/acs.chemrev.0c00855] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The history of silyl cations has all the makings of a drama but with a happy ending. Being considered reactive intermediates impossible to isolate in the condensed phase for decades, their actual characterization in solution and later in solid state did only fuel the discussion about their existence and initially created a lot of controversy. This perception has completely changed today, and silyl cations and their donor-stabilized congeners are now widely accepted compounds with promising use in synthetic chemistry. This review provides a comprehensive summary of the fundamental facts and principles of the chemistry of silyl cations, including reliable ways of their preparation as well as their physical and chemical properties. The striking features of silyl cations are their enormous electrophilicity and as such reactivity as super Lewis acids as well as fluorophilicity. Known applications rely on silyl cations as reactants, stoichiometric reagents, and promoters where the reaction success is based on their steady regeneration over the course of the reaction. Silyl cations can even be discrete catalysts, thereby opening the next chapter of their way into the toolbox of synthetic methodology.
Collapse
Affiliation(s)
- Hendrik F T Klare
- Institut für Chemie, Technische Universität Berlin, Strasse des 17 Juni 115, 10623 Berlin, Germany
| | - Lena Albers
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky-Strasse 9-11, 26129 Oldenburg, Germany
| | - Lars Süsse
- Institut für Chemie, Technische Universität Berlin, Strasse des 17 Juni 115, 10623 Berlin, Germany
| | - Sebastian Keess
- Institut für Chemie, Technische Universität Berlin, Strasse des 17 Juni 115, 10623 Berlin, Germany
| | - Thomas Müller
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky-Strasse 9-11, 26129 Oldenburg, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17 Juni 115, 10623 Berlin, Germany
| |
Collapse
|
43
|
Zhu C, Mandrelli F, Zhou H, Maji R, List B. Catalytic Asymmetric Synthesis of Unprotected β 2-Amino Acids. J Am Chem Soc 2021; 143:3312-3317. [PMID: 33645969 PMCID: PMC7953379 DOI: 10.1021/jacs.1c00249] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
![]()
We report here a
scalable, catalytic one-pot approach to enantiopure
and unmodified β2-amino acids. A newly developed
confined imidodiphosphorimidate (IDPi) catalyzes a broadly applicable
reaction of diverse bis-silyl ketene acetals with a silylated aminomethyl
ether, followed by hydrolytic workup, to give free β2-amino acids in high yields, purity, and enantioselectivity. Importantly,
both aromatic and aliphatic β2-amino acids can be
obtained using this method. Mechanistic studies are consistent with
the aminomethylation to proceed via silylium-based asymmetric counteranion-directed
catalysis (Si-ACDC) and a transition state to explain the enantioselectivity
is suggested on the basis of density functional theory calculation.
Collapse
Affiliation(s)
- Chendan Zhu
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Francesca Mandrelli
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Hui Zhou
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Rajat Maji
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Benjamin List
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
44
|
Sutar RL, Erochok N, Huber SM. Mukaiyama aldol reaction catalyzed by (benz)imidazolium-based halogen bond donors. Org Biomol Chem 2021; 19:770-774. [PMID: 33432958 DOI: 10.1039/d0ob02503h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of cationic monodentate and bidentate iodo(benz)imidazolium-based halogen bond (XB) donors were employed as catalysts in a Mukaiyama aldol reaction. While 5 mol% of a monodentate variant showed noticeable activity, a syn-preorganized bidentate XB donor provided a strong performance even with 0.5 mol% loading. In contrast to the very active BArF4 salts, PF6 or OTf salts were either inactive or showed background reaction through Lewis base catalysis. Repetition experiments clearly ruled out a potential hidden catalysis by elemental iodine and demonstrated the stability of our catalyst over three consecutive cycles.
Collapse
Affiliation(s)
- Revannath L Sutar
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
| | - Nikita Erochok
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
| | - Stefan M Huber
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
| |
Collapse
|
45
|
Zhang P, Tsuji N, Ouyang J, List B. Strong and Confined Acids Catalyze Asymmetric Intramolecular Hydroarylations of Unactivated Olefins with Indoles. J Am Chem Soc 2021; 143:675-680. [PMID: 33399449 PMCID: PMC7830113 DOI: 10.1021/jacs.0c12042] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
In
recent years, several
organocatalytic asymmetric hydroarylations of activated, electron-poor
olefins with activated, electron-rich arenes have been described.
In contrast, only a few approaches that can handle unactivated, electronically neutral olefins have been reported and invariably
require transition metal catalysts. Here we show how an efficient
and highly enantioselective catalytic asymmetric intramolecular hydroarylation
of aliphatic and aromatic olefins with indoles can be realized using
strong and confined IDPi Brønsted acid catalysts. This unprecedented
transformation is enabled by tertiary carbocation formation and establishes
quaternary stereogenic centers in excellent enantioselectivity and
with a broad substrate scope that includes an aliphatic iodide, an
azide, and an alkyl boronate, which can be further elaborated into
bioactive molecules.
Collapse
Affiliation(s)
- Pinglu Zhang
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Nobuya Tsuji
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Jie Ouyang
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Benjamin List
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
46
|
Yang X, Majhi PK, Chai H, Liu B, Sun J, Liu T, Liu Y, Zhou L, Xu J, Liu J, Wang D, Zhao Y, Jin Z, Chi YR. Carbene-Catalyzed Enantioselective Aldol Reaction: Post-Aldol Stereochemistry Control and Formation of Quaternary Stereogenic Centers. Angew Chem Int Ed Engl 2021; 60:159-165. [PMID: 32931603 DOI: 10.1002/anie.202008369] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/28/2020] [Indexed: 12/13/2022]
Abstract
The dominated approaches for asymmetric aldol reactions have primarily focused on the aldol carbon-carbon bond-forming events. Here we postulate and develop a new catalytic strategy that seeks to modulate the reaction thermodynamics and control the product enantioselectivities via post-aldol processes. Specifically, an NHC catalyst is used to activate a masked enolate substrate (vinyl carbonate) to promote the aldol reaction in a non-enantioselective manner. This reversible aldol event is subsequently followed by an enantioselective acylative kinetic resolution that is mediated by the same (chiral) NHC catalyst without introducing any additional substance. This post-aldol process takes care of the enantioselectivity issues and drives the otherwise reversible aldol reaction toward a complete conversion. The acylated aldol products bearing quaternary/tetrasubstituted carbon stereogenic centers are formed in good yields and high optical purities.
Collapse
Affiliation(s)
- Xing Yang
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Pankaj Kumar Majhi
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Huifang Chai
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Bin Liu
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Jun Sun
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Ting Liu
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Yonggui Liu
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Liejin Zhou
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Jun Xu
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Jiawei Liu
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Dongdong Wang
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yanli Zhao
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Zhichao Jin
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Yonggui Robin Chi
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.,Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| |
Collapse
|
47
|
Yang X, Majhi PK, Chai H, Liu B, Sun J, Liu T, Liu Y, Zhou L, Xu J, Liu J, Wang D, Zhao Y, Jin Z, Chi YR. Carbene‐Catalyzed Enantioselective Aldol Reaction: Post‐Aldol Stereochemistry Control and Formation of Quaternary Stereogenic Centers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202008369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xing Yang
- Division of Chemistry & Mathematical Science School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Pankaj Kumar Majhi
- Division of Chemistry & Mathematical Science School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Huifang Chai
- Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
| | - Bin Liu
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Huaxi District Guiyang 550025 China
| | - Jun Sun
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Huaxi District Guiyang 550025 China
| | - Ting Liu
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Huaxi District Guiyang 550025 China
| | - Yonggui Liu
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Huaxi District Guiyang 550025 China
| | - Liejin Zhou
- Division of Chemistry & Mathematical Science School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Jun Xu
- Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
| | - Jiawei Liu
- Division of Chemistry & Mathematical Science School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Dongdong Wang
- Division of Chemistry & Mathematical Science School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Yanli Zhao
- Division of Chemistry & Mathematical Science School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Zhichao Jin
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Huaxi District Guiyang 550025 China
| | - Yonggui Robin Chi
- Division of Chemistry & Mathematical Science School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Huaxi District Guiyang 550025 China
| |
Collapse
|
48
|
Benda MC, France S. Chiral disulfonimides: a versatile template for asymmetric catalysis. Org Biomol Chem 2020; 18:7485-7513. [PMID: 32940322 DOI: 10.1039/d0ob01742f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Since the emergence of pseudo-C2-symmetric chiral phosphoric acids (CPA), much work has been done to utilize these systems in stereoselective, organocatalytic processes. Despite the success in this field, reasonably basic substrates such as imines are often required to achieve appreciable activation. In order to access a wider variety of potential reaction partners, many related organocatalysts with enhanced Brønsted acidity have since been developed. Chiral disulfonimides (DSIs) have materialized as one such powerful class of organocatalysts and have been shown to expand the list of potential substrates to include aldehydes and ketones via Brønsted, Lewis, or bifunctional acid activation. This versatility renders DSIs amenable to an impressive scope of reaction types, typically with remarkable stereoselectivity induced by asymmetric counteranion-directed catalysis (ACDC). This review serves to provide a complete analysis of the successful applications, mechanistic insights, and unmet challenges exhibited to date in DSI-catalyzed and -assisted processes.
Collapse
Affiliation(s)
- Meghan C Benda
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | | |
Collapse
|
49
|
Miyazawa T, Suzuki T, Kumagai Y, Takizawa K, Kikuchi T, Kato S, Onoda A, Hayashi T, Kamei Y, Kamiyama F, Anada M, Kojima M, Yoshino T, Matsunaga S. Chiral paddle-wheel diruthenium complexes for asymmetric catalysis. Nat Catal 2020. [DOI: 10.1038/s41929-020-00513-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
50
|
Yin Z, Guo J, Zhang R, Hu X, Borovkov V. Direct Asymmetric Three-Component Mannich Reaction Catalyzed by Chiral Counteranion-Assisted Silver. J Org Chem 2020; 85:10369-10377. [PMID: 32697089 DOI: 10.1021/acs.joc.0c00031] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Direct asymmetric three-component Mannich reaction involving simple ketones (such as cyclohexanone, acetone, and acetophenone) as donors and catalyzing by silver tartaric acid-derived phosphate was realized to afford a series of optically active β-amino-ketone derivatives in high yields (up to 96%) and good-to-high enantioselectivities (up to 97%) with moderate-to-good diastereoselectivities. This is the first example of direct catalytic asymmetric three-component Mannich reaction via a chiral counteranion-directed strategy.
Collapse
Affiliation(s)
- Zhongyou Yin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, P. R. of China
| | - Jianxin Guo
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, P. R. of China
| | - Rui Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, P. R. of China
| | - Xiaoyun Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, P. R. of China
| | - Victor Borovkov
- Hubei Engineering Technology Research Center of Energy Polymer Materials, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, P. R. of China
| |
Collapse
|