1
|
Jacquet M, Izzo M, Wróbel P, Strawski M, Trotta M, Jurczakowski R, Kargul J. Space-confined mediation of electron transfer for efficient biomolecular solar conversion. MATERIALS HORIZONS 2024. [PMID: 39641770 DOI: 10.1039/d4mh01266f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Solar-converting nanosystems using self-renewing biomaterial resources carry great potential for developing sustainable technologies to ameliorate climate change and minimize reliance on fossil fuels. By mimicking natural photosynthesis, diverse proof-of-concept biosolar systems have been used to produce green electricity, fuels and chemicals. Efforts so far have focused on optimizing light harvesting, biocatalyst loading and electron transfer (ET), however, the long-term performance of best-performing systems remains a major challenge due to the intensive use of diffusive, toxic mediators. To overcome this limitation, we developed a rationally designed nanosystem based on the entrapment of non-toxic mediator, ferrocene dimethanol (Fc), localized at the abiotic-biotic molecular interface that efficiently promoted ET between electrode surface and two photosynthetic proteins: cytochrome c and photosystem I. We demonstrate that space-confined Fc mediators (1 nM) are as effective in terms of ET kinetics as a 500 000-fold higher concentration of freely-diffusive Fc. The Fc-confined biophotocathodes showed a milestone photocurrent density of 14 μA cm-2 under oxic conditions compared to analogous planar (2D) biophotoelectrodes, with a photoconductive biolayer stable for over 5 months. The space-confined ET mediation reported in this work opens a new avenue for efficiently interfacing biomachineries, providing a benchmark design advancement in the quest for viable biohybrid technologies.
Collapse
Affiliation(s)
- Margot Jacquet
- Solar Fuels Laboratory, Centre of New Technology, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland.
| | - Miriam Izzo
- Solar Fuels Laboratory, Centre of New Technology, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland.
| | - Piotr Wróbel
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Marcin Strawski
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Massimo Trotta
- Institute for Physical Chemical Processes, National Research Council, E. Orabona 4, 70125 Bari, Italy
| | - Rafał Jurczakowski
- Electrochemistry of New Materials, Centre of Biological and Chemical Sciences, Faculty of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Joanna Kargul
- Solar Fuels Laboratory, Centre of New Technology, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland.
| |
Collapse
|
2
|
Ferrara S, Willeit S, Fuenzalida‐Werner JP, Costa RD. Bacterial Hybrid Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402851. [PMID: 39382232 PMCID: PMC11586827 DOI: 10.1002/adma.202402851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/06/2024] [Indexed: 10/10/2024]
Abstract
Photon down-converting filters with fluorescent proteins (FPs) are a new frontier in the quest for rare-earth-free and non-toxic color filters for white light-emitting diodes. There are, however, concerns related to the FP purification costs and lack of FP recyclability/reuse. Here, the direct use of bacteria in photon down-converting filters can be of utmost relevance, eliminating purification and allowing in situ production of new FPs. However, their high background autofluorescence/scattering and low stability in polymer coatings have traditionally hampered the application of Engineering Living Materials (ELMs) for photon manipulation. Indeed, there are no examples of ELMs in lighting systems. This work discloses the first protocol to prepare living spheroplasts with > 90% scattering reduction, high FP expression fairly keeping their photoluminescence figures-of-merit, and excellent resilience in polymer films over 1 year under ambient storage. This unlocked the preparation of the first bacteria hybrid light-emitting diodes integrating ELMs for photon conversion. These devices feature similar stabilities to those using purified FPs, while enabling a cost-effective strategy and active FP recycling by the simple recultivation of spheroplasts. Overall, this work introduces a successful case toward bacteria-polymer photon manipulation, in general, and a new living lighting concept, in particular.
Collapse
Affiliation(s)
- Sara Ferrara
- Technical University of MunichTUM Campus Straubing for Biotechnology and Sustainability, Chair of Biogenic Functional MaterialsSchulgasse, 2294315StraubingGermany
| | - Stephanie Willeit
- Technical University of MunichTUM Campus Straubing for Biotechnology and Sustainability, Chair of Biogenic Functional MaterialsSchulgasse, 2294315StraubingGermany
| | - Juan Pablo Fuenzalida‐Werner
- Technical University of MunichTUM Campus Straubing for Biotechnology and Sustainability, Chair of Biogenic Functional MaterialsSchulgasse, 2294315StraubingGermany
| | - Rubén D. Costa
- Technical University of MunichTUM Campus Straubing for Biotechnology and Sustainability, Chair of Biogenic Functional MaterialsSchulgasse, 2294315StraubingGermany
| |
Collapse
|
3
|
Sherman D, Landberg E, Peringath AR, Kar-Narayan S, Tan JC. Fine-Scale Aerosol-Jet Printing of Luminescent Metal-Organic Framework Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 39365709 PMCID: PMC11492290 DOI: 10.1021/acsami.4c10713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024]
Abstract
Fabrication of metal-organic framework (MOF) thin films is an ongoing challenge to achieve effective device integration. Inkjet printing has been employed to print various luminescent metal-organic framework (MOF) films. Luminescent metal-organic nanosheets (LMONs), nanometer-thin particles of MOF materials with comparatively large micrometer lateral dimensions, provide an ideal morphology that offers enhancements over analogous MOFs in luminescent properties such as intensity and photoluminescent quantum yield. The morphology is also better suited to the formation of thin films. This work harnesses the preferential features of LMONs to access the advanced technique of aerosol-jet printing (AJP) to print luminescent films with precise geometries and patterns across the micrometer and centimeter length scales. AJP of LMONs exhibiting red (R), green (G), and blue (B) emission were studied systematically to reveal the increase of luminescence upon additive layering printing until a threshold was reached limited by self-quenching. By combining different LMON emitters, emission chromaticity and intensity were shown to be tunable, including the combination of RGB emitters to fabricate white-light-emitting films. A white-light LMON film was printed onto a UV light emitting diode (LED), producing a working white-light-emitting diode. Printing with multiple distinct photoluminescent inks produced intricate multicolor patterns that dynamically responded to excitation wavelength, acting either as micrometer-scale LED-type cells or larger visual tags. Collectively, the work offers an advancement for MOF thin films by printing MON materials using AJP, offering a precise method for manufacturing a wide range of critical functional devices, from luminescent sensors to optoelectronics, and more broadly even the opportunity for printed circuitry with conductive MONs.
Collapse
Affiliation(s)
- Dylan
A. Sherman
- Multifunctional
Materials & Composites (MMC) Laboratory, Department of Engineering
Science, University of Oxford, Parks Road, Oxford OX1 3PJ, U.K.
| | - Erik Landberg
- Department
of Materials Science & Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K.
| | - Anjana Ramesh Peringath
- Department
of Materials Science & Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K.
| | - Sohini Kar-Narayan
- Department
of Materials Science & Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K.
| | - Jin-Chong Tan
- Multifunctional
Materials & Composites (MMC) Laboratory, Department of Engineering
Science, University of Oxford, Parks Road, Oxford OX1 3PJ, U.K.
| |
Collapse
|
4
|
Sun H, Xie X, Ding J. Electrogenic performance and carbon sequestration potential of biophotovoltaics. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2024; 111:50. [PMID: 39331084 DOI: 10.1007/s00114-024-01936-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
Biophotovoltaics (BPV) is a clean and sustainable solar energy generation technology that operates by utilizing photosynthetic autotrophic microorganisms to capture light energy and generate electricity. However, a major challenge faced by BPV systems is the relatively low electron transfer efficiency from the photosystem to the extracellular electrode, which limits its electrical output. Additionally, the transfer mechanisms of photosynthetic microorganism metabolites in the entire system are still not fully clear. In response to this, this article briefly introduces the basic BPV principles, reviews its development history, and summarizes measures to optimize its electrogenic efficiency. Furthermore, recent studies have found that constructing photosynthetic-electrogenic microbial consortia can achieve high power density and stability in BPV systems. Therefore, the article discusses the potential application of constructing photosynthetic-electrogenic microbial aggregates in BPV systems. Since photosynthetic-electrogenic microbial communities can also exist in natural ecosystems, their potential contribution to the carbon cycle is worth further attention.
Collapse
Affiliation(s)
- Haitang Sun
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xuan Xie
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jing Ding
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
5
|
Chen M, Xia L, Wu C, Wang Z, Ding L, Xie Y, Feng W, Chen Y. Microbe-material hybrids for therapeutic applications. Chem Soc Rev 2024; 53:8306-8378. [PMID: 39005165 DOI: 10.1039/d3cs00655g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
As natural living substances, microorganisms have emerged as useful resources in medicine for creating microbe-material hybrids ranging from nano to macro dimensions. The engineering of microbe-involved nanomedicine capitalizes on the distinctive physiological attributes of microbes, particularly their intrinsic "living" properties such as hypoxia tendency and oxygen production capabilities. Exploiting these remarkable characteristics in combination with other functional materials or molecules enables synergistic enhancements that hold tremendous promise for improved drug delivery, site-specific therapy, and enhanced monitoring of treatment outcomes, presenting substantial opportunities for amplifying the efficacy of disease treatments. This comprehensive review outlines the microorganisms and microbial derivatives used in biomedicine and their specific advantages for therapeutic application. In addition, we delineate the fundamental strategies and mechanisms employed for constructing microbe-material hybrids. The diverse biomedical applications of the constructed microbe-material hybrids, encompassing bioimaging, anti-tumor, anti-bacteria, anti-inflammation and other diseases therapy are exhaustively illustrated. We also discuss the current challenges and prospects associated with the clinical translation of microbe-material hybrid platforms. Therefore, the unique versatility and potential exhibited by microbe-material hybrids position them as promising candidates for the development of next-generation nanomedicine and biomaterials with unique theranostic properties and functionalities.
Collapse
Affiliation(s)
- Meng Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai 200444, P. R. China.
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Zeyu Wang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Li Ding
- Department of Medical Ultrasound, National Clinical Research Center of Interventional Medicine, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
| | - Yujie Xie
- School of Medicine, Shanghai University, Shanghai 200444, P. R. China.
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
- Shanghai Institute of Materdicine, Shanghai 200051, P. R. China
| |
Collapse
|
6
|
Chen H, Wei YQ, Xu MY, Zhu MW, Liu J, Yong YC, Fang Z. Artificial and Biosynthetic Nanoparticles Boost Bioelectrochemical Reactions via Efficient Bidirectional Electron Transfer of Shewanella loihica. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400962. [PMID: 38511578 DOI: 10.1002/smll.202400962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/27/2024] [Indexed: 03/22/2024]
Abstract
Bioelectrochemical reactions using whole-cell biocatalysts are promising carbon-neutral approaches because of their easy operation, low cost, and sustainability. Bidirectional (outward or inward) electron transfer via exoelectrogens plays the main role in driving bioelectrochemical reactions. However, the low electron transfer efficiency seriously inhibits bioelectrochemical reaction kinetics. Here, a three dimensional and artificial nanoparticles-constituent inverse opal-indium tin oxide (IO-ITO) electrode is fabricated and employed to connect with exoelectrogens (Shewanella loihica PV-4). The above electrode collected 128-fold higher cell density and exhibited a maximum current output approaching 1.5 mA cm-2 within 24 h at anode mode. By changing the IO-ITO electrode to cathode mode, the exoelectrogens exhibited the attractive ability of extracellular electron uptake to reduce fumarate and 16 times higher reverse current than the commercial carbon electrode. Notably, Fe-containing oxide nanoparticles are biologically synthesized at both sides of the outer cell membrane and probably contributed to direct electron transfer with the transmembrane c-type cytochromes. Owing to the efficient electron exchange via artificial and biosynthetic nanoparticles, bioelectrochemical CO2 reduction is also realized at the cathode. This work not only explored the possibility of augmenting bidirectional electron transfer but also provided a new strategy to boost bioelectrochemical reactions by introducing biohybrid nanoparticles.
Collapse
Affiliation(s)
- Han Chen
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yu-Qing Wei
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Meng-Yuan Xu
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Ma-Wei Zhu
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Junying Liu
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yang-Chun Yong
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhen Fang
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
7
|
Qi X, Liu X, Gu Y, Liang P. Whole-cell biophotovoltaic systems for renewable energy generation: A systematic analysis of existing knowledge. Bioelectrochemistry 2024; 158:108695. [PMID: 38531227 DOI: 10.1016/j.bioelechem.2024.108695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
The development of carbon-neutral fuel sources is an essential step in addressing the global fossil energy crisis. Whole-cell biophotovoltaic systems (BPVs) are a renewable, non-polluting energy-generating device that utilizes oxygenic photosynthetic microbes (OPMs) to split water molecules and generate bioelectricity under the driving of light energy. Since 2006, BPVs have been widely studied, with the order magnitudes of power density increasing from 10-4 mW/m2 to 103 mW/m2. This review examines the extracellular electron transfer (EET) mechanisms and regulation techniques of BPVs from biofilm to external environment. It is found that the EET of OPMs is mainly mediated by membrane proteins, with terminal oxidase limiting the power output. Synechocystis sp. PCC6803 and Chlorella vulgaris are two species that produce high power density in BPVs. The use of metal nanoparticles mixing, 3D pillar array electrodes, microfluidic technology, and transient-state operation models can significantly enhance power density. Challenges and potential research directions are discussed, including a deeper analysis of EET mechanisms and dynamics, the development of modular devices, integration of multiple regulatory components, and the exploration of novel BPV technologies.
Collapse
Affiliation(s)
- Xiang Qi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xinning Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yuyi Gu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
8
|
Paternò GM. Materials-driven strategies in bacterial engineering. MRS COMMUNICATIONS 2024; 14:1027-1036. [PMID: 39404665 PMCID: PMC7616573 DOI: 10.1557/s43579-024-00623-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/23/2024] [Indexed: 11/01/2024]
Abstract
This perspective article focuses on the innovative field of materials-based bacterial engineering, highlighting interdisciplinary research that employs material science to study, augment, and exploit the attributes of living bacteria. By utilizing exogenous abiotic material interfaces, researchers can engineer bacteria to perform new functions, such as enhanced bioelectric capabilities and improved photosynthetic efficiency. Additionally, materials can modulate bacterial communities and transform bacteria into biohybrid microrobots, offering promising solutions for sustainable energy production, environmental remediation, and medical applications. Finally, the perspective discusses a general paradigm for engineering bacteria through the materials-driven modulation of their transmembrane potential. This parameter regulates their ion channel activity and ultimately their bioenergetics, suggesting that controlling it could allow scientists to hack the bioelectric language bacteria use for communication, task execution, and environmental response. Graphical abstract
Collapse
Affiliation(s)
- Giuseppe Maria Paternò
- Physics Department, Politecnico Di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
- Center for Nanoscience and Technology, Istituto Italiano Di Tecnologia, Via Rubattino 71, 20134 Milano, Italy
| |
Collapse
|
9
|
Ma T, Li Y, Cheng H, Niu Y, Xiong Z, Li A, Jiang X, Park D, Zhang K, Yi C. Enhanced aerosol-jet printing using annular acoustic field for high resolution and minimal overspray. Nat Commun 2024; 15:6317. [PMID: 39060314 PMCID: PMC11282100 DOI: 10.1038/s41467-024-50789-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Aerosol jet printing has the potential to fabricate fine features on various substrates due to its large stand-off distance. However, the presence of overspray and instability, particularly at high printing resolutions, has limited its widespread application. In this study, we introduce an efficient approach called annular acoustic focusing for aerosol jet printing. By determining the optimal focusing frequency (5.8 MHz) for silver nanoparticles using a particle ejection model, we achieve precise and stable printing. We also propose a modified print nozzle geometry, resulting in ultrafine traces (line width < 6 μm, overspray < 0.1 μm). Compared to printing without acoustic focusing, the line width of the traces decreases to 60 ± 5% while their conductivity increases to 180 ± 5%. Additionally, several 8 h experiments demonstrate excellent printing stability. This research opens up possibilities for the fabrication of conformal electronics with high precision and improved conductivity using aerosol jet printing.
Collapse
Affiliation(s)
- Teng Ma
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Yuan Li
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
- The Key Laboratory of Aircraft High Performance Assembly, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
- Advanced Power Research Institute, Northwestern Polytechnical University, Chengdu, Sichuan, 610213, China
| | - Hui Cheng
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
- The Key Laboratory of Aircraft High Performance Assembly, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
- Advanced Power Research Institute, Northwestern Polytechnical University, Chengdu, Sichuan, 610213, China.
| | - Yingjie Niu
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Zhenxiang Xiong
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Ao Li
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Xuanbo Jiang
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | | | - Kaifu Zhang
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
- The Key Laboratory of Aircraft High Performance Assembly, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
- Advanced Power Research Institute, Northwestern Polytechnical University, Chengdu, Sichuan, 610213, China.
| | - Chenglin Yi
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
- The Key Laboratory of Aircraft High Performance Assembly, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
- Advanced Power Research Institute, Northwestern Polytechnical University, Chengdu, Sichuan, 610213, China.
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, 518057, China.
| |
Collapse
|
10
|
Sun J, Yang R, Li Q, Zhu R, Jiang Y, Zang L, Zhang Z, Tong W, Zhao H, Li T, Li H, Qi D, Li G, Chen X, Dai Z, Liu Z. Living Synthelectronics: A New Era for Bioelectronics Powered by Synthetic Biology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400110. [PMID: 38494761 DOI: 10.1002/adma.202400110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/23/2024] [Indexed: 03/19/2024]
Abstract
Bioelectronics, which converges biology and electronics, has attracted great attention due to their vital applications in human-machine interfaces. While traditional bioelectronic devices utilize nonliving organic and/or inorganic materials to achieve flexibility and stretchability, a biological mismatch is often encountered because human tissues are characterized not only by softness and stretchability but also by biodynamic and adaptive properties. Recently, a notable paradigm shift has emerged in bioelectronics, where living cells, and even viruses, modified via gene editing within synthetic biology, are used as core components in a new hybrid electronics paradigm. These devices are defined as "living synthelectronics," and they offer enhanced potential for interfacing with human tissues at informational and substance exchange levels. In this Perspective, the recent advances in living synthelectronics are summarized. First, opportunities brought to electronics by synthetic biology are briefly introduced. Then, strategic approaches to designing and making electronic devices using living cells/viruses as the building blocks, sensing components, or power sources are reviewed. Finally, the challenges faced by living synthelectronics are raised. It is believed that this paradigm shift will significantly contribute to the real integration of bioelectronics with human tissues.
Collapse
Affiliation(s)
- Jing Sun
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Ruofan Yang
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qingsong Li
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Runtao Zhu
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ying Jiang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Lei Zang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhibo Zhang
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wei Tong
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hang Zhao
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tengfei Li
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hanfei Li
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Dianpeng Qi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Guanglin Li
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaodong Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhuojun Dai
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhiyuan Liu
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Standard Robots Co.,Ltd,Room 405, Building D, Huafeng International Robot Fusen Industrial Park, Hangcheng Avenue, Guxing Community, Xixiang Street, Baoan District, Shenzhen, 518055, China
| |
Collapse
|
11
|
Tee JY, Ng FL, Keng FSL, Lee CW, Zhang B, Lin S, Gnana kumar G, Phang SM. Green synthesis of reduced graphene oxide by using tropical microalgae and its application in biophotovoltaic devices. iScience 2024; 27:109564. [PMID: 38617563 PMCID: PMC11015452 DOI: 10.1016/j.isci.2024.109564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/28/2024] [Accepted: 03/22/2024] [Indexed: 04/16/2024] Open
Abstract
The successful commercialization of algal biophotovoltaics (BPV) technology hinges upon a multifaceted approach, encompassing factors such as the development of a cost-efficient and highly conductive anode material. To address this issue, we developed an environmentally benign method of producing reduced graphene oxide (rGO), using concentrated Chlorella sp. UMACC 313 suspensions as the reducing agent. The produced rGO was subsequently coated on the carbon paper (rGO-CP) and used as the BPV device's anode. As a result, maximum power density was increased by 950% for Chlorella sp. UMACC 258 (0.210 mW m-2) and 781% for Synechococcus sp. UMACC 371 (0.555 mW m-2) compared to bare CP. The improved microalgae adhesion to the anode and improved electrical conductivity of rGO brought on by the effective removal of oxygen functional groups may be the causes of this. This study has demonstrated how microalgal-reduced GO may improve the efficiency of algal BPV for producing bioelectricity.
Collapse
Affiliation(s)
- Jing-Ye Tee
- Institute of Ocean and Earth Sciences (IOES), Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Fong-Lee Ng
- Institute of Ocean and Earth Sciences (IOES), Universiti Malaya, Kuala Lumpur 50603, Malaysia
- School of Biosciences, Taylor’s University, Lakeside Campus, Subang Jaya 47500, Selangor Darul Ehsan, Malaysia
| | - Fiona Seh-Lin Keng
- Institute of Ocean and Earth Sciences (IOES), Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Choon-Weng Lee
- Institute of Ocean and Earth Sciences (IOES), Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Bingqing Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Shiwei Lin
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - G. Gnana kumar
- Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Siew-Moi Phang
- Institute of Ocean and Earth Sciences (IOES), Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Faculty of Applied Sciences, UCSI University, Jalan Puncak Menara Gading, Taman Connaught, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
12
|
Smith BN, Ballentine P, Doherty JL, Wence R, Hobbie HA, Williams NX, Franklin AD. Aerosol Jet Printing Conductive 3D Microstructures from Graphene Without Post-Processing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305170. [PMID: 37946691 PMCID: PMC10960713 DOI: 10.1002/smll.202305170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/25/2023] [Indexed: 11/12/2023]
Abstract
Three-dimensional (3D) graphene microstructures have the potential to boost performance in high-capacity batteries and ultrasensitive sensors. Numerous techniques have been developed to create such structures; however, the methods typically rely on structural supports, and/or lengthy post-print processing, increasing cost and complexity. Additive manufacturing techniques, such as printing, show promise in overcoming these challenges. This study employs aerosol jet printing for creating 3D graphene microstructures using water as the only solvent and without any post-print processing required. The graphene pillars exhibit conductivity immediately after printing, requiring no high-temperature annealing. Furthermore, these pillars are successfully printed in freestanding configurations at angles below 45° relative to the substrate, showcasing their adaptability for tailored applications. When graphene pillars are added to humidity sensors, the additional surface area does not yield a corresponding increase in sensor performance. However, graphene trusses, which add a parallel conduction path to the sensing surface, are found to improve sensitivity nearly 2×, highlighting the advantages of a topologically suspended circuit construction when adding 3D microstructures to sensing electrodes. Overall, incorporating 3D graphene microstructures to sensor electrodes can provide added sensitivity, and aerosol jet printing is a viable path to realizing these conductive microstructures without any post-print processing.
Collapse
Affiliation(s)
- Brittany N. Smith
- Electrical and Computer Engineering Department, Duke University, Durham, NC 27708, USA
| | - Peter Ballentine
- Electrical and Computer Engineering Department, Duke University, Durham, NC 27708, USA
| | - James L. Doherty
- Electrical and Computer Engineering Department, Duke University, Durham, NC 27708, USA
| | - Ryan Wence
- Electrical and Computer Engineering Department, Duke University, Durham, NC 27708, USA
| | - Hansel Alex Hobbie
- Electrical and Computer Engineering Department, Duke University, Durham, NC 27708, USA
| | - Nicholas X. Williams
- Electrical and Computer Engineering Department, Duke University, Durham, NC 27708, USA
| | - Aaron D. Franklin
- Electrical and Computer Engineering Department, Duke University, Durham, NC 27708, USA
- Chemistry Department, Duke University, Durham, NC 27708, USA
| |
Collapse
|
13
|
Zhang J, Li F, Liu D, Liu Q, Song H. Engineering extracellular electron transfer pathways of electroactive microorganisms by synthetic biology for energy and chemicals production. Chem Soc Rev 2024; 53:1375-1446. [PMID: 38117181 DOI: 10.1039/d3cs00537b] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The excessive consumption of fossil fuels causes massive emission of CO2, leading to climate deterioration and environmental pollution. The development of substitutes and sustainable energy sources to replace fossil fuels has become a worldwide priority. Bio-electrochemical systems (BESs), employing redox reactions of electroactive microorganisms (EAMs) on electrodes to achieve a meritorious combination of biocatalysis and electrocatalysis, provide a green and sustainable alternative approach for bioremediation, CO2 fixation, and energy and chemicals production. EAMs, including exoelectrogens and electrotrophs, perform extracellular electron transfer (EET) (i.e., outward and inward EET), respectively, to exchange energy with the environment, whose rate determines the efficiency and performance of BESs. Therefore, we review the synthetic biology strategies developed in the last decade for engineering EAMs to enhance the EET rate in cell-electrode interfaces for facilitating the production of electricity energy and value-added chemicals, which include (1) progress in genetic manipulation and editing tools to achieve the efficient regulation of gene expression, knockout, and knockdown of EAMs; (2) synthetic biological engineering strategies to enhance the outward EET of exoelectrogens to anodes for electricity power production and anodic electro-fermentation (AEF) for chemicals production, including (i) broadening and strengthening substrate utilization, (ii) increasing the intracellular releasable reducing equivalents, (iii) optimizing c-type cytochrome (c-Cyts) expression and maturation, (iv) enhancing conductive nanowire biosynthesis and modification, (v) promoting electron shuttle biosynthesis, secretion, and immobilization, (vi) engineering global regulators to promote EET rate, (vii) facilitating biofilm formation, and (viii) constructing cell-material hybrids; (3) the mechanisms of inward EET, CO2 fixation pathway, and engineering strategies for improving the inward EET of electrotrophic cells for CO2 reduction and chemical production, including (i) programming metabolic pathways of electrotrophs, (ii) rewiring bioelectrical circuits for enhancing inward EET, and (iii) constructing microbial (photo)electrosynthesis by cell-material hybridization; (4) perspectives on future challenges and opportunities for engineering EET to develop highly efficient BESs for sustainable energy and chemical production. We expect that this review will provide a theoretical basis for the future development of BESs in energy harvesting, CO2 fixation, and chemical synthesis.
Collapse
Affiliation(s)
- Junqi Zhang
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Feng Li
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Dingyuan Liu
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Qijing Liu
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Hao Song
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
14
|
Oh JJ, Ammu S, Vriend VD, Kieffer R, Kleiner FH, Balasubramanian S, Karana E, Masania K, Aubin-Tam ME. Growth, Distribution, and Photosynthesis of Chlamydomonas Reinhardtii in 3D Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305505. [PMID: 37851509 DOI: 10.1002/adma.202305505] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/16/2023] [Indexed: 10/20/2023]
Abstract
Engineered living materials (ELMs) are a novel class of functional materials that typically feature spatial confinement of living components within an inert polymer matrix to recreate biological functions. Understanding the growth and spatial configuration of cellular populations within a matrix is crucial to predicting and improving their responsive potential and functionality. Here, this work investigates the growth, spatial distribution, and photosynthetic productivity of eukaryotic microalga Chlamydomonas reinhardtii (C. reinhardtii) in three-dimensionally shaped hydrogels in dependence of geometry and size. The embedded C. reinhardtii cells photosynthesize and form confined cell clusters, which grow faster when located close to the ELM periphery due to favorable gas exchange and light conditions. Taking advantage of location-specific growth patterns, this work successfully designs and prints photosynthetic ELMs with increased CO2 capturing rate, featuring high surface to volume ratio. This strategy to control cell growth for higher productivity of ELMs resembles the already established adaptations found in multicellular plant leaves.
Collapse
Affiliation(s)
- Jeong-Joo Oh
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Satya Ammu
- Shaping Matter Lab, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, Delft, 2629 HS, The Netherlands
| | - Vivian Dorine Vriend
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
- Department of Sustainable Design Engineering, Faculty of Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, Delft, 2628 CE, The Netherlands
| | - Roland Kieffer
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Friedrich Hans Kleiner
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Srikkanth Balasubramanian
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
- Department of Sustainable Design Engineering, Faculty of Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, Delft, 2628 CE, The Netherlands
| | - Elvin Karana
- Department of Sustainable Design Engineering, Faculty of Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, Delft, 2628 CE, The Netherlands
| | - Kunal Masania
- Shaping Matter Lab, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, Delft, 2629 HS, The Netherlands
| | - Marie-Eve Aubin-Tam
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| |
Collapse
|
15
|
Cossio G, Barbosa R, Korgel B, Yu ET. Massively Scalable Self-Assembly of Nano and Microparticle Monolayers via Aerosol Assisted Deposition. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309775. [PMID: 37983639 DOI: 10.1002/adma.202309775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/01/2023] [Indexed: 11/22/2023]
Abstract
An extremely rapid process for self-assembling well-ordered, nano, and microparticle monolayers via a novel aerosolized method is presented. The novel technique can reach monolayer self-assembly rates as high as 268 cm2 min-1 from a single aerosolizing source and methods to reach faster monolayer self-assembly rates are outlined. A new physical mechanism describing the self-assembly process is presented and new insights enabling high-efficiency nanoparticle monolayer self-assembly are developed. In addition, well-ordered monolayer arrays from particles of various sizes, surface functionality, and materials are fabricated. This new technique enables a 93× increase in monolayer self-assembly rates compared to the current state of the art and has the potential to provide an extremely low-cost option for submicron nanomanufacturing.
Collapse
Affiliation(s)
- Gabriel Cossio
- Microelectronics Research Center, University of Texas at Austin, Chandra Department of Electrical and Computer Engineering, Austin, TX, 78758, USA
| | - Raul Barbosa
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Brian Korgel
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Edward T Yu
- Microelectronics Research Center, University of Texas at Austin, Chandra Department of Electrical and Computer Engineering, Austin, TX, 78758, USA
| |
Collapse
|
16
|
Dranseike D, Cui Y, Ling AS, Donat F, Bernhard S, Bernero M, Areeckal A, Qin XH, Oakey JS, Dillenburger B, Studart AR, Tibbitt MW. Dual carbon sequestration with photosynthetic living materials. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.572991. [PMID: 38187760 PMCID: PMC10769394 DOI: 10.1101/2023.12.22.572991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Natural ecosystems offer efficient pathways for carbon sequestration, serving as a resilient approach to remove CO2 from the atmosphere with minimal environmental impact. However, the control of living systems outside of their native environments is often challenging. Here, we engineered a photosynthetic living material for dual CO2 sequestration by immobilizing photosynthetic microorganisms within a printable polymeric network. The carbon concentrating mechanism of the cyanobacteria enabled accumulation of CO2 within the cell, resulting in biomass production. Additionally, the metabolic production of OH- ions in the surrounding medium created an environment for the formation of insoluble carbonates via microbially-induced calcium carbonate precipitation (MICP). Digital design and fabrication of the living material ensured sufficient access to light and nutrient transport of the encapsulated cyanobacteria, which were essential for long-term viability (more than one year) as well as efficient photosynthesis and carbon sequestration. The photosynthetic living materials sequestered approximately 2.5 mg of CO2 per gram of hydrogel material over 30 days via dual carbon sequestration, with 2.2 ± 0.9 mg stored as insoluble carbonates. Over an extended incubation period of 400 days, the living materials sequestered 26 ± 7 mg of CO2 per gram of hydrogel material in the form of stable minerals. These findings highlight the potential of photosynthetic living materials for scalable carbon sequestration, carbon-neutral infrastructure, and green building materials. The simplicity of maintenance, coupled with its scalability nature, suggests broad applications of photosynthetic living materials as a complementary strategy to mitigate CO2 emissions.
Collapse
Affiliation(s)
- Dalia Dranseike
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, CH
| | - Yifan Cui
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, CH
| | - Andrea S. Ling
- Digital Building Technologies, Department of Architecture, ETH Zurich, Zurich, CH
| | - Felix Donat
- Laboratory of Energy Science and Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, CH
| | - Stéphane Bernhard
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, CH
| | - Margherita Bernero
- Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zurich, Zurich, CH
| | - Akhil Areeckal
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, CH
| | - Xiao-Hua Qin
- Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zurich, Zurich, CH
| | - John S. Oakey
- Department of Chemical and Biomedical Engineering, University of Wyoming, Laramie, Wyoming, US
| | | | - André R. Studart
- Complex Materials, Department of Materials, ETH Zurich, Zurich, CH
| | - Mark W. Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, CH
| |
Collapse
|
17
|
Lee H, Hyun J. Biophotovoltaic living hydrogel of an ion-crosslinked carboxymethylated cellulose nanofiber/alginate. Carbohydr Polym 2023; 321:121299. [PMID: 37739532 DOI: 10.1016/j.carbpol.2023.121299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/02/2023] [Accepted: 08/13/2023] [Indexed: 09/24/2023]
Abstract
Due to the low electrical power generation in liquid cultures of photosynthetic microalgae, a solid medium culture is demanded for the efficient design of biophotovoltaic (BPV) cells. In particular, the conductivity of the culture medium and the contact of microalgae with an electrode are crucial in harvesting electrons in BPV cells. Here, an ion-crosslinked carboxymethylated cellulose nanofiber (CM-CNF)/alginate is proposed as a living hydrogel for the green power generation of Chlorella vulgaris embedded in the hydrogel. The hydrogel crosslinked with Ca2+ and Fe3+ ions showed more efficient BPV properties than the hydrogel crosslinked with only Ca2+ due to the increase of conductivity. The efficient transport of electrons generated by C. vulgaris improves the power generation of BPV cells. Moreover, the fluid channels imprinted in the living hydrogel maintain the viability of C. vulgaris even under the ambient environment by preventing the solid medium from being dried out.
Collapse
Affiliation(s)
- Hwarueon Lee
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea; Department of Agriculture, Forestry, and Bioresources, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinho Hyun
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea; Department of Agriculture, Forestry, and Bioresources, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
18
|
Xiong W, Peng Y, Ma W, Xu X, Zhao Y, Wu J, Tang R. Microalgae-material hybrid for enhanced photosynthetic energy conversion: a promising path towards carbon neutrality. Natl Sci Rev 2023; 10:nwad200. [PMID: 37671320 PMCID: PMC10476897 DOI: 10.1093/nsr/nwad200] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/10/2023] [Accepted: 07/02/2023] [Indexed: 09/07/2023] Open
Abstract
Photosynthetic energy conversion for high-energy chemicals generation is one of the most viable solutions in the quest for sustainable energy towards carbon neutrality. Microalgae are fascinating photosynthetic organisms, which can directly convert solar energy into chemical energy and electrical energy. However, microalgal photosynthetic energy has not yet been applied on a large scale due to the limitation of their own characteristics. Researchers have been inspired to couple microalgae with synthetic materials via biomimetic assembly and the resulting microalgae-material hybrids have become more robust and even perform new functions. In the past decade, great progress has been made in microalgae-material hybrids, such as photosynthetic carbon dioxide fixation, photosynthetic hydrogen production, photoelectrochemical energy conversion and even biochemical energy conversion for biomedical therapy. The microalgae-material hybrid offers opportunities to promote artificially enhanced photosynthesis research and synchronously inspires investigation of biotic-abiotic interface manipulation. This review summarizes current construction methods of microalgae-material hybrids and highlights their implication in energy and health. Moreover, we discuss the current problems and future challenges for microalgae-material hybrids and the outlook for their development and applications. This review will provide inspiration for the rational design of the microalgae-based semi-natural biohybrid and further promote the disciplinary fusion of material science and biological science.
Collapse
Affiliation(s)
- Wei Xiong
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Yiyan Peng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Weimin Ma
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xurong Xu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China
| | - Yueqi Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School & School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
19
|
Lee H, Bang Y, Chang IS. Orientation-Controllable Enzyme Cascade on Electrode for Bioelectrocatalytic Chain Reaction. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40355-40368. [PMID: 37552888 DOI: 10.1021/acsami.3c03077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The accomplishment of concurrent interenzyme chain reaction and direct electric communication in a multienzyme-electrode is challenging since the required condition of multienzymatic binding conformation is quite complex. In this study, an enzyme cascade-induced bioelectrocatalytic system has been constructed using solid binding peptide (SBP) as a molecular binder that coimmobilizes the invertase (INV) and flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase gamma-alpha complex (GDHγα) cascade system on a single electrode surface. The SBP-fused enzyme cascade was strategically designed to induce diverse relative orientations of coupling enzymes while enabling efficient direct electron transfer (DET) at the FAD cofactor of GDHγα and the electrode interface. The interenzyme relative orientation was found to determine the intermediate delivery route and affect overall chain reaction efficiency. Moreover, interfacial DET between the fusion GDHγα and the electrode was altered by the binding conformation of the coimmobilized enzyme and fusion INVs. Collectively, this work emphasizes the importance of interenzyme orientation when incorporating enzymatic cascade in an electrocatalytic system and demonstrates the efficacy of SBP fusion technology as a generic tool for developing cascade-induced direct bioelectrocatalytic systems. The proposed approach is applicable to enzyme cascade-based bioelectronics such as biofuel cells, biosensors, and bioeletrosynthetic systems utilizing or producing complex biomolecules.
Collapse
Affiliation(s)
- Hyeryeong Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
- Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (inn-ECOSysChem), Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Yuna Bang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - In Seop Chang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
- Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (inn-ECOSysChem), Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| |
Collapse
|
20
|
Chen H, Wang J, Peng S, Liu D, Yan W, Shang X, Zhang B, Yao Y, Hui Y, Zhou N. A Generalized Polymer Precursor Ink Design for 3D Printing of Functional Metal Oxides. NANO-MICRO LETTERS 2023; 15:180. [PMID: 37439950 PMCID: PMC10344857 DOI: 10.1007/s40820-023-01147-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/01/2023] [Indexed: 07/14/2023]
Abstract
Three-dimensional-structured metal oxides have myriad applications for optoelectronic devices. Comparing to conventional lithography-based manufacturing methods which face significant challenges for 3D device architectures, additive manufacturing approaches such as direct ink writing offer convenient, on-demand manufacturing of 3D oxides with high resolutions down to sub-micrometer scales. However, the lack of a universal ink design strategy greatly limits the choices of printable oxides. Here, a universal, facile synthetic strategy is developed for direct ink writable polymer precursor inks based on metal-polymer coordination effect. Specifically, polyethyleneimine functionalized by ethylenediaminetetraacetic acid is employed as the polymer matrix for adsorbing targeted metal ions. Next, glucose is introduced as a crosslinker for endowing the polymer precursor inks with a thermosetting property required for 3D printing via the Maillard reaction. For demonstrations, binary (i.e., ZnO, CuO, In2O3, Ga2O3, TiO2, and Y2O3) and ternary metal oxides (i.e., BaTiO3 and SrTiO3) are printed into 3D architectures with sub-micrometer resolution by extruding the inks through ultrafine nozzles. Upon thermal crosslinking and pyrolysis, the 3D microarchitectures with woodpile geometries exhibit strong light-matter coupling in the mid-infrared region. The design strategy for printable inks opens a new pathway toward 3D-printed optoelectronic devices based on functional oxides.
Collapse
Affiliation(s)
- Hehao Chen
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering and Research Center for Industries of the Future, Westlake University, Hangzhou, 310030, People's Republic of China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, People's Republic of China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Jizhe Wang
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering and Research Center for Industries of the Future, Westlake University, Hangzhou, 310030, People's Republic of China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, People's Republic of China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Siying Peng
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering and Research Center for Industries of the Future, Westlake University, Hangzhou, 310030, People's Republic of China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, People's Republic of China
| | - Dongna Liu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering and Research Center for Industries of the Future, Westlake University, Hangzhou, 310030, People's Republic of China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, People's Republic of China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Wei Yan
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering and Research Center for Industries of the Future, Westlake University, Hangzhou, 310030, People's Republic of China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, People's Republic of China
| | - Xinggang Shang
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering and Research Center for Industries of the Future, Westlake University, Hangzhou, 310030, People's Republic of China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, People's Republic of China
| | - Boyu Zhang
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering and Research Center for Industries of the Future, Westlake University, Hangzhou, 310030, People's Republic of China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, People's Republic of China
| | - Yuan Yao
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering and Research Center for Industries of the Future, Westlake University, Hangzhou, 310030, People's Republic of China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, People's Republic of China
| | - Yue Hui
- School of Chemical Engineering and Advanced Materials, the University of Adelaide, Adelaide, 5005, Australia
| | - Nanjia Zhou
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering and Research Center for Industries of the Future, Westlake University, Hangzhou, 310030, People's Republic of China.
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, People's Republic of China.
| |
Collapse
|
21
|
Zheng G, Cui Y, Lu L, Guo M, Hu X, Wang L, Yu S, Sun S, Li Y, Zhang X, Wang Y. Microfluidic chemostatic bioreactor for high-throughput screening and sustainable co-harvesting of biomass and biodiesel in microalgae. Bioact Mater 2023; 25:629-639. [PMID: 37056278 PMCID: PMC10086765 DOI: 10.1016/j.bioactmat.2022.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/30/2022] [Accepted: 07/09/2022] [Indexed: 01/09/2023] Open
Abstract
As a renewable and sustainable source for energy, environment, and biomedical applications, microalgae and microalgal biodiesel have attracted great attention. However, their applications are confined due to the cost-efficiency of microalgal mass production. One-step strategy and continuous culturing systems could be solutions. However, current studies for optimization throughout microalgae-based biofuel production pipelines are generally derived from the batch culture process. Better tools are needed to study algal growth kinetics in continuous systems. A microfluidic chemostatic bioreactor was presented here, providing low-bioadhesive cultivations for algae in a cooperative environment of gas, nutrition, and temperature (GNT) involved with high throughput. The chip was used to mimic the continuous culture environment of bioreactors. It allowed simultaneously studying of 8 × 8 different chemostatic conditions on algal growth and oil production in parallel on a 7 × 7 cm2 footprint. On-chip experiments of batch and continuous cultures of Chlorella. sp. were performed to study growth and lipid accumulation under different nitrogen concentrations. The results demonstrated that microalgal cultures can be regulated to grow and accumulate lipids concurrently, thus enhancing lipid productivity in one step. The developed on-chip culturing condition screening, which was more suitable for continuous bioreactor, was achieved at a half shorter time, 64-times higher throughput, and less reagent consumption. It could be used to establish chemostat cultures in continuous bioreactors which can dramatically accelerate the development of renewable and sustainable algal for CO2 fixation and biosynthesis and related systems for advanced sustainable energy, food, pharmacy, and agriculture with enormous social and ecological benefits.
Collapse
Affiliation(s)
- Guoxia Zheng
- Environmental and Chemical Engineering Institute, Dalian University, Dalian, 116622, China
- Dalian Key Laboratory of Oligosaccharide Recombination and Recombinant Protein Modification, Dalian, 116622, China
| | - Yutong Cui
- Environmental and Chemical Engineering Institute, Dalian University, Dalian, 116622, China
- Dalian Key Laboratory of Oligosaccharide Recombination and Recombinant Protein Modification, Dalian, 116622, China
| | - Ling Lu
- Dalian Key Laboratory of Oligosaccharide Recombination and Recombinant Protein Modification, Dalian, 116622, China
- Medical School, Dalian University, Dalian, 116622, China
| | - Ming Guo
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | - Xuejun Hu
- Dalian Key Laboratory of Oligosaccharide Recombination and Recombinant Protein Modification, Dalian, 116622, China
- Medical School, Dalian University, Dalian, 116622, China
| | - Lin Wang
- Environmental and Chemical Engineering Institute, Dalian University, Dalian, 116622, China
| | - Shuping Yu
- Environmental and Chemical Engineering Institute, Dalian University, Dalian, 116622, China
| | - Shenxia Sun
- Dalian Key Laboratory of Oligosaccharide Recombination and Recombinant Protein Modification, Dalian, 116622, China
- Medical School, Dalian University, Dalian, 116622, China
| | - Yuancheng Li
- The First Affiliated Hospital of Dalian Medical University, Dalian, 116001, China
| | - Xingcai Zhang
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, United States
| | - Yunhua Wang
- Dalian Key Laboratory of Oligosaccharide Recombination and Recombinant Protein Modification, Dalian, 116622, China
- Medical School, Dalian University, Dalian, 116622, China
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, United States
| |
Collapse
|
22
|
Li Y, Wang H, Tang L, Zhu H. Titanium dioxide nanoparticles enhance photocurrent generation of cyanobacteria. Biochem Biophys Res Commun 2023; 672:113-119. [PMID: 37348173 DOI: 10.1016/j.bbrc.2023.06.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
Photosynthetic microorganisms such as cyanobacteria can convert photons into electrons, providing ideal eco-friendly materials for converting solar energy into electricity. However, the electrons are hardly transported outside the cyanobacterial cells due to the insulation feature of the cell wall/membrane. Various nanomaterials have been reported to enhance extracellular electron transfer of heterotrophic electroactive microorganisms, but its effect on intact photosynthetic microorganisms remains unclear. In this study, we investigated the effect of six different nanomaterials on the photocurrent generation of cyanobacterium Synechocystis sp. PCC 6803. Among the nanomaterials tested, titanium dioxide (TiO2) nanoparticles increased the photocurrent generation of Synechocystis sp. PCC 6803 up to four-fold at the optimum concentration of 2 mg/mL. Transmission electron microscopy and scanning electron microscopy showed that TiO2 bound to cyanobacterial cells and likely penetrated inside of cell membrane. Photochemical analyses for photosystems showed that TiO2 blocked the electrons transfer downstream in PS I, implying a possible extracellular electron pathway mediated by TiO2. This study provides an alternative approach for enhancing the photocurrent generation of cyanobacteria, showing the potential of photosynthetic-nanomaterial hybrids.
Collapse
Affiliation(s)
- Yilan Li
- The Affiliated High School of Peking University, Beijing, 100080, China
| | - Haowei Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lingfang Tang
- The Affiliated High School of Peking University, Beijing, 100080, China.
| | - Huawei Zhu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
23
|
Wei J, Pan F, Ping H, Yang K, Wang Y, Wang Q, Fu Z. Bioinspired Additive Manufacturing of Hierarchical Materials: From Biostructures to Functions. RESEARCH (WASHINGTON, D.C.) 2023; 6:0164. [PMID: 37303599 PMCID: PMC10254471 DOI: 10.34133/research.0164] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/17/2023] [Indexed: 06/13/2023]
Abstract
Throughout billions of years, biological systems have evolved sophisticated, multiscale hierarchical structures to adapt to changing environments. Biomaterials are synthesized under mild conditions through a bottom-up self-assembly process, utilizing substances from the surrounding environment, and meanwhile are regulated by genes and proteins. Additive manufacturing, which mimics this natural process, provides a promising approach to developing new materials with advantageous properties similar to natural biological materials. This review presents an overview of natural biomaterials, emphasizing their chemical and structural compositions at various scales, from the nanoscale to the macroscale, and the key mechanisms underlying their properties. Additionally, this review describes the designs, preparations, and applications of bioinspired multifunctional materials produced through additive manufacturing at different scales, including nano, micro, micro-macro, and macro levels. The review highlights the potential of bioinspired additive manufacturing to develop new functional materials and insights into future directions and prospects in this field. By summarizing the characteristics of natural biomaterials and their synthetic counterparts, this review inspires the development of new materials that can be utilized in various applications.
Collapse
Affiliation(s)
- Jingjiang Wei
- Institute for Advanced Materials Deformation and Damage from Multi-Scale, Institute for Advanced Study,
Chengdu University, Chengdu 610106, P. R. China
| | - Fei Pan
- Department of Chemistry,
University of Basel, Basel 4058, Switzerland
| | - Hang Ping
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,
Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Kun Yang
- Institute for Advanced Materials Deformation and Damage from Multi-Scale, Institute for Advanced Study,
Chengdu University, Chengdu 610106, P. R. China
| | - Yanqing Wang
- College of Polymer Science and Engineering,
Sichuan University, Chengdu 610065, P. R. China
| | - Qingyuan Wang
- Institute for Advanced Materials Deformation and Damage from Multi-Scale, Institute for Advanced Study,
Chengdu University, Chengdu 610106, P. R. China
| | - Zhengyi Fu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,
Wuhan University of Technology, Wuhan 430070, P. R. China
| |
Collapse
|
24
|
Ma S, Dahiya AS, Dahiya R. Out-of-Plane Electronics on Flexible Substrates Using Inorganic Nanowires Grown on High-Aspect-Ratio Printed Gold Micropillars. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2210711. [PMID: 37178312 DOI: 10.1002/adma.202210711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/06/2023] [Indexed: 05/15/2023]
Abstract
Out-of-plane or 3D electronics on flexible substrates are an interesting direction that can enable novel solutions such as efficient bioelectricity generation and artificial retina. However, the development of devices with such architectures is limited by the lack of suitable fabrication techniques. Additive manufacturing (AM) can but often fail to provide high-resolution, sub-micrometer 3D architectures. Herein, the optimization of a drop-on-demand (DoD), high-resolution electrohydrodynamic (EHD)-based jet printing method for generating 3D gold (Au) micropillars is reported. Libraries of Au micropillar electrode arrays (MEAs) reaching a maximum height of 196 µm and a maximum aspect ratio of 52 are printed. Further, by combining AM with the hydrothermal growth method, a seedless synthesis of zinc oxide (ZnO) nanowires (NWs) on the printed Au MEAs is demonstrated. The developed hybrid approach leads to hierarchical light-sensitive NW-connected networks exhibiting favorable ultraviolet (UV) sensing as demonstrated via fabricating flexible photodetectors (PDs). The 3D PDs exhibit an excellent omnidirectional light-absorption ability and thus, maintain high photocurrents over wide light incidence angles (±90°). Lastly, the PDs are tested under both concave and convex bending at 40 mm, showing excellent mechanical flexibility.
Collapse
Affiliation(s)
- Sihang Ma
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | - Ravinder Dahiya
- Bendable Electronics and Sustainable Technologies (BEST) Group, Electrical and Computer Engineering Department, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
25
|
Zhu H, Wang H, Zhang Y, Li Y. Biophotovoltaics: Recent advances and perspectives. Biotechnol Adv 2023; 64:108101. [PMID: 36681132 DOI: 10.1016/j.biotechadv.2023.108101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/02/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
Biophotovoltaics (BPV) is a clean power generation technology that uses self-renewing photosynthetic microorganisms to capture solar energy and generate electrical current. Although the internal quantum efficiency of charge separation in photosynthetic microorganisms is very high, the inefficient electron transfer from photosystems to the extracellular electrodes hampered the electrical outputs of BPV systems. This review summarizes the approaches that have been taken to increase the electrical outputs of BPV systems in recent years. These mainly include redirecting intracellular electron transfer, broadening available photosynthetic microorganisms, reinforcing interfacial electron transfer and design high-performance devices with different configurations. Furthermore, three strategies developed to extract photosynthetic electrons were discussed. Among them, the strategy of using synthetic microbial consortia could circumvent the weak exoelectrogenic activity of photosynthetic microorganisms and the cytotoxicity of exogenous electron mediators, thus show great potential in enhancing the power output and prolonging the lifetime of BPV systems. Lastly, we prospected how to facilitate electron extraction and further improve the performance of BPV systems.
Collapse
Affiliation(s)
- Huawei Zhu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Haowei Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanping Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yin Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
26
|
Goodchild-Michelman IM, Church GM, Schubert MG, Tang TC. Light and carbon: Synthetic biology toward new cyanobacteria-based living biomaterials. Mater Today Bio 2023; 19:100583. [PMID: 36846306 PMCID: PMC9945787 DOI: 10.1016/j.mtbio.2023.100583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/30/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023] Open
Abstract
Cyanobacteria are ideal candidates to use in developing carbon neutral and carbon negative technologies; they are efficient photosynthesizers and amenable to genetic manipulation. Over the past two decades, researchers have demonstrated that cyanobacteria can make sustainable, useful biomaterials, many of which are engineered living materials. However, we are only beginning to see such technologies applied at an industrial scale. In this review, we explore the ways in which synthetic biology tools enable the development of cyanobacteria-based biomaterials. First we give an overview of the ecological and biogeochemical importance of cyanobacteria and the work that has been done using cyanobacteria to create biomaterials so far. This is followed by a discussion of commonly used cyanobacteria strains and synthetic biology tools that exist to engineer cyanobacteria. Then, three case studies-bioconcrete, biocomposites, and biophotovoltaics-are explored as potential applications of synthetic biology in cyanobacteria-based materials. Finally, challenges and future directions of cyanobacterial biomaterials are discussed.
Collapse
Affiliation(s)
- Isabella M. Goodchild-Michelman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Max G. Schubert
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Tzu-Chieh Tang
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| |
Collapse
|
27
|
Chu N, Jiang Y, Liang Q, Liu P, Wang D, Chen X, Li D, Liang P, Zeng RJ, Zhang Y. Electricity-Driven Microbial Metabolism of Carbon and Nitrogen: A Waste-to-Resource Solution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4379-4395. [PMID: 36877891 DOI: 10.1021/acs.est.2c07588] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Electricity-driven microbial metabolism relies on the extracellular electron transfer (EET) process between microbes and electrodes and provides promise for resource recovery from wastewater and industrial discharges. Over the past decades, tremendous efforts have been dedicated to designing electrocatalysts and microbes, as well as hybrid systems to push this approach toward industrial adoption. This paper summarizes these advances in order to facilitate a better understanding of electricity-driven microbial metabolism as a sustainable waste-to-resource solution. Quantitative comparisons of microbial electrosynthesis and abiotic electrosynthesis are made, and the strategy of electrocatalyst-assisted microbial electrosynthesis is critically discussed. Nitrogen recovery processes including microbial electrochemical N2 fixation, electrocatalytic N2 reduction, dissimilatory nitrate reduction to ammonium (DNRA), and abiotic electrochemical nitrate reduction to ammonia (Abio-NRA) are systematically reviewed. Furthermore, the synchronous metabolism of carbon and nitrogen using hybrid inorganic-biological systems is discussed, including advanced physicochemical, microbial, and electrochemical characterizations involved in this field. Finally, perspectives for future trends are presented. The paper provides valuable insights on the potential contribution of electricity-driven microbial valorization of waste carbon and nitrogen toward a green and sustainable society.
Collapse
Affiliation(s)
- Na Chu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qinjun Liang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Panpan Liu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Donglin Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xueming Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Daping Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
28
|
Giordano G, Murali Babu SP, Mazzolai B. Soft robotics towards sustainable development goals and climate actions. Front Robot AI 2023; 10:1116005. [PMID: 37008983 PMCID: PMC10064016 DOI: 10.3389/frobt.2023.1116005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Soft robotics technology can aid in achieving United Nations’ Sustainable Development Goals (SDGs) and the Paris Climate Agreement through development of autonomous, environmentally responsible machines powered by renewable energy. By utilizing soft robotics, we can mitigate the detrimental effects of climate change on human society and the natural world through fostering adaptation, restoration, and remediation. Moreover, the implementation of soft robotics can lead to groundbreaking discoveries in material science, biology, control systems, energy efficiency, and sustainable manufacturing processes. However, to achieve these goals, we need further improvements in understanding biological principles at the basis of embodied and physical intelligence, environment-friendly materials, and energy-saving strategies to design and manufacture self-piloting and field-ready soft robots. This paper provides insights on how soft robotics can address the pressing issue of environmental sustainability. Sustainable manufacturing of soft robots at a large scale, exploring the potential of biodegradable and bioinspired materials, and integrating onboard renewable energy sources to promote autonomy and intelligence are some of the urgent challenges of this field that we discuss in this paper. Specifically, we will present field-ready soft robots that address targeted productive applications in urban farming, healthcare, land and ocean preservation, disaster remediation, and clean and affordable energy, thus supporting some of the SDGs. By embracing soft robotics as a solution, we can concretely support economic growth and sustainable industry, drive solutions for environment protection and clean energy, and improve overall health and well-being.
Collapse
Affiliation(s)
- Goffredo Giordano
- Bioinspired Soft Robotics, Istituto Italiano di Tecnologia (IIT), Genova, Italy
- Department of Mechanics Mathematics and Management, Politecnico di Barit, Bari, Italy
- *Correspondence: Goffredo Giordano, , ; Saravana Prashanth Murali Babu, , ; Barbara Mazzolai,
| | - Saravana Prashanth Murali Babu
- SDU Soft Robotics, SDU Biorobotics, The Mærsk McKinney Møller Institute, University of Southern Denmark, Odense, Denmark
- *Correspondence: Goffredo Giordano, , ; Saravana Prashanth Murali Babu, , ; Barbara Mazzolai,
| | - Barbara Mazzolai
- Bioinspired Soft Robotics, Istituto Italiano di Tecnologia (IIT), Genova, Italy
- *Correspondence: Goffredo Giordano, , ; Saravana Prashanth Murali Babu, , ; Barbara Mazzolai,
| |
Collapse
|
29
|
Kobashi H, Kobayashi M. 3D-printed eye model: Simulation of intraocular pressure. PLoS One 2023; 18:e0282911. [PMID: 36893149 PMCID: PMC9997944 DOI: 10.1371/journal.pone.0282911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/25/2023] [Indexed: 03/10/2023] Open
Abstract
PURPOSE To develop artificial eye models using 3D printing and to evaluate the correlation between different corneal thicknesses and intraocular pressures (IOPs). METHODS We designed 7 artificial eye models using a computer-aided design system and fabricated them using 3D printing. Corneal curvature and axial length were based on the Gullstrand eye model. Hydrogels were injected into the vitreous cavity, and seven different corneal thicknesses (200 to 800 μm) were prepared. In this proposed design, we also produced different corneal stiffnesses. A Tono-Pen AVIA tonometer was used by the same examiner to perform five consecutive IOP measurements in each eye model. RESULTS Different eye models were ideally created using 3D printing. IOP measurements were successfully performed in each eye model. The corneal thickness was significantly correlated with IOP (R2 = 0.927; 𝑃<0.001). CONCLUSION The 3D-printed eye model is useful for evaluating IOP measurements. This technique might be a promising alternative to the conventional porcine eye model.
Collapse
Affiliation(s)
- Hidenaga Kobashi
- Toneasy Inc., Tokyo, Japan
- Department of Ophthalmology, Keio University, School of Medicine, Tokyo, Japan
- * E-mail:
| | | |
Collapse
|
30
|
Armstrong FA, Cheng B, Herold RA, Megarity CF, Siritanaratkul B. From Protein Film Electrochemistry to Nanoconfined Enzyme Cascades and the Electrochemical Leaf. Chem Rev 2022; 123:5421-5458. [PMID: 36573907 PMCID: PMC10176485 DOI: 10.1021/acs.chemrev.2c00397] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein film electrochemistry (PFE) has given unrivalled insight into the properties of redox proteins and many electron-transferring enzymes, allowing investigations of otherwise ill-defined or intractable topics such as unstable Fe-S centers and the catalytic bias of enzymes. Many enzymes have been established to be reversible electrocatalysts when attached to an electrode, and further investigations have revealed how unusual dependences of catalytic rates on electrode potential have stark similarities with electronics. A special case, the reversible electrochemistry of a photosynthetic enzyme, ferredoxin-NADP+ reductase (FNR), loaded at very high concentrations in the 3D nanopores of a conducting metal oxide layer, is leading to a new technology that brings PFE to myriad enzymes of other classes, the activities of which become controlled by the primary electron exchange. This extension is possible because FNR-based recycling of NADP(H) can be coupled to a dehydrogenase, and thence to other enzymes linked in tandem by the tight channelling of cofactors and intermediates within the nanopores of the material. The earlier interpretations of catalytic wave-shapes and various analogies with electronics are thus extended to initiate a field perhaps aptly named "cascade-tronics", in which the flow of reactions along an enzyme cascade is monitored and controlled through an electrochemical analyzer. Unlike in photosynthesis where FNR transduces electron transfer and hydride transfer through the unidirectional recycling of NADPH, the "electrochemical leaf" (e-Leaf) can be used to drive reactions in both oxidizing and reducing directions. The e-Leaf offers a natural way to study how enzymes are affected by nanoconfinement and crowding, mimicking the physical conditions under which enzyme cascades operate in living cells. The reactions of the trapped enzymes, often at very high local concentration, are thus studied electrochemically, exploiting the potential domain to control rates and direction and the current-rate analogy to derive kinetic data. Localized NADP(H) recycling is very efficient, resulting in very high cofactor turnover numbers and new opportunities for controlling and exploiting biocatalysis.
Collapse
Affiliation(s)
- Fraser A. Armstrong
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Beichen Cheng
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Ryan A. Herold
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Clare F. Megarity
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Bhavin Siritanaratkul
- Stephenson Institute for Renewable Energy and the Department of Chemistry, University of Liverpool, Liverpool L69 7ZF, United Kingdom
| |
Collapse
|
31
|
Fang Y, Chen F, Wu H, Chen B. Progress in the application of 3D printing technology in ophthalmology. Graefes Arch Clin Exp Ophthalmol 2022; 261:903-912. [PMID: 36520184 DOI: 10.1007/s00417-022-05908-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/09/2022] [Accepted: 11/03/2022] [Indexed: 12/23/2022] Open
Abstract
Three-dimensional printing (3DP) technology is a rapid prototyping technology that is widely used in the medical field. It can be combined with computer-aided design, material manufacturing, and other technologies to construct medical-related appliances, human implants and even cell-based models or biological tissues. In the field of ophthalmology, the technology can be used to manufacture ocular anatomical models, glasses, intraocular implants, microsurgical instruments, drugs, etc. It can also enable future 'bioprinting', involving the refractive and nervous systems of the eyeball, with excellent development prospects in the field. This review introduces the development of 3DP technology in ophthalmology and discusses its application and potential.
Collapse
Affiliation(s)
- Yan Fang
- Department of Ophthalmology, The PLA Navy Anqing Hospital, Anqing, 246000, Anhui, China
| | - Fan Chen
- Department of Ophthalmology, Anqing Municipal Hospital, No. 87 of Tianzhu Mountain East Road, Yixiu District, Anqing, 246000, Anhui, China
| | - Huarong Wu
- Department of Ophthalmology, Anqing Municipal Hospital, No. 87 of Tianzhu Mountain East Road, Yixiu District, Anqing, 246000, Anhui, China
| | - Bei Chen
- Department of Ophthalmology, Anqing Municipal Hospital, No. 87 of Tianzhu Mountain East Road, Yixiu District, Anqing, 246000, Anhui, China.
| |
Collapse
|
32
|
Tan C, Xu P, Tao F. Carbon-negative synthetic biology: challenges and emerging trends of cyanobacterial technology. Trends Biotechnol 2022; 40:1488-1502. [PMID: 36253158 DOI: 10.1016/j.tibtech.2022.09.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/05/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022]
Abstract
Global warming and climate instability have spurred interest in using renewable carbon resources for the sustainable production of chemicals. Cyanobacteria are ideal cellular factories for carbon-negative production of chemicals owing to their great potentials for directly utilizing light and CO2 as sole energy and carbon sources, respectively. However, several challenges in adapting cyanobacterial technology to industry, such as low productivity, poor tolerance, and product harvesting difficulty, remain. Synthetic biology may finally address these challenges. Here, we summarize recent advances in the production of value-added chemicals using cyanobacterial cell factories, particularly in carbon-negative synthetic biology and emerging trends in cyanobacterial applications. We also propose several perspectives on the future development of cyanobacterial technology for commercialization.
Collapse
Affiliation(s)
- Chunlin Tan
- The State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Xu
- The State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Fei Tao
- The State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
33
|
Wang B, Liu W, Liang B, Jiang J, Wang A. Microbial fingerprints of methanation in a hybrid electric-biological anaerobic digestion. WATER RESEARCH 2022; 226:119270. [PMID: 36323204 DOI: 10.1016/j.watres.2022.119270] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/26/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Biomethane as a sustainable, alternative, and carbon-neutral renewable energy source to fossil fuels is highly needed to alleviate the global energy crisis and climate change. The conventional anaerobic digestion (AD) process for biomethane production from waste(water) streams has been widely employed while struggling with a low production rate, low biogas qualities, and frequent instability. The electric-biologically hybrid microbial electrochemical anaerobic digestion system (MEC-AD) prospects more stable and robust biomethane generation, which facilitates complex organic substrates degradation and mediates functional microbial populations by giving a small input power (commonly voltages < 1.0 V), mainly enhancing the communication between electroactive microorganisms and (electro)methanogens. Despite numerous bioreactor tests and studies that have been conducted, based on the MEC-AD systems, the integrated microbial fingerprints, and cooperation, accelerating substrate degradation, and biomethane production, have not been fully summarized. Herein, we present a comprehensive review of this novel developing biotechnology, beginning with the principles of MEC-AD. First, we examine the fundamentals, configurations, classifications, and influential factors of the whole system's performances (reactor types, applied voltages, temperatures, conductive materials, etc.,). Second, extracellular electron transfer either between diverse microbes or between microbes and electrodes for enhanced biomethane production are analyzed. Third, we further conclude (electro)methanogenesis, and microbial interactions, and construct ecological networks of microbial consortia in MEC-AD. Finally, future development and perspectives on MEC-AD for biomethane production are proposed.
Collapse
Affiliation(s)
- Bo Wang
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, 518055 Shenzhen, China; Center for Electromicrobiology, Section for Microbiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark; Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Wenzong Liu
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, 518055 Shenzhen, China.
| | - Bin Liang
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, 518055 Shenzhen, China
| | - Jiandong Jiang
- Key Lab of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Aijie Wang
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, 518055 Shenzhen, China; CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China
| |
Collapse
|
34
|
Photocatalytic Material-Microorganism Hybrid System and Its Application—A Review. MICROMACHINES 2022; 13:mi13060861. [PMID: 35744475 PMCID: PMC9230708 DOI: 10.3390/mi13060861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023]
Abstract
The photocatalytic material-microorganism hybrid system is an interdisciplinary research field. It has the potential to synthesize various biocompounds by using solar energy, which brings new hope for sustainable green energy development. Many valuable reviews have been published in this field. However, few reviews have comprehensively summarized the combination methods of various photocatalytic materials and microorganisms. In this critical review, we classified the biohybrid designs of photocatalytic materials and microorganisms, and we summarized the advantages and disadvantages of various photocatalytic material/microorganism combination systems. Moreover, we introduced their possible applications, future challenges, and an outlook for future developments.
Collapse
|