1
|
Schulz F, Yan Y, Weiner AK, Ahsan R, Katz LA, Woyke T. Protists as mediators of complex microbial and viral associations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.29.630703. [PMID: 39803511 PMCID: PMC11722414 DOI: 10.1101/2024.12.29.630703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Microbial eukaryotes (aka protists) are known for their important roles in nutrient cycling across different ecosystems. However, the composition and function of protist-associated microbiomes remains largely elusive. Here, we employ cultivation-independent single-cell isolation and genome-resolved metagenomics to provide detailed insights into underexplored microbiomes and viromes of over 100 currently uncultivable ciliates and amoebae isolated from diverse environments. Our findings reveal unique microbiome compositions and hint at an intricate network of complex interactions and associations with bacterial symbionts and viruses. We observed stark differences between ciliates and amoebae in terms of microbiome and virome compositions, highlighting the specificity of protist-microbe interactions. Over 115 of the recovered microbial genomes were affiliated with known endosymbionts of eukaryotes, including diverse members of the Holosporales, Rickettsiales, Legionellales, Chlamydiae, Dependentiae , and more than 250 were affiliated with possible host-associated bacteria of the phylum Patescibacteria. We also identified more than 80 giant viruses belonging to diverse viral lineages, of which some were actively expressing genes in single cell transcriptomes, suggesting a possible association with the sampled protists. We also revealed a wide range of other viruses that were predicted to infect eukaryotes or host-associated bacteria. Our results provide further evidence that protists serve as mediators of complex microbial and viral associations, playing a critical role in ecological networks. The frequent co-occurrence of giant viruses and diverse microbial symbionts in our samples suggests multipartite associations, particularly among amoebae. Our study provides a preliminary assessment of the microbial diversity associated with lesser-known protist lineages and paves the way for a deeper understanding of protist ecology and their roles in environmental and human health.
Collapse
Affiliation(s)
| | - Ying Yan
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
| | - Agnes K.M. Weiner
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
| | - Ragib Ahsan
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
- University of Massachusetts Amherst, Program in Organismic and Evolutionary Biology, Amherst, Massachusetts, USA
| | - Laura A. Katz
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
- University of Massachusetts Amherst, Program in Organismic and Evolutionary Biology, Amherst, Massachusetts, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Berkeley, California, USA
- University of California Merced, Life and Environmental Sciences, Merced, California, USA
| |
Collapse
|
2
|
Abu-Elmakarem H, Taerum SJ, Petitjean C, Kotyk M, Kay C, Čepička I, Bass D, Gile GH, Williams TA. Transcriptome and Evolutionary Analysis of Pseudotrichomonas keilini, a Free-Living Anaerobic Eukaryote. Genome Biol Evol 2024; 16:evae262. [PMID: 39656733 DOI: 10.1093/gbe/evae262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024] Open
Abstract
The early evolution of eukaryotes and their adaptations to low-oxygen environments are fascinating open questions in biology. Genome-scale data from novel eukaryotes, and particularly from free-living lineages, are the key to answering these questions. The Parabasalia are a major group of anaerobic eukaryotes that form the most speciose lineage of Metamonada. The most well-studied are parasitic parabasalids, including Trichomonas vaginalis and Tritrichomonas foetus, but very little genome-scale data are available for free-living members of the group. Here, we sequenced the transcriptome of Pseudotrichomonas keilini, a free-living parabasalian. Comparative genomic analysis indicated that P. keilini possesses a metabolism and gene complement that are in many respects similar to its parasitic relative T. vaginalis and that in the time since their most recent common ancestor, it is the T. vaginalis lineage that has experienced more genomic change, likely due to the transition to a parasitic lifestyle. Features shared between P. keilini and T. vaginalis include a hydrogenosome (anaerobic mitochondrial homolog) that we predict to function much as in T. vaginalis and a complete glycolytic pathway that is likely to represent one of the primary means by which P. keilini obtains ATP. Phylogenomic analysis indicates that P. keilini branches within a clade of endobiotic parabasalids, consistent with the hypothesis that different parabasalid lineages evolved toward parasitic or free-living lifestyles from an endobiotic, anaerobic, or microaerophilic common ancestor.
Collapse
Affiliation(s)
- Hend Abu-Elmakarem
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Stephen J Taerum
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Celine Petitjean
- School of Biological Sciences, University of Bristol, Bristol BS8 1TH, UK
| | - Michael Kotyk
- Department of Zoology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
- Institute of Vertebrate Biology, Czech Academy of Sciences, 603 00 Brno, Czech Republic
| | - Christopher Kay
- School of Biological Sciences, University of Bristol, Bristol BS8 1TH, UK
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - David Bass
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft, UK
| | - Gillian H Gile
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol BS8 1TH, UK
| |
Collapse
|
3
|
Lometto S, Sparvoli D, Malengo G, Heimerl T, Hochberg GKA. The mitochondrial citrate synthase from Tetrahymena thermophila does not form an intermediate filament. Eur J Protistol 2024; 96:126121. [PMID: 39432950 DOI: 10.1016/j.ejop.2024.126121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
The mitochondrial citrate synthase (mCS) purified from the ciliate Tetrahymena thermophila has been reported to form intermediate-filament-like structures during conjugation and to self-assemble into fibers when recombinantly expressed. This would represent a rare example of a tractable and recent origin of a novel cytoskeletal element. In an attempt to investigate the evolutionary emergence of this behavior, we re-investigated the ability of Tetrahymena's mCS to form filaments in vivo. Using strep-tagged mCS in Tetrahymena and monoclonal antibodies, we found no evidence of filamentous structures during conjugation or starvation. Extensive biochemical characterization of mCS revealed that the self-assembly of recombinant protein is triggered by a specific chemical moiety shared by MES and HEPES buffers used in previous studies. The absence of indicative phenotypes in fiber-deficient GFP-tagged mutants indicates that Tetrahymena mCS did not evolve a structural role in sexual reproduction or metabolic regulation.
Collapse
Affiliation(s)
- Stefano Lometto
- Evolutionary Biochemistry Group, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Daniela Sparvoli
- Laboratory of Pathogen Host Interactions, UMR5294, Université de Montpellier, INSERM, CNRS, Montpellier, Pl E. Bataillon Bat. 24 2et, CC107, Montpellier 34095, France
| | - Gabriele Malengo
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany; Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Karl-von-Frisch-Str. 14, 35043 Marburg, Germany
| | - Thomas Heimerl
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Karl-von-Frisch-Str. 14, 35043 Marburg, Germany
| | - Georg K A Hochberg
- Evolutionary Biochemistry Group, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany; Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Karl-von-Frisch-Str. 14, 35043 Marburg, Germany; Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Str. 4, 35043 Marburg, Germany.
| |
Collapse
|
4
|
Nef C, Pierella Karlusich JJ, Bowler C. From nets to networks: tools for deciphering phytoplankton metabolic interactions within communities and their global significance. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230172. [PMID: 39034691 PMCID: PMC11293860 DOI: 10.1098/rstb.2023.0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/26/2024] [Accepted: 03/21/2024] [Indexed: 07/23/2024] Open
Abstract
Our oceans are populated with a wide diversity of planktonic organisms that form complex dynamic communities at the base of marine trophic networks. Within such communities are phytoplankton, unicellular photosynthetic taxa that provide an estimated half of global primary production and support biogeochemical cycles, along with other essential ecosystem services. One of the major challenges for microbial ecologists has been to try to make sense of this complexity. While phytoplankton distributions can be well explained by abiotic factors such as temperature and nutrient availability, there is increasing evidence that their ecological roles are tightly linked to their metabolic interactions with other plankton members through complex mechanisms (e.g. competition and symbiosis). Therefore, unravelling phytoplankton metabolic interactions is the key for inferring their dependency on, or antagonism with, other taxa and better integrating them into the context of carbon and nutrient fluxes in marine trophic networks. In this review, we attempt to summarize the current knowledge brought by ecophysiology, organismal imaging, in silico predictions and co-occurrence networks using 'omics data, highlighting successful combinations of approaches that may be helpful for future investigations of phytoplankton metabolic interactions within their complex communities.This article is part of the theme issue 'Connected interactions: enriching food web research by spatial and social interactions'.
Collapse
Affiliation(s)
- Charlotte Nef
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, Paris75005, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris75016, France
| | | | - Chris Bowler
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, Paris75005, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris75016, France
| |
Collapse
|
5
|
Rappaport HB, Oliverio AM. Lessons from Extremophiles: Functional Adaptations and Genomic Innovations across the Eukaryotic Tree of Life. Genome Biol Evol 2024; 16:evae160. [PMID: 39101574 PMCID: PMC11299111 DOI: 10.1093/gbe/evae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2024] [Indexed: 08/06/2024] Open
Abstract
From hydrothermal vents, to glaciers, to deserts, research in extreme environments has reshaped our understanding of how and where life can persist. Contained within the genomes of extremophilic organisms are the blueprints for a toolkit to tackle the multitude of challenges of survival in inhospitable environments. As new sequencing technologies have rapidly developed, so too has our understanding of the molecular and genomic mechanisms that have facilitated the success of extremophiles. Although eukaryotic extremophiles remain relatively understudied compared to bacteria and archaea, an increasing number of studies have begun to leverage 'omics tools to shed light on eukaryotic life in harsh conditions. In this perspective paper, we highlight a diverse breadth of research on extremophilic lineages across the eukaryotic tree of life, from microbes to macrobes, that are collectively reshaping our understanding of molecular innovations at life's extremes. These studies are not only advancing our understanding of evolution and biological processes but are also offering a valuable roadmap on how emerging technologies can be applied to identify cellular mechanisms of adaptation to cope with life in stressful conditions, including high and low temperatures, limited water availability, and heavy metal habitats. We shed light on patterns of molecular and organismal adaptation across the eukaryotic tree of life and discuss a few promising research directions, including investigations into the role of horizontal gene transfer in eukaryotic extremophiles and the importance of increasing phylogenetic diversity of model systems.
Collapse
Affiliation(s)
- H B Rappaport
- Department of Biology, Syracuse University, Syracuse, NY, USA
| | | |
Collapse
|
6
|
Hamilton M, Ferrer‐González FX, Moran MA. Heterotrophic bacteria trigger transcriptome remodelling in the photosynthetic picoeukaryote Micromonas commoda. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13285. [PMID: 38778545 PMCID: PMC11112143 DOI: 10.1111/1758-2229.13285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Marine biogeochemical cycles are built on interactions between surface ocean microbes, particularly those connecting phytoplankton primary producers to heterotrophic bacteria. Details of these associations are not well understood, especially in the case of direct influences of bacteria on phytoplankton physiology. Here we catalogue how the presence of three marine bacteria (Ruegeria pomeroyi DSS-3, Stenotrophomonas sp. SKA14 and Polaribacter dokdonensis MED152) individually and uniquely impact gene expression of the picoeukaryotic alga Micromonas commoda RCC 299. We find a dramatic transcriptomic remodelling by M. commoda after 8 h in co-culture, followed by an increase in cell numbers by 56 h compared with the axenic cultures. Some aspects of the algal transcriptomic response are conserved across all three bacterial co-cultures, including an unexpected reduction in relative expression of photosynthesis and carbon fixation pathways. Expression differences restricted to a single bacterium are also observed, with the Flavobacteriia P. dokdonensis uniquely eliciting changes in relative expression of algal genes involved in biotin biosynthesis and the acquisition and assimilation of nitrogen. This study reveals that M. commoda has rapid and extensive responses to heterotrophic bacteria in ways that are generalizable, as well as in a taxon specific manner, with implications for the diversity of phytoplankton-bacteria interactions ongoing in the surface ocean.
Collapse
Affiliation(s)
- Maria Hamilton
- Department of Marine SciencesUniversity of GeorgiaAthensGeorgiaUSA
| | | | - Mary Ann Moran
- Department of Marine SciencesUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
7
|
Grujčić V, Saarenpää S, Sundh J, Sennblad B, Norgren B, Latz M, Giacomello S, Foster RA, Andersson AF. Towards high-throughput parallel imaging and single-cell transcriptomics of microbial eukaryotic plankton. PLoS One 2024; 19:e0296672. [PMID: 38241213 PMCID: PMC10798536 DOI: 10.1371/journal.pone.0296672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 12/13/2023] [Indexed: 01/21/2024] Open
Abstract
Single-cell transcriptomics has the potential to provide novel insights into poorly studied microbial eukaryotes. Although several such technologies are available and benchmarked on mammalian cells, few have been tested on protists. Here, we applied a microarray single-cell sequencing (MASC-seq) technology, that generates microscope images of cells in parallel with capturing their transcriptomes, on three species representing important plankton groups with different cell structures; the ciliate Tetrahymena thermophila, the diatom Phaeodactylum tricornutum, and the dinoflagellate Heterocapsa sp. Both the cell fixation and permeabilization steps were adjusted. For the ciliate and dinoflagellate, the number of transcripts of microarray spots with single cells were significantly higher than for background spots, and the overall expression patterns were correlated with that of bulk RNA, while for the much smaller diatom cells, it was not possible to separate single-cell transcripts from background. The MASC-seq method holds promise for investigating "microbial dark matter", although further optimizations are necessary to increase the signal-to-noise ratio.
Collapse
Affiliation(s)
- Vesna Grujčić
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Sami Saarenpää
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - John Sundh
- Science for Life Laboratory, Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Stockholm University, Solna, Sweden
| | - Bengt Sennblad
- Science for Life Laboratory, Dept of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Uppsala University, Uppsala, Sweden
| | - Benjamin Norgren
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Meike Latz
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Stefania Giacomello
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Rachel A. Foster
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Anders F. Andersson
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
8
|
Jirsová D, Wideman JG. Integrated overview of stramenopile ecology, taxonomy, and heterotrophic origin. THE ISME JOURNAL 2024; 18:wrae150. [PMID: 39077993 PMCID: PMC11412368 DOI: 10.1093/ismejo/wrae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/12/2024] [Accepted: 07/29/2024] [Indexed: 07/31/2024]
Abstract
Stramenopiles represent a significant proportion of aquatic and terrestrial biota. Most biologists can name a few, but these are limited to the phototrophic (e.g. diatoms and kelp) or parasitic species (e.g. oomycetes, Blastocystis), with free-living heterotrophs largely overlooked. Though our attention is slowly turning towards heterotrophs, we have only a limited understanding of their biology due to a lack of cultured models. Recent metagenomic and single-cell investigations have revealed the species richness and ecological importance of stramenopiles-especially heterotrophs. However, our lack of knowledge of the cell biology and behaviour of these organisms leads to our inability to match species to their particular ecological functions. Because photosynthetic stramenopiles are studied independently of their heterotrophic relatives, they are often treated separately in the literature. Here, we present stramenopiles as a unified group with shared synapomorphies and evolutionary history. We introduce the main lineages, describe their important biological and ecological traits, and provide a concise update on the origin of the ochrophyte plastid. We highlight the crucial role of heterotrophs and mixotrophs in our understanding of stramenopiles with the goal of inspiring future investigations in taxonomy and life history. To understand each of the many diversifications within stramenopiles-towards autotrophy, osmotrophy, or parasitism-we must understand the ancestral heterotrophic flagellate from which they each evolved. We hope the following will serve as a primer for new stramenopile researchers or as an integrative refresher to those already in the field.
Collapse
Affiliation(s)
- Dagmar Jirsová
- Center for Mechanisms of Evolution, Biodesign Institute, School of Life Sciences, Arizona State University, 1001 S McAllister Avenue, Tempe, Arizona, 85287-7701, United States
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, České Budějovice 37005, Czech Republic
| | - Jeremy G Wideman
- Center for Mechanisms of Evolution, Biodesign Institute, School of Life Sciences, Arizona State University, 1001 S McAllister Avenue, Tempe, Arizona, 85287-7701, United States
| |
Collapse
|
9
|
Jessu A, Delafont V, Moyen JL, Biet F, Samba-Louaka A, Héchard Y. Characterization of Rosculus vilicus sp. nov., a rhizarian amoeba interacting with Mycobacterium avium subsp. paratuberculosis. Front Microbiol 2023; 14:1324985. [PMID: 38188567 PMCID: PMC10770858 DOI: 10.3389/fmicb.2023.1324985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Free-living amoebae are described as potential reservoirs for pathogenic bacteria in the environment. It has been hypothesized that this might be the case for Mycobacterium avium subsp. paratuberculosis, the bacterium responsible for paratuberculosis. In a previous work, we isolated an amoeba from a water sample in the environment of infected cattle and showed that this amoeba was associated with Mycobacterium avium subsp. paratuberculosis. While a partial 18S rRNA gene has allowed us to suggest that this amoeba was Rosculus-like, at that time we were not able to sub-cultivate it. In the present study, we succeeded in cultivating this strain at 20-25°C. This amoeba is among the smallest (5-7 μm) described. The sequencing of the whole genome allowed us to extract the full 18S rRNA gene and propose this strain as a new species of the Rosculus genus, i.e., R. vilicus. Of note, the mitochondrial genome is particularly large (184,954 bp). Finally, we showed that this amoeba was able to phagocyte Mycobacterium avium subsp. paratuberculosis and that the bacterium was still observed within amoebae after at least 3 days. In conclusion, we characterized a new environmental amoeba species at the cellular and genome level that was able to interact with Mycobacterium avium subsp. paratuberculosis. As a result, R. vilicus is a potential candidate as environmental reservoir for Mycobacterium avium subsp. paratuberculosis but further experiments are needed to test this hypothesis.
Collapse
Affiliation(s)
- Amélie Jessu
- Université de Poitiers, CNRS, EBI, Poitiers, France
- Laboratoire Départemental d’Analyse et de Recherche de la Dordogne, Coulounieix-Chamiers, France
| | | | - Jean-Louis Moyen
- Laboratoire Départemental d’Analyse et de Recherche de la Dordogne, Coulounieix-Chamiers, France
| | - Franck Biet
- Laboratoire Départemental d’Analyse et de Recherche de la Dordogne, Coulounieix-Chamiers, France
| | | | - Yann Héchard
- Université de Poitiers, CNRS, EBI, Poitiers, France
| |
Collapse
|
10
|
Rappaport HB, Oliverio AM. Extreme environments offer an unprecedented opportunity to understand microbial eukaryotic ecology, evolution, and genome biology. Nat Commun 2023; 14:4959. [PMID: 37587119 PMCID: PMC10432404 DOI: 10.1038/s41467-023-40657-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023] Open
Abstract
Research in extreme environments has substantially expanded our understanding of the ecology and evolution of life on Earth, but a major group of organisms has been largely overlooked: microbial eukaryotes (i.e., protists). In this Perspective, we summarize data from over 80 studies of protists in extreme environments and identify focal lineages that are of significant interest for further study, including clades within Echinamoebida, Heterolobosea, Radiolaria, Haptophyta, Oomycota, and Cryptophyta. We argue that extreme environments are prime sampling targets to fill gaps in the eukaryotic tree of life and to increase our understanding of the ecology, metabolism, genome architecture, and evolution of eukaryotic life.
Collapse
Affiliation(s)
| | - Angela M Oliverio
- Department of Biology, Syracuse University, Syracuse, NY, 13210, USA.
| |
Collapse
|
11
|
Heck N, Freudenthal J, Dumack K. Microeukaryotic predators shape the wastewater microbiome. WATER RESEARCH 2023; 242:120293. [PMID: 37421865 DOI: 10.1016/j.watres.2023.120293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023]
Abstract
The physicochemical parameters that shape the prokaryotic community composition in wastewater have been extensively studied. In contrast, it is poorly understood whether and how biotic interactions affect the prokaryotic community composition in wastewater. We used metatranscriptomics data from a bioreactor sampled weekly over 14 months to investigate the wastewater microbiome, including often neglected microeukaryotes. Our analysis revealed that while prokaryotes are unaffected by seasonal changes in water temperature, they are impacted by a seasonal, temperature-induced change in the microeukaryotic community. Our findings suggest that selective predation pressure exerted by microeukaryotes is a significant factor shaping the prokaryotic community in wastewater. This study underscores the importance of investigating the entire wastewater microbiome to develop a comprehensive understanding of wastewater treatment.
Collapse
Affiliation(s)
- Nils Heck
- Terrestrial Ecology, Institute of Zoology, University of Cologne, Zülpicher Str. 47b, Köln 50674, Germany
| | - Jule Freudenthal
- Terrestrial Ecology, Institute of Zoology, University of Cologne, Zülpicher Str. 47b, Köln 50674, Germany
| | - Kenneth Dumack
- Terrestrial Ecology, Institute of Zoology, University of Cologne, Zülpicher Str. 47b, Köln 50674, Germany.
| |
Collapse
|
12
|
Saini JS, Manni M, Hassler C, Cable RN, Duhaime MB, Zdobnov EM. Genomic insights into the coupling of a Chlorella-like microeukaryote and sulfur bacteria in the chemocline of permanently stratified Lake Cadagno. THE ISME JOURNAL 2023; 17:903-915. [PMID: 37031343 DOI: 10.1038/s41396-023-01396-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 04/10/2023]
Abstract
Meromictic Lake Cadagno is a permanently stratified system with a persistent microbial bloom within the oxic-anoxic boundary called the chemocline. The association between oxygenic and anoxygenic photosynthesis within the chemocline has been known for at least two decades. Although anoxygenic purple and green sulfur bacteria have been well studied, reports on oxygenic phytoplankton have remained sparse since their discovery in the 1920s. Nearly a century later, this study presents the first near-complete genome of a photosynthetic microbial eukaryote from the chemocline of Lake Cadagno, provisionally named Chlorella-like MAG. The 18.9 Mbp nuclear genome displays a high GC content (71.5%), and the phylogenetic placement suggests that it is a novel species of the genus Chlorella of Chlorophytes. Functional annotation of the Chlorella-like metagenome-assembled genome predicted 10,732 protein-coding genes, with an approximate 0.6% proportion potentially involved in carbon, sulfur, and nitrogen (C, N, and S) metabolism. In addition to C4 photosynthesis, this study detected genes for heat shock proteins (HSPs) in the Chlorella-like algae, consistent with the other Chlorella species. Altogether, the genomic insights in this study suggest the cooperation of photosynthetic algae with phototrophic sulfur bacteria via C, N, and S metabolism, which may aid their collective persistence in the Lake Cadagno chemocline. Furthermore, this work additionally presents the chloroplast genome of Cryptomonas-like species, which was likely to be presumed as cyanobacteria in previous studies because of the presence of phycobilisomes.
Collapse
Affiliation(s)
- Jaspreet S Saini
- Department F.-A Forel for Environmental and Aquatic Sciences, Earth and Environmental Sciences, University of Geneva, Geneva, Switzerland.
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- Laboratory for Environmental Biotechnology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Mosè Manni
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Christel Hassler
- Department F.-A Forel for Environmental and Aquatic Sciences, Earth and Environmental Sciences, University of Geneva, Geneva, Switzerland
- Institute of Earth Sciences, University of Lausanne, Lausanne, Switzerland
| | - Rachel N Cable
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Melissa B Duhaime
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
13
|
Zimmermann HH, Stoof-Leichsenring KR, Dinkel V, Harms L, Schulte L, Hütt MT, Nürnberg D, Tiedemann R, Herzschuh U. Marine ecosystem shifts with deglacial sea-ice loss inferred from ancient DNA shotgun sequencing. Nat Commun 2023; 14:1650. [PMID: 36964154 PMCID: PMC10039020 DOI: 10.1038/s41467-023-36845-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/20/2023] [Indexed: 03/26/2023] Open
Abstract
Sea ice is a key factor for the functioning and services provided by polar marine ecosystems. However, ecosystem responses to sea-ice loss are largely unknown because time-series data are lacking. Here, we use shotgun metagenomics of marine sedimentary ancient DNA off Kamchatka (Western Bering Sea) covering the last ~20,000 years. We traced shifts from a sea ice-adapted late-glacial ecosystem, characterized by diatoms, copepods, and codfish to an ice-free Holocene characterized by cyanobacteria, salmon, and herring. By providing information about marine ecosystem dynamics across a broad taxonomic spectrum, our data show that ancient DNA will be an important new tool in identifying long-term ecosystem responses to climate transitions for improvements of ocean and cryosphere risk assessments. We conclude that continuing sea-ice decline on the northern Bering Sea shelf might impact on carbon export and disrupt benthic food supply and could allow for a northward expansion of salmon and Pacific herring.
Collapse
Affiliation(s)
- Heike H Zimmermann
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Polar Terrestrial Environmental Systems, D-14473, Potsdam, Germany
- Department of Glaciology and Climate, Geological Survey of Denmark and Greenland (GEUS), DK-1350, Copenhagen, Denmark
| | - Kathleen R Stoof-Leichsenring
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Polar Terrestrial Environmental Systems, D-14473, Potsdam, Germany
| | - Viktor Dinkel
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Polar Terrestrial Environmental Systems, D-14473, Potsdam, Germany
- Constructor University Bremen, Computational Systems Biology, Bremen, D-28759, Germany
| | - Lars Harms
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Data Science Support, D-27568, Bremerhaven, Germany
| | - Luise Schulte
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Polar Terrestrial Environmental Systems, D-14473, Potsdam, Germany
| | - Marc-Thorsten Hütt
- Constructor University Bremen, Computational Systems Biology, Bremen, D-28759, Germany
| | - Dirk Nürnberg
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Ocean circulation and climate dynamics, D-24148, Kiel, Germany
| | - Ralf Tiedemann
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Marine Geology, D-27568, Bremerhaven, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, D-28334, Bremen, Germany
| | - Ulrike Herzschuh
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Polar Terrestrial Environmental Systems, D-14473, Potsdam, Germany.
- University of Potsdam, Institute of Biochemistry and Biology, D-14476, Potsdam, Germany.
- University of Potsdam, Institute of Environmental Sciences and Geography, D-14476, Potsdam, Germany.
| |
Collapse
|
14
|
Shekarriz E, Chen J, Xu Z, Liu H. Disentangling the Functional Role of Fungi in Cold Seep Sediment. Microbiol Spectr 2023; 11:e0197822. [PMID: 36912690 PMCID: PMC10100914 DOI: 10.1128/spectrum.01978-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 12/22/2022] [Indexed: 03/14/2023] Open
Abstract
Cold seeps are biological oases of the deep sea fueled by methane, sulfates, nitrates, and other inorganic sources of energy. Chemolithoautotrophic bacteria and archaea dominate seep sediment, and their diversity and biogeochemical functions are well established. Fungi are likewise diverse, metabolically versatile, and known for their ability to capture and oxidize methane. Still, no study has ever explored the functional role of the mycobiota in the cold seep biome. To assess the complex role of fungi and fill in the gaps, we performed network analysis on 147 samples to disentangle fungal-prokaryotic interactions (fungal 18S and prokaryotic 16S) in the Haima cold seep region. We demonstrated that fungi are central species with high connectivity at the epicenter of prokaryotic networks, reduce their random-attack vulnerability by 60%, and enhance information transfer efficiency by 15%. We then scavenged a global metagenomic and metatranscriptomic data set from 10 cold seep regions for fungal genes of interest (hydrophobins, cytochrome P450s, and ligninolytic family of enzymes); this is the first study to report active transcription of 2,500+ fungal genes in the cold seep sediment. The genera Fusarium and Moniliella were of notable importance and directly correlated with high methane abundance in the sulfate-methane transition zone (SMTZ), likely due to their ability to degrade and solubilize methane and oils. Overall, our results highlight the essential yet overlooked contribution of fungi to cold seep biological networks and the role of fungi in regulating cold seep biogeochemistry. IMPORTANCE The challenges we face when analyzing eukaryotic metagenomic and metatranscriptomic data sets have hindered our understanding of cold seep fungi and microbial eukaryotes. This fact does not make the mycobiota any less critical in mediating cold seep biogeochemistry. On the contrary, many fungal genera can oxidize and solubilize methane, produce methane, and play a unique role in nutrient recycling via saprotrophic enzymatic activity. In this study, we used network analysis to uncover key fungal-prokaryotic interactions that can mediate methane biogeochemistry and metagenomics and metatranscriptomics to report that fungi are transcriptionally active in the cold seep sediment. With concerns over rising methane levels and cold seeps being a pivotal source of global methane input, our holistic understanding of methane biogeochemistry with all domains of life is essential. We ultimately encourage scientists to utilize state-of-the-art tools and multifaceted approaches to uncover the role of microeukaryotic organisms in understudied systems.
Collapse
Affiliation(s)
- Erfan Shekarriz
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jiawei Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhimeng Xu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hongbin Liu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
15
|
Rizos I, Debeljak P, Finet T, Klein D, Ayata SD, Not F, Bittner L. Beyond the limits of the unassigned protist microbiome: inferring large-scale spatio-temporal patterns of Syndiniales marine parasites. ISME COMMUNICATIONS 2023; 3:16. [PMID: 36854980 PMCID: PMC9975217 DOI: 10.1038/s43705-022-00203-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 03/02/2023]
Abstract
Marine protists are major components of the oceanic microbiome that remain largely unrepresented in culture collections and genomic reference databases. The exploration of this uncharted protist diversity in oceanic communities relies essentially on studying genetic markers from the environment as taxonomic barcodes. Here we report that across 6 large scale spatio-temporal planktonic surveys, half of the genetic barcodes remain taxonomically unassigned at the genus level, preventing a fine ecological understanding for numerous protist lineages. Among them, parasitic Syndiniales (Dinoflagellata) appear as the least described protist group. We have developed a computational workflow, integrating diverse 18S rDNA gene metabarcoding datasets, in order to infer large-scale ecological patterns at 100% similarity of the genetic marker, overcoming the limitation of taxonomic assignment. From a spatial perspective, we identified 2171 unassigned clusters, i.e., Syndiniales sequences with 100% similarity, exclusively shared between the Tropical/Subtropical Ocean and the Mediterranean Sea among all Syndiniales orders and 25 ubiquitous clusters shared within all the studied marine regions. From a temporal perspective, over 3 time-series, we highlighted 39 unassigned clusters that follow rhythmic patterns of recurrence and are the best indicators of parasite community's variation. These clusters withhold potential as ecosystem change indicators, mirroring their associated host community responses. Our results underline the importance of Syndiniales in structuring planktonic communities through space and time, raising questions regarding host-parasite association specificity and the trophic mode of persistent Syndiniales, while providing an innovative framework for prioritizing unassigned protist taxa for further description.
Collapse
Affiliation(s)
- Iris Rizos
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France.
- Sorbonne Université, CNRS, AD2M-UMR7144 Station Biologique de Roscoff, 29680, Roscoff, France.
| | - Pavla Debeljak
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Thomas Finet
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Dylan Klein
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Sakina-Dorothée Ayata
- Sorbonne Université, Laboratoire d'Océanographie et du Climat: Expérimentation et Analyses Numériques (LOCEAN, SU/CNRS/IRD/MNHN), 75252, Paris Cedex 05, France
| | - Fabrice Not
- Sorbonne Université, CNRS, AD2M-UMR7144 Station Biologique de Roscoff, 29680, Roscoff, France
| | - Lucie Bittner
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
16
|
Javed MA, Schwelm A, Zamani‐Noor N, Salih R, Silvestre Vañó M, Wu J, González García M, Heick TM, Luo C, Prakash P, Pérez‐López E. The clubroot pathogen Plasmodiophora brassicae: A profile update. MOLECULAR PLANT PATHOLOGY 2023; 24:89-106. [PMID: 36448235 PMCID: PMC9831288 DOI: 10.1111/mpp.13283] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND Plasmodiophora brassicae is the causal agent of clubroot disease of cruciferous plants and one of the biggest threats to the rapeseed (Brassica napus) and brassica vegetable industry worldwide. DISEASE SYMPTOMS In the advanced stages of clubroot disease wilting, stunting, yellowing, and redness are visible in the shoots. However, the typical symptoms of the disease are the presence of club-shaped galls in the roots of susceptible hosts that block the absorption of water and nutrients. HOST RANGE Members of the family Brassicaceae are the primary host of the pathogen, although some members of the family, such as Bunias orientalis, Coronopus squamatus, and Raphanus sativus, have been identified as being consistently resistant to P. brassicae isolates with variable virulence profile. TAXONOMY Class: Phytomyxea; Order: Plasmodiophorales; Family: Plasmodiophoraceae; Genus: Plasmodiophora; Species: Plasmodiophora brassicae (Woronin, 1877). DISTRIBUTION Clubroot disease is spread worldwide, with reports from all continents except Antarctica. To date, clubroot disease has been reported in more than 80 countries. PATHOTYPING Based on its virulence on different hosts, P. brassicae is classified into pathotypes or races. Five main pathotyping systems have been developed to understand the relationship between P. brassicae and its hosts. Nowadays, the Canadian clubroot differential is extensively used in Canada and has so far identified 36 different pathotypes based on the response of a set of 13 hosts. EFFECTORS AND RESISTANCE After the identification and characterization of the clubroot pathogen SABATH-type methyltransferase PbBSMT, several other effectors have been characterized. However, no avirulence gene is known, hindering the functional characterization of the five intercellular nucleotide-binding (NB) site leucine-rich-repeat (LRR) receptors (NLRs) clubroot resistance genes validated to date. IMPORTANT LINK Canola Council of Canada is constantly updating information about clubroot and P. brassicae as part of their Canola Encyclopedia: https://www.canolacouncil.org/canola-encyclopedia/diseases/clubroot/. PHYTOSANITARY CATEGORIZATION PLADBR: EPPO A2 list; Annex designation 9E.
Collapse
Affiliation(s)
- Muhammad Asim Javed
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentationUniversité LavalQuebec CityQuebecCanada
- Centre de recherche et d'innovation sur les végétauxUniversité LavalQuebec CityQuebecCanada
- Institute de Biologie Intégrative et des Systèmes, Université LavalQuebec CityQuebecCanada
| | - Arne Schwelm
- Department of Plant ScienceWageningen University and ResearchWageningenNetherlands
- Teagasc, Crops Research CentreCarlowIreland
| | - Nazanin Zamani‐Noor
- Julius Kühn‐Institute, Institute for Plant Protection in Field Crops and GrasslandBraunschweigGermany
| | - Rasha Salih
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentationUniversité LavalQuebec CityQuebecCanada
- Centre de recherche et d'innovation sur les végétauxUniversité LavalQuebec CityQuebecCanada
- Institute de Biologie Intégrative et des Systèmes, Université LavalQuebec CityQuebecCanada
| | - Marina Silvestre Vañó
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentationUniversité LavalQuebec CityQuebecCanada
- Centre de recherche et d'innovation sur les végétauxUniversité LavalQuebec CityQuebecCanada
- Institute de Biologie Intégrative et des Systèmes, Université LavalQuebec CityQuebecCanada
| | - Jiaxu Wu
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentationUniversité LavalQuebec CityQuebecCanada
- Centre de recherche et d'innovation sur les végétauxUniversité LavalQuebec CityQuebecCanada
- Institute de Biologie Intégrative et des Systèmes, Université LavalQuebec CityQuebecCanada
| | - Melaine González García
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentationUniversité LavalQuebec CityQuebecCanada
- Centre de recherche et d'innovation sur les végétauxUniversité LavalQuebec CityQuebecCanada
- Institute de Biologie Intégrative et des Systèmes, Université LavalQuebec CityQuebecCanada
| | | | - Chaoyu Luo
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentationUniversité LavalQuebec CityQuebecCanada
- College of Agronomy and BiotechnologySouthwest UniversityChongqingChina
| | - Priyavashini Prakash
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentationUniversité LavalQuebec CityQuebecCanada
- K. S. Rangasamy College of TechnologyNamakkalIndia
| | - Edel Pérez‐López
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentationUniversité LavalQuebec CityQuebecCanada
- Centre de recherche et d'innovation sur les végétauxUniversité LavalQuebec CityQuebecCanada
- Institute de Biologie Intégrative et des Systèmes, Université LavalQuebec CityQuebecCanada
| |
Collapse
|
17
|
Patin NV, Goodwin KD. Long-Read Sequencing Improves Recovery of Picoeukaryotic Genomes and Zooplankton Marker Genes from Marine Metagenomes. mSystems 2022; 7:e0059522. [PMID: 36448813 PMCID: PMC9765425 DOI: 10.1128/msystems.00595-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/27/2022] [Indexed: 12/05/2022] Open
Abstract
Long-read sequencing offers the potential to improve metagenome assemblies and provide more robust assessments of microbial community composition and function than short-read sequencing. We applied Pacific Biosciences (PacBio) CCS (circular consensus sequencing) HiFi shotgun sequencing to 14 marine water column samples and compared the results with those for short-read metagenomes from the corresponding environmental DNA samples. We found that long-read metagenomes varied widely in quality and biological information. The community compositions of the corresponding long- and short-read metagenomes were frequently dissimilar, suggesting higher stochasticity and/or bias associated with PacBio sequencing. Long reads provided few improvements to the assembly qualities, gene annotations, and prokaryotic metagenome-assembled genome (MAG) binning results. However, only long reads produced high-quality eukaryotic MAGs and contigs containing complete zooplankton marker gene sequences. These results suggest that high-quality long-read metagenomes can improve marine community composition analyses and provide important insight into eukaryotic phyto- and zooplankton genetics, but the benefits may be outweighed by the inconsistent data quality. IMPORTANCE Ocean microbes provide critical ecosystem services, but most remain uncultivated. Their communities can be studied through shotgun metagenomic sequencing and bioinformatic analyses, including binning draft microbial genomes. However, most sequencing to date has been done using short-read technology, which rarely yields genome sequences of key microbes like SAR11. Long-read sequencing can improve metagenome assemblies but is hampered by technological shortcomings and high costs. In this study, we compared long- and short-read sequencing of marine metagenomes. We found a wide range of long-read metagenome qualities and minimal improvements to microbiome analyses. However, long reads generated draft genomes of eukaryotic algal species and provided full-length marker gene sequences of zooplankton species, including krill and copepods. These results suggest that long-read sequencing can provide greater genetic insight into the wide diversity of eukaryotic phyto- and zooplankton that interact as part of and with the marine microbiome.
Collapse
Affiliation(s)
- N. V. Patin
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, Florida, USA
- Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine, Atmospheric & Earth Science, University of Miami, Miami, Florida, USA
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, California, USA
| | - K. D. Goodwin
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, Florida, USA
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, California, USA
| |
Collapse
|
18
|
Da Silva O, Ayata SD, Ser-Giacomi E, Leconte J, Pelletier E, Fauvelot C, Madoui MA, Guidi L, Lombard F, Bittner L. Genomic differentiation of three pico-phytoplankton species in the Mediterranean Sea. Environ Microbiol 2022; 24:6086-6099. [PMID: 36053818 PMCID: PMC10087736 DOI: 10.1111/1462-2920.16171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 08/09/2022] [Indexed: 01/12/2023]
Abstract
For more than a decade, high-throughput sequencing has transformed the study of marine planktonic communities and has highlighted the extent of protist diversity in these ecosystems. Nevertheless, little is known relative to their genomic diversity at the species-scale as well as their major speciation mechanisms. An increasing number of data obtained from global scale sampling campaigns is becoming publicly available, and we postulate that metagenomic data could contribute to deciphering the processes shaping protist genomic differentiation in the marine realm. As a proof of concept, we developed a findable, accessible, interoperable and reusable (FAIR) pipeline and focused on the Mediterranean Sea to study three a priori abundant protist species: Bathycoccus prasinos, Pelagomonas calceolata and Phaeocystis cordata. We compared the genomic differentiation of each species in light of geographic, environmental and oceanographic distances. We highlighted that isolation-by-environment shapes the genomic differentiation of B. prasinos, whereas P. cordata is impacted by geographic distance (i.e. isolation-by-distance). At present time, the use of metagenomics to accurately estimate the genomic differentiation of protists remains challenging since coverages are lower compared to traditional population surveys. However, our approach sheds light on ecological and evolutionary processes occurring within natural marine populations and paves the way for future protist population metagenomic studies.
Collapse
Affiliation(s)
- Ophélie Da Silva
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, Villefranche-sur-Mer, France.,Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Sakina-Dorothée Ayata
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, Villefranche-sur-Mer, France.,Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France.,Sorbonne Université, UMR 7159 CNRS-IRD-MNHN, LOCEAN-IPSL, Paris, France
| | - Enrico Ser-Giacomi
- Sorbonne Université, UMR 7159 CNRS-IRD-MNHN, LOCEAN-IPSL, Paris, France.,Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jade Leconte
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Eric Pelletier
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Cécile Fauvelot
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, Villefranche-sur-Mer, France.,Institut de Recherche pour le Développement (IRD), UMR ENTROPIE, Nouméa, New Caledonia
| | - Mohammed-Amin Madoui
- Service d'Etude des Prions et des Infections Atypiques (SEPIA), Institut François Jacob, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Université Paris Saclay, Fontenay-aux-Roses, France
| | - Lionel Guidi
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, Villefranche-sur-Mer, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Fabien Lombard
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, Villefranche-sur-Mer, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France.,Institut Universitaire de France (IUF), Paris, France
| | - Lucie Bittner
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
19
|
Lara E, Singer D, Geisen S. Discrepancies between prokaryotes and eukaryotes need to be considered in soil DNA-based studies. Environ Microbiol 2022; 24:3829-3839. [PMID: 35437903 PMCID: PMC9790305 DOI: 10.1111/1462-2920.16019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/30/2022]
Abstract
Metabarcoding approaches are exponentially increasing our understanding of soil biodiversity, with a major focus on the bacterial part of the microbiome. Part of the soil diversity are also eukaryotes that include fungi, algae, protists and Metazoa. Nowadays, soil eukaryotes are targeted with the same approaches developed for bacteria and archaea (prokaryotes). However, fundamental differences exist between domains. After providing a short historical overview of the developments of metabarcoding applied to environmental microbiology, we compile the most important differences between domains that prevent direct method transfers between prokaryotic and eukaryotic soil metabarcoding approaches, currently dominated by short-read sequencing. These include the existence of divergent diversity concepts and the variations in eukaryotic morphology that affect sampling and DNA extraction. Furthermore, eukaryotes experienced much more variable evolutionary rates than prokaryotes, which prevent capturing the entire eukaryotic diversity in a soil with a single amplification protocol fit for short-read sequencing. In the final part we focus on future potentials for optimization of eukaryotic metabarcoding that include superior possibility of functionally characterizing eukaryotes and to extend the current information obtained, such as by adding a real quantitative component. This review should optimize future metabarcoding approaches targeting soil eukaryotes and kickstart this promising research direction.
Collapse
Affiliation(s)
- Enrique Lara
- Real Jardín Botánico‐CSIC, Plaza de Murillo 2Madrid28014Spain
| | - David Singer
- UMR CNRS 6112 LPG‐BIAFAngers University, 2 Boulevard LavoisierAngers49045France
| | - Stefan Geisen
- Laboratory of NematologyWageningen UniversityWageningen6700 AAThe Netherlands
| |
Collapse
|
20
|
Galindo LJ, Torruella G, López-García P, Ciobanu M, Gutiérrez-Preciado A, Karpov SA, Moreira D. Phylogenomics Supports the Monophyly of Aphelids and Fungi and Identifies New Molecular Synapomorphies. Syst Biol 2022:6651083. [PMID: 35900180 DOI: 10.1093/sysbio/syac054] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
The supergroup Holomycota, composed of Fungi and several related lineages of unicellular organisms (Nucleariida, Rozellida, Microsporidia, and Aphelida), represents one of the major branches in the phylogeny of eukaryotes. Nevertheless, except for the well-established position of Nucleariida as the first holomycotan branch to diverge, the relationships among the other lineages have so far remained unresolved largely owing to the lack of molecular data for some groups. This was notably the case aphelids, a poorly known group of endobiotic phagotrophic protists that feed on algae with cellulose walls. The first molecular phylogenies including aphelids supported their sister relationship with Rozellida and Microsporidia which, collectively, formed a new group called Opisthosporidia (the 'Opisthosporidia hypothesis'). However, recent phylogenomic analyses including massive sequence data from two aphelid genera, Paraphelidium and Amoeboaphelidium, suggested that the aphelids are sister to fungi (the 'Aphelida+Fungi hypothesis'). Should this position be confirmed, aphelids would be key to understanding the early evolution of Holomycota and the origin of Fungi. Here, we carry out phylogenomic analyses with an expanded taxonomic sampling for aphelids after sequencing the transcriptomes of two species of the genus Aphelidium (A. insulamus and A. tribonematis) in order to test these competing hypotheses. Our new phylogenomic analyses including species from the three known aphelid genera strongly rejected the Opisthosporidia hypothesis. Furthermore, comparative genomic analyses further supported the Aphelida+Fungi hypothesis via the identification of 19 orthologous genes exclusively shared by these two lineages. Seven of them originated from ancient horizontal gene transfer events predating the aphelid-fungal split and the remaining 12 likely evolved de novo, constituting additional molecular synapomorphies for this clade. Ancestral trait reconstruction based on our well-resolved phylogeny of Holomycota suggests that the progenitor of both fungi and rozellids, was aphelid-like, having an amoeboflagellate state and likely preying endobiotically on cellulose-containing, cell-walled organisms. Two lineages, which we propose to call Phytophagea and Opisthophagea, evolved from this ancestor. Phytophagea, grouping aphelids and classical fungi, mainly specialized in endobiotic predation of algal cells. Fungi emerged from this lineage after losing phagotrophy in favour of osmotrophy. Opisthophagea, grouping rozellids and Microsporidia, became parasites, mostly of chitin-containing hosts. This lineage entered a progressive reductive process that resulted in a unique lifestyle, especially in the highly derived Microsporidia.
Collapse
Affiliation(s)
- Luis Javier Galindo
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Guifré Torruella
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Purificación López-García
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Maria Ciobanu
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Ana Gutiérrez-Preciado
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Sergey A Karpov
- Zoological Institute RAS, Universitetskaya emb. 1, and St Petersburg State University, Universitetskaya emb. 7/9, St Petersburg 199034, Russia
| | - David Moreira
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| |
Collapse
|
21
|
Gerbracht JV, Harding T, Simpson AGB, Roger AJ, Hess S. Comparative transcriptomics reveals the molecular toolkit used by an algivorous protist for cell wall perforation. Curr Biol 2022; 32:3374-3384.e5. [PMID: 35700733 DOI: 10.1016/j.cub.2022.05.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/11/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
Abstract
Microbial eukaryotes display a stunning diversity of feeding strategies, ranging from generalist predators to highly specialized parasites. The unicellular "protoplast feeders" represent a fascinating mechanistic intermediate, as they penetrate other eukaryotic cells (algae and fungi) like some parasites but then devour their cell contents by phagocytosis.1 Besides prey recognition and attachment, this complex behavior involves the local, pre-phagocytotic dissolution of the prey cell wall, which results in well-defined perforations of species-specific size and structure.2 Yet the molecular processes that enable protoplast feeders to overcome cell walls of diverse biochemical composition remain unknown. We used the flagellate Orciraptor agilis (Viridiraptoridae, Rhizaria) as a model protoplast feeder and applied differential gene expression analysis to examine its penetration of green algal cell walls. Besides distinct expression changes that reflect major cellular processes (e.g., locomotion and cell division), we found lytic carbohydrate-active enzymes that are highly expressed and upregulated during the attack on the alga. A putative endocellulase (family GH5_5) with a secretion signal is most prominent, and a potential key factor for cell wall dissolution. Other candidate enzymes (e.g., lytic polysaccharide monooxygenases) belong to families that are largely uncharacterized, emphasizing the potential of non-fungal microeukaryotes for enzyme exploration. Unexpectedly, we discovered various chitin-related factors that point to an unknown chitin metabolism in Orciraptor agilis, potentially also involved in the feeding process. Our findings provide first molecular insights into an important microbial feeding behavior and new directions for cell biology research on non-model eukaryotes.
Collapse
Affiliation(s)
- Jennifer V Gerbracht
- Institute for Zoology, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Tommy Harding
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada
| | - Alastair G B Simpson
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, NS B3H 4R2, Canada
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada
| | - Sebastian Hess
- Institute for Zoology, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany; Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada; Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
22
|
Ludwig-Müller J. What Can We Learn from -Omics Approaches to Understand Clubroot Disease? Int J Mol Sci 2022; 23:ijms23116293. [PMID: 35682976 PMCID: PMC9180986 DOI: 10.3390/ijms23116293] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
Clubroot is one of the most economically significant diseases worldwide. As a result, many investigations focus on both curing the disease and in-depth molecular studies. Although the first transcriptome dataset for the clubroot disease describing the clubroot disease was published in 2006, many different pathogen-host plant combinations have only recently been investigated and published. Articles presenting -omics data and the clubroot pathogen Plasmodiophora brassicae as well as different host plants were analyzed to summarize the findings in the richness of these datasets. Although genome data for the protist have only recently become available, many effector candidates have been identified, but their functional characterization is incomplete. A better understanding of the life cycle is clearly required to comprehend its function. While only a few proteome studies and metabolome analyses were performed, the majority of studies used microarrays and RNAseq approaches to study transcriptomes. Metabolites, comprising chemical groups like hormones were generally studied in a more targeted manner. Furthermore, functional approaches based on such datasets have been carried out employing mutants, transgenic lines, or ecotypes/cultivars of either Arabidopsis thaliana or other economically important host plants of the Brassica family. This has led to new discoveries of potential genes involved in disease development or in (partial) resistance or tolerance to P. brassicae. The overall contribution of individual experimental setups to a larger picture will be discussed in this review.
Collapse
|
23
|
Spang A, Mahendrarajah TA, Offre P, Stairs CW. Evolving Perspective on the Origin and Diversification of Cellular Life and the Virosphere. Genome Biol Evol 2022; 14:evac034. [PMID: 35218347 PMCID: PMC9169541 DOI: 10.1093/gbe/evac034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 11/14/2022] Open
Abstract
The tree of life (TOL) is a powerful framework to depict the evolutionary history of cellular organisms through time, from our microbial origins to the diversification of multicellular eukaryotes that shape the visible biosphere today. During the past decades, our perception of the TOL has fundamentally changed, in part, due to profound methodological advances, which allowed a more objective approach to studying organismal and viral diversity and led to the discovery of major new branches in the TOL as well as viral lineages. Phylogenetic and comparative genomics analyses of these data have, among others, revolutionized our understanding of the deep roots and diversity of microbial life, the origin of the eukaryotic cell, eukaryotic diversity, as well as the origin, and diversification of viruses. In this review, we provide an overview of some of the recent discoveries on the evolutionary history of cellular organisms and their viruses and discuss a variety of complementary techniques that we consider crucial for making further progress in our understanding of the TOL and its interconnection with the virosphere.
Collapse
Affiliation(s)
- Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tara A Mahendrarajah
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
| | - Pierre Offre
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
| | - Courtney W Stairs
- Department of Biology, Microbiology research group, Lund University, Lund, Sweden
| |
Collapse
|
24
|
Delmont TO, Gaia M, Hinsinger DD, Frémont P, Vanni C, Fernandez-Guerra A, Eren AM, Kourlaiev A, d'Agata L, Clayssen Q, Villar E, Labadie K, Cruaud C, Poulain J, Da Silva C, Wessner M, Noel B, Aury JM, de Vargas C, Bowler C, Karsenti E, Pelletier E, Wincker P, Jaillon O. Functional repertoire convergence of distantly related eukaryotic plankton lineages abundant in the sunlit ocean. CELL GENOMICS 2022; 2:100123. [PMID: 36778897 PMCID: PMC9903769 DOI: 10.1016/j.xgen.2022.100123] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 12/10/2021] [Accepted: 04/04/2022] [Indexed: 12/20/2022]
Abstract
Marine planktonic eukaryotes play critical roles in global biogeochemical cycles and climate. However, their poor representation in culture collections limits our understanding of the evolutionary history and genomic underpinnings of planktonic ecosystems. Here, we used 280 billion Tara Oceans metagenomic reads from polar, temperate, and tropical sunlit oceans to reconstruct and manually curate more than 700 abundant and widespread eukaryotic environmental genomes ranging from 10 Mbp to 1.3 Gbp. This genomic resource covers a wide range of poorly characterized eukaryotic lineages that complement long-standing contributions from culture collections while better representing plankton in the upper layer of the oceans. We performed the first, to our knowledge, comprehensive genome-wide functional classification of abundant unicellular eukaryotic plankton, revealing four major groups connecting distantly related lineages. Neither trophic modes of plankton nor its vertical evolutionary history could completely explain the functional repertoire convergence of major eukaryotic lineages that coexisted within oceanic currents for millions of years.
Collapse
Affiliation(s)
- Tom O. Delmont
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, 91057 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
| | - Morgan Gaia
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, 91057 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
| | - Damien D. Hinsinger
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, 91057 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
| | - Paul Frémont
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, 91057 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
| | - Chiara Vanni
- Microbial Genomics and Bioinformatics Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Antonio Fernandez-Guerra
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - A. Murat Eren
- Helmholtz Institute for Functional Marine Biodiversity at Oldenburg, Germany
| | - Artem Kourlaiev
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, 91057 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
| | - Leo d'Agata
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, 91057 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
| | - Quentin Clayssen
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, 91057 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
| | - Emilie Villar
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, 91057 Evry, France
| | - Karine Labadie
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, 91057 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
| | - Corinne Cruaud
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, 91057 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, 91057 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
| | - Corinne Da Silva
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, 91057 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
| | - Marc Wessner
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, 91057 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
| | - Benjamin Noel
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, 91057 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, 91057 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
| | - Colomban de Vargas
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
- Sorbonne Université and CNRS, UMR 7144 (AD2M), ECOMAP, Station Biologique de Roscoff, Roscoff, France
| | - Chris Bowler
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
- Institut de Biologie de l’ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Eric Karsenti
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
- Sorbonne Université and CNRS, UMR 7144 (AD2M), ECOMAP, Station Biologique de Roscoff, Roscoff, France
- Directors’ Research, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Eric Pelletier
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, 91057 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, 91057 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
| | - Olivier Jaillon
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, 91057 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
| |
Collapse
|
25
|
Duncan A, Barry K, Daum C, Eloe-Fadrosh E, Roux S, Schmidt K, Tringe SG, Valentin KU, Varghese N, Salamov A, Grigoriev IV, Leggett RM, Moulton V, Mock T. Metagenome-assembled genomes of phytoplankton microbiomes from the Arctic and Atlantic Oceans. MICROBIOME 2022; 10:67. [PMID: 35484634 PMCID: PMC9047304 DOI: 10.1186/s40168-022-01254-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Phytoplankton communities significantly contribute to global biogeochemical cycles of elements and underpin marine food webs. Although their uncultured genomic diversity has been estimated by planetary-scale metagenome sequencing and subsequent reconstruction of metagenome-assembled genomes (MAGs), this approach has yet to be applied for complex phytoplankton microbiomes from polar and non-polar oceans consisting of microbial eukaryotes and their associated prokaryotes. RESULTS Here, we have assembled MAGs from chlorophyll a maximum layers in the surface of the Arctic and Atlantic Oceans enriched for species associations (microbiomes) with a focus on pico- and nanophytoplankton and their associated heterotrophic prokaryotes. From 679 Gbp and estimated 50 million genes in total, we recovered 143 MAGs of medium to high quality. Although there was a strict demarcation between Arctic and Atlantic MAGs, adjacent sampling stations in each ocean had 51-88% MAGs in common with most species associations between Prasinophytes and Proteobacteria. Phylogenetic placement revealed eukaryotic MAGs to be more diverse in the Arctic whereas prokaryotic MAGs were more diverse in the Atlantic Ocean. Approximately 70% of protein families were shared between Arctic and Atlantic MAGs for both prokaryotes and eukaryotes. However, eukaryotic MAGs had more protein families unique to the Arctic whereas prokaryotic MAGs had more families unique to the Atlantic. CONCLUSION Our study provides a genomic context to complex phytoplankton microbiomes to reveal that their community structure was likely driven by significant differences in environmental conditions between the polar Arctic and warm surface waters of the tropical and subtropical Atlantic Ocean. Video Abstract.
Collapse
Affiliation(s)
- Anthony Duncan
- School of Computing Sciences, University of East Anglia, Norwich Research Park, Norwich, NR47TJ, UK
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Chris Daum
- US Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Emiley Eloe-Fadrosh
- US Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Simon Roux
- US Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Katrin Schmidt
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR47TJ, UK
| | - Susannah G Tringe
- US Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Klaus U Valentin
- Alfred-Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Neha Varghese
- US Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Asaf Salamov
- US Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | | | - Vincent Moulton
- School of Computing Sciences, University of East Anglia, Norwich Research Park, Norwich, NR47TJ, UK
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR47TJ, UK.
| |
Collapse
|
26
|
Van Etten J, Keddis R, Lisa J, Rauschenbach I. The Diverse World of Protists-an Ideal Community with which to Introduce Microscopy in the Microbiology Teaching Laboratory. JOURNAL OF MICROBIOLOGY & BIOLOGY EDUCATION 2022; 23:e00142-21. [PMID: 35340451 PMCID: PMC8943629 DOI: 10.1128/jmbe.00142-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Protists and other eukaryotes are present in diverse terrestrial and aquatic environments. They can easily be collected from local ponds and streams. Although they are typically larger in size than prokaryotes, making them easy to study with even basic microscopes, microbiology laboratory courses often do not discuss them in detail and may only dedicate a short time to observing preserved samples. This laboratory exercise allows students to develop microscope skills, experience real world application of collecting and processing field samples, and delve deeper into the diverse world of protists and other microbial eukaryotes. Students may also engage by sharing their findings on the website iNaturalist to contribute to the scientific knowledge collected around the world. This laboratory module was initially designed for in-person learning but has been successfully adapted to remote learning and can also be applied to a complete online learning environment.
Collapse
Affiliation(s)
- Julia Van Etten
- Graduate Program in Ecology and Evolution, Rutgers University, New Brunswick, New Jersey, USA
| | - Ramaydalis Keddis
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA
| | - Jessica Lisa
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA
- Department of Biology, Georgian Court University, Lakewood, New Jersey, USA
| | - Ines Rauschenbach
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
27
|
Evolution of Phytoplankton as Estimated from Genetic Diversity. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10040456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Phytoplankton are photosynthetic, single-celled organisms producing almost half of all oxygen on Earth and play a central role as prey for higher organisms, making them irreplaceable in the marine food web. As Global Change proceeds, imposing rapidly intensifying selection pressures, phytoplankton are forced to undergo evolution, local extinction, or redistribution, with potentially cascading effects throughout the marine ecosystem. Recent results from the field of population genetics display high levels of standing genetic diversity in natural phytoplankton populations, providing ample ‘evolutionary options’ and implying high adaptive potential to changing conditions. This potential for adaptive evolution is realized in several studies of experimental evolution, even though most of these studies investigate the evolution of only single strains. This, however, shows that phytoplankton not only evolve from standing genetic diversity, but also rely on de novo mutations. Recent global sampling campaigns show that the immense intraspecific diversity of phytoplankton in the marine ecosystem has been significantly underestimated, meaning we are only studying a minor portion of the relevant variability in the context of Global Change and evolution. An increased understanding of genomic diversity is primarily hampered by the low number of ecologically representative reference genomes of eukaryotic phytoplankton and the functional annotation of these. However, emerging technologies relying on metagenome and transcriptome data may offer a more realistic understanding of phytoplankton diversity.
Collapse
|
28
|
Cho A, Tikhonenkov DV, Hehenberger E, Karnkowska A, Mylnikov AP, Keeling PJ. Monophyly of Diverse Bigyromonadea and their Impact on Phylogenomic Relationships Within Stramenopiles. Mol Phylogenet Evol 2022; 171:107468. [DOI: 10.1016/j.ympev.2022.107468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 10/18/2022]
|
29
|
Dumack K, Ferlian O, Morselli Gysi D, Degrune F, Jauss RT, Walden S, Öztoprak H, Wubet T, Bonkowski M, Eisenhauer N. Contrasting protist communities (Cercozoa: Rhizaria) in pristine and earthworm-invaded North American deciduous forests. Biol Invasions 2022. [DOI: 10.1007/s10530-021-02726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
AbstractEarthworms are considered ecosystem engineers due to their fundamental impact on soil structure, soil processes and on other soil biota. An invasion of non-native earthworm species has altered soils of North America since European settlement, a process currently expanding into still earthworm-free forest ecosystems due to continuous spread and increasing soil temperatures owing to climate change. Although earthworms are known to modify soil microbial diversity and activity, it is as yet unclear how eukaryote consumers in soil microbial food webs will be affected. Here, we investigated how earthworm invasion affects the diversity of Cercozoa, one of the most dominant protist taxa in soils. Although the composition of the native cercozoan community clearly shifted in response to earthworm invasion, the communities of the different forests showed distinct responses. We identified 39 operational taxonomic units (OTUs) exclusively indicating earthworm invasion, hinting at an earthworm-associated community of Cercozoa. In particular, Woronina pythii, a hyper-parasite of plant-parasitic Oomycota in American forests, increased strongly in the presence of invasive earthworms, indicating an influence of invasive earthworms on oomycete communities and potentially on forest health, which requires further research.
Collapse
|
30
|
Decroës A, Li JM, Richardson L, Mutasa-Gottgens E, Lima-Mendez G, Mahillon M, Bragard C, Finn RD, Legrève A. Metagenomics approach for Polymyxa betae genome assembly enables comparative analysis towards deciphering the intracellular parasitic lifestyle of the plasmodiophorids. Genomics 2021; 114:9-22. [PMID: 34798282 DOI: 10.1016/j.ygeno.2021.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/24/2021] [Accepted: 11/10/2021] [Indexed: 12/28/2022]
Abstract
Genomic knowledge of the tree of life is biased to specific groups of organisms. For example, only six full genomes are currently available in the rhizaria clade. Here, we have applied metagenomic techniques enabling the assembly of the genome of Polymyxa betae (Rhizaria, Plasmodiophorida) RES F41 isolate from unpurified zoospore holobiont and comparison with the A26-41 isolate. Furthermore, the first P. betae mitochondrial genome was assembled. The two P. betae nuclear genomes were highly similar, each with just ~10.2 k predicted protein coding genes, ~3% of which were unique to each isolate. Extending genomic comparisons revealed a greater overlap with Spongospora subterranea than with Plasmodiophora brassicae, including orthologs of the mammalian cation channel sperm-associated proteins, raising some intriguing questions about zoospore physiology. This work validates our metagenomics pipeline for eukaryote genome assembly from unpurified samples and enriches plasmodiophorid genomics; providing the first full annotation of the P. betae genome.
Collapse
Affiliation(s)
- Alain Decroës
- Phytopathology-Applied Microbiology, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium.
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211 Ningbo, China
| | - Lorna Richardson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Euphemia Mutasa-Gottgens
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK; University of Hertfordshire, Hatfield, Herts AL10 9AB, UK
| | - Gipsi Lima-Mendez
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Mathieu Mahillon
- Phytopathology-Applied Microbiology, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
| | - Claude Bragard
- Phytopathology-Applied Microbiology, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
| | - Robert D Finn
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Anne Legrève
- Phytopathology-Applied Microbiology, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
31
|
Alacid E, Richards TA. A cell-cell atlas approach for understanding symbiotic interactions between microbes. Curr Opin Microbiol 2021; 64:47-59. [PMID: 34655935 DOI: 10.1016/j.mib.2021.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 01/04/2023]
Abstract
Natural environments are composed of a huge diversity of microorganisms interacting with each other to form complex functional networks. Our understanding of the operative nature of host-symbiont associations is limited because propagating such associations in a laboratory is challenging. The advent of single-cell technologies applied to, for example, animal cells and apicomplexan parasites has revolutionized our understanding of development and disease. Such cell atlas approaches generate maps of cell-specific processes and variations within cellular populations. These methods can now be combined with cellular-imaging so that interaction stage versus transcriptome state can be quantized for microbe-microbe interactions. We predict that the combination of these methods applied to the study of symbioses will transform our understanding of many ecological interactions, including those sampled directly from natural environments.
Collapse
Affiliation(s)
- Elisabet Alacid
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK.
| | - Thomas A Richards
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK.
| |
Collapse
|
32
|
Hulatt CJ, Wijffels RH, Posewitz MC. The Genome of the Haptophyte Diacronema lutheri (Pavlova lutheri, Pavlovales): A Model for Lipid Biosynthesis in Eukaryotic Algae. Genome Biol Evol 2021; 13:6337978. [PMID: 34343248 PMCID: PMC8379373 DOI: 10.1093/gbe/evab178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 12/28/2022] Open
Abstract
Haptophytes are biogeochemically and industrially important protists with underexplored genomic diversity. We present a nuclear genome assembly for the class Pavlovales, which was assembled with PacBio long-read data into highly contiguous sequences. We sequenced strain Diacronema lutheri NIVA-4/92, formerly known as Pavlova lutheri, because it has established roles in aquaculture and has been a key organism for studying microalgal lipid biosynthesis. Our data show that D. lutheri has the smallest and most streamlined haptophycean genome assembled to date, with an assembly size of 43.503 Mb and 14,446 protein-coding genes. Together with its high nuclear GC content, Diacronema is an important genus for investigating selective pressures on haptophyte genome evolution, contrasting with the much larger and more repetitive genome of the coccolithophore Emiliania huxleyi. The D. lutheri genome will be a valuable resource for resolving the genetic basis of algal lipid biosynthesis and metabolic remodeling that takes place during adaptation and stress response in natural and engineered environments.
Collapse
Affiliation(s)
- Chris J Hulatt
- Faculty of Biosciences and Aquaculture, Nord University, Mørkvedbukta Research Station, Bodø, Norway.,Department of Chemistry, Colorado School of Mines, Golden, Colorado, USA
| | - René H Wijffels
- Faculty of Biosciences and Aquaculture, Nord University, Mørkvedbukta Research Station, Bodø, Norway.,Bioprocess Engineering, AlgaePARC, Wageningen University and Research, The Netherlands
| | - Matthew C Posewitz
- Department of Chemistry, Colorado School of Mines, Golden, Colorado, USA
| |
Collapse
|
33
|
Tan MH, Loke S, Croft LJ, Gleason FH, Lange L, Pilgaard B, Trevathan-Tackett SM. First Genome of Labyrinthula sp., an Opportunistic Seagrass Pathogen, Reveals Novel Insight into Marine Protist Phylogeny, Ecology and CAZyme Cell-Wall Degradation. MICROBIAL ECOLOGY 2021; 82:498-511. [PMID: 33410934 DOI: 10.1007/s00248-020-01647-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Labyrinthula spp. are saprobic, marine protists that also act as opportunistic pathogens and are the causative agents of seagrass wasting disease (SWD). Despite the threat of local- and large-scale SWD outbreaks, there are currently gaps in our understanding of the drivers of SWD, particularly surrounding Labyrinthula spp. virulence and ecology. Given these uncertainties, we investigated the Labyrinthula genus from a novel genomic perspective by presenting the first draft genome and predicted proteome of a pathogenic isolate Labyrinthula SR_Ha_C, generated from a hybrid assembly of Nanopore and Illumina sequences. Phylogenetic and cross-phyla comparisons revealed insights into the evolutionary history of Stramenopiles. Genome annotation showed evidence of glideosome-type machinery and an apicoplast protein typically found in protist pathogens and parasites. Proteins involved in Labyrinthula SR_Ha_C's actin-myosin mode of transport, as well as carbohydrate degradation were also prevalent. Further, CAZyme functional predictions revealed a repertoire of enzymes involved in breakdown of cell-wall and carbohydrate storage compounds common to seagrasses. The relatively low number of CAZymes annotated from the genome of Labyrinthula SR_Ha_C compared to other Labyrinthulea species may reflect the conservative annotation parameters, a specialized substrate affinity and the scarcity of characterized protist enzymes. Inherently, there is high probability for finding both unique and novel enzymes from Labyrinthula spp. This study provides resources for further exploration of Labyrinthula spp. ecology and evolution, and will hopefully be the catalyst for new hypothesis-driven SWD research revealing more details of molecular interactions between the Labyrinthula genus and its host substrate.
Collapse
Affiliation(s)
- Mun Hua Tan
- Centre of Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
- Deakin Genomics Centre, Deakin University, Geelong, Victoria, Australia
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne, Bio21 Institute, Melbourne, Victoria, Australia
| | - Stella Loke
- Centre of Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
- Deakin Genomics Centre, Deakin University, Geelong, Victoria, Australia
| | - Laurence J Croft
- Centre of Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
- Deakin Genomics Centre, Deakin University, Geelong, Victoria, Australia
| | - Frank H Gleason
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Lene Lange
- BioEconomy, Research & Advisory, Valby, Copenhagen, Denmark
| | - Bo Pilgaard
- Protein Chemistry and Enzyme Technology, Department of Bioengineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Stacey M Trevathan-Tackett
- Centre of Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia.
| |
Collapse
|
34
|
Bucchini F, Del Cortona A, Kreft Ł, Botzki A, Van Bel M, Vandepoele K. TRAPID 2.0: a web application for taxonomic and functional analysis of de novo transcriptomes. Nucleic Acids Res 2021; 49:e101. [PMID: 34197621 PMCID: PMC8464036 DOI: 10.1093/nar/gkab565] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 06/07/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022] Open
Abstract
Advances in high-throughput sequencing have resulted in a massive increase of RNA-Seq transcriptome data. However, the promise of rapid gene expression profiling in a specific tissue, condition, unicellular organism or microbial community comes with new computational challenges. Owing to the limited availability of well-resolved reference genomes, de novo assembled (meta)transcriptomes have emerged as popular tools for investigating the gene repertoire of previously uncharacterized organisms. Yet, despite their potential, these datasets often contain fragmented or contaminant sequences, and their analysis remains difficult. To alleviate some of these challenges, we developed TRAPID 2.0, a web application for the fast and efficient processing of assembled transcriptome data. The initial processing phase performs a global characterization of the input data, providing each transcript with several layers of annotation, comprising structural, functional, and taxonomic information. The exploratory phase enables downstream analyses from the web application. Available analyses include the assessment of gene space completeness, the functional analysis and comparison of transcript subsets, and the study of transcripts in an evolutionary context. A comparison with similar tools highlights TRAPID’s unique features. Finally, analyses performed within TRAPID 2.0 are complemented by interactive data visualizations, facilitating the extraction of new biological insights, as demonstrated with diatom community metatranscriptomes.
Collapse
Affiliation(s)
- François Bucchini
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Andrea Del Cortona
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Łukasz Kreft
- VIB Bioinformatics Core, VIB, 9052 Ghent, Belgium
| | | | - Michiel Van Bel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
35
|
Genome sequencing and de novo assembly of the giant unicellular alga Acetabularia acetabulum using droplet MDA. Sci Rep 2021; 11:12820. [PMID: 34140556 PMCID: PMC8211769 DOI: 10.1038/s41598-021-92092-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 05/28/2021] [Indexed: 11/08/2022] Open
Abstract
The macroscopic single-celled green alga Acetabularia acetabulum has been a model system in cell biology for more than a century. However, no genomic information is available from this species. Since the alga has a long life cycle, is difficult to grow in dense cultures, and has an estimated diploid genome size of almost 2 Gb, obtaining sufficient genomic material for genome sequencing is challenging. Here, we have attempted to overcome these challenges by amplifying genomic DNA using multiple displacement amplification (MDA) combined with microfluidics technology to distribute the amplification reactions across thousands of microscopic droplets. By amplifying and sequencing DNA from five single cells we were able to recover an estimated ~ 7–11% of the total genome, providing the first draft of the A. acetabulum genome. We highlight challenges associated with genome recovery and assembly of MDA data due to biases arising during genome amplification, and hope that our study can serve as a reference for future attempts on sequencing the genome from non-model eukaryotes.
Collapse
|
36
|
Záhonová K, Lax G, Sinha SD, Leonard G, Richards TA, Lukeš J, Wideman JG. Single-cell genomics unveils a canonical origin of the diverse mitochondrial genomes of euglenozoans. BMC Biol 2021; 19:103. [PMID: 34001130 PMCID: PMC8130358 DOI: 10.1186/s12915-021-01035-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/22/2021] [Indexed: 12/28/2022] Open
Abstract
Background The supergroup Euglenozoa unites heterotrophic flagellates from three major clades, kinetoplastids, diplonemids, and euglenids, each of which exhibits extremely divergent mitochondrial characteristics. Mitochondrial genomes (mtDNAs) of euglenids comprise multiple linear chromosomes carrying single genes, whereas mitochondrial chromosomes are circular non-catenated in diplonemids, but circular and catenated in kinetoplastids. In diplonemids and kinetoplastids, mitochondrial mRNAs require extensive and diverse editing and/or trans-splicing to produce mature transcripts. All known euglenozoan mtDNAs exhibit extremely short mitochondrial small (rns) and large (rnl) subunit rRNA genes, and absence of tRNA genes. How these features evolved from an ancestral bacteria-like circular mitochondrial genome remains unanswered. Results We sequenced and assembled 20 euglenozoan single-cell amplified genomes (SAGs). In our phylogenetic and phylogenomic analyses, three SAGs were placed within kinetoplastids, 14 within diplonemids, one (EU2) within euglenids, and two SAGs with nearly identical small subunit rRNA gene (18S) sequences (EU17/18) branched as either a basal lineage of euglenids, or as a sister to all euglenozoans. Near-complete mitochondrial genomes were identified in EU2 and EU17/18. Surprisingly, both EU2 and EU17/18 mitochondrial contigs contained multiple genes and one tRNA gene. Furthermore, EU17/18 mtDNA possessed several features unique among euglenozoans including full-length rns and rnl genes, six mitoribosomal genes, and nad11, all likely on a single chromosome. Conclusions Our data strongly suggest that EU17/18 is an early-branching euglenozoan with numerous ancestral mitochondrial features. Collectively these data contribute to untangling the early evolution of euglenozoan mitochondria. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01035-y.
Collapse
Affiliation(s)
- Kristína Záhonová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Gordon Lax
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Savar D Sinha
- Center for Mechanisms of Evolution, Biodesign Institute, School of Life Sciences, Arizona State University, Tempe, USA
| | - Guy Leonard
- Department of Zoology, University of Oxford, Oxford, UK
| | | | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic. .,Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic.
| | - Jeremy G Wideman
- Center for Mechanisms of Evolution, Biodesign Institute, School of Life Sciences, Arizona State University, Tempe, USA.
| |
Collapse
|
37
|
Martin R, Hackl T, Hattab G, Fischer MG, Heider D. MOSGA: Modular Open-Source Genome Annotator. Bioinformatics 2021; 36:5514-5515. [PMID: 33258916 DOI: 10.1093/bioinformatics/btaa1003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/16/2020] [Accepted: 11/18/2020] [Indexed: 12/25/2022] Open
Abstract
MOTIVATION The generation of high-quality assemblies, even for large eukaryotic genomes, has become a routine task for many biologists thanks to recent advances in sequencing technologies. However, the annotation of these assemblies-a crucial step toward unlocking the biology of the organism of interest-has remained a complex challenge that often requires advanced bioinformatics expertise. RESULTS Here, we present MOSGA (Modular Open-Source Genome Annotator), a genome annotation framework for eukaryotic genomes with a user-friendly web-interface that generates and integrates annotations from various tools. The aggregated results can be analyzed with a fully integrated genome browser and are provided in a format ready for submission to NCBI. MOSGA is built on a portable, customizable and easily extendible Snakemake backend, and thus, can be tailored to a wide range of users and projects. AVAILABILITY AND IMPLEMENTATION We provide MOSGA as a web service at https://mosga.mathematik.uni-marburg.de and as a docker container at registry.gitlab.com/mosga/mosga: latest. Source code can be found at https://gitlab.com/mosga/mosga. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Roman Martin
- Department of Mathematics and Computer Science, University of Marburg, 35032 Marburg, Germany.,Department of Organic-Analytical Chemistry, TUM Campus Straubing, 94315 Straubing, Germany
| | - Thomas Hackl
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg 69120, Germany
| | - Georges Hattab
- Department of Mathematics and Computer Science, University of Marburg, 35032 Marburg, Germany
| | - Matthias G Fischer
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg 69120, Germany
| | - Dominik Heider
- Department of Mathematics and Computer Science, University of Marburg, 35032 Marburg, Germany
| |
Collapse
|
38
|
Ciobanu D, Clum A, Ahrendt S, Andreopoulos WB, Salamov A, Chan S, Quandt CA, Foster B, Meier-Kolthoff JP, Tang YT, Schwientek P, Benny GL, Smith ME, Bauer D, Deshpande S, Barry K, Copeland A, Singer SW, Woyke T, Grigoriev IV, James TY, Cheng JF. A single-cell genomics pipeline for environmental microbial eukaryotes. iScience 2021; 24:102290. [PMID: 33870123 PMCID: PMC8042348 DOI: 10.1016/j.isci.2021.102290] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/12/2021] [Accepted: 03/04/2021] [Indexed: 12/05/2022] Open
Abstract
Single-cell sequencing of environmental microorganisms is an essential component of the microbial ecology toolkit. However, large-scale targeted single-cell sequencing for the whole-genome recovery of uncultivated eukaryotes is lagging. The key challenges are low abundance in environmental communities, large complex genomes, and cell walls that are difficult to break. We describe a pipeline composed of state-of-the art single-cell genomics tools and protocols optimized for poorly studied and uncultivated eukaryotic microorganisms that are found at low abundance. This pipeline consists of seven distinct steps, beginning with sample collection and ending with genome annotation, each equipped with quality review steps to ensure high genome quality at low cost. We tested and evaluated each step on environmental samples and cultures of early-diverging lineages of fungi and Chromista/SAR. We show that genomes produced using this pipeline are almost as good as complete reference genomes for functional and comparative genomics for environmental microbial eukaryotes.
Collapse
Affiliation(s)
- Doina Ciobanu
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory Berkeley, Berkeley, CA, USA
| | - Alicia Clum
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory Berkeley, Berkeley, CA, USA
| | - Steven Ahrendt
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory Berkeley, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - William B. Andreopoulos
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory Berkeley, Berkeley, CA, USA
| | - Asaf Salamov
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory Berkeley, Berkeley, CA, USA
| | - Sandy Chan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory Berkeley, Berkeley, CA, USA
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - C. Alisha Quandt
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brian Foster
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory Berkeley, Berkeley, CA, USA
| | - Jan P. Meier-Kolthoff
- Department of Bioinformatics and Databases, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, 38124 Braunschweig, Germany
| | - Yung Tsu Tang
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
| | - Patrick Schwientek
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory Berkeley, Berkeley, CA, USA
| | - Gerald L. Benny
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Matthew E. Smith
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Diane Bauer
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory Berkeley, Berkeley, CA, USA
| | - Shweta Deshpande
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory Berkeley, Berkeley, CA, USA
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory Berkeley, Berkeley, CA, USA
| | - Alex Copeland
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory Berkeley, Berkeley, CA, USA
| | | | - Tanja Woyke
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory Berkeley, Berkeley, CA, USA
| | - Igor V. Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory Berkeley, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Timothy Y. James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jan-Fang Cheng
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory Berkeley, Berkeley, CA, USA
| |
Collapse
|
39
|
Integrating morphology and metagenomics to understand taxonomic variability of Amphisorus (Foraminifera, Miliolida) from Western Australia and Indonesia. PLoS One 2021; 16:e0244616. [PMID: 33395419 PMCID: PMC7781389 DOI: 10.1371/journal.pone.0244616] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022] Open
Abstract
Foraminifera are a group of mostly marine protists with high taxonomic diversity. Species identification is often complex, as both morphological and molecular approaches can be challenging due to a lack of unique characters and reference sequences. An integrative approach combining state of the art morphological and molecular tools is therefore promising. In this study, we analysed large benthic Foraminifera of the genus Amphisorus from Western Australia and Indonesia. Based on previous findings on high morphological variability observed in the Soritidae and the discontinuous distribution of Amphisorus along the coast of western Australia, we expected to find multiple morphologically and genetically unique Amphisorus types. In order to gain detailed insights into the diversity of Amphisorus, we applied micro CT scanning and shotgun metagenomic sequencing. We identified four distinct morphotypes of Amphisorus, two each in Australia and Indonesia, and showed that each morphotype is a distinct genotype. Furthermore, metagenomics revealed the presence of three dinoflagellate symbiont clades. The most common symbiont was Fugacium Fr5, and we could show that its genotypes were mostly specific to Amphisorus morphotypes. Finally, we assembled the microbial taxa associated with the two Western Australian morphotypes, and analysed their microbial community composition. Even though each Amphisorus morphotype harboured distinct bacterial communities, sampling location had a stronger influence on bacterial community composition, and we infer that the prokaryotic community is primarily shaped by the microhabitat rather than host identity. The integrated approach combining analyses of host morphology and genetics, dinoflagellate symbionts, and associated microbes leads to the conclusion that we identified distinct, yet undescribed taxa of Amphisorus. We argue that the combination of morphological and molecular methods provides unprecedented insights into the diversity of foraminifera, which paves the way for a deeper understanding of their biodiversity, and facilitates future taxonomic and ecological work.
Collapse
|
40
|
Bloodgood RA. Prey capture in protists utilizing microtubule filled processes and surface motility. Cytoskeleton (Hoboken) 2020; 77:500-514. [PMID: 33190423 DOI: 10.1002/cm.21644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/23/2020] [Accepted: 11/08/2020] [Indexed: 11/05/2022]
Abstract
Surface motility, which can be visualized by the movement of live prey organisms, polystyrene microspheres or other inert particles, has been shown to occur in a wide variety of microtubule-filled extensions of the protistan cell surface, although the associated functions remain enigmatic. This article integrates an extensive but poorly known body of literature showing that surface motility, associated with microtubule-filled cell extensions such as flagella, axopodia, actinopodia, reticulopodia, and haptonema, plays a crucial role in protistan prey capture. Surface motility has been most extensively studied in Chlamydomonas where it is responsible for flagella-dependent whole cell gliding motility. The force transduction machinery for gliding motility in Chlamydomonas is intraflagellar transport. Other than in Chlamydomonas, this field has not moved far beyond the descriptive to the mechanistic because of technical challenges associated with many of the protistan organisms that utilize surface motility for prey capture. The purpose of this article is to rekindle interest in the protistan systems that utilize surface motility for prey capture at a time when newly emerging molecular tools for working with protists are poised to reinvigorate a field that has been quiescent too long.
Collapse
Affiliation(s)
- Robert A Bloodgood
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
41
|
Gawryluk RMR, Stairs CW. Diversity of electron transport chains in anaerobic protists. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148334. [PMID: 33159845 DOI: 10.1016/j.bbabio.2020.148334] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/21/2020] [Accepted: 10/30/2020] [Indexed: 01/06/2023]
Abstract
Eukaryotic microbes (protists) that occupy low-oxygen environments often have drastically different mitochondrial metabolism compared to their aerobic relatives. A common theme among many anaerobic protists is the serial loss of components of the electron transport chain (ETC). Here, we discuss the diversity of the ETC across the tree of eukaryotes and review hypotheses for how ETCs are modified, and ultimately lost, in protists. We find that while protists have converged to some of the same metabolism as anaerobic animals, there are clear protist-specific strategies to thrive without oxygen.
Collapse
Affiliation(s)
- Ryan M R Gawryluk
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Courtney W Stairs
- Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden; Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden.
| |
Collapse
|
42
|
Lateral Gene Transfer Mechanisms and Pan-genomes in Eukaryotes. Trends Parasitol 2020; 36:927-941. [DOI: 10.1016/j.pt.2020.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
|
43
|
Santoferrara L, Burki F, Filker S, Logares R, Dunthorn M, McManus GB. Perspectives from Ten Years of Protist Studies by High-Throughput Metabarcoding. J Eukaryot Microbiol 2020; 67:612-622. [PMID: 32498124 DOI: 10.1111/jeu.12813] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 01/07/2023]
Abstract
During the last decade, high-throughput metabarcoding became routine for analyzing protistan diversity and distributions in nature. Amid a multitude of exciting findings, scientists have also identified and addressed technical and biological limitations, although problems still exist for inference of meaningful taxonomic and ecological knowledge based on short DNA sequences. Given the extensive use of this approach, it is critical to settle our understanding on its strengths and weaknesses and to synthesize up-to-date methodological and conceptual trends. This article summarizes key scientific and technical findings, and identifies current and future directions in protist research that uses metabarcoding.
Collapse
Affiliation(s)
- Luciana Santoferrara
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA.,Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| | - Fabien Burki
- Department of Organismal Biology, Program in Systematic Biology, and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sabine Filker
- Department of Molecular Ecology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Ramiro Logares
- Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
| | - Micah Dunthorn
- Department of Eukaryotic Microbiology, University of Duisburg-Essen, Essen, Germany
| | - George B McManus
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| |
Collapse
|
44
|
Onsbring H, Tice AK, Barton BT, Brown MW, Ettema TJG. An efficient single-cell transcriptomics workflow for microbial eukaryotes benchmarked on Giardia intestinalis cells. BMC Genomics 2020; 21:448. [PMID: 32600266 PMCID: PMC7325058 DOI: 10.1186/s12864-020-06858-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 06/22/2020] [Indexed: 01/08/2023] Open
Abstract
Background Most diversity in the eukaryotic tree of life is represented by microbial eukaryotes, which is a polyphyletic group also referred to as protists. Among the protists, currently sequenced genomes and transcriptomes give a biased view of the actual diversity. This biased view is partly caused by the scientific community, which has prioritized certain microbes of biomedical and agricultural importance. Additionally, some protists remain difficult to maintain in cultures, which further influences what has been studied. It is now possible to bypass the time-consuming process of cultivation and directly analyze the gene content of single protist cells. Single-cell genomics was used in the first experiments where individual protists cells were genomically explored. Unfortunately, single-cell genomics for protists is often associated with low genome recovery and the assembly process can be complicated because of repetitive intergenic regions. Sequencing repetitive sequences can be avoided if single-cell transcriptomics is used, which only targets the part of the genome that is transcribed. Results In this study we test different modifications of Smart-seq2, a single-cell RNA sequencing protocol originally developed for mammalian cells, to establish a robust and more cost-efficient workflow for protists. The diplomonad Giardia intestinalis was used in all experiments and the available genome for this species allowed us to benchmark our results. We could observe increased transcript recovery when freeze-thaw cycles were added as an extra step to the Smart-seq2 protocol. Further we reduced the reaction volume and purified the amplified cDNA with alternative beads to test different cost-reducing changes of Smart-seq2. Neither improved the procedure, and reducing the volumes by half led to significantly fewer genes detected. We also added a 5′ biotin modification to our primers and reduced the concentration of oligo-dT, to potentially reduce generation of artifacts. Except adding freeze-thaw cycles and reducing the volume, no other modifications lead to a significant change in gene detection. Therefore, we suggest adding freeze-thaw cycles to Smart-seq2 when working with protists and further consider our other modification described to improve cost and time-efficiency. Conclusions The presented single-cell RNA sequencing workflow represents an efficient method to explore the diversity and cell biology of individual protist cells.
Collapse
Affiliation(s)
- Henning Onsbring
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75123, Uppsala, Sweden
| | - Alexander K Tice
- Department of Biological Sciences, Mississippi State University, Starkville, Mississippi State, USA
| | - Brandon T Barton
- Department of Biological Sciences, Mississippi State University, Starkville, Mississippi State, USA
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University, Starkville, Mississippi State, USA
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75123, Uppsala, Sweden. .,Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands.
| |
Collapse
|
45
|
A rapid workflow for the characterization of small numbers of unicellular eukaryotes by using correlative light and electron microscopy. J Microbiol Methods 2020; 172:105888. [DOI: 10.1016/j.mimet.2020.105888] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 11/24/2022]
|
46
|
Boisard J, Florent I. Why the -omic future of Apicomplexa should include gregarines. Biol Cell 2020; 112:173-185. [PMID: 32176937 DOI: 10.1111/boc.202000006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 12/15/2022]
Abstract
Gregarines, a polyphyletic group of apicomplexan parasites infecting mostly non-vertebrates hosts, remains poorly known at taxonomic, phylogenetic and genomic levels. However, it represents an essential group for understanding evolutionary history and adaptive capacities of apicomplexan parasites to the remarkable diversity of their hosts. Because they have a mostly extracellular lifestyle, gregarines have developed other cellular developmental forms and host-parasite interactions, compared with their much better studied apicomplexan cousins, intracellular parasites of vertebrates (Hemosporidia, Coccidia, Cryptosporidia). This review highlights the promises offered by the molecular exploration of gregarines, that have been until now left on the side of the road of the comparative -omic exploration of apicomplexan parasites. Elucidating molecular bases for both their ultrastructural, functional and behavioural similarities and differences, compared with those of the typical apicomplexan models, is expected to provide entirely novel clues on the adaptive capacities developed by Apicomplexa over evolution. A challenge remains to identify which gregarines should be explored in priority, as recent metadata from open and host-associated environments have confirmed how underestimated is our current view on true gregarine biodiversity. It is now time to turn to gregarines to widen the currently highly skewed view we have of adaptive mechanisms developed by Apicomplexa.
Collapse
Affiliation(s)
- Julie Boisard
- Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Département Adaptations du Vivant (AVIV), Muséum National d'Histoire Naturelle, CNRS, Paris, Cedex 05, France.,Structure et instabilité des génomes (STRING UMR 7196 CNRS / INSERM U1154), Département Adaptations du Vivant (AVIV), Muséum National d'Histoire Naturelle, Paris, Cedex 05, France
| | - Isabelle Florent
- Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Département Adaptations du Vivant (AVIV), Muséum National d'Histoire Naturelle, CNRS, Paris, Cedex 05, France
| |
Collapse
|
47
|
Transcriptome reconstruction and functional analysis of eukaryotic marine plankton communities via high-throughput metagenomics and metatranscriptomics. Genome Res 2020; 30:647-659. [PMID: 32205368 PMCID: PMC7197479 DOI: 10.1101/gr.253070.119] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 03/18/2020] [Indexed: 11/25/2022]
Abstract
Large-scale metagenomic and metatranscriptomic data analyses are often restricted by their gene-centric approach, limiting the ability to understand organismal and community biology. De novo assembly of large and mosaic eukaryotic genomes from complex meta-omics data remains a challenging task, especially in comparison with more straightforward bacterial and archaeal systems. Here, we use a transcriptome reconstruction method based on clustering co-abundant genes across a series of metagenomic samples. We investigated the co-abundance patterns of ∼37 million eukaryotic unigenes across 365 metagenomic samples collected during the Tara Oceans expeditions to assess the diversity and functional profiles of marine plankton. We identified ∼12,000 co-abundant gene groups (CAGs), encompassing ∼7 million unigenes, including 924 metagenomics-based transcriptomes (MGTs, CAGs larger than 500 unigenes). We demonstrated the biological validity of the MGT collection by comparing individual MGTs with available references. We identified several key eukaryotic organisms involved in dimethylsulfoniopropionate (DMSP) biosynthesis and catabolism in different oceanic provinces, thus demonstrating the potential of the MGT collection to provide functional insights on eukaryotic plankton. We established the ability of the MGT approach to capture interspecies associations through the analysis of a nitrogen-fixing haptophyte-cyanobacterial symbiotic association. This MGT collection provides a valuable resource for analyses of eukaryotic plankton in the open ocean by giving access to the genomic content and functional potential of many ecologically relevant eukaryotic species.
Collapse
|
48
|
Kaur B, Záhonová K, Valach M, Faktorová D, Prokopchuk G, Burger G, Lukeš J. Gene fragmentation and RNA editing without borders: eccentric mitochondrial genomes of diplonemids. Nucleic Acids Res 2020; 48:2694-2708. [PMID: 31919519 PMCID: PMC7049700 DOI: 10.1093/nar/gkz1215] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/14/2019] [Accepted: 01/08/2020] [Indexed: 11/20/2022] Open
Abstract
Diplonemids are highly abundant heterotrophic marine protists. Previous studies showed that their strikingly bloated mitochondrial genome is unique because of systematic gene fragmentation and manifold RNA editing. Here we report a comparative study of mitochondrial genome architecture, gene structure and RNA editing of six recently isolated, phylogenetically diverse diplonemid species. Mitochondrial gene fragmentation and modes of RNA editing, which include cytidine-to-uridine (C-to-U) and adenosine-to-inosine (A-to-I) substitutions and 3' uridine additions (U-appendage), are conserved across diplonemids. Yet as we show here, all these features have been pushed to their extremes in the Hemistasiidae lineage. For example, Namystynia karyoxenos has its genes fragmented into more than twice as many modules than other diplonemids, with modules as short as four nucleotides. Furthermore, we detected in this group multiple A-appendage and guanosine-to-adenosine (G-to-A) substitution editing events not observed before in diplonemids and found very rarely elsewhere. With >1,000 sites, C-to-U and A-to-I editing in Namystynia is nearly 10 times more frequent than in other diplonemids. The editing density of 12% in coding regions makes Namystynia's the most extensively edited transcriptome described so far. Diplonemid mitochondrial genome architecture, gene structure and post-transcriptional processes display such high complexity that they challenge all other currently known systems.
Collapse
Affiliation(s)
- Binnypreet Kaur
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| | - Kristína Záhonová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic
- Faculty of Science, Charles University, BIOCEV, 25250 Vestec, Czech Republic
| | - Matus Valach
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, H3T 1J4 Montreal, Canada
| | - Drahomíra Faktorová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| | - Galina Prokopchuk
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic
| | - Gertraud Burger
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, H3T 1J4 Montreal, Canada
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| |
Collapse
|
49
|
Nagy LG, Merényi Z, Hegedüs B, Bálint B. Novel phylogenetic methods are needed for understanding gene function in the era of mega-scale genome sequencing. Nucleic Acids Res 2020; 48:2209-2219. [PMID: 31943056 PMCID: PMC7049691 DOI: 10.1093/nar/gkz1241] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/15/2019] [Accepted: 12/31/2019] [Indexed: 12/21/2022] Open
Abstract
Ongoing large-scale genome sequencing projects are forecasting a data deluge that will almost certainly overwhelm current analytical capabilities of evolutionary genomics. In contrast to population genomics, there are no standardized methods in evolutionary genomics for extracting evolutionary and functional (e.g. gene-trait association) signal from genomic data. Here, we examine how current practices of multi-species comparative genomics perform in this aspect and point out that many genomic datasets are under-utilized due to the lack of powerful methodologies. As a result, many current analyses emphasize gene families for which some functional data is already available, resulting in a growing gap between functionally well-characterized genes/organisms and the universe of unknowns. This leaves unknown genes on the 'dark side' of genomes, a problem that will not be mitigated by sequencing more and more genomes, unless we develop tools to infer functional hypotheses for unknown genes in a systematic manner. We provide an inventory of recently developed methods capable of predicting gene-gene and gene-trait associations based on comparative data, then argue that realizing the full potential of whole genome datasets requires the integration of phylogenetic comparative methods into genomics, a rich but underutilized toolbox for looking into the past.
Collapse
Affiliation(s)
- László G Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Temesvari krt 62. Szeged 6726, Hungary
| | - Zsolt Merényi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Temesvari krt 62. Szeged 6726, Hungary
| | - Botond Hegedüs
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Temesvari krt 62. Szeged 6726, Hungary
| | - Balázs Bálint
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Temesvari krt 62. Szeged 6726, Hungary
| |
Collapse
|
50
|
Burki F, Roger AJ, Brown MW, Simpson AGB. The New Tree of Eukaryotes. Trends Ecol Evol 2019; 35:43-55. [PMID: 31606140 DOI: 10.1016/j.tree.2019.08.008] [Citation(s) in RCA: 429] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 01/01/2023]
Abstract
For 15 years, the eukaryote Tree of Life (eToL) has been divided into five to eight major groupings, known as 'supergroups'. However, the tree has been profoundly rearranged during this time. The new eToL results from the widespread application of phylogenomics and numerous discoveries of major lineages of eukaryotes, mostly free-living heterotrophic protists. The evidence that supports the tree has transitioned from a synthesis of molecular phylogenetics and biological characters to purely molecular phylogenetics. Most current supergroups lack defining morphological or cell-biological characteristics, making the supergroup label even more arbitrary than before. Going forward, the combination of traditional culturing with maturing culture-free approaches and phylogenomics should accelerate the process of completing and resolving the eToL at its deepest levels.
Collapse
Affiliation(s)
- Fabien Burki
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden; Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada; Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA; Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, MS, USA
| | - Alastair G B Simpson
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada; Department of Biology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|