1
|
Yang X, Ma S, Huang E, Zhang D, Chen G, Zhu J, Ji C, Zhu B, Liu L, Fang J. Nitrogen addition promotes soil carbon accumulation globally. SCIENCE CHINA. LIFE SCIENCES 2025; 68:284-293. [PMID: 39465462 DOI: 10.1007/s11427-024-2752-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/06/2024] [Indexed: 10/29/2024]
Abstract
Soil is the largest carbon (C) reservoir in terrestrial ecosystems and plays a crucial role in regulating the global C cycle and climate change. Increasing nitrogen (N) deposition has been widely considered as a critical factor affecting soil organic carbon (SOC) storage, but its effect on SOC components with different stability remains unclear. Here, we analyzed extensive empirical data from 304 sites worldwide to investigate how SOC and its components respond to N addition. Our analysis showed that N addition led to a significant increase in bulk SOC (6.7%), with greater increases in croplands (10.6%) and forests (6.0%) compared to grasslands (2.1%). Regarding SOC components, N addition promoted the accumulation of plant-derived C (9.7%-28.5%) over microbial-derived C (0.2%), as well as labile (5.7%) over recalcitrant components (-1.2%), resulting in a shift towards increased accumulation of plant-derived labile C. Consistently, N addition led to a greater increase in particulate organic C (11.9%) than mineral-associated organic C (3.6%), suggesting that N addition promotes C accumulation across all pools, with more increase in unstable than stable pools. The responses of SOC and its components were best predicted by the N addition rate and net primary productivity. Overall, our findings suggest that N enrichment could promote the accumulation of plant-derived and non-mineral associated C and a subsequent decrease in the overall stability of soil C pool, which underscores the importance of considering the effects of N enrichment on SOC components for a better understanding of C dynamics in soils.
Collapse
Affiliation(s)
- Xuemei Yang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China
| | - Suhui Ma
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Erhan Huang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China
| | - Danhua Zhang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China
| | - Guoping Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jiangling Zhu
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China
| | - Chengjun Ji
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China
| | - Biao Zhu
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China
| | - Lingli Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jingyun Fang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China.
| |
Collapse
|
2
|
Sun J, Fu Y, Hu W, Bo Y, Nawaz M, Javed Q, Khattak WA, Akbar R, Xiaoyan W, Liu W, Du D. Early allelopathic input and later nutrient addition mediated by litter decomposition of invasive Solidago canadensis affect native plant and facilitate its invasion. FRONTIERS IN PLANT SCIENCE 2024; 15:1503203. [PMID: 39748819 PMCID: PMC11693450 DOI: 10.3389/fpls.2024.1503203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/14/2024] [Indexed: 01/04/2025]
Abstract
Litter decomposition is essential for nutrient and chemical cycling in terrestrial ecosystems. Previous research on in situ litter decomposition has often underestimated its impact on soil nutrient dynamics and allelopathy. To address this gap, we conducted a comprehensive study involving both field and greenhouse experiments to examine the decomposition and allelopathic effects of the invasive Solidago canadensis L. in comparison with the native Phalaris arundinacea L. In the field, a 6-month litter bag experiment using leaf litter from S. canadensis and P. arundinacea was conducted across three community types: invasive, native, and mixed. Seed germination tests were also performed to investigate the allelopathic effects of decomposing litter. In the greenhouse, a pot experiment with lettuce as a bioindicator was performed to examine the allelochemical inputs from litter decomposition over various time intervals (0, 30, 60, 120, and 180 days). Subsequently, a soil-plant feedback experiment was carried out to further evaluate the effects of decomposing litter on soil biochemistry and plant dynamics. The findings of this study revealed that S. canadensis litter decomposed more rapidly and exhibited greater nitrogen (N) remaining mass compared with P. arundinacea in both single and mixed communities. After 180 days, the values for litter mass remaining for S. canadensis and P. arundinacea were 36% and 43%, respectively, when grown separately and were 32% and 44%, respectively, in mixed communities. At the invasive site, the soil ammonia and nitrate for S. canadensis increased gradually, reaching 0.89 and 14.93 mg/kg by day 120, compared with the native site with P. arundinacea. The soil organic carbon for S. canadensis at the invasive site also increased from 10.6 mg/kg on day 0 to 15.82 mg/kg on day 120, showing a higher increase than that at the native site with P. arundinacea. During the initial decomposition stages, all litters released almost all of their allelochemicals. However, at the later stages, litters continued to input nutrients into the soil, but had no significant impact on the soil carbon (C) and N cycling. Notably, litter-mediated plant-soil feedback facilitated the invasion of S. canadensis. In conclusion, this study highlights the significance of litter decomposition as a driver of transforming soil biochemistry, influencing the success of invasive S. canadensis.
Collapse
Affiliation(s)
- Jianfan Sun
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, China
| | - Yundi Fu
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Wenjie Hu
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Yanwen Bo
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Mohsin Nawaz
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Qaiser Javed
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Poreč, Poreč, Croatia
| | - Wajid Ali Khattak
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Rasheed Akbar
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- Department of Entomology, Faculty of Physical and Applied Sciences, The University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Wang Xiaoyan
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou, China
| | - Wei Liu
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou, China
| | - Daolin Du
- Jingjiang College, Institute of Enviroment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
3
|
Ma J, Zhang Z, Sun J, Li T, Fu Z, Hu R, Zhang Y. Effects of Increasing the Nitrogen-Phosphorus Ratio on the Structure and Function of the Soil Microbial Community in the Yellow River Delta. Microorganisms 2024; 12:2419. [PMID: 39770622 PMCID: PMC11677714 DOI: 10.3390/microorganisms12122419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Nitrogen (N) deposition from human activities leads to an imbalance in the N and phosphorus (P) ratios of natural ecosystems, which has a series of negative impacts on ecosystems. In this study, we used 16s rRNA sequencing technology to investigate the effect of the N-P supply ratio on the bulk soil (BS) and rhizosphere soil (RS) bacterial community of halophytes in coastal wetlands through manipulated field experiments. The response of soil bacterial communities to changing N and P ratios was influenced by plants. The N:P ratio increased the α-diversity of the RS bacterial community and changed the structure of the BS bacterial community. P addition may increase the threshold, causing decreased α-diversity of the bacterial community. The co-occurrence network of the RS community is more complex, but it is more fragile than that of BS. The co-occurrence network in BS has more modules and fewer network hubs. The increased N:P ratio can increase chemoheterotrophy and denitrification processes in the RS bacterial community, while the N:P ratio can decrease the N-fixing processes and increase the nitration processes. The response of the BS and the RS bacterial community to the N:P ratio differed, as influenced by soil organic carbon (SOC) content in terms of diversity, community composition, mutualistic networks, and functional composition. This study demonstrates that the effect of the N:P ratio on soil bacterial community is different for plant roots and emphasizes the role of plant roots in shaping soil bacterial community during environmental change.
Collapse
Affiliation(s)
- Jinzhao Ma
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Shandong University of Aeronautics, Binzhou 256603, China; (J.M.); (Z.Z.); (T.L.); (Z.F.); (R.H.); (Y.Z.)
| | - Zehao Zhang
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Shandong University of Aeronautics, Binzhou 256603, China; (J.M.); (Z.Z.); (T.L.); (Z.F.); (R.H.); (Y.Z.)
- Institute of Restoration Ecology, China University of Mining and Technology-Beijing, Beijing 100083, China
| | - Jingkuan Sun
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Shandong University of Aeronautics, Binzhou 256603, China; (J.M.); (Z.Z.); (T.L.); (Z.F.); (R.H.); (Y.Z.)
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257347, China
| | - Tian Li
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Shandong University of Aeronautics, Binzhou 256603, China; (J.M.); (Z.Z.); (T.L.); (Z.F.); (R.H.); (Y.Z.)
| | - Zhanyong Fu
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Shandong University of Aeronautics, Binzhou 256603, China; (J.M.); (Z.Z.); (T.L.); (Z.F.); (R.H.); (Y.Z.)
| | - Rui Hu
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Shandong University of Aeronautics, Binzhou 256603, China; (J.M.); (Z.Z.); (T.L.); (Z.F.); (R.H.); (Y.Z.)
| | - Yao Zhang
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Shandong University of Aeronautics, Binzhou 256603, China; (J.M.); (Z.Z.); (T.L.); (Z.F.); (R.H.); (Y.Z.)
| |
Collapse
|
4
|
Milici VR, Abiven S, Bauser HH, Bishop LG, Bland RGW, Chorover J, Dontsova KM, Dyer K, Friedman L, Rusek-Peterson MJ, Saleska S, Dlugosch KM. The Effects of Plant-Microbe-Environment Interactions on Mineral Weathering Patterns in a Granular Basalt. GEOBIOLOGY 2024; 22:e70004. [PMID: 39579144 DOI: 10.1111/gbi.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/25/2024]
Abstract
The importance of biota to soil formation and landscape development is widely recognized. As biotic complexity increases during early succession via colonization by soil microbes followed by vascular plants, effects of biota on mineral weathering and soil formation become more complex. Knowledge of the interactions among groups of organisms and environmental conditions will enable us to better understand landscape evolution. Here, we used experimental columns of unweathered granular basalt to investigate how early successional soil microbes, vascular plants (alfalfa; Medicago sativa), and soil moisture interact to affect both plant performance and mineral weathering. We found that the presence of soil microbes reduced plant growth rates, total biomass, and survival, which suggests that plants and microbes were competing for nutrients in this environment. However, we also found considerable genotype-specific variation in plant-microbial interactions, which underscores the importance of within-species genetic variation on biotic interactions. We also found that the presence of vascular plants reduced variability in pH and electrical conductivity, suggesting that plants may homogenize weathering reactions across the soil column. We also show that there is heterogeneity in the abiotic conditions in which microbes, plants, or their combination have the strongest effect on weathering, and that many of these relationships are sensitive to soil moisture. Our findings highlight the importance of interdependent effects of environmental and biotic factors on weathering during initial landscape formation.
Collapse
Affiliation(s)
- Valerie R Milici
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | - Samuel Abiven
- Ecole Normale Supérieure, Laboratoire de Géologie, Département de Géosciences, PSL University, Institut Pierre Simon Laplace, Paris, France
- CEREEP-Ecotron Ile De France, ENS, CNRS, PSL University, St-Pierre-lès-Nemours, France
| | - Hannes H Bauser
- Department of Geoscience, University of Nevada, Las Vegas, Nevada, USA
| | - Lily G Bishop
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | - Rebecca G W Bland
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | - Jon Chorover
- Department of Environmental Science, University of Arizona, Tucson, Arizona, USA
| | - Katerina M Dontsova
- Department of Environmental Science, University of Arizona, Tucson, Arizona, USA
- Biosphere 2, University of Arizona, Oracle, Arizona, USA
| | - Kielah Dyer
- Department of Environmental Science, University of Arizona, Tucson, Arizona, USA
| | - Linus Friedman
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | | | - Scott Saleska
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | - Katrina M Dlugosch
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
5
|
Guo L, Ju C, Xu X, Zhou G, Luo Y, Xu C, Li Q, Du H, Liu W, Zhou Y. Unveiling Pervasive Soil Microbial P Limitation in Terrestrial Ecosystems Worldwide. Ecol Lett 2024; 27:e70011. [PMID: 39623735 DOI: 10.1111/ele.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 01/03/2025]
Abstract
Soil microorganisms are crucial in terrestrial ecosystems, influencing carbon (C) sequestration, yet their metabolic activities are often constrained by nitrogen (N) and phosphorus (P) availability. Despite this, a global understanding of microbial nutrient limitation remains elusive. We synthesised 1245 observations from 225 articles to elucidate patterns and factors of microbial nutrient limitation. Contrary to convention, soil microbial P limitation is widespread (83.78% of observations), with N limitation mainly in temperate zones and pronounced P limitation in tropical and cold zones. Soil microbial P limitation correlates positively with mean annual precipitation and clay content, while N limitation correlates negatively with soil pH. Importantly, microbial nutrient limitation directly affects C cycling, as microbial C limitation increases with decreasing N or P limitation. This underscores the significance of microbial nutrient limitation in terrestrial C cycling and the need to incorporate it into Earth system models for accurate predictions under changing conditions.
Collapse
Affiliation(s)
- Liang Guo
- Co-Innovation Center for Sustainable Forestry in Southern China and College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Chenghui Ju
- Co-Innovation Center for Sustainable Forestry in Southern China and College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Xia Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, Hangzhou, China
- College of Environment and Resources and College of Carbon Neutrality, Zhejiang A&F University, Zhejiang, Hangzhou, China
- National Observation and Research Station of Fujian Wuyishan Forest Ecosystem, Wuyishan, Fujian, China
| | - Guomo Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, Hangzhou, China
- College of Environment and Resources and College of Carbon Neutrality, Zhejiang A&F University, Zhejiang, Hangzhou, China
| | - Yiqi Luo
- School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Chonghua Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, Hangzhou, China
- College of Environment and Resources and College of Carbon Neutrality, Zhejiang A&F University, Zhejiang, Hangzhou, China
| | - Qian Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, Hangzhou, China
- College of Environment and Resources and College of Carbon Neutrality, Zhejiang A&F University, Zhejiang, Hangzhou, China
| | - Huaqiang Du
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, Hangzhou, China
- College of Environment and Resources and College of Carbon Neutrality, Zhejiang A&F University, Zhejiang, Hangzhou, China
| | - Wenfang Liu
- National Observation and Research Station of Fujian Wuyishan Forest Ecosystem, Wuyishan, Fujian, China
- Wuyishan National Park Research and Monitoring Center, Wuyishan, Fujian, China
| | - Yan Zhou
- National Observation and Research Station of Fujian Wuyishan Forest Ecosystem, Wuyishan, Fujian, China
- Wuyishan National Park Research and Monitoring Center, Wuyishan, Fujian, China
| |
Collapse
|
6
|
Liu X, Sun D, Huang H, Zhang J, Zheng H, Jia Q, Zhao M. Rice-fish coculture without phosphorus addition improves paddy soil nitrogen availability by shaping ammonia-oxidizing archaea and bacteria in subtropical regions of South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171642. [PMID: 38479518 DOI: 10.1016/j.scitotenv.2024.171642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 04/16/2024]
Abstract
Rice-fish coculture (RFC), as a traditional agricultural strategy in China, can optimally utilize the scarce resource, especially in subtropical regions where phosphorus (P) deficiency limits agricultural production. However, ammonia-oxidizing archaea (AOA) and bacteria (AOB) are involved in the ammonia oxidation, but it remains uncertain whether their community compositions are related to the RFC combined with and without P addition that improves soil nitrogen (N) use efficiency. Here, a microcosm experiment was conducted to assess the impacts of RFC combined with and without inorganic P (0 and 50 mg P kg-1 as KH2PO4) addition on AOA and AOB community diversities, enzyme activities and N availability. The results showed that RFC significantly increased available N content without P addition compared with P addition. Moreover, RFC significantly increased urease activity and AOA shannon diversity, and reduced NAG activity and AOB shannon diversity without P addition, respectively. Higher diversity of AOA compared with that of AOB causes greater competition for resources and energy within their habitats, thereby resulting in lower network complexity. Our findings indicated that the abundances of AOA and AOB are influenced through the introduction of fish and/or P availability, of which AOB is linked to N availability. Overall, RFC could improve paddy soil N availability without P addition in subtropical region, which provides a scientific reference for promoting the practices that reduce N fertilizer application in RFC.
Collapse
Affiliation(s)
- Xing Liu
- Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Daolin Sun
- Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Huaqiao Huang
- Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jiaen Zhang
- Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Hongjun Zheng
- Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Qi Jia
- Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Min Zhao
- Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
7
|
Xing W, Gai X, Xue L, Li S, Zhang X, Ju F, Chen G. Enriched rhizospheric functional microbiome may enhance adaptability of Artemisia lavandulaefolia and Betula luminifera in antimony mining areas. Front Microbiol 2024; 15:1348054. [PMID: 38577689 PMCID: PMC10993014 DOI: 10.3389/fmicb.2024.1348054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/27/2024] [Indexed: 04/06/2024] Open
Abstract
Dominant native plants are crucial for vegetation reconstruction and ecological restoration of mining areas, though their adaptation mechanisms in stressful environments are unclear. This study focuses on the interactions between dominant indigenous species in antimony (Sb) mining area, Artemisia lavandulaefolia and Betula luminifera, and the microbes in their rhizosphere. The rhizosphere microbial diversity and potential functions of both plants were analyzed through the utilization of 16S, ITS sequencing, and metabarcoding analysis. The results revealed that soil environmental factors, rather than plant species, had a more significant impact on the composition of the rhizosphere microbial community. Soil pH and moisture significantly affected microbial biomarkers and keystone species. Actinobacteria, Proteobacteria and Acidobacteriota, exhibited high resistance to Sb and As, and played a crucial role in the cycling of carbon, nitrogen (N), phosphorus (P), and sulfur (S). The genes participating in N, P, and S cycling exhibited metabolic coupling with those genes associated with Sb and As resistance, which might have enhanced the rhizosphere microbes' capacity to endure environmental stressors. The enrichment of these rhizosphere functional microbes is the combined result of dispersal limitations and deterministic assembly processes. Notably, the genes related to quorum sensing, the type III secretion system, and chemotaxis systems were significantly enriched in the rhizosphere of plants, especially in B. luminifera, in the mining area. The phylogenetic tree derived from the evolutionary relationships among rhizosphere microbial and chloroplast whole-genome resequencing results, infers both species especially B. luminifera, may have undergone co-evolution with rhizosphere microorganisms in mining areas. These findings offer valuable insights into the dominant native rhizosphere microorganisms that facilitate plant adaptation to environmental stress in mining areas, thereby shedding light on potential strategies for ecological restoration in such environments.
Collapse
Affiliation(s)
- Wenli Xing
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Xu Gai
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Liang Xue
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Shaocui Li
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Xiaoping Zhang
- China National Bamboo Research Center, Key Laboratory of State Forestry and Grassland Administration on Bamboo Forest Ecology and Resource Utilization, Hangzhou, Zhejiang, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, China
| | - Guangcai Chen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| |
Collapse
|
8
|
Wang H, Wang H, Crowther TW, Isobe K, Reich PB, Tateno R, Shi W. Metagenomic insights into inhibition of soil microbial carbon metabolism by phosphorus limitation during vegetation succession. ISME COMMUNICATIONS 2024; 4:ycae128. [PMID: 39507397 PMCID: PMC11538728 DOI: 10.1093/ismeco/ycae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/01/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024]
Abstract
There is growing awareness of the need for regenerative practices in the fight against biodiversity loss and climate change. Yet, we lack a mechanistic understanding of how microbial community composition and functioning are likely to change alongside transition from high-density tillage to large-scale vegetation restoration. Here, we investigated the functional dynamics of microbial communities following a complete vegetation successional chronosequence in a subtropical zone, Southwestern China, using shotgun metagenomics approaches. The contents of total soil phosphorus (P), available P, litter P, and microbial biomass P decreased significantly during vegetation succession, indicating that P is the most critical limiting nutrient. The abundance of genes related to P-uptake and transport, inorganic P-solubilization, organic P-mineralization, and P-starvation response regulation significantly increased with successional time, indicating an increased microbial "mining" for P under P limitation. Multi-analysis demonstrated microbial P limitation strongly inhibits carbon (C) catabolism potential, resulting in a significant decrease in carbohydrate-active enzyme family gene abundances. Nevertheless, over successional time, microorganisms increased investment in genes involved in degradation-resistant compounds (lignin and its aromatic compounds) to acquire P resources in the litter. Our study provides functional gene-level insights into how P limitation during vegetation succession in subtropical regions inhibits soil microbial C metabolic processes, thereby advancing our understanding of belowground C cycling and microbial metabolic feedback during forest restoration.
Collapse
Affiliation(s)
- Haocai Wang
- Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing 400715, China
| | - Hang Wang
- Dianchi Lake Ecosystem Observation and Research Station of Yunnan Province, Kunming 650228, China
| | - Thomas W Crowther
- Department of Environment Systems Science, Institute of Integrative Biology, ETH Zürich, Zürich 8092, Switzerland
| | - Kazuo Isobe
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Peter B Reich
- Institute for Global Change Biology and School for Environment and Sustainability, University of Michigan, Ann Arbor, MI 48109, United States
- Department of Forest Resources, University of Minnesota, Saint Paul, MN 55108, United States
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Ryunosuke Tateno
- Filed Science Education and Research Center, Kyoto University, Kyoto 606-8502, Japan
| | - Weiyu Shi
- Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
9
|
Guerrero-Brotons M, Álvarez-Rogel J, Arce MI, Gómez R. Addressing the C/N imbalance in the treatment of irrigated agricultural water by using a hybrid constructed wetland at field-scale. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119329. [PMID: 37866182 DOI: 10.1016/j.jenvman.2023.119329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/25/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
To mitigate excess of nitrate-N (NO3--N) derived from agricultural activity, constructed wetlands (CWs) are created to simulate natural removal mechanisms. Irrigated agricultural drainage water is commonly characterized by an organic carbon/nitrogen (C/N) imbalance, thus, C limitation constrains heterotrophic denitrification, the main biotic process implicated in NO3--N removal in wetlands. We studied a pilot plant with three series (169 m2) of hybrid CWs over the first two years of functioning to examine: i) the effect of adding different C-rich substrates (natural soil vs. biochar) to gravel on NO3--N removal in a subsurface flow (Phase I), ii) the role of a second phase with a horizontal surface flow (Phase II) as a source of dissolved organic C (DOC), and its effect in a consecutive horizontal subsurface flow (Phase III) on NO3--N removal, and iii) the contribution of each phase to global NO3--N removal. Our results showed that the addition of a C-rich substrate to gravel had a positive effect on NO3--N removal in Phase I, with mean efficiencies of 40% and 17% for soil and biochar addition, respectively, compared to only gravel (0.75%). In Phase II, the algae growth turned into a DOC concentration increase, but it did not enhance NO3--N removal in Phase III. In series with C-rich substrate addition, the largest contribution to NO3--N removal was found in Phase I. However, in series with only gravel, Phase II was the most effective on NO3--N removal. Contribution of Phase III to NO3--N removal was almost negligible.
Collapse
Affiliation(s)
| | - José Álvarez-Rogel
- Department of Agricultural Engineering, E.T.S.I.A. Technical University of Cartagena, 30203, Cartagena, Spain
| | - María Isabel Arce
- Department of Ecology and Hydrology, University of Murcia, 30100, Murcia, Spain
| | - Rosa Gómez
- Department of Ecology and Hydrology, University of Murcia, 30100, Murcia, Spain
| |
Collapse
|
10
|
Quattrone A, Yang Y, Yadav P, Weber KA, Russo SE. Nutrient and Microbiome-Mediated Plant-Soil Feedback in Domesticated and Wild Andropogoneae: Implications for Agroecosystems. Microorganisms 2023; 11:2978. [PMID: 38138123 PMCID: PMC10745641 DOI: 10.3390/microorganisms11122978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Plants influence the abiotic and biotic environment of the rhizosphere, affecting plant performance through plant-soil feedback (PSF). We compared the strength of nutrient and microbe-mediated PSF and its implications for plant performance in domesticated and wild grasses with a fully crossed greenhouse PSF experiment using four inbred maize genotypes (Zea mays ssp. mays b58, B73-wt, B73-rth3, and HP301), teosinte (Z. mays ssp. parviglumis), and two wild prairie grasses (Andropogon gerardii and Tripsacum dactyloides) to condition soils for three feedback species (maize B73-wt, teosinte, Andropogon gerardii). We found evidence of negative PSF based on growth, phenotypic traits, and foliar nutrient concentrations for maize B73-wt, which grew slower in maize-conditioned soil than prairie grass-conditioned soil. In contrast, teosinte and A. gerardii showed few consistent feedback responses. Both rhizobiome and nutrient-mediated mechanisms were implicated in PSF. Based on 16S rRNA gene amplicon sequencing, the rhizosphere bacterial community composition differed significantly after conditioning by prairie grass and maize plants, and the final soil nutrients were significantly influenced by conditioning, more so than by the feedback plants. These results suggest PSF-mediated soil domestication in agricultural settings can develop quickly and reduce crop productivity mediated by PSF involving changes to both the soil rhizobiomes and nutrient availability.
Collapse
Affiliation(s)
- Amanda Quattrone
- Complex Biosystems Ph.D. Program, University of Nebraska-Lincoln, Lincoln, NE 68583-0851, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0118, USA; (Y.Y.)
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68583-0705, USA
| | - Yuguo Yang
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0118, USA; (Y.Y.)
| | - Pooja Yadav
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0118, USA; (Y.Y.)
| | - Karrie A. Weber
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0118, USA; (Y.Y.)
- Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0340, USA
- Daugherty Water for Food Institute, University of Nebraska, Lincoln, NE 68588-6203, USA
| | - Sabrina E. Russo
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0118, USA; (Y.Y.)
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68583-0705, USA
| |
Collapse
|
11
|
Abbasi S. Plant-microbe interactions ameliorate phosphate-mediated responses in the rhizosphere: a review. FRONTIERS IN PLANT SCIENCE 2023; 14:1074279. [PMID: 37360699 PMCID: PMC10290171 DOI: 10.3389/fpls.2023.1074279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/19/2023] [Indexed: 06/28/2023]
Abstract
Phosphorus (P) is one of the essential minerals for many biochemical and physiological responses in all biota, especially in plants. P deficiency negatively affects plant performance such as root growth and metabolism and plant yield. Mutualistic interactions with the rhizosphere microbiome can assist plants in accessing the available P in soil and its uptake. Here, we provide a comprehensive overview of plant-microbe interactions that facilitate P uptake by the plant. We focus on the role of soil biodiversity in improved P uptake by the plant, especially under drought conditions. P-dependent responses are regulated by phosphate starvation response (PSR). PSR not only modulates the plant responses to P deficiency in abiotic stresses but also activates valuable soil microbes which provide accessible P. The drought-tolerant P-solubilizing bacteria are appropriate for P mobilization, which would be an eco-friendly manner to promote plant growth and tolerance, especially in extreme environments. This review summarizes plant-microbe interactions that improve P uptake by the plant and brings important insights into the ways to improve P cycling in arid and semi-arid ecosystems.
Collapse
|
12
|
Feng J, Song Y, Zhu B. Ecosystem-dependent responses of soil carbon storage to phosphorus enrichment. THE NEW PHYTOLOGIST 2023; 238:2363-2374. [PMID: 36960561 DOI: 10.1111/nph.18907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/14/2023] [Indexed: 05/19/2023]
Abstract
Phosphorus deposition can stimulate both plant carbon inputs and microbial carbon outputs. However, how P enrichment affects soil organic carbon (SOC) storage and the underlying mechanisms remain unclear. We conducted a meta-analysis of 642 SOC observations from 213 field P addition experiments world-wide and explored the regulations of plant inputs, microbial outputs, plant characteristics, and environmental and experimental factors on SOC responses. We found that, globally, P addition stimulated SOC by 4.0% (95% CI: 2.0-6.0%), but the stimulation only occurred in forest and cropland rather than in grassland. Across sites, the response of SOC correlated with that of plant aboveground rather than belowground biomass, suggesting that the change in plant inputs from aboveground was more important than that from belowground in regulating SOC changes due to P addition. Among multiple factors, plant N fixation status and mean annual temperature were the best predictors for SOC responses to P addition, with SOC stimulation being higher in ecosystems dominated by symbiotic nitrogen fixers and ecosystems in high-temperature regions like tropical forests. Our findings highlight the differential and ecosystem-dependent responses of SOC to P enrichment and can contribute to accurate predictions of soil carbon dynamics in a P-enriched world.
Collapse
Affiliation(s)
- Jiguang Feng
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China
| | - Yanjun Song
- University of Bordeaux, INRAE, BIOGECO, Pessac, 33615, France
| | - Biao Zhu
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China
| |
Collapse
|
13
|
Zhang C, Li Q, Feng R, Zhang Z, Yang Y, Liu J. C:N:P stoichiometry of plant-soil-microbe in the secondary succession of zokor-made mounds on Qinghai-Tibet Plateau. ENVIRONMENTAL RESEARCH 2023; 222:115333. [PMID: 36706900 DOI: 10.1016/j.envres.2023.115333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
The knowledge of ecological stoichiometry and stoichiometric homeostasis could contribute to exploring the balance of chemical elements in ecological recovery. However, it is largely unknown how the carbon (C), nitrogen (N), phosphorus (P), and stoichiometric characteristics in the plant-soil-microbe continuum system respond to the spontaneous secondary succession of degraded alpine grasslands. Therefore, we investigated the spontaneous secondary successional recovery of grasslands disturbed by zokor (Myospalax fontanierii) on the Qinghai-Tibetan Plateau, China, via a strategy of substituting space for time. Based on plant richness, biomass, and coverage, plant importance value was employed to assess the recovery degree of zokor-made mounds (ZMMs, large and bare patch areas constructed by zokors). Multiple statistical methods, including stoichiometric homeostatic model, network, and redundancy analysis, were conducted to decipher the stoichiometric patterns. The results indicated that plant C, C:N, and C:P increased with the recovery of ZMMs, contrary to the decrease of plant N and P. In addition, soil C, N, C:N, C:P, and N:P increased with the recovery degree, and the soil became relatively more N rich by increasing organic N under the revegetation of legumes. Meanwhile, soil microbial biomass C, N, and P increased with the recovery of ZMMs, but microbial biomass C:N:P ratios were highly constrained. Soil accessible inorganic nitrogen played an important role in driving plant and microbial nutrient and stoichiometry. Our results demonstrated that the different responses of C, N, and P contents in plant-soil-microbe lead to shifts in C:N:P stoichiometric ratio. Nevertheless, plants and soil microbes exhibited strong stoichiometric homeostasis. Collectively, our study provides new insight into biogeochemical responses to the successional recovery of degraded alpine grassland on the Qinghai-Tibetan Plateau from a stoichiometric perspective.
Collapse
Affiliation(s)
- Chunping Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, Collaborative Innovation Center for Western Ecological Safety, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Qi Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, Collaborative Innovation Center for Western Ecological Safety, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Runqiu Feng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, Collaborative Innovation Center for Western Ecological Safety, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Zhenhua Zhang
- Qinghai Haibei National Field Research Station of Alpine Grassland Ecosystem and Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jie Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, Collaborative Innovation Center for Western Ecological Safety, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
14
|
Yang X, Ma Y, Zhang J, Bai H, Shen Y. How arbuscular mycorrhizal fungi drives herbaceous plants' C: N: P stoichiometry? A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160807. [PMID: 36526182 DOI: 10.1016/j.scitotenv.2022.160807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Plant element stoichiometry is fundamental for preserving growth-related terrestrial ecosystem structures and functions. However, effects of arbuscular mycorrhizal fungi (AMF) on herbaceous plant element stoichiometry (carbon (C), nitrogen (N), and phosphorus (P)) remain unclear. In this study, we aimed at evaluating the potential effects of AMF on herbaceous plant C, N and P concentration and their C:N:P stoichiometry worldwide through a quantitative meta-analysis. We observed that AMF reduced C:P and N:P ratios in the shoot of plants by 35.83 % and 54.23 %, respectively, and in plant root organs by 36.24 % and 46.35 %, respectively. Conversely, C:N ratios increased in roots by 6.61 %. The negative effect of AMF on N:P and C:P ratios in plant shoots and root organs is mainly attributed to the plant benefits in P and N concentrations. AMF impact on plant C:N:P stoichiometry depends on fungal and plant functional group identities and soil nutrient availability. Our results suggest that plant functional group identity affects plant nutrient concentration, which, in turn, controls herbaceous plant C:N:P stoichiometry. Overall, we emphasize the importance of abiotic and biotic environmental factors in changing AMF effects on plant element stoichiometry. Therefore, clarifying the relationship between AMF and herbaceous plant C:N:P stoichiometry will improve our understanding of herbaceous plant stoichiometric variations in terrestrial ecosystems.
Collapse
Affiliation(s)
- Xin Yang
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China; Ningxia Engineering Technology Research Center for Prataculture, Yinchuan, Ningxia 750021, China
| | - Yurong Ma
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Jianjun Zhang
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Haotian Bai
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yue Shen
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China; Ningxia Engineering Technology Research Center for Prataculture, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
15
|
Miao Y, Zhang X, Zhang G, Feng Z, Pei J, Liu C, Huang L. From guest to host: parasite Cistanche deserticola shapes and dominates bacterial and fungal community structure and network complexity. ENVIRONMENTAL MICROBIOME 2023; 18:11. [PMID: 36814319 PMCID: PMC9945605 DOI: 10.1186/s40793-023-00471-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Rhizosphere and plant microbiota are assumed to play an essential role in deciding the well-being of hosts, but effects of parasites on their host microbiota have been rarely studied. Also, the characteristics of the rhizosphere and root microbiota of parasites and hosts under parasitism is relatively unknown. In this study, we used Cistanche deserticola and Haloxylon ammodendron from cultivated populations as our model parasites and host plants, respectively. We collected samples from BULK soil (BULK), rhizosphere soil of H. ammodendron not parasitized (NCD) and parasitized (RHA) to study how the parasite influenced the rhizosphere microbiota of the host. We also collected samples from the rhizosphere soil and roots of C. deserticola (RCD and ECD) and Haloxylon ammodendron (RHA and EHA) to explore the difference between the microbiota of the parasite and its host under parasitism. RESULTS The parasite reduced the compositional and co-occurrence network complexities of bacterial and fungal microbiota of RHA. Additionally, the parasite increased the proportion of stochastic processes mainly belonging to dispersal limitation in the bacterial microbiota of RHA. Based on the PCoA ordinations and permutational multivariate analysis of variance, the dissimilarity between microbiota of C. deserticola and H. ammodendron were rarely evident (bacteria, R2 = 0.29971; fungi, R2 = 0.15631). Interestingly, four hub nodes of H. ammodendron in endosphere fungal microbiota were identified, while one hub node of C. deserticola in endosphere fungal microbiota was identified. It indicated that H. ammodendron played a predominant role in the co-occurrence network of endosphere fungal microbiota. Source model of plant microbiome suggested the potential source percentage from the parasite to the host (bacteria: 52.1%; fungi: 16.7%) was lower than host-to-parasite (bacteria: 76.5%; fungi: 34.3%), illustrating that microbial communication was bidirectional, mainly from the host to the parasite. CONCLUSIONS Collectively, our results suggested that the parasite C. deserticola shaped the diversity, composition, co-occurrence network, and community assembly mechanisms of the rhizosphere microbiota of H. ammodendron. Additionally, the microbiota of C. deserticola and H. ammodendron were highly similar and shared. Our findings on parasite and host microbiota provided a novel line of evidence supporting the influence of parasites on the microbiota of their hosts.
Collapse
Affiliation(s)
- Yujing Miao
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Xinke Zhang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Guoshuai Zhang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Zhan Feng
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330000, Jiangxi, China
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Chang Liu
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Linfang Huang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
16
|
Dahl MB, Kreyling J, Petters S, Wang H, Mortensen MS, Maccario L, Sørensen SJ, Urich T, Weigel R. Warmer winters result in reshaping of the European beech forest soil microbiome (bacteria, archaea and fungi)-With potential implications for ecosystem functioning. Environ Microbiol 2023. [PMID: 36752534 DOI: 10.1111/1462-2920.16347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
In temperate regions, climate warming alters temperature and precipitation regimes. During winter, a decline in insulating snow cover changes the soil environment, where especially frost exposure can have severe implications for soil microorganisms and subsequently for soil nutrient dynamics. Here, we investigated winter climate change responses in European beech forests soil microbiome. Nine study sites with each three treatments (snow exclusion, insolation, and ambient) were investigated. Long-term adaptation to average climate was explored by comparing across sites. Triplicated treatment plots were used to evaluate short-term (one single winter) responses. Community profiles of bacteria, archaea and fungi were created using amplicon sequencing. Correlations between the microbiome, vegetation and soil physicochemical properties were found. We identify core members of the forest-microbiome and link them to key processes, for example, mycorrhizal symbiont and specialized beech wood degraders (fungi) and nitrogen cycling (bacteria, archaea). For bacteria, the shift of the microbiome composition due to short-term soil temperature manipulations in winter was similar to the community differences observed between long-term relatively cold to warm conditions. The results suggest a strong link between the changes in the microbiomes and changes in environmental processes, for example, nitrogen dynamics, driven by variations in winter climate.
Collapse
Affiliation(s)
- Mathilde Borg Dahl
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Juergen Kreyling
- Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
| | - Sebastian Petters
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Haitao Wang
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Martin Steen Mortensen
- Department of Biology, Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Lorrie Maccario
- Department of Biology, Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Søren J Sørensen
- Department of Biology, Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Tim Urich
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Robert Weigel
- Plant Ecology, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
| |
Collapse
|
17
|
Qin Y, Liang M, Feng B, Zheng H. Coordinated pattern of multiple element variability in Aegiceras corniculatum propagule in shrimp aquaculture effluent habitats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159242. [PMID: 36208757 DOI: 10.1016/j.scitotenv.2022.159242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/18/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Human activities and environment changes have changed river estuary ecosystems, which impacts element changes in coastal sediments and mangroves. Mangrove propagule chemical traits showed a systematic shift along environmental gradients. But knowledge about how the pattern of multi-element variability is coordinated in propagule remains limited, and the conservation of macro and trace elements in propagules is also unknown. In this study, the concentrations, variability and coordinated pattern variation of 13 elements in Aegiceras corniculatum propagule across shrimp aquaculture effluent habitats, as well as the relationship between propagule element and environment factors were explored. We used CV to quantify the variability of each element, and then explore the pattern of multi-element variability. The results showed that: (1) in the habitats affected by shrimp aquaculture, the elements content shows: C > K > Cl > N > Na > P > S > Mg > Ca > Fe > Mn > Zn > Cu, and the coefficient variation shows: Mn > Cu > Fe > Zn > S > N > P > Cl > Na > K > Mg > Ca > C, which means that the element concentration are negatively correlated with the element variability and the variability of macro-elements was more conservative than micro-elements in these habitats; (2) pH, OM, C:P, and SiO32- were the four important environmental factors explaining the A. corniculatum propagule variation. In conclusion, effluent from shrimp aquaculture does affect the coordinated pattern of multiple element variability in A. corniculatum propagules. These results provide a strong evidence for assessing the impact of shrimp aquaculture effluent discharges on mangrove and provide an important theoretical basis for mangrove conservation and restoration.
Collapse
Affiliation(s)
- Yingying Qin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal University, Guilin 541004, PR China; Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin 541004, PR China; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, PR China.
| | - Mingzhong Liang
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou 535011, PR China
| | - Bingbin Feng
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou 535011, PR China
| | - Hailei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|
18
|
Potential Roles of Soil Microorganisms in Regulating the Effect of Soil Nutrient Heterogeneity on Plant Performance. Microorganisms 2022; 10:microorganisms10122399. [PMID: 36557652 PMCID: PMC9786772 DOI: 10.3390/microorganisms10122399] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
The spatially heterogeneous distribution of soil nutrients is ubiquitous in terrestrial ecosystems and has been shown to promote the performance of plant communities, influence species coexistence, and alter ecosystem nutrient dynamics. Plants interact with diverse soil microbial communities that lead to an interdependent relationship (e.g., symbioses), driving plant community productivity, belowground biodiversity, and soil functioning. However, the potential role of the soil microbial communities in regulating the effect of soil nutrient heterogeneity on plant growth has been little studied. Here, we highlight the ecological importance of soil nutrient heterogeneity and microorganisms and discuss plant nutrient acquisition mechanisms in heterogeneous soil. We also examine the evolutionary advantages of nutrient acquisition via the soil microorganisms in a heterogeneous environment. Lastly, we highlight a three-way interaction among the plants, soil nutrient heterogeneity, and soil microorganisms and propose areas for future research priorities. By clarifying the role of soil microorganisms in shaping the effect of soil nutrient heterogeneity on plant performance, the present study enhances the current understanding of ecosystem nutrient dynamics in the context of patchily distributed soil nutrients.
Collapse
|
19
|
Zelnik YR, Manzoni S, Bommarco R. The coordination of green-brown food webs and their disruption by anthropogenic nutrient inputs. GLOBAL ECOLOGY AND BIOGEOGRAPHY : A JOURNAL OF MACROECOLOGY 2022; 31:2270-2280. [PMID: 36606260 PMCID: PMC9804327 DOI: 10.1111/geb.13576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/24/2022] [Accepted: 07/13/2022] [Indexed: 06/17/2023]
Abstract
Aim Our goal was to quantify nitrogen flows and stocks in green-brown food webs in different ecosystems, how they differ across ecosystems and how they respond to nutrient enrichment. Location Global. Time period Contemporary. Major taxa studied Plants, phytoplankton, macroalgae, invertebrates, vertebrates and zooplankton. Methods Data from >500 studies were combined to estimate nitrogen stocks and fluxes in green-brown food webs in forests, grasslands, brackish environments, seagrass meadows, lakes and oceans. We compared the stocks, fluxes and metabolic rates of different functional groups within each food web. We also used these estimates to build a dynamical model to test the response of the ecosystems to nutrient enrichment. Results We found surprising symmetries between the green and brown channels across ecosystems, in their stocks, fluxes and consumption coefficients and mortality rates. We also found that nitrogen enrichment, either organic or inorganic, can disrupt this balance between the green and brown channels. Main conclusions Linking green and brown food webs reveals a previously hidden symmetry between herbivory and detritivory, which appears to be a widespread property of natural ecosystems but can be disrupted by anthropogenic nitrogen additions.
Collapse
Affiliation(s)
- Yuval R. Zelnik
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| | - Stefano Manzoni
- Department of Physical GeographyStockholm UniversityStockholmSweden
- Bolin Centre for Climate ResearchStockholm UniversityStockholmSweden
| | - Riccardo Bommarco
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
20
|
Asada K, Kanda T, Yamashita N, Asano M, Eguchi S. Interpreting stoichiometric homeostasis and flexibility of soil microbial biomass carbon, nitrogen, and phosphorus. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.110018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Zhang D, Zhang Y, Zhao Z, Xu S, Cai S, Zhu H, Rengel Z, Kuzyakov Y. Carbon-Phosphorus Coupling Governs Microbial Effects on Nutrient Acquisition Strategies by Four Crops. FRONTIERS IN PLANT SCIENCE 2022; 13:924154. [PMID: 35865291 PMCID: PMC9294595 DOI: 10.3389/fpls.2022.924154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Plants adjust root morphological and/or exudation traits in response to phosphorus (P) mobilization mediated by microorganisms. We hypothesized that straw application coupled with P fertilization would influence microbial P and then root nutrient-acquisition strategies related to crop growth. Root morphological (length and average diameter) and exudation traits (acid phosphatase and carboxylates) of Brassica chinensis, Solanum lycopersicum, Lactuca sativa, and Vigna unguiculata in response to microbial P dynamics were characterized in no-P and P-fertilized soil with/without straw addition. Straw addition increased the growth of fungi and bacteria, stimulating microbial P immobilization at day 24. The high microbial abundance was associated with four tested crops having short roots in straw-amended compared with no-straw soil at day 24. In straw-amended soil, B. chinensis and S. lycopersicum shifted toward root P-acquisition strategies based on fast elongation and strong carboxylate exudation from days 24 to 40. Such effective root P-acquisition strategies together with microbial P release increased shoot P content in S. lycopersicum in straw-amended compared with those without straw at day 40. Conversely, L. sativa and V. unguiculata produced short roots in response to the stable (or even increased) microbial P after straw addition till day 40. In straw-amended soil, high P application stimulated root elongation and carboxylate exudation in L. sativa and V. unguiculata, whereas carboxylate exudation by S. lycopersicum was decreased compared with the straw-amended but non-fertilized treatment at day 40. In summary, root P-acquisition strategies in response to microbial P differed among the tested crop species. Phosphorus fertilization needs to be highlighted when returning straw to enhance P-use efficiency in vegetable cropping systems.
Collapse
Affiliation(s)
- Deshan Zhang
- Institute of Ecological Environment Protection Research, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, China
| | - Yuqiang Zhang
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - Zheng Zhao
- Institute of Ecological Environment Protection Research, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, China
| | - Sixin Xu
- Institute of Ecological Environment Protection Research, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, China
| | - Shumei Cai
- Institute of Ecological Environment Protection Research, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, China
| | - Haitao Zhu
- Institute of Ecological Environment Protection Research, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, China
| | - Zed Rengel
- Soil Science and Plant Nutrition, UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- Institute for Adriatic Crops and Karst Reclamation, Split, Croatia
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, University of Göttingen, Göttingen, Germany
- Department of Agricultural Soil Science, University of Göttingen, Göttingen, Germany
- Peoples Friendship University of Russia (RUDN University), Moscow, Russia
- Institute of Environmental Sciences, Kazan Federal University, Kazan, Russia
| |
Collapse
|
22
|
Hu Y, Chen J, Hui D, Wang YP, Li J, Chen J, Chen G, Zhu Y, Zhang L, Zhang D, Deng Q. Mycorrhizal fungi alleviate acidification-induced phosphorus limitation: Evidence from a decade-long field experiment of simulated acid deposition in a tropical forest in south China. GLOBAL CHANGE BIOLOGY 2022; 28:3605-3619. [PMID: 35175681 DOI: 10.1111/gcb.16135] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
South China has been experiencing very high rate of acid deposition and severe soil acidification in recent decades, which has been proposed to exacerbate the regional ecosystem phosphorus (P) limitation. We conducted a 10-year field experiment of simulated acid deposition to examine how acidification impacts seasonal changes of different soil P fractions in a tropical forest with highly acidic soils in south China. As expected, acid addition significantly increased occluded P pool but reduced the other more labile P pools in the dry season. In the wet season, however, acid addition did not change microbial P, soluble P and labile organic P pools. Acid addition significantly increased exchangeable Al3+ and Fe3+ and the activation of Fe oxides in both seasons. Different from the decline of microbial abundance in the dry season, acid addition increased ectomycorrhizal fungi and its ratio to arbuscular mycorrhiza fungi in the wet season, which significantly stimulated phosphomonoesterase activities and likely promoted the dissolution of occluded P. Our results suggest that, even in already highly acidic soils, the acidification-induced P limitation could be alleviated by stimulating ectomycorrhizal fungi and phosphomonoesterase activities. The differential responses and microbial controls of seasonal soil P transformation revealed here should be implemented into ecosystem biogeochemical model for predicting plant productivity under future acid deposition scenarios.
Collapse
Affiliation(s)
- Yuanliu Hu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Department of Agroecology, Aarhus University, Tjele, Denmark
| | - Ji Chen
- Department of Agroecology, Aarhus University, Tjele, Denmark
- Aarhus University Centre for Circular Bioeconomy, Aarhus University, Tjele, Denmark
- iCLIMATE Interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark
| | - Dafeng Hui
- Department of Biological Sciences, Tennessee State University, Nashville, Tennessee, USA
| | - Ying-Ping Wang
- CSIRO Oceans and Atmosphere, Aspendale, Victoria, Australia
| | - Jianling Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Jingwen Chen
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guoyin Chen
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yiren Zhu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Leiyi Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Deqiang Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Qi Deng
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
23
|
Shen Y, Zhu B. Effects of nitrogen and phosphorus enrichment on soil N 2O emission from natural ecosystems: A global meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 301:118993. [PMID: 35183669 DOI: 10.1016/j.envpol.2022.118993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/15/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) and phosphorous (P) enrichment play an important role in regulating soil N2O emission, but their interactive effect remains elusive (i.e. whether the effect of P or N enrichment on soil N2O emission varies between ambient and elevated soil N or P conditions). Here, we conducted a Bayesian meta-analysis across the global natural ecosystems to determine this effect. Our results showed that P enrichment significantly decreased soil N2O emission by 13.9% at ambient soil N condition. This N2O mitigation is likely due to the decreased soil NO3--N content (-17.6%) derived by the enhanced plant uptake when the P limitation was alleviated by P enrichment. However, this P-induced N2O (and NO3--N) mitigation was not found at elevated soil N condition. Additionally, N enrichment significantly increased soil N2O emission by 101.4%, which was associated with the increased soil NH4+-N (+41.0%) and NO3--N (+82.3%). However, the effect of N enrichment on soil N2O emission did not differ between ambient and elevated soil P subgroups, indicating that the P-derived N2O mitigation could be masked by N enrichment. Further analysis showed that manipulated N rate, soil texture, soil dissolved organic nitrogen, soil total nitrogen, soil organic carbon, soil pH, aboveground plant biomass, belowground plant biomass, and plant biomass nitrogen were the main factors affecting soil N2O emission under N enrichment. Taken together, our study provides evidence that P enrichment has the potential to reduce soil N2O emission from natural ecosystems, but this mitigation effect could be masked by N enrichment.
Collapse
Affiliation(s)
- Yawen Shen
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China
| | - Biao Zhu
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China.
| |
Collapse
|
24
|
Adomako MO, Xue W, Du DL, Yu FH. Soil Microbe-Mediated N:P Stoichiometric Effects on Solidago canadensis Performance Depend on Nutrient Levels. MICROBIAL ECOLOGY 2022; 83:960-970. [PMID: 34279696 DOI: 10.1007/s00248-021-01814-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Both soil microbes and soil N:P ratios can affect plant growth, but it is unclear whether they can interact to alter plant growth and whether such an interactive effect depends on nutrient levels. Here, we tested the hypothesis that soil microbes can ameliorate the negative effects of nutrient imbalance caused by low or high N:P ratios on plant growth and that such an ameliorative effect of soil microbes depends on nutrient supply levels. We grew individuals of six populations of the clonal plant Solidago canadensis at three N:P ratios (low (1.7), intermediate (15), and high (135)), under two nutrient levels (low versus high) and in the presence versus absence of soil microbes. The presence of soil microbes significantly increased biomass of S. canadensis at all three N:P ratios and under both nutrient levels. Under the low-nutrient level, biomass, height, and leaf number of S. canadensis did not differ significantly among the three N:P ratio treatments in the absence of soil microbes, but they were higher at the high than at the low and the intermediate N:P ratio in the presence of soil microbes. Under the high-nutrient level, by contrast, biomass, height, and leaf number of S. canadensis were significantly higher at the low than at the high and the intermediate N:P ratio in the absence of soil microbes, but increased with increasing the N:P ratio in the presence of soil microbes. In the presence of soil microbes, number of ramets (asexual individuals) and the accumulation of N and P in plants were significantly higher at the high than at the low and the intermediate N:P ratio under both nutrient levels, whereas in the absence of soil microbes, they did not differ significantly among the three N:P ratio regardless of the nutrient levels. Our results provide empirical evidence that soil microbes can alter effects of N:P ratios on plant performance and that such an effect depends on nutrient availability. Soil microbes may, therefore, play a role in modulating ecosystem functions such as productivity and carbon and nutrient cycling via modulating nutrient imbalance caused by low and high N:P ratios.
Collapse
Affiliation(s)
- Michael Opoku Adomako
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Wei Xue
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
| | - Dao-Lin Du
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Fei-Hai Yu
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China.
| |
Collapse
|
25
|
Exploratory Growth in Streptomyces venezuelae Involves a Unique Transcriptional Program, Enhanced Oxidative Stress Response, and Profound Acceleration in Response to Glycerol. J Bacteriol 2022; 204:e0062321. [PMID: 35254103 DOI: 10.1128/jb.00623-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Exploration is a recently discovered mode of growth and behavior exhibited by some Streptomyces species that is distinct from their classical sporulating life cycle. While much has been uncovered regarding initiating environmental conditions and phenotypic outcomes of exploratory growth, how this process is coordinated at a genetic level remains unclear. We used RNA sequencing to survey global changes in the transcriptional profile of exploring cultures over time in the model organism Streptomyces venezuelae. Transcriptomic analyses revealed widespread changes in gene expression impacting diverse cellular functions. Investigations into differentially expressed regulatory elements revealed specific groups of regulatory factors to be impacted, including the expression of several extracytoplasmic function (ECF) sigma factors, second messenger signaling pathways, and members of the whiB-like (wbl) family of transcription factors. Dramatic changes were observed among primary metabolic pathways, especially among respiration-associated genes and the oxidative stress response; enzyme assays confirmed that exploring cultures exhibit an enhanced oxidative stress response compared with classically growing cultures. Changes in the expression of the glycerol catabolic genes in S. venezuelae led to the discovery that glycerol supplementation of the growth medium promotes a dramatic acceleration of exploration. This effect appears to be unique to glycerol as an alternative carbon source, and this response is broadly conserved across other exploration-competent species. IMPORTANCE Exploration represents an alternative growth strategy for Streptomyces bacteria and is initiated in response to other microbes or specific environmental conditions. Here, we show that entry into exploration involves comprehensive transcriptional reprogramming, with an emphasis on changes in primary metabolism and regulatory/signaling functions. Intriguingly, a number of transcription factor classes were downregulated upon entry into exploration. In contrast, respiration-associated genes were strongly induced, and this was accompanied by an enhanced oxidative stress response. Notably, our transcriptional analyses suggested that glycerol may play a role in exploration, and we found that glycerol supplementation dramatically enhanced the exploration response in many streptomycetes. This work sheds new light on the regulatory and metabolic cues that influence a fascinating new microbial behavior.
Collapse
|
26
|
Zi H, Hu L, Wang C. Differentiate Responses of Soil Microbial Community and Enzyme Activities to Nitrogen and Phosphorus Addition Rates in an Alpine Meadow. FRONTIERS IN PLANT SCIENCE 2022; 13:829381. [PMID: 35310625 PMCID: PMC8924503 DOI: 10.3389/fpls.2022.829381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) and phosphorus (P) are the dominant limiting nutrients in alpine meadows, but it is relatively unclear how they affect the soil microbial community and whether their effects are rate dependent. Here, N and P addition rates (0, 10, 20, and 30 g m-2 year-1) were evaluated in an alpine meadow and variables related to plants and soils were measured to determine the processes affecting soil microbial community and enzyme activities. Our results showed that soil microbial biomass, including bacteria, fungi, gramme-negative bacteria, and actinomycetes, decreased along with N addition rates, but they first decreased at low P addition rates (10 g m-2 year-1) and then significantly increased at high P addition rates (30 g m-2 year-1). Both the N and P addition stimulated soil invertase activity, while urease and phosphatase activities were inhibited at low N addition rate and then increased at high N addition rate. P addition generally inhibited peroxidase and urease activities, but increased phosphatase activity. N addition decreased soil pH and, thus, inhibited soil microbial microorganisms, while P addition effects were unimodal with addition rates, achieved through altering sedge, and available P in the soil. In conclusion, our studies indicated that soil microbial communities and enzyme activities are sensitive to short-term N and P addition and are also significantly influenced by their addition rates.
Collapse
Affiliation(s)
- Hongbiao Zi
- State Key Laboratory of Grassland Agro-Ecosystems, and College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Lei Hu
- Institute of Qinghai-Tibetan Plateau Research, Southwest Minzu University, Chengdu, China
| | - Changting Wang
- Institute of Qinghai-Tibetan Plateau Research, Southwest Minzu University, Chengdu, China
| |
Collapse
|
27
|
Choi RT, Reed SC, Tucker CL. Multiple resource limitation of dryland soil microbial carbon cycling on the Colorado Plateau. Ecology 2022; 103:e3671. [PMID: 35233760 DOI: 10.1002/ecy.3671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/20/2021] [Accepted: 11/11/2021] [Indexed: 11/06/2022]
Abstract
Understanding interactions among biogeochemical cycles is increasingly important as anthropogenic alterations of global climate and of carbon (C), nitrogen (N), and phosphorus (P) cycles interactively affect the Earth system. Ecosystem processes in the dryland biome, which makes up over 40% of Earth's terrestrial surface, are often distinctively sensitive to small changes in resource availability, likely because levels of many resources are low. However, data also suggest that simultaneous changes in the availability of multiple resources may be necessary to affect a response in these low-resource systems, offering an opportunity to test patterns and controls of co-limitation, serial limitation, and individual limitation in soil environments. While drylands may play a governing role in key aspects of Earth's C cycle, and while an improved understanding of resource limitation could substantially improve our forecasts of dryland responses to change, our understanding of interacting controls on soil C cycle processes remains notably poor in these dry systems. Here, we address multiple fundamental hypotheses of resource controls over ecosystem function to test how water, C, N, and P regulate soil C cycling individually and interactively in a dryland ecosystem on the Colorado Plateau. Using a series of laboratory incubations, we found that while water, C, and N limited C cycling through serial limitation, water alone resulted in an extremely small respiratory response from target organisms, whereas water + C resulted in a dramatic increase in soil C cycling, suggesting a degree of functional co-limitation. Nitrogen additions alone resulted in no changes to soil C cycling, but when N was added in concert with water and C, N greatly increased soil C cycling rates relative to additions of water and C without N. Phosphorus additions had no effect on the C cycle either alone or synergistically. These patterns were consistent with the stoichiometry of the system, and interactions among resources were surprising in ways that inform our understanding of critical theories in ecology, such as the Transient Maxima Hypothesis, supporting the suggestion that multiple resource limitation explains pulse-dynamic C cycling in drylands better than water limitation alone.
Collapse
Affiliation(s)
- Ryan T Choi
- Department of Wildland Resources, Utah State University and the Ecology Center, Logan, UT, USA
| | - Sasha C Reed
- U.S. Geological Survey, Southwest Biological Science Center, Moab, UT, USA
| | - Colin L Tucker
- U.S. Geological Survey, Southwest Biological Science Center, Moab, UT, USA.,U.S.D.A Forest Service, Northern Research Station, Houghton, MI, USA
| |
Collapse
|
28
|
Functional Genetic Diversity and Plant Growth Promoting Potential of Polyphosphate Accumulating Bacteria in Soil. Microbiol Spectr 2022; 10:e0034521. [PMID: 35196785 PMCID: PMC8865437 DOI: 10.1128/spectrum.00345-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Polyphosphate (polyP) accumulation is an important trait of microorganisms. Implication of polyP accumulating bacteria (PAB) in enhanced biological phosphate removal, heavy metal sequestration, and dissolution of dental enamel is well studied. Phosphorous (P) accumulated within microbial biomass also regulates labile P in soil; however, abundance and diversity of the PAB in soil is still unexplored. Present study investigated the genetic and functional diversity of PAB in rhizosphere soil. Here, we report the abundance of Pseudomonas spp. as high PAB in soil, suggesting their contribution to global P cycling. Additional subset analysis of functional genes i.e., polyphosphate kinase (ppk) and exopolyphosphatase (ppx) in all PAB, indicates their significance in bacterial growth and metabolism. Distribution of functional genes in phylogenetic tree represent a more biologically realistic discrimination for the two genes. Distribution of ppx gene disclosed its phylogenetic conservation at species level, however, clustering of ppk gene of similar species in different clades illustrated its environmental condition mediated modifications. Selected PAB showed tolerance to abiotic stress and strong correlation with plant growth promotary (PGP) traits viz. phosphate solubilization, auxin and siderophore production. Interaction of PAB with A. thaliana enhanced the growth and phosphate status of the plant under salinity stress, suggestive of their importance in P cycling and stress alleviation. IMPORTANCE Study discovered the abundance of Pseudomonas genera as a high phosphate accumulator in soil. The presence of functional genes (polyphosphate kinase [ppk] and exopolyphosphatase [ppx]) in all PAB depicts their importance in polyphosphate metabolism in bacteria. Genetic and functional diversity reveals conservation of the ppx gene at species level. Furthermore, we found a positive correlation between PAB and plant growth promotary traits, stress tolerance, and salinity stress alleviation in A. thaliana.
Collapse
|
29
|
Wang F, Harindintwali JD, Yuan Z, Wang M, Wang F, Li S, Yin Z, Huang L, Fu Y, Li L, Chang SX, Zhang L, Rinklebe J, Yuan Z, Zhu Q, Xiang L, Tsang DC, Xu L, Jiang X, Liu J, Wei N, Kästner M, Zou Y, Ok YS, Shen J, Peng D, Zhang W, Barceló D, Zhou Y, Bai Z, Li B, Zhang B, Wei K, Cao H, Tan Z, Zhao LB, He X, Zheng J, Bolan N, Liu X, Huang C, Dietmann S, Luo M, Sun N, Gong J, Gong Y, Brahushi F, Zhang T, Xiao C, Li X, Chen W, Jiao N, Lehmann J, Zhu YG, Jin H, Schäffer A, Tiedje JM, Chen JM. Technologies and perspectives for achieving carbon neutrality. Innovation (N Y) 2021; 2:100180. [PMID: 34877561 PMCID: PMC8633420 DOI: 10.1016/j.xinn.2021.100180] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
Global development has been heavily reliant on the overexploitation of natural resources since the Industrial Revolution. With the extensive use of fossil fuels, deforestation, and other forms of land-use change, anthropogenic activities have contributed to the ever-increasing concentrations of greenhouse gases (GHGs) in the atmosphere, causing global climate change. In response to the worsening global climate change, achieving carbon neutrality by 2050 is the most pressing task on the planet. To this end, it is of utmost importance and a significant challenge to reform the current production systems to reduce GHG emissions and promote the capture of CO2 from the atmosphere. Herein, we review innovative technologies that offer solutions achieving carbon (C) neutrality and sustainable development, including those for renewable energy production, food system transformation, waste valorization, C sink conservation, and C-negative manufacturing. The wealth of knowledge disseminated in this review could inspire the global community and drive the further development of innovative technologies to mitigate climate change and sustainably support human activities.
Collapse
Affiliation(s)
- Fang Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jean Damascene Harindintwali
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhizhang Yuan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Wang
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Faming Wang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sheng Li
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhigang Yin
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Huang
- International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China
- Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Yuhao Fu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Scott X. Chang
- Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - Linjuan Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jörg Rinklebe
- Department of Soil and Groundwater Management, Bergische Universität Wuppertal, Wuppertal 42285, Germany
| | - Zuoqiang Yuan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Liaoning 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinggong Zhu
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leilei Xiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daniel C.W. Tsang
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China
| | - Liang Xu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jihua Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266273, China
| | - Ning Wei
- Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Matthias Kästner
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research – UFZ, Leipzig 04318, Germany
| | - Yang Zou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Jianlin Shen
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dailiang Peng
- International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China
- Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Damià Barceló
- Catalan Institute for Water Research ICRA-CERCA, Girona 17003, Spain
| | - Yongjin Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaohai Bai
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boqiang Li
- CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Wei
- The Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hujun Cao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiliang Tan
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liu-bin Zhao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Xiao He
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinxing Zheng
- Institute of Plasma Physics, Chinese Academy of Sciences, Anhui 230031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nanthi Bolan
- School of Agriculture and Environment, Institute of Agriculture, University of Western Australia, Crawley 6009, Australia
| | - Xiaohong Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changping Huang
- Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sabine Dietmann
- Institute for Informatics (I), Washington University, St. Louis, MO 63110-1010, USA
| | - Ming Luo
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nannan Sun
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jirui Gong
- Key Laboratory of Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Yulie Gong
- CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ferdi Brahushi
- Department of Agro-environment and Ecology, Agricultural University of Tirana, Tirana 1029, Albania
| | - Tangtang Zhang
- Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Cunde Xiao
- Key Laboratory of Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Xianfeng Li
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenfu Chen
- Shenyang Agricultural University, Shenyang 110866, China
| | - Nianzhi Jiao
- Joint Laboratory for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Halifax, NS, B3H 4R2, Canada, Qingdao 266237, China, and, Xiamen 361005, China
- Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361101, China
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361005, China
| | - Johannes Lehmann
- School of Integrative Plant Science, Section of Soil and Crop Sciences, Cornell University, Ithaca, NY 14853, USA
- Institute for Advanced Studies, Technical University Munich, Garching 85748, Germany
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongguang Jin
- International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Andreas Schäffer
- Institute for Environmental Research, RWTH Aachen University, Aachen 52074, Germany
| | - James M. Tiedje
- Center for Microbial Ecology, Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Jing M. Chen
- Department of Geography and Planning, University of Toronto, Ontario, Canada, M5S 3G3
| |
Collapse
|
30
|
Li Z, Qiu X, Sun Y, Liu S, Hu H, Xie J, Chen G, Xiao Y, Tang Y, Tu L. C:N:P stoichiometry responses to 10 years of nitrogen addition differ across soil components and plant organs in a subtropical Pleioblastus amarus forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148925. [PMID: 34273840 DOI: 10.1016/j.scitotenv.2021.148925] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 05/22/2023]
Abstract
How stoichiometry in different ecosystem components responds to long-term nitrogen (N) addition is crucial for understanding within-ecosystem biogeochemistry cycling processes in the context of global change. To explore the effects of long-term N addition on nutrient stoichiometry in soil and plant components in forest ecosystem, a 10-year N addition experiment using ammonium nitrate (NH4NO3) was conducted in a bamboo forest in the Rainy Zone of West China, where the background N deposition is the highest in the world. Four N treatment levels (+0, +50, +150, +300 kg N ha-1 yr-1) (CK, LN, MN, HN) were applied monthly since November 2007, and then, the C:N:P stoichiometry of soil, microbial biomass, and enzymes in rhizosphere soil and bulk soil, and plant organs were measured. N addition decreased the stoichiometry of C:N:P of soil, microbial biomass, and enzymes. Soil C:N:P change under N addition treatments was stronger in bulk soil, while C:N:P changes for microbial biomass and enzyme activity were significant in rhizosphere soil. N addition significantly decreased TOC in bulk soil. Changes in MBC:MBN:MBP in rhizosphere and bulk soil were mainly caused by MBN and MBP, and MBP performance was consistent with that of AP. The main variable leading to the change of enzyme C:N:P in rhizosphere soil was BG and AP, and in bulk soil was LAP + NAG activity. Plant root C:P and N:P increased with N addition, while those for leaves and twigs did not. N addition significantly reduced the pH of both rhizosphere and bulk soils. These results suggest that the stoichiometry responses of rhizosphere and bulk soils were different due to the influence of plant roots. Soil acidification, enhanced aluminum toxicity potential, decreased root biomass and enhanced microbial P limitation caused by N addition were the important mechanisms that promoted stoichiometry changes in this ecosystem. Under the chronic input of N deposition, the stoichiometry between plant and soil evolved in different directions, which may lead to the decoupling of plants from soils.
Collapse
Affiliation(s)
- Zengyan Li
- Key Laboratory of National Forestry, Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Forest Ecosystem Research and Observation Station in Putuo Island, Tiantong National Forest Ecosystem Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xirong Qiu
- Forestry and bamboo Bureau of Cuiping District, YiBin, SiChuan 644000, China
| | - Yu Sun
- Key Laboratory of National Forestry, Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Sining Liu
- Key Laboratory of National Forestry, Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Hongling Hu
- Key Laboratory of National Forestry, Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jiulong Xie
- Key Laboratory of National Forestry, Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Gang Chen
- Key Laboratory of National Forestry, Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yinlong Xiao
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yi Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lihua Tu
- Key Laboratory of National Forestry, Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
31
|
O'Dea RE, Lagisz M, Jennions MD, Koricheva J, Noble DW, Parker TH, Gurevitch J, Page MJ, Stewart G, Moher D, Nakagawa S. Preferred reporting items for systematic reviews and meta-analyses in ecology and evolutionary biology: a PRISMA extension. Biol Rev Camb Philos Soc 2021; 96:1695-1722. [PMID: 33960637 PMCID: PMC8518748 DOI: 10.1111/brv.12721] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 12/29/2022]
Abstract
Since the early 1990s, ecologists and evolutionary biologists have aggregated primary research using meta-analytic methods to understand ecological and evolutionary phenomena. Meta-analyses can resolve long-standing disputes, dispel spurious claims, and generate new research questions. At their worst, however, meta-analysis publications are wolves in sheep's clothing: subjective with biased conclusions, hidden under coats of objective authority. Conclusions can be rendered unreliable by inappropriate statistical methods, problems with the methods used to select primary research, or problems within the primary research itself. Because of these risks, meta-analyses are increasingly conducted as part of systematic reviews, which use structured, transparent, and reproducible methods to collate and summarise evidence. For readers to determine whether the conclusions from a systematic review or meta-analysis should be trusted - and to be able to build upon the review - authors need to report what they did, why they did it, and what they found. Complete, transparent, and reproducible reporting is measured by 'reporting quality'. To assess perceptions and standards of reporting quality of systematic reviews and meta-analyses published in ecology and evolutionary biology, we surveyed 208 researchers with relevant experience (as authors, reviewers, or editors), and conducted detailed evaluations of 102 systematic review and meta-analysis papers published between 2010 and 2019. Reporting quality was far below optimal and approximately normally distributed. Measured reporting quality was lower than what the community perceived, particularly for the systematic review methods required to measure trustworthiness. The minority of assessed papers that referenced a guideline (~16%) showed substantially higher reporting quality than average, and surveyed researchers showed interest in using a reporting guideline to improve reporting quality. The leading guideline for improving reporting quality of systematic reviews is the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement. Here we unveil an extension of PRISMA to serve the meta-analysis community in ecology and evolutionary biology: PRISMA-EcoEvo (version 1.0). PRISMA-EcoEvo is a checklist of 27 main items that, when applicable, should be reported in systematic review and meta-analysis publications summarising primary research in ecology and evolutionary biology. In this explanation and elaboration document, we provide guidance for authors, reviewers, and editors, with explanations for each item on the checklist, including supplementary examples from published papers. Authors can consult this PRISMA-EcoEvo guideline both in the planning and writing stages of a systematic review and meta-analysis, to increase reporting quality of submitted manuscripts. Reviewers and editors can use the checklist to assess reporting quality in the manuscripts they review. Overall, PRISMA-EcoEvo is a resource for the ecology and evolutionary biology community to facilitate transparent and comprehensively reported systematic reviews and meta-analyses.
Collapse
Affiliation(s)
- Rose E. O'Dea
- Evolution & Ecology Research Centre and School of Biological and Environmental SciencesUniversity of New South WalesSydneyNSW2052Australia
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre and School of Biological and Environmental SciencesUniversity of New South WalesSydneyNSW2052Australia
| | - Michael D. Jennions
- Research School of BiologyAustralian National University46 Sullivans Creek RoadCanberra2600Australia
| | - Julia Koricheva
- Department of Biological SciencesRoyal Holloway University of LondonEghamSurreyTW20 0EXU.K.
| | - Daniel W.A. Noble
- Evolution & Ecology Research Centre and School of Biological and Environmental SciencesUniversity of New South WalesSydneyNSW2052Australia
- Research School of BiologyAustralian National University46 Sullivans Creek RoadCanberra2600Australia
| | | | - Jessica Gurevitch
- Department of Ecology and EvolutionStony Brook UniversityStony BrookNY11794‐5245U.S.A.
| | - Matthew J. Page
- School of Public Health and Preventative MedicineMonash UniversityMelbourneVIC3004Australia
| | - Gavin Stewart
- School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneNE1 7RUU.K.
| | - David Moher
- Centre for Journalology, Clinical Epidemiology ProgramOttawa Hospital Research InstituteGeneral Campus, 501 Smyth Road, Room L1288OttawaONK1H 8L6Canada
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre and School of Biological and Environmental SciencesUniversity of New South WalesSydneyNSW2052Australia
| |
Collapse
|
32
|
The Exudation of Surplus Products Links Plant Functional Traits and Plant-Microbial Stoichiometry. LAND 2021. [DOI: 10.3390/land10080840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The rhizosphere is a hot spot of soil microbial activity and is largely fed by root exudation. The carbon (C) exudation flux, coupled with plant growth, is considered a strategy of plants to facilitate nutrient uptake. C exudation is accompanied by a release of nutrients. Nitrogen (N) and phosphorus (P) co-limit the productivity of the plant-microbial system. Therefore, the C:N:P stoichiometry of exudates should be linked to plant nutrient economies, plant functional traits (PFT) and soil nutrient availability. We aimed to identify the strongest links in C:N:P stoichiometry among all rhizosphere components. A total of eight grass species (from conservative to exploitative) were grown in pots under two different soil C:nutrient conditions for a month. As a result, a wide gradient of plant–microbial–soil interactions were created. A total of 43 variables of plants, exudates, microbial and soil C:N:P stoichiometry, and PFTs were evaluated. The variables were merged into four groups in a network analysis, allowing us to identify the strongest connections among the variables and the biological meaning of these groups. The plant–soil interactions were shaped by soil N availability. Faster-growing plants were associated with lower amounts of mineral N (and P) in the soil solution, inducing a stronger competition for N with microorganisms in the rhizosphere compared to slower-growing plants. The plants responded by enhancing their N use efficiency and root:shoot ratio, and they reduced N losses via exudation. Root growth was supported either by reallocated foliar reserves or by enhanced ammonium uptake, which connected the specific leaf area (SLA) to the mineral N availability in the soil. Rapid plant growth enhanced the exudation flux. The exudates were rich in C and P relative to N compounds and served to release surplus metabolic products. The exudate C:N:P stoichiometry and soil N availability combined to shape the microbial stoichiometry, and N and P mining. In conclusion, the exudate flux and its C:N:P stoichiometry reflected the plant growth rate and nutrient constraints with a high degree of reliability. Furthermore, it mediated the plant–microbial interactions in the rhizosphere.
Collapse
|
33
|
Chen J, Huang X, Tong B, Wang D, Liu J, Liao X, Sun Q. Effects of rhizosphere fungi on the chemical composition of fruits of the medicinal plant Cinnamomum migao endemic to southwestern China. BMC Microbiol 2021; 21:206. [PMID: 34229615 PMCID: PMC8259389 DOI: 10.1186/s12866-021-02216-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 05/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study examined how rhizosphere fungi influence the accumulation of chemical components in fruits of a small population species of Cinnamomum migao. RESULTS Ascomycota and Basidiomycota were dominant in the rhizosphere fungal community of C. migao. Pestalotiopsis and Gibellulopsis were associated with α-Terpineol and sabinene content, and Gibellulopsis was associated with crude fat and carbohydrate content. There were significant differences in rhizosphere fungal populations between watersheds, and there was no obvious change between fruiting periods. Gibberella, Ilyonectria, Micropsalliota, and Geminibasidium promoted sabinene accumulation, and Clitocybula promoted α-Terpineol accumulation. CONCLUSION The climate-related differentiation of rhizosphere fungal communities in watershed areas is the main driver of the chemical composition of C. migao fruit. The control of the production of biologically active compounds by the rhizosphere fungal community provides new opportunities to increase the industrial and medicinal value of the fruit of C. migao.
Collapse
Affiliation(s)
- Jingzhong Chen
- Forest Ecology Research Center, College of Forestry, Guizhou University, Guiyang, 550025, Guihzou Province, China
| | - Xiaolong Huang
- Forest Ecology Research Center, College of Forestry, Guizhou University, Guiyang, 550025, Guihzou Province, China
| | - Bingli Tong
- Forest Ecology Research Center, College of Forestry, Guizhou University, Guiyang, 550025, Guihzou Province, China
| | - Deng Wang
- Forest Ecology Research Center, College of Forestry, Guizhou University, Guiyang, 550025, Guihzou Province, China
| | - Jiming Liu
- Forest Ecology Research Center, College of Forestry, Guizhou University, Guiyang, 550025, Guihzou Province, China.
| | - Xiaofeng Liao
- Guizhou province Institute of Mountain Resources, Guiyang, 550025, China
| | - Qingwen Sun
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| |
Collapse
|
34
|
Daly AB, Jilling A, Bowles TM, Buchkowski RW, Frey SD, Kallenbach CM, Keiluweit M, Mooshammer M, Schimel JP, Grandy AS. A holistic framework integrating plant-microbe-mineral regulation of soil bioavailable nitrogen. BIOGEOCHEMISTRY 2021; 154:211-229. [PMID: 34759436 PMCID: PMC8570341 DOI: 10.1007/s10533-021-00793-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/06/2021] [Indexed: 06/01/2023]
Abstract
UNLABELLED Soil organic nitrogen (N) is a critical resource for plants and microbes, but the processes that govern its cycle are not well-described. To promote a holistic understanding of soil N dynamics, we need an integrated model that links soil organic matter (SOM) cycling to bioavailable N in both unmanaged and managed landscapes, including agroecosystems. We present a framework that unifies recent conceptual advances in our understanding of three critical steps in bioavailable N cycling: organic N (ON) depolymerization and solubilization; bioavailable N sorption and desorption on mineral surfaces; and microbial ON turnover including assimilation, mineralization, and the recycling of microbial products. Consideration of the balance between these processes provides insight into the sources, sinks, and flux rates of bioavailable N. By accounting for interactions among the biological, physical, and chemical controls over ON and its availability to plants and microbes, our conceptual model unifies complex mechanisms of ON transformation in a concrete conceptual framework that is amenable to experimental testing and translates into ideas for new management practices. This framework will allow researchers and practitioners to use common measurements of particulate organic matter (POM) and mineral-associated organic matter (MAOM) to design strategic organic N-cycle interventions that optimize ecosystem productivity and minimize environmental N loss. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10533-021-00793-9.
Collapse
Affiliation(s)
- Amanda B. Daly
- Department of Natural Resources and the Environment, University of New Hampshire, 56 College Road, Durham, NH 03824 USA
| | - Andrea Jilling
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK USA
| | - Timothy M. Bowles
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA USA
| | | | - Serita D. Frey
- Department of Natural Resources and the Environment, University of New Hampshire, 56 College Road, Durham, NH 03824 USA
| | | | - Marco Keiluweit
- School of Earth & Sustainability and Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA USA
| | - Maria Mooshammer
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA USA
| | - Joshua P. Schimel
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA USA
| | - A. Stuart Grandy
- Department of Natural Resources and the Environment, University of New Hampshire, 56 College Road, Durham, NH 03824 USA
| |
Collapse
|
35
|
Hou E, Wen D, Jiang L, Luo X, Kuang Y, Lu X, Chen C, Allen KT, He X, Huang X, Luo Y. Latitudinal patterns of terrestrial phosphorus limitation over the globe. Ecol Lett 2021; 24:1420-1431. [DOI: 10.1111/ele.13761] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 01/25/2023]
Affiliation(s)
- Enqing Hou
- Center for Ecosystem Science and Society Northern Arizona University Flagstaff AZ USA
| | - Dazhi Wen
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems South China Botanical Garden, Chinese Academy of Sciences Guangzhou China
- Center of Plant Ecology, Core Botanical Gardens Chinese Academy of Sciences Guangzhou China
| | - Lifen Jiang
- Center for Ecosystem Science and Society Northern Arizona University Flagstaff AZ USA
| | - Xianzhen Luo
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems South China Botanical Garden, Chinese Academy of Sciences Guangzhou China
- Center of Plant Ecology, Core Botanical Gardens Chinese Academy of Sciences Guangzhou China
| | - Yuanwen Kuang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems South China Botanical Garden, Chinese Academy of Sciences Guangzhou China
- Center of Plant Ecology, Core Botanical Gardens Chinese Academy of Sciences Guangzhou China
| | - Xiankai Lu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems South China Botanical Garden, Chinese Academy of Sciences Guangzhou China
- Center of Plant Ecology, Core Botanical Gardens Chinese Academy of Sciences Guangzhou China
| | - Chengrong Chen
- Australian Rivers Institute, School of Environment and Science Griffith University Nathan Qld. Australia
| | - Keanan T. Allen
- Center for Ecosystem Science and Society Northern Arizona University Flagstaff AZ USA
| | - Xianjin He
- Key Laboratory of the Three Gorges Reservoir Region's Eco‐Environment, Ministry of Education Chongqing University Chongqing China
| | - Xingzhao Huang
- School of Forestry & Landscape of Architecture Anhui Agricultural University Hefei China
| | - Yiqi Luo
- Center for Ecosystem Science and Society Northern Arizona University Flagstaff AZ USA
| |
Collapse
|
36
|
Chen Q, Yuan Y, Hu Y, Wang J, Si G, Xu R, Zhou J, Xi C, Hu A, Zhang G. Excessive nitrogen addition accelerates N assimilation and P utilization by enhancing organic carbon decomposition in a Tibetan alpine steppe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142848. [PMID: 33268263 DOI: 10.1016/j.scitotenv.2020.142848] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 09/23/2020] [Accepted: 10/03/2020] [Indexed: 05/23/2023]
Abstract
High amounts of deposited nitrogen (N) dramatically influence the stability and functions of alpine ecosystems by changing soil microbial community functions, but the mechanism is still unclear. To investigate the impacts of increased N deposition on microbial community functions, a 2-year multilevel N addition (0, 10, 20, 40, 80 and 160 kg N ha-1 year-1) field experiment was set up in an alpine steppe on the Tibetan Plateau. Soil microbial functional genes (GeoChip 4.6), together with soil enzyme activity, soil organic compounds and environmental variables, were used to explore the response of microbial community functions to N additions. The results showed that the N addition rate of 40 kg N ha-1 year-1 was the critical value for soil microbial functional genes in this alpine steppe. A small amount of added N (≤40 kg N ha-1 year-1) had no significant effects on the abundance of microbial functional genes, while high amounts of added N (>40 kg N ha-1 year-1) significantly increased the abundance of soil organic carbon degradation genes. Additionally, the abundance of microbial functional genes associated with NH4+, including ammonification, N fixation and assimilatory nitrate reduction pathways, was significantly increased under high N additions. Further, high N additions also increased soil organic phosphorus utilization, which was indicated by the increase in the abundance of phytase genes and alkaline phosphatase activity. Plant richness, soil NO2-/NH4+ and WSOC/WSON were significantly correlated with the abundance of microbial functional genes, which drove the changes in microbial community functions under N additions. These findings help us to predict that increased N deposition in the future may alter soil microbial functional structure, which will lead to changes in microbially-mediated biogeochemical dynamics in alpine steppes on the Tibetan Plateau and will have extraordinary impacts on microbial C, N and P cycles.
Collapse
Affiliation(s)
- Qiuyu Chen
- CAS Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Yanli Yuan
- CAS Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Yilun Hu
- CAS Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Jian Wang
- Land and Resources College, China West Normal University, Nanchong 637009, Sichuan, China
| | - Guicai Si
- Lanzhou Center for Oil and Gas Resources, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Ri Xu
- CAS Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Jizhong Zhou
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University Oklahoma, Norman, OK 73019, USA; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Chuanwu Xi
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ang Hu
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Gengxin Zhang
- CAS Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing 100101, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
37
|
Interactive Effects of Light and Nitrogen on Pakchoi (Brassica chinensis L.) Growth and Soil Enzyme Activity in an Underground Environment. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10111772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Light conditions and nitrogen fertilizer are crucial for plant growth, especially in the underground situations without sunlight and nitrogen deposition. In this paper, the effects of photoperiod (12 h and 16 h lighting time per day), light intensity (200, 300 and 400 μmol m−2 s−1) and nitrogen addition (0, 0.15, 0.3 and 0.45 g N kg−1 soil) on pakchoi growth and specific soil enzyme activity were investigated. The results demonstrated that there were strong interactive effects of light intensity and nitrogen addition on plant yield. The plant yield changed parabolically with increasing nitrogen addition when a light intensity was given between 200 and 300 μmol m−2 s−1, while the yield decreased linearly with increasing nitrogen application under the light intensity of 400 μmol m−2 s−1. The combination of 16 h photoperiod, 300 μmol m−2 s−1 light intensity and 0.3 g N kg−1 soil nitrogen addition was the best for pakchoi growth. The investigation of soil enzyme showed that the activity of urease responded negatively to nitrogen addition, whereas the activity of phosphatase had positive correlation with light intensity but was not affected by nitrogen addition. Our results suggested that the toxic effect of excessive nitrogen was a better explanation for the interactive effects of light and nitrogen than the plant-microbe interaction framework. The critical toxicity level of nitrogen for pakchoi was determined and showed negative correlation with light intensity.
Collapse
|
38
|
Moyles IR, Donohue JG, Fowler AC. Quasi-steady uptake and bacterial community assembly in a mathematical model of soil-phosphorus mobility. J Theor Biol 2020; 509:110530. [PMID: 33129953 DOI: 10.1016/j.jtbi.2020.110530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 11/28/2022]
Abstract
We mathematically model the uptake of phosphorus by a soil community consisting of a plant and two bacterial groups: copiotrophs and oligotrophs. Four equilibrium states emerge, one for each of the species monopolising the resource and dominating the community and one with coexistence of all species. We show that the dynamics are controlled by the ratio of chemical adsorption to bacterial death permitting either oscillatory states or quasi-steady uptake. We show how a steady state can emerge which has soil and plant nutrient content unresponsive to increased fertilization. However, the additional fertilization supports the copiotrophs leading to community reassembly. Our results demonstrate the importance of time-series measurements in nutrient uptake experiments.
Collapse
Affiliation(s)
- I R Moyles
- Department of Mathematics and Statistics, York University, 4700 Keele Street, Toronto, Ontario, Canada.
| | - J G Donohue
- MACSI, University of Limerick, Limerick, Ireland.
| | - A C Fowler
- MACSI, University of Limerick, Limerick, Ireland; OCIAM, University of Oxford, Oxford, UK.
| |
Collapse
|
39
|
Kaur J, Anand V, Srivastava S, Bist V, Tripathi P, Naseem M, Nand S, Khare P, Srivastava PK, Bisht S, Srivastava S. Yeast strain Debaryomyces hansenii for amelioration of arsenic stress in rice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110480. [PMID: 32203774 DOI: 10.1016/j.ecoenv.2020.110480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
Arsenic (As) is a serious threat for environment and human health. Rice, the main staple crop is more prone to As uptake. Bioremediation strategies with heavy metal tolerant rhizobacteria are well known. The main objective of the study was to characterize arsenic-resistant yeast strains, capable of mitigating arsenic stress in rice. Three yeast strains identified as Debaryomyces hansenii (NBRI-Sh2.11), Candida tropicalis (NBRI-B3.4) and Candida dubliniensis (NBRI-3.5) were found to have As reductase activity. D. hansenii with higher As tolerance has As expulsion ability as compared to other two strains. Inoculation of D. hansenii showed improved detoxification through scavenging of reactive oxygen species (ROS) by the modulation of SOD and APX activity under As stress condition in rice. Modulation of defense responsive gene (NADPH, GST, GR) along with arsR and metal cation transporter are the probable mechanism of As detoxification as evident with improved membrane (electrolyte leakage) stability. Reduced grain As (~40% reduction) due to interaction with D. hansenii (NBRI-Sh2.11) further validated it's As mitigation property in rice. To the best of our knowledge D. hansenii has been reported for the first time for arsenic stress mitigation in rice with improved growth and nutrient status of the plant.
Collapse
Affiliation(s)
- Jasvinder Kaur
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India
| | - Vandana Anand
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India; Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, 201002, India
| | - Sonal Srivastava
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India; Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, 201002, India
| | - Vidisha Bist
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India; Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, 201002, India
| | | | - Mariya Naseem
- Environmental Technology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India
| | - Sampurna Nand
- Environmental Technology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India
| | - Puja Khare
- Chemistry Division, CSIR-CIMAP, Lucknow, India
| | | | - Saraswati Bisht
- Department of Botany, Kumaun University, Nainital, 263002, India
| | - Suchi Srivastava
- Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, 201002, India.
| |
Collapse
|
40
|
Soong JL, Fuchslueger L, Marañon-Jimenez S, Torn MS, Janssens IA, Penuelas J, Richter A. Microbial carbon limitation: The need for integrating microorganisms into our understanding of ecosystem carbon cycling. GLOBAL CHANGE BIOLOGY 2020; 26:1953-1961. [PMID: 31838767 DOI: 10.1111/gcb.14962] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Numerous studies have demonstrated that fertilization with nutrients such as nitrogen, phosphorus, and potassium increases plant productivity in both natural and managed ecosystems, demonstrating that primary productivity is nutrient limited in most terrestrial ecosystems. In contrast, it has been demonstrated that heterotrophic microbial communities in soil are primarily limited by organic carbon or energy. While this concept of contrasting limitations, that is, microbial carbon and plant nutrient limitation, is based on strong evidence that we review in this paper, it is often ignored in discussions of ecosystem response to global environment changes. The plant-centric perspective has equated plant nutrient limitations with those of whole ecosystems, thereby ignoring the important role of the heterotrophs responsible for soil decomposition in driving ecosystem carbon storage. To truly integrate carbon and nutrient cycles in ecosystem science, we must account for the fact that while plant productivity may be nutrient limited, the secondary productivity by heterotrophic communities is inherently carbon limited. Ecosystem carbon cycling integrates the independent physiological responses of its individual components, as well as tightly coupled exchanges between autotrophs and heterotrophs. To the extent that the interacting autotrophic and heterotrophic processes are controlled by organisms that are limited by nutrient versus carbon accessibility, respectively, we propose that ecosystems by definition cannot be 'limited' by nutrients or carbon alone. Here, we outline how models aimed at predicting non-steady state ecosystem responses over time can benefit from dissecting ecosystems into the organismal components and their inherent limitations to better represent plant-microbe interactions in coupled carbon and nutrient models.
Collapse
Affiliation(s)
- Jennifer L Soong
- Lawrence Berkeley National Laboratory, Climate and Ecosystem Science Division, Berkeley, CA, USA
| | - Lucia Fuchslueger
- Department of Biology, University of Antwerp, Wilrijk, Belgium
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Sara Marañon-Jimenez
- Center for Ecological Research and Forestry Application, Bellaterra, Catalonia, Spain
- Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia, Spain
| | - Margaret S Torn
- Lawrence Berkeley National Laboratory, Climate and Ecosystem Science Division, Berkeley, CA, USA
| | - Ivan A Janssens
- Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Josep Penuelas
- Center for Ecological Research and Forestry Application, Bellaterra, Catalonia, Spain
- Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia, Spain
| | - Andreas Richter
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Ecosystems Services and Management Program, International Institute for Applied Systems Analysis, Laxenburg, Austria
| |
Collapse
|
41
|
Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nat Commun 2020; 11:637. [PMID: 32005808 PMCID: PMC6994524 DOI: 10.1038/s41467-020-14492-w] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/14/2020] [Indexed: 02/08/2023] Open
Abstract
Phosphorus (P) limitation of aboveground plant production is usually assumed to occur in tropical regions but rarely elsewhere. Here we report that such P limitation is more widespread and much stronger than previously estimated. In our global meta-analysis, almost half (46.2%) of 652 P-addition field experiments reveal a significant P limitation on aboveground plant production. Globally, P additions increase aboveground plant production by 34.9% in natural terrestrial ecosystems, which is 7.0–15.9% higher than previously suggested. In croplands, by contrast, P additions increase aboveground plant production by only 13.9%, probably because of historical fertilizations. The magnitude of P limitation also differs among climate zones and regions, and is driven by climate, ecosystem properties, and fertilization regimes. In addition to confirming that P limitation is widespread in tropical regions, our study demonstrates that P limitation often occurs in other regions. This suggests that previous studies have underestimated the importance of altered P supply on aboveground plant production in natural terrestrial ecosystems. Plants are thought to be limited by phosphorus (P) especially in tropical regions. Here, Hou et al. report a meta-analysis of P fertilization experiments to show widespread P limitation on plant growth across terrestrial ecosystems modulated by climate, ecosystem properties, and fertilization regimes
Collapse
|