1
|
Rozman J, Chaithanya K, Yeomans JM, Sknepnek R. Vertex model with internal dissipation enables sustained flows. Nat Commun 2025; 16:530. [PMID: 39789022 PMCID: PMC11718050 DOI: 10.1038/s41467-025-55820-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
Complex tissue flows in epithelia are driven by intra- and inter-cellular processes that generate, maintain, and coordinate mechanical forces. There has been growing evidence that cell shape anisotropy, manifested as nematic order, plays an important role in this process. Here we extend an active nematic vertex model by replacing substrate friction with internal viscous dissipation, dominant in epithelia not supported by a substrate or the extracellular matrix, which are found in many early-stage embryos. When coupled to cell shape anisotropy, the internal viscous dissipation allows for long-range velocity correlations and thus enables the spontaneous emergence of flows with a large degree of spatiotemporal organisation. We demonstrate sustained flow in epithelial sheets confined to a channel, providing a link between the cell-level vertex model of tissue dynamics and continuum active nematics, whose behaviour in a channel is theoretically understood and experimentally realisable. Our findings also show a simple mechanism that could account for collective cell migration correlated over distances large compared to the cell size, as observed during morphogenesis.
Collapse
Affiliation(s)
- Jan Rozman
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK
| | - Kvs Chaithanya
- School of Life Sciences, University of Dundee, Dundee, UK
- School of Science and Engineering, University of Dundee, Dundee, UK
| | - Julia M Yeomans
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK.
| | - Rastko Sknepnek
- School of Life Sciences, University of Dundee, Dundee, UK.
- School of Science and Engineering, University of Dundee, Dundee, UK.
| |
Collapse
|
2
|
Chepizhko O, Armengol-Collado JM, Alexander S, Wagena E, Weigelin B, Giomi L, Friedl P, Zapperi S, La Porta CAM. Confined cell migration along extracellular matrix space in vivo. Proc Natl Acad Sci U S A 2025; 122:e2414009121. [PMID: 39793073 DOI: 10.1073/pnas.2414009121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/24/2024] [Indexed: 01/12/2025] Open
Abstract
Collective migration of cancer cells is often interpreted using concepts derived from the physics of active matter, but the experimental evidence is mostly restricted to observations made in vitro. Here, we study collective invasion of metastatic cancer cells injected into the mouse deep dermis using intravital multiphoton microscopy combined with a skin window technique and three-dimensional quantitative image analysis. We observe a multicellular but low-cohesive migration mode characterized by rotational patterns which self-organize into antiparallel persistent tracks with orientational nematic order. We analyze the deformations induced by the cells in the extracellular matrix and find broadly distributed strain bands with a prevalence of compression. A model of active nematic hydrodynamics is able to describe several statistical features of the experimentally observed flow, suggesting that collective cancer cell invasion can be interpreted as a nematic active fluid in the turbulent regime. Our results help elucidate the migration patterns of cancer cells in vivo and provide quantitative guidance for the development of realistic in vitro and in silico models for collective cell migration.
Collapse
Affiliation(s)
| | | | - Stephanie Alexander
- David H. Koch Center for Applied Research of Genitourinary Cancers, Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77230-1439
- Department of Dermatology and Rudolf Virchow Center, Deutsche Forschungsgemeinschaft Research Center for Experimental Biomedicine, University of Wuerzburg, 97080 Wuerzburg, Germany
| | - Esther Wagena
- Department of Medical Biosciences, Sciences, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Bettina Weigelin
- Department of Medical Biosciences, Sciences, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Luca Giomi
- Instituut-Lorentz, Universiteit Leiden, 2300 RA Leiden, The Netherlands
| | - Peter Friedl
- Department of Medical Biosciences, Sciences, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Stefano Zapperi
- Center for Complexity and Biosystems, Department of Physics, University of Milan, 20133 Milan, Italy
- Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Caterina A M La Porta
- Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy
- Unità Operativa Complessa Maxillo-Facial Surgery and Dentistry Fondazione Istituto di ricovero e cura a carattere scientifico Ca' Granda, Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy
| |
Collapse
|
3
|
Rozman J, Yeomans JM. Cell Sorting in an Active Nematic Vertex Model. PHYSICAL REVIEW LETTERS 2024; 133:248401. [PMID: 39750371 DOI: 10.1103/physrevlett.133.248401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/18/2024] [Indexed: 01/04/2025]
Abstract
We study a mixture of extensile and contractile cells using a vertex model extended to include active nematic stresses. The two cell populations phase separate over time. While phase separation strengthens monotonically with an increasing magnitude of contractile activity, the dependence on extensile activity is nonmonotonic, so that sufficiently high values reduce the extent of sorting. We interpret this by showing that extensile activity renders the system motile, enabling cells to undergo neighbor exchanges. Contractile cells that come into contact as a result are then more likely to stay connected due to an effective attraction arising from contractile activity.
Collapse
|
4
|
Aparicio-Yuste R, Hundsdorfer L, Bastounis EE, Gomez-Benito MJ. Hybrid model to simulate host cell biomechanics and infection spread during intracellular infection of epithelial monolayers. Comput Biol Med 2024; 185:109506. [PMID: 39662314 DOI: 10.1016/j.compbiomed.2024.109506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/19/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024]
Abstract
Mechanical signals are crucial in regulating the response of cells in a monolayer to both physiological and pathological stressors, including intracellular bacterial infections. In particular, during intracellular infection of epithelial cells in monolayer with the food-borne bacterial pathogen Listeria monocytogenes, cellular biomechanics dictates the degree of bacterial dissemination across the monolayer. This occurs through a process whereby surrounder uninfected cells mechanically compete and eventually extrude infected cells. However, the plethora of physical mechanisms involved and their temporal dynamics are still not fully uncovered, which could inform whether they benefit or harm the host. To further investigate these mechanisms, we propose a two-dimensional hybrid computational model that combines an agent-based model with a finite element method to simulate the kinematics and dynamics of epithelial cell monolayers in the absence or presence of infection. The model accurately replicated the impact of cell density on the mechanical behaviour of uninfected monolayers, showing that increased cell density reduces cell motility and coordination of motion, cell fluidity and monolayer stresses. Moreover, when simulating the intercellular spread of infection, the model successfully reproduced the mechanical competition between uninfected and infected cells. Infected cells showed a reduction in cell area, while the surrounder cells migrated towards the infection site, exerting increased monolayer stresses, consistent with our in vitro observations. This model offers a powerful tool for studying epithelial monolayers in health and disease, by providing in silico predictions of cell shapes, kinematics and dynamics that can then be tested experimentally.
Collapse
Affiliation(s)
- Raul Aparicio-Yuste
- Multiscale in Mechanical and Biological Engineering (M2BE), Engineering Research Institute of Aragon (I3A), Department of Mechanical Engineering, Universidad de Zaragoza, Zaragoza, 50018, Spain; Interfaculty Institute of Microbiology and Infection Medicine, Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI, EXC 2124), University of Tuebingen, Tuebingen, 72074, Germany
| | - Lara Hundsdorfer
- Interfaculty Institute of Microbiology and Infection Medicine, Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI, EXC 2124), University of Tuebingen, Tuebingen, 72074, Germany
| | - Effie E Bastounis
- Interfaculty Institute of Microbiology and Infection Medicine, Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI, EXC 2124), University of Tuebingen, Tuebingen, 72074, Germany.
| | - Maria Jose Gomez-Benito
- Multiscale in Mechanical and Biological Engineering (M2BE), Engineering Research Institute of Aragon (I3A), Department of Mechanical Engineering, Universidad de Zaragoza, Zaragoza, 50018, Spain.
| |
Collapse
|
5
|
Houston AJH, Mottram NJ. Spontaneous flows and quantum analogies in heterogeneous active nematic films. COMMUNICATIONS PHYSICS 2024; 7:375. [PMID: 39574428 PMCID: PMC11576538 DOI: 10.1038/s42005-024-01864-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/06/2024] [Indexed: 11/24/2024]
Abstract
Incorporating the inherent heterogeneity of living systems into models of active nematics is essential to provide a more realistic description of biological processes such as bacterial growth, cell dynamics and tissue development. Spontaneous flow of a confined active nematic is a fundamental feature of these systems, in which the role of heterogeneity has not yet been considered. We therefore determine the form of spontaneous flow transition for an active nematic film with heterogeneous activity, identifying a correspondence between the unstable director modes and solutions to Schrödinger's equation. We consider both activity gradients and steps between regions of distinct activity, finding that such variations can change the signature properties of the flow. The threshold activity required for the transition can be raised or lowered, the fluid flux can be reduced or reversed and interfaces in activity induce shear flows. In a biological context fluid flux influences the spread of nutrients while shear flows affect the behaviour of rheotactic microswimmers and can cause the deformation of biofilms. All the effects we identify are found to be strongly dependent on not simply the types of activity present in the film but also on how they are distributed.
Collapse
Affiliation(s)
| | - Nigel J. Mottram
- School of Mathematics and Statistics, University Place, Glasgow, G12 8QQ United Kingdom
| |
Collapse
|
6
|
Balasubramaniam L, Jain S, Dang T, Lagoutte E, Marc Mège R, Chavrier P, Ladoux B, Rossé C. Different Biomechanical Cell Behaviors in an Epithelium Drive Collective Epithelial Cell Extrusion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401573. [PMID: 39291385 PMCID: PMC11558136 DOI: 10.1002/advs.202401573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/30/2024] [Indexed: 09/19/2024]
Abstract
In vertebrates, many organs, such as the kidney and the mammary gland form ductal structures based on the folding of epithelial sheets. The development of these organs relies on coordinated sorting of different cell lineages in both time and space, through mechanisms that remain largely unclear. Tissues are composed of several cell types with distinct biomechanical properties, particularly at cell-cell and cell-substrate boundaries. One hypothesis is that adjacent epithelial layers work in a coordinated manner to shape the tissue. Using in vitro experiments on model epithelial cells, differential expression of atypical Protein Kinase C iota (aPKCi), a key junctional polarity protein, is shown to reinforce cell epithelialization and trigger sorting by tuning cell mechanical properties at the tissue level. In a broader perspective, it is shown that in a heterogeneous epithelial monolayer, in which cell sorting occurs, forces arising from epithelial cell growth under confinement by surrounding cells with different biomechanical properties are sufficient to promote collective cell extrusion and generate emerging 3D organization related to spheroids and buds. Overall, this research sheds light on the role of aPKCi and the biomechanical interplay between distinct epithelial cell lineages in shaping tissue organization, providing insights into the understanding of tissue and organ development.
Collapse
Affiliation(s)
- Lakshmi Balasubramaniam
- Université Paris CitéCNRS, Institut Jacques MonodParisF‐75013France
- Wellcome/Cancer Research UK Gurdon InstituteCambridgeUK
| | - Shreyansh Jain
- Université Paris CitéCNRS, Institut Jacques MonodParisF‐75013France
- Present address:
Transgene S.A.Illkirch–GraffenstadenFrance
| | - Tien Dang
- Université Paris CitéCNRS, Institut Jacques MonodParisF‐75013France
| | - Emilie Lagoutte
- Institut CurieCNRS, UMR144PSL Research UniversityParis75005France
| | - René Marc Mège
- Université Paris CitéCNRS, Institut Jacques MonodParisF‐75013France
| | | | - Benoit Ladoux
- Université Paris CitéCNRS, Institut Jacques MonodParisF‐75013France
- Department of PhysicsFriedrich‐Alexander Universität Erlangen‐Nürnberg91058ErlangenGermany
- Max‐Planck‐Zentrum für Physik und Medizin91054ErlangenGermany
| | - Carine Rossé
- Université Paris CitéCNRS, Institut Jacques MonodParisF‐75013France
- Institut CurieCNRS, UMR144PSL Research UniversityParis75005France
| |
Collapse
|
7
|
Peters FD, Rahman T, Zhang H, Wan LQ. Energetic scaling behavior of patterned epithelium. J Biomech 2024; 176:112342. [PMID: 39342903 PMCID: PMC11560681 DOI: 10.1016/j.jbiomech.2024.112342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Cellular monolayers display various degrees of coordinated motion ranging from the small scale of just a few cells to large multi-cellular scales. This collective migration carries important physical cues for creating proper tissue morphology. Previous studies have demonstrated that the energetics of the epithelial monolayer show a linear variation with time in conjunction with an arrest in monolayer motion after confluency. However, little is known about how the energetics of monolayer development are affected by confined geometries. Here, we demonstrate that micropatterned epithelial monolayers display a non-linear change in energetic variables, which coincides with the large-scale coordination of migration. This non-linear scaling behavior was further seen to be associated with the biased alignment of cells and cell-cell adhesion. These findings provide a new understanding of how developing epithelia may be impacted by different conditions in vivo.
Collapse
Affiliation(s)
- Frank D Peters
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Tasnif Rahman
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Haokang Zhang
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Leo Q Wan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
8
|
Wu P, Sawaki S, Yamauchi K, Yokota K, Hakamada M, Mabuchi M. Long range juxtacrine signalling through cadherin for collective cell orientation. Acta Biomater 2024:S1742-7061(24)00627-5. [PMID: 39454932 DOI: 10.1016/j.actbio.2024.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Many life phenomena, such as development, morphogenesis, tissue remodelling, and wound healing, are often driven by orderly and directional migration of collective cells. However, when cells are randomly oriented or localized disorder exists in orderly oriented collective cells, cell migration cannot occur in an orderly manner although various motion modes such as global rotation and local swirling and/or various motion patterns such as radial pattern and chiral pattern often occur. Therefore, it is important to control cell orientation to ensure the orderly migration of collective cells. Here, we show that it is not force transmission, but juxtacrine signalling through cadherin that plays a critical role in the orientation of collective cells. Surprisingly, juxtacrine signalling for cell orientation reached cells on a plastic dish that were not directly subjected to mechanical stimulation, up to 7 mm away from the actuator. The present study suggests that even weak mechanical stimulation is transmitted in a long range without force transmission through juxtacrine signalling. The long range juxtacrine signalling might play an important role in various life phenomena. STATEMENT OF SIGNIFICANCE: Juxtacrine signalling is direct cell-cell contact-dependent signalling, which plays a crucial role in cell behaviors such as mechanosensing, mechanotransduction and collective cell behaviors, however, there is not enough understanding about juxtacrine signalling. The present study has demonstrated that juxtacrine signalling for collective cell orientation is transmitted over a long range through cadherin. To the best of our knowledge, this is the first report of long range juxtacrine signalling. This finding may lead to the elucidation of various life phenomena such as development, morphogenesis, tissue remodelling, and wound healing.
Collapse
Affiliation(s)
- Peizheng Wu
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto 606-8501, Japan.
| | - Shogo Sawaki
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto 606-8501, Japan
| | - Kei Yamauchi
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto 606-8501, Japan
| | - Kazuki Yokota
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto 606-8501, Japan
| | - Masataka Hakamada
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto 606-8501, Japan
| | - Mamoru Mabuchi
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto 606-8501, Japan
| |
Collapse
|
9
|
Shapeti A, Barrasa-Fano J, Abdel Fattah AR, de Jong J, Sanz-Herrera JA, Pezet M, Assou S, de Vet E, Elahi SA, Ranga A, Faurobert E, Van Oosterwyck H. Force-mediated recruitment and reprogramming of healthy endothelial cells drive vascular lesion growth. Nat Commun 2024; 15:8660. [PMID: 39370485 PMCID: PMC11456588 DOI: 10.1038/s41467-024-52866-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 09/19/2024] [Indexed: 10/08/2024] Open
Abstract
Force-driven cellular interactions are crucial for cancer cell invasion but remain underexplored in vascular abnormalities. Cerebral cavernous malformations (CCM), a vascular abnormality characterized by leaky vessels, involves CCM mutant cells recruiting wild-type endothelial cells to form and expand mosaic lesions. The mechanisms behind this recruitment remain poorly understood. Here, we use an in-vitro model of angiogenic invasion with traction force microscopy to reveal that hyper-angiogenic Ccm2-silenced endothelial cells enhance angiogenic invasion of neighboring wild-type cells through force and extracellular matrix-guided mechanisms. We demonstrate that mechanically hyperactive CCM2-silenced tips guide wild-type cells by transmitting pulling forces and by creating paths in the matrix, in a ROCKs-dependent manner. This is associated with reinforcement of β1 integrin and actin cytoskeleton in wild-type cells. Further, wild-type cells are reprogrammed into stalk cells and activate matrisome and DNA replication programs, thereby initiating proliferation. Our findings reveal how CCM2 mutants hijack wild-type cell functions to fuel lesion growth, providing insight into the etiology of vascular malformations. By integrating biophysical and molecular techniques, we offer tools for studying cell mechanics in tissue heterogeneity and disease progression.
Collapse
Affiliation(s)
- Apeksha Shapeti
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Belgium.
| | - Jorge Barrasa-Fano
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Belgium
| | - Abdel Rahman Abdel Fattah
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Belgium
- CeMM The Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Janne de Jong
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Belgium
| | - José Antonio Sanz-Herrera
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBIS), Seville, Spain
| | - Mylène Pezet
- Univ. Grenoble Alpes, Inserm 1209, CNRS 5309, Institute for Advanced Biosciences, Grenoble, France
| | - Said Assou
- IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Emilie de Vet
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Belgium
| | - Seyed Ali Elahi
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Belgium
- KU Leuven, Department of Movement Sciences, Human Movement Biomechanics Research Group, Leuven, Belgium
| | - Adrian Ranga
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Belgium
| | - Eva Faurobert
- Univ. Grenoble Alpes, Inserm 1209, CNRS 5309, Institute for Advanced Biosciences, Grenoble, France.
| | - Hans Van Oosterwyck
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Belgium.
- KU Leuven, Prometheus, Division of Skeletal Tissue Engineering, Leuven, Belgium.
| |
Collapse
|
10
|
Goswami K, Cherstvy AG, Godec A, Metzler R. Anomalous diffusion of active Brownian particles in responsive elastic gels: Nonergodicity, non-Gaussianity, and distributions of trapping times. Phys Rev E 2024; 110:044609. [PMID: 39562954 DOI: 10.1103/physreve.110.044609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/24/2024] [Indexed: 11/21/2024]
Abstract
Understanding actual transport mechanisms of self-propelled particles (SPPs) in complex elastic gels-such as in the cell cytoplasm, in in vitro networks of chromatin or of F-actin fibers, or in mucus gels-has far-reaching consequences. Implications beyond biology/biophysics are in engineering and medicine, with a particular focus on microrheology and on targeted drug delivery. Here, we examine via extensive computer simulations the dynamics of SPPs in deformable gellike structures responsive to thermal fluctuations. We treat tracer particles comparable to and larger than the mesh size of the gel. We observe distinct trapping events of active tracers at relatively short times, leading to subdiffusion; it is followed by an escape from meshwork-induced traps due to the flexibility of the network, resulting in superdiffusion. We thus find crossovers between different transport regimes. We also find pronounced nonergodicity in the dynamics of SPPs and non-Gaussianity at intermediate times. The distributions of trapping times of the tracers escaping from "cages" in our quasiperiodic gel often reveal the existence of two distinct timescales in the dynamics. At high activity of the tracers these timescales become comparable. Furthermore, we find that the mean waiting time exhibits a power-law dependence on the activity of SPPs (in terms of their Péclet number). Our results additionally showcase both exponential and nonexponential trapping events at high activities. Extensions of this setup are possible, with the factors such as anisotropy of the particles, different topologies of the gel network, and various interactions between the particles (also of a nonlocal nature) to be considered.
Collapse
|
11
|
Chiang M, Hopkins A, Loewe B, Marchetti MC, Marenduzzo D. Intercellular friction and motility drive orientational order in cell monolayers. Proc Natl Acad Sci U S A 2024; 121:e2319310121. [PMID: 39302997 PMCID: PMC11459176 DOI: 10.1073/pnas.2319310121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 07/22/2024] [Indexed: 09/22/2024] Open
Abstract
Spatiotemporal patterns in multicellular systems are important to understanding tissue dynamics, for instance, during embryonic development and disease. Here, we use a multiphase field model to study numerically the behavior of a near-confluent monolayer of deformable cells with intercellular friction. Varying friction and cell motility drives a solid-liquid transition, and near the transition boundary, we find the emergence of local nematic order of cell deformation driven by shear-aligning cellular flows. Intercellular friction contributes to the monolayer's viscosity, which significantly increases the spatial correlation in the flow and, concomitantly, the extent of nematic order. We also show that local hexatic and nematic order are tightly coupled and propose a mechanical-geometric model for the colocalization of [Formula: see text] nematic defects and 5-7 disclination pairs, which are the structural defects in the hexatic phase. Such topological defects coincide with regions of high cell-cell overlap, suggesting that they may mediate cellular extrusion from the monolayer, as found experimentally. Our results delineate a mechanical basis for the recent observation of nematic and hexatic order in multicellular collectives in experiments and simulations and pinpoint a generic pathway to couple topological and physical effects in these systems.
Collapse
Affiliation(s)
- Michael Chiang
- Scottish Universities Physics Alliance, School of Physics and Astronomy, University of Edinburgh, EdinburghEH9 3FD, United Kingdom
| | - Austin Hopkins
- Department of Physics, University of California Santa Barbara, Santa Barbara, CA93106
| | - Benjamin Loewe
- Scottish Universities Physics Alliance, School of Physics and Astronomy, University of Edinburgh, EdinburghEH9 3FD, United Kingdom
- Facultad de Física, Pontificia Universidad Católica de Chile, Santiago7820436, Chile
| | - M. Cristina Marchetti
- Department of Physics, University of California Santa Barbara, Santa Barbara, CA93106
| | - Davide Marenduzzo
- Scottish Universities Physics Alliance, School of Physics and Astronomy, University of Edinburgh, EdinburghEH9 3FD, United Kingdom
| |
Collapse
|
12
|
Chiang M, Hopkins A, Loewe B, Marenduzzo D, Marchetti MC. Multiphase field model of cells on a substrate: From three dimensional to two dimensional. Phys Rev E 2024; 110:044403. [PMID: 39562868 DOI: 10.1103/physreve.110.044403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/19/2024] [Indexed: 11/21/2024]
Abstract
Multiphase field models have emerged as an important computational tool for understanding biological tissue while resolving single-cell properties. While they have successfully reproduced many experimentally observed behaviors of living tissue, the theoretical underpinnings have not been fully explored. We show that a two-dimensional version of the model, which is commonly employed to study tissue monolayers, can be derived from a three-dimensional version in the presence of a substrate. We also show how viscous forces, which arise from friction between different cells, can be included in the model. Finally, we numerically simulate a tissue monolayer and find that intercellular friction tends to solidify the tissue.
Collapse
|
13
|
Stehbens SJ, Scarpa E, White MD. Perspectives in collective cell migration - moving forward. J Cell Sci 2024; 137:jcs261549. [PMID: 38904172 DOI: 10.1242/jcs.261549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024] Open
Abstract
Collective cell migration, where cells move as a cohesive unit, is a vital process underlying morphogenesis and cancer metastasis. Thanks to recent advances in imaging and modelling, we are beginning to understand the intricate relationship between a cell and its microenvironment and how this shapes cell polarity, metabolism and modes of migration. The use of biophysical and mathematical models offers a fresh perspective on how cells migrate collectively, either flowing in a fluid-like state or transitioning to more static states. Continuing to unite researchers in biology, physics and mathematics will enable us to decode more complex biological behaviours that underly collective cell migration; only then can we understand how this coordinated movement of cells influences the formation and organisation of tissues and directs the spread of metastatic cancer. In this Perspective, we highlight exciting discoveries, emerging themes and common challenges that have arisen in recent years, and possible ways forward to bridge the gaps in our current understanding of collective cell migration.
Collapse
Affiliation(s)
- Samantha J Stehbens
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, St Lucia, Brisbane, QLD 4072, Australia
- The University of Queensland, Institute for Molecular Bioscience, St Lucia, Brisbane, QLD 4072, Australia
| | - Elena Scarpa
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3DY, UK
| | - Melanie D White
- The University of Queensland, Institute for Molecular Bioscience, St Lucia, Brisbane, QLD 4072, Australia
- The University of Queensland, School of Biomedical Sciences, St Lucia, Brisbane, QLD 4072, Australia
| |
Collapse
|
14
|
Chen H, Wang S, Cao Y, Lei H. Molecular Force Sensors for Biological Application. Int J Mol Sci 2024; 25:6198. [PMID: 38892386 PMCID: PMC11173168 DOI: 10.3390/ijms25116198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The mechanical forces exerted by cells on their surrounding microenvironment are known as cellular traction forces. These forces play crucial roles in various biological processes, such as tissue development, wound healing and cell functions. However, it is hard for traditional techniques to measure cellular traction forces accurately because their magnitude (from pN to nN) and the length scales over which they occur (from nm to μm) are extremely small. In order to fully understand mechanotransduction, highly sensitive tools for measuring cellular forces are needed. Current powerful techniques for measuring traction forces include traction force microscopy (TFM) and fluorescent molecular force sensors (FMFS). In this review, we elucidate the force imaging principles of TFM and FMFS. Then we highlight the application of FMFS in a variety of biological processes and offer our perspectives and insights into the potential applications of FMFS.
Collapse
Affiliation(s)
- Huiyan Chen
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China; (H.C.); (S.W.)
| | - Shouhan Wang
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China; (H.C.); (S.W.)
| | - Yi Cao
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China; (H.C.); (S.W.)
| | - Hai Lei
- School of Physics, Zhejiang University, Hangzhou 310027, China
- Institute for Advanced Study in Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
15
|
Skillin NP, Kirkpatrick BE, Herbert KM, Nelson BR, Hach GK, Günay KA, Khan RM, DelRio FW, White TJ, Anseth KS. Stiffness anisotropy coordinates supracellular contractility driving long-range myotube-ECM alignment. SCIENCE ADVANCES 2024; 10:eadn0235. [PMID: 38820155 PMCID: PMC11141631 DOI: 10.1126/sciadv.adn0235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/30/2024] [Indexed: 06/02/2024]
Abstract
The ability of cells to organize into tissues with proper structure and function requires the effective coordination of proliferation, migration, polarization, and differentiation across length scales. Skeletal muscle is innately anisotropic; however, few biomaterials can emulate mechanical anisotropy to determine its influence on tissue patterning without introducing confounding topography. Here, we demonstrate that substrate stiffness anisotropy coordinates contractility-driven collective cellular dynamics resulting in C2C12 myotube alignment over millimeter-scale distances. When cultured on mechanically anisotropic liquid crystalline polymer networks (LCNs) lacking topography, C2C12 myoblasts collectively polarize in the stiffest direction. Cellular coordination is amplified through reciprocal cell-ECM dynamics that emerge during fusion, driving global myotube-ECM ordering. Conversely, myotube alignment was restricted to small local domains with no directional preference on mechanically isotropic LCNs of the same chemical formulation. These findings provide valuable insights for designing biomaterials that mimic anisotropic microenvironments and underscore the importance of stiffness anisotropy in orchestrating tissue morphogenesis.
Collapse
Affiliation(s)
- Nathaniel P. Skillin
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Medical Scientist Training Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Bruce E. Kirkpatrick
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Medical Scientist Training Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Katie M. Herbert
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Benjamin R. Nelson
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Grace K. Hach
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Kemal Arda Günay
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Ryan M. Khan
- Material, Physical, and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - Frank W. DelRio
- Material, Physical, and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - Timothy J. White
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| |
Collapse
|
16
|
Brézin L, Korolev KS. Mechanically-driven growth and competition in a Voronoi model of tissues. ARXIV 2024:arXiv:2405.07899v1. [PMID: 38800651 PMCID: PMC11118596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The mechanisms leading cells to acquire a fitness advantage and establish themselves in a population are paramount to understanding the development and growth of cancer. Although there are many works that study separately either the evolutionary dynamics or the mechanics of cancer, little has been done to couple evolutionary dynamics to mechanics. To address this question, we study a confluent model of tissue using a Self-Propelled Voronoi (SPV) model with stochastic growth rates that depend on the mechanical variables of the system. The SPV model is an out-of-equilibrium model of tissue derived from an energy functional that has a jamming/unjamming transition between solid-like and liquid-like states. By considering several scenarios of mutants invading a resident population in both phases, we determine the range of parameters that confer a fitness advantage and show that the preferred area and perimeter are the most relevant ones. We find that the liquid-like state is more resistant to invasion and show that the outcome of the competition can be determined from the simulation of a non-growing mixture. Moreover, a mean-field approximation can accurately predict the fate of a mutation affecting mechanical properties of a cell. Our results can be used to infer evolutionary dynamics from tissue images, understand cancer-suppressing effects of tissue mechanics, and even search for mechanics-based therapies.
Collapse
Affiliation(s)
- Louis Brézin
- Department of Physics, Graduate Program in Bioinformatics and Biological Design Center, Boston University, Boston, Massachusetts 02215, USA
| | - Kirill S. Korolev
- Department of Physics, Graduate Program in Bioinformatics and Biological Design Center, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
17
|
Huang Y, Chen T, Chen X, Chen X, Zhang J, Liu S, Lu M, Chen C, Ding X, Yang C, Huang R, Song Y. Decoding Biomechanical Cues Based on DNA Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310330. [PMID: 38185740 DOI: 10.1002/smll.202310330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/18/2023] [Indexed: 01/09/2024]
Abstract
Biological systems perceive and respond to mechanical forces, generating mechanical cues to regulate life processes. Analyzing biomechanical forces has profound significance for understanding biological functions. Therefore, a series of molecular mechanical techniques have been developed, mainly including single-molecule force spectroscopy, traction force microscopy, and molecular tension sensor systems, which provide indispensable tools for advancing the field of mechanobiology. DNA molecules with a programmable structure and well-defined mechanical characteristics have attached much attention to molecular tension sensors as sensing elements, and are designed for the study of biomechanical forces to present biomechanical information with high sensitivity and resolution. In this work, a comprehensive overview of molecular mechanical technology is presented, with a particular focus on molecular tension sensor systems, specifically those based on DNA. Finally, the future development and challenges of DNA-based molecular tension sensor systems are looked upon.
Collapse
Affiliation(s)
- Yihao Huang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Ting Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiaodie Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Ximing Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jialu Zhang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Sinong Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Menghao Lu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chong Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiangyu Ding
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ruiyun Huang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
18
|
Nejad MR, Ruske LJ, McCord M, Zhang J, Zhang G, Notbohm J, Yeomans JM. Stress-shape misalignment in confluent cell layers. Nat Commun 2024; 15:3628. [PMID: 38684651 PMCID: PMC11059169 DOI: 10.1038/s41467-024-47702-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
In tissue formation and repair, the epithelium undergoes complex patterns of motion driven by the active forces produced by each cell. Although the principles governing how the forces evolve in time are not yet clear, it is often assumed that the contractile stresses within the cell layer align with the axis defined by the body of each cell. Here, we simultaneously measured the orientations of the cell shape and the cell-generated contractile stresses, observing correlated, dynamic domains in which the stresses were systematically misaligned with the cell body. We developed a continuum model that decouples the orientations of contractile stress and cell body. The model recovered the spatial and temporal dynamics of the regions of misalignment in the experiments. These findings reveal that the cell controls its contractile forces independently from its shape, suggesting that the physical rules relating cell forces and cell shape are more flexible than previously thought.
Collapse
Affiliation(s)
- Mehrana R Nejad
- The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, United Kingdom.
| | - Liam J Ruske
- The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, United Kingdom
| | - Molly McCord
- Biophysics Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Jun Zhang
- Biophysics Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Guanming Zhang
- Center for Soft Matter Research, Department of Physics, New York University, New York, NY, 10003, USA
- Simons Center for Computational Physical Chemistry, Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Jacob Notbohm
- Biophysics Program, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI, USA.
| | - Julia M Yeomans
- The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, United Kingdom.
| |
Collapse
|
19
|
Li ZY, Chen YP, Liu HY, Li B. Three-Dimensional Chiral Morphogenesis of Active Fluids. PHYSICAL REVIEW LETTERS 2024; 132:138401. [PMID: 38613297 DOI: 10.1103/physrevlett.132.138401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 02/29/2024] [Indexed: 04/14/2024]
Abstract
Chirality is an essential nature of biological systems. However, it remains obscure how the handedness at the microscale is translated into chiral morphogenesis at the tissue level. Here, we investigate three-dimensional (3D) tissue morphogenesis using an active fluid theory invoking chirality. We show that the coordination of achiral and chiral stresses, arising from microscopic interactions and energy input of individual cells, can engender the self-organization of 3D papillary and helical structures. The achiral active stress drives the nucleation of asterlike topological defects, which initiate 3D out-of-plane budding, followed by rodlike elongation. The chiral active stress excites vortexlike topological defects, which favor the tip spheroidization and twisting of the elongated rod. These results unravel the chiral morphogenesis observed in our experiments of 3D organoids generated by human embryonic stem cells.
Collapse
Affiliation(s)
- Zhong-Yi Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Yun-Ping Chen
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Hao-Yu Liu
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
20
|
Gauquelin E, Kuromiya K, Namba T, Ikawa K, Fujita Y, Ishihara S, Sugimura K. Mechanical convergence in mixed populations of mammalian epithelial cells. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2024; 47:21. [PMID: 38538808 PMCID: PMC10973031 DOI: 10.1140/epje/s10189-024-00415-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/05/2024] [Indexed: 04/09/2024]
Abstract
Tissues consist of cells with different molecular and/or mechanical properties. Measuring the forces and stresses in mixed-cell populations is essential for understanding the mechanisms by which tissue development, homeostasis, and disease emerge from the cooperation of distinct cell types. However, many previous studies have primarily focused their mechanical measurements on dissociated cells or aggregates of a single-cell type, leaving the mechanics of mixed-cell populations largely unexplored. In the present study, we aimed to elucidate the influence of interactions between different cell types on cell mechanics by conducting in situ mechanical measurements on a monolayer of mammalian epithelial cells. Our findings revealed that while individual cell types displayed varying magnitudes of traction and intercellular stress before mixing, these mechanical values shifted in the mixed monolayer, becoming nearly indistinguishable between the cell types. Moreover, by analyzing a mixed-phase model of active tissues, we identified physical conditions under which such mechanical convergence is induced. Overall, the present study underscores the importance of in situ mechanical measurements in mixed-cell populations to deepen our understanding of the mechanics of multicellular systems.
Collapse
Affiliation(s)
- Estelle Gauquelin
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Keisuke Kuromiya
- Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Toshinori Namba
- Universal Biology Institute, The University of Tokyo, Tokyo, 113-0033, Japan
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-0041, Japan
| | - Keisuke Ikawa
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi, 464-8602, Japan
| | - Yasuyuki Fujita
- Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Shuji Ishihara
- Universal Biology Institute, The University of Tokyo, Tokyo, 113-0033, Japan.
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-0041, Japan.
| | - Kaoru Sugimura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0032, Japan.
- Universal Biology Institute, The University of Tokyo, Tokyo, 113-0033, Japan.
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8561, Japan.
| |
Collapse
|
21
|
Graham JN, Zhang G, Yeomans JM. Cell sorting by active forces in a phase-field model of cell monolayers. SOFT MATTER 2024; 20:2955-2960. [PMID: 38469688 DOI: 10.1039/d3sm01033c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Cell sorting, the segregation of cells with different properties into distinct domains, is a key phenomenon in biological processes such as embryogenesis. We use a phase-field model of a confluent cell layer to study the role of activity in cell sorting. We find that a mixture of cells with extensile or contractile dipolar activity, and which are identical apart from their activity, quickly sort into small, elongated patches which then grow slowly in time. We interpret the sorting as driven by the different diffusivity of the extensile and contractile cells, mirroring the ordering of Brownian particles connected to different hot and cold thermostats. We check that the free energy is not changed by either partial or complete sorting, thus confirming that activity can be responsible for the ordering even in the absence of thermodynamic mechanisms.
Collapse
Affiliation(s)
- James N Graham
- Rudolf Peierls Centre for Theoretical Physics, Parks Road, University of Oxford, Oxford, OX1 3PU, UK.
| | - Guanming Zhang
- Center for Soft Matter Research, Department of Physics, New York University, New York 10003, USA
- Simons Center for Computational Physical Chemistry, Department of Chemistry, New York University, New York 10003, USA
| | - Julia M Yeomans
- Rudolf Peierls Centre for Theoretical Physics, Parks Road, University of Oxford, Oxford, OX1 3PU, UK.
| |
Collapse
|
22
|
Killeen A, Bertrand T, Lee CF. Machine learning topological defects in confluent tissues. BIOPHYSICAL REPORTS 2024; 4:100142. [PMID: 38313863 PMCID: PMC10837480 DOI: 10.1016/j.bpr.2024.100142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 01/04/2024] [Indexed: 02/06/2024]
Abstract
Active nematics is an emerging paradigm for characterizing biological systems. One aspect of particularly intense focus is the role active nematic defects play in these systems, as they have been found to mediate a growing number of biological processes. Accurately detecting and classifying these defects in biological systems is, therefore, of vital importance to improving our understanding of such processes. While robust methods for defect detection exist for systems of elongated constituents, other systems, such as epithelial layers, are not well suited to such methods. Here, we address this problem by developing a convolutional neural network to detect and classify nematic defects in confluent cell layers. Crucially, our method is readily implementable on experimental images of cell layers and is specifically designed to be suitable for cells that are not rod shaped, which we demonstrate by detecting defects on experimental data using the trained model. We show that our machine learning model outperforms current defect detection techniques and that this manifests itself in our method as requiring less data to accurately capture defect properties. This could drastically improve the accuracy of experimental data interpretation while also reducing costs, advancing the study of nematic defects in biological systems.
Collapse
Affiliation(s)
- Andrew Killeen
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Thibault Bertrand
- Department of Mathematics, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Chiu Fan Lee
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, United Kingdom
| |
Collapse
|
23
|
Phillips TA, Marcotti S, Cox S, Parsons M. Imaging actin organisation and dynamics in 3D. J Cell Sci 2024; 137:jcs261389. [PMID: 38236161 PMCID: PMC10906668 DOI: 10.1242/jcs.261389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
The actin cytoskeleton plays a critical role in cell architecture and the control of fundamental processes including cell division, migration and survival. The dynamics and organisation of F-actin have been widely studied in a breadth of cell types on classical two-dimensional (2D) surfaces. Recent advances in optical microscopy have enabled interrogation of these cytoskeletal networks in cells within three-dimensional (3D) scaffolds, tissues and in vivo. Emerging studies indicate that the dimensionality experienced by cells has a profound impact on the structure and function of the cytoskeleton, with cells in 3D environments exhibiting cytoskeletal arrangements that differ to cells in 2D environments. However, the addition of a third (and fourth, with time) dimension leads to challenges in sample preparation, imaging and analysis, necessitating additional considerations to achieve the required signal-to-noise ratio and spatial and temporal resolution. Here, we summarise the current tools for imaging actin in a 3D context and highlight examples of the importance of this in understanding cytoskeletal biology and the challenges and opportunities in this domain.
Collapse
Affiliation(s)
- Thomas A. Phillips
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London SE1 1UL, UK
| | - Stefania Marcotti
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London SE1 1UL, UK
- Microscopy Innovation Centre, King's College London, Guys Campus, London SE1 1UL, UK
| | - Susan Cox
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London SE1 1UL, UK
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London SE1 1UL, UK
| |
Collapse
|
24
|
Mierke CT. Extracellular Matrix Cues Regulate Mechanosensing and Mechanotransduction of Cancer Cells. Cells 2024; 13:96. [PMID: 38201302 PMCID: PMC10777970 DOI: 10.3390/cells13010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/29/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Extracellular biophysical properties have particular implications for a wide spectrum of cellular behaviors and functions, including growth, motility, differentiation, apoptosis, gene expression, cell-matrix and cell-cell adhesion, and signal transduction including mechanotransduction. Cells not only react to unambiguously mechanical cues from the extracellular matrix (ECM), but can occasionally manipulate the mechanical features of the matrix in parallel with biological characteristics, thus interfering with downstream matrix-based cues in both physiological and pathological processes. Bidirectional interactions between cells and (bio)materials in vitro can alter cell phenotype and mechanotransduction, as well as ECM structure, intentionally or unintentionally. Interactions between cell and matrix mechanics in vivo are of particular importance in a variety of diseases, including primarily cancer. Stiffness values between normal and cancerous tissue can range between 500 Pa (soft) and 48 kPa (stiff), respectively. Even the shear flow can increase from 0.1-1 dyn/cm2 (normal tissue) to 1-10 dyn/cm2 (cancerous tissue). There are currently many new areas of activity in tumor research on various biological length scales, which are highlighted in this review. Moreover, the complexity of interactions between ECM and cancer cells is reduced to common features of different tumors and the characteristics are highlighted to identify the main pathways of interaction. This all contributes to the standardization of mechanotransduction models and approaches, which, ultimately, increases the understanding of the complex interaction. Finally, both the in vitro and in vivo effects of this mechanics-biology pairing have key insights and implications for clinical practice in tumor treatment and, consequently, clinical translation.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Biological Physics Division, Peter Debye Institute of Soft Matter Physics, Faculty of Physics and Earth Science, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
| |
Collapse
|
25
|
Yang S, Palmquist KH, Nathan L, Pfeifer CR, Schultheiss PJ, Sharma A, Kam LC, Miller PW, Shyer AE, Rodrigues AR. Morphogens enable interacting supracellular phases that generate organ architecture. Science 2023; 382:eadg5579. [PMID: 37995219 DOI: 10.1126/science.adg5579] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 09/27/2023] [Indexed: 11/25/2023]
Abstract
During vertebrate organogenesis, increases in morphological complexity are tightly coupled to morphogen expression. In this work, we studied how morphogens influence self-organizing processes at the collective or "supra"-cellular scale in avian skin. We made physical measurements across length scales, which revealed morphogen-enabled material property differences that were amplified at supracellular scales in comparison to cellular scales. At the supracellular scale, we found that fibroblast growth factor (FGF) promoted "solidification" of tissues, whereas bone morphogenetic protein (BMP) promoted fluidity and enhanced mechanical activity. Together, these effects created basement membrane-less compartments within mesenchymal tissue that were mechanically primed to drive avian skin tissue budding. Understanding this multiscale process requires the ability to distinguish between proximal effects of morphogens that occur at the cellular scale and their functional effects, which emerge at the supracellular scale.
Collapse
Affiliation(s)
- Sichen Yang
- Laboratory of Morphogenesis, The Rockefeller University, New York, NY 10065, USA
| | - Karl H Palmquist
- Laboratory of Morphogenesis, The Rockefeller University, New York, NY 10065, USA
| | - Levy Nathan
- Laboratory of Morphogenesis, The Rockefeller University, New York, NY 10065, USA
| | - Charlotte R Pfeifer
- Laboratory of Morphogenesis, The Rockefeller University, New York, NY 10065, USA
| | - Paula J Schultheiss
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Anurag Sharma
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Lance C Kam
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Pearson W Miller
- Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
| | - Amy E Shyer
- Laboratory of Morphogenesis, The Rockefeller University, New York, NY 10065, USA
| | - Alan R Rodrigues
- Laboratory of Morphogenesis, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
26
|
Hopkins A, Loewe B, Chiang M, Marenduzzo D, Marchetti MC. Motility induced phase separation of deformable cells. SOFT MATTER 2023; 19:8172-8178. [PMID: 37850477 DOI: 10.1039/d3sm01059g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Using a multi-phase field model, we examine how particle deformability, which is a proxy for cell stiffness, affects motility induced phase separation (MIPS). We show that purely repulsive deformable, i.e., squishy, cells phase separate more effectively than their rigid counterparts. This can be understood as due to the fact that deformability increases the effective duration of collisions. In addition, the dense regions become increasingly disordered as deformability increases. Our results contextualize the applicability of MIPS to biological systems and have implications for how cells in biological systems may self-organize.
Collapse
Affiliation(s)
- Austin Hopkins
- Department of Physics, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Benjamin Loewe
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Michael Chiang
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Davide Marenduzzo
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - M Cristina Marchetti
- Department of Physics, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
27
|
Eckert J, Ladoux B, Mège RM, Giomi L, Schmidt T. Hexanematic crossover in epithelial monolayers depends on cell adhesion and cell density. Nat Commun 2023; 14:5762. [PMID: 37717032 PMCID: PMC10505199 DOI: 10.1038/s41467-023-41449-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 08/30/2023] [Indexed: 09/18/2023] Open
Abstract
Changes in tissue geometry during developmental processes are associated with collective migration of cells. Recent experimental and numerical results suggest that these changes could leverage on the coexistence of nematic and hexatic orientational order at different length scales. How this multiscale organization is affected by the material properties of the cells and their substrate is presently unknown. In this study, we address these questions in monolayers of Madin-Darby canine kidney cells having various cell densities and molecular repertoires. At small length scales, confluent monolayers are characterized by a prominent hexatic order, independent of the presence of E-cadherin, monolayer density, and underlying substrate stiffness. However, all three properties affect the meso-scale tissue organization. The length scale at which hexatic order transits to nematic order, the "hexanematic" crossover scale, strongly depends on cell-cell adhesions and correlates with monolayer density. Our study demonstrates how epithelial organization is affected by mechanical properties, and provides a robust description of tissue organization during developmental processes.
Collapse
Affiliation(s)
- Julia Eckert
- Physics of Life Processes, Leiden Institute of Physics, Universiteit Leiden, 2333 CC, Leiden, The Netherlands
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Benoît Ladoux
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - René-Marc Mège
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Luca Giomi
- Instituut-Lorentz, Leiden Institute of Physics, Universiteit Leiden, P.O. Box 9506, 2300 RA, Leiden, The Netherlands
| | - Thomas Schmidt
- Physics of Life Processes, Leiden Institute of Physics, Universiteit Leiden, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
28
|
Hadjifrangiskou I, Ruske LJ, Yeomans JM. Active nematics with deformable particles. SOFT MATTER 2023; 19:6664-6670. [PMID: 37609906 DOI: 10.1039/d3sm00627a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The hydrodynamic theory of active nematics has been often used to describe the spatio-temporal dynamics of cell flows and motile topological defects within soft confluent tissues. Those theories, however, often rely on the assumption that tissues consist of cells with a fixed, anisotropic shape and do not resolve dynamical cell shape changes due to flow gradients. In this paper we extend the continuum theory of active nematics to include cell shape deformability. We find that circular cells in tissues must generate sufficient active stress to overcome an elastic barrier to deforming their shape in order to drive tissue-scale flows. Above this threshold the systems enter a dynamical steady-state with regions of elongated cells and strong flows coexisting with quiescent regions of isotropic cells.
Collapse
Affiliation(s)
- Ioannis Hadjifrangiskou
- The Rudolf Peierls Centre for Theoretical Physics, Beecroft Building, Parks Road, Oxford, OX1 3PU, UK.
| | - Liam J Ruske
- The Rudolf Peierls Centre for Theoretical Physics, Beecroft Building, Parks Road, Oxford, OX1 3PU, UK.
| | - Julia M Yeomans
- The Rudolf Peierls Centre for Theoretical Physics, Beecroft Building, Parks Road, Oxford, OX1 3PU, UK.
| |
Collapse
|
29
|
Skillin NP, Kirkpatrick BE, Herbert KM, Nelson BR, Hach GK, Günay KA, Khan RM, DelRio FW, White TJ, Anseth KS. Stiffness anisotropy coordinates supracellular contractility driving long-range myotube-ECM alignment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552197. [PMID: 37609145 PMCID: PMC10441277 DOI: 10.1101/2023.08.08.552197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
In skeletal muscle tissue, injury-related changes in stiffness activate muscle stem cells through mechanosensitive signaling pathways. Functional muscle tissue regeneration also requires the effective coordination of myoblast proliferation, migration, polarization, differentiation, and fusion across multiple length scales. Here, we demonstrate that substrate stiffness anisotropy coordinates contractility-driven collective cellular dynamics resulting in C2C12 myotube alignment over millimeter-scale distances. When cultured on mechanically anisotropic liquid crystalline polymer networks (LCNs) lacking topographic features that could confer contact guidance, C2C12 myoblasts collectively polarize in the stiffest direction of the substrate. Cellular coordination is amplified through reciprocal cell-ECM dynamics that emerge during fusion, driving global myotube-ECM ordering. Conversely, myotube alignment was restricted to small local domains with no directional preference on mechanically isotropic LCNs of same chemical formulation. These findings reveal a role for stiffness anisotropy in coordinating emergent collective cellular dynamics, with implications for understanding skeletal muscle tissue development and regeneration.
Collapse
Affiliation(s)
- Nathaniel P. Skillin
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Medical Scientist Training Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Bruce E. Kirkpatrick
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Medical Scientist Training Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Katie M. Herbert
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Benjamin R. Nelson
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Grace K. Hach
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Kemal Arda Günay
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Ryan M. Khan
- Material, Physical, and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - Frank W. DelRio
- Material, Physical, and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - Timothy J. White
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Lead contact
| |
Collapse
|
30
|
Han E, Fei C, Alert R, Copenhagen K, Koch MD, Wingreen NS, Shaevitz JW. Local polar order controls mechanical stress and triggers layer formation in developing Myxococcus xanthus colonies. ARXIV 2023:arXiv:2308.00368v1. [PMID: 37576128 PMCID: PMC10418523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Colonies of the social bacterium Myxococcus xanthus go through a morphological transition from a thin colony of cells to three-dimensional droplet-like fruiting bodies as a strategy to survive starvation. The biological pathways that control the decision to form a fruiting body have been studied extensively. However, the mechanical events that trigger the creation of multiple cell layers and give rise to droplet formation remain poorly understood. By measuring cell orientation, velocity, polarity, and force with cell-scale resolution, we reveal a stochastic local polar order in addition to the more obvious nematic order. Average cell velocity and active force at topological defects agree with predictions from active nematic theory, but their fluctuations are anomalously large due to polar active forces generated by the self-propelled rod-shaped cells. We find that M. xanthus cells adjust their reversal frequency to tune the magnitude of this local polar order, which in turn controls the mechanical stresses and triggers layer formation in the colonies.
Collapse
Affiliation(s)
- Endao Han
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ 08544, USA
| | - Chenyi Fei
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Ricard Alert
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzerstraße 38, 01187 Dresden, Germany
- Center for Systems Biology Dresden, Pfotenhauerstraße 108, 01307 Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, 01062, Dresden, Germany
| | - Katherine Copenhagen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Matthias D. Koch
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Ned S. Wingreen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Joshua W. Shaevitz
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
31
|
Luo Y, Gu M, Park M, Fang X, Kwon Y, Urueña JM, Read de Alaniz J, Helgeson ME, Marchetti CM, Valentine MT. Molecular-scale substrate anisotropy, crowding and division drive collective behaviours in cell monolayers. J R Soc Interface 2023; 20:20230160. [PMID: 37403487 PMCID: PMC10320338 DOI: 10.1098/rsif.2023.0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/13/2023] [Indexed: 07/06/2023] Open
Abstract
The ability of cells to reorganize in response to external stimuli is important in areas ranging from morphogenesis to tissue engineering. While nematic order is common in biological tissues, it typically only extends to small regions of cells interacting via steric repulsion. On isotropic substrates, elongated cells can co-align due to steric effects, forming ordered but randomly oriented finite-size domains. However, we have discovered that flat substrates with nematic order can induce global nematic alignment of dense, spindle-like cells, thereby influencing cell organization and collective motion and driving alignment on the scale of the entire tissue. Remarkably, single cells are not sensitive to the substrate's anisotropy. Rather, the emergence of global nematic order is a collective phenomenon that requires both steric effects and molecular-scale anisotropy of the substrate. To quantify the rich set of behaviours afforded by this system, we analyse velocity, positional and orientational correlations for several thousand cells over days. The establishment of global order is facilitated by enhanced cell division along the substrate's nematic axis, and associated extensile stresses that restructure the cells' actomyosin networks. Our work provides a new understanding of the dynamics of cellular remodelling and organization among weakly interacting cells.
Collapse
Affiliation(s)
- Yimin Luo
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Mengyang Gu
- Department of Statistics and Applied Probability, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Minwook Park
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Xinyi Fang
- Department of Statistics and Applied Probability, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Younghoon Kwon
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Juan Manuel Urueña
- BioPACIFIC MIP, California NanoSystems Institute, Santa Barbara, CA 93106, USA
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Matthew E. Helgeson
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Cristina M. Marchetti
- Department of Physics, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Megan T. Valentine
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
32
|
Bhattacharyya S, Yeomans JM. Phase Separation Driven by Active Flows. PHYSICAL REVIEW LETTERS 2023; 130:238201. [PMID: 37354397 DOI: 10.1103/physrevlett.130.238201] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/09/2023] [Indexed: 06/26/2023]
Abstract
We extend the continuum theories of active nematohydrodynamics to model a two-fluid mixture with separate velocity fields for each fluid component, coupled through a viscous drag. The model is used to study an active nematic fluid mixed with an isotropic fluid. We find microphase separation, and argue that this results from an interplay between active anchoring and active flows driven by concentration gradients. The results may be relevant to cell sorting and the formation of lipid rafts in cell membranes.
Collapse
Affiliation(s)
- Saraswat Bhattacharyya
- Rudolf Peierls Centre For Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Julia M Yeomans
- Rudolf Peierls Centre For Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
33
|
Dow LP, Parmar T, Marchetti MC, Pruitt BL. Engineering tools for quantifying and manipulating forces in epithelia. BIOPHYSICS REVIEWS 2023; 4:021303. [PMID: 38510344 PMCID: PMC10903508 DOI: 10.1063/5.0142537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/20/2023] [Indexed: 03/22/2024]
Abstract
The integrity of epithelia is maintained within dynamic mechanical environments during tissue development and homeostasis. Understanding how epithelial cells mechanosignal and respond collectively or individually is critical to providing insight into developmental and (patho)physiological processes. Yet, inferring or mimicking mechanical forces and downstream mechanical signaling as they occur in epithelia presents unique challenges. A variety of in vitro approaches have been used to dissect the role of mechanics in regulating epithelia organization. Here, we review approaches and results from research into how epithelial cells communicate through mechanical cues to maintain tissue organization and integrity. We summarize the unique advantages and disadvantages of various reduced-order model systems to guide researchers in choosing appropriate experimental systems. These model systems include 3D, 2D, and 1D micromanipulation methods, single cell studies, and noninvasive force inference and measurement techniques. We also highlight a number of in silico biophysical models that are informed by in vitro and in vivo observations. Together, a combination of theoretical and experimental models will aid future experiment designs and provide predictive insight into mechanically driven behaviors of epithelial dynamics.
Collapse
Affiliation(s)
| | - Toshi Parmar
- Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | | | | |
Collapse
|
34
|
Baro L, Islam A, Brown HM, Bell ZA, Juanes MA. APC-driven actin nucleation powers collective cell dynamics in colorectal cancer cells. iScience 2023; 26:106583. [PMID: 37128612 PMCID: PMC10148130 DOI: 10.1016/j.isci.2023.106583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/07/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023] Open
Abstract
Cell remodeling relies on dynamic rearrangements of cell contacts powered by the actin cytoskeleton. The tumor suppressor adenomatous polyposis coli (APC) nucleate actin filaments (F-actin) and localizes at cell junctions. Whether APC-driven actin nucleation acts in cell junction remodeling remains unknown. By combining bioimaging and genetic tools with artificial intelligence algorithms applied to colorectal cancer cell, we found that the APC-dependent actin pool contributes to sustaining levels of F-actin, as well as E-cadherin and occludin protein levels at cell junctions. Moreover, this activity preserved cell junction length and angle, as well as vertex motion and integrity. Loss of this F-actin pool led to larger cells with slow and random cell movement within a sheet. Our findings suggest that APC-driven actin nucleation promotes cell junction integrity and dynamics to facilitate collective cell remodeling and motility. This offers a new perspective to explore the relevance of APC-driven cytoskeletal function in gut morphogenesis.
Collapse
Affiliation(s)
- Lautaro Baro
- School of Health and Life Sciences, Teesside University, TS1 3BX Middlesbrough, UK
- National Horizons Centre, Teesside University, DL1 1HG Darlington, UK
| | - Asifa Islam
- School of Health and Life Sciences, Teesside University, TS1 3BX Middlesbrough, UK
- National Horizons Centre, Teesside University, DL1 1HG Darlington, UK
| | - Hannah M. Brown
- School of Health and Life Sciences, Teesside University, TS1 3BX Middlesbrough, UK
- National Horizons Centre, Teesside University, DL1 1HG Darlington, UK
| | - Zoë A. Bell
- School of Health and Life Sciences, Teesside University, TS1 3BX Middlesbrough, UK
- National Horizons Centre, Teesside University, DL1 1HG Darlington, UK
| | - M. Angeles Juanes
- School of Health and Life Sciences, Teesside University, TS1 3BX Middlesbrough, UK
- National Horizons Centre, Teesside University, DL1 1HG Darlington, UK
- Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| |
Collapse
|
35
|
Chala N, Zhang X, Zambelli T, Zhang Z, Schneider T, Panozzo D, Poulikakos D, Ferrari A. 4D Force Detection of Cell Adhesion and Contractility. NANO LETTERS 2023; 23:2467-2475. [PMID: 36975035 PMCID: PMC10103301 DOI: 10.1021/acs.nanolett.2c03733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Mechanical signals establish two-way communication between mammalian cells and their environment. Cells contacting a surface exert forces via contractility and transmit them at the areas of focal adhesions. External stimuli, such as compressive and pulling forces, typically affect the adhesion-free cell surface. Here, we demonstrate the collaborative employment of Fluidic Force Microscopy and confocal Traction Force Microscopy supported by the Cellogram solver to enable a powerful integrated force probing approach, where controlled vertical forces are applied to the free surface of individual cells, while the concomitant deformations are used to map their transmission to the substrate. Force transmission across human cells is measured with unprecedented temporal and spatial resolution, enabling the investigation of the cellular mechanisms involved in the adaptation, or maladaptation, to external mechanical stimuli. Altogether, the system enables facile and precise force interrogation of individual cells, with the capacity to perform population-based analysis.
Collapse
Affiliation(s)
- Nafsika Chala
- Laboratory
of Thermodynamics in Emerging Technologies, Department of Mechanical
and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Xinyu Zhang
- Laboratory
of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Gloriastrasse 35, Zurich 8092, Switzerland
| | - Tomaso Zambelli
- Laboratory
of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Gloriastrasse 35, Zurich 8092, Switzerland
| | - Ziyi Zhang
- Courant
Institute of Mathematical Sciences, New
York University, 5th Avenue 60, New York, New York 10011, United
States
| | - Teseo Schneider
- Department
of Computer Science, University of Victoria, 3800 Finnerty Road, Engineering
& Computer Science Building, Victoria, BC V8P 5C2, Canada
| | - Daniele Panozzo
- Courant
Institute of Mathematical Sciences, New
York University, 5th Avenue 60, New York, New York 10011, United
States
| | - Dimos Poulikakos
- Laboratory
of Thermodynamics in Emerging Technologies, Department of Mechanical
and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Aldo Ferrari
- Laboratory
of Thermodynamics in Emerging Technologies, Department of Mechanical
and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
- Experimental
Continuum Mechanics, EMPA, Swiss Federal
Laboratories for Material Science and Technologies, Überlandstrasse 129, 8600 Dübendorf, Switzerland
- Institute
for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zürich, Switzerland
| |
Collapse
|
36
|
Skamrahl M, Schünemann J, Mukenhirn M, Pang H, Gottwald J, Jipp M, Ferle M, Rübeling A, Oswald T, Honigmann A, Janshoff A. Cellular segregation in cocultures is driven by differential adhesion and contractility on distinct timescales. Proc Natl Acad Sci U S A 2023; 120:e2213186120. [PMID: 37011207 PMCID: PMC10104523 DOI: 10.1073/pnas.2213186120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/02/2023] [Indexed: 04/05/2023] Open
Abstract
Cellular sorting and pattern formation are crucial for many biological processes such as development, tissue regeneration, and cancer progression. Prominent physical driving forces for cellular sorting are differential adhesion and contractility. Here, we studied the segregation of epithelial cocultures containing highly contractile, ZO1/2-depleted MDCKII cells (dKD) and their wild-type (WT) counterparts using multiple quantitative, high-throughput methods to monitor their dynamical and mechanical properties. We observe a time-dependent segregation process governed mainly by differential contractility on short (<5 h) and differential adhesion on long (>5 h) timescales. The overly contractile dKD cells exert strong lateral forces on their WT neighbors, thereby apically depleting their surface area. Concomitantly, the tight junction-depleted, contractile cells exhibit weaker cell-cell adhesion and lower traction force. Drug-induced contractility reduction and partial calcium depletion delay the initial segregation but cease to change the final demixed state, rendering differential adhesion the dominant segregation force at longer timescales. This well-controlled model system shows how cell sorting is accomplished through a complex interplay between differential adhesion and contractility and can be explained largely by generic physical driving forces.
Collapse
Affiliation(s)
- Mark Skamrahl
- University of Göttingen, Institute of Physical Chemistry,37077Göttingen, Germany
| | - Justus Schünemann
- University of Göttingen, Institute of Physical Chemistry,37077Göttingen, Germany
| | - Markus Mukenhirn
- Max Planck Institute of Molecular Cell Biology and Genetics,01307Dresden, Germany
| | - Hongtao Pang
- University of Göttingen, Institute of Physical Chemistry,37077Göttingen, Germany
| | - Jannis Gottwald
- University of Göttingen, Institute of Physical Chemistry,37077Göttingen, Germany
| | - Marcel Jipp
- University of Göttingen, Institute of Physical Chemistry,37077Göttingen, Germany
| | - Maximilian Ferle
- University of Göttingen, Institute of Physical Chemistry,37077Göttingen, Germany
| | - Angela Rübeling
- University of Göttingen, Institute of Organic and Biomolecular Chemistry, Göttingen37077, Germany
| | - Tabea A. Oswald
- University of Göttingen, Institute of Organic and Biomolecular Chemistry, Göttingen37077, Germany
| | - Alf Honigmann
- Max Planck Institute of Molecular Cell Biology and Genetics,01307Dresden, Germany
| | - Andreas Janshoff
- University of Göttingen, Institute of Physical Chemistry,37077Göttingen, Germany
| |
Collapse
|
37
|
Krommydas D, Carenza LN, Giomi L. Hydrodynamic Enhancement of p-atic Defect Dynamics. PHYSICAL REVIEW LETTERS 2023; 130:098101. [PMID: 36930922 DOI: 10.1103/physrevlett.130.098101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
We investigate numerically and analytically the effects of hydrodynamics on the dynamics of topological defects in p-atic liquid crystals, i.e., two-dimensional liquid crystals with p-fold rotational symmetry. Importantly, we find that hydrodynamics fuels a generic passive self-propulsion mechanism for defects of winding number s=(p-1)/p and arbitrary p. Strikingly, we discover that hydrodynamics always accelerates the annihilation dynamics of pairs of ±1/p defects and that, contrary to expectations, this effect increases with p. Our Letter paves the way toward understanding cell intercalation and other remodeling events in epithelial layers.
Collapse
Affiliation(s)
- Dimitrios Krommydas
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, Netherlands
| | - Livio Nicola Carenza
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, Netherlands
| | - Luca Giomi
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, Netherlands
| |
Collapse
|
38
|
Luo S, Furuya K, Matsuda K, Tsukasa Y, Usui T, Uemura T. E-cadherin-dependent coordinated epithelial rotation on a two-dimensional discoidal pattern. Genes Cells 2023; 28:175-187. [PMID: 36562594 DOI: 10.1111/gtc.13001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
In vivo, cells collectively migrate in a variety of developmental and pathological contexts. Coordinated epithelial rotation represents a unique type of collective cell migrations, which has been modeled in vitro under spatially confined conditions. Although it is known that the coordinated rotation depends on intercellular interactions, the contribution of E-cadherin, a major cell-cell adhesion molecule, has not been directly addressed on two-dimensional (2D) confined substrates. Here, using well-controlled fibronectin-coated surfaces, we tracked and compared the migratory behaviors of MDCK cells expressing or lacking E-cadherin. We observed that wild-type MDCK II cells exhibited persistent and coordinated rotations on discoidal patterns, while E-cadherin knockout cells migrated in a less coordinated manner without large-scale rotation. Our comparison of the collective dynamics between these two cell types revealed a series of changes in migratory behavior caused by the loss of E-cadherin, including a decreased global migration speed, less regularity in quantified coordination, and increased average density of topological defects. Taken together, these data demonstrate that spontaneous initiation of collective epithelial rotations depends on E-cadherin under 2D discoidal confinements.
Collapse
Affiliation(s)
- Shuangyu Luo
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kanji Furuya
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Kimiya Matsuda
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Research Center for Dynamic Living Systems, Kyoto University, Kyoto, Japan
| | - Yuma Tsukasa
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tadao Usui
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tadashi Uemura
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Research Center for Dynamic Living Systems, Kyoto University, Kyoto, Japan
| |
Collapse
|
39
|
Lin SZ, Merkel M, Rupprecht JF. Structure and Rheology in Vertex Models under Cell-Shape-Dependent Active Stresses. PHYSICAL REVIEW LETTERS 2023; 130:058202. [PMID: 36800465 DOI: 10.1103/physrevlett.130.058202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/19/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Biological cells can actively tune their intracellular architecture according to their overall shape. Here we explore the rheological implication of such coupling in a minimal model of a dense cellular material where each cell exerts an active mechanical stress along its axis of elongation. Increasing the active stress amplitude leads to several transitions. An initially hexagonal crystal motif is first destabilized into a solid with anisotropic cells whose shear modulus eventually vanishes at a first critical activity. Increasing activity beyond this first critical value, we find a re-entrant transition to a regime with finite hexatic order and finite shear modulus, in which cells arrange according to a rhombile pattern with periodically arranged rosette structures. The shear modulus vanishes again at a third threshold beyond which spontaneous tissue flows and topological defects of the nematic cell shape field arise. Flow and stress fields around the defects agree with active nematic theory, with either contractile or extensile signs, as also observed in several epithelial tissue experiments.
Collapse
Affiliation(s)
- Shao-Zhen Lin
- Aix Marseille Université, Université de Toulon, CNRS, Centre de Physique Théorique, Turing Center for Living Systems, Marseille, France
| | - Matthias Merkel
- Aix Marseille Université, Université de Toulon, CNRS, Centre de Physique Théorique, Turing Center for Living Systems, Marseille, France
| | - Jean-François Rupprecht
- Aix Marseille Université, Université de Toulon, CNRS, Centre de Physique Théorique, Turing Center for Living Systems, Marseille, France
| |
Collapse
|
40
|
Sonam S, Balasubramaniam L, Lin SZ, Ivan YMY, Jaumà IP, Jebane C, Karnat M, Toyama Y, Marcq P, Prost J, Mège RM, Rupprecht JF, Ladoux B. Mechanical stress driven by rigidity sensing governs epithelial stability. NATURE PHYSICS 2023; 19:132-141. [PMID: 36686215 PMCID: PMC7614076 DOI: 10.1038/s41567-022-01826-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Epithelia act as a barrier against environmental stress and abrasion and in vivo they are continuously exposed to environments of various mechanical properties. The impact of this environment on epithelial integrity remains elusive. By culturing epithelial cells on 2D hydrogels, we observe a loss of epithelial monolayer integrity through spontaneous hole formation when grown on soft substrates. Substrate stiffness triggers an unanticipated mechanical switch of epithelial monolayers from tensile on soft to compressive on stiff substrates. Through active nematic modelling, we find that spontaneous half-integer defect formation underpinning large isotropic stress fluctuations initiate hole opening events. Our data show that monolayer rupture due to high tensile stress is promoted by the weakening of cell-cell junctions that could be induced by cell division events or local cellular stretching. Our results show that substrate stiffness provides feedback on monolayer mechanical state and that topological defects can trigger stochastic mechanical failure, with potential application towards a mechanistic understanding of compromised epithelial integrity during immune response and morphogenesis.
Collapse
Affiliation(s)
- Surabhi Sonam
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France
| | | | - Shao-Zhen Lin
- Aix Marseille Univ, Université de Toulon, CNRS, CPT, Turing Center for Living Systems, Marseille, France
| | | | - Irina Pi Jaumà
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France
| | - Cecile Jebane
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France
| | - Marc Karnat
- Aix Marseille Univ, Université de Toulon, CNRS, CPT, Turing Center for Living Systems, Marseille, France
| | - Yusuke Toyama
- Mechanobiology Institute, National University of Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Philippe Marcq
- Physique et Mécanique des Milieux Hétérogènes, CNRS, ESPCI Paris, PSL University, Sorbonne Université, Université de Paris, 75005, Paris, France
| | - Jacques Prost
- Mechanobiology Institute, National University of Singapore, Singapore
- Physico-Chimie Curie, Institut Curie, CNRS UMR 168, Paris, France
| | - René-Marc Mège
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France
| | - Jean-François Rupprecht
- Aix Marseille Univ, Université de Toulon, CNRS, CPT, Turing Center for Living Systems, Marseille, France
- Corresponding authors Dr. Benoit Ladoux, , Dr. Jean-François Rupprecht,
| | - Benoît Ladoux
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France
- Corresponding authors Dr. Benoit Ladoux, , Dr. Jean-François Rupprecht,
| |
Collapse
|
41
|
Topological defect-mediated morphodynamics of active-active interfaces. Proc Natl Acad Sci U S A 2022; 119:e2122494119. [PMID: 36469777 PMCID: PMC9897450 DOI: 10.1073/pnas.2122494119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Physical interfaces widely exist in nature and engineering. Although the formation of passive interfaces is well elucidated, the physical principles governing active interfaces remain largely unknown. Here, we combine simulation, theory, and cell-based experiment to investigate the evolution of an active-active interface. We adopt a biphasic framework of active nematic liquid crystals. We find that long-lived topological defects mechanically energized by activity display unanticipated dynamics nearby the interface, where defects perform "U-turns" to keep away from the interface, push the interface to develop local fingers, or penetrate the interface to enter the opposite phase, driving interfacial morphogenesis and cross-interface defect transport. We identify that the emergent interfacial morphodynamics stems from the instability of the interface and is further driven by the activity-dependent defect-interface interactions. Experiments of interacting multicellular monolayers with extensile and contractile differences in cell activity have confirmed our predictions. These findings reveal a crucial role of topological defects in active-active interfaces during, for example, boundary formation and tissue competition that underlie organogenesis and clinically relevant disorders.
Collapse
|
42
|
Maji A, Rabin Y. Network model of active elastic shells swollen by hydrostatic pressure. SOFT MATTER 2022; 18:7981-7989. [PMID: 36218036 DOI: 10.1039/d2sm00879c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Many organisms have an elastic skeleton that consists of a closed shell of epithelial cells that is filled with fluid, and can actively regulate both elastic forces in the shell and hydrostatic pressure inside it. In this work we introduce a simple network model of such pressure-stabilized active elastic shells in which cross-links are represented by material points connected by non-linear springs of some given equilibrium lengths and spring constants. We mimic active contractile forces in the system by changing the parameters of randomly chosen springs and use computer simulations to study the resulting local and global deformation dynamics of the network. We elucidate the statistical properties of these deformations by computing the corresponding distributions and correlation functions. We show that pressure-induced stretching of the network introduces coupling between its local and global behavior: while the network opposes the contraction of each excited spring and affects the amplitude and relaxation time of its deformation, random local excitations give rise to contraction of the network and to fluctuations of its surface area.
Collapse
Affiliation(s)
- Ajoy Maji
- Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar-ilan, University, Ramat-Gan 5290002, Israel.
| | - Yitzhak Rabin
- Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar-ilan, University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
43
|
Cai G, Nguyen A, Bashirzadeh Y, Lin SS, Bi D, Liu AP. Compressive stress drives adhesion-dependent unjamming transitions in breast cancer cell migration. Front Cell Dev Biol 2022; 10:933042. [PMID: 36268514 PMCID: PMC9577106 DOI: 10.3389/fcell.2022.933042] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Cellular unjamming is the collective fluidization of cell motion and has been linked to many biological processes, including development, wound repair, and tumor growth. In tumor growth, the uncontrolled proliferation of cancer cells in a confined space generates mechanical compressive stress. However, because multiple cellular and molecular mechanisms may be operating simultaneously, the role of compressive stress in unjamming transitions during cancer progression remains unknown. Here, we investigate which mechanism dominates in a dense, mechanically stressed monolayer. We find that long-term mechanical compression triggers cell arrest in benign epithelial cells and enhances cancer cell migration in transitions correlated with cell shape, leading us to examine the contributions of cell–cell adhesion and substrate traction in unjamming transitions. We show that cadherin-mediated cell–cell adhesion regulates differential cellular responses to compressive stress and is an important driver of unjamming in stressed monolayers. Importantly, compressive stress does not induce the epithelial–mesenchymal transition in unjammed cells. Furthermore, traction force microscopy reveals the attenuation of traction stresses in compressed cells within the bulk monolayer regardless of cell type and motility. As traction within the bulk monolayer decreases with compressive pressure, cancer cells at the leading edge of the cell layer exhibit sustained traction under compression. Together, strengthened intercellular adhesion and attenuation of traction forces within the bulk cell sheet under compression lead to fluidization of the cell layer and may impact collective cell motion in tumor development and breast cancer progression.
Collapse
Affiliation(s)
- Grace Cai
- Applied Physics Program, University of Michigan, Ann Arbor, MI, United States
| | - Anh Nguyen
- Department of Physics, Northeastern University, Boston, MA, United States
| | - Yashar Bashirzadeh
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Shan-Shan Lin
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Dapeng Bi
- Department of Physics, Northeastern University, Boston, MA, United States
| | - Allen P. Liu
- Applied Physics Program, University of Michigan, Ann Arbor, MI, United States
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Department of Biophysics, University of Michigan, Ann Arbor, MI, United States
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Allen P. Liu,
| |
Collapse
|
44
|
Bonn L, Ardaševa A, Mueller R, Shendruk TN, Doostmohammadi A. Fluctuation-induced dynamics of nematic topological defects. Phys Rev E 2022; 106:044706. [PMID: 36397561 DOI: 10.1103/physreve.106.044706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Topological defects are increasingly being identified in various biological systems, where their characteristic flow fields and stress patterns are associated with continuous active stress generation by biological entities. Here, using numerical simulations of continuum fluctuating nematohydrodynamics, we show that even in the absence of any specific form of active stresses associated with self-propulsion, mesoscopic fluctuations in either orientational alignment or hydrodynamics can independently result in flow patterns around topological defects that resemble the ones observed in active systems. Our simulations further show the possibility of extensile- and contractile-like motion of fluctuation-induced positive half-integer topological defects. Remarkably, isotropic stress fields also reproduce the experimentally measured stress patterns around topological defects in epithelia. Our findings further reveal that extensile- or contractile-like flow and stress patterns around fluctuation-induced defects are governed by passive elastic stresses and flow-aligning behavior of the nematics.
Collapse
Affiliation(s)
- Lasse Bonn
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen 2100, Denmark
| | - Aleksandra Ardaševa
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen 2100, Denmark
| | - Romain Mueller
- The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Tyler N Shendruk
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Amin Doostmohammadi
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen 2100, Denmark
| |
Collapse
|
45
|
Glentis A, Blanch-Mercader C, Balasubramaniam L, Saw TB, d’Alessandro J, Janel S, Douanier A, Delaval B, Lafont F, Lim CT, Delacour D, Prost J, Xi W, Ladoux B. The emergence of spontaneous coordinated epithelial rotation on cylindrical curved surfaces. SCIENCE ADVANCES 2022; 8:eabn5406. [PMID: 36103541 PMCID: PMC9473582 DOI: 10.1126/sciadv.abn5406] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Three-dimensional collective epithelial rotation around a given axis represents a coordinated cellular movement driving tissue morphogenesis and transformation. Questions regarding these behaviors and their relationship with substrate curvatures are intimately linked to spontaneous active matter processes and to vital morphogenetic and embryonic processes. Here, using interdisciplinary approaches, we study the dynamics of epithelial layers lining different cylindrical surfaces. We observe large-scale, persistent, and circumferential rotation in both concavely and convexly curved cylindrical tissues. While epithelia of inverse curvature show an orthogonal switch in actomyosin network orientation and opposite apicobasal polarities, their rotational movements emerge and vary similarly within a common curvature window. We further reveal that this persisting rotation requires stable cell-cell adhesion and Rac-1-dependent cell polarity. Using an active polar gel model, we unveil the different relationships of collective cell polarity and actin alignment with curvatures, which lead to coordinated rotational behavior despite the inverted curvature and cytoskeleton order.
Collapse
Affiliation(s)
- Alexandros Glentis
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Carles Blanch-Mercader
- Laboratoire Physico Chimie Curie, UMR 168, Institut Curie, PSL Research University, CNRS, Sorbonne Université, 75005 Paris, France
| | | | - Thuan Beng Saw
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | | | - Sebastien Janel
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019–UMR 9017–CIIL–Center for Infection and Immunity of Lille, F-59000 Lille, France
| | | | | | - Frank Lafont
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019–UMR 9017–CIIL–Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - Delphine Delacour
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Jacques Prost
- Laboratoire Physico Chimie Curie, UMR 168, Institut Curie, PSL Research University, CNRS, Sorbonne Université, 75005 Paris, France
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Wang Xi
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Benoit Ladoux
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| |
Collapse
|
46
|
Liu Y, Yang Q, Wang Y, Lin M, Tong Y, Huang H, Yang C, Wu J, Tang B, Bai J, Liu C. Metallic Scaffold with Micron-Scale Geometrical Cues Promotes Osteogenesis and Angiogenesis via the ROCK/Myosin/YAP Pathway. ACS Biomater Sci Eng 2022; 8:3498-3514. [PMID: 35834297 DOI: 10.1021/acsbiomaterials.2c00225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The advent of precision manufacturing has enabled the creation of pores in metallic scaffolds with feature size in the range of single microns. In orthopedic implants, pore geometries at the micron scale could regulate bone formation by stimulating osteogenic differentiation and the coupling of osteogenesis and angiogenesis. However, the biological response to pore geometry at the cellular level is not clear. As cells are sensitive to curvature of the pore boundary, this study aimed to investigate osteogenesis in high- vs low-curvature environments by utilizing computer numerical control laser cutting to generate triangular and circular precision manufactured micropores (PMpores). We fabricated PMpores on 100 μm-thick stainless-steel discs. Triangular PMpores had a 30° vertex angle and a 300 μm base, and circular PMpores had a 300 μm diameter. We found triangular PMpores significantly enhanced the elastic modulus, proliferation, migration, and osteogenic differentiation of MC3T3-E1 preosteoblasts through Yes-associated protein (YAP) nuclear translocation. Inhibition of Rho-associated kinase (ROCK) and Myosin II abolished YAP translocation in all pore types and controls. Inhibition of YAP transcriptional activity reduced the proliferation, pore closure, collagen secretion, alkaline phosphatase (ALP), and Alizarin Red staining in MC3T3-E1 cultures. In C166 vascular endothelial cells, PMpores increased the VEGFA mRNA expression even without an angiogenic differentiation medium and induced tubule formation and maintenance. In terms of osteogenesis-angiogenesis coupling, a conditioned medium from MC3T3-E1 cells in PMpores promoted the expression of angiogenic genes in C166 cells. A coculture with MC3T3-E1 induced tubule formation and maintenance in C166 cells and tubule alignment along the edges of pores. Together, curvature cues in micropores are important stimuli to regulate osteogenic differentiation and osteogenesis-angiogenesis coupling. This study uncovered key mechanotransduction signaling components activated by curvature differences in a metallic scaffold and contributed to the understanding of the interaction between orthopedic implants and cells.
Collapse
Affiliation(s)
- Yang Liu
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Advanced Biomaterials, 1088 Xueyuan Avenue, 518055 Shenzhen, China
| | - Qihao Yang
- The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, 510150 Guangzhou, China
| | - Yue Wang
- Department of Mechanical and Energy Engineering, College of Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, 518055 Shenzhen, China
| | - Minmin Lin
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Advanced Biomaterials, 1088 Xueyuan Avenue, 518055 Shenzhen, China
| | - Yanrong Tong
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Advanced Biomaterials, 1088 Xueyuan Avenue, 518055 Shenzhen, China
| | - Hanwei Huang
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Advanced Biomaterials, 1088 Xueyuan Avenue, 518055 Shenzhen, China
| | - Chengyu Yang
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Advanced Biomaterials, 1088 Xueyuan Avenue, 518055 Shenzhen, China
| | - Jianqun Wu
- College of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, 518055 Shenzhen, China
| | - Bin Tang
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Advanced Biomaterials, 1088 Xueyuan Avenue, 518055 Shenzhen, China
| | - Jiaming Bai
- Department of Mechanical and Energy Engineering, College of Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, 518055 Shenzhen, China
| | - Chao Liu
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Advanced Biomaterials, 1088 Xueyuan Avenue, 518055 Shenzhen, China
| |
Collapse
|
47
|
Ardaševa A, Mueller R, Doostmohammadi A. Bridging microscopic cell dynamics to nematohydrodynamics of cell monolayers. SOFT MATTER 2022; 18:4737-4746. [PMID: 35703313 DOI: 10.1039/d2sm00537a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
It is increasingly being realized that liquid-crystalline features can play an important role in the properties and dynamics of cell monolayers. Here, we present a cell-based model of cell layers, based on the phase-field formulation, that connects cell-cell interactions specified at the single cell level to large-scale nematic and hydrodynamic properties of the tissue. In particular, we present a minimal formulation that reproduces the well-known bend and splay hydrodynamic instabilities of the continuum nemato-hydrodynamic formulation of active matter, together with an analytical description of the instability threshold in terms of activity and elasticity of the cells. Furthermore, we provide a quantitative characterisation and comparison of flows and topological defects for extensile and contractile stress generation mechanisms, and demonstrate activity-induced heterogeneity and spontaneous formation of gaps within a confluent monolayer. Together, these results contribute to bridging the gap between cell-scale dynamics and tissue-scale collective cellular organisation.
Collapse
Affiliation(s)
| | - Romain Mueller
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, UK
| | | |
Collapse
|
48
|
Harmand N, Dervaux J, Poulard C, Hénon S. Thickness of epithelia on wavy substrates: measurements and continuous models. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:53. [PMID: 35661937 DOI: 10.1140/epje/s10189-022-00206-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
We measured the thickness of MDCK epithelia grown on substrates with a sinusoidal profile. We show that while at long wavelength the profile of the epithelium follows that of the substrate, at short wavelengths cells are thicker in valleys than on ridges. This is reminiscent of the so-called «healing length in the case of a thin liquid film wetting a rough solid substrate. We explore the ability of continuum mechanics models to account for these observations. Modeling the epithelium as a thin liquid film, with surface tension, does not fully account for the measurements. Neither does modeling the epithelium as a thin incompressible elastic film. On the contrary, the addition of an apical active stress gives satisfactory agreement with measurements, with one fitting parameter, the ratio between the active stress and the elastic modulus.
Collapse
Affiliation(s)
- Nicolas Harmand
- Université Paris Cité, CNRS, Matiére et Systémes Complexes, UMR 7057,, Paris, France
| | - Julien Dervaux
- Université Paris Cité, CNRS, Matiére et Systémes Complexes, UMR 7057,, Paris, France
| | - Christophe Poulard
- Laboratoire de Physique des Solides, CNRS, UMR 8502, Université Paris-Saclay, Orsay, France
| | - Sylvie Hénon
- Université Paris Cité, CNRS, Matiére et Systémes Complexes, UMR 7057,, Paris, France.
| |
Collapse
|
49
|
Zhang DQ, Li ZY, Li B. Self-rotation regulates interface evolution in biphasic active matter through taming defect dynamics. Phys Rev E 2022; 105:064607. [PMID: 35854599 DOI: 10.1103/physreve.105.064607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Chirality can endow nonequilibrium active matter with unique features and functions. Here, we explore the chiral dynamics in biphasic active nematics composed of self-rotating units that continuously inject energy and angular momentum at the microscale. We show that the self-rotation of units can regularize the boundaries between two phases, rendering sinusoidal-like interfaces, which allow lateral wave propagation and are characterized by chains of ordered antiferromagnetic cross-interface flow vortices. Through the spontaneous coordination of counter-rotating units across the interfaces, topological defects excited by activity are sorted spatiotemporally, where positive defects are locally trapped at the interfaces but, unexpectedly, are transported laterally in a unidirectional rather than wavy mode, whereas inertial negative defects remain spinning in the bulks. Our findings reveal that individual chirality could be harnessed to modulate interfacial morphodynamics in active systems and suggest a potential approach toward controlling topological defects for programmable microfluidics and logic operations.
Collapse
Affiliation(s)
- De-Qing Zhang
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Zhong-Yi Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
50
|
Reddy GA, Katira P. Differences in cell death and division rules can alter tissue rigidity and fluidization. SOFT MATTER 2022; 18:3713-3724. [PMID: 35502875 DOI: 10.1039/d2sm00174h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tissue mechanical properties such as rigidity and fluidity, and changes in these properties driven by jamming-unjamming transitions (UJT), have come under recent highlight as mechanical markers of health and disease in various biological processes including cancer. However, most analyses of these mechanical properties and UJT have sidestepped the effect of cellular death and division in these systems. Cellular apoptosis (programmed cell death) and mitosis (cell division) can drive significant changes in tissue properties. The balance between the two is crucial in maintaining tissue function, and an imbalance between the two is seen in situations such as cancer progression, wound healing and necrosis. In this work we investigate the impact of cell death and division on tissue mechanical properties, by incorporating specific mechanosensitive triggers of cell death and division based on the size and geometry of the cell within in silico models of tissue dynamics. Specifically, we look at cell migration, tissue response to external stress, tissue extrusion propensity and self-organization of different cell types within the tissue, as a function of cell death and division and the rules that trigger these events. We find that not only do cell death and division events significantly alter tissue mechanics when compared to systems without these events, but that the choice of triggers driving these cell death and division events also alters the predicted tissue mechanics and overall system behavior.
Collapse
Affiliation(s)
- Gudur Ashrith Reddy
- Mechanical Engineering Department, San Diego State University, San Diego, CA, USA.
- Department of Bioengineering, University of California - San Diego, San Diego, CA, USA
| | - Parag Katira
- Mechanical Engineering Department, San Diego State University, San Diego, CA, USA.
- Computational Science Research Center, San Diego State University, San Diego, CA, USA
| |
Collapse
|