1
|
Shahmohamadloo RS, Rudman SM, Clare CI, Westrick JA, Wang X, De Meester L, Fryxell JM. Intraspecific diversity is critical to population-level risk assessments. Sci Rep 2024; 14:25883. [PMID: 39468236 PMCID: PMC11519591 DOI: 10.1038/s41598-024-76734-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024] Open
Abstract
Environmental risk assessment (ERA) is critical for protecting life by predicting population responses to contaminants. However, routine toxicity testing often examines only one genotype from surrogate species, potentially leading to inaccurate risk assessments, as natural populations typically consist of genetically diverse individuals. To evaluate the importance of intraspecific variation in translating toxicity testing to natural populations, we quantified the magnitude of phenotypic variation between 20 Daphnia magna clones exposed to two levels of microcystins, a cosmopolitan cyanobacterial toxin. We observed significant genetic variation in survival, growth, and reproduction, which increased under microcystins exposure. Simulations of survival showed that using a single genotype for toxicity tolerance estimates on average failed to produce accurate predictions within the 95% confidence interval over half of the time. Whole genome sequencing of the 20 clones tested for correlations between toxicological responses and genomic divergence, including candidate loci from prior gene expression studies. We found no overall correlations, indicating that clonal variation, rather than variation at candidate genes, predicts population-level responses to toxins. These results highlight the importance of incorporating broad intraspecific genetic variation, without focusing specifically on variation in candidate genes, into ERAs to more reliably predict how local populations will respond to contaminants.
Collapse
Affiliation(s)
- René S Shahmohamadloo
- School of Biological Sciences, Washington State University, Vancouver, Washington, WA, 98686, USA.
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Seth M Rudman
- School of Biological Sciences, Washington State University, Vancouver, Washington, WA, 98686, USA.
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Catherine I Clare
- School of Biological Sciences, Washington State University, Vancouver, Washington, WA, 98686, USA
| | - Judy A Westrick
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - Xueqi Wang
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution, and Conservation, University of Leuven, Leuven, 3000, Belgium
| | - John M Fryxell
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
- Department of Biology, University of Victoria, British Columbia, Victoria, V8P 5C2, Canada
| |
Collapse
|
2
|
Li S, Yan X, Abdullah Al M, Ren K, Rensing C, Hu A, Tsyganov AN, Mazei Y, Smirnov A, Mazei N, Yang J. Ecological and evolutionary processes involved in shaping microbial habitat generalists and specialists in urban park ecosystems. mSystems 2024; 9:e0046924. [PMID: 38767347 PMCID: PMC11237591 DOI: 10.1128/msystems.00469-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 04/17/2024] [Indexed: 05/22/2024] Open
Abstract
Microbiomes are integral to ecological health and human well-being; however, their ecological and evolutionary drivers have not been systematically investigated, especially in urban park ecosystems. As microbes have different levels of tolerance to environmental changes and habitat preferences, they can be categorized into habitat generalists and specialists. Here, we explored the ecological and evolutionary characteristics of both prokaryotic and microeukaryotic habitat generalists and specialists from six urban parks across five habitat types, including moss, soil, tree hole, water, and sediment. Our results revealed that different ecological and evolutionary processes maintained and regulated microbial diversity in urban park ecosystems. Under ecological perspective, community assembly of microbial communities was mainly driven by stochastic processes; however, deterministic processes were higher for habitat specialists than generalists. Microbial interactions were highly dynamic among habitats, and habitat specialists played key roles as module hubs in intradomain networks. In aquatic interdomain networks, microeukaryotic habitat specialists and prokaryotic habitat specialists played crucial roles as module hubs and connectors, respectively. Furthermore, analyzing evolutionary characteristics, our results revealed that habitat specialists had a much higher diversification potential than generalists, while generalists showed shorter phylogenetic branch lengths as well as larger genomes than specialists. This study broadens our understanding of the ecological and evolutionary features of microbial habitat generalists and specialists in urban park ecosystems across multi-habitat. IMPORTANCE Urban parks, as an important urban greenspace, play essential roles in ecosystem services and are important hotspots for microbes. Microbial diversity is driven by different ecological and evolutionary processes, while little is currently known about the distinct roles of ecological and evolutionary features in shaping microbial diversity in urban park ecosystems. We explored the ecological and evolutionary characteristics of prokaryotic and microeukaryotic habitat generalists and specialists in urban park ecosystems based on a representative set of different habitats. We found that different ecological and evolutionary drivers jointly maintained and regulated microbial diversity in urban park microbiomes through analyzing the community assembly process, ecological roles in hierarchical interaction, and species diversification potential. These findings significantly advance our understanding regarding the mechanisms governing microbial diversity in urban park ecosystems.
Collapse
Affiliation(s)
- Shuzhen Li
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Xue Yan
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mamun Abdullah Al
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Kexin Ren
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Christopher Rensing
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Institute of Environmental Microbiology, College of Resources and the Environment, Fujian Agriculture & Forestry University, Fuzhou, China
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | | | - Yuri Mazei
- Lomonosov Moscow State University, Moscow, Russia
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, China
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Alexey Smirnov
- Department of Invertebrate Zoology, Faculty of Biolog, St. Petersburg University, St Petersburg, Russia
| | | | - Jun Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| |
Collapse
|
3
|
Feng X, Chen Q, Wu W, Wang J, Li G, Xu S, Shao S, Liu M, Zhong C, Wu CI, Shi S, He Z. Genomic evidence for rediploidization and adaptive evolution following the whole-genome triplication. Nat Commun 2024; 15:1635. [PMID: 38388712 PMCID: PMC10884412 DOI: 10.1038/s41467-024-46080-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
Whole-genome duplication (WGD), or polyploidy, events are widespread and significant in the evolutionary history of angiosperms. However, empirical evidence for rediploidization, the major process where polyploids give rise to diploid descendants, is still lacking at the genomic level. Here we present chromosome-scale genomes of the mangrove tree Sonneratia alba and the related inland plant Lagerstroemia speciosa. Their common ancestor has experienced a whole-genome triplication (WGT) approximately 64 million years ago coinciding with a period of dramatic global climate change. Sonneratia, adapting mangrove habitats, experienced extensive chromosome rearrangements post-WGT. We observe the WGT retentions display sequence and expression divergence, suggesting potential neo- and sub-functionalization. Strong selection acting on three-copy retentions indicates adaptive value in response to new environments. To elucidate the role of ploidy changes in genome evolution, we improve a model of the polyploidization-rediploidization process based on genomic evidence, contributing to the understanding of adaptive evolution during climate change.
Collapse
Affiliation(s)
- Xiao Feng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Qipian Chen
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Weihong Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Jiexin Wang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Guohong Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Shaohua Xu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Shao Shao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Min Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Cairong Zhong
- Hainan Academy of Forestry (Hainan Academy of Mangrove), 571100, Haikou, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China.
| | - Ziwen He
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China.
| |
Collapse
|
4
|
Neculae A, Barnett ZC, Miok K, Dalosto MM, Kuklina I, Kawai T, Santos S, Furse JM, Sîrbu OI, Stoeckel JA, Pârvulescu L. Living on the edge: Crayfish as drivers to anoxification of their own shelter microenvironment. PLoS One 2024; 19:e0287888. [PMID: 38165988 PMCID: PMC10760702 DOI: 10.1371/journal.pone.0287888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/14/2023] [Indexed: 01/04/2024] Open
Abstract
Burrowing is a common trait among crayfish thought to help species deal with adverse environmental challenges. However, little is known about the microhabitat ecology of crayfish taxa in relation to their burrows. To fill this knowledge gap, we assessed the availability of oxygen inside the crayfish shelter by series of in-vivo and in-silico modelling experiments. Under modeled condition, we found that, except for the entrance region of the 200 mm, a flooded burrow microenvironment became anoxic within 8 h, on average. Multiple 12-hour day-night cycles, with burrows occupied by crayfish for 12 h and empty for 12 h, were not sufficient for refreshing the burrow microenvironment. We then examined the degree to which crayfish species with different propensities for burrowing are tolerant of self-created anoxia. From these experiments, primary and secondary burrowers showed best and most consistent tolerance-exhibiting ≥ 64% survival to anoxia and 25-91% survival of ≥ 9 h at anoxia, respectively. Tertiary burrowers exhibited little to no tolerance of anoxia with 0-50% survival to anoxia and only one species exhibiting survival (2%) of ≥ 9 h at anoxia. Results suggest that moderate to strongly burrowing crayfish can quickly draw down the dissolved oxygen in burrow water but appear to have conserved a legacy of strong tolerance of anoxia from their monophyletic ancestors-the lobsters-whereas tertiary burrowers have lost (or never evolved) this ability.
Collapse
Affiliation(s)
- Adrian Neculae
- Faculty of Physics, West University of Timisoara, Timisoara, Romania
| | - Zanethia C. Barnett
- Center for Bottomland Hardwoods Research, Southern Research Station, USDA Forest Service, Oxford, MS, United States of Ameirca
| | - Kristian Miok
- Crayfish Research Centre, Institute for Advanced Environmental Research, West University of Timisoara, Timisoara, Romania
| | - Marcelo M. Dalosto
- Laboratório de Carcinologia, Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Iryna Kuklina
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Tadashi Kawai
- Central Fisheries Research Institute, Yoichi, Hokkaido, Japan
| | - Sandro Santos
- Laboratório de Carcinologia, Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - James M. Furse
- Coastal and Marine Research Centre, Griffith University, Gold Coast, Queensland, Australia
| | - Ovidiu I. Sîrbu
- Department of Biochemistry and Pharmacology, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - James A. Stoeckel
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, United States of America
| | - Lucian Pârvulescu
- Crayfish Research Centre, Institute for Advanced Environmental Research, West University of Timisoara, Timisoara, Romania
- Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, Timisoara, Romania
| |
Collapse
|
5
|
El-Sabaawi RW, Lemmen KD, Jeyasingh PD, Declerck SAJ. SEED: A framework for integrating ecological stoichiometry and eco-evolutionary dynamics. Ecol Lett 2023; 26 Suppl 1:S109-S126. [PMID: 37840025 DOI: 10.1111/ele.14285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 10/17/2023]
Abstract
Characterising the extent and sources of intraspecific variation and their ecological consequences is a central challenge in the study of eco-evolutionary dynamics. Ecological stoichiometry, which uses elemental variation of organisms and their environment to understand ecosystem patterns and processes, can be a powerful framework for characterising eco-evolutionary dynamics. However, the current emphasis on the relative content of elements in the body (i.e. organismal stoichiometry) has constrained its application. Intraspecific variation in the rates at which elements are acquired, assimilated, allocated or lost is often greater than the variation in organismal stoichiometry. There is much to gain from studying these traits together as components of an 'elemental phenotype'. Furthermore, each of these traits can have distinct ecological effects that are underappreciated in the current literature. We propose a conceptual framework that explores how microevolutionary change in the elemental phenotype occurs, how its components interact with each other and with other traits, and how its changes can affect a wide range of ecological processes. We demonstrate how the framework can be used to generate novel hypotheses and outline pathways for future research that enhance our ability to explain, analyse and predict eco-evolutionary dynamics.
Collapse
Affiliation(s)
- Rana W El-Sabaawi
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Kimberley D Lemmen
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Punidan D Jeyasingh
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Steven A J Declerck
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Department of Biology, Laboratory of Aquatic Ecology, Evolution and Conservation, KULeuven, Leuven, Belgium
| |
Collapse
|
6
|
Fronhofer EA, Corenblit D, Deshpande JN, Govaert L, Huneman P, Viard F, Jarne P, Puijalon S. Eco-evolution from deep time to contemporary dynamics: The role of timescales and rate modulators. Ecol Lett 2023; 26 Suppl 1:S91-S108. [PMID: 37840024 DOI: 10.1111/ele.14222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 10/17/2023]
Abstract
Eco-evolutionary dynamics, or eco-evolution for short, are often thought to involve rapid demography (ecology) and equally rapid heritable phenotypic changes (evolution) leading to novel, emergent system behaviours. We argue that this focus on contemporary dynamics is too narrow: Eco-evolution should be extended, first, beyond pure demography to include all environmental dimensions and, second, to include slow eco-evolution which unfolds over thousands or millions of years. This extension allows us to conceptualise biological systems as occupying a two-dimensional time space along axes that capture the speed of ecology and evolution. Using Hutchinson's analogy: Time is the 'theatre' in which ecology and evolution are two interacting 'players'. Eco-evolutionary systems are therefore dynamic: We identify modulators of ecological and evolutionary rates, like temperature or sensitivity to mutation, which can change the speed of ecology and evolution, and hence impact eco-evolution. Environmental change may synchronise the speed of ecology and evolution via these rate modulators, increasing the occurrence of eco-evolution and emergent system behaviours. This represents substantial challenges for prediction, especially in the context of global change. Our perspective attempts to integrate ecology and evolution across disciplines, from gene-regulatory networks to geomorphology and across timescales, from today to deep time.
Collapse
Affiliation(s)
| | - Dov Corenblit
- GEOLAB, Université Clermont Auvergne, CNRS, Clermont-Ferrand, France
- Laboratoire écologie fonctionnelle et environnement, Université Paul Sabatier, CNRS, INPT, UPS, Toulouse, France
| | | | - Lynn Govaert
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Philippe Huneman
- Institut d'Histoire et de Philosophie des Sciences et des Techniques (CNRS/Université Paris I Sorbonne), Paris, France
| | - Frédérique Viard
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Philippe Jarne
- CEFE, UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - IRD - EPHE, Montpellier Cedex 5, France
| | - Sara Puijalon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| |
Collapse
|
7
|
Yamamichi M, Ellner SP, Hairston NG. Beyond simple adaptation: Incorporating other evolutionary processes and concepts into eco-evolutionary dynamics. Ecol Lett 2023; 26 Suppl 1:S16-S21. [PMID: 37840027 DOI: 10.1111/ele.14197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/18/2023] [Accepted: 02/20/2023] [Indexed: 10/17/2023]
Abstract
Studies of eco-evolutionary dynamics have integrated evolution with ecological processes at multiple scales (populations, communities and ecosystems) and with multiple interspecific interactions (antagonistic, mutualistic and competitive). However, evolution has often been conceptualised as a simple process: short-term directional adaptation that increases population growth. Here we argue that diverse other evolutionary processes, well studied in population genetics and evolutionary ecology, should also be considered to explore the full spectrum of feedback between ecological and evolutionary processes. Relevant but underappreciated processes include (1) drift and mutation, (2) disruptive selection causing lineage diversification or speciation reversal and (3) evolution driven by relative fitness differences that may decrease population growth. Because eco-evolutionary dynamics have often been studied by population and community ecologists, it will be important to incorporate a variety of concepts in population genetics and evolutionary ecology to better understand and predict eco-evolutionary dynamics in nature.
Collapse
Affiliation(s)
- Masato Yamamichi
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Stephen P Ellner
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Nelson G Hairston
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
8
|
Pantel JH, Becks L. Statistical methods to identify mechanisms in studies of eco-evolutionary dynamics. Trends Ecol Evol 2023; 38:760-772. [PMID: 37437547 DOI: 10.1016/j.tree.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 07/14/2023]
Abstract
While the reciprocal effects of ecological and evolutionary dynamics are increasingly recognized as an important driver for biodiversity, detection of such eco-evolutionary feedbacks, their underlying mechanisms, and their consequences remains challenging. Eco-evolutionary dynamics occur at different spatial and temporal scales and can leave signatures at different levels of organization (e.g., gene, protein, trait, community) that are often difficult to detect. Recent advances in statistical methods combined with alternative hypothesis testing provides a promising approach to identify potential eco-evolutionary drivers for observed data even in non-model systems that are not amenable to experimental manipulation. We discuss recent advances in eco-evolutionary modeling and statistical methods and discuss challenges for fitting mechanistic models to eco-evolutionary data.
Collapse
Affiliation(s)
- Jelena H Pantel
- Ecological Modelling, Faculty of Biology, University of Duisburg-Essen, Universitätsstraße 2, 45117 Essen, Germany.
| | - Lutz Becks
- University of Konstanz, Aquatic Ecology and Evolution, Limnological Institute University of Konstanz Mainaustraße 252 78464, Konstanz/Egg, Germany
| |
Collapse
|
9
|
He Q, Wang S, Feng K, Michaletz ST, Hou W, Zhang W, Li F, Zhang Y, Wang D, Peng X, Yang X, Deng Y. High speciation rate of niche specialists in hot springs. THE ISME JOURNAL 2023:10.1038/s41396-023-01447-4. [PMID: 37286739 DOI: 10.1038/s41396-023-01447-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/09/2023]
Abstract
Ecological and evolutionary processes simultaneously regulate microbial diversity, but the evolutionary processes and their driving forces remain largely unexplored. Here we investigated the ecological and evolutionary characteristics of microbiota in hot springs spanning a broad temperature range (54.8-80 °C) by sequencing the 16S rRNA genes. Our results demonstrated that niche specialists and niche generalists are embedded in a complex interaction of ecological and evolutionary dynamics. On the thermal tolerance niche axis, thermal (T) sensitive (at a specific temperature) versus T-resistant (at least in five temperatures) species were characterized by different niche breadth, community abundance and dispersal potential, consequently differing in potential evolutionary trajectory. The niche-specialized T-sensitive species experienced strong temperature barriers, leading to completely species shift and high fitness but low abundant communities at each temperature ("home niche"), and such trade-offs thus reinforced peak performance, as evidenced by high speciation across temperatures and increasing diversification potential with temperature. In contrast, T-resistant species are advantageous of niche expansion but with poor local performance, as shown by wide niche breadth with high extinction, indicating these niche generalists are "jack-of-all-trades, master-of-none". Despite of such differences, the T-sensitive and T-resistant species are evolutionarily interacted. Specifically, the continuous transition from T-sensitive to T-resistant species insured the exclusion probability of T-resistant species at a relatively constant level across temperatures. The co-evolution and co-adaptation of T-sensitive and T-resistant species were in line with the red queen theory. Collectively, our findings demonstrate that high speciation of niche specialists could alleviate the environmental-filtering-induced negative effect on diversity.
Collapse
Affiliation(s)
- Qing He
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Shang Wang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China.
| | - Kai Feng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China
| | - Sean T Michaletz
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Weiguo Hou
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
| | - Wenhui Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
| | - Fangru Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
| | - Yidi Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
| | - Danrui Wang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Xi Peng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Xingsheng Yang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
10
|
Tanaka T, Ueda R, Sato T. Seasonal ecosystem linkages contribute to the maintenance of migratory polymorphism in a salmonid population. Proc Biol Sci 2023; 290:20230126. [PMID: 36946118 PMCID: PMC10031421 DOI: 10.1098/rspb.2023.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/23/2023] [Indexed: 03/23/2023] Open
Abstract
The influence of resource subsidies on animal growth, survival and reproduction is well understood, but their ultimate effects on life history have been less explored. Some wild species have a partially migratory life history, wherein migration is dictated based upon threshold traits regulated in part by the seasonal availability of resources. We conducted a large-scale field manipulation experiment where we provided a terrestrial invertebrate subsidy to red-spotted masu salmon. Individuals in stream reaches that received a subsidy had, on average, a 53% increase in growth rate relative to those in control reaches. This increased growth resulted in a greater proportion of individuals reaching the threshold body size and smolting in the autumn. Consequently, 19-55% of females in subsidized reaches became migratory, whereas 0-14% became migratory in the control reaches. Our findings highlight seasonal ecosystem linkage as a key ecosystem property for maintaining migratory polymorphism in partially migratory animals.
Collapse
Affiliation(s)
- Tatsuya Tanaka
- Department of Biology, Graduate School of Sciences, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Rui Ueda
- Department of Biology, Graduate School of Sciences, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Takuya Sato
- Department of Biology, Graduate School of Sciences, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu, Shiga 520-2113, Japan
| |
Collapse
|
11
|
Sibly RM, Curnow RN. Allele frequencies and selection coefficients in locally adapted populations. J Theor Biol 2023; 565:111463. [PMID: 36914112 DOI: 10.1016/j.jtbi.2023.111463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/22/2022] [Accepted: 03/08/2023] [Indexed: 03/15/2023]
Abstract
Understanding the role of natural selection in driving evolutionary change requires accurate estimates of the strength of selection acting at the genetic level in the wild. This is challenging to achieve but may be easier in the case of populations in migration-selection balance. When two populations are at equilibrium under migration-selection balance, there exist loci whose alleles are selected different ways in the two populations. Such loci can be identified from genome sequencing by their high values of FST. This raises the question of what is the strength of selection on locally-adaptive alleles. To answer this question we analyse a 1-locus 2-allele model of a population distributed between two niches. We show by simulation of selected cases that the outputs from finite-population models are essentially the same as those from deterministic infinite-population models. We then derive theory for the infinite-population model showing the dependence of selection coefficients on equilibrium allele frequencies, migration rates, dominance and relative population sizes in the two niches. An Excel spreadsheet is provided for the calculation of selection coefficients and their approximate standard errors from observed values of population parameters. We illustrate our results with a worked example, with graphs showing the dependence of selection coefficients on equilibrium allele frequencies, and graphs showing how FST depends on the selection coefficients acting on the alleles at a locus. Given the extent of recent progress in ecological genomics, we hope our methods may help those studying migration-selection balance to quantify the advantages conferred by adaptive genes.
Collapse
Affiliation(s)
| | - Robert N Curnow
- Department of Mathematics and Statistics, University of Reading, UK.
| |
Collapse
|
12
|
Strickland K, Räsänen K, Kristjánsson BK, Phillips JS, Einarsson A, Snorradóttir RG, Bartrons M, Jónsson ZO. Genome-phenotype-environment associations identify signatures of selection in a panmictic population of threespine stickleback. Mol Ecol 2023; 32:1708-1725. [PMID: 36627230 DOI: 10.1111/mec.16845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/01/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023]
Abstract
Adaptive genetic divergence occurs when selection imposed by the environment causes the genomic component of the phenotype to differentiate. However, genomic signatures of natural selection are usually identified without information on which trait is responding to selection by which selective agent(s). Here, we integrate whole-genome sequencing with phenomics and measures of putative selective agents to assess the extent of adaptive divergence in threespine stickleback occupying the highly heterogeneous lake Mývatn, NE Iceland. We find negligible genome wide divergence, yet multiple traits (body size, gill raker structure and defence traits) were divergent along known ecological gradients (temperature, predatory bird densities and water depth). SNP based heritability of all measured traits was high (h2 = 0.42-0.65), indicating adaptive potential for all traits. Environment-association analyses further identified thousands of loci putatively involved in selection, related to genes linked to, for instance, neuron development and protein phosphorylation. Finally, we found that loci linked to water depth were concurrently associated with pelvic spine length variation - supporting the conclusion that divergence in pelvic spine length occurred in the face of gene flow. Our results suggest that whilst there is substantial genetic variation in the traits measured, phenotypic divergence of Mývatn stickleback is mostly weakly associated with environmental gradients, potentially as a result of substantial gene flow. Our study illustrates the value of integrative studies that combine genomic assays of multivariate trait variation with landscape genomics.
Collapse
Affiliation(s)
- Kasha Strickland
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,Department of Aquaculture and Fish Biology, Hólar University, Sauðárkrókur, Iceland
| | - Katja Räsänen
- Department of Aquatic Ecology, EAWAG and Institute of Integrative Biology, ETH, Zurich, Switzerland.,Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | | | - Joseph S Phillips
- Department of Aquaculture and Fish Biology, Hólar University, Sauðárkrókur, Iceland.,Department of Biology, Creighton University, Omaha, Nebraska, USA
| | | | - Ragna G Snorradóttir
- Department of Aquaculture and Fish Biology, Hólar University, Sauðárkrókur, Iceland
| | - Mireia Bartrons
- Aquatic Ecology Group, University of Vic (UVic-UCC), Catalonia, Spain
| | | |
Collapse
|
13
|
Pfenninger M, Foucault Q. Population Genomic Time Series Data of a Natural Population Suggests Adaptive Tracking of Fluctuating Environmental Changes. Integr Comp Biol 2022; 62:1812-1826. [PMID: 35762661 DOI: 10.1093/icb/icac098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/07/2022] [Accepted: 06/16/2022] [Indexed: 01/05/2023] Open
Abstract
Natural populations are constantly exposed to fluctuating environmental changes that negatively affect their fitness in unpredictable ways. While theoretical models show the possibility of counteracting these environmental changes through rapid evolutionary adaptations, there have been few empirical studies demonstrating such adaptive tracking in natural populations. Here, we analyzed environmental data, fitness-related phenotyping and genomic time-series data sampled over 3 years from a natural Chironomus riparius (Diptera, Insecta) population to address this question. We show that the population's environment varied significantly on the time scale of the sampling in many selectively relevant dimensions, independently of each other. Similarly, phenotypic fitness components evolved significantly on the same temporal scale (mean 0.32 Haldanes), likewise independent from each other. The allele frequencies of 367,446 SNPs across the genome showed evidence of positive selection. Using temporal correlation of spatially coherent allele frequency changes revealed 35,574 haplotypes with more than one selected SNP. The mean selection coefficient for these haplotypes was 0.30 (s.d. = 0.68). The frequency changes of these haplotypes clustered in 46 different temporal patterns, indicating concerted, independent evolution of many polygenic traits. Nine of these patterns were strongly correlated with measured environmental variables. Enrichment analysis of affected genes suggested the implication of a wide variety of biological processes. Thus, our results suggest overall that the natural population of C. riparius tracks environmental change through rapid polygenic adaptation in many independent dimensions. This is further evidence that natural selection is pervasive at the genomic level and that evolutionary and ecological time scales may not differ at all, at least in some organisms.
Collapse
Affiliation(s)
- Markus Pfenninger
- Department Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt am Main, Germany.,Institute for Molecular and Organismic Evolution, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 7, 55128 Mainz, Germany.,LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Quentin Foucault
- Department Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt am Main, Germany.,Institute for Molecular and Organismic Evolution, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 7, 55128 Mainz, Germany
| |
Collapse
|
14
|
Lamarins A, Fririon V, Folio D, Vernier C, Daupagne L, Labonne J, Buoro M, Lefèvre F, Piou C, Oddou‐Muratorio S. Importance of interindividual interactions in eco-evolutionary population dynamics: The rise of demo-genetic agent-based models. Evol Appl 2022; 15:1988-2001. [PMID: 36540635 PMCID: PMC9753837 DOI: 10.1111/eva.13508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/29/2022] Open
Abstract
The study of eco-evolutionary dynamics, that is of the intertwinning between ecological and evolutionary processes when they occur at comparable time scales, is of growing interest in the current context of global change. However, many eco-evolutionary studies overlook the role of interindividual interactions, which are hard to predict and yet central to selective values. Here, we aimed at putting forward models that simulate interindividual interactions in an eco-evolutionary framework: the demo-genetic agent-based models (DG-ABMs). Being demo-genetic, DG-ABMs consider the feedback loop between ecological and evolutionary processes. Being agent-based, DG-ABMs follow populations of interacting individuals with sets of traits that vary among the individuals. We argue that the ability of DG-ABMs to take into account the genetic heterogeneity-that affects individual decisions/traits related to local and instantaneous conditions-differentiates them from analytical models, another type of model largely used by evolutionary biologists to investigate eco-evolutionary feedback loops. Based on the review of studies employing DG-ABMs and explicitly or implicitly accounting for competitive, cooperative or reproductive interactions, we illustrate that DG-ABMs are particularly relevant for the exploration of fundamental, yet pressing, questions in evolutionary ecology across various levels of organization. By jointly modelling the effects of management practices and other eco-evolutionary processes on interindividual interactions and population dynamics, DG-ABMs are also effective prospective and decision support tools to evaluate the short- and long-term evolutionary costs and benefits of management strategies and to assess potential trade-offs. Finally, we provide a list of the recent practical advances of the ABM community that should facilitate the development of DG-ABMs.
Collapse
Affiliation(s)
- Amaïa Lamarins
- E2S UPPA, INRAE, ECOBIOPUniversité de Pau et des Pays de l'AdourSaint‐Pée‐sur‐NivelleFrance
- Management of Diadromous Fish in their Environment, OFB, INRAE, Institut AgroUniv Pau & Pays Adour/E2S UPPARennesFrance
| | - Victor Fririon
- INRAE, UR 629 Ecologie des Forêts Méditerranéennes, URFMAvignonFrance
| | - Dorinda Folio
- E2S UPPA, INRAE, ECOBIOPUniversité de Pau et des Pays de l'AdourSaint‐Pée‐sur‐NivelleFrance
| | - Camille Vernier
- CIRAD, UMR CBGP, INRAE, IRD, Montpellier SupAgroUniv. MontpellierMontpellierFrance
| | - Léa Daupagne
- E2S UPPA, INRAE, ECOBIOPUniversité de Pau et des Pays de l'AdourSaint‐Pée‐sur‐NivelleFrance
| | - Jacques Labonne
- E2S UPPA, INRAE, ECOBIOPUniversité de Pau et des Pays de l'AdourSaint‐Pée‐sur‐NivelleFrance
| | - Mathieu Buoro
- E2S UPPA, INRAE, ECOBIOPUniversité de Pau et des Pays de l'AdourSaint‐Pée‐sur‐NivelleFrance
| | - François Lefèvre
- INRAE, UR 629 Ecologie des Forêts Méditerranéennes, URFMAvignonFrance
| | - Cyril Piou
- CIRAD, UMR CBGP, INRAE, IRD, Montpellier SupAgroUniv. MontpellierMontpellierFrance
| | - Sylvie Oddou‐Muratorio
- E2S UPPA, INRAE, ECOBIOPUniversité de Pau et des Pays de l'AdourSaint‐Pée‐sur‐NivelleFrance
| |
Collapse
|
15
|
Heras J, Martin CH. Minimal overall divergence of the gut microbiome in an adaptive radiation of Cyprinodon pupfishes despite potential adaptive enrichment for scale-eating. PLoS One 2022; 17:e0273177. [PMID: 36112615 PMCID: PMC9481044 DOI: 10.1371/journal.pone.0273177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
Adaptive radiations offer an excellent opportunity to understand the eco-evolutionary dynamics of gut microbiota and host niche specialization. In a laboratory common garden, we compared the gut microbiota of two novel derived trophic specialist pupfishes, a scale-eater and a molluscivore, to closely related and distant outgroup generalist populations, spanning both rapid trophic evolution within 10 kya and stable generalist diets persisting over 11 Mya. We predicted an adaptive and highly divergent microbiome composition in the trophic specialists reflecting their rapid rates of craniofacial and behavioral diversification. We sequenced 16S rRNA amplicons of gut microbiomes from lab-reared adult pupfishes raised under identical conditions and fed the same high protein diet. In contrast to our predictions, gut microbiota largely reflected phylogenetic distance among species, rather than generalist or specialist life history, in support of phylosymbiosis. However, we did find significant enrichment of Burkholderiaceae bacteria in replicated lab-reared scale-eater populations. These bacteria sometimes digest collagen, the major component of fish scales, supporting an adaptive shift. We also found some enrichment of Rhodobacteraceae and Planctomycetia in lab-reared molluscivore populations, but these bacteria target cellulose. Overall phylogenetic conservation of microbiome composition contrasts with predictions of adaptive radiation theory and observations of rapid diversification in all other trophic traits in these hosts, including craniofacial morphology, foraging behavior, aggression, and gene expression, suggesting that the functional role of these minor shifts in microbiota will be important for understanding the role of the microbiome in trophic diversification.
Collapse
Affiliation(s)
- Joseph Heras
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States of America
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, United States of America
| | - Christopher H. Martin
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States of America
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, United States of America
| |
Collapse
|
16
|
Yamamichi M. How does genetic architecture affect eco-evolutionary dynamics? A theoretical perspective. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200504. [PMID: 35634922 PMCID: PMC9149794 DOI: 10.1098/rstb.2020.0504] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recent studies have revealed the importance of feedbacks between contemporary rapid evolution (i.e. evolution that occurs through changes in allele frequencies) and ecological dynamics. Despite its inherent interdisciplinary nature, however, studies on eco-evolutionary feedbacks have been mostly ecological and tended to focus on adaptation at the phenotypic level without considering the genetic architecture of evolutionary processes. In empirical studies, researchers have often compared ecological dynamics when the focal species under selection has a single genotype with dynamics when it has multiple genotypes. In theoretical studies, common approaches are models of quantitative traits where mean trait values change adaptively along the fitness gradient and Mendelian traits with two alleles at a single locus. On the other hand, it is well known that genetic architecture can affect short-term evolutionary dynamics in population genetics. Indeed, recent theoretical studies have demonstrated that genetic architecture (e.g. the number of loci, linkage disequilibrium and ploidy) matters in eco-evolutionary dynamics (e.g. evolutionary rescue where rapid evolution prevents extinction and population cycles driven by (co)evolution). I propose that theoretical approaches will promote the synthesis of functional genomics and eco-evolutionary dynamics through models that combine population genetics and ecology as well as nonlinear time-series analyses using emerging big data.
This article is part of the theme issue ‘Genetic basis of adaptation and speciation: from loci to causative mutations’.
Collapse
Affiliation(s)
- Masato Yamamichi
- School of Biological Sciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
17
|
Grainger TN, Levine JM. Rapid evolution of life-history traits in response to warming, predation and competition: A meta-analysis. Ecol Lett 2021; 25:541-554. [PMID: 34850533 DOI: 10.1111/ele.13934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/07/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022]
Abstract
Although studies quantifying evolutionary change in response to the selective pressures that organisms face in the wild have demonstrated that organisms can evolve rapidly, we lack a systematic assessment of the frequency, magnitude and direction of rapid evolutionary change across taxa. To address this gap, we conducted a meta-analysis of 58 studies that document the effects of warming, predation or competition on the evolution of body size, development rate or fecundity in natural or experimental animal populations. We tested whether there was a consistent effect of any selective agent on any trait, whether the direction of these effects align with theoretical predictions, and whether the three agents select in opposing directions on any trait. Overall, we found weak effects of all three selective agents on trait evolution: none of our nine traits by selective agent combinations had an overall effect that differed from zero, only 31% of studies had a significant within-study effect, and attributes of the included studies generally did not account for between-study variation in results. One notable exception was that predation targeting adults consistently resulted in the evolution of smaller prey body size. We discuss potential causes of these generally weak responses and consider how our results inform the ongoing development of eco-evolutionary research.
Collapse
Affiliation(s)
- Tess Nahanni Grainger
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.,Princeton University, Princeton, New Jersey, USA
| | | |
Collapse
|
18
|
Acosta K, Appenroth KJ, Borisjuk L, Edelman M, Heinig U, Jansen MAK, Oyama T, Pasaribu B, Schubert I, Sorrels S, Sree KS, Xu S, Michael TP, Lam E. Return of the Lemnaceae: duckweed as a model plant system in the genomics and postgenomics era. THE PLANT CELL 2021; 33:3207-3234. [PMID: 34273173 PMCID: PMC8505876 DOI: 10.1093/plcell/koab189] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/18/2021] [Indexed: 05/05/2023]
Abstract
The aquatic Lemnaceae family, commonly called duckweed, comprises some of the smallest and fastest growing angiosperms known on Earth. Their tiny size, rapid growth by clonal propagation, and facile uptake of labeled compounds from the media were attractive features that made them a well-known model for plant biology from 1950 to 1990. Interest in duckweed has steadily regained momentum over the past decade, driven in part by the growing need to identify alternative plants from traditional agricultural crops that can help tackle urgent societal challenges, such as climate change and rapid population expansion. Propelled by rapid advances in genomic technologies, recent studies with duckweed again highlight the potential of these small plants to enable discoveries in diverse fields from ecology to chronobiology. Building on established community resources, duckweed is reemerging as a platform to study plant processes at the systems level and to translate knowledge gained for field deployment to address some of society's pressing needs. This review details the anatomy, development, physiology, and molecular characteristics of the Lemnaceae to introduce them to the broader plant research community. We highlight recent research enabled by Lemnaceae to demonstrate how these plants can be used for quantitative studies of complex processes and for revealing potentially novel strategies in plant defense and genome maintenance.
Collapse
Affiliation(s)
- Kenneth Acosta
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Klaus J Appenroth
- Plant Physiology, Matthias Schleiden Institute, University of Jena, Jena 07737, Germany
| | - Ljudmilla Borisjuk
- The Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben D-06466, Germany
| | - Marvin Edelman
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Uwe Heinig
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Marcel A K Jansen
- School of Biological, Earth and Environmental Sciences, Environmental Research Institute, University College Cork, Cork T23 TK30, Ireland
| | - Tokitaka Oyama
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Buntora Pasaribu
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Ingo Schubert
- The Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben D-06466, Germany
| | - Shawn Sorrels
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - K Sowjanya Sree
- Department of Environmental Science, Central University of Kerala, Periye 671320, India
| | - Shuqing Xu
- Institute for Evolution and Biodiversity, University of Münster, Münster 48149, Germany
| | - Todd P Michael
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute of Biological Studies, La Jolla, California 92037, USA
| | - Eric Lam
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
19
|
Wood ZT, Wiegardt AK, Barton KL, Clark JD, Homola JJ, Olsen BJ, King BL, Kovach AI, Kinnison MT. Meta-analysis: Congruence of genomic and phenotypic differentiation across diverse natural study systems. Evol Appl 2021; 14:2189-2205. [PMID: 34603492 PMCID: PMC8477602 DOI: 10.1111/eva.13264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 01/17/2023] Open
Abstract
Linking genotype to phenotype is a primary goal for understanding the genomic underpinnings of evolution. However, little work has explored whether patterns of linked genomic and phenotypic differentiation are congruent across natural study systems and traits. Here, we investigate such patterns with a meta-analysis of studies examining population-level differentiation at subsets of loci and traits putatively responding to divergent selection. We show that across the 31 studies (88 natural population-level comparisons) we examined, there was a moderate (R 2 = 0.39) relationship between genomic differentiation (F ST ) and phenotypic differentiation (P ST ) for loci and traits putatively under selection. This quantitative relationship between P ST and F ST for loci under selection in diverse taxa provides broad context and cross-system predictions for genomic and phenotypic adaptation by natural selection in natural populations. This context may eventually allow for more precise ideas of what constitutes "strong" differentiation, predictions about the effect size of loci, comparisons of taxa evolving in nonparallel ways, and more. On the other hand, links between P ST and F ST within studies were very weak, suggesting that much work remains in linking genomic differentiation to phenotypic differentiation at specific phenotypes. We suggest that linking genotypes to specific phenotypes can be improved by correlating genomic and phenotypic differentiation across a spectrum of diverging populations within a taxon and including wide coverage of both genomes and phenomes.
Collapse
Affiliation(s)
- Zachary T. Wood
- School of Biology and EcologyUniversity of MaineOronoMEUSA
- Maine Center for Genetics in the EnvironmentOronoMEUSA
| | - Andrew K. Wiegardt
- Department of Natural Resources and the EnvironmentUniversity of New HampshireDurhamNHUSA
| | - Kayla L. Barton
- Department of Molecular & Biomedical SciencesUniversity of MaineOronoMEUSA
| | - Jonathan D. Clark
- Department of Natural Resources and the EnvironmentUniversity of New HampshireDurhamNHUSA
| | - Jared J. Homola
- Department of Fisheries and WildlifeMichigan State UniversityEast LansingMIUSA
| | - Brian J. Olsen
- Maine Center for Genetics in the EnvironmentOronoMEUSA
- Department of Wildlife, Fisheries, and Conservation BiologyUniversity of MaineOronoMEUSA
| | - Benjamin L. King
- Department of Molecular & Biomedical SciencesUniversity of MaineOronoMEUSA
| | - Adrienne I. Kovach
- Department of Natural Resources and the EnvironmentUniversity of New HampshireDurhamNHUSA
| | - Michael T. Kinnison
- School of Biology and EcologyUniversity of MaineOronoMEUSA
- Maine Center for Genetics in the EnvironmentOronoMEUSA
| |
Collapse
|
20
|
Postolache D, Oddou-Muratorio S, Vajana E, Bagnoli F, Guichoux E, Hampe A, Le Provost G, Lesur I, Popescu F, Scotti I, Piotti A, Vendramin GG. Genetic signatures of divergent selection in European beech (Fagus sylvatica L.) are associated with the variation in temperature and precipitation across its distribution range. Mol Ecol 2021; 30:5029-5047. [PMID: 34383353 DOI: 10.1111/mec.16115] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/29/2022]
Abstract
High genetic variation and extensive gene flow may help forest trees with adapting to ongoing climate change, yet the genetic bases underlying their adaptive potential remain largely unknown. We investigated range-wide patterns of potentially adaptive genetic variation in 64 populations of European beech (Fagus sylvatica L.) using 270 SNPs from 139 candidate genes involved either in phenology or in stress responses. We inferred neutral genetic structure and processes (drift and gene flow) and performed differentiation outlier analyses and gene-environment association (GEA) analyses to detect signatures of divergent selection. Beech range-wide genetic structure was consistent with the species' previously identified postglacial expansion scenario and recolonization routes. Populations showed high diversity and low differentiation along the major expansion routes. A total of 52 loci were found to be putatively under selection and 15 of them turned up in multiple GEA analyses. Temperature and precipitation related variables were equally represented in significant genotype-climate associations. Signatures of divergent selection were detected in the same proportion for stress response and phenology-related genes. The range-wide adaptive genetic structure of beech appears highly integrated, suggesting a balanced contribution of phenology and stress-related genes to local adaptation, and of temperature and precipitation regimes to genetic clines. Our results imply a best-case scenario for the maintenance of high genetic diversity during range shifts in beech (and putatively other forest trees) with a combination of gene flow maintaining within-population neutral diversity and selection maintaining between-population adaptive differentiation.
Collapse
Affiliation(s)
- D Postolache
- National Institute for Research and Development in Forestry "Marin Drăcea", Romania
| | - S Oddou-Muratorio
- INRAE, URFM, Avignon, France.,ECOBIOP Université de Pau et des Pays de l'Adour, INRAE, ECOBIOP, E2S UPPA, Saint-Pée-sur-Nivelle, France
| | - E Vajana
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - F Bagnoli
- Institute of Biosciences and Bioresources, National Research Council, Sesto Fiorentino (Firenze), Italy
| | - E Guichoux
- Université de Bordeaux, INRAE, BIOGECO, Cestas, France
| | - A Hampe
- Université de Bordeaux, INRAE, BIOGECO, Cestas, France
| | - G Le Provost
- Université de Bordeaux, INRAE, BIOGECO, Cestas, France
| | - I Lesur
- Université de Bordeaux, INRAE, BIOGECO, Cestas, France.,HelixVenture, Mérignac, France
| | - F Popescu
- National Institute for Research and Development in Forestry "Marin Drăcea", Romania
| | | | - A Piotti
- Institute of Biosciences and Bioresources, National Research Council, Sesto Fiorentino (Firenze), Italy
| | - G G Vendramin
- Institute of Biosciences and Bioresources, National Research Council, Sesto Fiorentino (Firenze), Italy
| |
Collapse
|
21
|
Machado HE, Bergland AO, Taylor R, Tilk S, Behrman E, Dyer K, Fabian DK, Flatt T, González J, Karasov TL, Kim B, Kozeretska I, Lazzaro BP, Merritt TJS, Pool JE, O'Brien K, Rajpurohit S, Roy PR, Schaeffer SW, Serga S, Schmidt P, Petrov DA. Broad geographic sampling reveals the shared basis and environmental correlates of seasonal adaptation in Drosophila. eLife 2021; 10:e67577. [PMID: 34155971 PMCID: PMC8248982 DOI: 10.7554/elife.67577] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022] Open
Abstract
To advance our understanding of adaptation to temporally varying selection pressures, we identified signatures of seasonal adaptation occurring in parallel among Drosophila melanogaster populations. Specifically, we estimated allele frequencies genome-wide from flies sampled early and late in the growing season from 20 widely dispersed populations. We identified parallel seasonal allele frequency shifts across North America and Europe, demonstrating that seasonal adaptation is a general phenomenon of temperate fly populations. Seasonally fluctuating polymorphisms are enriched in large chromosomal inversions, and we find a broad concordance between seasonal and spatial allele frequency change. The direction of allele frequency change at seasonally variable polymorphisms can be predicted by weather conditions in the weeks prior to sampling, linking the environment and the genomic response to selection. Our results suggest that fluctuating selection is an important evolutionary force affecting patterns of genetic variation in Drosophila.
Collapse
Affiliation(s)
- Heather E Machado
- Department of Biology, Stanford UniversityStanfordUnited States
- Wellcome Sanger InstituteHinxtonUnited Kingdom
| | - Alan O Bergland
- Department of Biology, Stanford UniversityStanfordUnited States
- Department of Biology, University of VirginiaCharlottesvilleUnited States
| | - Ryan Taylor
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Susanne Tilk
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Emily Behrman
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
| | - Kelly Dyer
- Department of Genetics, University of GeorgiaAthensUnited States
| | - Daniel K Fabian
- Institute of Population Genetics, Vetmeduni ViennaViennaAustria
- Centre for Pathogen Evolution, Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Thomas Flatt
- Institute of Population Genetics, Vetmeduni ViennaViennaAustria
- Department of Biology, University of FribourgFribourgSwitzerland
| | - Josefa González
- Institute of Evolutionary Biology, CSIC- Universitat Pompeu FabraBarcelonaSpain
| | - Talia L Karasov
- Department of Biology, University of UtahSalt Lake CityUnited States
| | - Bernard Kim
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Iryna Kozeretska
- Taras Shevchenko National University of KyivKyivUkraine
- National Antarctic Scientific Centre of Ukraine, Taras Shevchenko Blvd.KyivUkraine
| | - Brian P Lazzaro
- Department of Entomology, Cornell UniversityIthacaUnited States
| | - Thomas JS Merritt
- Department of Chemistry & Biochemistry, Laurentian UniversitySudburyCanada
| | - John E Pool
- Laboratory of Genetics, University of Wisconsin-MadisonMadisonUnited States
| | - Katherine O'Brien
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
| | - Subhash Rajpurohit
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
| | - Paula R Roy
- Department of Ecology and Evolutionary Biology, University of KansasLawrenceUnited States
| | - Stephen W Schaeffer
- Department of Biology, The Pennsylvania State UniversityUniversity ParkUnited States
| | - Svitlana Serga
- Taras Shevchenko National University of KyivKyivUkraine
- National Antarctic Scientific Centre of Ukraine, Taras Shevchenko Blvd.KyivUkraine
| | - Paul Schmidt
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
| | - Dmitri A Petrov
- Department of Biology, Stanford UniversityStanfordUnited States
| |
Collapse
|
22
|
Barbour MA, Gibert JP. Genetic and plastic rewiring of food webs under climate change. J Anim Ecol 2021; 90:1814-1830. [PMID: 34028791 PMCID: PMC8453762 DOI: 10.1111/1365-2656.13541] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022]
Abstract
Climate change is altering ecological and evolutionary processes across biological scales. These simultaneous effects of climate change pose a major challenge for predicting the future state of populations, communities and ecosystems. This challenge is further exacerbated by the current lack of integration of research focused on these different scales. We propose that integrating the fields of quantitative genetics and food web ecology will reveal new insights on how climate change may reorganize biodiversity across levels of organization. This is because quantitative genetics links the genotypes of individuals to population‐level phenotypic variation due to genetic (G), environmental (E) and gene‐by‐environment (G × E) factors. Food web ecology, on the other hand, links population‐level phenotypes to the structure and dynamics of communities and ecosystems. We synthesize data and theory across these fields and find evidence that genetic (G) and plastic (E and G × E) phenotypic variation within populations will change in magnitude under new climates in predictable ways. We then show how changes in these sources of phenotypic variation can rewire food webs by altering the number and strength of species interactions, with consequences for ecosystem resilience. We also find evidence suggesting there are predictable asymmetries in genetic and plastic trait variation across trophic levels, which set the pace for phenotypic change and food web responses to climate change. Advances in genomics now make it possible to partition G, E and G × E phenotypic variation in natural populations, allowing tests of the hypotheses we propose. By synthesizing advances in quantitative genetics and food web ecology, we provide testable predictions for how the structure and dynamics of biodiversity will respond to climate change.
Collapse
Affiliation(s)
- Matthew A Barbour
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Jean P Gibert
- Department of Biology, Duke University, Durham, NC, USA
| |
Collapse
|
23
|
Thompson CL, Alberti M, Barve S, Battistuzzi FU, Drake JL, Goncalves GC, Govaert L, Partridge C, Yang Y. Back to the future: Reintegrating biology to understand how past eco-evolutionary change can predict future outcomes. Integr Comp Biol 2021; 61:2218-2232. [PMID: 33964141 DOI: 10.1093/icb/icab068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
During the last few decades, biologists have made remarkable progress in understanding the fundamental processes that shape life. But despite the unprecedented level of knowledge now available, large gaps still remain in our understanding of the complex interplay of eco-evolutionary mechanisms across scales of life. Rapidly changing environments on Earth provide a pressing need to understand the potential implications of eco-evolutionary dynamics, which can be achieved by improving existing eco-evolutionary models and fostering convergence among the sub-fields of biology. We propose a new, data-driven approach that harnesses our knowledge of the functioning of biological systems to expand current conceptual frameworks and develop corresponding models that can more accurately represent and predict future eco-evolutionary outcomes. We suggest a roadmap toward achieving this goal. This long-term vision will move biology in a direction that can wield these predictive models for scientific applications that benefit humanity and increase the resilience of natural biological systems. We identify short, medium, and long-term key objectives to connect our current state of knowledge to this long-term vision, iteratively progressing across three stages: 1) utilizing knowledge of biological systems to better inform eco-evolutionary models, 2) generating models with more accurate predictions, and 3) applying predictive models to benefit the biosphere. Within each stage, we outline avenues of investigation and scientific applications related to the timescales over which evolution occurs, the parameter space of eco-evolutionary processes, and the dynamic interactions between these mechanisms. The ability to accurately model, monitor, and anticipate eco-evolutionary changes would be transformational to humanity's interaction with the global environment, providing novel tools to benefit human health, protect the natural world, and manage our planet's biosphere.
Collapse
Affiliation(s)
| | - Marina Alberti
- Department of Urban Design and Planning, University of Washington,
| | - Sahas Barve
- Smithsonian National Museum of Natural History,
| | | | - Jeana L Drake
- Department of Earth, Planetary, and Space Sciences, University of California Los Angeles,
| | | | - Lynn Govaert
- Department of Evolutionary Biology and Environmental Studies, University of Zurich; Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, URPP Global Change and Biodiversity, University of Zurich,
| | | | - Ya Yang
- Department of Plant and Microbial Biology, University of Minnesota,
| |
Collapse
|
24
|
Adaptive differentiation and rapid evolution of a soil bacterium along a climate gradient. Proc Natl Acad Sci U S A 2021; 118:2101254118. [PMID: 33906949 PMCID: PMC8106337 DOI: 10.1073/pnas.2101254118] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Increasing evidence suggests that evolutionary processes frequently shape ecological patterns; however, most microbiome studies thus far have focused on only the ecological responses of these communities. By using parallel field experiments and focusing in on a model soil bacterium, we showed that bacterial “species” are differentially adapted to local climates, leading to changes in their composition. Furthermore, we detected strain-level evolution, providing direct evidence that both ecological and evolutionary processes operate on annual timescales. The consideration of eco-evolutionary dynamics may therefore be important to understand the response of soil microbiomes to future environmental change. Microbial community responses to environmental change are largely associated with ecological processes; however, the potential for microbes to rapidly evolve and adapt remains relatively unexplored in natural environments. To assess how ecological and evolutionary processes simultaneously alter the genetic diversity of a microbiome, we conducted two concurrent experiments in the leaf litter layer of soil over 18 mo across a climate gradient in Southern California. In the first experiment, we reciprocally transplanted microbial communities from five sites to test whether ecological shifts in ecotypes of the abundant bacterium, Curtobacterium, corresponded to past adaptive differentiation. In the transplanted communities, ecotypes converged toward that of the native communities growing on a common litter substrate. Moreover, these shifts were correlated with community-weighted mean trait values of the Curtobacterium ecotypes, indicating that some of the trait variation among ecotypes could be explained by local adaptation to climate conditions. In the second experiment, we transplanted an isogenic Curtobacterium strain and tracked genomic mutations associated with the sites across the same climate gradient. Using a combination of genomic and metagenomic approaches, we identified a variety of nonrandom, parallel mutations associated with transplantation, including mutations in genes related to nutrient acquisition, stress response, and exopolysaccharide production. Together, the field experiments demonstrate how both demographic shifts of previously adapted ecotypes and contemporary evolution can alter the diversity of a soil microbiome on the same timescale.
Collapse
|
25
|
Grainger TN, Rudman SM, Schmidt P, Levine JM. Competitive history shapes rapid evolution in a seasonal climate. Proc Natl Acad Sci U S A 2021; 118:e2015772118. [PMID: 33536336 PMCID: PMC8017725 DOI: 10.1073/pnas.2015772118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Eco-evolutionary dynamics will play a critical role in determining species' fates as climatic conditions change. Unfortunately, we have little understanding of how rapid evolutionary responses to climate play out when species are embedded in the competitive communities that they inhabit in nature. We tested the effects of rapid evolution in response to interspecific competition on subsequent ecological and evolutionary trajectories in a seasonally changing climate using a field-based evolution experiment with Drosophila melanogaster Populations of D. melanogaster were either exposed, or not exposed, to interspecific competition with an invasive competitor, Zaprionus indianus, over the summer. We then quantified these populations' ecological trajectories (abundances) and evolutionary trajectories (heritable phenotypic change) when exposed to a cooling fall climate. We found that competition with Z. indianus in the summer affected the subsequent evolutionary trajectory of D. melanogaster populations in the fall, after all interspecific competition had ceased. Specifically, flies with a history of interspecific competition evolved under fall conditions to be larger and have lower cold fecundity and faster development than flies without a history of interspecific competition. Surprisingly, this divergent fall evolutionary trajectory occurred in the absence of any detectible effect of the summer competitive environment on phenotypic evolution over the summer or population dynamics in the fall. This study demonstrates that competitive interactions can leave a legacy that shapes evolutionary responses to climate even after competition has ceased, and more broadly, that evolution in response to one selective pressure can fundamentally alter evolution in response to subsequent agents of selection.
Collapse
Affiliation(s)
- Tess Nahanni Grainger
- Ecology and Evolutionary Biology Department, Princeton University, Princeton NJ 08544;
| | - Seth M Rudman
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
- School of Biological Sciences, Washington State University, Vancouver, WA 98686
| | - Paul Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Jonathan M Levine
- Ecology and Evolutionary Biology Department, Princeton University, Princeton NJ 08544
| |
Collapse
|
26
|
McLeish MJ, Fraile A, García-Arenal F. Population Genomics of Plant Viruses: The Ecology and Evolution of Virus Emergence. PHYTOPATHOLOGY 2021; 111:32-39. [PMID: 33210987 DOI: 10.1094/phyto-08-20-0355-fi] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The genomics era has revolutionized studies of adaptive evolution by monitoring large numbers of loci throughout the genomes of many individuals. Ideally, the investigation of emergence in plant viruses requires examining the population dynamics of both virus and host, their interactions with each other, with other organisms and the abiotic environment. Genetic mechanisms that affect demographic processes are now being studied with high-throughput technologies, traditional genetics methods, and new computational tools for big-data. In this review, we discuss the utility of these approaches to monitor and detect changes in virus populations within cells and individuals, and over wider areas across species and communities of ecosystems. The advent of genomics in virology has fostered a multidisciplinary approach to tackling disease risk. The ability to make sense of the information now generated in this integrated setting is by far the most substantial obstacle to the ultimate goal of plant virology to minimize the threats to food security posed by disease. To achieve this goal, it is imperative to understand and forecast how populations respond to future changes in complex natural systems.
Collapse
Affiliation(s)
- Michael J McLeish
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
27
|
Lasky JR, Hooten MB, Adler PB. What processes must we understand to forecast regional-scale population dynamics? Proc Biol Sci 2020; 287:20202219. [PMID: 33290672 PMCID: PMC7739927 DOI: 10.1098/rspb.2020.2219] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/12/2020] [Indexed: 12/14/2022] Open
Abstract
An urgent challenge facing biologists is predicting the regional-scale population dynamics of species facing environmental change. Biologists suggest that we must move beyond predictions based on phenomenological models and instead base predictions on underlying processes. For example, population biologists, evolutionary biologists, community ecologists and ecophysiologists all argue that the respective processes they study are essential. Must our models include processes from all of these fields? We argue that answering this critical question is ultimately an empirical exercise requiring a substantial amount of data that have not been integrated for any system to date. To motivate and facilitate the necessary data collection and integration, we first review the potential importance of each mechanism for skilful prediction. We then develop a conceptual framework based on reaction norms, and propose a hierarchical Bayesian statistical framework to integrate processes affecting reaction norms at different scales. The ambitious research programme we advocate is rapidly becoming feasible due to novel collaborations, datasets and analytical tools.
Collapse
Affiliation(s)
- Jesse R. Lasky
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Mevin B. Hooten
- U.S. Geological Survey, Colorado Cooperative Fish and Wildlife Research Unit, Colorado State University, Fort Collins, CO, USA
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, USA
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
| | - Peter B. Adler
- Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT, USA
| |
Collapse
|
28
|
Stange M, Barrett RDH, Hendry AP. The importance of genomic variation for biodiversity, ecosystems and people. Nat Rev Genet 2020; 22:89-105. [PMID: 33067582 DOI: 10.1038/s41576-020-00288-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 11/09/2022]
Abstract
The 2019 United Nations Global assessment report on biodiversity and ecosystem services estimated that approximately 1 million species are at risk of extinction. This primarily human-driven loss of biodiversity has unprecedented negative consequences for ecosystems and people. Classic and emerging approaches in genetics and genomics have the potential to dramatically improve these outcomes. In particular, the study of interactions among genetic loci within and between species will play a critical role in understanding the adaptive potential of species and communities, and hence their direct and indirect effects on biodiversity, ecosystems and people. We explore these population and community genomic contexts in the hope of finding solutions for maintaining and improving ecosystem services and nature's contributions to people.
Collapse
Affiliation(s)
- Madlen Stange
- Redpath Museum, McGill University, Montreal, QC, Canada
| | | | | |
Collapse
|
29
|
Jaworski CC, Allan CW, Matzkin LM. Chromosome‐level hybrid de novo genome assemblies as an attainable option for nonmodel insects. Mol Ecol Resour 2020; 20:1277-1293. [DOI: 10.1111/1755-0998.13176] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/31/2020] [Accepted: 04/16/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Coline C. Jaworski
- Department of Entomology The University of Arizona Tucson AZ USA
- Univ Avignon CNRS IRD IMBE Aix Marseille Université Marseille France
- Department of Zoology University of Oxford Oxford UK
| | - Carson W. Allan
- Department of Entomology The University of Arizona Tucson AZ USA
| | - Luciano M. Matzkin
- Department of Entomology The University of Arizona Tucson AZ USA
- BIO5 Institute The University of Arizona Tucson AZ USA
- Department of Ecology and Evolutionary Biology The University of Arizona Tucson AZ USA
| |
Collapse
|
30
|
Bates A, Morley S. Interpreting empirical estimates of experimentally derived physiological and biological thermal limits in ectotherms. CAN J ZOOL 2020. [DOI: 10.1139/cjz-2018-0276] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Whole-organism function is underpinned by physiological and biological processes, which respond to temperature over a range of time scales. Given that environmental temperature controls biological rates within ectotherms, different experimental protocols are needed to assess the ability of organisms to withstand extreme weather events versus gradual temperature change. Here we emphasize the importance of time in shaping ecological and evolutionary processes, and as an experimental parameter that is key when interpreting physiology studies reporting thermal limits. We discuss how acute and chronic thermal performance is underpinned by mechanisms operating at different time scales — resistance, acclimation, and adaptation. We offer definitions of common physiological and biological temperature metrics and identify challenges inherent to compiling the wealth of historical temperature limit data now available into meta-analytic frameworks. We use a case study, data across temperate fishes, to highlight that false positives may occur when differences in the thermal tolerances of species are in fact due to experimental protocols. We further illustrate that false negatives can arise if researchers fail to recognize differences in thermal limits of species emerging from macrophysiological approaches that are due to biological mechanisms. We strongly advocate for the careful design, interpretation, and reporting of experimental results to ensure that conclusions arising from data synthesis efforts are grounded in theory.
Collapse
Affiliation(s)
- A.E. Bates
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| | - S.A. Morley
- British Antarctic Survey, Natural Environment Research Council, Cambridge, CB30ET, U.K
| |
Collapse
|
31
|
Khimoun A, Doums C, Molet M, Kaufmann B, Peronnet R, Eyer PA, Mona S. Urbanization without isolation: the absence of genetic structure among cities and forests in the tiny acorn ant Temnothorax nylanderi. Biol Lett 2020; 16:20190741. [PMID: 31992150 DOI: 10.1098/rsbl.2019.0741] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Urban alteration of neutral and adaptive evolutionary processes is still underexplored. Using a genome-wide SNP dataset, we investigated (i) urban-induced modifications of population demography, genetic diversity and population structure and (ii) signature of divergent selection between urban and forest populations in the ant species, Temnothorax nylanderi. Our results did not reveal an impact of urbanization on neutral processes since we observed: (i) analogous genetic diversity among paired urban/forest sites and two control populations; (ii) weak population genetic structure explained neither by habitat (urban versus forest) nor by geography; (iii) a remarkably similar demographic history across populations with an ancestral growth followed by a recent decline, regardless of their current habitat or geographical location. The micro-geographical home range of ants may explain their resilience to urbanization. Finally, we detected 19 candidate loci discriminating urban/forest populations and associated with core cellular components, molecular function or biological process. Two of these loci were associated with a gene ontology term that was previously found to belong to a module of co-expressed genes related to caste phenotype. These results call for transcriptomics analyses to identify genes associated with ant social traits and to infer their potential role in urban adaptation.
Collapse
Affiliation(s)
- A Khimoun
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France
| | - C Doums
- Institut de Systématique, Évolution, Biodiversité (ISYEB), UMR 7205, MNHN, CNRS, EPHE, Sorbonne Université, 75005 Paris, France.,EPHE, PSL University, 75005 Paris, France
| | - M Molet
- Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), UMR 7618, Sorbonne Université, Université Paris Est Créteil, Université Paris Diderot, CNRS, INRA, IRD, 75005 Paris, France
| | - B Kaufmann
- Université de Lyon, UMR5023 Ecologie des Hydrosystèmes Naturels et Anthropisés, Université Lyon 1, ENTPE, CNRS, Villeurbanne 69622, France
| | - R Peronnet
- Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), UMR 7618, Sorbonne Université, Université Paris Est Créteil, Université Paris Diderot, CNRS, INRA, IRD, 75005 Paris, France
| | - P A Eyer
- Department of Entomology, Texas A&M University, 2143 TAMU, College Station, TX 77843-2143, USA
| | - S Mona
- Institut de Systématique, Évolution, Biodiversité (ISYEB), UMR 7205, MNHN, CNRS, EPHE, Sorbonne Université, 75005 Paris, France.,EPHE, PSL University, 75005 Paris, France
| |
Collapse
|
32
|
Berzaghi F, Wright IJ, Kramer K, Oddou-Muratorio S, Bohn FJ, Reyer CPO, Sabaté S, Sanders TGM, Hartig F. Towards a New Generation of Trait-Flexible Vegetation Models. Trends Ecol Evol 2019; 35:191-205. [PMID: 31882280 DOI: 10.1016/j.tree.2019.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/15/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022]
Abstract
Plant trait variability, emerging from eco-evolutionary dynamics that range from alleles to macroecological scales, is one of the most elusive, but possibly most consequential, aspects of biodiversity. Plasticity, epigenetics, and genetic diversity are major determinants of how plants will respond to climate change, yet these processes are rarely represented in current vegetation models. Here, we provide an overview of the challenges associated with understanding the causes and consequences of plant trait variability, and review current developments to include plasticity and evolutionary mechanisms in vegetation models. We also present a roadmap of research priorities to develop a next generation of vegetation models with flexible traits. Including trait variability in vegetation models is necessary to better represent biosphere responses to global change.
Collapse
Affiliation(s)
- Fabio Berzaghi
- Laboratory for Sciences of Climate and Environment (LSCE) - UMR CEA/CNRS/UVSQ, Gif-sur-Yvette 91191, France; Department of Biological Sciences, Macquarie University, Sydney, NSW 2022, Australia; Dipartimento per la Innovazione nei sistemi Biologici, Agroalimentari e Forestali, University of Tuscia, Viterbo 01100, Italy.
| | - Ian J Wright
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2022, Australia
| | - Koen Kramer
- Wageningen University and Research, Droevendaalse steeg 4, 6700AA Wageningen, The Netherlands
| | | | - Friedrich J Bohn
- Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Kreuzeckbahnstrasse 19, Garmisch-Partenkirchen 82467, Germany; Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, Leipzig 04318, Germany
| | - Christopher P O Reyer
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, PO Box 60 12 03, D-14412 Potsdam, Germany
| | - Santiago Sabaté
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, University of Barcelona (UB), Barcelona 08028, Spain; CREAF (Center for Ecological Research and Forestry Applications), Cerdanyola del Vallès 08193, Spain
| | - Tanja G M Sanders
- Thuenen Institut of Forest Ecosystems, Alfred-Moeller-Str. 1, Haus 41/42, 16225 Eberswalde, Germany
| | - Florian Hartig
- Theoretical Ecology, Faculty of Biology and Preclinical Medicine, University of Regensburg, Universitätsstraße 3, 93053, Regensburg, Germany
| |
Collapse
|
33
|
Dillon ME, Lozier JD. Adaptation to the abiotic environment in insects: the influence of variability on ecophysiology and evolutionary genomics. CURRENT OPINION IN INSECT SCIENCE 2019; 36:131-139. [PMID: 31698151 DOI: 10.1016/j.cois.2019.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
Advances in tools to gather environmental, phenotypic, and molecular data have accelerated our ability to detect abiotic drivers of variation across the genome-to-phenome spectrum in model and non-model insects. However, differences in the spatial and temporal resolution of these data sets may create gaps in our understanding of linkages between environment, genotype, and phenotype that yield missed or misleading results about adaptive variation. In this review we highlight sources of variability that might impact studies of phenotypic and 'omic environmental adaptation, challenges to collecting data at relevant scales, and possible solutions that link intensive fine-scale reductionist studies of mechanisms to large-scale biogeographic patterns.
Collapse
Affiliation(s)
- Michael E Dillon
- Department of Zoology & Physiology and Program in Ecology, The University of Wyoming, Laramie, Wyoming 82071, USA.
| | - Jeffrey D Lozier
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, Alabama 35487, USA
| |
Collapse
|
34
|
Garud NR, Pollard KS. Population Genetics in the Human Microbiome. Trends Genet 2019; 36:53-67. [PMID: 31780057 DOI: 10.1016/j.tig.2019.10.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023]
Abstract
While the human microbiome's structure and function have been extensively studied, its within-species genetic diversity is less well understood. However, genetic mutations in the microbiome can confer biomedically relevant traits, such as the ability to extract nutrients from food, metabolize drugs, evade antibiotics, and communicate with the host immune system. The population genetic processes by which these traits evolve are complex, in part due to interacting ecological and evolutionary forces in the microbiome. Advances in metagenomic sequencing, coupled with bioinformatics tools and population genetic models, facilitate quantification of microbiome genetic variation and inferences about how this diversity arises, evolves, and correlates with traits of both microbes and hosts. In this review, we explore the population genetic forces (mutation, recombination, drift, and selection) that shape microbiome genetic diversity within and between hosts, as well as efforts towards predictive models that leverage microbiome genetics.
Collapse
Affiliation(s)
- Nandita R Garud
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA.
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
35
|
Rudman SM, Greenblum S, Hughes RC, Rajpurohit S, Kiratli O, Lowder DB, Lemmon SG, Petrov DA, Chaston JM, Schmidt P. Microbiome composition shapes rapid genomic adaptation of Drosophila melanogaster. Proc Natl Acad Sci U S A 2019; 116:20025-20032. [PMID: 31527278 PMCID: PMC6778213 DOI: 10.1073/pnas.1907787116] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Population genomic data has revealed patterns of genetic variation associated with adaptation in many taxa. Yet understanding the adaptive process that drives such patterns is challenging; it requires disentangling the ecological agents of selection, determining the relevant timescales over which evolution occurs, and elucidating the genetic architecture of adaptation. Doing so for the adaptation of hosts to their microbiome is of particular interest with growing recognition of the importance and complexity of host-microbe interactions. Here, we track the pace and genomic architecture of adaptation to an experimental microbiome manipulation in replicate populations of Drosophila melanogaster in field mesocosms. Shifts in microbiome composition altered population dynamics and led to divergence between treatments in allele frequencies, with regions showing strong divergence found on all chromosomes. Moreover, at divergent loci previously associated with adaptation across natural populations, we found that the more common allele in fly populations experimentally enriched for a certain microbial group was also more common in natural populations with high relative abundance of that microbial group. These results suggest that microbiomes may be an agent of selection that shapes the pattern and process of adaptation and, more broadly, that variation in a single ecological factor within a complex environment can drive rapid, polygenic adaptation over short timescales.
Collapse
Affiliation(s)
- Seth M Rudman
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104;
| | | | - Rachel C Hughes
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602
| | - Subhash Rajpurohit
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Ozan Kiratli
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Dallin B Lowder
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602
| | - Skyler G Lemmon
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602
| | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, CA 94305
| | - John M Chaston
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602
| | - Paul Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
36
|
Skúlason S, Parsons KJ, Svanbäck R, Räsänen K, Ferguson MM, Adams CE, Amundsen P, Bartels P, Bean CW, Boughman JW, Englund G, Guðbrandsson J, Hooker OE, Hudson AG, Kahilainen KK, Knudsen R, Kristjánsson BK, Leblanc CA, Jónsson Z, Öhlund G, Smith C, Snorrason SS. A way forward with eco evo devo: an extended theory of resource polymorphism with postglacial fishes as model systems. Biol Rev Camb Philos Soc 2019; 94:1786-1808. [PMID: 31215138 PMCID: PMC6852119 DOI: 10.1111/brv.12534] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/12/2019] [Accepted: 05/20/2019] [Indexed: 12/16/2022]
Abstract
A major goal of evolutionary science is to understand how biological diversity is generated and altered. Despite considerable advances, we still have limited insight into how phenotypic variation arises and is sorted by natural selection. Here we argue that an integrated view, which merges ecology, evolution and developmental biology (eco evo devo) on an equal footing, is needed to understand the multifaceted role of the environment in simultaneously determining the development of the phenotype and the nature of the selective environment, and how organisms in turn affect the environment through eco evo and eco devo feedbacks. To illustrate the usefulness of an integrated eco evo devo perspective, we connect it with the theory of resource polymorphism (i.e. the phenotypic and genetic diversification that occurs in response to variation in available resources). In so doing, we highlight fishes from recently glaciated freshwater systems as exceptionally well-suited model systems for testing predictions of an eco evo devo framework in studies of diversification. Studies on these fishes show that intraspecific diversity can evolve rapidly, and that this process is jointly facilitated by (i) the availability of diverse environments promoting divergent natural selection; (ii) dynamic developmental processes sensitive to environmental and genetic signals; and (iii) eco evo and eco devo feedbacks influencing the selective and developmental environments of the phenotype. We highlight empirical examples and present a conceptual model for the generation of resource polymorphism - emphasizing eco evo devo, and identify current gaps in knowledge.
Collapse
Affiliation(s)
- Skúli Skúlason
- Department of Aquaculture and Fish BiologyHólar UniversitySauðárkrókur, 551Iceland
- Icelandic Museum of Natural History, Brynjólfsgata 5ReykjavíkIS‐107Iceland
| | - Kevin J. Parsons
- Institute of Biodiversity, Animal Health & Comparative MedicineUniversity of GlasgowGlasgow, G12 8QQU.K.
| | - Richard Svanbäck
- Animal Ecology, Department of Ecology and Genetics, Science for Life LaboratoryUppsala University, Norbyvägen 18DUppsala, SE‐752 36Sweden
| | - Katja Räsänen
- Department of Aquatic EcologyEAWAG, Swiss Federal Institute of Aquatic Science and Technology, and Institute of Integrative Biology, ETH‐Zurich, Ueberlandstrasse 133CH‐8600DübendorfSwitzerland
| | - Moira M. Ferguson
- Department of Integrative BiologyUniversity of GuelphGuelph, Ontario N1G 2W1Canada
| | - Colin E. Adams
- Scottish Centre for Ecology and the Natural Environment, IBAHCMUniversity of GlasgowGlasgow G12 8QQU.K.
| | - Per‐Arne Amundsen
- Freshwater Ecology Group, Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and EconomicsUniversity of TromsöTromsö, N‐9037Norway
| | - Pia Bartels
- Department of Ecology and Environmental ScienceUmeå UniversityUmeå, SE‐90187Sweden
| | - Colin W. Bean
- Scottish Natural Heritage, Caspian House, Mariner Court, Clydebank Business ParkClydebank, G81 2NRU.K.
| | - Janette W. Boughman
- Department of Integrative BiologyMichigan State UniversityEast Lansing, MI 48824U.S.A.
| | - Göran Englund
- Department of Ecology and Environmental ScienceUmeå UniversityUmeå, SE‐90187Sweden
| | - Jóhannes Guðbrandsson
- Institute of Life and Environmental SciencesUniversity of IcelandReykjavik, 101Iceland
| | | | - Alan G. Hudson
- Department of Ecology and Environmental ScienceUmeå UniversityUmeå, SE‐90187Sweden
| | - Kimmo K. Kahilainen
- Inland Norway University of Applied Sciences, Department of Forestry and Wildlife Management, Campus Evenstad, Anne Evenstadvei 80Koppang, NO‐2480Norway
| | - Rune Knudsen
- Freshwater Ecology Group, Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and EconomicsUniversity of TromsöTromsö, N‐9037Norway
| | | | - Camille A‐L. Leblanc
- Department of Aquaculture and Fish BiologyHólar UniversitySauðárkrókur, 551Iceland
| | - Zophonías Jónsson
- Institute of Life and Environmental SciencesUniversity of IcelandReykjavik, 101Iceland
| | - Gunnar Öhlund
- Department of Ecology and Environmental ScienceUmeå UniversityUmeå, SE‐90187Sweden
| | - Carl Smith
- School of BiologyUniversity of St Andrews, St. AndrewsFife, KY16 9AJU.K.
| | - Sigurður S. Snorrason
- Institute of Life and Environmental SciencesUniversity of IcelandReykjavik, 101Iceland
| |
Collapse
|
37
|
Lemmen KD, Butler OM, Koffel T, Rudman SM, Symons CC. Stoichiometric Traits Vary Widely Within Species: A Meta-Analysis of Common Garden Experiments. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00339] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
38
|
Visser ME, Gienapp P. Evolutionary and demographic consequences of phenological mismatches. Nat Ecol Evol 2019; 3:879-885. [PMID: 31011176 PMCID: PMC6544530 DOI: 10.1038/s41559-019-0880-8] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 03/20/2019] [Indexed: 11/08/2022]
Abstract
Climate change has often led to unequal shifts in the seasonal timing (phenology) of interacting species, such as consumers and their resource, leading to phenological 'mismatches'. Mismatches occur when the time at which a consumer species's demands for a resource are high does not match with the period when this resource is abundant. Here, we review the evolutionary and population-level consequences of such mismatches and how these depend on other ecological factors, such as additional drivers of selection and density-dependent recruitment. This review puts the research on phenological mismatches into a conceptual framework, applies this framework beyond consumer-resource interactions and illustrates this framework using examples drawn from the vast body of literature on mismatches. Finally, we point out priority questions for research on this key impact of climate change.
Collapse
Affiliation(s)
- Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands.
| | - Phillip Gienapp
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands.
| |
Collapse
|
39
|
Hosoya S, Hirase S, Kikuchi K, Nanjo K, Nakamura Y, Kohno H, Sano M. Random PCR-based genotyping by sequencing technology GRAS-Di (genotyping by random amplicon sequencing, direct) reveals genetic structure of mangrove fishes. Mol Ecol Resour 2019; 19:1153-1163. [PMID: 31009151 DOI: 10.1111/1755-0998.13025] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/06/2019] [Accepted: 04/15/2019] [Indexed: 01/15/2023]
Abstract
While various technologies for high-throughput genotyping have been developed for ecological studies, simple methods tolerant to low-quality DNA samples are still limited. In this study, we tested the availability of a random PCR-based genotyping-by-sequencing technology, genotyping by random amplicon sequencing, direct (GRAS-Di). We focused on population genetic analysis of estuarine mangrove fishes, including two resident species, the Amboina cardinalfish (Fibramia amboinensis, Bleeker, 1853) and the Duncker's river garfish (Zenarchopterus dunckeri, Mohr, 1926), and a marine migrant, the blacktail snapper (Lutjanus fulvus, Forster, 1801). Collections were from the Ryukyu Islands, southern Japan. PCR amplicons derived from ~130 individuals were pooled and sequenced in a single lane on a HiSeq2500 platform, and an average of three million reads was obtained per individual. Consensus contigs were assembled for each species and used for genotyping of single nucleotide polymorphisms by mapping trimmed reads onto the contigs. After quality filtering steps, 4,000-9,000 putative single nucleotide polymorphisms were detected for each species. Although DNA fragmentation can diminish genotyping performance when analysed on next-generation sequencing technology, the effect was small. Genetic differentiation and a clear pattern of isolation-by-distance was observed in F. amboinensis and Z. dunckeri by means of principal component analysis, FST and the admixture analysis. By contrast, L. fulvus comprised a genetically homogeneous population with directional recent gene flow. These genetic differentiation patterns reflect patterns of estuary use through life history. These results showed the power of GRAS-Di for fine-grained genetic analysis using field samples, including mangrove fishes.
Collapse
Affiliation(s)
- Sho Hosoya
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, University of Tokyo, Hamamatsu, Japan
| | - Shotaro Hirase
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, University of Tokyo, Hamamatsu, Japan
| | - Kiyoshi Kikuchi
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, University of Tokyo, Hamamatsu, Japan
| | - Kusuto Nanjo
- Department of Applied Aquabiology, National Fisheries University, Shimonoseki, Japan
| | - Yohei Nakamura
- Department of Agriculture, Graduate School of Integrated Arts and Sciences, Kochi University, Nankoku, Japan
| | - Hiroyoshi Kohno
- Okinawa Regional Research Center, Tokai University, Taketomi, Japan
| | - Mitsuhiko Sano
- Department of Ecosystem Studies, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| |
Collapse
|
40
|
Rêgo A, Messina FJ, Gompert Z. Dynamics of genomic change during evolutionary rescue in the seed beetle
Callosobruchus maculatus. Mol Ecol 2019; 28:2136-2154. [DOI: 10.1111/mec.15085] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Alexandre Rêgo
- Department of Biology Utah State University Logan Utah
- Ecology Center Utah State University Logan Utah
| | - Frank J. Messina
- Department of Biology Utah State University Logan Utah
- Ecology Center Utah State University Logan Utah
| | - Zachariah Gompert
- Department of Biology Utah State University Logan Utah
- Ecology Center Utah State University Logan Utah
| |
Collapse
|
41
|
Bruijning M, Jongejans E, Turcotte MM. Demographic responses underlying eco-evolutionary dynamics as revealed with inverse modelling. J Anim Ecol 2019; 88:768-779. [PMID: 30801697 PMCID: PMC6850177 DOI: 10.1111/1365-2656.12966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/09/2019] [Indexed: 11/26/2022]
Abstract
Changes in population dynamics due to interacting evolutionary and ecological processes are the direct result of responses in vital rates, that is stage‐specific growth, survival and fecundity. Quantifying through which vital rates population fitness is affected, instead of focusing on population trends only, can give a more mechanistic understanding of eco‐evolutionary dynamics. The aim of this study was to estimate the underlying demographic rates of aphid (Myzus persicae) populations. We analysed unpublished stage‐structure population dynamics data of a field experiment with caged and uncaged populations in which rapid evolutionary dynamics were observed, as well as unpublished results from an individual life table experiment performed in a glasshouse. Using data on changes in population abundance and stage distributions over time, we estimated transition matrices with inverse modelling techniques, in a Bayesian framework. The model used to fit across all experimental treatments included density as well as clone‐specific caging effects. We additionally used individual life table data to inform the model on survival, growth and reproduction. Results suggest that clones varied considerably in vital rates, and imply trade‐offs between reproduction and survival. Responses to densities also varied between clones. Negative density dependence was found in growth and reproduction, and the presence of predators and competitors further decreased these two vital rates, while survival estimates increased. Under uncaged conditions, population growth rates of the evolving populations were increased compared to the expectation based on the pure clones. Our inverse modelling approach revealed how much vital rates contributed to the eco‐evolutionary dynamics. The decomposition analysis showed that variation in population growth rates in the evolving populations was to a large extent shaped by plant size. Yet, it also revealed an impact of evolutionary changes in clonal composition. Finally, we discuss that inverse modelling is a complex problem, as multiple combinations of individual rates can result in the same dynamics. We discuss assumptions and limitations, as well as opportunities, of this approach.
Collapse
Affiliation(s)
- Marjolein Bruijning
- Department of Animal Ecology and Physiology, Radboud University, Nijmegen, The Netherlands
| | - Eelke Jongejans
- Department of Animal Ecology and Physiology, Radboud University, Nijmegen, The Netherlands
| | - Martin M Turcotte
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
42
|
De Meester L, Brans KI, Govaert L, Souffreau C, Mukherjee S, Vanvelk H, Korzeniowski K, Kilsdonk L, Decaestecker E, Stoks R, Urban MC. Analysing eco‐evolutionary dynamics—The challenging complexity of the real world. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13261] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Luc De Meester
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
| | - Kristien I. Brans
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
| | - Lynn Govaert
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
- Department of Aquatic Ecology Eawag: Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zürich Switzerland
| | - Caroline Souffreau
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
| | - Shinjini Mukherjee
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
| | - Héléne Vanvelk
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
| | - Konrad Korzeniowski
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
| | - Laurens Kilsdonk
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
| | - Ellen Decaestecker
- Laboratory of Aquatic Biology, IRF Life Sciences, KULAK KU Leuven Kortrijk Belgium
| | - Robby Stoks
- Laboratory or Evolutionary Stress Ecology and Ecotoxicology KU Leuven Leuven Belgium
| | - Mark C. Urban
- Department of Ecology and Evolutionary Biology, Center for Biodiversity and Ecological Risk University of Connecticut Storrs Connecticut
| |
Collapse
|
43
|
Affiliation(s)
- Erik I. Svensson
- Evolutionary Ecology Unit, Department of Biology Lund University Lund Sweden
| |
Collapse
|
44
|
Dual-stressor selection alters eco-evolutionary dynamics in experimental communities. Nat Ecol Evol 2018; 2:1974-1981. [DOI: 10.1038/s41559-018-0701-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/24/2018] [Indexed: 11/08/2022]
|
45
|
Bajić D, Vila JCC, Blount ZD, Sánchez A. On the deformability of an empirical fitness landscape by microbial evolution. Proc Natl Acad Sci U S A 2018; 115:11286-11291. [PMID: 30322921 PMCID: PMC6217403 DOI: 10.1073/pnas.1808485115] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A fitness landscape is a map between the genotype and its reproductive success in a given environment. The topography of fitness landscapes largely governs adaptive dynamics, constraining evolutionary trajectories and the predictability of evolution. Theory suggests that this topography can be deformed by mutations that produce substantial changes to the environment. Despite its importance, the deformability of fitness landscapes has not been systematically studied beyond abstract models, and little is known about its reach and consequences in empirical systems. Here we have systematically characterized the deformability of the genome-wide metabolic fitness landscape of the bacterium Escherichia coli Deformability is quantified by the noncommutativity of epistatic interactions, which we experimentally demonstrate in mutant strains on the path to an evolutionary innovation. Our analysis shows that the deformation of fitness landscapes by metabolic mutations rarely affects evolutionary trajectories in the short range. However, mutations with large environmental effects produce long-range landscape deformations in distant regions of the genotype space that affect the fitness of later descendants. Our results therefore suggest that, even in situations in which mutations have strong environmental effects, fitness landscapes may retain their power to forecast evolution over small mutational distances despite the potential attenuation of that power over longer evolutionary trajectories. Our methods and results provide an avenue for integrating adaptive and eco-evolutionary dynamics with complex genetics and genomics.
Collapse
Affiliation(s)
- Djordje Bajić
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511;
- Microbial Sciences Institute, Yale University West Campus, West Haven, CT 06516
| | - Jean C C Vila
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511
- Microbial Sciences Institute, Yale University West Campus, West Haven, CT 06516
| | - Zachary D Blount
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824
- Department of Biology, Kenyon College, Gambier OH 43022
| | - Alvaro Sánchez
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511;
- Microbial Sciences Institute, Yale University West Campus, West Haven, CT 06516
| |
Collapse
|
46
|
Yu X, Xiang C, Peng H. Taxonomy in the Kunming Institute of Botany (KIB): Progress during the past decade (2008-2018) and perspectives on future development. PLANT DIVERSITY 2018; 40:147-157. [PMID: 30740559 PMCID: PMC6137270 DOI: 10.1016/j.pld.2018.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 06/02/2023]
Abstract
The development of new taxonomical theories and approaches, particularly molecular phylogenetics, has led to the expansion of traditional morphology-based taxonomy into the concept of "integrative taxonomy." Taxonomic knowledge has assumed greater significance in recent years, particularly because of growing concerns over the looming biodiversity crisis. Since its establishment in 1938, the Kunming Institute of Botany (KIB), which is located in Yunnan province in Southwest China, has focused attention on the taxonomy and conservation of the flora of China. For the forthcoming 80th anniversary of KIB, we review the achievements of researchers at KIB and their associates with respect to the taxonomy of land plants, fungi, and lichen. Major taxonomic advances are summarized for families of Calymperaceae, Cryphaeaceae, Lembophyllaceae, Neckeraceae, Polytrichaceae and Pottiaceae of mosses, Pteridaceae and Polypodiaceae of ferns, Taxaceae and Cycadaceae of gymnosperms, Asteraceae, Begoniaceae, Ericaceae, Euphorbiaceae, Gesneriaceae, Lamiaceae, Orchidaceae, Orobanchaceae, Poaceae, Theaceae and Urticaceae of angiosperms, Agaricaceae, Amanitaceae, Boletaceae, Cantharellaceae, Physalacriaceae Russulaceae, Suillaceae and Tuberaceae of fungi, and Ophioparmaceae and Parmeliaceae of lichens. Regarding the future development of taxonomy at KIB, we recommend that taxonomists continue to explore the biodiversity of China, integrate new theories and technologies with traditional taxonomic approaches, and engage in creative monographic work, with support from institutions, funding agencies, and the public.
Collapse
Affiliation(s)
| | | | - Hua Peng
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
47
|
Matthews B, Best RJ, Feulner PGD, Narwani A, Limberger R. Evolution as an ecosystem process: insights from genomics. Genome 2017; 61:298-309. [PMID: 29241022 DOI: 10.1139/gen-2017-0044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Evolution is a fundamental ecosystem process. The study of genomic variation of organisms can not only improve our understanding of evolutionary processes, but also of contemporary and future ecosystem dynamics. We argue that integrative research between the fields of genomics and ecosystem ecology could generate new insights. Specifically, studies of biodiversity and ecosystem functioning, evolutionary rescue, and eco-evolutionary dynamics could all benefit from information about variation in genome structure and the genetic architecture of traits, whereas genomic studies could benefit from information about the ecological context of evolutionary dynamics. We propose new ways to help link research on functional genomic diversity with (reciprocal) interactions between phenotypic evolution and ecosystem change. Despite numerous challenges, we anticipate that the wealth of genomic data being collected on natural populations will improve our understanding of ecosystems.
Collapse
Affiliation(s)
- Blake Matthews
- a Eawag, Department of Aquatic Ecology, Center for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland
| | - Rebecca J Best
- a Eawag, Department of Aquatic Ecology, Center for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland.,b School of Earth Sciences and Environmental Sustainability, Northern Arizona University, 525 S. Beaver Street, Flagstaff, AZ 86011, USA
| | - Philine G D Feulner
- c Eawag, Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland.,d University of Bern, Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, Bern, Switzerland
| | - Anita Narwani
- a Eawag, Department of Aquatic Ecology, Center for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland
| | - Romana Limberger
- a Eawag, Department of Aquatic Ecology, Center for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland.,e Research Institute for Limnology, University of Innsbruck, Mondsee, Austria
| |
Collapse
|