1
|
Germishuizen M, Vichi M, Vermeulen E. Population changes in a Southern Ocean krill predator point towards regional Antarctic sea ice declines. Sci Rep 2024; 14:25820. [PMID: 39468232 PMCID: PMC11519949 DOI: 10.1038/s41598-024-74007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/23/2024] [Indexed: 10/30/2024] Open
Abstract
While foraging, marine predators integrate information about the environment often across wide-ranging oceanic foraging grounds and reflect these in population parameters. One such species, the southern right whale (Eubalaena australis; SRW) has shown alterations to foraging behaviour, declines in body condition, and reduced reproductive rates after 2009 in the South African population. As capital breeders, these changes suggest decreased availability of their main prey at high-latitudes, Antarctic krill (Euphausia superba). This study analysed environmental factors affecting prey availability for this population over the past 40 years, finding a notable southward contraction in sea ice, a 15-30% decline in sea ice concentration, and a more than two-fold increase in primary production metrics after 2008. These environmental conditions are less supportive of Antarctic krill recruitment in known SRW foraging grounds. Additionally, marginal ice zone, sea ice concentration and two primary production metrics were determined to be either regionally significant or marginally significant predictors of calving interval length when analysed using a linear model. Findings highlight the vulnerability of recovering baleen whale populations to climate change and show how capital breeders serve as sentinels of ecosystem changes in regions that are difficult or costly to study.
Collapse
Affiliation(s)
- Matthew Germishuizen
- Mammal Research Institute Whale Unit, University of Pretoria, Pretoria, South Africa.
| | - Marcello Vichi
- Department of Oceanography, University of Cape Town, Cape Town, South Africa
- Marine Research Institute, University of Cape Town, Cape Town, South Africa
| | - Els Vermeulen
- Mammal Research Institute Whale Unit, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
2
|
Schofield O, Cimino M, Doney S, Friedlaender A, Meredith M, Moffat C, Stammerjohn S, Van Mooy B, Steinberg D. Antarctic pelagic ecosystems on a warming planet. Trends Ecol Evol 2024:S0169-5347(24)00200-3. [PMID: 39266440 DOI: 10.1016/j.tree.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/14/2024]
Abstract
High-latitude pelagic marine ecosystems are vulnerable to climate change because of the intertwining of sea/continental ice dynamics, physics, biogeochemistry, and food-web structure. Data from the West Antarctic Peninsula allow us to assess how ice influences marine food webs by modulating solar inputs to the ocean, inhibiting wind mixing, altering the freshwater balance and ocean stability, and providing a physical substrate for organisms. State changes are linked to an increase in storm forcing and changing distribution of ocean heat. Changes ripple through the plankton, shifting the magnitude of primary production and its community composition, altering the abundance of krill and other prey essential for marine mammals and seabirds. These climate-driven changes in the food web are being exacerbated by human activity.
Collapse
Affiliation(s)
- Oscar Schofield
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA.
| | - Megan Cimino
- Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Scott Doney
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| | | | | | - Carlos Moffat
- School of Marine Science and Policy, University of Delaware, Newark, DE, USA
| | - Sharon Stammerjohn
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, USA
| | | | - Deborah Steinberg
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA, USA
| |
Collapse
|
3
|
Ryabov A, Berger U, Blasius B, Meyer B. Driving forces of Antarctic krill abundance. SCIENCE ADVANCES 2023; 9:eadh4584. [PMID: 38100594 PMCID: PMC10848738 DOI: 10.1126/sciadv.adh4584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
Antarctic krill, crucial to the Southern Ocean ecosystem and a vital fisheries resource, is endangered by climate change. Identifying drivers of krill biomass is therefore essential for determining catch limits and designating protection zones. We present a modeling approach to pinpointing effects of sea surface temperature, ice cover, chlorophyll levels, climate indices, and intraspecific competition. Our study reveals that larval recruitment is driven by both competition among age classes and chlorophyll levels. In addition, while milder ice and temperature in spring and summer favor reproduction and early larval survival, both larvae and juveniles strongly benefit from heavier ice and colder temperatures in winter. We conclude that omitting top-down control of resources by krill is only acceptable for retrospective or single-year prognostic models that use field chlorophyll data but that incorporating intraspecific competition is essential for longer-term forecasts. Our findings can guide future krill modeling strategies, reinforcing the sustainability of this keystone species.
Collapse
Affiliation(s)
- Alexey Ryabov
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Section Polar Biological Oceanography, Am Handelshafen 12, D-27570 Bremerhaven, Germany
- Dresden University of Technology, Institute of Forest Growth and Computer Sciences, D-01062 Dresden, Germany
- Institute for Chemistry and Biology of the Marine Environment, Carl Von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Uta Berger
- Dresden University of Technology, Institute of Forest Growth and Computer Sciences, D-01062 Dresden, Germany
| | - Bernd Blasius
- Institute for Chemistry and Biology of the Marine Environment, Carl Von Ossietzky University Oldenburg, Oldenburg, Germany
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), Carl Von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Bettina Meyer
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Section Polar Biological Oceanography, Am Handelshafen 12, D-27570 Bremerhaven, Germany
- Institute for Chemistry and Biology of the Marine Environment, Carl Von Ossietzky University Oldenburg, Oldenburg, Germany
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), Carl Von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
4
|
Bahlburg D, Hüppe L, Böhrer T, Thorpe SE, Murphy EJ, Berger U, Meyer B. Plasticity and seasonality of the vertical migration behaviour of Antarctic krill using acoustic data from fishing vessels. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230520. [PMID: 37771962 PMCID: PMC10523065 DOI: 10.1098/rsos.230520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/06/2023] [Indexed: 09/30/2023]
Abstract
Understanding the vertical migration behaviour of Antarctic krill is important for understanding spatial distribution, ecophysiology, trophic interactions and carbon fluxes of this Southern Ocean key species. In this study, we analysed an eight-month continuous dataset recorded with an ES80 echosounder on board a commercial krill fishing vessel in the southwest Atlantic sector of the Southern Ocean. Our analysis supports the existing hypothesis that krill swarms migrate into deeper waters during winter but also reveals a high degree of variability in vertical migration behaviour within seasons, even at small spatial scales. During summer, we found that behaviour associated with prolonged surface presence primarily occurred at low surface chlorophyll a concentrations whereas multiple ascent-descent cycles per day occurred when surface chlorophyll a concentrations were elevated. The high plasticity, with some krill swarms behaving differently in the same location at the same time, suggests that krill behaviour is not a purely environmentally driven process. Differences in life stage, physiology and type of predator are likely other important drivers. Finally, our study demonstrates new ways of using data from krill fishing vessels, and with the routine collection of additional information in potential future projects, they have great potential to significantly advance our understanding of krill ecology.
Collapse
Affiliation(s)
- Dominik Bahlburg
- Forstliche Biometrie und Systemanalyse, Technische Universität Dresden, Pienner Straße 8, 01737 Tharandt, Dresden, Germany
- Helmholtz Centre for Environmental Research Leipzig, Permoserstraße 15, 04318 Leipzig, Germany
| | - Lukas Hüppe
- Neurobiology and Genetics, Julius-Maximilian-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Alfred-Wegener-Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Thomas Böhrer
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Schloßplatz 4, 91054 Erlangen, Germany
| | - Sally E. Thorpe
- Ecosystems, British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK
| | - Eugene J. Murphy
- Ecosystems, British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK
| | - Uta Berger
- Forstliche Biometrie und Systemanalyse, Technische Universität Dresden, Pienner Straße 8, 01737 Tharandt, Dresden, Germany
| | - Bettina Meyer
- Alfred-Wegener-Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26111 Oldenburg, Germany
- Helmholtz Institute for Functional Marine Biodiversity, Ammerländer Heerstraße 231, 26129 Oldenburg, Germany
| |
Collapse
|
5
|
Trinh R, Ducklow HW, Steinberg DK, Fraser WR. Krill body size drives particulate organic carbon export in West Antarctica. Nature 2023; 618:526-530. [PMID: 37316721 DOI: 10.1038/s41586-023-06041-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/31/2023] [Indexed: 06/16/2023]
Abstract
The export of carbon from the ocean surface and storage in the ocean interior is important in the modulation of global climate1-4. The West Antarctic Peninsula experiences some of the largest summer particulate organic carbon (POC) export rates, and one of the fastest warming rates, in the world5,6. To understand how warming may alter carbon storage, it is necessary to first determine the patterns and ecological drivers of POC export7,8. Here we show that Antarctic krill (Euphausia superba) body size and life-history cycle, as opposed to their overall biomass or regional environmental factors, exert the dominant control on the POC flux. We measured POC fluxes over 21 years, the longest record in the Southern Ocean, and found a significant 5-year periodicity in the annual POC flux, which oscillated in synchrony with krill body size, peaking when the krill population was composed predominately of large individuals. Krill body size alters the POC flux through the production and export of size-varying faecal pellets9, which dominate the total flux. Decreases in winter sea ice10, an essential habitat for krill, are causing shifts in the krill population11, which may alter these export patterns of faecal pellets, leading to changes in ocean carbon storage.
Collapse
Affiliation(s)
- Rebecca Trinh
- Deparment of Earth and Environmental Sciences, Columbia University, New York, NY, USA.
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA.
| | - Hugh W Ducklow
- Deparment of Earth and Environmental Sciences, Columbia University, New York, NY, USA
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
| | - Deborah K Steinberg
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA, USA
| | | |
Collapse
|
6
|
Gao Y, Yang L, Liu H, Xie Z. Positive Atlantic Multidecadal Oscillation has driven poleward redistribution of the West Antarctic Peninsula biota through a food-chain mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163373. [PMID: 37044333 DOI: 10.1016/j.scitotenv.2023.163373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023]
Abstract
The West Antarctic Peninsula (WAP) has recorded a significant poleward range shift in marine biota, including Adélie penguins, Antarctic krill and phytoplankton. The ecological changes have been widely attributed to Pacific/Southern Hemisphere variabilities. However, the teleconnection from the North Atlantic Ocean, which also could induce changes in the WAP physical environments, has been overlooked. Here we combine state-of-the-art observational/modelling databases to quantify the poleward redistribution since the 1980s of three key members of the WAP biota and explored their response to several climatic oscillations. The abundance of Adélie penguins, Antarctic krill and phytoplankton in the WAP all show a decrease in the north and an increase in the south, leading to a poleward shift of their distribution centers by ~0.8-2.3°. A more positive Atlantic Multidecadal Oscillation (AMO) has contributed to the poleward redistribution of phytoplankton/krill/penguin with a time lag of 0/1/5 yr, indicating a food-chain related mechanism. +AMO in spring resulted in reduced sea ice, earlier ice retreat and enhanced winds in the northern WAP, which constrained phytoplankton blooms and krill reproduction, thereby decreasing the krill recruitment 1 yr later and consequently the penguin recruitment 5 yr later. In the southern WAP, where the sea ice cover was nearly permanent in the 1980s, reduced sea ice and earlier ice retreat promoted phytoplankton growth and krill/penguin reproduction. Our results emphasize the global nature of climate-ecological coupling; the influence of the Northern Hemisphere climate system on Antarctic/Southern Ocean biota is a non-negligible factor for the ecosystem management.
Collapse
Affiliation(s)
- Yuesong Gao
- Institute of Polar Environment, Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Lianjiao Yang
- Institute of Polar Environment, Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Hongwei Liu
- Institute of Polar Environment, Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Zhouqing Xie
- Institute of Polar Environment, Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China.
| |
Collapse
|
7
|
Walsh J, Reiss C. Extreme El Niño southern oscillation conditions have contrasting effects on the body condition of five euphausiid species around the northern Antarctic Peninsula during winter. Polar Biol 2023. [DOI: 10.1007/s00300-023-03129-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
AbstractEl Niño southern oscillation (ENSO) events drive profound global impacts on marine environments. These events may result in contrasting conditions in the Southern Ocean, with differing effects on euphausiid species because of their diverse life histories, habitats, and feeding ecologies. We conducted oceanographic surveys during winter (2012–2016) around the northern Antarctic Peninsula and examined the dietary carbon sources, trophic position, and body condition of five euphausiid species (Euphausia crystallorophias, E. frigida, E. superba post-larvae and larvae, E. triacantha, and Thysanoessa macrura) in relation to environmental conditions each year. In addition to general patterns among taxa, we focused on how contrasting conditions during an ENSO-neutral year (2014) and an ENSO-positive year (2016) affected the type, quality, and distribution of food resources each year, as well as the body condition of each species. We observed high chlorophyll-a, low salinity, and shallow upper mixed-layer depths in 2014, and low chlorophyll-a, high salinity, and deep upper mixed-layer depths in 2016. Carbon sources varied among years, with most species enriched in δ13C when ENSO conditions were dominant. Trophic position and body condition also varied among years, with different responses among species depending on conditions; inter-annual variation in δ15N was minimal, while E. triacantha was the only species with notably lower body condition in 2016. We conclude that ENSO conditions around the northern Antarctic Peninsula may result in a more favorable feeding environment for all euphausiid species except E. triacantha, which may be the most negatively impacted by the predicted increase in ENSO conditions.
Collapse
|
8
|
Salmerón N, Belle S, Cruz FS, Alegria N, Finger JVG, Corá DH, Petry MV, Hernández C, Cárdenas CA, Krüger L. Contrasting environmental conditions precluded lower availability of Antarctic krill affecting breeding chinstrap penguins in the Antarctic Peninsula. Sci Rep 2023; 13:5265. [PMID: 37002269 PMCID: PMC10066220 DOI: 10.1038/s41598-023-32352-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/26/2023] [Indexed: 04/03/2023] Open
Abstract
Dramatic decreases of chinstrap penguin populations across the Antarctic Peninsula (AP) are thought to be influenced by climate-driven changes affecting its main prey, the Antarctic krill, however, empirical evidence supporting such hypotheses are scarce. By coupling data on breeding chinstrap penguins, environmental remote sensing and estimates of krill acoustic density, we were able to demonstrate that penguins substantially increased their foraging effort in a year of low krill availability, with consequent reduction in breeding success. A winter of low sea ice cover followed by a summer/spring with stronger wind and lower marine productivity explained the lower and deeper krill availability. Our results highlight the importance of environmental variability on penguin populations, as variability is expected to increase under climate change, affecting foraging behaviour responses.
Collapse
Affiliation(s)
- Nuria Salmerón
- International Master of Science in Marine Biological Resources (IMBRSea), Ghent University, Krijgslaan 281/S8, Ghent, Belgium
| | - Solenne Belle
- International Master of Science in Marine Biological Resources (IMBRSea), Ghent University, Krijgslaan 281/S8, Ghent, Belgium
| | - Francisco Santa Cruz
- Departamento Científico, Instituto Antártico Chileno, Plaza Muñoz Gamero, 1055, Punta Arenas, Chile
| | - Nicolás Alegria
- Instituto de Investigación Pesquera (INPESCA), Colón, 2780, Talcahuano, Chile
| | - Júlia Victória Grohmann Finger
- Laboratório de Ornitologia e Animais Marinhos, Universidade do Vale do Rio dos Sinos (UNISINOS), Av. Unisinos, 950, São Leopoldo, Rio Grande do Sul, Brazil
| | - Denyelle Hennayra Corá
- Laboratório de Ornitologia e Animais Marinhos, Universidade do Vale do Rio dos Sinos (UNISINOS), Av. Unisinos, 950, São Leopoldo, Rio Grande do Sul, Brazil
| | - Maria Virginia Petry
- Laboratório de Ornitologia e Animais Marinhos, Universidade do Vale do Rio dos Sinos (UNISINOS), Av. Unisinos, 950, São Leopoldo, Rio Grande do Sul, Brazil
| | | | - César A Cárdenas
- Departamento Científico, Instituto Antártico Chileno, Plaza Muñoz Gamero, 1055, Punta Arenas, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Las Palmeras, 3425, Ñuñoa, Santiago, Chile
| | - Lucas Krüger
- Departamento Científico, Instituto Antártico Chileno, Plaza Muñoz Gamero, 1055, Punta Arenas, Chile.
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Las Palmeras, 3425, Ñuñoa, Santiago, Chile.
| |
Collapse
|
9
|
Häfker NS, Andreatta G, Manzotti A, Falciatore A, Raible F, Tessmar-Raible K. Rhythms and Clocks in Marine Organisms. ANNUAL REVIEW OF MARINE SCIENCE 2023; 15:509-538. [PMID: 36028229 DOI: 10.1146/annurev-marine-030422-113038] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The regular movements of waves and tides are obvious representations of the oceans' rhythmicity. But the rhythms of marine life span across ecological niches and timescales, including short (in the range of hours) and long (in the range of days and months) periods. These rhythms regulate the physiology and behavior of individuals, as well as their interactions with each other and with the environment. This review highlights examples of rhythmicity in marine animals and algae that represent important groups of marine life across different habitats. The examples cover ecologically highly relevant species and a growing number of laboratory model systems that are used to disentangle key mechanistic principles. The review introduces fundamental concepts of chronobiology, such as the distinction between rhythmic and endogenous oscillator-driven processes. It also addresses the relevance of studying diverse rhythms and oscillators, as well as their interconnection, for making better predictions of how species will respond to environmental perturbations, including climate change. As the review aims to address scientists from the diverse fields of marine biology, ecology, and molecular chronobiology, all of which have their own scientific terms, we provide definitions of key terms throughout the article.
Collapse
Affiliation(s)
- N Sören Häfker
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria; ,
- Research Platform "Rhythms of Life," University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Gabriele Andreatta
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria; ,
- Research Platform "Rhythms of Life," University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Alessandro Manzotti
- Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, UMR 7141, CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, Paris, France;
| | - Angela Falciatore
- Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, UMR 7141, CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, Paris, France;
| | - Florian Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria; ,
- Research Platform "Rhythms of Life," University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Kristin Tessmar-Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria; ,
- Research Platform "Rhythms of Life," University of Vienna, Vienna BioCenter, Vienna, Austria
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
10
|
Modelling of tuna around fish aggregating devices: The importance of ocean flow and prey. Ecol Modell 2023. [DOI: 10.1016/j.ecolmodel.2022.110188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Afzal SS, Akbar W, Rodriguez O, Doumet M, Ha U, Ghaffarivardavagh R, Adib F. Battery-free wireless imaging of underwater environments. Nat Commun 2022; 13:5546. [PMID: 36163186 PMCID: PMC9512789 DOI: 10.1038/s41467-022-33223-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 09/02/2022] [Indexed: 12/04/2022] Open
Abstract
Imaging underwater environments is of great importance to marine sciences, sustainability, climatology, defense, robotics, geology, space exploration, and food security. Despite advances in underwater imaging, most of the ocean and marine organisms remain unobserved and undiscovered. Existing methods for underwater imaging are unsuitable for scalable, long-term, in situ observations because they require tethering for power and communication. Here we describe underwater backscatter imaging, a method for scalable, real-time wireless imaging of underwater environments using fully-submerged battery-free cameras. The cameras power up from harvested acoustic energy, capture color images using ultra-low-power active illumination and a monochrome image sensor, and communicate wirelessly at net-zero-power via acoustic backscatter. We demonstrate wireless battery-free imaging of animals, plants, pollutants, and localization tags in enclosed and open-water environments. The method’s self-sustaining nature makes it desirable for massive, continuous, and long-term ocean deployments with many applications including marine life discovery, submarine surveillance, and underwater climate change monitoring. The authors present an approach to underwater imaging, which does not require tethering or batteries. The low-power camera uses power from harvested acoustic energy and communicates colour images wirelessly via acoustic backscatter.
Collapse
Affiliation(s)
- Sayed Saad Afzal
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Waleed Akbar
- MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Program in Media Arts and Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Osvy Rodriguez
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Mario Doumet
- MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Unsoo Ha
- MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | | - Fadel Adib
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. .,MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. .,Program in Media Arts and Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. .,MIT Sea Grant, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
12
|
Abstract
AbstractDespite the exclusion of the Southern Ocean from assessments of progress towards achieving the Convention on Biological Diversity (CBD) Strategic Plan, the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) has taken on the mantle of progressing efforts to achieve it. Within the CBD, Aichi Target 11 represents an agreed commitment to protect 10% of the global coastal and marine environment. Adopting an ethos of presenting the best available scientific evidence to support policy makers, CCAMLR has progressed this by designating two Marine Protected Areas in the Southern Ocean, with three others under consideration. The region of Antarctica known as Dronning Maud Land (DML; 20°W to 40°E) and the Atlantic sector of the Southern Ocean that abuts it conveniently spans one region under consideration for spatial protection. To facilitate both an open and transparent process to provide the vest available scientific evidence for policy makers to formulate management options, we review the body of physical, geochemical and biological knowledge of the marine environment of this region. The level of scientific knowledge throughout the seascape abutting DML is polarized, with a clear lack of data in its eastern part which is presumably related to differing levels of research effort dedicated by national Antarctic programmes in the region. The lack of basic data on fundamental aspects of the physical, geological and biological nature of eastern DML make predictions of future trends difficult to impossible, with implications for the provision of management advice including spatial management. Finally, by highlighting key knowledge gaps across the scientific disciplines our review also serves to provide guidance to future research across this important region.
Collapse
|
13
|
Johnston NM, Murphy EJ, Atkinson A, Constable AJ, Cotté C, Cox M, Daly KL, Driscoll R, Flores H, Halfter S, Henschke N, Hill SL, Höfer J, Hunt BPV, Kawaguchi S, Lindsay D, Liszka C, Loeb V, Manno C, Meyer B, Pakhomov EA, Pinkerton MH, Reiss CS, Richerson K, Jr. WOS, Steinberg DK, Swadling KM, Tarling GA, Thorpe SE, Veytia D, Ward P, Weldrick CK, Yang G. Status, Change, and Futures of Zooplankton in the Southern Ocean. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.624692] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In the Southern Ocean, several zooplankton taxonomic groups, euphausiids, copepods, salps and pteropods, are notable because of their biomass and abundance and their roles in maintaining food webs and ecosystem structure and function, including the provision of globally important ecosystem services. These groups are consumers of microbes, primary and secondary producers, and are prey for fishes, cephalopods, seabirds, and marine mammals. In providing the link between microbes, primary production, and higher trophic levels these taxa influence energy flows, biological production and biomass, biogeochemical cycles, carbon flux and food web interactions thereby modulating the structure and functioning of ecosystems. Additionally, Antarctic krill (Euphausia superba) and various fish species are harvested by international fisheries. Global and local drivers of change are expected to affect the dynamics of key zooplankton species, which may have potentially profound and wide-ranging implications for Southern Ocean ecosystems and the services they provide. Here we assess the current understanding of the dominant metazoan zooplankton within the Southern Ocean, including Antarctic krill and other key euphausiid, copepod, salp and pteropod species. We provide a systematic overview of observed and potential future responses of these taxa to a changing Southern Ocean and the functional relationships by which drivers may impact them. To support future ecosystem assessments and conservation and management strategies, we also identify priorities for Southern Ocean zooplankton research.
Collapse
|
14
|
Bedriñana-Romano L, Zerbini AN, Andriolo A, Danilewicz D, Sucunza F. Individual and joint estimation of humpback whale migratory patterns and their environmental drivers in the Southwest Atlantic Ocean. Sci Rep 2022; 12:7487. [PMID: 35523932 PMCID: PMC9076679 DOI: 10.1038/s41598-022-11536-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/18/2022] [Indexed: 02/05/2023] Open
Abstract
Humpback whales (Megaptera novaeangliae) perform seasonal migrations from high latitude feeding grounds to low latitude breeding and calving grounds. Feeding grounds at polar regions are currently experiencing major ecosystem modifications, therefore, quantitatively assessing species responses to habitat characteristics is crucial for understanding how whales might respond to such modifications. We analyzed satellite telemetry data from 22 individual humpback whales in the Southwest Atlantic Ocean (SWA). Tagging effort was divided in two periods, 2003-2012 and 2016-2019. Correlations between whale's movement parameters and environmental variables were used as proxy for inferring behavioral responses to environmental variation. Two versions of a covariate-driven continuous-time correlated random-walk state-space model, were fitted to the data: i) Population-level models (P-models), which assess correlation parameters pooling data across all individuals or groups, and ii) individual-level models (I-models), fitted independently for each tagged whale. Area of Restricted Search behavior (slower and less directionally persistent movement, ARS) was concentrated at cold waters south of the Polar Front (~ 50°S). The best model showed that ARS was expected to occur in coastal areas and over ridges and seamounts. Ice coverage during August of each year was a consistent predictor of ARS across models. Wind stress curl and sea surface temperature anomalies were also correlated with movement parameters but elicited larger inter-individual variation. I-models were consistent with P-models' predictions for the case of females accompanied by calves (mothers), while males and those of undetermined sex (males +) presented more variability as a group. Spatial predictions of humpback whale behavioral responses showed that feeding grounds for this population are concentrated in the complex system of islands, ridges, and rises of the Scotia Sea and the northern Weddell Ridge. More southernly incursions were observed in recent years, suggesting a potential response to increased temperature and large ice coverage reduction observed in the late 2010s. Although, small sample size and differences in tracking duration precluded appropriately testing predictions for such a distributional shift, our modelling framework showed the efficiency of borrowing statistical strength during data pooling, while pinpointing where more complexity should be added in the future as additional data become available.
Collapse
Affiliation(s)
- Luis Bedriñana-Romano
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia, Chile. .,NGO Centro Ballena Azul, Valdivia, Chile. .,Centro de Investigación Oceanográfica COPAS Coastal, Universidad de Concepción, Región del Bio Bio, 4070043, Concepción, Chile.
| | - Alexandre N Zerbini
- Cooperative Institute for Climate, Ocean and Ecosystem Studies, University of Washington and Marine Mammal Laboratory Alaska Fisheries Science Center/NOAA, 7600 Sand Point Way NE, Seattle, WA, USA.,Marine Ecology and Telemetry Research, 2468 Camp McKenzie Tr NW, Seabeck, WA, 98380, USA.,Instituto Aqualie, Av. Dr. Paulo Japiassú Coelho, 714, Sala 206, Juiz de Fora, MG, 36033-310, Brazil
| | - Artur Andriolo
- Instituto Aqualie, Av. Dr. Paulo Japiassú Coelho, 714, Sala 206, Juiz de Fora, MG, 36033-310, Brazil.,Laboratório de Ecologia Comportamental e Bioacústica, LABEC, Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Daniel Danilewicz
- Instituto Aqualie, Av. Dr. Paulo Japiassú Coelho, 714, Sala 206, Juiz de Fora, MG, 36033-310, Brazil.,Grupo de Estudos de Mamíferos Aquáticos do Rio Grande do Sul (GEMARS), Porto Alegre, RS, Brazil
| | - Federico Sucunza
- Instituto Aqualie, Av. Dr. Paulo Japiassú Coelho, 714, Sala 206, Juiz de Fora, MG, 36033-310, Brazil.,Grupo de Estudos de Mamíferos Aquáticos do Rio Grande do Sul (GEMARS), Porto Alegre, RS, Brazil
| |
Collapse
|
15
|
Estimating the average distribution of Antarctic krill Euphausia superba at the northern Antarctic Peninsula during austral summer and winter. Polar Biol 2022; 45:857-871. [PMID: 35673679 PMCID: PMC9165435 DOI: 10.1007/s00300-022-03039-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/03/2022]
Abstract
This study was performed to aid the management of the fishery for Antarctic krill Euphausia superba. Krill are an important component of the Antarctic marine ecosystem, providing a key food source for many marine predators. Additionally, krill are the target of the largest commercial fishery in the Southern Ocean, for which annual catches have been increasing and concentrating in recent years. The krill fishery is managed by the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR), which has endorsed a new management framework that requires information about the spatial distribution and biomass of krill. Here, we use krill density estimates from acoustic surveys and a GAMM framework to model habitat properties associated with high krill biomass during summer and winter in the northern Antarctic Peninsula region, an area important to the commercial fishery. Our models show elevated krill density associated with the shelf break, increased sea surface temperature, moderate chlorophyll-a concentration and increased salinity. During winter, our models show associations with shallow waters (< 1500 m) with low sea-ice concentration, medium sea-level anomaly and medium current speed. Our models predict temporal averages of the distribution and density of krill, which can be used to aid CCAMLR’s revised ecosystem approach to fisheries management. Our models have the potential to help in the spatial and temporal design of future acoustic surveys that would preclude the need for modelled extrapolations. We highlight that the ecosystem approach to fisheries management of krill critically depends upon such field observations at relevant spatial and temporal scales.
Collapse
|
16
|
Jenouvrier S, Che‐Castaldo J, Wolf S, Holland M, Labrousse S, LaRue M, Wienecke B, Fretwell P, Barbraud C, Greenwald N, Stroeve J, Trathan PN. The call of the emperor penguin: Legal responses to species threatened by climate change. GLOBAL CHANGE BIOLOGY 2021; 27:5008-5029. [PMID: 34342929 PMCID: PMC9291047 DOI: 10.1111/gcb.15806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 05/20/2023]
Abstract
Species extinction risk is accelerating due to anthropogenic climate change, making it urgent to protect vulnerable species through legal frameworks in order to facilitate conservation actions that help mitigate risk. Here, we discuss fundamental concepts for assessing climate change risks to species using the example of the emperor penguin (Aptenodytes forsteri), currently being considered for protection under the US Endangered Species Act (ESA). This species forms colonies on Antarctic sea ice, which is projected to significantly decline due to ongoing greenhouse gas (GHG) emissions. We project the dynamics of all known emperor penguin colonies under different GHG emission scenarios using a climate-dependent meta-population model including the effects of extreme climate events based on the observational satellite record of colonies. Assessments for listing species under the ESA require information about how species resiliency, redundancy and representation (3Rs) will be affected by threats within the foreseeable future. Our results show that if sea ice declines at the rate projected by climate models under current energy system trends and policies, the 3Rs would be dramatically reduced and almost all colonies would become quasi-extinct by 2100. We conclude that the species should be listed as threatened under the ESA.
Collapse
Affiliation(s)
- Stephanie Jenouvrier
- Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
| | - Judy Che‐Castaldo
- Conservation & Science DepartmentAlexander Center for Applied Population BiologyLincoln Park ZooChicagoIllinoisUSA
| | - Shaye Wolf
- Climate Law InstituteCenter for Biological DiversityOaklandCaliforniaUSA
| | - Marika Holland
- National Center for Atmospheric ResearchBoulderColoradoUSA
| | | | - Michelle LaRue
- School of Earth and EnvironmentUniversity of CanterburyChristchurchNew Zealand
- Department of Earth and Environmental SciencesUniversity of MinnesotaMinneapolisMinnesotaUSA
| | | | | | | | - Noah Greenwald
- Endangered Species ProgramCenter for Biological DiversityPortlandOregonUSA
| | - Julienne Stroeve
- Centre for Earth Observation ScienceUniversity of ManitobaWinnipegManitobaCanada
- National Snow and Ice Data CenterUSA Cooperative Institute for Research in Environmental SciencesUniversity of ColoradoBoulderColoradoUSA
- Earth Sciences DepartmentUniversity College LondonLondonUK
| | | |
Collapse
|
17
|
Jafari V, Maccapan D, Careddu G, Sporta Caputi S, Calizza E, Rossi L, Costantini ML. Spatial and temporal diet variability of Adélie (Pygoscelis adeliae) and Emperor (Aptenodytes forsteri) Penguin: a multi tissue stable isotope analysis. Polar Biol 2021. [DOI: 10.1007/s00300-021-02925-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractThe Ross Sea, Antarctica, supports large populations of Emperor Penguin (Aptenodytes forsteri) and Adélie Penguin (Pygoscelis adeliae), two key meso-predators that occupy high trophic levels. Despite these species are largely studied, little is known about their diet outside the breeding period. In the present study, we investigated the intra-annual diet of Adélie and Emperor Penguins belonging to five colonies in the Ross Sea through the stable isotope analysis of different tissues (feathers and shell membranes), synthetized in different seasons, and guano that indicates recent diet. Penguin samples and prey (krill and fish) were collected during the Antarctic spring–summer. δ13C and δ15N of tissues and guano indicate spatio-temporal variation in the penguin diet. The krill consumption by Adélie Penguins was lowest in winter except in the northernmost colony, where it was always very high. It peaked in spring and remained prevalent in summer. The greatest krill contribution to Emperor Penguin’s diet occurred in summer. The relative krill and fish consumption by both species changed in relation to the prey availability, which is influenced by seasonal sea ice dynamics, and according to the penguin life cycle phases. The results highlight a strong trophic plasticity in the Adélie Penguin, whose dietary variability has been already recognized, and in the Emperor Penguin, which had not previously reported. Our findings can help understand how these species might react to resource variation due to climate change or anthropogenic overexploitation. Furthermore, data provides useful basis for future comparisons in the Ross Sea MPA and for planning conservation actions.
Collapse
|
18
|
Pinkerton MH, Boyd PW, Deppeler S, Hayward A, Höfer J, Moreau S. Evidence for the Impact of Climate Change on Primary Producers in the Southern Ocean. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.592027] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Within the framework of the Marine Ecosystem Assessment for the Southern Ocean (MEASO), this paper brings together analyses of recent trends in phytoplankton biomass, primary production and irradiance at the base of the mixed layer in the Southern Ocean and summarises future projections. Satellite observations suggest that phytoplankton biomass in the mixed-layer has increased over the last 20 years in most (but not all) parts of the Southern Ocean, whereas primary production at the base of the mixed-layer has likely decreased over the same period. Different satellite models of primary production (Vertically Generalised versus Carbon Based Production Models) give different patterns and directions of recent change in net primary production (NPP). At present, the satellite record is not long enough to distinguish between trends and climate-related cycles in primary production. Over the next 100 years, Earth system models project increasing NPP in the water column in the MEASO northern and Antarctic zones but decreases in the Subantarctic zone. Low confidence in these projections arises from: (1) the difficulty in mapping supply mechanisms for key nutrients (silicate, iron); and (2) understanding the effects of multiple stressors (including irradiance, nutrients, temperature, pCO2, pH, grazing) on different species of Antarctic phytoplankton. Notwithstanding these uncertainties, there are likely to be changes to the seasonal patterns of production and the microbial community present over the next 50–100 years and these changes will have ecological consequences across Southern Ocean food-webs, especially on key species such as Antarctic krill and silverfish.
Collapse
|
19
|
Abstract
AbstractSurvival of larval Antarctic krill (Euphausia superba) during winter is largely dependent upon the presence of sea ice as it provides an important source of food and shelter. We hypothesized that sea ice provides additional benefits because it hosts fewer competitors and provides reduced predation risk for krill larvae than the water column. To test our hypothesis, zooplankton were sampled in the Weddell-Scotia Confluence Zone at the ice-water interface (0–2 m) and in the water column (0–500 m) during August–October 2013. Grazing by mesozooplankton, expressed as a percentage of the phytoplankton standing stock, was higher in the water column (1.97 ± 1.84%) than at the ice-water interface (0.08 ± 0.09%), due to a high abundance of pelagic copepods. Predation risk by carnivorous macrozooplankton, expressed as a percentage of the mesozooplankton standing stock, was significantly lower at the ice-water interface (0.83 ± 0.57%; main predators amphipods, siphonophores and ctenophores) than in the water column (4.72 ± 5.85%; main predators chaetognaths and medusae). These results emphasize the important role of sea ice as a suitable winter habitat for larval krill with fewer competitors and lower predation risk. These benefits should be taken into account when considering the response of Antarctic krill to projected declines in sea ice. Whether reduced sea-ice algal production may be compensated for by increased water column production remains unclear, but the shelter provided by sea ice would be significantly reduced or disappear, thus increasing the predation risk on krill larvae.
Collapse
|
20
|
Sauser C, Delord K, Barbraud C. Demographic sensitivity to environmental forcings: a multi‐trait, multi‐colony approach. OIKOS 2021. [DOI: 10.1111/oik.07441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Christophe Sauser
- Centre d'Etudes Biologiques de Chizé UMR 7372, CNRS Villiers en Bois France
| | - Karine Delord
- Centre d'Etudes Biologiques de Chizé UMR 7372, CNRS Villiers en Bois France
| | | |
Collapse
|
21
|
Bahlburg D, Meyer B, Berger U. The impact of seasonal regulation of metabolism on the life history of Antarctic krill. Ecol Modell 2021. [DOI: 10.1016/j.ecolmodel.2021.109427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Gutt J, Isla E, Xavier JC, Adams BJ, Ahn IY, Cheng CHC, Colesie C, Cummings VJ, di Prisco G, Griffiths H, Hawes I, Hogg I, McIntyre T, Meiners KM, Pearce DA, Peck L, Piepenburg D, Reisinger RR, Saba GK, Schloss IR, Signori CN, Smith CR, Vacchi M, Verde C, Wall DH. Antarctic ecosystems in transition - life between stresses and opportunities. Biol Rev Camb Philos Soc 2020; 96:798-821. [PMID: 33354897 DOI: 10.1111/brv.12679] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/23/2022]
Abstract
Important findings from the second decade of the 21st century on the impact of environmental change on biological processes in the Antarctic were synthesised by 26 international experts. Ten key messages emerged that have stakeholder-relevance and/or a high impact for the scientific community. They address (i) altered biogeochemical cycles, (ii) ocean acidification, (iii) climate change hotspots, (iv) unexpected dynamism in seabed-dwelling populations, (v) spatial range shifts, (vi) adaptation and thermal resilience, (vii) sea ice related biological fluctuations, (viii) pollution, (ix) endangered terrestrial endemism and (x) the discovery of unknown habitats. Most Antarctic biotas are exposed to multiple stresses and considered vulnerable to environmental change due to narrow tolerance ranges, rapid change, projected circumpolar impacts, low potential for timely genetic adaptation, and migration barriers. Important ecosystem functions, such as primary production and energy transfer between trophic levels, have already changed, and biodiversity patterns have shifted. A confidence assessment of the degree of 'scientific understanding' revealed an intermediate level for most of the more detailed sub-messages, indicating that process-oriented research has been successful in the past decade. Additional efforts are necessary, however, to achieve the level of robustness in scientific knowledge that is required to inform protection measures of the unique Antarctic terrestrial and marine ecosystems, and their contributions to global biodiversity and ecosystem services.
Collapse
Affiliation(s)
- Julian Gutt
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Columbusstr., Bremerhaven, 27568, Germany
| | - Enrique Isla
- Institute of Marine Sciences-CSIC, Passeig Maritim de la Barceloneta 37-49, Barcelona, 08003, Spain
| | - José C Xavier
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, Faculty of Sciences and Technology, Coimbra, Portugal.,British Antarctic Survey, Natural Environmental Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, U.K
| | - Byron J Adams
- Department of Biology and Monte L. Bean Museum, Brigham Young University, Provo, UT, U.S.A
| | - In-Young Ahn
- Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon, 21990, South Korea
| | - C-H Christina Cheng
- Department of Evolution, Ecology and Behavior, University of Illinois, Urbana, IL, U.S.A
| | - Claudia Colesie
- School of GeoSciences, University of Edinburgh, Alexander Crum Brown Road, Edinburgh, EH9 3FF, U.K
| | - Vonda J Cummings
- National Institute of Water and Atmosphere Research Ltd (NIWA), 301 Evans Bay Parade, Greta Point, Wellington, New Zealand
| | - Guido di Prisco
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, Naples, I-80131, Italy
| | - Huw Griffiths
- British Antarctic Survey, Natural Environmental Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, U.K
| | - Ian Hawes
- Coastal Marine Field Station, University of Waikato, 58 Cross Road, Tauranga, 3100, New Zealand
| | - Ian Hogg
- School of Science, University of Waikato, Private Bag 3105, Hamilton, 3240, New Zealand.,Canadian High Antarctic Research Station, Polar Knowledge Canada, PO Box 2150, Cambridge Bay, NU, X0B 0C0, Canada
| | - Trevor McIntyre
- Department of Life and Consumer Sciences, University of South Africa, Private Bag X6, Florida, 1710, South Africa
| | - Klaus M Meiners
- Australian Antarctic Division, Department of Agriculture, Water and the Environment, and Australian Antarctic Program Partnership, University of Tasmania, 20 Castray Esplanade, Battery Point, TAS, 7004, Australia
| | - David A Pearce
- British Antarctic Survey, Natural Environmental Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, U.K.,Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University at Newcastle, Northumberland Road, Newcastle upon Tyne, NE1 8ST, U.K
| | - Lloyd Peck
- British Antarctic Survey, Natural Environmental Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, U.K
| | - Dieter Piepenburg
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Columbusstr., Bremerhaven, 27568, Germany
| | - Ryan R Reisinger
- Centre d'Etudes Biologique de Chizé, UMR 7372 du Centre National de la Recherche Scientifique - La Rochelle Université, Villiers-en-Bois, 79360, France
| | - Grace K Saba
- Center for Ocean Observing Leadership, Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Rd., New Brunswick, NJ, 08901, U.S.A
| | - Irene R Schloss
- Instituto Antártico Argentino, Buenos Aires, Argentina.,Centro Austral de Investigaciones Científicas, Bernardo Houssay 200, Ushuaia, Tierra del Fuego, CP V9410CAB, Argentina.,Universidad Nacional de Tierra del Fuego, Ushuaia, Tierra del Fuego, CP V9410CAB, Argentina
| | - Camila N Signori
- Oceanographic Institute, University of São Paulo, Praça do Oceanográfico, 191, São Paulo, CEP: 05508-900, Brazil
| | - Craig R Smith
- Department of Oceanography, University of Hawaii at Manoa, 1000 Pope Road, Honolulu, HI, 96822, U.S.A
| | - Marino Vacchi
- Institute for the Study of the Anthropic Impacts and the Sustainability of the Marine Environment (IAS), National Research Council of Italy (CNR), Via de Marini 6, Genoa, 16149, Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, Naples, I-80131, Italy
| | - Diana H Wall
- Department of Biology and School of Global Environmental Sustainability, Colorado State University, Fort Collins, CO, U.S.A
| |
Collapse
|
23
|
Conroy JA, Reiss CS, Gleiber MR, Steinberg DK. Linking Antarctic krill larval supply and recruitment along the Antarctic Peninsula. Integr Comp Biol 2020; 60:1386-1400. [PMID: 32692833 DOI: 10.1093/icb/icaa111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antarctic krill (Euphausia superba) larval production and overwinter survival drive recruitment variability, which in turn determines abundance trends. The Antarctic Peninsula has been described as a recruitment hot spot and as a potentially important source region for larval and juvenile krill dispersal. However, there has been no analysis to spatially resolve regional-scale krill population dynamics across life stages. We assessed spatiotemporal patterns in krill demography using two decades of austral summer data collected along the North and West Antarctic Peninsula since 1993. We identified persistent spatial segregation in the summer distribution of euphausiid larvae (E. superba plus other species), which were concentrated in oceanic waters along the continental slope, and E. superba recruits, which were concentrated in shelf and coastal waters. Mature females of E. superba were more abundant over the continental shelf than the slope or coast. Euphausiid larval abundance was relatively localized and weakly correlated between the North and West Antarctic Peninsula, while E. superba recruitment was generally synchronized throughout the entire region. Euphausiid larval abundance along the West Antarctic Peninsula slope explained E. superba recruitment in shelf and coastal waters the next year. Given the localized nature of krill productivity, it is critical to evaluate the connectivity between upstream and downstream areas of the Antarctic Peninsula and beyond. Krill fishery catch distributions and population projections in the context of a changing climate should account for ontogenetic habitat partitioning, regional population connectivity, and highly variable recruitment.
Collapse
Affiliation(s)
- John A Conroy
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA, USA
| | - Christian S Reiss
- Antarctic Ecosystem Research Division, NOAA, Southwest Fisheries Science Center, La Jolla, CA, USA
| | - Miram R Gleiber
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA, USA.,Department of Integrative Biology, Hatfield Marine Science Center, Oregon State University, Newport, OR, USA
| | - Deborah K Steinberg
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA, USA
| |
Collapse
|
24
|
Bestley S, Ropert-Coudert Y, Bengtson Nash S, Brooks CM, Cotté C, Dewar M, Friedlaender AS, Jackson JA, Labrousse S, Lowther AD, McMahon CR, Phillips RA, Pistorius P, Puskic PS, Reis AODA, Reisinger RR, Santos M, Tarszisz E, Tixier P, Trathan PN, Wege M, Wienecke B. Marine Ecosystem Assessment for the Southern Ocean: Birds and Marine Mammals in a Changing Climate. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.566936] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
25
|
Höring F, Biscontin A, Harms L, Sales G, Reiss CS, De Pittà C, Meyer B. Seasonal gene expression profiling of Antarctic krill in three different latitudinal regions. Mar Genomics 2020; 56:100806. [PMID: 32773253 DOI: 10.1016/j.margen.2020.100806] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022]
Abstract
The Antarctic krill, Euphausia superba, has evolved seasonal rhythms of physiology and behaviour to survive under the extreme photoperiodic conditions in the Southern Ocean. However, the molecular mechanisms generating these rhythms remain far from understood. The aim of this study was to investigate seasonal differences in gene expression in three different latitudinal regions (South Georgia, South Orkneys/Bransfield Strait, Lazarev Sea) and to identify genes with potential regulatory roles in the seasonal life cycle of Antarctic krill. The RNA-seq data were analysed (a) for seasonal differences between summer and winter krill sampled from each region, and (b) for regional differences within each season. A large majority of genes showed an up-regulation in summer krill in all regions with respect to winter krill. However, seasonal differences in gene expression were less pronounced in Antarctic krill from South Georgia, most likely due to the milder seasonal conditions of the lower latitudes of this region, with a less extreme light regime and food availability between summer and winter. Our results suggest that in the South Orkneys/Bransfield Strait and Lazarev Sea region, Antarctic krill entered a state of metabolic depression and regressed development (winter quiescence) in winter. Moreover, seasonal gene expression signatures seem to be driven by a photoperiodic timing system that may adapt the flexible behaviour and physiology of Antarctic krill to the highly seasonal environment according to the latitudinal region. However, at the lower latitude South Georgia region, food availability might represent the main environmental cue influencing seasonal physiology.
Collapse
Affiliation(s)
- Flavia Höring
- Alfred Wegener Institute Helmholtz Centre for Polar und Marine Research, Am Handelshafen 12, Bremerhaven, Germany; Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26111 Oldenburg, Germany
| | - Alberto Biscontin
- Dipartimento di Biologia, Università degli Studi di Padova, via Ugo Bassi 58b, 35121 Padova, Italy
| | - Lars Harms
- Alfred Wegener Institute Helmholtz Centre for Polar und Marine Research, Am Handelshafen 12, Bremerhaven, Germany; Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heerstrasse 231, Oldenburg 26129, Germany
| | - Gabriele Sales
- Dipartimento di Biologia, Università degli Studi di Padova, via Ugo Bassi 58b, 35121 Padova, Italy
| | - Christian S Reiss
- National Oceanic and Atmospheric Administration, Antarctic Ecosystem Research Division, Southwest Fisheries Science Center, La Jolla, CA 92037, USA
| | - Cristiano De Pittà
- Dipartimento di Biologia, Università degli Studi di Padova, via Ugo Bassi 58b, 35121 Padova, Italy.
| | - Bettina Meyer
- Alfred Wegener Institute Helmholtz Centre for Polar und Marine Research, Am Handelshafen 12, Bremerhaven, Germany; Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26111 Oldenburg, Germany; Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heerstrasse 231, Oldenburg 26129, Germany.
| |
Collapse
|
26
|
Garcia MD, Dutto MS, Chazarreta CJ, Berasategui AA, Schloss IR, Hoffmeyer MS. Micro- and mesozooplankton successions in an Antarctic coastal environment during a warm year. PLoS One 2020; 15:e0232614. [PMID: 32407403 PMCID: PMC7224539 DOI: 10.1371/journal.pone.0232614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 04/18/2020] [Indexed: 01/01/2023] Open
Abstract
The rapid increase in atmospheric temperature detected in the last decades in the Western Antarctic Peninsula was accompanied by a strong glacier retreat and an increase in production of melting water, as well as changes in the sea-ice dynamic. The objective of this study was to analyze the succession of micro- and mesozooplankton during a warm annual cycle (December 2010-December 2011) in an Antarctic coastal environment (Potter Cove). The biomass of zooplankton body size classes was used to predict predator-prey size relationships (i.e., to test bottom-up/top-down control effects) using a Multiple Linear Regression Analysis. The micro- and mesozooplanktonic successions were graphically analyzed to detect the influence of environmental periods (defined by the degree of glacial melting, sea-ice freezing and sea-ice melting) on coupling/uncoupling planktonic biomass curves associated to possible predator-prey size relationship scenarios. At the beginning of the glacial melting, medium and large mesozooplankton (calanoid copepods, Euphausia superba, and Salpa thompsoni) exert a top-down control on Chl-a and microzooplankton. Stratification of the water column benefitted the availability of adequate food-size (Chl-a <20) for large microzooplankton (tintinnids) development observed during fall. High abundance of omnivores mesozooplankton (Oithona similis and furcilia of E. superba) during sea-ice freezing periods would be due to the presence of available heterotrophic food under or within the sea ice. Finally, the increase in microzooplankton abundance in the middle of spring, when sea-ice melting starts, corresponded to small and medium dinoflagellates and ciliates species, which were possibly part of the biota of sea ice. If glacier retreat continues and the duration and thickness of the sea ice layer fluctuates as predicted by climate models, our results predict a future scenario regarding the zooplankton succession in Antarctic coastal environments.
Collapse
Affiliation(s)
- Maximiliano D. Garcia
- Instituto Argentino de Oceanografía (IADO-CONICET), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - M. Sofia Dutto
- Instituto Argentino de Oceanografía (IADO-CONICET), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Carlo J. Chazarreta
- Instituto Argentino de Oceanografía (IADO-CONICET), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Anabela A. Berasategui
- Instituto Argentino de Oceanografía (IADO-CONICET), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Irene R. Schloss
- Instituto Antártico Argentino (IAA), Buenos Aires, San Martín, Argentina
- Centro Austral de Investigaciones Científicas (CADIC-CONICET), Ushuaia, Argentina
- Universidad Nacional de Tierra del Fuego, Antártida e Islas del Atlántico Sur (UNTdF), Ushuaia, Argentina
| | - Mónica S. Hoffmeyer
- Instituto Argentino de Oceanografía (IADO-CONICET), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
- Facultad Regional Bahía Blanca, Universidad Tecnológica Nacional (UTN), Bahía Blanca, Argentina
| |
Collapse
|
27
|
Hellessey N, Johnson R, Ericson JA, Nichols PD, Kawaguchi S, Nicol S, Hoem N, Virtue P. Antarctic Krill Lipid and Fatty acid Content Variability is Associated to Satellite Derived Chlorophyll a and Sea Surface Temperatures. Sci Rep 2020; 10:6060. [PMID: 32269236 PMCID: PMC7142126 DOI: 10.1038/s41598-020-62800-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 03/19/2020] [Indexed: 11/23/2022] Open
Abstract
Antarctic krill (Euphausia superba) are a key component of the Antarctic food web with considerable lipid reserves that are vital for their health and higher predator survival. Krill lipids are primarily derived from their diet of plankton, in particular diatoms and flagellates. Few attempts have been made to link the spatial and temporal variations in krill lipids to those in their food supply. Remotely-sensed environmental parameters provide large-scale information on the potential availability of krill food, although relating this to physiological and biochemical differences has only been performed on small scales and with limited samples. Our study utilised remotely-sensed data (chlorophyll a and sea surface temperature) coupled with krill lipid data obtained from 3 years of fishery-derived samples. We examined within and between year variation of trends in both the environment and krill biochemistry data. Chlorophyll a levels were positively related to krill lipid levels, particularly triacylglycerol. Plankton fatty acid biomarkers analysed in krill (such as n-3 polyunsaturated fatty acids) increased with decreasing sea surface temperature and increasing chlorophyll a levels. Our study demonstrates the utility of combining remote-sensing and biochemical data in examining biological and physiological relationships between Antarctic krill and the Southern Ocean environment.
Collapse
Affiliation(s)
- Nicole Hellessey
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Tasmania, 7004, Australia. .,CSIRO Oceans and Atmosphere, Castray Esplanade, Battery Point, Tasmania, 7004, Australia. .,Antarctic Climate and Ecosystems Cooperative Research Centre, 20 Castray Esplanade, Battery Point, Tasmania, 7004, Australia. .,School of Biological Sciences, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia, 30332, United States of America.
| | - Robert Johnson
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Tasmania, 7004, Australia
| | - Jessica A Ericson
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Tasmania, 7004, Australia.,CSIRO Oceans and Atmosphere, Castray Esplanade, Battery Point, Tasmania, 7004, Australia.,Antarctic Climate and Ecosystems Cooperative Research Centre, 20 Castray Esplanade, Battery Point, Tasmania, 7004, Australia.,Cawthron Institute, Private Bag 2, Nelson, 7041, New Zealand
| | - Peter D Nichols
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Tasmania, 7004, Australia.,CSIRO Oceans and Atmosphere, Castray Esplanade, Battery Point, Tasmania, 7004, Australia
| | - So Kawaguchi
- Antarctic Climate and Ecosystems Cooperative Research Centre, 20 Castray Esplanade, Battery Point, Tasmania, 7004, Australia.,Australian Antarctic Division, 203 Channel Highway, Kingston, Tasmania, 7050, Australia
| | - Stephen Nicol
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Tasmania, 7004, Australia.,Antarctic Climate and Ecosystems Cooperative Research Centre, 20 Castray Esplanade, Battery Point, Tasmania, 7004, Australia
| | - Nils Hoem
- Aker BioMarine Antarctic AS, Oksenøyveien 10, P.O. Box 496, NO-1327, Lysaker, Norway
| | - Patti Virtue
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Tasmania, 7004, Australia.,CSIRO Oceans and Atmosphere, Castray Esplanade, Battery Point, Tasmania, 7004, Australia.,Antarctic Climate and Ecosystems Cooperative Research Centre, 20 Castray Esplanade, Battery Point, Tasmania, 7004, Australia
| |
Collapse
|
28
|
Jenouvrier S, Holland M, Iles D, Labrousse S, Landrum L, Garnier J, Caswell H, Weimerskirch H, LaRue M, Ji R, Barbraud C. The Paris Agreement objectives will likely halt future declines of emperor penguins. GLOBAL CHANGE BIOLOGY 2020; 26:1170-1184. [PMID: 31696584 DOI: 10.1111/gcb.14864] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/22/2019] [Indexed: 05/12/2023]
Abstract
The Paris Agreement is a multinational initiative to combat climate change by keeping a global temperature increase in this century to 2°C above preindustrial levels while pursuing efforts to limit the increase to 1.5°C. Until recently, ensembles of coupled climate simulations producing temporal dynamics of climate en route to stable global mean temperature at 1.5 and 2°C above preindustrial levels were not available. Hence, the few studies that have assessed the ecological impact of the Paris Agreement used ad-hoc approaches. The development of new specific mitigation climate simulations now provides an unprecedented opportunity to inform ecological impact assessments. Here we project the dynamics of all known emperor penguin (Aptenodytes forsteri) colonies under new climate change scenarios meeting the Paris Agreement objectives using a climate-dependent-metapopulation model. Our model includes various dispersal behaviors so that penguins could modulate climate effects through movement and habitat selection. Under business-as-usual greenhouse gas emissions, we show that 80% of the colonies are projected to be quasiextinct by 2100, thus the total abundance of emperor penguins is projected to decline by at least 81% relative to its initial size, regardless of dispersal abilities. In contrast, if the Paris Agreement objectives are met, viable emperor penguin refuges will exist in Antarctica, and only 19% and 31% colonies are projected to be quasiextinct by 2100 under the Paris 1.5 and 2 climate scenarios respectively. As a result, the global population is projected to decline by at least by 31% under Paris 1.5 and 44% under Paris 2. However, population growth rates stabilize in 2060 such that the global population will be only declining at 0.07% under Paris 1.5 and 0.34% under Paris 2, thereby halting the global population decline. Hence, global climate policy has a larger capacity to safeguard the future of emperor penguins than their intrinsic dispersal abilities.
Collapse
Affiliation(s)
- Stéphanie Jenouvrier
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- Centre d'Etudes Biologiques de Chizé, UMR 7372 du Centre National de la Recherche Scientifique-Université de La Rochelle, Villiers en Bois, France
| | - Marika Holland
- National Center for Atmospheric Research, Boulder, CO, USA
| | - David Iles
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Sara Labrousse
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Laura Landrum
- National Center for Atmospheric Research, Boulder, CO, USA
| | - Jimmy Garnier
- Laboratoire de Mathématiques, UMR 5127, Université Savoie Mont-Blanc, Le Bourget du Lac, France
| | - Hal Caswell
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- Max Planck Institute for Demographic Research, Rostock, Germany
- University of Amsterdam, Amsterdam, The Netherlands
| | - Henri Weimerskirch
- Centre d'Etudes Biologiques de Chizé, UMR 7372 du Centre National de la Recherche Scientifique-Université de La Rochelle, Villiers en Bois, France
| | - Michelle LaRue
- Te Kura Aronukurangi, University of Canterbury, Christchurch, New Zealand
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Rubao Ji
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Christophe Barbraud
- Centre d'Etudes Biologiques de Chizé, UMR 7372 du Centre National de la Recherche Scientifique-Université de La Rochelle, Villiers en Bois, France
| |
Collapse
|
29
|
Häfker NS, Tessmar-Raible K. Rhythms of behavior: are the times changin’? Curr Opin Neurobiol 2020; 60:55-66. [DOI: 10.1016/j.conb.2019.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023]
|
30
|
Sontag PT, Steinberg DK, Reinfelder JR. Patterns of total mercury and methylmercury bioaccumulation in Antarctic krill (Euphausia superba) along the West Antarctic Peninsula. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:174-183. [PMID: 31229815 DOI: 10.1016/j.scitotenv.2019.06.176] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/19/2019] [Accepted: 06/11/2019] [Indexed: 06/09/2023]
Abstract
We examined mercury (Hg) accumulation in juvenile and adult subpopulations of Antarctic krill (Euphausia superba) collected west of the Antarctic Peninsula. Samples were collected along a northern cross-shelf transect beginning near Anvers Island and farther south near the sea ice edge in the austral summers of 2011, 2013, 2014, and 2015. Regardless of geographical position, mean concentrations of total Hg and methylmercury (MeHg), the form of Hg that biomagnifies in marine food webs, were significantly higher in juvenile than adult krill in all years. In 2013, juvenile Antarctic krill collected along the coast near Anvers Island had significantly higher MeHg concentrations than krill collected farther offshore, and in 2013 and 2014, coastal juvenile krill exhibited some of the highest MeHg concentrations of all subpopulations sampled. Across all sampling years, collection in northern (sea ice-free) or southern (sea ice edge) transects did not affect MeHg concentrations of juvenile or adult krill, suggesting similar levels and routes of MeHg exposure across the latitudes sampled. Developmental stage, feeding near the coast, and annual variations in sea ice-driven primary and export production were identified as potentially important factors leading to greater MeHg accumulation in juvenile than adult krill. Krill-dependent predators feeding primarily on juveniles may thus accumulate more MeHg than consumers foraging on older krill. These results report MeHg concentrations in Antarctic krill and will be useful for predicting Hg biomagnification in higher-level consumers in this productive Antarctic ecosystem.
Collapse
Affiliation(s)
- Philip T Sontag
- Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA.
| | - Deborah K Steinberg
- Virginia Institute of Marine Science, College of William & Mary, Gloucester Point, VA 23062, USA.
| | - John R Reinfelder
- Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA.
| |
Collapse
|
31
|
Cavan EL, Belcher A, Atkinson A, Hill SL, Kawaguchi S, McCormack S, Meyer B, Nicol S, Ratnarajah L, Schmidt K, Steinberg DK, Tarling GA, Boyd PW. The importance of Antarctic krill in biogeochemical cycles. Nat Commun 2019; 10:4742. [PMID: 31628346 PMCID: PMC6800442 DOI: 10.1038/s41467-019-12668-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/25/2019] [Indexed: 02/02/2023] Open
Abstract
Antarctic krill (Euphausia superba) are swarming, oceanic crustaceans, up to two inches long, and best known as prey for whales and penguins - but they have another important role. With their large size, high biomass and daily vertical migrations they transport and transform essential nutrients, stimulate primary productivity and influence the carbon sink. Antarctic krill are also fished by the Southern Ocean's largest fishery. Yet how krill fishing impacts nutrient fertilisation and the carbon sink in the Southern Ocean is poorly understood. Our synthesis shows fishery management should consider the influential biogeochemical role of both adult and larval Antarctic krill.
Collapse
Affiliation(s)
- E L Cavan
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia.
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK.
| | - A Belcher
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Rd, Cambridge, CB3 0ET, UK
| | - A Atkinson
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, UK
| | - S L Hill
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Rd, Cambridge, CB3 0ET, UK
| | - S Kawaguchi
- Australian Antarctic Division, Kingston, TAS, Australia
| | - S McCormack
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
- Antarctic Climate and Ecosystems CRC, University of Tasmania, Hobart, TAS, Australia
| | - B Meyer
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26111, Oldenburg, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, Ammerländer Heerstrasse 231, Oldenburg, 26129, Germany
| | - S Nicol
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - L Ratnarajah
- Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - K Schmidt
- School of Geography, Earth and Environmental Science, University of Plymouth, Plymouth, UK
| | - D K Steinberg
- Virginia Institute of Marine Science, College of William & Mary, Williamsburg, VA, USA
| | - G A Tarling
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Rd, Cambridge, CB3 0ET, UK
| | - P W Boyd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
- Antarctic Climate and Ecosystems CRC, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
32
|
Perry FA, Atkinson A, Sailley SF, Tarling GA, Hill SL, Lucas CH, Mayor DJ. Habitat partitioning in Antarctic krill: Spawning hotspots and nursery areas. PLoS One 2019; 14:e0219325. [PMID: 31339923 PMCID: PMC6655634 DOI: 10.1371/journal.pone.0219325] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/20/2019] [Indexed: 02/02/2023] Open
Abstract
Antarctic krill, Euphausia superba, have a circumpolar distribution but are concentrated within the south-west Atlantic sector, where they support a unique food web and a commercial fishery. Within this sector, our first goal was to produce quantitative distribution maps of all six ontogenetic life stages of krill (eggs, nauplii plus metanauplii, calyptopes, furcilia, juveniles, and adults), based on a compilation of all available post 1970s data. Using these maps, we then examined firstly whether “hotspots” of egg production and early stage nursery occurred, and secondly whether the available habitat was partitioned between the successive life stages during the austral summer and autumn, when krill densities can be high. To address these questions, we compiled larval krill density records and extracted data spanning 41 years (1976–2016) from the existing KRILLBASE-abundance and KRILLBASE-length-frequency databases. Although adult males and females of spawning age were widely distributed, the distribution of eggs, nauplii and metanauplii indicates that spawning is most intense over the shelf and shelf slope. This contrasts with the distributions of calyptope and furcilia larvae, which were concentrated further offshore, mainly in the Southern Scotia Sea. Juveniles, however, were strongly concentrated over shelves along the Scotia Arc. Simple environmental analyses based on water depth and mean water temperature suggest that krill associate with different habitats over the course of their life cycle. From the early to late part of the austral season, juvenile distribution moves from ocean to shelf, opposite in direction to that for adults. Such habitat partitioning may reduce intraspecific competition for food, which has been suggested to occur when densities are exceptionally high during years of strong recruitment. It also prevents any potential cannibalism by adults on younger stages. Understanding the location of krill spawning and juvenile development in relation to potentially overlapping fishing activities is needed to protect the health of the south-west Atlantic sector ecosystem.
Collapse
Affiliation(s)
- Frances A. Perry
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, Devon, United Kingdom
| | - Angus Atkinson
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, Devon, United Kingdom
- * E-mail:
| | - Sévrine F. Sailley
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, Devon, United Kingdom
| | | | - Simeon L. Hill
- British Antarctic Survey, High Cross, Cambridge, United Kingdom
| | - Cathy H. Lucas
- National Oceanography Centre Southampton, University of Southampton, Southampton, United Kingdom
| | - Daniel J. Mayor
- National Oceanography Centre Southampton, European Way, Southampton, United Kingdom
| |
Collapse
|
33
|
Herr H, Kelly N, Dorschel B, Huntemann M, Kock K, Lehnert LS, Siebert U, Viquerat S, Williams R, Scheidat M. Aerial surveys for Antarctic minke whales ( Balaenoptera bonaerensis) reveal sea ice dependent distribution patterns. Ecol Evol 2019; 9:5664-5682. [PMID: 31160989 PMCID: PMC6540710 DOI: 10.1002/ece3.5149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 11/21/2022] Open
Abstract
This study investigates the distribution of Antarctic minke whales (AMW) in relation to sea ice concentration and variations therein. Information on AMW densities in the sea ice-covered parts of the Southern Ocean is required to contextualize abundance estimates obtained from circumpolar shipboard surveys in open waters, suggesting a 30% decline in AMW abundance. Conventional line-transect shipboard surveys for density estimation are impossible in ice-covered regions, therefore we used icebreaker-supported helicopter surveys to obtain information on AMW densities along gradients of 0%-100% of ice concentration. We conducted five helicopter surveys in the Southern Ocean, between 2006 and 2013. Distance sampling data, satellite-derived sea-ice data, and bathymetric parameters were used in generalized additive models (GAMs) to produce predictions on how the density of AMWs varied over space and time, and with environmental covariates. Ice concentration, distance to the ice edge and distance from the shelf break were found to describe the distribution of AMWs. Highest densities were predicted at the ice edge and through to medium ice concentrations. Medium densities were found up to 500 km into the ice edge in all concentrations of ice. Very low numbers of AMWs were found in the ice-free waters of the West Antarctic Peninsula (WAP). A consistent relationship between AMW distribution and sea ice concentration weakens the support for the hypothesis that varying numbers of AMWs in ice-covered waters were responsible for observed changes in estimated abundance. The potential decline in AMW abundance stresses the need for conservation measures and further studies into the AMW population status. Very low numbers of AMWs recorded in the ice-free waters along the WAP support the hypothesis that this species is strongly dependent on sea ice and that forecasted sea ice changes have the potential of heavily impacting AMWs.
Collapse
Affiliation(s)
- Helena Herr
- Institute for Terrestrial and Aquatic Wildlife ResearchUniversity of Veterinary Medicine Hannover, FoundationBuesumGermany
- Present address:
Center of Natural History (CeNak)University of HamburgHamburgGermany
| | - Natalie Kelly
- CSIRO Mathematical and Information SciencesHobartTasmaniaAustralia
- Present address:
Australian Antarctic DivisionKingstonTasmaniaAustralia
| | - Boris Dorschel
- Alfred Wegener InstituteHelmholtz Centre for Polar and Marine ResearchBremerhavenGermany
| | - Marcus Huntemann
- Alfred Wegener InstituteHelmholtz Centre for Polar and Marine ResearchBremerhavenGermany
- Institute of Environmental PhysicsUniversity of BremenBremenGermany
| | - Karl‐Hermann Kock
- von Thünen InstituteInstitute of Sea FisheriesBremerhavenGermany
- Present address:
Kiefernweg 11a22949AmmersbekGermany
| | - Linn Sophia Lehnert
- Institute for Terrestrial and Aquatic Wildlife ResearchUniversity of Veterinary Medicine Hannover, FoundationBuesumGermany
- von Thünen InstituteInstitute of Sea FisheriesBremerhavenGermany
- Present address:
Leibniz Institute for Zoo and Wildlife Research (IZW)BerlinGermany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife ResearchUniversity of Veterinary Medicine Hannover, FoundationBuesumGermany
| | - Sacha Viquerat
- Institute for Terrestrial and Aquatic Wildlife ResearchUniversity of Veterinary Medicine Hannover, FoundationBuesumGermany
- Present address:
Center of Natural History (CeNak)University of HamburgHamburgGermany
| | - Rob Williams
- Pew Fellow in Marine Conservation, Oceans InitiativeSeattleWashington
| | - Meike Scheidat
- Wageningen Marine ResearchWageningen University and ResearchIJmuidenThe Netherlands
| |
Collapse
|
34
|
Havermans C, Auel H, Hagen W, Held C, Ensor NS, A Tarling G. Predatory zooplankton on the move: Themisto amphipods in high-latitude marine pelagic food webs. ADVANCES IN MARINE BIOLOGY 2019; 82:51-92. [PMID: 31229150 DOI: 10.1016/bs.amb.2019.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hyperiid amphipods are predatory pelagic crustaceans that are particularly prevalent in high-latitude oceans. Many species are likely to have co-evolved with soft-bodied zooplankton groups such as salps and medusae, using them as substrate, for food, shelter or reproduction. Compared to other pelagic groups, such as fish, euphausiids and soft-bodied zooplankton, hyperiid amphipods are poorly studied especially in terms of their distribution and ecology. Hyperiids of the genus Themisto, comprising seven distinct species, are key players in temperate and cold-water pelagic ecosystems where they reach enormous levels of biomass. In these areas, they are important components of marine food webs, and they are major prey for many commercially important fish and squid stocks. In northern parts of the Southern Ocean, Themisto are so prevalent that they are considered to take on the role that Antarctic krill play further south. Nevertheless, although they are around the same size as krill, and may also occur in swarms, their feeding behaviour and mode of reproduction are completely different, hence their respective impacts on ecosystem structure differ. Themisto are major predators of meso- and macrozooplankton in several major oceanic regions covering shelves to open ocean from the polar regions to the subtropics. Based on a combination of published and unpublished occurrence data, we plot out the distributions of the seven species of Themisto. Further, we consider the different predators that rely on Themisto for a large fraction of their diet, demonstrating their major importance for higher trophic levels such as fish, seabirds and mammals. For instance, T. gaudichaudii in the Southern Ocean comprises a major part of the diets of around 80 different species of squid, fish, seabirds and marine mammals, while T. libellula in the Bering Sea and Greenland waters is a main prey item for commercially exploited fish species. We also consider the ongoing and predicted range expansions of Themisto species in light of environmental changes. In northern high latitudes, sub-Arctic Themisto species are replacing truly Arctic, ice-bound, species. In the Southern Ocean, a range expansion of T. gaudichaudii is expected as water masses warm, impacting higher trophic levels and biogeochemical cycles. We identify the many knowlegde gaps that must be filled in order to evaluate, monitor and predict the ecological shifts that will result from the changing patterns of distribution and abundance of this important pelagic group.
Collapse
Affiliation(s)
- Charlotte Havermans
- BreMarE-Bremen Marine Ecology, Marine Zoology, Universität Bremen, Bremen, Germany; Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-und Meeresforschung, Bremerhaven, Germany.
| | - Holger Auel
- BreMarE-Bremen Marine Ecology, Marine Zoology, Universität Bremen, Bremen, Germany
| | - Wilhelm Hagen
- BreMarE-Bremen Marine Ecology, Marine Zoology, Universität Bremen, Bremen, Germany
| | - Christoph Held
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-und Meeresforschung, Bremerhaven, Germany
| | - Natalie S Ensor
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom
| | - Geraint A Tarling
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom
| |
Collapse
|
35
|
Belcher A, Henson SA, Manno C, Hill SL, Atkinson A, Thorpe SE, Fretwell P, Ireland L, Tarling GA. Krill faecal pellets drive hidden pulses of particulate organic carbon in the marginal ice zone. Nat Commun 2019; 10:889. [PMID: 30792498 PMCID: PMC6385259 DOI: 10.1038/s41467-019-08847-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 02/04/2019] [Indexed: 02/01/2023] Open
Abstract
The biological carbon pump drives a flux of particulate organic carbon (POC) through the ocean and affects atmospheric levels of carbon dioxide. Short term, episodic flux events are hard to capture with current observational techniques and may thus be underrepresented in POC flux estimates. We model the potential hidden flux of POC originating from Antarctic krill, whose swarming behaviour could result in a major conduit of carbon to depth through their rapid exploitation of phytoplankton blooms and bulk egestion of rapidly sinking faecal pellets (FPs). Our model results suggest a seasonal krill FP export flux of 0.039 GT C across the Southern Ocean marginal ice zone, corresponding to 17-61% (mean 35%) of current satellite-derived export estimates for this zone. The magnitude of our conservatively estimated flux highlights the important role of large, swarming macrozooplankton in POC export and, the need to incorporate such processes more mechanistically to improve model projections.
Collapse
Affiliation(s)
- A Belcher
- British Antarctic Survey, Cambridge, CB3 0ET, UK.
| | - S A Henson
- National Oceanography Centre, Southampton, SO14 3ZH, UK
| | - C Manno
- British Antarctic Survey, Cambridge, CB3 0ET, UK
| | - S L Hill
- British Antarctic Survey, Cambridge, CB3 0ET, UK
| | - A Atkinson
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, UK
| | - S E Thorpe
- British Antarctic Survey, Cambridge, CB3 0ET, UK
| | - P Fretwell
- British Antarctic Survey, Cambridge, CB3 0ET, UK
| | - L Ireland
- British Antarctic Survey, Cambridge, CB3 0ET, UK
| | - G A Tarling
- British Antarctic Survey, Cambridge, CB3 0ET, UK
| |
Collapse
|
36
|
Clarke LJ, Suter L, King R, Bissett A, Deagle BE. Antarctic Krill Are Reservoirs for Distinct Southern Ocean Microbial Communities. Front Microbiol 2019; 9:3226. [PMID: 30697197 PMCID: PMC6340936 DOI: 10.3389/fmicb.2018.03226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/11/2018] [Indexed: 11/13/2022] Open
Abstract
Host-associated bacterial communities have received limited attention in polar habitats, but are likely to represent distinct nutrient-rich niches compared to the surrounding environment. Antarctic krill (Euphausia superba) are a super-abundant species with a circumpolar distribution, and the krill microbiome may make a substantial contribution to marine bacterial diversity in the Southern Ocean. We used high-throughput sequencing of the bacterial 16S ribosomal RNA gene to characterize bacterial diversity in seawater and krill tissue samples from four locations south of the Kerguelen Plateau, one of the most productive regions in the Indian Sector of the Southern Ocean. Krill-associated bacterial communities were distinct from those of the surrounding seawater, with different communities inhabiting the moults, digestive tract and faecal pellets, including several phyla not detected in the surrounding seawater. Digestive tissues from many individuals contained a potential gut symbiont (order: Mycoplasmoidales) shown to improve survival on a low quality diet in other crustaceans. Antarctic krill swarms thus influence Southern Ocean microbial communities not only through top-down grazing of eukaryotic cells and release of nutrients into the water column, but also by transporting distinct microbial assemblages horizontally via migration and vertically via sinking faecal pellets and moulted exuviae. Changes to Antarctic krill demographics or distribution through fishing pressure or climate-induced range shifts will also influence the composition and dispersal of Southern Ocean microbial communities.
Collapse
Affiliation(s)
- Laurence J Clarke
- Antarctic Climate and Ecosystems Cooperative Research Centre, University of Tasmania, Hobart, TAS, Australia
| | - Léonie Suter
- Australian Antarctic Division, Kingston, TAS, Australia
| | - Robert King
- Australian Antarctic Division, Kingston, TAS, Australia
| | - Andrew Bissett
- Commonwealth Scientific and Industrial Research Organisation, Hobart, TAS, Australia
| | | |
Collapse
|
37
|
Kohlbach D, Graeve M, Lange BA, David C, Schaafsma FL, van Franeker JA, Vortkamp M, Brandt A, Flores H. Dependency of Antarctic zooplankton species on ice algae-produced carbon suggests a sea ice-driven pelagic ecosystem during winter. GLOBAL CHANGE BIOLOGY 2018; 24:4667-4681. [PMID: 29999582 DOI: 10.1111/gcb.14392] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/07/2018] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
How the abundant pelagic life of the Southern Ocean survives winter darkness, when the sea is covered by pack ice and phytoplankton production is nearly zero, is poorly understood. Ice-associated ("sympagic") microalgae could serve as a high-quality carbon source during winter, but their significance in the food web is so far unquantified. To better understand the importance of ice algae-produced carbon for the overwintering of Antarctic organisms, we investigated fatty acid (FA) and stable isotope compositions of 10 zooplankton species, and their potential sympagic and pelagic carbon sources. FA-specific carbon stable isotope compositions were used in stable isotope mixing models to quantify the contribution of ice algae-produced carbon (αIce ) to the body carbon of each species. Mean αIce estimates ranged from 4% to 67%, with large variations between species and depending on the FA used for the modelling. Integrating the αIce estimates from all models, the sympagic amphipod Eusirus laticarpus was the most dependent on ice algal carbon (αIce : 54%-67%), and the salp Salpa thompsoni showed the least dependency on ice algal carbon (αIce : 8%-40%). Differences in αIce estimates between FAs associated with short-term vs. long-term lipid pools suggested an increasing importance of ice algal carbon for many species as the winter season progressed. In the abundant winter-active copepod Calanus propinquus, mean αIce reached more than 50% in late winter. The trophic carbon flux from ice algae into this copepod was between 3 and 5 mg C m-2 day-1 . This indicates that copepods and other ice-dependent zooplankton species transfer significant amounts of carbon from ice algae into the pelagic system, where it fuels the food web, the biological carbon pump and elemental cycling. Understanding the role of ice algae-produced carbon in these processes will be the key to predictions of the impact of future sea ice decline on Antarctic ecosystem functioning.
Collapse
Affiliation(s)
- Doreen Kohlbach
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-und Meeresforschung, Bremerhaven, Germany
- Centre for Natural History (CeNak), Zoological Museum, University of Hamburg, Hamburg, Germany
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, Manitoba, Canada
| | - Martin Graeve
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-und Meeresforschung, Bremerhaven, Germany
| | - Benjamin A Lange
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-und Meeresforschung, Bremerhaven, Germany
- Centre for Natural History (CeNak), Zoological Museum, University of Hamburg, Hamburg, Germany
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, Manitoba, Canada
| | - Carmen David
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-und Meeresforschung, Bremerhaven, Germany
- Centre for Natural History (CeNak), Zoological Museum, University of Hamburg, Hamburg, Germany
| | | | | | - Martina Vortkamp
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-und Meeresforschung, Bremerhaven, Germany
| | - Angelika Brandt
- Centre for Natural History (CeNak), Zoological Museum, University of Hamburg, Hamburg, Germany
- Senckenberg Naturmuseum, Frankfurt am Main, Germany
| | - Hauke Flores
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-und Meeresforschung, Bremerhaven, Germany
- Centre for Natural History (CeNak), Zoological Museum, University of Hamburg, Hamburg, Germany
| |
Collapse
|
38
|
Humpback whale migrations to Antarctic summer foraging grounds through the southwest Pacific Ocean. Sci Rep 2018; 8:12333. [PMID: 30120303 PMCID: PMC6098068 DOI: 10.1038/s41598-018-30748-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/31/2018] [Indexed: 02/05/2023] Open
Abstract
Humpback whale (Megaptera novaeangliae) populations typically undertake seasonal migrations, spending winters in low latitude breeding grounds and summers foraging in high latitude feeding grounds. Until recently, a broad scale understanding of whale movement has been derived from whaling records, Discovery marks, photo identification and genetic analyses. However, with advances in satellite tagging technology and concurrent development of analytical methodologies we can now detail finer scale humpback whale movement, infer behavioural context and examine how these animals interact with their physical environment. Here we describe the temporal and spatial characteristics of migration along the east Australian seaboard and into the Southern Ocean by 30 humpback whales satellite tagged over three consecutive austral summers. We characterise the putative Antarctic feeding grounds and identify supplemental foraging within temperate, migratory corridors. We demonstrate that Antarctic foraging habitat is associated with the marginal ice zone, with key predictors of inferred foraging behaviour including distance from the ice edge, ice melt rate and variability in ice concentration two months prior to arrival. We discuss the highly variable ice season within the putative foraging habitat and the implications that this and other environmental factors may have on the continued strong recovery of this humpback whale population.
Collapse
|