1
|
Chomicki G, Walker-Hale N, Etchells JP, Ritter EJ, Weber MG. Diversity and development of domatia: Symbiotic plant structures to host mutualistic ants or mites. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102647. [PMID: 39353261 DOI: 10.1016/j.pbi.2024.102647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/17/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
Across the tree of life, specialized structures that offer nesting sites to ants or mites - known as domatia - have evolved independently hundreds of times, facilitating ecologically important defence and/or nutritional mutualisms. Domatia show remarkable diversity in morphology and developmental origin. Here we review the morpho-anatomical diversity of domatia, aiming to unveil the primary mechanisms governing their development. We propose hypotheses to explain the formation of these structures, based on anatomical studies of domatia and developmental genetic analyses in model species. While genes involved in domatium formation are so far unknown, domatia appear to originate via spatiotemporal shifts in the expression of common developmental genetic pathways. Our review paves the way to the genetic dissection of domatium development.
Collapse
Affiliation(s)
- Guillaume Chomicki
- Department of Biosciences, Durham University, South Rd, Durham, DH1 3LE, UK.
| | | | - J Peter Etchells
- Department of Biosciences, Durham University, South Rd, Durham, DH1 3LE, UK
| | - Eleanore J Ritter
- Department of Plant Biology, Michigan State University, Wilson Rd, East Lansing, MI, 48824-6406, USA
| | - Marjorie G Weber
- Department of Ecology and Evolutionary Biology, University of Michigan, 3034 Biological Sciences Building 1105 North University Ave., Ann Arbor, MI, 48109-1085, USA
| |
Collapse
|
2
|
Liu J, Wei Q, Zhao Z, Qiang F, Li G, Wu G. Bona Fide Plant Steroid Receptors are Innovated in Seed Plants and Angiosperms through Successive Whole-Genome Duplication Events. PLANT & CELL PHYSIOLOGY 2024; 65:1655-1673. [PMID: 38757845 DOI: 10.1093/pcp/pcae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/17/2024] [Indexed: 05/18/2024]
Abstract
Whole-genome duplication (WGD) events are widespread in plants and animals, thus their long-term evolutionary contribution has long been speculated, yet a specific contribution is difficult to verify. Here, we show that ɛ-WGD and ζ-WGD contribute to the origin and evolution of bona fide brassinosteroid (BR) signaling through the innovation of active BR biosynthetic enzymes and active BR receptors from their respective ancestors. We found that BR receptors BRI1 (BR INSENSITIVE 1) and BRL1/3 (BRI1-LIKES 1/3) derived by ɛ-WGD and ζ-WGD, which occurred in the common ancestor of angiosperms and seed plants, respectively, while orphan BR receptor BRL2 first appeared in stomatophytes. Additionally, CYP85A enzymes synthesizing the bioactive BRs derived from a common ancestor of seed plants, while its sister enzymes CYP90 synthesizing BR precursors presented in all land plants, implying possible ligand-receptor coevolution. Consistently, the island domains (IDs) responsible for BR perception in BR receptors were most divergent among different receptor branches, supporting ligand-driven evolution. As a result, BRI1 was the most diversified BR receptor in angiosperms. Importantly, relative to the BR biosynthetic DET2 gene presented in all land plants, BRL2, BRL1/3 and BRI1 had high expression in vascular plants ferns, gymnosperms and angiosperms, respectively. Notably, BRI1 is the most diversified BR receptor with the most abundant expression in angiosperms, suggesting potential positive selection. Therefore, WGDs initiate a neofunctionalization process diverged by ligand-perception and transcriptional expression, which might optimize both BR biosynthetic enzymes and BR receptors, likely contributing to the evolution of land plants, especially seed plants and angiosperms.
Collapse
Affiliation(s)
- Jing Liu
- College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi Province 710119, China
| | - Qiang Wei
- College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi Province 710119, China
| | - Zhen Zhao
- College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi Province 710119, China
| | - Fanqi Qiang
- College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi Province 710119, China
| | - Guishuang Li
- College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi Province 710119, China
| | - Guang Wu
- College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi Province 710119, China
| |
Collapse
|
3
|
Carta A, Vandelook F, Ramírez-Barahona S, Chen SC, Dickie J, Steinbrecher T, Thanos CA, Moles AT, Leubner-Metzger G, Mattana E. The seed morphospace, a new contribution towards the multidimensional study of angiosperm sexual reproductive biology. ANNALS OF BOTANY 2024; 134:701-710. [PMID: 38908008 PMCID: PMC11560371 DOI: 10.1093/aob/mcae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND The evolutionary success of flowering plants is associated with the vast diversity of their reproductive structures. Despite recent progress in understanding angiosperm-wide trends in floral structure and evolution, a synthetic view of the diversity in seed form and function across angiosperms is lacking. SCOPE Here we present a roadmap to synthesize the diversity of seed forms in extant angiosperms, relying on the morphospace concept, i.e. a mathematical representation which relates multiple traits and describes the realized morphologies. We provide recommendations on how to broaden the range of measurable traits beyond mass, by using key morphological traits representative of the embryo, endosperm and seed coat but also fruit attributes (e.g. dehiscence, fleshiness). These key traits were used to construct and analyse a morphospace to detect evolutionary trends and gain insight into how morphological traits relate to seed functions. Finally, we outline challenges and future research directions, combining the morphospace with macroevolutionary comparative methods to underline the drivers that gave rise to the diversity of observed seed forms. CONCLUSIONS We conclude that this multidimensional approach has the potential, although still untapped, to improve our understanding of covariation among reproductive traits, and further elucidate angiosperm reproductive biology as a whole.
Collapse
Affiliation(s)
- Angelino Carta
- Department of Biology, Botany Unit, University of Pisa, Pisa, Italy
| | | | | | - Si-Chong Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Royal Botanic Gardens, Kew, Wakehurst, Ardingly, West Sussex, UK
| | - John Dickie
- Royal Botanic Gardens, Kew, Wakehurst, Ardingly, West Sussex, UK
| | - Tina Steinbrecher
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Costas A Thanos
- Section of Botany, National and Kapodistrian University of Athens, Athens, Greece
| | - Angela T Moles
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | | | - Efisio Mattana
- Royal Botanic Gardens, Kew, Wakehurst, Ardingly, West Sussex, UK
| |
Collapse
|
4
|
Figura T, Tylová E, Suetsugu K, Kikuchi SABI, Merckx V, Gredová A, Makoto K, Ponert J, Selosse MA. Japonolirion osense, a close relative of the mycoheterotrophic genus Petrosavia, exhibits complete autotrophic capabilities. BMC PLANT BIOLOGY 2024; 24:1058. [PMID: 39516734 PMCID: PMC11546523 DOI: 10.1186/s12870-024-05721-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
The plant kingdom exhibits a diversity of nutritional strategies, extending beyond complete autotrophy. In addition to full mycoheterotrophs and holoparasites, it is now recognized that a greater number of green plants than previously assumed use partly of fungal carbon. These are termed partial mycoheterotrophs or mixotrophs. Notably, some species exhibit a dependency on fungi exclusively during early ontogenetic stages, referred to as initial mycoheterotrophy. Japonolirion osense, a rare plant thriving in serpentinite soils, emerges as a potential candidate for initial mycoheterotrophy or mixotrophy. Several factors support this hypothesis, including its diminutive sizes of shoot and and seeds, the establishment of Paris-type arbuscular mycorrhizal associations, its placement within the Petrosaviales-largely composed of fully mycoheterotrophic species-and its ability to face the challenging conditions of its environment. To explore these possibilities, our study adopts a multidisciplinary approach, encompassing stable isotope abundance analyses, in vitro experiments, anatomical analyses, and comparative plastome analyses. Our study aims to (1) determine whether J. osense relies on fungal carbon during germination, indicating initial mycoheterotrophy, (2) determine if it employs a dual carbon acquisition strategy as an adult, and (3) investigate potential genomic reductions in photosynthetic capabilities. Contrary to expectations, our comprehensive findings strongly indicate that J. osense maintains complete autotrophy throughout its life cycle. This underscores the contrasting nutritional strategies evolved by species within the Petrosaviales.
Collapse
Affiliation(s)
- Tomáš Figura
- Naturalis Biodiversity Center, Darwinweg 2, Leiden, 2333 CR, The Netherlands.
- Department of Mycorrhizal Symbioses, Institute of Botany, Czech Academy of Sciences, Lesní 322, Průhonice, 25243, Czech Republic.
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, 57 Rue Cuvier, CP39, Paris, 75005, France.
| | - Edita Tylová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, Prague, 12844, Czech Republic
| | - Kenji Suetsugu
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada- ku, Kobe, 657-8501, Japan
| | - Sabino Alberto Bruno Izai Kikuchi
- Naturalis Biodiversity Center, Darwinweg 2, Leiden, 2333 CR, The Netherlands
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Vsft Merckx
- Naturalis Biodiversity Center, Darwinweg 2, Leiden, 2333 CR, The Netherlands
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, 1098 XH, The Netherlands
| | - Alexandra Gredová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, Praha Dejvice, 160 00, Czechia
| | - Kobayashi Makoto
- Field Science Center for Northern Biosphere, Hokkaido University Forests, Hokkaido University, Sapporo, Hokkaido, 060-0811, Japan
| | - Jan Ponert
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, Prague, 12844, Czech Republic
- Prague Botanical Garden, Trojská 800/196, Prague, 17100, Czech Republic
| | - Marc-André Selosse
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, 57 Rue Cuvier, CP39, Paris, 75005, France
- Institut Universitaire de France, Paris, France
- Department of Plant Taxonomy and Nature Conservation, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland
| |
Collapse
|
5
|
Li C, Zhang X, Gao W, Liang S, Wang S, Zhang X, Wang J, Yao J, Li Y, Liu Y. The chromosome-level Elaeagnus mollis genome and transcriptomes provide insights into genome evolution, glycerolipid and vitamin E biosynthesis in seeds. Int J Biol Macromol 2024; 281:136273. [PMID: 39370078 DOI: 10.1016/j.ijbiomac.2024.136273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
Elaeagnus mollis, which has seeds with high lipid and vitamin E contents, is a valuable woody oil plant with potential for utilization. Currently, the biosynthesis and regulation mechanism of glycerolipids and vitamin E are still unknown in E. mollis. Here, we present the chromosome-level reference genome of E. mollis (scaffold N50: ~40.66Mbp, genome size: ~591.48Mbp) by integrating short-read, long-read, and Hi-C sequencing platforms. A total of 36,796 protein-coding sequences, mainly located on 14 proto-chromosomes, were predicted. Additionally, two whole genome duplication (WGD) events were suggested to have occurred ~54.07 and ~35.06 million years ago (MYA), with Elaeagnaceae plants probably experiencing both WGD events. Furthermore, the long terminal retrotransposons in E. mollis were active ~0.23MYA, and one of them was inferred to insert into coding sequence of the negative regulatory lipid synthesis gene, EMF2. Through transcriptomic and metabonomic analysis, key genes contributing to the high lipid and vitamin E levels of E. mollis seeds were identified, while miRNA regulation was also considered. This comprehensive work on the E. mollis genome not only provides a solid theoretical foundation and experimental basis for the efficient utilization of seed lipids and vitamin E, but also contributes to the exploration of new genetic resources.
Collapse
Affiliation(s)
- Changle Li
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Xianzhi Zhang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China
| | - Weilong Gao
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Shuoqing Liang
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Shengshu Wang
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Xueli Zhang
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Jianxin Wang
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Jia Yao
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Yongquan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China.
| | - Yulin Liu
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
6
|
Ogutcen E, de Lima Ferreira P, Wagner ND, Marinček P, Vir Leong J, Aubona G, Cavender-Bares J, Michálek J, Schroeder L, Sedio BE, Vašut RJ, Volf M. Phylogenetic insights into the Salicaceae: The evolution of willows and beyond. Mol Phylogenet Evol 2024; 199:108161. [PMID: 39079595 DOI: 10.1016/j.ympev.2024.108161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/05/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
The Salicaceae includes approximately 54 genera and over 1,400 species with a cosmopolitan distribution. Members of the family are well-known for their diverse secondary plant metabolites, and they play crucial roles in tropical and temperate forest ecosystems. Phylogenetic reconstruction of the Salicaceae has been historically challenging due to the limitations of molecular markers and the extensive history of hybridization and polyploidy within the family. Our study employs whole-genome sequencing of 74 species to generate an extensive phylogeny of the Salicaceae. We generated two RAD-Seq enriched whole-genome sequence datasets and extracted two additional gene sets corresponding to the universal Angiosperms353 and Salicaceae-specific targeted-capture arrays. We reconstructed maximum likelihood-based molecular phylogenies using supermatrix and coalescent-based supertree approaches. Our fossil-calibrated phylogeny estimates that the Salicaceae originated around 128 million years ago and unravels the complex taxonomic relationships within the family. Our findings confirm the non-monophyly of the subgenus Salix s.l. and further support the merging of subgenera Chamaetia and Vetrix, both of which exhibit intricate patterns within and among different sections. Overall, our study not only enhances our understanding of the evolution of the Salicaceae, but also provides valuable insights into the complex relationships within the family.
Collapse
Affiliation(s)
- Ezgi Ogutcen
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Salzburg, Austria.
| | - Paola de Lima Ferreira
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Department of Biology, Aarhus University, Aarhus, Denmark
| | - Natascha D Wagner
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Göttingen, Germany
| | - Pia Marinček
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Göttingen, Germany
| | - Jing Vir Leong
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Gibson Aubona
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | | | - Jan Michálek
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Trebon, Czech Republic
| | - Lucy Schroeder
- College of Biological Sciences, University of Minnesota, St. Paul, MN, United States
| | - Brian E Sedio
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States; Smithsonian Tropical Research Institute, Apartado, 0843-03092 Balboa, Ancón, Republic of Panama
| | - Radim J Vašut
- Department of Botany, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic; Department of Biology, Faculty of Education, Palacký University Olomouc, Olomouc, Czech Republic
| | - Martin Volf
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| |
Collapse
|
7
|
Peris D, Postigo-Mijarra JM, Peñalver E, Pellicer J, Labandeira CC, Peña-Kairath C, Pérez-Lorenzo I, Sauquet H, Delclòs X, Barrón E. The impact of thermogenesis on the origin of insect pollination. NATURE PLANTS 2024; 10:1297-1303. [PMID: 39242982 DOI: 10.1038/s41477-024-01775-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/29/2024] [Indexed: 09/09/2024]
Abstract
Thermogenesis in plants is the ability to raise their temperature above that of the surrounding air through metabolic processes, and is especially detected in reproductive organs. Warming benefits plants by facilitating the transmission of odours and compounds that attract insects. As a result, these plants increase their odds of being pollinated by the attracted insect. Modern thermogenesis has been reported in extant cycads and a small number of angiosperm lineages. Although thermogenesis is not directly preserved in the fossil record, it can be inferred by examining extant thermogenic plant lineages and comparing their features with those of the fossil record. We suggest that thermogenesis has probably occurred in seed plants for at least the past 200 million years, long before the origin of angiosperms. Thermogenesis in plants is an important factor that facilitated entomophilous pollination by enhancing the attraction of insects, complementary to other factors, thereby participating in the success of the two groups of organisms and providing many facets of past and recent reproductive biology for future exploration.
Collapse
Affiliation(s)
- David Peris
- Institut Botànic de Barcelona, CSIC-CMCNB, Barcelona, Spain.
| | - José Mª Postigo-Mijarra
- Department of Biodiversity, Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain.
| | - Enrique Peñalver
- Instituto Geológico y Minero de España, IGME-CSIC, Valencia, Spain
| | - Jaume Pellicer
- Institut Botànic de Barcelona, CSIC-CMCNB, Barcelona, Spain
- Royal Botanic Gardens, Kew, Richmond, UK
| | - Conrad C Labandeira
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Entomology, and Behavior, Ecology, Evolution and Systematics Program, University of Maryland, College Park, MD, USA
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Constanza Peña-Kairath
- Departament de Dinàmica de la Terra i de l'Oceà, Facultat de Ciències de la Terra, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat, Universitat de Barcelona, Barcelona, Spain
| | | | - Hervé Sauquet
- National Herbarium of NSW, Botanic Gardens of Sydney, Mount Annan, New South Wales, Australia
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Xavier Delclòs
- Departament de Dinàmica de la Terra i de l'Oceà, Facultat de Ciències de la Terra, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat, Universitat de Barcelona, Barcelona, Spain
| | - Eduardo Barrón
- Museo Geominero, Instituto Geológico y Minero de España, IGME-CSIC, Madrid, Spain
| |
Collapse
|
8
|
Lafferty DJ, Robison TA, Gunadi A, Schafran PW, Gunn LH, Van Eck J, Li FW. Biolistics-mediated transformation of hornworts and its application to study pyrenoid protein localization. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4760-4771. [PMID: 38779949 DOI: 10.1093/jxb/erae243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
Hornworts are a deeply diverged lineage of bryophytes and a sister lineage to mosses and liverworts. Hornworts have an array of unique features that can be leveraged to illuminate not only the early evolution of land plants, but also alternative paths for nitrogen and carbon assimilation via cyanobacterial symbiosis and a pyrenoid-based CO2-concentrating mechanism (CCM), respectively. Despite this, hornworts are one of the few plant lineages with limited available genetic tools. Here we report an efficient biolistics method for generating transient expression and stable transgenic lines in the model hornwort, Anthoceros agrestis. An average of 569 (±268) cells showed transient expression per bombardment, with green fluorescent protein expression observed within 48-72 h. A total of 81 stably transformed lines were recovered across three separate experiments, averaging six lines per bombardment. We followed the same method to transiently transform nine additional hornwort species, and obtained stable transformants from one. This method was further used to verify the localization of Rubisco and Rubisco activase in pyrenoids, which are central proteins for CCM function. Together, our biolistics approach offers key advantages over existing methods as it enables rapid transient expression and can be applied to widely diverse hornwort species.
Collapse
Affiliation(s)
| | - Tanner A Robison
- Boyce Thompson Institute, Ithaca, NY 14853, USA
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | | | | | - Laura H Gunn
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Plant Department of Cell and Molecular Biology, Uppsala University, S-751 24 Uppsala, Sweden
| | - Joyce Van Eck
- Boyce Thompson Institute, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY 14853, USA
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
9
|
Roeble L, van Benthem KJ, Weigelt P, Kreft H, Knope ML, Mandel JR, Vargas P, Etienne RS, Valente L. Island biogeography of the megadiverse plant family Asteraceae. Nat Commun 2024; 15:7276. [PMID: 39179568 PMCID: PMC11343744 DOI: 10.1038/s41467-024-51556-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/09/2024] [Indexed: 08/26/2024] Open
Abstract
The megadiverse plant family Asteraceae forms an iconic component of island floras including many spectacular radiations, but a global picture of its insular diversity is lacking. Here, we uncover the global biogeographical and evolutionary patterns of Asteraceae on islands to reveal the magnitude and potential causes of their evolutionary success. We compile a global checklist of Asteraceae species native and endemic to islands and combine it with macroecological analyses and a phylogenetic review of island radiations. Asteraceae have a global distribution on islands, comprising approximately 6,000 native island species, with 58% endemics. While diversity of the family on islands is lower than expected given its overall diversity, Asteraceae are the most diverse family on oceanic islands, suggesting an exceptional ability to thrive in isolation. In agreement with island biogeography predictions, native Asteraceae diversity increases with area and decreases with isolation, while endemism increases with both. We identify 39 confirmed island radiations and 69 putative radiations, exceeding numbers for other iconic insular groups. Our results reveal Asteraceae offer immense potential for research in ecology and evolution, given their close tracking of island biogeography expectations, large number of both species and radiations, cosmopolitan distribution, and numerous undiscovered radiations.
Collapse
Affiliation(s)
- Lizzie Roeble
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, The Netherlands.
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
| | - Koen J van Benthem
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Patrick Weigelt
- Biodiversity, Macroecology and Biogeography, University of Göttingen, 37077, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Göttingen, Germany
- Campus Institute Data Science, Göttingen, Germany
| | - Holger Kreft
- Biodiversity, Macroecology and Biogeography, University of Göttingen, 37077, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Göttingen, Germany
- Campus Institute Data Science, Göttingen, Germany
| | - Matthew L Knope
- University of Hawai'i at Hilo, Dept. of Biology, 200 W. Kawili St., Hilo, HI, 96720, USA
| | - Jennifer R Mandel
- Department of Biological Sciences, University of Memphis, Memphis, TN, USA
| | - Pablo Vargas
- Departamento de Biodiversidad y Conservación, Real Jardín Botánico (RJB-CSIC), Plaza de Murillo 2, 28014, Madrid, Spain
| | - Rampal S Etienne
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Luis Valente
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, The Netherlands
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
10
|
Thompson JB, Hernández-Hernández T, Keeling G, Vásquez-Cruz M, Priest NK. Identifying the multiple drivers of cactus diversification. Nat Commun 2024; 15:7282. [PMID: 39179557 PMCID: PMC11343764 DOI: 10.1038/s41467-024-51666-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Our understanding of the complexity of forces at play in the rise of major angiosperm lineages remains incomplete. The diversity and heterogeneous distribution of most angiosperm lineages is so extraordinary that it confounds our ability to identify simple drivers of diversification. Using machine learning in combination with phylogenetic modelling, we show that five separate abiotic and biotic variables significantly contribute to the diversification of Cactaceae. We reconstruct a comprehensive phylogeny, build a dataset of 39 abiotic and biotic variables, and predict the variables of central importance, while accounting for potential interactions between those variables. We use state-dependent diversification models to confirm that five abiotic and biotic variables shape diversification in the cactus family. Of highest importance are diurnal air temperature range, soil sand content and plant size, with lesser importance identified in isothermality and geographic range size. Interestingly, each of the estimated optimal conditions for abiotic variables were intermediate, indicating that cactus diversification is promoted by moderate, not extreme, climates. Our results reveal the potential primary drivers of cactus diversification, and the need to account for the complexity underlying the evolution of angiosperm lineages.
Collapse
Affiliation(s)
- Jamie B Thompson
- School of Biological Sciences, University of Reading, Whiteknights, Reading, Berkshire, UK.
- The Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, United Kingdom.
| | | | - Georgia Keeling
- The Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - Marilyn Vásquez-Cruz
- Instituto Tecnológico Superior de Irapuato, Tecnológico Nacional de México, Irapuato, Guanajuato, México
| | - Nicholas K Priest
- The Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, United Kingdom
| |
Collapse
|
11
|
Wang C, Liu L, Yin M, Liu B, Wu Y, Eller F, Gao Y, Brix H, Wang T, Guo W, Salojärvi J. Chromosome-level genome assemblies reveal genome evolution of an invasive plant Phragmites australis. Commun Biol 2024; 7:1007. [PMID: 39154094 PMCID: PMC11330502 DOI: 10.1038/s42003-024-06660-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024] Open
Abstract
Biological invasions pose a significant threat to ecosystems, disrupting local biodiversity and ecosystem functions. The genomic underpinnings of invasiveness, however, are still largely unknown, making it difficult to predict and manage invasive species effectively. The common reed (Phragmites australis) is a dominant grass species in wetland ecosystems and has become particularly invasive when transferred from Europe to North America. Here, we present a high-quality gap-free, telomere-to-telomere genome assembly of Phragmites australis consisting of 24 pseudochromosomes and a B chromosome. Fully phased subgenomes demonstrated considerable subgenome dominance and revealed the divergence of diploid progenitors approximately 30.9 million years ago. Comparative genomics using chromosome-level scaffolds for three other lineages and a previously published draft genome assembly of an invasive lineage revealed that gene family expansions in the form of tandem duplications may have contributed to the invasiveness of the lineage. This study sheds light on the genome evolution of Arundinoideae grasses and suggests that genetic drivers, such as gene family expansions and tandem duplications, may underly the processes of biological invasion in plants. These findings provide a crucial step toward understanding and managing the genetic basis of invasiveness in plant species.
Collapse
Affiliation(s)
- Cui Wang
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, PR China
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Lele Liu
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, PR China
| | - Meiqi Yin
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, PR China
| | - Bingbing Liu
- Institute of Loess Plateau, Shanxi University, Taiyuan, China
| | - Yiming Wu
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, PR China
| | | | - Yingqi Gao
- Institute of Loess Plateau, Shanxi University, Taiyuan, China
| | - Hans Brix
- Department of Biology, Aarhus University, Aarhus, Denmark
| | - Tong Wang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Weihua Guo
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, PR China.
| | - Jarkko Salojärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
12
|
Bhatta KP, Mottl O, Felde VA, Grytnes JA, Reitalu T, Birks HH, Birks HJB, Vetaas OR. Latitudinal gradients in the phylogenetic assembly of angiosperms in Asia during the Holocene. Sci Rep 2024; 14:17940. [PMID: 39095414 PMCID: PMC11297032 DOI: 10.1038/s41598-024-67650-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
Spatio-temporal assessment of phylogenetic diversity gradients during the Holocene (past 12,000 years) provides an opportunity for a deeper understanding of the dynamics of species co-occurrence patterns under environmental fluctuations. Using two robust metrics of phylogenetic dispersion (PD) and 99 fossil pollen sequences containing 6557 samples/assemblages, we analyse spatio-temporal variation in PD of angiosperms and its relationship with Holocene climate in central Asia. Overall, PD throughout the Holocene decreases linearly with increasing latitude, except for a rise in mean nearest taxon distance from ca. 25 to 35° N. This indicates that phylogenetically divergent taxa decrease progressively with increasing latitude, leaving more phylogenetically closely related taxa in the assemblages, thereby increasing phylogenetic relatedness among the co-occurring taxa. The latitudinal gradient of PD has not been consistent during the Holocene, and this temporal variation is concordant with the Holocene climate dynamics. In general, profound temporal changes in the latitudinal PD toward higher latitudes implies that the major environmental changes during the Holocene have driven considerable spatio-temporal changes in the phylogenetic assembly of high-latitude angiosperm assemblages. Our results suggest that environmental filtering and the tendency of taxa and lineages to retain ancestral ecological features and geographic distributions (phylogenetic niche conservatism) are the main mechanisms underlying the phylogenetic assembly of angiosperms along the climate-latitudinal gradient. Ongoing environmental changes may pose future profound phylogenetic changes in high-latitude plant assemblages, which are adapted to harsh environmental conditions, and therefore are phylogenetically less dispersed (more conservative or clustered).
Collapse
Affiliation(s)
- Kuber P Bhatta
- Department of Biological Sciences, University of Bergen, PO Box 7803, 5020, Bergen, Norway.
| | - Ondřej Mottl
- Department of Biological Sciences, University of Bergen, PO Box 7803, 5020, Bergen, Norway
- Bjerknes Centre for Climate Research, 5020, Bergen, Norway
- Center for Theoretical Study, Charles University, Jilská 1, 11000, Prague, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 12801, Prague, Czech Republic
| | - Vivian A Felde
- Department of Biological Sciences, University of Bergen, PO Box 7803, 5020, Bergen, Norway
- Bjerknes Centre for Climate Research, 5020, Bergen, Norway
| | - John-Arvid Grytnes
- Department of Biological Sciences, University of Bergen, PO Box 7803, 5020, Bergen, Norway
| | - Triin Reitalu
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi tn 2, 50409, Tartu, Estonia
- Institute of Geology, Tallinn University of Technology, Ehitajate tee 5, 19086, Tallinn, Estonia
| | - Hilary H Birks
- Department of Biological Sciences, University of Bergen, PO Box 7803, 5020, Bergen, Norway
- Bjerknes Centre for Climate Research, 5020, Bergen, Norway
| | - H John B Birks
- Department of Biological Sciences, University of Bergen, PO Box 7803, 5020, Bergen, Norway
- Bjerknes Centre for Climate Research, 5020, Bergen, Norway
- Environmental Change Research Centre, University College London, Gower Street, London, WC1 6BT, UK
| | - Ole R Vetaas
- Department of Geography, University of Bergen, PO Box 7802, 5020, Bergen, Norway
| |
Collapse
|
13
|
Thompson J, Ramírez-Barahona S. The meaning of mass extinctions and what the fossil record tells us about angiosperm survival at K-Pg: a reply to Hagen (2024). Biol Lett 2024; 20:20240265. [PMID: 39192833 DOI: 10.1098/rsbl.2024.0265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024] Open
Abstract
Last year, we published research using phylogenetic comparative methods (PCMs) to reveal no phylogenetic evidence for elevated lineage-level extinction rates in angiosperms across K-Pg (Thompson JB, Ramírez-Barahona S. 2023 No phylogenetic evidence for angiosperm mass extinction at the Cretaceous-Palaeogene (K-Pg) boundary. Biol. Lett. 19, 20230314. (doi:10.1098/rsbl.2023.0314)), results that are in step with the global angiosperm fossil record. In a critique of our paper (Hagen ER. 2024 A critique of Thompson and Ramírez-Barahona (2023) or: how I learned to stop worrying and love the fossil record. EcoEvoRxiv. (doi:10.32942/X2631W)), simulation work is presented to argue we erred in our methodological choices and interpretations, and that we should have deferred to fossil evidence. In our opinion, underlying this critique are poor methodological choices on simulations and philosophical problems surrounding the definition of a mass extinction event, which leads to incorrect interpretations of both the fossil record and PCMs. We further argue that deferring to one source of evidence in favour of the other shuts the door to important evolutionary and philosophical questions.
Collapse
Affiliation(s)
- Jamie Thompson
- School of Biological Sciences, University of Reading, Whiteknights , Reading, Berkshire, UK
- The Milner Centre for Evolution, Department of Life Sciences, University of Bath , Bath, UK
| | - Santiago Ramírez-Barahona
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México , Ciudad de México, México
| |
Collapse
|
14
|
Pokorny L, Pellicer J, Woudstra Y, Christenhusz MJM, Garnatje T, Palazzesi L, Johnson MG, Maurin O, Françoso E, Roy S, Leitch IJ, Forest F, Baker WJ, Hidalgo O. Genomic incongruence accompanies the evolution of flower symmetry in Eudicots: a case study in the poppy family (Papaveraceae, Ranunculales). FRONTIERS IN PLANT SCIENCE 2024; 15:1340056. [PMID: 38947944 PMCID: PMC11212465 DOI: 10.3389/fpls.2024.1340056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/18/2024] [Indexed: 07/02/2024]
Abstract
Reconstructing evolutionary trajectories and transitions that have shaped floral diversity relies heavily on the phylogenetic framework on which traits are modelled. In this study, we focus on the angiosperm order Ranunculales, sister to all other eudicots, to unravel higher-level relationships, especially those tied to evolutionary transitions in flower symmetry within the family Papaveraceae. This family presents an astonishing array of floral diversity, with actinomorphic, disymmetric (two perpendicular symmetry axes), and zygomorphic flowers. We generated nuclear and plastid datasets using the Angiosperms353 universal probe set for target capture sequencing (of 353 single-copy nuclear ortholog genes), together with publicly available transcriptome and plastome data mined from open-access online repositories. We relied on the fossil record of the order Ranunculales to date our phylogenies and to establish a timeline of events. Our phylogenomic workflow shows that nuclear-plastid incongruence accompanies topological uncertainties in Ranunculales. A cocktail of incomplete lineage sorting, post-hybridization introgression, and extinction following rapid speciation most likely explain the observed knots in the topology. These knots coincide with major floral symmetry transitions and thus obscure the order of evolutionary events.
Collapse
Affiliation(s)
- Lisa Pokorny
- Real Jardín Botánico (RJB-CSIC), Madrid, Spain
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Jaume Pellicer
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Barcelona, Spain
| | - Yannick Woudstra
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Maarten J. M. Christenhusz
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Department of Environment and Agriculture, Curtin University, Perth, WA, Australia
| | - Teresa Garnatje
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Barcelona, Spain
- Jardí Botànic Marimurtra, Fundació Carl Faust, Blanes, Spain
| | - Luis Palazzesi
- División Paleobotánica, Museo Argentino de Ciencias Naturales, CONICET, Buenos Aires, Argentina
| | - Matthew G. Johnson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | | | | | - Shyamali Roy
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | | | - Félix Forest
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | | | - Oriane Hidalgo
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Barcelona, Spain
| |
Collapse
|
15
|
Lizcano Salas AF, Duitama J, Restrepo S, Celis Ramírez AM. Phylogenomic approaches reveal a robust time-scale phylogeny of the Terminal Fusarium Clade. IMA Fungus 2024; 15:13. [PMID: 38849861 PMCID: PMC11161934 DOI: 10.1186/s43008-024-00147-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 05/17/2024] [Indexed: 06/09/2024] Open
Abstract
The Terminal Fusarium Clade (TFC) is a group in the Nectriaceae family with agricultural and clinical relevance. In recent years, various phylogenies have been presented in the literature, showing disagreement in the topologies, but only a few studies have conducted analyses on the divergence time scale of the group. Therefore, the evolutionary history of this group is still being determined. This study aimed to understand the evolutionary history of the TFC from a phylogenomic perspective. To achieve this objective, we performed a phylogenomic analysis using the available genomes in GenBank and ran eight different pipelines. We presented a new robust topology of the TFC that differs at some nodes from previous studies. These new relationships allowed us to formulate new hypotheses about the evolutionary history of the TFC. We also inferred new divergence time estimates, which differ from those of previous studies due to topology discordances and taxon sampling. The results suggested an important diversification process in the Neogene period, likely associated with the diversification and predominance of terrestrial ecosystems by angiosperms. In conclusion, we presented a robust time-scale phylogeny that allowed us to formulate new hypotheses regarding the evolutionary history of the TFC.
Collapse
Affiliation(s)
- Andrés Felipe Lizcano Salas
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMop), Universidad de los Andes, Bogotá, Colombia
| | - Jorge Duitama
- Systems and Computing Engineering Department, Universidad de los Andes, Bogotá, Colombia
| | - Silvia Restrepo
- Chemical Engineering Department, Universidad de los Andes, Bogotá, Colombia
| | - Adriana Marcela Celis Ramírez
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMop), Universidad de los Andes, Bogotá, Colombia.
| |
Collapse
|
16
|
Tong Y, Lu Y, Tian Z, Yang X, Bai M. Evolutionary radiation strategy revealed in the Scarabaeidae with evidence of continuous spatiotemporal morphology and phylogenesis. Commun Biol 2024; 7:690. [PMID: 38839937 PMCID: PMC11153540 DOI: 10.1038/s42003-024-06250-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 04/26/2024] [Indexed: 06/07/2024] Open
Abstract
Evolutionary biology faces the important challenge of determining how to interpret the relationship between selection pressures and evolutionary radiation. The lack of morphological evidence on cross-species research adds to difficulty of this challenge. We proposed a new paradigm for evaluating the evolution of branches through changes in characters on continuous spatiotemporal scales, for better interpreting the impact of biotic/abiotic drivers on the evolutionary radiation. It reveals a causal link between morphological changes and selective pressures: consistent deformation signals for all tested characters on timeline, which provided strong support for the evolutionary hypothesis of relationship between scarabs and biotic/abiotic drivers; the evolutionary strategies under niche differentiation, which were manifested in the responsiveness degree of functional morphological characters with different selection pressure. This morphological information-driven integrative approach sheds light on the mechanism of macroevolution under different selection pressures and is applicable to more biodiversity research.
Collapse
Affiliation(s)
- Yijie Tong
- Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management (Chinese Academy of Sciences), Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuanyuan Lu
- Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management (Chinese Academy of Sciences), Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhehao Tian
- Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management (Chinese Academy of Sciences), Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Xingke Yang
- Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management (Chinese Academy of Sciences), Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Ming Bai
- Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management (Chinese Academy of Sciences), Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, China.
- Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin, 150040, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
17
|
Wan Q, Du S, Chen Y, Li F, Salah R, Njenga MN, Li J, Wang S. Ecological Niche Differentiation and Response to Climate Change of the African Endemic Family Myrothamnaceae. PLANTS (BASEL, SWITZERLAND) 2024; 13:1544. [PMID: 38891352 PMCID: PMC11174921 DOI: 10.3390/plants13111544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
Studying the ecological niches of species and their responses to climate change can provide better conservation strategies for these species. Myrothamnaceae is endemic to Africa, comprising only two species that belong to Myrothamnus (M. flabellifolius and M. moschatus). These closely related species exhibit allopatric distributions, positioning them as ideal materials for studying the species ecological adaptation. This study explores the ecological niche differentiation between M. flabellifolius and M. moschatus and their response capabilities to future climate change. The results indicate that M. flabellifolius and M. moschatus have undergone niche differentiation. The main drivers of niche differences are the minimum temperature of the coldest month (Bio6) for M. flabellifolius, precipitation of the driest month (Bio14), and precipitation of the coldest quarter (Bio19) for M. moschatus. M. flabellifolius demonstrated a stronger adaptation to environments characterized by lower precipitation, relatively lower temperatures, and greater annual temperature variations compared to M. moschatus. Under future climate scenarios (SSP5-8.5, 2081-2100 years), the results show that approximately 85% of the total suitable habitat for M. flabellifolius will be lost, with an 85% reduction in high-suitability areas and almost complete loss of the original mid-low suitability areas. Concurrently, about 29% of the total suitable habitat for M. moschatus will be lost, with a 34% reduction in high suitability areas and roughly 60% of the original mid-low suitability areas becoming unsuitable. This suggests that M. flabellifolius will face greater threats under future climate change. This study contributes novel insight into niche differentiation in Myrothamnaceae and provides useful information for the conservation of this distinctive African lineage.
Collapse
Affiliation(s)
- Qisong Wan
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China; (Q.W.); (Y.C.)
| | - Shenglan Du
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (S.D.); (F.L.); (R.S.); (M.N.N.)
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Yu Chen
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China; (Q.W.); (Y.C.)
| | - Feng Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (S.D.); (F.L.); (R.S.); (M.N.N.)
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Radwa Salah
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (S.D.); (F.L.); (R.S.); (M.N.N.)
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maxwell Njoroge Njenga
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (S.D.); (F.L.); (R.S.); (M.N.N.)
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jitao Li
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China; (Q.W.); (Y.C.)
| | - Shengwei Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (S.D.); (F.L.); (R.S.); (M.N.N.)
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
18
|
Zhang Q, Yang Y, Liu B, Lu L, Sauquet H, Li D, Chen Z. Meta-analysis provides insights into the origin and evolution of East Asian evergreen broad-leaved forests. THE NEW PHYTOLOGIST 2024; 242:2369-2379. [PMID: 38186378 DOI: 10.1111/nph.19524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/18/2023] [Indexed: 01/09/2024]
Abstract
Evergreen broad-leaved forests (EBLFs) are dominated by a monsoon climate and form a distinct biome in East Asia with notably high biodiversity. However, the origin and evolution of East Asian EBLFs (EAEBLFs) remain elusive despite the estimation of divergence times for various representative lineages. Using 72 selected generic-level characteristic lineages, we constructed an integrated lineage accumulation rate (LAR) curve based on their crown ages. According to the crown-based LAR, the EAEBLF origin was identified at least as the early Oligocene (c. 31.8 million years ago (Ma)). The accumulation rate of the characteristic genera peaked at 25.2 and 6.4 Ma, coinciding with the two intensification periods of the Asian monsoon at the Oligocene - Miocene and the Miocene - Pliocene boundaries, respectively. Moreover, the LAR was highly correlated with precipitation in the EAEBLF region and negatively to global temperature, as revealed through time-lag cross-correlation analyses. An early Oligocene origin is suggested for EAEBLFs, bridging the gap between paleobotanical and molecular dating studies and solving conflicts among previous estimates based on individual representative lineages. The strong correlation between the crown-based LAR and the precipitation brought about by the Asian monsoon emphasizes its irreplaceable role in the origin and development of EAEBLFs.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Yuchang Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Limin Lu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Hervé Sauquet
- National Herbarium of New South Wales, Royal Botanic Gardens and Domain Trust, Sydney, NSW, 2000, Australia
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Dezhu Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zhiduan Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| |
Collapse
|
19
|
Zuntini AR, Carruthers T, Maurin O, Bailey PC, Leempoel K, Brewer GE, Epitawalage N, Françoso E, Gallego-Paramo B, McGinnie C, Negrão R, Roy SR, Simpson L, Toledo Romero E, Barber VMA, Botigué L, Clarkson JJ, Cowan RS, Dodsworth S, Johnson MG, Kim JT, Pokorny L, Wickett NJ, Antar GM, DeBolt L, Gutierrez K, Hendriks KP, Hoewener A, Hu AQ, Joyce EM, Kikuchi IABS, Larridon I, Larson DA, de Lírio EJ, Liu JX, Malakasi P, Przelomska NAS, Shah T, Viruel J, Allnutt TR, Ameka GK, Andrew RL, Appelhans MS, Arista M, Ariza MJ, Arroyo J, Arthan W, Bachelier JB, Bailey CD, Barnes HF, Barrett MD, Barrett RL, Bayer RJ, Bayly MJ, Biffin E, Biggs N, Birch JL, Bogarín D, Borosova R, Bowles AMC, Boyce PC, Bramley GLC, Briggs M, Broadhurst L, Brown GK, Bruhl JJ, Bruneau A, Buerki S, Burns E, Byrne M, Cable S, Calladine A, Callmander MW, Cano Á, Cantrill DJ, Cardinal-McTeague WM, Carlsen MM, Carruthers AJA, de Castro Mateo A, Chase MW, Chatrou LW, Cheek M, Chen S, Christenhusz MJM, Christin PA, Clements MA, Coffey SC, Conran JG, Cornejo X, Couvreur TLP, Cowie ID, Csiba L, Darbyshire I, Davidse G, Davies NMJ, Davis AP, van Dijk KJ, Downie SR, Duretto MF, Duvall MR, Edwards SL, Eggli U, Erkens RHJ, Escudero M, de la Estrella M, Fabriani F, Fay MF, Ferreira PDL, Ficinski SZ, Fowler RM, Frisby S, Fu L, Fulcher T, Galbany-Casals M, Gardner EM, German DA, Giaretta A, Gibernau M, Gillespie LJ, González CC, Goyder DJ, Graham SW, Grall A, Green L, Gunn BF, Gutiérrez DG, Hackel J, Haevermans T, Haigh A, Hall JC, Hall T, Harrison MJ, Hatt SA, Hidalgo O, Hodkinson TR, Holmes GD, Hopkins HCF, Jackson CJ, James SA, Jobson RW, Kadereit G, Kahandawala IM, Kainulainen K, Kato M, Kellogg EA, King GJ, Klejevskaja B, Klitgaard BB, Klopper RR, Knapp S, Koch MA, Leebens-Mack JH, Lens F, Leon CJ, Léveillé-Bourret É, Lewis GP, Li DZ, Li L, Liede-Schumann S, Livshultz T, Lorence D, Lu M, Lu-Irving P, Luber J, Lucas EJ, Luján M, Lum M, Macfarlane TD, Magdalena C, Mansano VF, Masters LE, Mayo SJ, McColl K, McDonnell AJ, McDougall AE, McLay TGB, McPherson H, Meneses RI, Merckx VSFT, Michelangeli FA, Mitchell JD, Monro AK, Moore MJ, Mueller TL, Mummenhoff K, Munzinger J, Muriel P, Murphy DJ, Nargar K, Nauheimer L, Nge FJ, Nyffeler R, Orejuela A, Ortiz EM, Palazzesi L, Peixoto AL, Pell SK, Pellicer J, Penneys DS, Perez-Escobar OA, Persson C, Pignal M, Pillon Y, Pirani JR, Plunkett GM, Powell RF, Prance GT, Puglisi C, Qin M, Rabeler RK, Rees PEJ, Renner M, Roalson EH, Rodda M, Rogers ZS, Rokni S, Rutishauser R, de Salas MF, Schaefer H, Schley RJ, Schmidt-Lebuhn A, Shapcott A, Al-Shehbaz I, Shepherd KA, Simmons MP, Simões AO, Simões ARG, Siros M, Smidt EC, Smith JF, Snow N, Soltis DE, Soltis PS, Soreng RJ, Sothers CA, Starr JR, Stevens PF, Straub SCK, Struwe L, Taylor JM, Telford IRH, Thornhill AH, Tooth I, Trias-Blasi A, Udovicic F, Utteridge TMA, Del Valle JC, Verboom GA, Vonow HP, Vorontsova MS, de Vos JM, Al-Wattar N, Waycott M, Welker CAD, White AJ, Wieringa JJ, Williamson LT, Wilson TC, Wong SY, Woods LA, Woods R, Worboys S, Xanthos M, Yang Y, Zhang YX, Zhou MY, Zmarzty S, Zuloaga FO, Antonelli A, Bellot S, Crayn DM, Grace OM, Kersey PJ, Leitch IJ, Sauquet H, Smith SA, Eiserhardt WL, Forest F, Baker WJ. Phylogenomics and the rise of the angiosperms. Nature 2024; 629:843-850. [PMID: 38658746 PMCID: PMC11111409 DOI: 10.1038/s41586-024-07324-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/15/2024] [Indexed: 04/26/2024]
Abstract
Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods1,2. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome3,4. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins5-7. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes8. This 15-fold increase in genus-level sampling relative to comparable nuclear studies9 provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Elaine Françoso
- Royal Botanic Gardens, Kew, Richmond, UK
- Centre for Ecology, Evolution and Behaviour, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, London, UK
| | | | | | | | | | - Lalita Simpson
- Australian Tropical Herbarium, James Cook University, Smithfield, Queensland, Australia
| | | | | | - Laura Botigué
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
| | | | | | - Steven Dodsworth
- School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | | | - Jan T Kim
- School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield, UK
| | - Lisa Pokorny
- Royal Botanic Gardens, Kew, Richmond, UK
- Department of Biodiversity and Conservation, Real Jardín Botánico (RJB-CSIC), Madrid, Spain
| | - Norman J Wickett
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Guilherme M Antar
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- Departamento de Ciências Agrárias e Biológicas, Centro Universitário Norte do Espírito Santo, Universidade Federal do Espírito Santo, São Mateus, Brazil
| | | | | | - Kasper P Hendriks
- Department of Biology, University of Osnabrück, Osnabrück, Germany
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Alina Hoewener
- Plant Biodiversity, Technical University Munich, Freising, Germany
| | - Ai-Qun Hu
- Royal Botanic Gardens, Kew, Richmond, UK
| | - Elizabeth M Joyce
- Australian Tropical Herbarium, James Cook University, Smithfield, Queensland, Australia
- Systematic, Biodiversity and Evolution of Plants, Ludwig Maximilian University of Munich, Munich, Germany
| | - Izai A B S Kikuchi
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Drew A Larson
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Elton John de Lírio
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Jing-Xia Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | | | - Natalia A S Przelomska
- Royal Botanic Gardens, Kew, Richmond, UK
- School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - Toral Shah
- Royal Botanic Gardens, Kew, Richmond, UK
| | | | | | - Gabriel K Ameka
- Department of Plant and Environmental Biology, University of Ghana, Accra, Ghana
| | - Rose L Andrew
- Botany and N.C.W. Beadle Herbarium, University of New England, Armidale, New South Wales, Australia
| | - Marc S Appelhans
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute of Plant Sciences, University of Göttingen, Göttingen, Germany
| | - Montserrat Arista
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - María Jesús Ariza
- General Research Services, Herbario SEV, CITIUS, Universidad de Sevilla, Seville, Spain
| | - Juan Arroyo
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | | | | | - C Donovan Bailey
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - Helen F Barnes
- Royal Botanic Gardens Victoria, Melbourne, Victoria, Australia
| | - Matthew D Barrett
- Australian Tropical Herbarium, James Cook University, Smithfield, Queensland, Australia
| | - Russell L Barrett
- National Herbarium of NSW, Botanic Gardens of Sydney, Mount Annan, New South Wales, Australia
| | - Randall J Bayer
- Department of Biological Sciences, University of Memphis, Memphis, TN, USA
| | - Michael J Bayly
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Ed Biffin
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, South Australia, Australia
| | | | - Joanne L Birch
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Diego Bogarín
- Naturalis Biodiversity Center, Leiden, The Netherlands
- Jardín Botánico Lankester, Universidad de Costa Rica, Cartago, Costa Rica
| | | | | | - Peter C Boyce
- Centro Studi Erbario Tropicale, Dipartimento di Biologia, University of Florence, Florence, Italy
| | | | | | - Linda Broadhurst
- Centre for Australian National Biodiversity Research, National Research Collections Australia, CSIRO, Canberra, Australian Capital Territory, Australia
| | - Gillian K Brown
- Queensland Herbarium and Biodiversity Science, Brisbane Botanic Gardens, Toowong, Queensland, Australia
| | - Jeremy J Bruhl
- Botany and N.C.W. Beadle Herbarium, University of New England, Armidale, New South Wales, Australia
| | - Anne Bruneau
- Institut de Recherche en Biologie Végétale and Département de Sciences Biologiques, University of Montreal, Montreal, Quebec, Canada
| | - Sven Buerki
- Department of Biological Sciences, Boise State University, Boise, ID, USA
| | - Edie Burns
- Royal Botanic Gardens, Kew, Richmond, UK
| | - Margaret Byrne
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Government of Western Australia, Kensington, Western Australia, Australia
| | | | - Ainsley Calladine
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, South Australia, Australia
| | | | - Ángela Cano
- Cambridge University Botanic Garden, Cambridge, UK
| | | | - Warren M Cardinal-McTeague
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | - Alejandra de Castro Mateo
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Mark W Chase
- Royal Botanic Gardens, Kew, Richmond, UK
- Department of Environment and Agriculture, Curtin University, Bentley, Western Australia, Australia
| | | | | | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, China
| | - Maarten J M Christenhusz
- Royal Botanic Gardens, Kew, Richmond, UK
- Department of Environment and Agriculture, Curtin University, Perth, Western Australia, Australia
- Plant Gateway, Den Haag, The Netherlands
| | - Pascal-Antoine Christin
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Mark A Clements
- Centre for Australian National Biodiversity Research, National Research Collections Australia, CSIRO, Canberra, Australian Capital Territory, Australia
| | - Skye C Coffey
- Western Australian Herbarium, Department of Biodiversity, Conservation and Attractions, Government of Western Australia, Kensington, Western Australia, Australia
| | - John G Conran
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Xavier Cornejo
- Herbario GUAY, Facultad de Ciencias Naturales, Universidad de Guayaquil, Guayaquil, Ecuador
| | | | - Ian D Cowie
- Northern Territory Herbarium Department of Environment Parks & Water Security, Northern Territory Government, Palmerston, Northern Territory, Australia
| | | | | | | | | | | | - Kor-Jent van Dijk
- The University of Adelaide, North Terrace Campus, Adelaide, South Australia, Australia
| | - Stephen R Downie
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Marco F Duretto
- National Herbarium of NSW, Botanic Gardens of Sydney, Mount Annan, New South Wales, Australia
| | - Melvin R Duvall
- Department of Biological Sciences and Institute for the Study of the Environment, Sustainability and Energy, Northern Illinois University, DeKalb, IL, USA
| | | | - Urs Eggli
- Sukkulenten-Sammlung Zürich/ Grün Stadt Zürich, Zürich, Switzerland
| | - Roy H J Erkens
- Naturalis Biodiversity Center, Leiden, The Netherlands
- Maastricht Science Programme, Maastricht University, Maastricht, The Netherlands
- System Earth Science, Maastricht University, Venlo, The Netherlands
| | - Marcial Escudero
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Manuel de la Estrella
- Departamento de Botánica, Ecología y Fisiología Vegetal, Facultad de Ciencias, Universidad de Córdoba, Córdoba, Spain
| | | | | | - Paola de L Ferreira
- Departamento de Biologia, Faculdade de Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
- Department of Biology, Aarhus University, Aarhus, Denmark
| | | | - Rachael M Fowler
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Sue Frisby
- Royal Botanic Gardens, Kew, Richmond, UK
| | - Lin Fu
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | | | - Mercè Galbany-Casals
- Systematics and Evolution of Vascular Plants (UAB)-Associated Unit to CSIC by IBB, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Elliot M Gardner
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | | | - Augusto Giaretta
- Faculdade de Ciências Biológicas e Ambientais, Universidade Federal da Grande Dourados, Dourados, Brazil
| | - Marc Gibernau
- Laboratoire Sciences Pour l'Environnement, Université de Corse, Ajaccio, France
| | | | - Cynthia C González
- Herbario Trelew, Universidad Nacional de la Patagonia San Juan Bosco, Trelew, Argentina
| | | | - Sean W Graham
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | - Bee F Gunn
- Royal Botanic Gardens Victoria, Melbourne, Victoria, Australia
| | - Diego G Gutiérrez
- Museo Argentino de Ciencias Naturales (MACN-CONICET), Buenos Aires, Argentina
| | - Jan Hackel
- Royal Botanic Gardens, Kew, Richmond, UK
- Department of Biology, Universität Marburg, Marburg, Germany
| | - Thomas Haevermans
- Institut de Systématique, Evolution, Biodiversité, Muséum National d'Histoire Naturelle, Paris, France
| | - Anna Haigh
- Royal Botanic Gardens, Kew, Richmond, UK
| | - Jocelyn C Hall
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Tony Hall
- Royal Botanic Gardens, Kew, Richmond, UK
| | - Melissa J Harrison
- Australian Tropical Herbarium, James Cook University, Smithfield, Queensland, Australia
| | | | - Oriane Hidalgo
- Institut Botànic de Barcelona (IBB CSIC-Ajuntament de Barcelona), Barcelona, Spain
| | - Trevor R Hodkinson
- Botany, School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Gareth D Holmes
- Royal Botanic Gardens Victoria, Melbourne, Victoria, Australia
| | | | | | - Shelley A James
- Western Australian Herbarium, Department of Biodiversity, Conservation and Attractions, Government of Western Australia, Kensington, Western Australia, Australia
| | - Richard W Jobson
- National Herbarium of NSW, Botanic Gardens of Sydney, Mount Annan, New South Wales, Australia
| | - Gudrun Kadereit
- Prinzessin Therese von Bayern-Lehrstuhl für Systematik, Biodiversität & Evolution der Pflanzen, Ludwig-Maximilians-Universität München, Botanische Staatssammlung München, Botanischer Garten München-Nymphenburg, Munich, Germany
| | | | | | - Masahiro Kato
- National Museum of Nature and Science, Tsukuba, Japan
| | | | - Graham J King
- Southern Cross University, Lismore, New South Wales, Australia
| | | | | | - Ronell R Klopper
- Foundational Biodiversity Science Division, South African National Biodiversity Institute, Pretoria, South Africa
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Marcus A Koch
- Centre for Organismal Studies, Biodiversity and Plant Systematics, Heidelberg University, Heidelberg, Germany
| | | | - Frederic Lens
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | | | | | | | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Lan Li
- CSIRO, Canberra, Australian Capital Territory, Australia
| | | | - Tatyana Livshultz
- Department of Biodiversity, Earth and Environmental Sciences, Drexel University, Philadelphia, PA, USA
- Academy of Natural Science, Drexel University, Philadelphia, PA, USA
| | - David Lorence
- National Tropical Botanical Garden, Kalaheo, HI, USA
| | - Meng Lu
- Royal Botanic Gardens, Kew, Richmond, UK
| | - Patricia Lu-Irving
- National Herbarium of NSW, Botanic Gardens of Sydney, Mount Annan, New South Wales, Australia
| | - Jaquelini Luber
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Mabel Lum
- Bioplatforms Australia Ltd, Sydney, New South Wales, Australia
| | - Terry D Macfarlane
- Western Australian Herbarium, Department of Biodiversity, Conservation and Attractions, Government of Western Australia, Kensington, Western Australia, Australia
| | | | - Vidal F Mansano
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Kristina McColl
- National Herbarium of NSW, Botanic Gardens of Sydney, Mount Annan, New South Wales, Australia
| | - Angela J McDonnell
- Department of Biological Sciences, Saint Cloud State University, Saint Cloud, MN, USA
| | - Andrew E McDougall
- The University of Adelaide, North Terrace Campus, Adelaide, South Australia, Australia
| | - Todd G B McLay
- Royal Botanic Gardens Victoria, Melbourne, Victoria, Australia
| | - Hannah McPherson
- National Herbarium of NSW, Botanic Gardens of Sydney, Mount Annan, New South Wales, Australia
| | - Rosa I Meneses
- Instituto de Arqueología y Antropología, Universidad Católica del Norte, San Pedro de Atacama, Chile
| | | | | | | | | | | | - Taryn L Mueller
- Department of Ecology, Evolution & Behavior, University of Minnesota, St. Paul, MN, USA
| | - Klaus Mummenhoff
- Department of Biology, University of Osnabrück, Osnabrück, Germany
| | - Jérôme Munzinger
- AMAP Lab, Université Montpellier, IRD, CIRAD, CNRS INRAE, Montpellier, France
| | - Priscilla Muriel
- Laboratorio de Ecofisiología, Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Daniel J Murphy
- Royal Botanic Gardens Victoria, Melbourne, Victoria, Australia
| | - Katharina Nargar
- Australian Tropical Herbarium, James Cook University, Smithfield, Queensland, Australia
- Centre for Australian National Biodiversity Research, National Research Collections Australia, CSIRO, Canberra, Australian Capital Territory, Australia
| | - Lars Nauheimer
- Australian Tropical Herbarium, James Cook University, Smithfield, Queensland, Australia
| | - Francis J Nge
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, South Australia, Australia
| | - Reto Nyffeler
- Department of Systematic and Evolutionary Botany, University of Zürich, Zürich, Switzerland
| | - Andrés Orejuela
- Royal Botanic Garden Edinburgh, Edinburgh, UK
- Grupo de Investigación en Recursos Naturales Amazónicos, Instituto Tecnológico del Putumayo, Mocoa, Colombia
| | - Edgardo M Ortiz
- Plant Biodiversity, Technical University Munich, Freising, Germany
| | - Luis Palazzesi
- Museo Argentino de Ciencias Naturales (MACN-CONICET), Buenos Aires, Argentina
| | - Ariane Luna Peixoto
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Jaume Pellicer
- Institut Botànic de Barcelona (IBB CSIC-Ajuntament de Barcelona), Barcelona, Spain
| | - Darin S Penneys
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| | | | - Claes Persson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Marc Pignal
- Institut de Systématique, Evolution, Biodiversité, Muséum National d'Histoire Naturelle, Paris, France
| | - Yohan Pillon
- LSTM Université Montpellier, CIRADIRD, Montpellier, France
| | - José R Pirani
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | - Carmen Puglisi
- Royal Botanic Gardens, Kew, Richmond, UK
- Missouri Botanical Garden, St. Louis, MO, USA
| | - Ming Qin
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Richard K Rabeler
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | | | - Matthew Renner
- National Herbarium of NSW, Botanic Gardens of Sydney, Mount Annan, New South Wales, Australia
| | - Eric H Roalson
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michele Rodda
- National Parks Board, Singapore Botanic Gardens, Singapore, Singapore
| | | | - Saba Rokni
- Royal Botanic Gardens, Kew, Richmond, UK
| | - Rolf Rutishauser
- Department of Systematic and Evolutionary Botany, University of Zürich, Zürich, Switzerland
| | - Miguel F de Salas
- Tasmanian Herbarium, University of Tasmania, Sandy Bay, Tasmania, Australia
| | - Hanno Schaefer
- Plant Biodiversity, Technical University Munich, Freising, Germany
| | | | - Alexander Schmidt-Lebuhn
- Centre for Australian National Biodiversity Research, National Research Collections Australia, CSIRO, Canberra, Australian Capital Territory, Australia
| | - Alison Shapcott
- School of Science Technology and Engineering, Center for Bioinnovation, University Sunshine Coast, Sippy Downs, Queensland, Australia
| | | | - Kelly A Shepherd
- Western Australian Herbarium, Department of Biodiversity, Conservation and Attractions, Government of Western Australia, Kensington, Western Australia, Australia
| | - Mark P Simmons
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - André O Simões
- Departamento de Biologia Vegetal, Universidade Estadual de Campinas, Campinas, Brazil
| | | | - Michelle Siros
- Royal Botanic Gardens, Kew, Richmond, UK
- University of California, San Francisco, San Francisco, CA, USA
| | - Eric C Smidt
- Departamento de Botânica, Universidade Federal do Paraná, Curitiba, Brazil
| | - James F Smith
- Department of Biological Sciences, Boise State University, Boise, ID, USA
| | - Neil Snow
- Pittsburg State University, Pittsburg, KS, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | | | | | - Julian R Starr
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | - Ian R H Telford
- Botany and N.C.W. Beadle Herbarium, University of New England, Armidale, New South Wales, Australia
| | - Andrew H Thornhill
- Botany and N.C.W. Beadle Herbarium, University of New England, Armidale, New South Wales, Australia
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, South Australia, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ifeanna Tooth
- National Herbarium of NSW, Botanic Gardens of Sydney, Mount Annan, New South Wales, Australia
| | | | - Frank Udovicic
- Royal Botanic Gardens Victoria, Melbourne, Victoria, Australia
| | | | - Jose C Del Valle
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - G Anthony Verboom
- Department of Biological Sciences and Bolus Herbarium, University of Cape Town, Cape Town, South Africa
| | - Helen P Vonow
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, South Australia, Australia
| | | | - Jurriaan M de Vos
- Department of Environmental Sciences-Botany, University of Basel, Basel, Switzerland
| | | | - Michelle Waycott
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, South Australia, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Cassiano A D Welker
- Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Adam J White
- Australian National Herbarium, Centre for Australian National Biodiversity Research, National Research Collections Australia, CSIRO, Canberra, Australian Capital Territory, Australia
| | | | - Luis T Williamson
- The University of Adelaide, North Terrace Campus, Adelaide, South Australia, Australia
| | - Trevor C Wilson
- National Herbarium of NSW, Botanic Gardens of Sydney, Mount Annan, New South Wales, Australia
| | - Sin Yeng Wong
- Institute of Biodiversity And Environmental Conservation, Universiti Malaysia Sarawak, Samarahan, Malaysia
| | - Lisa A Woods
- National Herbarium of NSW, Botanic Gardens of Sydney, Mount Annan, New South Wales, Australia
| | | | - Stuart Worboys
- Australian Tropical Herbarium, James Cook University, Smithfield, Queensland, Australia
| | | | - Ya Yang
- University of Minnesota-Twin Cities, St. Paul, MN, USA
| | | | - Meng-Yuan Zhou
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | | | | | - Alexandre Antonelli
- Royal Botanic Gardens, Kew, Richmond, UK
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden
- Department of Biology, University of Oxford, Oxford, UK
| | | | - Darren M Crayn
- Australian Tropical Herbarium, James Cook University, Smithfield, Queensland, Australia
| | - Olwen M Grace
- Royal Botanic Gardens, Kew, Richmond, UK
- Royal Botanic Garden Edinburgh, Edinburgh, UK
| | | | | | - Hervé Sauquet
- National Herbarium of NSW, Botanic Gardens of Sydney, Mount Annan, New South Wales, Australia
| | - Stephen A Smith
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Wolf L Eiserhardt
- Royal Botanic Gardens, Kew, Richmond, UK
- Department of Biology, Aarhus University, Aarhus, Denmark
| | | | - William J Baker
- Royal Botanic Gardens, Kew, Richmond, UK.
- Department of Biology, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
20
|
Fangel JU, Sørensen KM, Jacobsen N, Mravec J, Ahl LI, Bakshani C, Mikkelsen MD, Engelsen SB, Willats W, Ulvskov P. The legacy of terrestrial plant evolution on cell wall fine structure. PLANT, CELL & ENVIRONMENT 2024; 47:1238-1254. [PMID: 38173082 DOI: 10.1111/pce.14785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/15/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024]
Abstract
The evolution of land flora was an epochal event in the history of planet Earth. The success of plants, and especially flowering plants, in colonizing all but the most hostile environments required multiple mechanisms of adaptation. The mainly polysaccharide-based cell walls of flowering plants, which are indispensable for water transport and structural support, are one of the most important adaptations to life on land. Thus, development of vasculature is regarded as a seminal event in cell wall evolution, but the impact of further refinements and diversification of cell wall compositions and architectures on radiation of flowering plant families is less well understood. We approached this from a glyco-profiling perspective and, using carbohydrate microarrays and monoclonal antibodies, studied the cell walls of 287 plant species selected to represent important evolutionary dichotomies and adaptation to a variety of habitats. The results support the conclusion that radiation of flowering plant families was indeed accompanied by changes in cell wall fine structure and that these changes can obscure earlier evolutionary events. Convergent cell wall adaptations identified by our analyses do not appear to be associated with plants with similar lifestyles but that are taxonomically distantly related. We conclude that cell wall structure is linked to phylogeny more strongly than to habitat or lifestyle and propose that there are many approaches of adaptation to any given ecological niche.
Collapse
Affiliation(s)
- Jonatan U Fangel
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Niels Jacobsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Louise Isager Ahl
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen K, Denmark
| | - Cassie Bakshani
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-Upon-Tyne, UK
| | | | | | - William Willats
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-Upon-Tyne, UK
| | - Peter Ulvskov
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
21
|
Xiang KL, Wu SD, Lian L, He WC, Peng D, Peng HW, Zhang XN, Li HL, Xue JY, Shan HY, Xu GX, Liu Y, Wu ZQ, Wang W. Genomic data and ecological niche modeling reveal an unusually slow rate of molecular evolution in the Cretaceous Eupteleaceae. SCIENCE CHINA. LIFE SCIENCES 2024; 67:803-816. [PMID: 38087029 DOI: 10.1007/s11427-023-2448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/11/2023] [Indexed: 04/06/2024]
Abstract
Living fossils are evidence of long-term sustained ecological success. However, whether living fossils have little molecular changes remains poorly known, particularly in plants. Here, we have introduced a novel method that integrates phylogenomic, comparative genomic, and ecological niche modeling analyses to investigate the rate of molecular evolution of Eupteleaceae, a Cretaceous relict angiosperm family endemic to East Asia. We assembled a high-quality chromosome-level nuclear genome, and the chloroplast and mitochondrial genomes of a member of Eupteleaceae (Euptelea pleiosperma). Our results show that Eupteleaceae is most basal in Ranunculales, the earliest-diverging order in eudicots, and shares an ancient whole-genome duplication event with the other Ranunculales. We document that Eupteleaceae has the slowest rate of molecular changes in the observed angiosperms. The unusually low rate of molecular evolution of Eupteleaceae across all three independent inherited genomes and genes within each of the three genomes is in association with its conserved genome architecture, ancestral woody habit, and conserved niche requirements. Our findings reveal the evolution and adaptation of living fossil plants through large-scale environmental change and also provide new insights into early eudicot diversification.
Collapse
Affiliation(s)
- Kun-Li Xiang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- China National Botanical Garden, Beijing, 100093, China
| | - Sheng-Dan Wu
- State Key Laboratory of Grassland Agro-Ecosystems and College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Lian Lian
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Wen-Chuang He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Dan Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Huan-Wen Peng
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Ni Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Hong-Lei Li
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Jia-Yu Xue
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hong-Yan Shan
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Gui-Xia Xu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Yang Liu
- Fairylake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, China
| | - Zhi-Qiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Wei Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
22
|
Qian D, Li T, Chen S, Wan D, He Y, Zheng C, Li J, Sun Z, Li J, Sun J, Niu Y, Li H, Wang M, Niu Y, Yang Y, An L, Xiang Y. Evolution of the thermostability of actin-depolymerizing factors enhances the adaptation of pollen germination to high temperature. THE PLANT CELL 2024; 36:881-898. [PMID: 37941457 PMCID: PMC10980419 DOI: 10.1093/plcell/koad280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/14/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023]
Abstract
Double fertilization in many flowering plants (angiosperms) often occurs during the hot summer season, but the mechanisms that enable angiosperms to adapt specifically to high temperatures are largely unknown. The actin cytoskeleton is essential for pollen germination and the polarized growth of pollen tubes, yet how this process responds to high temperatures remains unclear. Here, we reveal that the high thermal stability of 11 Arabidopsis (Arabidopsis thaliana) actin-depolymerizing factors (ADFs) is significantly different: ADFs that specifically accumulate in tip-growing cells (pollen and root hairs) exhibit high thermal stability. Through ancestral protein reconstruction, we found that subclass II ADFs (expressed specifically in pollen) have undergone a dynamic wave-like evolution of the retention, loss, and regeneration of thermostable sites. Additionally, the sites of AtADF7 with high thermal stability are conserved in ADFs specific to angiosperm pollen. Moreover, the high thermal stability of ADFs is required to regulate actin dynamics and turnover at high temperatures to promote pollen germination. Collectively, these findings suggest strategies for the adaptation of sexual reproduction to high temperature in angiosperms at the cell biology level.
Collapse
Affiliation(s)
- Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tian Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shuyuan Chen
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Dongshi Wan
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Yongxing He
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chen Zheng
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jiajing Li
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Zhenping Sun
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Jiejie Li
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Junxia Sun
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yingzhi Niu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hongxia Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Muxuan Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yue Niu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yang Yang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lizhe An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
23
|
Li W, Wang R, Liu MF, Folk RA, Xue B, Saunders RMK. Climatic and biogeographic processes underlying the diversification of the pantropical flowering plant family Annonaceae. FRONTIERS IN PLANT SCIENCE 2024; 15:1287171. [PMID: 38525154 PMCID: PMC10957689 DOI: 10.3389/fpls.2024.1287171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/20/2024] [Indexed: 03/26/2024]
Abstract
Tropical forests harbor the richest biodiversity among terrestrial ecosystems, but few studies have addressed the underlying processes of species diversification in these ecosystems. We use the pantropical flowering plant family Annonaceae as a study system to investigate how climate and biogeographic events contribute to diversification. A super-matrix phylogeny comprising 835 taxa (34% of Annonaceae species) based on eight chloroplast regions was used in this study. We show that global temperature may better explain the recent rapid diversification in Annonaceae than time and constant models. Accelerated accumulation of niche divergence (around 15 Ma) lags behind the increase of diversification rate (around 25 Ma), reflecting a heterogeneous transition to recent diversity increases. Biogeographic events are related to only two of the five diversification rate shifts detected. Shifts in niche evolution nevertheless appear to be associated with increasingly seasonal environments. Our results do not support the direct correlation of any particular climatic niche shifts or historical biogeographical event with shifts in diversification rate. Instead, we suggest that Annonaceae diversification can lead to later niche divergence as a result of increasing interspecific competition arising from species accumulation. Shifts in niche evolution appear to be associated with increasingly seasonal environments. Our results highlight the complexity of diversification in taxa with long evolutionary histories.
Collapse
Affiliation(s)
- Weixi Li
- Division of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Runxi Wang
- Division of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ming-Fai Liu
- Division of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ryan A. Folk
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Bine Xue
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Richard M. K. Saunders
- Division of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
24
|
López‐Martínez AM, Magallón S, von Balthazar M, Schönenberger J, Sauquet H, Chartier M. Angiosperm flowers reached their highest morphological diversity early in their evolutionary history. THE NEW PHYTOLOGIST 2024; 241:1348-1360. [PMID: 38029781 PMCID: PMC10952840 DOI: 10.1111/nph.19389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023]
Abstract
Flowers are the complex and highly diverse reproductive structures of angiosperms. Because of their role in sexual reproduction, the evolution of flowers is tightly linked to angiosperm speciation and diversification. Accordingly, the quantification of floral morphological diversity (disparity) among angiosperm subgroups and through time may give important insights into the evolutionary history of angiosperms as a whole. Based on a comprehensive dataset focusing on 30 characters describing floral structure across angiosperms, we used 1201 extant and 121 fossil flowers to measure floral disparity and explore patterns of floral evolution through time and across lineages. We found that angiosperms reached their highest floral disparity in the Early Cretaceous. However, decreasing disparity toward the present likely has not precluded the innovation of other complex traits at other morphological levels, which likely played a key role in the outstanding angiosperm species richness. Angiosperms occupy specific regions of the theoretical morphospace, indicating that only a portion of the possible floral trait combinations is observed in nature. The ANA grade, the magnoliids, and the early-eudicot grade occupy large areas of the morphospace (higher disparity), whereas nested groups occupy narrower regions (lower disparity).
Collapse
Affiliation(s)
- Andrea M. López‐Martínez
- Posgrado en Ciencias Biológicas, Instituto de BiologíaUniversidad Nacional Autónoma de México, 3er Circuito de Ciudad UniversitariaCoyoacánCiudad de México04510Mexico
- Departamento de Botánica, Instituto de BiologíaUniversidad Nacional Autónoma de México, 3er Circuito de Ciudad UniversitariaCoyoacánCiudad de México04510Mexico
| | - Susana Magallón
- Departamento de Botánica, Instituto de BiologíaUniversidad Nacional Autónoma de México, 3er Circuito de Ciudad UniversitariaCoyoacánCiudad de México04510Mexico
| | - Maria von Balthazar
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14ViennaA‐1030Austria
| | - Jürg Schönenberger
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14ViennaA‐1030Austria
| | - Hervé Sauquet
- National Herbarium of New South Wales (NSW)Royal Botanic Gardens and Domain TrustSydneyNSW2000Australia
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental SciencesUniversity of New South Wales, Biological Sciences North (D26)SydneyNSW2052Australia
| | - Marion Chartier
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14ViennaA‐1030Austria
| |
Collapse
|
25
|
Peris D, Condamine FL. The angiosperm radiation played a dual role in the diversification of insects and insect pollinators. Nat Commun 2024; 15:552. [PMID: 38253644 PMCID: PMC10803743 DOI: 10.1038/s41467-024-44784-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Interactions with angiosperms have been hypothesised to play a crucial role in driving diversification among insects, with a particular emphasis on pollinator insects. However, support for coevolutionary diversification in insect-plant interactions is weak. Macroevolutionary studies of insect and plant diversities support the hypothesis that angiosperms diversified after a peak in insect diversity in the Early Cretaceous. Here, we used the family-level fossil record of insects as a whole, and insect pollinator families in particular, to estimate diversification rates and the role of angiosperms on insect macroevolutionary history using a Bayesian process-based approach. We found that angiosperms played a dual role that changed through time, mitigating insect extinction in the Cretaceous and promoting insect origination in the Cenozoic, which is also recovered for insect pollinator families only. Although insects pollinated gymnosperms before the angiosperm radiation, a radiation of new pollinator lineages began as angiosperm lineages increased, particularly significant after 50 Ma. We also found that global temperature, increases in insect diversity, and spore plants were strongly correlated with origination and extinction rates, suggesting that multiple drivers influenced insect diversification and arguing for the investigation of different explanatory variables in further studies.
Collapse
Affiliation(s)
- David Peris
- Institut Botànic de Barcelona (CSIC-CMCNB), 08038, Barcelona, Spain.
| | - Fabien L Condamine
- CNRS, Institut des Sciences de l'Evolution de Montpellier, Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, France
| |
Collapse
|
26
|
Zhang W, Lohman DJ. Uncovering the functional basis of mantids that resemble plants. SCIENCE CHINA. LIFE SCIENCES 2024; 67:215-216. [PMID: 37946066 DOI: 10.1007/s11427-023-2450-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 11/12/2023]
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| | - David J Lohman
- Biology Department, City College of New York, City University of New York, New York, 10031, USA
- PhD Program in Biology, City University of New York, New York, 10016, USA
- Entomology Section, National Museum of Natural History, Manila, 1000, Philippines
| |
Collapse
|
27
|
Holtum JAM. The diverse diaspora of CAM: a pole-to-pole sketch. ANNALS OF BOTANY 2023; 132:597-625. [PMID: 37303205 PMCID: PMC10800000 DOI: 10.1093/aob/mcad067] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 06/09/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND Crassulacean acid metabolism (CAM) photosynthesis is a successful adaptation that has evolved often in angiosperms, gymnosperms, ferns and lycophytes. Present in ~5 % of vascular plants, the CAM diaspora includes all continents apart from Antarctica. Species with CAM inhabit most landscapes colonized by vascular plants, from the Arctic Circle to Tierra del Fuego, from below sea level to 4800 m a.s.l., from rainforests to deserts. They have colonized terrestrial, epiphytic, lithophytic, palustrine and aquatic systems, developing perennial, annual or geophyte strategies that can be structurally arborescent, shrub, forb, cladode, epiphyte, vine or leafless with photosynthetic roots. CAM can enhance survival by conserving water, trapping carbon, reducing carbon loss and/or via photoprotection. SCOPE This review assesses the phylogenetic diversity and historical biogeography of selected lineages with CAM, i.e. ferns, gymnosperms and eumagnoliids, Orchidaceae, Bromeliaceae, Crassulaceae, Euphorbiaceae, Aizoaceae, Portulacineae (Montiaceae, Basellaceae, Halophytaceae, Didiereaceae, Talinaceae, Portulacaceae, Anacampserotaceae and Cactaceae) and aquatics. CONCLUSIONS Most extant CAM lineages diversified after the Oligocene/Miocene, as the planet dried and CO2 concentrations dropped. Radiations exploited changing ecological landscapes, including Andean emergence, Panamanian Isthmus closure, Sundaland emergence and submergence, changing climates and desertification. Evidence remains sparse for or against theories that CAM biochemistry tends to evolve before pronounced changes in anatomy and that CAM tends to be a culminating xerophytic trait. In perennial taxa, any form of CAM can occur depending upon the lineage and the habitat, although facultative CAM appears uncommon in epiphytes. CAM annuals lack strong CAM. In CAM annuals, C3 + CAM predominates, and inducible or facultative CAM is common.
Collapse
Affiliation(s)
- Joseph A M Holtum
- College of Science and Engineering, James Cook University, Townsville, QLD4811, Australia
| |
Collapse
|
28
|
Ferrer MM, Vásquez-Cruz M, Hernández-Hernández T, Good SV. Geographical and life-history traits associated with low and high species richness across angiosperm families. FRONTIERS IN PLANT SCIENCE 2023; 14:1276727. [PMID: 38107007 PMCID: PMC10722503 DOI: 10.3389/fpls.2023.1276727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/26/2023] [Indexed: 12/19/2023]
Abstract
Introduction The phenomenal expansion of angiosperms has prompted many investigations into the factors driving their diversification, but there remain significant gaps in our understanding of flowering plant species diversity. Methods Using the crown age of families from five studies, we used a maximum likelihood approach to classify families as having poor, predicted or high species richness (SR) using strict consensus criteria. Using these categories, we looked for associations between family SR and i) the presence of an inferred familial ancestral polyploidization event, ii) 23 life history and floral traits compiled from previously published datasets and papers, and iii) sexual system (dioecy) or genetically determined self-incompatibility (SI) mating system using an updated version of our own database and iv) geographic distribution using a new database describing the global distribution of plant species/families across realms and biomes and inferred range. Results We find that more than a third of angiosperm families (65%) had predicted SR, a large proportion (30.2%) were species poor, while few (4.8%) had high SR. Families with poor SR were less likely to have undergone an ancestral polyploidization event, exhibited deficits in diverse traits, and were more likely to have unknown breeding systems and to be found in only one or few biomes and realms, especially the Afrotropics or Australasia. On the other hand, families with high SR were more likely to have animal mediated pollination or dispersal, are enriched for epiphytes and taxa with an annual life history, and were more likely to harbour sporophytic SI systems. Mapping the global distribution of georeferenced taxa by their family DR, we find evidence of regions dominated by taxa from lineages with high vs low SR. Discussion These results are discussed within the context of the literature describing "depauperons" and the factors contributing to low and high biodiversity in angiosperm clades.
Collapse
Affiliation(s)
- Miriam Monserrat Ferrer
- Departamento de Manejo y Conservación de Recursos Naturales Tropicales, Universidad Autónoma de Yucatán, Mérida Yucatán, Mexico
| | | | | | - Sara V. Good
- Department of Biology, The University of Winnipeg, Winnipeg, MB, Canada
| |
Collapse
|
29
|
Dimitrov D, Xu X, Su X, Shrestha N, Liu Y, Kennedy JD, Lyu L, Nogués-Bravo D, Rosindell J, Yang Y, Fjeldså J, Liu J, Schmid B, Fang J, Rahbek C, Wang Z. Diversification of flowering plants in space and time. Nat Commun 2023; 14:7609. [PMID: 37993449 PMCID: PMC10665465 DOI: 10.1038/s41467-023-43396-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/08/2023] [Indexed: 11/24/2023] Open
Abstract
The rapid diversification and high species richness of flowering plants is regarded as 'Darwin's second abominable mystery'. Today the global spatiotemporal pattern of plant diversification remains elusive. Using a newly generated genus-level phylogeny and global distribution data for 14,244 flowering plant genera, we describe the diversification dynamics of angiosperms through space and time. Our analyses show that diversification rates increased throughout the early Cretaceous and then slightly decreased or remained mostly stable until the end of the Cretaceous-Paleogene mass extinction event 66 million years ago. After that, diversification rates increased again towards the present. Younger genera with high diversification rates dominate temperate and dryland regions, whereas old genera with low diversification dominate the tropics. This leads to a negative correlation between spatial patterns of diversification and genus diversity. Our findings suggest that global changes since the Cenozoic shaped the patterns of flowering plant diversity and support an emerging consensus that diversification rates are higher outside the tropics.
Collapse
Affiliation(s)
- Dimitar Dimitrov
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
- Department of Natural History, University Museum of Bergen, University of Bergen, P.O. Box 7800, 5020, Bergen, Norway
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
- Natural History Museum, University of Oslo, PO Box 1172 Blindern, NO-0318, Oslo, Norway
| | - Xiaoting Xu
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xiangyan Su
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
- Land Consolidation and Rehabilitation Center, Ministry of Natural Resources, Beijing, 100035, China
| | - Nawal Shrestha
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yunpeng Liu
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Jonathan D Kennedy
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
- Natural History Museum of Denmark, University of Copenhagen, DK-2100, Copenhagen Ø, Denmark
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Lisha Lyu
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, Shenzhen, China
| | - David Nogués-Bravo
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - James Rosindell
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK
| | - Yong Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, 159 Longpan Rd., Nanjing, 210037, China
| | - Jon Fjeldså
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
- Natural History Museum, University of Oslo, PO Box 1172 Blindern, NO-0318, Oslo, Norway
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Bernhard Schmid
- Department of Geography, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Jingyun Fang
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Carsten Rahbek
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
- Natural History Museum of Denmark, University of Copenhagen, DK-2100, Copenhagen Ø, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark
| | - Zhiheng Wang
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark.
| |
Collapse
|
30
|
Villaverde T, Larridon I, Shah T, Fowler RM, Chau JH, Olmstead RG, Sanmartín I. Phylogenomics sheds new light on the drivers behind a long-lasting systematic riddle: the figwort family Scrophulariaceae. THE NEW PHYTOLOGIST 2023; 240:1601-1615. [PMID: 36869601 DOI: 10.1111/nph.18845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
The figwort family, Scrophulariaceae, comprises c. 2000 species whose evolutionary relationships at the tribal level have proven difficult to resolve, hindering our ability to understand their origin and diversification. We designed a specific probe kit for Scrophulariaceae, targeting 849 nuclear loci and obtaining plastid regions as by-products. We sampled c. 87% of the genera described in the family and use the nuclear dataset to estimate evolutionary relationships, timing of diversification, and biogeographic patterns. Ten tribes, including two new tribes, Androyeae and Camptolomeae, are supported, and the phylogenetic positions of Androya, Camptoloma, and Phygelius are unveiled. Our study reveals a major diversification at c. 60 million yr ago in some Gondwanan landmasses, where two different lineages diversified, one of which gave rise to nearly 81% of extant species. A Southern African origin is estimated for most modern-day tribes, with two exceptions, the American Leucophylleae, and the mainly Australian Myoporeae. The rapid mid-Eocene diversification is aligned with geographic expansion within southern Africa in most tribes, followed by range expansion to tropical Africa and multiple dispersals out of Africa. Our robust phylogeny provides a framework for future studies aimed at understanding the role of macroevolutionary patterns and processes that generated Scrophulariaceae diversity.
Collapse
Affiliation(s)
- Tamara Villaverde
- Real Jardín Botánico (CSIC), Plaza de Murillo, 2, Madrid, 28014, Spain
| | - Isabel Larridon
- Royal Botanic Gardens, Kew, Richmond, TW9 3AE, UK
- Systematic and Evolutionary Botany Lab, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Toral Shah
- Royal Botanic Gardens, Kew, Richmond, TW9 3AE, UK
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - Rachael M Fowler
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia
| | - John H Chau
- Department of Zoology, Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Richard G Olmstead
- Department of Biology and Burke Museum, University of Washington, Seattle, WA, 98155, USA
| | - Isabel Sanmartín
- Real Jardín Botánico (CSIC), Plaza de Murillo, 2, Madrid, 28014, Spain
| |
Collapse
|
31
|
Wang X, Yao R, Lv X, Yi Y, Tang X. Nectar robbing by bees affects the reproductive fitness of the distylous plant Tirpitzia sinensis (Linaceae). Ecol Evol 2023; 13:e10714. [PMID: 37953984 PMCID: PMC10638493 DOI: 10.1002/ece3.10714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
Nectar robbing can affect plant reproductive success directly by influencing female and male fitness, and indirectly by affecting pollinator behavior. Flowers have morphological and chemical features that may protect them from nectar robbers. Previous studies on nectar robbing have focused mainly on homotypic plants. It remains unclear how nectar robbing affects the reproductive success of distylous plants, and whether defense strategies of two morphs are different. Nectar-robbing rates on the long- and short-styled morph (L-morph, S-morph) of the distylous Tirpitzia sinensis were investigated. We compared floral traits, the temporal pattern of change in nectar volume and sugar concentration, nectar secondary metabolites, and sugar composition between robbed and unrobbed flowers of two morphs. We tested direct effects of nectar robbing on female and male components of plant fitness and indirect effects of nectar robbing via pollinators. Nectar-robbing rates did not differ between the two morphs. Flowers with smaller sepals and petals were more easily robbed. The floral tube diameter and thickness were greater in L-morphs than in S-morphs, and the nectar rob holes were significantly smaller in L-morphs than in S-morphs. Nectar robbing significantly decreased nectar replenishment rate but did not affect nectar sugar concentration or sugar composition. After robbery, the quantities and diversity of secondary compounds in the nectar of S-morphs increased significantly and total relative contents of secondary compounds in L-morphs showed no obvious changes. Nectar robbing could decrease female fitness by decreasing pollen germination rate and thus decreasing seed set. Nectar robbing had no significant effects on male fitness. Robbed flowers were less likely to be visited by hawkmoth pollinators, especially in S-morphs. These results suggest that nectar robbing could directly and indirectly decrease the female fitness of T. sinensis, and different morphs have evolved different defense mechanisms in response to nectar-robbing pressure.
Collapse
Affiliation(s)
- Xiaoyue Wang
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern ChinaGuizhou Normal UniversityGuiyangChina
- School of Life SciencesGuizhou Normal UniversityGuiyangChina
| | - Renxiu Yao
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern ChinaGuizhou Normal UniversityGuiyangChina
- School of Life SciencesGuizhou Normal UniversityGuiyangChina
| | - Xiaoqin Lv
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern ChinaGuizhou Normal UniversityGuiyangChina
- School of Life SciencesGuizhou Normal UniversityGuiyangChina
| | - Yin Yi
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern ChinaGuizhou Normal UniversityGuiyangChina
- School of Life SciencesGuizhou Normal UniversityGuiyangChina
| | - Xiaoxin Tang
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern ChinaGuizhou Normal UniversityGuiyangChina
- School of Life SciencesGuizhou Normal UniversityGuiyangChina
| |
Collapse
|
32
|
Hendriks KP, Kiefer C, Al-Shehbaz IA, Bailey CD, Hooft van Huysduynen A, Nikolov LA, Nauheimer L, Zuntini AR, German DA, Franzke A, Koch MA, Lysak MA, Toro-Núñez Ó, Özüdoğru B, Invernón VR, Walden N, Maurin O, Hay NM, Shushkov P, Mandáková T, Schranz ME, Thulin M, Windham MD, Rešetnik I, Španiel S, Ly E, Pires JC, Harkess A, Neuffer B, Vogt R, Bräuchler C, Rainer H, Janssens SB, Schmull M, Forrest A, Guggisberg A, Zmarzty S, Lepschi BJ, Scarlett N, Stauffer FW, Schönberger I, Heenan P, Baker WJ, Forest F, Mummenhoff K, Lens F. Global Brassicaceae phylogeny based on filtering of 1,000-gene dataset. Curr Biol 2023; 33:4052-4068.e6. [PMID: 37659415 DOI: 10.1016/j.cub.2023.08.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/22/2023] [Accepted: 08/08/2023] [Indexed: 09/04/2023]
Abstract
The mustard family (Brassicaceae) is a scientifically and economically important family, containing the model plant Arabidopsis thaliana and numerous crop species that feed billions worldwide. Despite its relevance, most phylogenetic trees of the family are incompletely sampled and often contain poorly supported branches. Here, we present the most complete Brassicaceae genus-level family phylogenies to date (Brassicaceae Tree of Life or BrassiToL) based on nuclear (1,081 genes, 319 of the 349 genera; 57 of the 58 tribes) and plastome (60 genes, 265 genera; all tribes) data. We found cytonuclear discordance between the two, which is likely a result of rampant hybridization among closely and more distantly related lineages. To evaluate the impact of such hybridization on the nuclear phylogeny reconstruction, we performed five different gene sampling routines, which increasingly removed putatively paralog genes. Our cleaned subset of 297 genes revealed high support for the tribes, whereas support for the main lineages (supertribes) was moderate. Calibration based on the 20 most clock-like nuclear genes suggests a late Eocene to late Oligocene origin of the family. Finally, our results strongly support a recently published new family classification, dividing the family into two subfamilies (one with five supertribes), together representing 58 tribes. This includes five recently described or re-established tribes, including Arabidopsideae, a monogeneric tribe accommodating Arabidopsis without any close relatives. With a worldwide community of thousands of researchers working on Brassicaceae and its diverse members, our new genus-level family phylogeny will be an indispensable tool for studies on biodiversity and plant biology.
Collapse
Affiliation(s)
- Kasper P Hendriks
- Department of Biology, Botany, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany; Functional Traits Group, Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands.
| | - Christiane Kiefer
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | | | - C Donovan Bailey
- Department of Biology, New Mexico State University, PO Box 30001, MSC 3AF, Las Cruces, NM 88003, USA
| | - Alex Hooft van Huysduynen
- Functional Traits Group, Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands; Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Lachezar A Nikolov
- Department of Molecular, Cell and Developmental Biology, University of California, 610 Charles E. Young Dr. S., Los Angeles, CA 90095, USA
| | - Lars Nauheimer
- Australian Tropical Herbarium, James Cook University, PO Box 6811, Cairns, QLD 4870, Australia
| | | | - Dmitry A German
- South-Siberian Botanical Garden, Altai State University, Barnaul, Lesosechnaya Ulitsa, 25, Barnaul, Altai Krai, Russia
| | - Andreas Franzke
- Heidelberg Botanic Garden, Heidelberg University, Im Neuenheimer Feld 361, 69120 Heidelberg, Germany
| | - Marcus A Koch
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Martin A Lysak
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Óscar Toro-Núñez
- Departamento de Botánica, Universidad de Concepción, Barrio Universitario, Concepción, Chile
| | - Barış Özüdoğru
- Department of Biology, Hacettepe University, Beytepe, Ankara 06800, Türkiye
| | - Vanessa R Invernón
- Sorbonne Université, Muséum National d'Histoire Naturelle, Institut de Systématique, Évolution, Biodiversité (ISYEB), CP 39, 57 rue Cuvier, 75231 Paris Cedex 05, France
| | - Nora Walden
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Olivier Maurin
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Nikolai M Hay
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Philip Shushkov
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN 47405, USA
| | - Terezie Mandáková
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - M Eric Schranz
- Biosystematics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Mats Thulin
- Department of Organismal Biology, Uppsala University, Norbyvägen 18, 752 36 Uppsala, Sweden
| | | | - Ivana Rešetnik
- Department of Biology, University of Zagreb, Marulićev trg 20/II, 10000 Zagreb, Croatia
| | - Stanislav Španiel
- Institute of Botany, Slovak Academy of Sciences, Plant Science and Biodiversity Centre, Dúbravská cesta 9, 845 23 Bratislava, Slovakia
| | - Elfy Ly
- Functional Traits Group, Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands; Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - J Chris Pires
- Soil and Crop Sciences, Colorado State University, 307 University Ave., Fort Collins, CO 80523-1170, USA
| | - Alex Harkess
- HudsonAlpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL 35806, USA
| | - Barbara Neuffer
- Department of Biology, Botany, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
| | - Robert Vogt
- Botanischer Garten und Botanisches Museum, Freie Universität Berlin, Königin-Luise-Straße 6-8, 14195 Berlin, Germany
| | - Christian Bräuchler
- Department of Botany, Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria
| | - Heimo Rainer
- Department of Botany, Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria
| | - Steven B Janssens
- Department of Biology, KU Leuven, Kasteelpark Arenberg 31 - box 2435, 3001 Leuven, Belgium; Meise Botanic Garden, Nieuwelaan 38, 1860 Meise, Belgium
| | - Michaela Schmull
- Harvard University Herbaria, 22 Divinity Ave., Cambridge, MA 02138, USA
| | - Alan Forrest
- Centre for Middle Eastern Plants, Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK
| | - Alessia Guggisberg
- ETH Zürich, Institut für Integrative Biologie, Universitätstrasse 16, 8092 Zürich, Switzerland
| | - Sue Zmarzty
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Brendan J Lepschi
- Australian National Herbarium, Centre for Australian National Biodiversity Research, Clunies Ross St, Acton, ACT 2601, Australia
| | - Neville Scarlett
- La Trobe University, Plenty Road and Kingsbury Dr., Bundoora, VIC 3086, Australia
| | - Fred W Stauffer
- Conservatory and Botanic Gardens of Geneva, CP 60, Chambésy, 1292 Geneva, Switzerland
| | - Ines Schönberger
- Manaaki Whenua Landcare Research, Allan Herbarium, PO Box 69040, Lincoln, New Zealand
| | - Peter Heenan
- Manaaki Whenua Landcare Research, Allan Herbarium, PO Box 69040, Lincoln, New Zealand
| | | | - Félix Forest
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Klaus Mummenhoff
- Department of Biology, Botany, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany.
| | - Frederic Lens
- Functional Traits Group, Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands; Institute of Biology Leiden, Plant Sciences, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands.
| |
Collapse
|
33
|
Burbano HA, Gutaker RM. Ancient DNA genomics and the renaissance of herbaria. Science 2023; 382:59-63. [PMID: 37797028 DOI: 10.1126/science.adi1180] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/02/2023] [Indexed: 10/07/2023]
Abstract
Herbaria are undergoing a renaissance as valuable sources of genomic data for exploring plant evolution, ecology, and diversity. Ancient DNA retrieved from herbarium specimens can provide unprecedented glimpses into past plant communities, their interactions with biotic and abiotic factors, and the genetic changes that have occurred over time. Here, we highlight recent advances in the field of herbarium genomics and discuss the challenges and opportunities of combining data from modern and time-stamped historical specimens. We also describe how integrating herbarium genomics data with other data types can yield substantial insights into the evolutionary and ecological processes that shape plant communities. Herbarium genomic analysis is a tool for understanding plant life and informing conservation efforts in the face of dire environmental challenges.
Collapse
Affiliation(s)
- Hernán A Burbano
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Rafal M Gutaker
- Royal Botanic Gardens, Kew, Kew Green, Richmond, Surrey TW9 3AE, UK
| |
Collapse
|
34
|
Stephens RE, Gallagher RV, Dun L, Cornwell W, Sauquet H. Insect pollination for most of angiosperm evolutionary history. THE NEW PHYTOLOGIST 2023; 240:880-891. [PMID: 37276503 DOI: 10.1111/nph.18993] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/30/2023] [Indexed: 06/07/2023]
Abstract
Most contemporary angiosperms (flowering plants) are insect pollinated, but pollination by wind, water or vertebrates occurs in many lineages. Though evidence suggests insect pollination may be ancestral in angiosperms, this is yet to be assessed across the full phylogeny. Here, we reconstruct the ancestral pollination mode of angiosperms and quantify the timing and environmental associations of pollination shifts. We use a robust, dated phylogeny and species-level sampling across all angiosperm families to model the evolution of pollination modes. Data on the pollination system or syndrome of 1160 species were collated from the primary literature. Angiosperms were ancestrally insect pollinated, and insects have pollinated angiosperms for c. 86% of angiosperm evolutionary history. Wind pollination evolved at least 42 times, with few reversals to animal pollination. Transitions between insect and vertebrate pollination were more frequent: vertebrate pollination evolved at least 39 times from an insect-pollinated ancestor with at least 26 reversals. The probability of wind pollination increases with habitat openness (measured by Leaf Area Index) and distance from the equator. Our reconstruction gives a clear overview of pollination macroevolution across angiosperms, highlighting the long history of interactions between insect pollinators and angiosperms still vital to biodiversity today.
Collapse
Affiliation(s)
- Ruby E Stephens
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
- National Herbarium of New South Wales (NSW), Royal Botanic Gardens and Domain Trust, Sydney, NSW, 2000, Australia
| | - Rachael V Gallagher
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Lily Dun
- National Herbarium of New South Wales (NSW), Royal Botanic Gardens and Domain Trust, Sydney, NSW, 2000, Australia
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Will Cornwell
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Hervé Sauquet
- National Herbarium of New South Wales (NSW), Royal Botanic Gardens and Domain Trust, Sydney, NSW, 2000, Australia
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
35
|
Cerezer FO, Dambros CS, Coelho MTP, Cassemiro FAS, Barreto E, Albert JS, Wüest RO, Graham CH. Accelerated body size evolution in upland environments is correlated with recent speciation in South American freshwater fishes. Nat Commun 2023; 14:6070. [PMID: 37770447 PMCID: PMC10539357 DOI: 10.1038/s41467-023-41812-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023] Open
Abstract
Speciation rates vary greatly among taxa and regions and are shaped by both biotic and abiotic factors. However, the relative importance and interactions of these factors are not well understood. Here we investigate the potential drivers of speciation rates in South American freshwater fishes, the most diverse continental vertebrate fauna, by examining the roles of multiple biotic and abiotic factors. We integrate a dataset on species geographic distribution, phylogenetic, morphological, climatic, and habitat data. We find that Late Neogene-Quaternary speciation events are strongly associated with body-size evolution, particularly in lineages with small body sizes that inhabit higher elevations near the continental periphery. Conversely, the effects of temperature, area, and diversity-dependence, often thought to facilitate speciation, are negligible. By evaluating multiple factors simultaneously, we demonstrate that habitat characteristics associated with elevation, as well as body size evolution, correlate with rapid speciation in South American freshwater fishes. Our study emphasizes the importance of integrative approaches that consider the interplay of biotic and abiotic factors in generating macroecological patterns of species diversity.
Collapse
Affiliation(s)
- Felipe O Cerezer
- Swiss Federal Research Institute for Forest, Snow, and Landscape (WSL), Birmensdorf, Switzerland.
- Programa de Pós-Graduação em Biodiversidade Animal, Departamento de Ecologia e Evolução, Universidade Federal de Santa Maria, Santa Maria, Brazil.
| | - Cristian S Dambros
- Programa de Pós-Graduação em Biodiversidade Animal, Departamento de Ecologia e Evolução, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Marco T P Coelho
- Swiss Federal Research Institute for Forest, Snow, and Landscape (WSL), Birmensdorf, Switzerland
| | - Fernanda A S Cassemiro
- Programa de Pós-Graduação em Ecologia e Evolução, Universidade Federal de Goiás, Goiânia, Brazil
| | - Elisa Barreto
- Swiss Federal Research Institute for Forest, Snow, and Landscape (WSL), Birmensdorf, Switzerland
| | - James S Albert
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, USA
| | - Rafael O Wüest
- Swiss Federal Research Institute for Forest, Snow, and Landscape (WSL), Birmensdorf, Switzerland
| | - Catherine H Graham
- Swiss Federal Research Institute for Forest, Snow, and Landscape (WSL), Birmensdorf, Switzerland
| |
Collapse
|
36
|
Corvalán LCJ, Sobreiro MB, Carvalho LR, Dias RO, Braga-Ferreira RS, Targueta CP, Silva-Neto CME, Berton BW, Pereira AMS, Diniz-filho JAF, Telles MPC, Nunes R. Chloroplast genome assembly of Serjania erecta Raldk: comparative analysis reveals gene number variation and selection in protein-coding plastid genes of Sapindaceae. FRONTIERS IN PLANT SCIENCE 2023; 14:1258794. [PMID: 37822334 PMCID: PMC10562606 DOI: 10.3389/fpls.2023.1258794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/06/2023] [Indexed: 10/13/2023]
Abstract
Serjania erecta Raldk is an essential genetic resource due to its anti-inflammatory, gastric protection, and anti-Alzheimer properties. However, the genetic and evolutionary aspects of the species remain poorly known. Here, we sequenced and assembled the complete chloroplast genome of S. erecta and used it in a comparative analysis within the Sapindaceae family. S. erecta has a chloroplast genome (cpDNA) of 159,297 bp, divided into a Large Single Copy region (LSC) of 84,556 bp and a Small Single Copy region (SSC) of 18,057 bp that are surrounded by two Inverted Repeat regions (IRa and IRb) of 28,342 bp. Among the 12 species used in the comparative analysis, S. erecta has the fewest long and microsatellite repeats. The genome structure of Sapindaceae species is relatively conserved; the number of genes varies from 128 to 132 genes, and this variation is associated with three main factors: (1) Expansion and retraction events in the size of the IRs, resulting in variations in the number of rpl22, rps19, and rps3 genes; (2) Pseudogenization of the rps2 gene; and (3) Loss or duplication of genes encoding tRNAs, associated with the duplication of trnH-GUG in X. sorbifolium and the absence of trnT-CGU in the Dodonaeoideae subfamily. We identified 10 and 11 mutational hotspots for Sapindaceae and Sapindoideae, respectively, and identified six highly diverse regions (tRNA-Lys - rps16, ndhC - tRNA-Val, petA - psbJ, ndhF, rpl32 - ccsA, and ycf1) are found in both groups, which show potential for the development of DNA barcode markers for molecular taxonomic identification of Serjania. We identified that the psaI gene evolves under neutrality in Sapindaceae, while all other chloroplast genes are under strong negative selection. However, local positive selection exists in the ndhF, rpoC2, ycf1, and ycf2 genes. The genes ndhF and ycf1 also present high nucleotide diversity and local positive selection, demonstrating significant potential as markers. Our findings include providing the first chloroplast genome of a member of the Paullinieae tribe. Furthermore, we identified patterns in variations in the number of genes and selection in genes possibly associated with the family's evolutionary history.
Collapse
Affiliation(s)
| | - Mariane B. Sobreiro
- Laboratório de Genética & Biodiversidade, Universidade Federal de Goiás, Goiânia, Brazil
| | - Larissa R. Carvalho
- Laboratório de Genética & Biodiversidade, Universidade Federal de Goiás, Goiânia, Brazil
| | - Renata O. Dias
- Laboratório de Genética & Biodiversidade, Universidade Federal de Goiás, Goiânia, Brazil
| | - Ramilla S. Braga-Ferreira
- Laboratório de Genética & Biodiversidade, Universidade Federal de Goiás, Goiânia, Brazil
- Instituto de Ciências Exatas e Naturais, Universidade Federal de Rondonópolis, Rondonópolis, Brazil
| | - Cintia P. Targueta
- Laboratório de Genética & Biodiversidade, Universidade Federal de Goiás, Goiânia, Brazil
| | | | | | | | - José A. F. Diniz-filho
- Laboratório de Ecologia Teórica e Síntese, Universidade Federal de Goiás, Goiânia, Brazil
| | - Mariana P. C. Telles
- Laboratório de Genética & Biodiversidade, Universidade Federal de Goiás, Goiânia, Brazil
- Escola de Ciências Médicas e da Vida, Pontifícia Universidade Católica de Goiás, Goiânia, Brazil
| | - Rhewter Nunes
- Laboratório de Genética & Biodiversidade, Universidade Federal de Goiás, Goiânia, Brazil
- Instituto Federal de Goiás, Goiás, Brazil
| |
Collapse
|
37
|
Thompson JB, Ramírez-Barahona S. No phylogenetic evidence for angiosperm mass extinction at the Cretaceous-Palaeogene (K-Pg) boundary. Biol Lett 2023; 19:20230314. [PMID: 37700701 PMCID: PMC10498348 DOI: 10.1098/rsbl.2023.0314] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 08/21/2023] [Indexed: 09/14/2023] Open
Abstract
The Cretaceous-Palaeogene mass extinction event (K-Pg) witnessed upwards of 75% of animal species going extinct, most notably among these are the non-avian dinosaurs. A major question in macroevolution is whether this extinction event influenced the rise of flowering plants (angiosperms). The fossil record suggests that the K-Pg event had a strong regional impact on angiosperms with up to 75% species extinctions, but only had a minor impact on the extinction rates of major lineages (families and orders). Phylogenetic evidence for angiosperm extinction dynamics through time remains unexplored. By analysing two angiosperm mega-phylogenies containing approximately 32 000-73 000 extant species, here we show relatively constant extinction rates throughout geological time and no evidence for a mass extinction at the K-Pg boundary. Despite high species-level extinction observed in the fossil record, our results support the macroevolutionary resilience of angiosperms to the K-Pg mass extinction event via survival of higher lineages.
Collapse
Affiliation(s)
- Jamie B. Thompson
- The Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, UK
| | | |
Collapse
|
38
|
Huang G, Song L, Du X, Huang X, Wei F. Evolutionary genomics of camouflage innovation in the orchid mantis. Nat Commun 2023; 14:4821. [PMID: 37563121 PMCID: PMC10415354 DOI: 10.1038/s41467-023-40355-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023] Open
Abstract
The orchid mantises achieve camouflage with morphological modifications in body color and pattern, providing an interesting model for understanding phenotypic innovation. However, a reference genome is lacking for the order Mantodea. To unveil the mechanisms of plant-mimicking body coloration and patterns, we performed de novo assembly of two chromosome-level genomes of the orchid mantis and its close relative, the dead leaf mantis. Comparative genomic analysis revealed that the Scarlet gene plays an important role in the synthesis of xanthommatin, an important pigment for mantis camouflage coloration. Combining developmental transcriptomic analysis and genetic engineering experiments, we found that the cuticle was an essential component of the 'petal-like' enlargement, and specific expression in the ventral femur was controlled by Wnt signaling. The prolonged expression of Ultrabithorax (Ubx) accompanied by femoral expansion suggested that Ubx determines leg remodeling in the early developmental stage. We also found evidence of evolution of the Trypsin gene family for insectivory adaptation and ecdysone-dependent sexual dimorphism in body size. Overall, our study presents new genome catalogs and reveals the genetic and evolutionary mechanisms underlying the unique camouflage of the praying mantis, providing evolutionary developmental insights into phenotypic innovation and adaptation.
Collapse
Affiliation(s)
- Guangping Huang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lingyun Song
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Du
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Huang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fuwen Wei
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
39
|
López-Martínez AM, Schönenberger J, von Balthazar M, González-Martínez CA, Ramírez-Barahona S, Sauquet H, Magallón S. Integrating Fossil Flowers into the Angiosperm Phylogeny Using Molecular and Morphological Evidence. Syst Biol 2023; 72:837-855. [PMID: 36995161 DOI: 10.1093/sysbio/syad017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Fossils are essential to infer past evolutionary processes. The assignment of fossils to extant clades has traditionally relied on morphological similarity and on apomorphies shared with extant taxa. The use of explicit phylogenetic analyses to establish fossil affinities has so far remained limited. In this study, we built a comprehensive framework to investigate the phylogenetic placement of 24 exceptionally preserved fossil flowers. For this, we assembled a new species-level data set of 30 floral traits for 1201 extant species that were sampled to capture the stem and crown nodes of all angiosperm families. We explored multiple analytical approaches to integrate the fossils into the phylogeny, including different phylogenetic estimation methods, topological-constrained analyses, and combining molecular and morphological data of extant and fossil species. Our results were widely consistent across approaches and showed minor differences in the support of fossils at different phylogenetic positions. The placement of some fossils agrees with previously suggested relationships, but for others, a new placement is inferred. We also identified fossils that are well supported within particular extant families, whereas others showed high phylogenetic uncertainty. Finally, we present recommendations for future analyses combining molecular and morphological evidence, regarding the selection of fossils and appropriate methodologies, and provide some perspectives on how to integrate fossils into the investigation of divergence times and the temporal evolution of morphological traits. [Angiosperms; fossil flowers; phylogenetic uncertainty; RoguePlots.].
Collapse
Affiliation(s)
- Andrea M López-Martínez
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3er Circuito de Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
| | - Jürg Schönenberger
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna 1030, Austria
| | - Maria von Balthazar
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna 1030, Austria
| | - César A González-Martínez
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3er Circuito de Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
| | - Santiago Ramírez-Barahona
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3er Circuito de Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
| | - Hervé Sauquet
- National Herbarium of New South Wales (NSW), Royal Botanic Gardens and Domain Trust, Sydney, NSW 2000, Australia
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Susana Magallón
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3er Circuito de Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
| |
Collapse
|
40
|
Wu Y, Ge Y, Hu H, Stidham TA, Li Z, Bailleul AM, Zhou Z. Intra-gastric phytoliths provide evidence for folivory in basal avialans of the Early Cretaceous Jehol Biota. Nat Commun 2023; 14:4558. [PMID: 37507397 PMCID: PMC10382595 DOI: 10.1038/s41467-023-40311-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Angiosperms became the dominant plant group in early to middle Cretaceous terrestrial ecosystems, coincident with the timing of the earliest pulse of bird diversification. While living birds and angiosperms exhibit strong interactions across pollination/nectivory, seed dispersal/frugivory, and folivory, documentation of the evolutionary origins and construction of that ecological complexity remains scarce in the Mesozoic. Through the first study of preserved in situ dietary derived phytoliths in a nearly complete skeleton of the early diverging avialan clade Jeholornithidae, we provide direct dietary evidence that Jeholornis consumed leaves likely from the magnoliid angiosperm clade, and these results lend further support for early ecological connections among the earliest birds and angiosperms. The broad diet of the early diverging avialan Jeholornis including at least fruits and leaves marks a clear transition in the early evolution of birds in the establishment of an arboreal (angiosperm) herbivore niche in the Early Cretaceous occupied largely by birds today. Morphometric reanalysis of the lower jaw of Jeholornis further supports a generalized morphology shared with other herbivorous birds, including an extant avian folivore, the hoatzin.
Collapse
Affiliation(s)
- Yan Wu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xi-zhi-men-wai Street, 100044, Beijing, China
| | - Yong Ge
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xi-zhi-men-wai Street, 100044, Beijing, China
- Department of Archaeology and Anthropology, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Han Hu
- Department of Earth Sciences, University of Oxford, Oxford, OX1 3AN, UK
| | - Thomas A Stidham
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xi-zhi-men-wai Street, 100044, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhiheng Li
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xi-zhi-men-wai Street, 100044, Beijing, China.
| | - Alida M Bailleul
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xi-zhi-men-wai Street, 100044, Beijing, China
| | - Zhonghe Zhou
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xi-zhi-men-wai Street, 100044, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
41
|
Jaramillo C. The evolution of extant South American tropical biomes. THE NEW PHYTOLOGIST 2023; 239:477-493. [PMID: 37103892 DOI: 10.1111/nph.18931] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/26/2023] [Indexed: 06/15/2023]
Abstract
This review explores the evolution of extant South American tropical biomes, focusing on when and why they developed. Tropical vegetation experienced a radical transformation from being dominated by non-angiosperms at the onset of the Cretaceous to full angiosperm dominance nowadays. Cretaceous tropical biomes do not have extant equivalents; lowland forests, dominated mainly by gymnosperms and ferns, lacked a closed canopy. This condition was radically transformed following the massive extinction event at the Cretaceous-Paleogene boundary. The extant lowland tropical rainforests first developed at the onset of the Cenozoic with a multistratified forest, an angiosperm-dominated closed canopy, and the dominance of the main families of the tropics including legumes. Cenozoic rainforest diversity has increased during global warming and decreased during global cooling. Tropical dry forests emerged at least by the late Eocene, whereas other Neotropical biomes including tropical savannas, montane forests, páramo/puna, and xerophytic forest are much younger, greatly expanding during the late Neogene, probably at the onset of the Quaternary, at the expense of the rainforest.
Collapse
Affiliation(s)
- Carlos Jaramillo
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Panama City, Panama
| |
Collapse
|
42
|
Vera-Paz SI, Granados Mendoza C, Díaz Contreras Díaz DD, Jost M, Salazar GA, Rossado AJ, Montes-Azcué CA, Hernández-Gutiérrez R, Magallón S, Sánchez-González LA, Gouda EJ, Cabrera LI, Ramírez-Morillo IM, Flores-Cruz M, Granados-Aguilar X, Martínez-García AL, Hornung-Leoni CT, Barfuss MH, Wanke S. Plastome phylogenomics reveals an early Pliocene North- and Central America colonization by long-distance dispersal from South America of a highly diverse bromeliad lineage. FRONTIERS IN PLANT SCIENCE 2023; 14:1205511. [PMID: 37426962 PMCID: PMC10326849 DOI: 10.3389/fpls.2023.1205511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023]
Abstract
Understanding the spatial and temporal frameworks of species diversification is fundamental in evolutionary biology. Assessing the geographic origin and dispersal history of highly diverse lineages of rapid diversification can be hindered by the lack of appropriately sampled, resolved, and strongly supported phylogenetic contexts. The use of currently available cost-efficient sequencing strategies allows for the generation of a substantial amount of sequence data for dense taxonomic samplings, which together with well-curated geographic information and biogeographic models allow us to formally test the mode and tempo of dispersal events occurring in quick succession. Here, we assess the spatial and temporal frameworks for the origin and dispersal history of the expanded clade K, a highly diverse Tillandsia subgenus Tillandsia (Bromeliaceae, Poales) lineage hypothesized to have undergone a rapid radiation across the Neotropics. We assembled full plastomes from Hyb-Seq data for a dense taxon sampling of the expanded clade K plus a careful selection of outgroup species and used them to estimate a time- calibrated phylogenetic framework. This dated phylogenetic hypothesis was then used to perform biogeographic model tests and ancestral area reconstructions based on a comprehensive compilation of geographic information. The expanded clade K colonized North and Central America, specifically the Mexican transition zone and the Mesoamerican dominion, by long-distance dispersal from South America at least 4.86 Mya, when most of the Mexican highlands were already formed. Several dispersal events occurred subsequently northward to the southern Nearctic region, eastward to the Caribbean, and southward to the Pacific dominion during the last 2.8 Mya, a period characterized by pronounced climate fluctuations, derived from glacial-interglacial climate oscillations, and substantial volcanic activity, mainly in the Trans-Mexican Volcanic Belt. Our taxon sampling design allowed us to calibrate for the first time several nodes, not only within the expanded clade K focal group but also in other Tillandsioideae lineages. We expect that this dated phylogenetic framework will facilitate future macroevolutionary studies and provide reference age estimates to perform secondary calibrations for other Tillandsioideae lineages.
Collapse
Affiliation(s)
- Sandra I. Vera-Paz
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carolina Granados Mendoza
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
| | - Daniel D. Díaz Contreras Díaz
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Matthias Jost
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
| | - Gerardo A. Salazar
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Andrés J. Rossado
- Laboratorio de Sistemática de Plantas Vasculares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Claudia A. Montes-Azcué
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rebeca Hernández-Gutiérrez
- Departament of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, United States
| | - Susana Magallón
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis A. Sánchez-González
- Museo de Zoología “Alfonso L. Herrera”, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Eric J. Gouda
- Botanical Garden, Utrecht University, Utrecht, Netherlands
| | - Lidia I. Cabrera
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - María Flores-Cruz
- Departamento El Hombre y su Ambiente, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Xochimilco, Mexico City, Mexico
| | - Xochitl Granados-Aguilar
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ana L. Martínez-García
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Investigaciones Biológicas, Herbario HGOM, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Hidalgo, Mexico
| | - Claudia T. Hornung-Leoni
- Centro de Investigaciones Biológicas, Herbario HGOM, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Hidalgo, Mexico
| | - Michael H.J. Barfuss
- Departament of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Stefan Wanke
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
43
|
Carruthers T, Scotland RW. Deconstructing age estimates for angiosperms. Mol Phylogenet Evol 2023:107861. [PMID: 37329931 DOI: 10.1016/j.ympev.2023.107861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023]
Abstract
Estimates of the age of angiosperms from molecular phylogenies vary considerably. As in all estimates of evolutionary timescales from phylogenies, generating these estimates requires assumptions about the rate that molecular sequences are evolving (using clock models) and the time duration of the branches in a phylogeny (using fossil calibrations and branching processes). Often, it is difficult to demonstrate that these assumptions reflect current knowledge of molecular evolution or the fossil record. In this study we re-estimate the age of angiosperms using a minimal set of assumptions, therefore avoiding many of the assumptions inherent to other methods. The age estimates we generate are similar for each of the four datasets analysed, ranging from 130 to 400 Ma, but are far less precise than in previous studies. We demonstrate that this reduction in precision results from making less stringent assumptions about both rate and time, and that the analysed molecular dataset has very little effect on age estimates.
Collapse
Affiliation(s)
- Tom Carruthers
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Robert W Scotland
- Department of Biology, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
| |
Collapse
|
44
|
Kahnt B, Theodorou P, Grimm-Seyfarth A, Onstein RE. When lizards try out a more plant-based lifestyle: The macroevolution of mutualistic lizard-plant-interactions (Squamata: Sauria/Lacertilia). Mol Phylogenet Evol 2023:107839. [PMID: 37290582 DOI: 10.1016/j.ympev.2023.107839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 05/12/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Pollination and seed dispersal of plants by animals are key mutualistic processes for the conservation of plant diversity and ecosystem functioning. Although different animals frequently act as pollinators or seed dispersers, some species can provide both functions, so-called 'double mutualists', suggesting that the evolution of pollination and seed dispersal may be linked. Here, we assess the macroevolution of mutualistic behaviours in lizards (Lacertilia) by applying comparative methods to a phylogeny comprising 2,838 species. We found that both flower visitation (potential pollination) (recorded in 64 species [2.3% of total] across 9 families) and seed dispersal (recorded in 382 species [13,5% of total] across 26 families) have evolved repeatedly in Lacertilia. Furthermore, we found that seed dispersal activity pre-dated flower visitation and that the evolution of seed dispersal activity and flower visitation was correlated, illustrating a potential evolutionary mechanism behind the emergence of double mutualisms. Finally, we provide evidence that lineages with flower visitation or seed dispersal activity have higher diversification rates than lineages lacking these behaviours. Our study illustrates the repeated innovation of (double) mutualisms across Lacertilia and we argue that island settings may provide the ecological conditions under which (double) mutualisms persist over macroevolutionary timescales.
Collapse
Affiliation(s)
- Belinda Kahnt
- General Zoology, Institute of Biology, Martin-Luther-University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany.
| | - Panagiotis Theodorou
- General Zoology, Institute of Biology, Martin-Luther-University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
| | - Annegret Grimm-Seyfarth
- Department of Conservation Biology and Social-Ecological Systems, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Renske E Onstein
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany; Naturalis Biodiversity Center, Darwinweg, 2 2333CR Leiden, the Netherlands
| |
Collapse
|
45
|
Gobo WV, Kunzmann L, Iannuzzi R, Dos Santos TB, da Conceição DM, Rodrigues do Nascimento D, da Silva Filho WF, Bachelier JB, Coiffard C. A new remarkable Early Cretaceous nelumbonaceous fossil bridges the gap between herbaceous aquatic and woody protealeans. Sci Rep 2023; 13:8978. [PMID: 37268714 DOI: 10.1038/s41598-023-33356-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/12/2023] [Indexed: 06/04/2023] Open
Abstract
Dating back to the late Early Cretaceous, the macrofossil record of the iconic lotus family (Nelumbonaceae) is one of the oldest of flowering plants and suggests that their unmistakable leaves and nutlets embedded in large pitted receptacular fruits evolved relatively little in the 100 million years since their first known appearance. Here we describe a new fossil from the late Barremian/Aptian Crato Formation flora (NE Brazil) with both vegetative and reproductive structures, Notocyamus hydrophobus gen. nov. et sp. nov., which is now the oldest and most complete fossil record of Nelumbonaceae. In addition, it displays a unique mosaic of ancestral and derived macro- and micromorphological traits that has never been documented before in this family. This new Brazilian fossil-species also provides a rare illustration of the potential morphological and anatomical transitions experienced by Nelumbonaceae prior to a long period of relative stasis. Its potential plesiomorphic and apomorphic features shared with Proteaceae and Platanaceae not only fill a major morphological gap within Proteales but also provide new support for their unexpected relationships first suggested by molecular phylogenies.
Collapse
Affiliation(s)
- William Vieira Gobo
- Departamento de Paleontologia e Estratigrafia, Universidade Federal do Rio Grande do Sul (UFRGS), Rio Grande do Sul, Ave. Bento Gonçalves 9500, Porto Alegre, 91501-970, Brazil.
| | - Lutz Kunzmann
- Abteilung Museum für Mineralogie und Geologie, Senckenberg Naturhistorische Sammlungen Dresden, Königsbrücker Landstrasse. 159, D-01109, Dresden, Germany.
| | - Roberto Iannuzzi
- Departamento de Paleontologia e Estratigrafia, Universidade Federal do Rio Grande do Sul (UFRGS), Rio Grande do Sul, Ave. Bento Gonçalves 9500, Porto Alegre, 91501-970, Brazil
| | - Thamiris Barbosa Dos Santos
- Departamento de Paleontologia e Estratigrafia, Universidade Federal do Rio Grande do Sul (UFRGS), Rio Grande do Sul, Ave. Bento Gonçalves 9500, Porto Alegre, 91501-970, Brazil
| | - Domingas Maria da Conceição
- Universidade Regional do Cariri (URCA), St. Cel. Antônio Luíz 1161, Museu de Paleontologia Plácido Cidade Nuvens, Crato, Ceará, 63105-010, Brazil
| | - Daniel Rodrigues do Nascimento
- Departamento de Geologia, Universidade Federal do Ceará (UFC), Campus do Pici - 912, Fortaleza, Ceará, 60440-554, Brazil
| | | | - Julien B Bachelier
- Structural and Functional Plant Diversity Group, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Altensteinstrasse 6, 14195, Berlin, Germany
| | - Clément Coiffard
- Structural and Functional Plant Diversity Group, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Altensteinstrasse 6, 14195, Berlin, Germany
| |
Collapse
|
46
|
Yunrui X, Rui S, Xing Y, Zhe Z, Keqin Z, Nanyi Z. Comparative transcriptomic analysis reveals differences in MADS-box genes of different hypericum in Changbai Mountains. Ecol Evol 2023; 13:e10196. [PMID: 37325719 PMCID: PMC10261973 DOI: 10.1002/ece3.10196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 04/13/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023] Open
Abstract
To explore the differences between the hypericum in the Changbai Mountains, we carried out a transcriptome analysis of two common hypericums in the area, which was Hypericum attenuatum Choisy and Hypericum longistylum Oliv. We screened the MADS-box genes to analyze divergence time and evolutionary selection expression, and determine their expression levels. The results showed that we detected 9287 differentially expressed genes in the two species, of which shared 6044 genes by the two species. Analysis of the selected MADS genes revealed that the species was in an environment adapted to its natural evolution. The divergence time estimation showed that the segregation of these genes in the two species was related to the changes of external environment and genome replication events. The results of relative expression showed that the later flowering period of Hypericum attenuatum Choisy was related to the higher expression of the SVP (SHORT VEGETATIVE PHASE) and the AGL12 (AGAMOUS LIKE 12), while the lower expression of the FUL (FRUITFULL).
Collapse
Affiliation(s)
- Xia Yunrui
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland ScienceJilin Agricultural UniversityChangchunJilin ProvinceChina
| | - Song Rui
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland ScienceJilin Agricultural UniversityChangchunJilin ProvinceChina
| | - Yang Xing
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland ScienceJilin Agricultural UniversityChangchunJilin ProvinceChina
| | - Zhao Zhe
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland ScienceJilin Agricultural UniversityChangchunJilin ProvinceChina
| | - Zhang Keqin
- Jilin Agricultural Science and Technology UniversityJilinJilin ProvinceChina
| | - Zhang Nanyi
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland ScienceJilin Agricultural UniversityChangchunJilin ProvinceChina
| |
Collapse
|
47
|
Deanna R, Martínez C, Manchester S, Wilf P, Campos A, Knapp S, Chiarini FE, Barboza GE, Bernardello G, Sauquet H, Dean E, Orejuela A, Smith SD. Fossil berries reveal global radiation of the nightshade family by the early Cenozoic. THE NEW PHYTOLOGIST 2023; 238:2685-2697. [PMID: 36960534 DOI: 10.1111/nph.18904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/14/2023] [Indexed: 05/19/2023]
Abstract
Fossil discoveries can transform our understanding of plant diversification over time and space. Recently described fossils in many plant families have pushed their known records farther back in time, pointing to alternative scenarios for their origin and spread. Here, we describe two new Eocene fossil berries of the nightshade family (Solanaceae) from the Esmeraldas Formation in Colombia and the Green River Formation in Colorado (USA). The placement of the fossils was assessed using clustering and parsimony analyses based on 10 discrete and five continuous characters, which were also scored in 291 extant taxa. The Colombian fossil grouped with members of the tomatillo subtribe, and the Coloradan fossil aligned with the chili pepper tribe. Along with two previously reported early Eocene fossils from the tomatillo genus, these findings indicate that Solanaceae were distributed at least from southern South America to northwestern North America by the early Eocene. Together with two other recently discovered Eocene berries, these fossils demonstrate that the diverse berry clade and, in turn, the entire nightshade family, is much older and was much more widespread in the past than previously thought.
Collapse
Affiliation(s)
- Rocío Deanna
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 1800 Colorado Avenue, Boulder, CO, 80309-0334, USA
- Instituto Multidisciplinario de Biología Vegetal, IMBIV (CONICET-UNC), Vélez Sarsfield 299, Córdoba, 5000, Argentina
- Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende y Haya de la Torre, Córdoba, 5000, Argentina
| | - Camila Martínez
- Biological Science Department, Universidad EAFIT, Carrera 49, Cl. 7 Sur #50, Medellín, 050022, Antioquia, Colombia
- Center for Tropical Paleoecology and Archaeology, Smithsonian Tropical Research Institute, Luis Clement Avenue, Bldg. 401 Tupper Balboa Ancon, Panama City, 0843-03092, Panama
| | - Steven Manchester
- Florida Museum of Natural History, University of Florida, 3215 Hull Rd, Gainesville, FL, 32611, USA
| | - Peter Wilf
- Department of Geosciences and Earth and Environmental Systems Institute, Pennsylvania State University, State College, 201 Old Main, University Park, PA, 16802, USA
| | - Abel Campos
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 1800 Colorado Avenue, Boulder, CO, 80309-0334, USA
| | - Sandra Knapp
- Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Franco E Chiarini
- Instituto Multidisciplinario de Biología Vegetal, IMBIV (CONICET-UNC), Vélez Sarsfield 299, Córdoba, 5000, Argentina
| | - Gloria E Barboza
- Instituto Multidisciplinario de Biología Vegetal, IMBIV (CONICET-UNC), Vélez Sarsfield 299, Córdoba, 5000, Argentina
| | - Gabriel Bernardello
- Instituto Multidisciplinario de Biología Vegetal, IMBIV (CONICET-UNC), Vélez Sarsfield 299, Córdoba, 5000, Argentina
| | - Hervé Sauquet
- National Herbarium of New South Wales (NSW), Royal Botanic Gardens and Domain Trust, Mrs Macquaries Road, Sydney, NSW, 2000, Australia
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, High St Kensington, Sydney, NSW, 2052, Australia
| | - Ellen Dean
- Center for Plant Diversity, Department of Plant Sciences, University of California, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Andrés Orejuela
- Grupo de Investigación en Recursos Naturales Amazónicos - GRAM, Facultad de Ingenierías y Ciencias Básicas, Instituto Tecnológico del Putumayo - ITP, Calle 17, Carrera 17, Mocoa, Putumayo, Colombia
- Subdirección científica, Jardín Botánico de Bogotá José Celestino Mutis, Calle 63 #68-95, Bogotá, DC, Colombia
| | - Stacey D Smith
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 1800 Colorado Avenue, Boulder, CO, 80309-0334, USA
| |
Collapse
|
48
|
Cai L. Rethinking convergence in plant parasitism through the lens of molecular and population genetic processes. AMERICAN JOURNAL OF BOTANY 2023; 110:e16174. [PMID: 37154532 DOI: 10.1002/ajb2.16174] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/10/2023]
Abstract
The autotrophic lifestyle of photosynthetic plants has profoundly shaped their body plan, physiology, and gene repertoire. Shifts to parasitism and heterotrophy have evolved at least 12 times in more than 4000 species, and this transition has consequently left major evolutionary footprints among these parasitic lineages. Features that are otherwise rare at the molecular level and beyond have evolved repetitively, including reduced vegetative bodies, carrion-mimicking during reproduction, and the incorporation of alien genetic material. Here, I propose an integrated conceptual model, referred to as the funnel model, to define the general evolutionary trajectory of parasitic plants and provide a mechanistic explanation for their convergent evolution. This model connects our empirical understanding of gene regulatory networks in flowering plants with classical theories of molecular and population genetics. It emphasizes that the cascading effects brought about by the loss of photosynthesis may be a major force constraining the physiological capacity of parasitic plants and shaping their genomic landscapes. Here I review recent studies on the anatomy, physiology, and genetics of parasitic plants that lend support to this photosynthesis-centered funnel model. Focusing on nonphotosynthetic holoparasites, I elucidate how they may inevitably reach an evolutionary terminal status (i.e., extinction) and highlight the utility of a general, explicitly described and falsifiable model for future studies of parasitic plants.
Collapse
Affiliation(s)
- Liming Cai
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
49
|
Wilf P, Iglesias A, Gandolfo MA. The first Gondwanan Euphorbiaceae fossils reset the biogeographic history of the Macaranga-Mallotus clade. AMERICAN JOURNAL OF BOTANY 2023; 110:e16169. [PMID: 37128981 DOI: 10.1002/ajb2.16169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 05/03/2023]
Abstract
PREMISE The spurge family Euphorbiaceae is prominent in tropical rainforests worldwide, particularly in Asia. There is little consensus on the biogeographic origins of the family or its principal lineages. No confirmed spurge macrofossils have come from Gondwana. METHODS We describe the first Gondwanan macrofossils of Euphorbiaceae, represented by two infructescences and associated peltate leaves from the early Eocene (52 Myr ago [Ma]) Laguna del Hunco site in Chubut, Argentina. RESULTS The infructescences are panicles bearing tiny, pedicellate, spineless capsular fruits with two locules, two axile lenticular seeds, and two unbranched, plumose stigmas. The fossils' character combination only occurs today in some species of the Macaranga-Mallotus clade (MMC; Euphorbiaceae), a widespread Old-World understory group often thought to have tropical Asian origins. The associated leaves are consistent with extant Macaranga. CONCLUSIONS The new fossils are the oldest known for the MMC, demonstrating its Gondwanan history and marking its divergence by at least 52 Ma. This discovery makes an Asian origin of the MMC unlikely because immense oceanic distances separated Asia and South America 52 Ma. The only other MMC reproductive fossils so far known are also from the southern hemisphere (early Miocene, southern New Zealand), far from the Asian tropics. The MMC, along with many other Gondwanan survivors, most likely entered Asia during the Neogene Sahul-Sunda collision. Our discovery adds to a substantial series of well-dated, well-preserved fossils from one undersampled region, Patagonia, that have changed our understanding of plant biogeographic history.
Collapse
Affiliation(s)
- Peter Wilf
- Department of Geosciences and Earth and Environmental Systems Institute, Pennsylvania State University, University Park, PA, 16802, USA
| | - Ari Iglesias
- Instituto de Investigaciones en Biodiversidad y Medioambiente, Universidad Nacional del Comahue, Consejo Nacional de Investigaciones Científicas y Tecnológicas, San Carlos de Bariloche, Río Negro, R8400FRF, Argentina
| | - María A Gandolfo
- L. H. Bailey Hortorium, Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Museo Paleontológico Egidio Feruglio, Consejo Nacional de Investigaciones Científicas y Técnicas, Trelew, Chubut, 9100, Argentina
| |
Collapse
|
50
|
Messerschmid TFE, Abrahamczyk S, Bañares-Baudet Á, Brilhante MA, Eggli U, Hühn P, Kadereit JW, dos Santos P, de Vos JM, Kadereit G. Inter- and intra-island speciation and their morphological and ecological correlates in Aeonium (Crassulaceae), a species-rich Macaronesian radiation. ANNALS OF BOTANY 2023; 131:697-721. [PMID: 36821492 PMCID: PMC10147336 DOI: 10.1093/aob/mcad033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 02/22/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS The most species-rich and ecologically diverse plant radiation on the Canary Islands is the Aeonium alliance (Crassulaceae). In island radiations like this, speciation can take place either within islands or following dispersal between islands. Aiming at quantifying intra- and inter-island speciation events in the evolution of Aeonium, and exploring their consequences, we hypothesized that (1) intra-island diversification resulted in stronger ecological divergence of sister lineages, and that (2) taxa on islands with a longer history of habitation by Aeonium show stronger ecological differentiation and produce fewer natural hybrids. METHODS We studied the biogeographical and ecological setting of diversification processes in Aeonium with a fully sampled and dated phylogeny inferred using a ddRADseq approach. Ancestral areas and biogeographical events were reconstructed in BioGeoBEARS. Eleven morphological characters and three habitat characteristics were taken into account to quantify the morphological and ecological divergence between sister lineages. A co-occurrence matrix of all Aeonium taxa is presented to assess the spatial separation of taxa on each island. KEY RESULTS We found intra- and inter-island diversification events in almost equal numbers. In lineages that diversified within single islands, morphological and ecological divergence was more pronounced than in lineages derived from inter-island diversification, but only the difference in morphological divergence was significant. Those islands with the longest history of habitation by Aeonium had the lowest percentages of co-occurring and hybridizing taxon pairs compared with islands where Aeonium arrived later. CONCLUSIONS Our findings illustrate the importance of both inter- and intra-island speciation, the latter of which is potentially sympatric speciation. Speciation on the same island entailed significantly higher levels of morphological divergence compared with inter-island speciation, but ecological divergence was not significantly different. Longer periods of shared island habitation resulted in the evolution of a higher degree of spatial separation and stronger reproductive barriers.
Collapse
Affiliation(s)
- Thibaud F E Messerschmid
- Botanischer Garten München-Nymphenburg, Staatliche Naturwissenschaftliche Sammlungen Bayerns, 80638 München, Germany
- Prinzessin Therese von Bayern-Lehrstuhl für Systematik, Biodiversität & Evolution der Pflanzen, Ludwig-Maximilians-Universität München, 80638 München, Germany
| | - Stefan Abrahamczyk
- Nees-Institut für Biodiversität der Pflanzen, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
- Abteilung Botanik, Staatliches Museum für Naturkunde Stuttgart, 70191 Stuttgart, Germany
| | - Ángel Bañares-Baudet
- Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de La Laguna, E-38200 La Laguna, Tenerife, Spain
| | - Miguel A Brilhante
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1340-017 Lisboa, Portugal
| | - Urs Eggli
- Sukkulenten-Sammlung Zürich/Grün Stadt Zürich, 8002 Zürich, Switzerland
| | - Philipp Hühn
- Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - Joachim W Kadereit
- Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - Patrícia dos Santos
- Centre for Ecology, Evolution and Environmental Changes (cE3c) and Global Change and Sustainability Institute (CHANGE), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Department of Environmental Sciences – Botany, University of Basel, 4056 Basel, Switzerland
| | - Jurriaan M de Vos
- Department of Environmental Sciences – Botany, University of Basel, 4056 Basel, Switzerland
| | - Gudrun Kadereit
- Botanischer Garten München-Nymphenburg, Staatliche Naturwissenschaftliche Sammlungen Bayerns, 80638 München, Germany
- Prinzessin Therese von Bayern-Lehrstuhl für Systematik, Biodiversität & Evolution der Pflanzen, Ludwig-Maximilians-Universität München, 80638 München, Germany
| |
Collapse
|