1
|
Matsumoto R, Ogata K, Takahashi D, Kinashi Y, Yamada T, Morita R, Tanaka K, Hattori K, Endo M, Fujimura Y, Sasaki N, Ohno H, Ishihama Y, Kimura S, Hase K. AP-1B regulates interactions of epithelial cells and intraepithelial lymphocytes in the intestine. Cell Mol Life Sci 2024; 81:425. [PMID: 39369131 PMCID: PMC11455912 DOI: 10.1007/s00018-024-05455-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 10/07/2024]
Abstract
Intraepithelial lymphocytes (IELs) reside in the epithelial layer and protect against foreign pathogens, maintaining the epithelial barrier function in the intestine. Interactions between IEL and epithelial cells are required for IELs to function effectively; however, the underlying molecular machinery remains to be elucidated. In this study, we found that intestinal epithelium-specific deficiency of the clathrin adaptor protein (AP)-1B, which regulates basolateral protein sorting, led to a massive reduction in IELs. Quantitative proteomics demonstrated that dozens of proteins, including known IEL-interacting proteins (E-cadherin, butyrophilin-like 2, and plexin B2), were decreased in the basolateral membrane of AP-1B-deficient epithelial cells. Among these proteins, CD166 interacted with CD6 on the surface of induced IEL. CD166 knockdown, using shRNA in intestinal organoid cultures, significantly inhibited IEL recruitment to the epithelial layer. These findings highlight the essential role of AP-1B-mediated basolateral sorting in IEL maintenance and survival within the epithelial layer. This study reveals a novel function of AP-1B in the intestinal immune system.
Collapse
Affiliation(s)
- Ryohtaroh Matsumoto
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, 1-5-30 Shiba Koen, Minato-ku, Tokyo, 105-8512, Japan
| | - Kosuke Ogata
- Department of Molecular Systems BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Daisuke Takahashi
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, 1-5-30 Shiba Koen, Minato-ku, Tokyo, 105-8512, Japan
| | - Yusuke Kinashi
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, 1-5-30 Shiba Koen, Minato-ku, Tokyo, 105-8512, Japan
| | - Takahiro Yamada
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, 1-5-30 Shiba Koen, Minato-ku, Tokyo, 105-8512, Japan
| | - Ryo Morita
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, 1-5-30 Shiba Koen, Minato-ku, Tokyo, 105-8512, Japan
| | - Keisuke Tanaka
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, 1-5-30 Shiba Koen, Minato-ku, Tokyo, 105-8512, Japan
| | - Kouya Hattori
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, 1-5-30 Shiba Koen, Minato-ku, Tokyo, 105-8512, Japan
| | - Mayumi Endo
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, 1-5-30 Shiba Koen, Minato-ku, Tokyo, 105-8512, Japan
| | - Yumiko Fujimura
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, 1-5-30 Shiba Koen, Minato-ku, Tokyo, 105-8512, Japan
| | - Nobuo Sasaki
- Laboratory of Mucosal Ecosystem Design, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa, Japan
| | - Yasushi Ishihama
- Department of Molecular Systems BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
- Laboratory of Clinical and Analytical Chemistry, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan
| | - Shunsuke Kimura
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, 1-5-30 Shiba Koen, Minato-ku, Tokyo, 105-8512, Japan.
- PRESTO, Japan Science and Technology Agency, Saitama, 332-0012, Japan.
| | - Koji Hase
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, 1-5-30 Shiba Koen, Minato-ku, Tokyo, 105-8512, Japan.
- The Institute of Fermentation Sciences (IFeS), Faculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa, Fukushima, 960-1296, Japan.
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan.
| |
Collapse
|
2
|
Paužuolis M, Samperio Ventayol P, Neyazi M, Bartfeld S. Organoids as a tool to study the impact of heterogeneity in gastrointestinal epithelium on host-pathogen interactions. Clin Exp Immunol 2024; 218:16-27. [PMID: 38245816 PMCID: PMC11404121 DOI: 10.1093/cei/uxae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/17/2023] [Accepted: 01/19/2024] [Indexed: 01/22/2024] Open
Abstract
The epithelium of the gastrointestinal (GI) tract has been extensively characterized using advanced histological and RNA sequencing techniques, which has revealed great cellular diversity. Pathogens, such as viruses and bacteria, are highly adapted to their host and often exhibit not only species-specificity but also a preference or tropism for specific GI segments or even cell types-some of these preferences are so specific, that these pathogens still cannot be cultured invitro. Organoid technology now provides a tool to generate human cell types, which enables the study of host cell tropism. Focussing on the GI tract, we provide an overview about cellular differentiation in vivo and in organoids and how differentiation in organoids and their derived models is used to advance our understanding of viral, bacterial, and parasitic infection. We emphasize that it is central to understand the composition of the model, as the alteration of culture conditions yields different cell types which affects infection. We examine future directions for wider application of cellular heterogeneity and potential advanced model systems for GI tract infection studies.
Collapse
Affiliation(s)
- Mindaugas Paužuolis
- Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, Julius Maximilians Universität Würzburg, Würzburg, Germany
| | | | - Mastura Neyazi
- Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, Julius Maximilians Universität Würzburg, Würzburg, Germany
| | - Sina Bartfeld
- Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, Julius Maximilians Universität Würzburg, Würzburg, Germany
- Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
- Si-M/'Der Simulierte Mensch', Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
3
|
Wilde J, Slack E, Foster KR. Host control of the microbiome: Mechanisms, evolution, and disease. Science 2024; 385:eadi3338. [PMID: 39024451 DOI: 10.1126/science.adi3338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/29/2024] [Indexed: 07/20/2024]
Abstract
Many species, including humans, host communities of symbiotic microbes. There is a vast literature on the ways these microbiomes affect hosts, but here we argue for an increased focus on how hosts affect their microbiomes. Hosts exert control over their symbionts through diverse mechanisms, including immunity, barrier function, physiological homeostasis, and transit. These mechanisms enable hosts to shape the ecology and evolution of microbiomes and generate natural selection for microbial traits that benefit the host. Our microbiomes result from a perpetual tension between host control and symbiont evolution, and we can leverage the host's evolved abilities to regulate the microbiota to prevent and treat disease. The study of host control will be central to our ability to both understand and manipulate microbiotas for better health.
Collapse
Affiliation(s)
- Jacob Wilde
- Department of Biology, University of Oxford, Oxford, UK
| | - Emma Slack
- Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Basel Institute for Child Health, Basel, Switzerland
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Kevin R Foster
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
MacFawn I, Farris J, Pifer P, Margaryan NV, Akhter H, Wang L, Dziadowicz S, Denvir J, Hu G, Frisch SM. Grainyhead-like-2, an epithelial master programmer, promotes interferon induction and suppresses breast cancer recurrence. Mol Immunol 2024; 170:156-169. [PMID: 38692097 PMCID: PMC11106721 DOI: 10.1016/j.molimm.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
Type-I and -III interferons play a central role in immune rejection of pathogens and tumors, thus promoting immunogenicity and suppressing tumor recurrence. Double strand RNA is an important ligand that stimulates tumor immunity via interferon responses. Differentiation of embryonic stem cells to pluripotent epithelial cells activates the interferon response during development, raising the question of whether epithelial vs. mesenchymal gene signatures in cancer potentially regulate the interferon pathway as well. Here, using genomics and signaling approaches, we show that Grainyhead-like-2 (GRHL2), a master programmer of epithelial cell identity, promotes type-I and -III interferon responses to double-strand RNA. GRHL2 enhanced the activation of IRF3 and relA/NF-kB and the expression of IRF1; a functional GRHL2 binding site in the IFNL1 promoter was also identified. Moreover, time to recurrence in breast cancer correlated positively with GRHL2 protein expression, indicating that GRHL2 is a tumor recurrence suppressor, consistent with its enhancement of interferon responses. These observations demonstrate that epithelial cell identity supports interferon responses in the context of cancer.
Collapse
Affiliation(s)
- Ian MacFawn
- Department of Immunology, University of Pittsburgh, 5051 Centre Avenue, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, 5115 Centre Avenue, Pittsburgh, PA 15232, USA
| | - Joshua Farris
- Wake Forest University, Department of Radiation Oncology, 1 Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Phillip Pifer
- Department of Radiation Oncology, WVU Cancer Institute, 1 Medical Drive, Morgantown, WV, USA
| | - Naira V Margaryan
- WVU Cancer Institute, West Virginia University, 64 Medical Center Drive, Morgantown, WV 26506, USA
| | - Halima Akhter
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, 64 Medical Center Drive, Box 9142, Morgantown, WV 26505, USA
| | - Lei Wang
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, 64 Medical Center Drive, Box 9142, Morgantown, WV 26505, USA
| | - Sebastian Dziadowicz
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, 64 Medical Center Drive, Box 9142, Morgantown, WV 26505, USA
| | - James Denvir
- Byrd Biotechnology Center, Marshall University, One John Marshall Drive, Huntington, WV 25701, USA
| | - Gangqing Hu
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, 64 Medical Center Drive, Box 9142, Morgantown, WV 26505, USA.
| | - Steven M Frisch
- Department of Biochemistry and Molecular Medicine, 64 Medical Center Drive, Box 9142, West Virginia University, Morgantown, WV 26506.
| |
Collapse
|
5
|
Pasquier N, Jaulin F, Peglion F. Inverted apicobasal polarity in health and disease. J Cell Sci 2024; 137:jcs261659. [PMID: 38465512 PMCID: PMC10984280 DOI: 10.1242/jcs.261659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
Apicobasal epithelial polarity controls the functional properties of most organs. Thus, there has been extensive research on the molecular intricacies governing the establishment and maintenance of cell polarity. Whereas loss of apicobasal polarity is a well-documented phenomenon associated with multiple diseases, less is known regarding another type of apicobasal polarity alteration - the inversion of polarity. In this Review, we provide a unifying definition of inverted polarity and discuss multiple scenarios in mammalian systems and human health and disease in which apical and basolateral membrane domains are interchanged. This includes mammalian embryo implantation, monogenic diseases and dissemination of cancer cell clusters. For each example, the functional consequences of polarity inversion are assessed, revealing shared outcomes, including modifications in immune surveillance, altered drug sensitivity and changes in adhesions to neighboring cells. Finally, we highlight the molecular alterations associated with inverted apicobasal polarity and provide a molecular framework to connect these changes with the core cell polarity machinery and to explain roles of polarity inversion in health and disease. Based on the current state of the field, failure to respond to extracellular matrix (ECM) cues, increased cellular contractility and membrane trafficking defects are likely to account for most cases of inverted apicobasal polarity.
Collapse
Affiliation(s)
- Nicolas Pasquier
- Collective Invasion Team, Inserm U-1279, Gustave Roussy, Villejuif F-94805, France
- Cell Adhesion and Cancer lab, University of Turku, FI-20520 Turku, Finland
| | - Fanny Jaulin
- Collective Invasion Team, Inserm U-1279, Gustave Roussy, Villejuif F-94805, France
| | - Florent Peglion
- Collective Invasion Team, Inserm U-1279, Gustave Roussy, Villejuif F-94805, France
| |
Collapse
|
6
|
Wright AP, Nice TJ. Role of type-I and type-III interferons in gastrointestinal homeostasis and pathogenesis. Curr Opin Immunol 2024; 86:102412. [PMID: 38518661 PMCID: PMC11032256 DOI: 10.1016/j.coi.2024.102412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 03/24/2024]
Abstract
Interferon (IFN) was discovered based on interference with virus production, and three types of IFN are now defined. Since its discovery, IFN's roles have expanded beyond viruses to diverse pathogen types, tissue homeostasis, and inflammatory disease. The gastrointestinal (GI) tract is arguably the tissue where the roles of IFN types are most distinct, with a particularly prominent role for type-III IFN in antiviral protection of the intestinal epithelium. Current studies continue to deepen our understanding of the type- and tissue-specific roles of IFN. This review highlights these advances within the GI tract, including discovery of protective roles for type-III IFNs against nonviral GI pathogens, and discovery of an antiviral homeostatic type-III IFN response within the intestinal epithelium.
Collapse
Affiliation(s)
- Austin P Wright
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Timothy J Nice
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
7
|
Cameron O, Neves JF, Gentleman E. Listen to Your Gut: Key Concepts for Bioengineering Advanced Models of the Intestine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302165. [PMID: 38009508 PMCID: PMC10837392 DOI: 10.1002/advs.202302165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/12/2023] [Indexed: 11/29/2023]
Abstract
The intestine performs functions central to human health by breaking down food and absorbing nutrients while maintaining a selective barrier against the intestinal microbiome. Key to this barrier function are the combined efforts of lumen-lining specialized intestinal epithelial cells, and the supportive underlying immune cell-rich stromal tissue. The discovery that the intestinal epithelium can be reproduced in vitro as intestinal organoids introduced a new way to understand intestinal development, homeostasis, and disease. However, organoids reflect the intestinal epithelium in isolation whereas the underlying tissue also contains myriad cell types and impressive chemical and structural complexity. This review dissects the cellular and matrix components of the intestine and discusses strategies to replicate them in vitro using principles drawing from bottom-up biological self-organization and top-down bioengineering. It also covers the cellular, biochemical and biophysical features of the intestinal microenvironment and how these can be replicated in vitro by combining strategies from organoid biology with materials science. Particularly accessible chemistries that mimic the native extracellular matrix are discussed, and bioengineering approaches that aim to overcome limitations in modelling the intestine are critically evaluated. Finally, the review considers how further advances may extend the applications of intestinal models and their suitability for clinical therapies.
Collapse
Affiliation(s)
- Oliver Cameron
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonSE1 9RTUK
| | - Joana F. Neves
- Centre for Host‐Microbiome InteractionsKing's College LondonLondonSE1 9RTUK
| | - Eileen Gentleman
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonSE1 9RTUK
- Department of Biomedical SciencesUniversity of LausanneLausanne1005Switzerland
| |
Collapse
|
8
|
Wan T, Wang Y, He K, Zhu S. Microbial sensing in the intestine. Protein Cell 2023; 14:824-860. [PMID: 37191444 PMCID: PMC10636641 DOI: 10.1093/procel/pwad028] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023] Open
Abstract
The gut microbiota plays a key role in host health and disease, particularly through their interactions with the immune system. Intestinal homeostasis is dependent on the symbiotic relationships between the host and the diverse gut microbiota, which is influenced by the highly co-evolved immune-microbiota interactions. The first step of the interaction between the host and the gut microbiota is the sensing of the gut microbes by the host immune system. In this review, we describe the cells of the host immune system and the proteins that sense the components and metabolites of the gut microbes. We further highlight the essential roles of pattern recognition receptors (PRRs), the G protein-coupled receptors (GPCRs), aryl hydrocarbon receptor (AHR) and the nuclear receptors expressed in the intestinal epithelial cells (IECs) and the intestine-resident immune cells. We also discuss the mechanisms by which the disruption of microbial sensing because of genetic or environmental factors causes human diseases such as the inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Tingting Wan
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yalong Wang
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Kaixin He
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Shu Zhu
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
- Department of Digestive Disease, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China
| |
Collapse
|
9
|
Champagne-Jorgensen K, Luong T, Darby T, Roach DR. Immunogenicity of bacteriophages. Trends Microbiol 2023; 31:1058-1071. [PMID: 37198061 DOI: 10.1016/j.tim.2023.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023]
Abstract
Hundreds of trillions of diverse bacteriophages (phages) peacefully thrive within and on the human body. However, whether and how phages influence their mammalian hosts is poorly understood. In this review, we explore current knowledge and present growing evidence that direct interactions between phages and mammalian cells often induce host inflammatory and antiviral immune responses. We show evidence that, like viruses of the eukaryotic host, phages are actively internalized by host cells and activate conserved viral detection receptors. This interaction often generates proinflammatory cytokine secretion and recruitment of adaptive immune programs. However, significant variability exists in phage-immune interactions, suggesting an important role for structural phage characteristics. The factors leading to the differential immunogenicity of phages remain largely unknown but are highly influenced by their human and bacterial hosts.
Collapse
Affiliation(s)
- Kevin Champagne-Jorgensen
- Department of Biology, San Diego State University, San Diego, CA 92182, USA; Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Tiffany Luong
- Department of Biology, San Diego State University, San Diego, CA 92182, USA; Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Taylor Darby
- Department of Biology, San Diego State University, San Diego, CA 92182, USA; Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Dwayne R Roach
- Department of Biology, San Diego State University, San Diego, CA 92182, USA; Viral Information Institute, San Diego State University, San Diego, CA 92182, USA.
| |
Collapse
|
10
|
Stanifer ML, Karst SM, Boulant S. Regionalization of the antiviral response in the gastrointestinal tract to provide spatially controlled host/pathogen interactions. mBio 2023; 14:e0279122. [PMID: 37260237 PMCID: PMC10470817 DOI: 10.1128/mbio.02791-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/12/2023] [Indexed: 06/02/2023] Open
Abstract
As the largest mucosal surface, the gastrointestinal (GI) tract plays a key role in protecting the host against pathogen infections. It is a first line of defense against enteric viruses and must act to control infection while remaining tolerant to the high commensal bacteria load found within the GI tract. The GI tract can be divided into six main sections (stomach, duodenum, jejunum, ileum, colon, and rectum), and enteric pathogens have evolved to infect distinct parts of the GI tract. The intestinal epithelial cells (IECs) lining the GI tract are immune competent and can counteract these infections through their intrinsic immune response. Type I and type III interferons (IFNs) are antiviral cytokines that play a key role in protecting IECs against viruses with the type III IFN being the most important. Recent work has shown that IECs derived from the different sections of the GI tract display a unique expression of pattern recognition receptors used to fight pathogen infections. Additionally, it was also shown that these cells show a section-specific response to enteric viruses. This mini-review will discuss the molecular strategies used by IECs to detect and combat enteric viruses highlighting the differences existing along the entero-caudal axis of the GI tract. We will provide a perspective on how these spatially controlled mechanisms may influence virus tropism and discuss how the intestinal micro-environment may further shape the response of IECs to virus infections.
Collapse
Affiliation(s)
- Megan L. Stanifer
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Stephanie M. Karst
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Steeve Boulant
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
11
|
Lei YQ, Wan YT, Liang GT, Huang YH, Dong P, Luo SD, Zhang WJ, Liu WF, Liu KX, Zhang XY. Extracellular RNAs/TLR3 signaling contributes to acute intestinal injury induced by intestinal ischemia reperfusion in mice. Biochim Biophys Acta Mol Basis Dis 2023:166790. [PMID: 37336369 DOI: 10.1016/j.bbadis.2023.166790] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/29/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023]
Abstract
Toll-like receptor 3 (TLR3), one pattern recognition receptor activated by viral and endogenous RNA, has been recently reported to regulate ischemia/reperfusion (I/R) injury in various organs. However, the role of TLR3 in the development of intestinal I/R injury remains unclear. The aim of this study is to evaluate the effects of extracellular RNAs/TLR3 signaling in intestinal I/R injury. An intestinal I/R injury model was established with superior mesenteric artery occlusion both in wild-type and TLR3 knockout (KO, -/-) mice, and MODE-K cells were subjected to hypoxia/reoxygenation (H/R) to mimic the I/R model in vivo. Extracellular RNAs (exRNAs), especially double-stranded RNAs (dsRNAs) co-localized with TLR3, were significantly increased both in vitro and in vivo. Compared with wild-type mice, TLR3 knockout obviously attenuated intestinal I/R injury. Both TLR3/dsRNA complex inhibitor and TLR3 siRNA administration reduced TLR3 expressions and subsequently inhibited intestinal inflammatory cytokine production and apoptosis. In conclusion, exRNAs/TLR3 signaling is a key mechanism that regulates intestinal I/R injury in adult mice, and the TLR3/dsRNA complex inhibitor can be an effective approach for attenuating intestinal I/R-induced inflammatory response and apoptosis.
Collapse
Affiliation(s)
- Yu-Qiong Lei
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan-Tong Wan
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, China
| | - Guang-Tao Liang
- College of Anesthesiology, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu-Hao Huang
- College of Anesthesiology, Southern Medical University, Guangzhou, Guangdong, China
| | - Peng Dong
- College of Anesthesiology, Southern Medical University, Guangzhou, Guangdong, China
| | - Si-Dan Luo
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wen-Juan Zhang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei-Feng Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ke-Xuan Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Xi-Yang Zhang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
12
|
Feng S, Zhang C, Chen S, He R, Chao G, Zhang S. TLR5 Signaling in the Regulation of Intestinal Mucosal Immunity. J Inflamm Res 2023; 16:2491-2501. [PMID: 37337514 PMCID: PMC10276996 DOI: 10.2147/jir.s407521] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/23/2023] [Indexed: 06/21/2023] Open
Abstract
Toll-like receptor 5 (TLR5) is a pattern recognition receptor that specifically recognizes flagellin and consequently plays a crucial role in the control of intestinal homeostasis by activating innate and adaptive immune responses. TLR5 overexpression, on the other hand, might disrupt the intestinal mucosal barrier, which serves as the first line of defense against harmful microbes. The intestine symbiotic bacteria, mucous layer, intestinal epithelial cells (IECs), adherens junctions (such as tight junctions and peripheral membrane proteins), the intestinal mucosal immune system, and cytokines make up the intestinal mucosal barrier. Impaired barrier function has been linked to intestinal illnesses such as inflammatory bowel disease (IBD). IBD is a persistent non-specific inflammatory illness of the digestive system with an unknown cause. It is now thought to be linked to infection, environment, genes, immune system, and the gut microbiota. The significance of immunological dysfunction in IBD has received more attention in recent years. The purpose of this paper is to explore TLR5's position in the intestinal mucosal barrier and its relevance to IBD.
Collapse
Affiliation(s)
- Shuyan Feng
- Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Chi Zhang
- Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Shanshan Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, People’s Republic of China
| | - Ruonan He
- Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Guanqun Chao
- Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, 310018, People’s Republic of China
| | - Shuo Zhang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, People’s Republic of China
| |
Collapse
|
13
|
Hamed MM, Taniguchi K, Duncan MC. Monitoring Effects of Membrane Traffic Via Changes in Cell Polarity and Morphogenesis in Three-Dimensional Human Pluripotent Stem Cell Cysts. Methods Mol Biol 2023; 2557:83-98. [PMID: 36512211 PMCID: PMC10276343 DOI: 10.1007/978-1-0716-2639-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Membrane traffic at the Golgi and endosomes plays many critical roles in the polarization and the morphogenesis of epithelial tissues. Studies into the roles of traffic in morphogenesis in mammals are often complicated by early embryonic lethality of mutations in membrane traffic as well as the inherent difficulty in imaging developing embryos posed by their size and location. Increasingly, human pluripotent stem cell (hPSC)-derived embryo- and organ-like systems (e.g., embryoids, organoids) provide a useful platform to illuminate the requirements of traffic in human embryonic tissue morphogenesis because these in vitro models are highly amenable to fluorescence microscopy and provide the ability to examine the role of essential genes not possible with animal studies. Here, we present a method to generate hPSC-cysts, a 3-D hPSC-based model of human epiblast lumen formation. This system provides unique opportunities to examine the role of membrane traffic during epithelial morphogenesis. We also present methods to process hPSC-cysts for immunofluorescence and staining with commonly used fluorescence labels useful for detecting defects in polarization and morphogenesis caused by defects in membrane traffic.
Collapse
Affiliation(s)
- Maha M Hamed
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Kenichiro Taniguchi
- Department of Cell Biology, Neurobiology and Anatomy, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mara C Duncan
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
14
|
Mochochoko BM, Pohl CH, O’Neill HG. Candida albicans-enteric viral interactions-The prostaglandin E 2 connection and host immune responses. iScience 2022; 26:105870. [PMID: 36647379 PMCID: PMC9839968 DOI: 10.1016/j.isci.2022.105870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The human microbiome comprises trillions of microorganisms residing within different mucosal cavities and across the body surface. The gut microbiota modulates host susceptibility to viral infections in several ways, and microbial interkingdom interactions increase viral infectivity within the gut. Candida albicans, a frequently encountered fungal species in the gut, produces highly structured biofilms and eicosanoids such as prostaglandin E2 (PGE2), which aid in viral protection and replication. These biofilms encompass viruses and provide a shield from antiviral drugs or the immune system. PGE2 is a key modulator of active inflammation with the potential to regulate interferon signaling upon microbial invasion or viral infections. In this review, we raise the perspective of gut interkingdom interactions involving C. albicans and enteric viruses, with a special focus on biofilms, PGE2, and viral replication. Ultimately, we discuss the possible implications of C. albicans-enteric virus associations on host immune responses, particularly the interferon signaling pathway.
Collapse
Affiliation(s)
- Bonang M. Mochochoko
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, 9301, South Africa
| | - Carolina H. Pohl
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, 9301, South Africa,Corresponding author
| | - Hester G. O’Neill
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, 9301, South Africa,Corresponding author
| |
Collapse
|
15
|
Analogous comparison unravels heightened antiviral defense and boosted viral infection upon immunosuppression in bat organoids. Signal Transduct Target Ther 2022; 7:392. [PMID: 36529763 PMCID: PMC9760641 DOI: 10.1038/s41392-022-01247-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/30/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022] Open
Abstract
Horseshoe bats host numerous SARS-related coronaviruses without overt disease signs. Bat intestinal organoids, a unique model of bat intestinal epithelium, allow direct comparison with human intestinal organoids. We sought to unravel the cellular mechanism(s) underlying bat tolerance of coronaviruses by comparing the innate immunity in bat and human organoids. We optimized the culture medium, which enabled a consecutive passage of bat intestinal organoids for over one year. Basal expression levels of IFNs and IFN-stimulated genes were higher in bat organoids than in their human counterparts. Notably, bat organoids mounted a more rapid, robust and prolonged antiviral defense than human organoids upon Poly(I:C) stimulation. TLR3 and RLR might be the conserved pathways mediating antiviral response in bat and human intestinal organoids. The susceptibility of bat organoids to a bat coronavirus CoV-HKU4, but resistance to EV-71, an enterovirus of exclusive human origin, indicated that bat organoids adequately recapitulated the authentic susceptibility of bats to certain viruses. Importantly, TLR3/RLR inhibition in bat organoids significantly boosted viral growth in the early phase after SARS-CoV-2 or CoV-HKU4 infection. Collectively, the higher basal expression of antiviral genes, especially more rapid and robust induction of innate immune response, empowered bat cells to curtail virus propagation in the early phase of infection.
Collapse
|
16
|
Helicobacter pylori shows tropism to gastric differentiated pit cells dependent on urea chemotaxis. Nat Commun 2022; 13:5878. [PMID: 36198679 PMCID: PMC9535007 DOI: 10.1038/s41467-022-33165-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/06/2022] [Indexed: 11/09/2022] Open
Abstract
The human gastric epithelium forms highly organized gland structures with different subtypes of cells. The carcinogenic bacterium Helicobacter pylori can attach to gastric cells and subsequently translocate its virulence factor CagA, but the possible host cell tropism of H. pylori is currently unknown. Here, we report that H. pylori preferentially attaches to differentiated cells in the pit region of gastric units. Single-cell RNA-seq shows that organoid-derived monolayers recapitulate the pit region, while organoids capture the gland region of the gastric units. Using these models, we show that H. pylori preferentially attaches to highly differentiated pit cells, marked by high levels of GKN1, GKN2 and PSCA. Directed differentiation of host cells enable enrichment of the target cell population and confirm H. pylori preferential attachment and CagA translocation into these cells. Attachment is independent of MUC5AC or PSCA expression, and instead relies on bacterial TlpB-dependent chemotaxis towards host cell-released urea, which scales with host cell size. The carcinogenic bacterium Helicobacter pylori infects gastric cells. Here, the authors show that H. pylori preferentially infects differentiated cells in the pit region of gastric units, and this relies on bacterial chemotaxis towards host cell-released urea, which scales with host cell size.
Collapse
|
17
|
Nolan LS, Baldridge MT. Advances in understanding interferon-mediated immune responses to enteric viruses in intestinal organoids. Front Immunol 2022; 13:943334. [PMID: 35935957 PMCID: PMC9354881 DOI: 10.3389/fimmu.2022.943334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Interferons (IFN) are antiviral cytokines with critical roles in regulating pathogens at epithelial barriers, but their capacity to restrict human enteric viruses has been incompletely characterized in part due to challenges in cultivating some viruses in vitro, particularly human norovirus. Accordingly, advancements in the development of antiviral therapies and vaccine strategies for enteric viral infections have been similarly constrained. Currently emerging is the use of human intestinal enteroids (HIEs) to investigate mechanisms of human enteric viral pathogenesis. HIEs provide a unique opportunity to investigate host-virus interactions using an in vitro system that recapitulates the cellular complexity of the in vivo gastrointestinal epithelium. This approach permits the exploration of intestinal epithelial cell interactions with enteric viruses as well as the innate immune responses mediated by IFNs and IFN-stimulated genes. Here, we describe recent findings related to the production, signaling, and function of IFNs in the response to enteric viral infections, which will ultimately help to reveal important aspects of pathogenesis and facilitate the future development of therapeutics and vaccines.
Collapse
Affiliation(s)
- Lila S. Nolan
- Department of Pediatrics, Division of Newborn Medicine, Washington University School of Medicine, St. Louis Children’s Hospital, St. Louis, MO, United States
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Megan T. Baldridge
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
18
|
Filipe IC, Tee HK, Prados J, Piuz I, Constant S, Huang S, Tapparel C. Comparison of tissue tropism and host response to enteric and respiratory enteroviruses. PLoS Pathog 2022; 18:e1010632. [PMID: 35789345 PMCID: PMC9286751 DOI: 10.1371/journal.ppat.1010632] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 07/15/2022] [Accepted: 06/01/2022] [Indexed: 11/21/2022] Open
Abstract
Enteroviruses (EVs) are among the most prevalent viruses worldwide. They are characterized by a high genetic and phenotypic diversity, being able to cause a plethora of symptoms. EV-D68, a respiratory EV, and EV-D94, an enteric EV, represent an interesting paradigm of EV tropism heterogeneity. They belong to the same species, but display distinct phenotypic characteristics and in vivo tropism. Here, we used these two viruses as well as relevant 3D respiratory, intestinal and neural tissue culture models, to highlight key distinctive features of enteric and respiratory EVs. We emphasize the critical role of temperature in restricting EV-D68 tissue tropism. Using transcriptomic analysis, we underscore fundamental differences between intestinal and respiratory tissues, both in the steady-state and in response to infection. Intestinal tissues present higher cell proliferation rate and are more immunotolerant than respiratory tissues. Importantly, we highlight the different strategies applied by EV-D94 and EV-D68 towards the host antiviral response of intestinal and respiratory tissues. EV-D68 strongly activates antiviral pathways while EV-D94, on the contrary, barely induces any host defense mechanisms. In summary, our study provides an insightful characterization of the differential pathogenesis of EV-D68 and EV-D94 and the interplay with their main target tissues. Enteroviruses (EVs) are important human pathogens, associated with more than 20 clinical presentations. They replicate predominantly in the intestinal and/or respiratory mucosae. The respiratory EV-D68 can be considered an emerging virus because it caused an unprecedent outbreak in 2014, and contemporary isolates display increased virulence and novel neurotropic potential. The genetically related enteric EV-D94 is less common and its pathogenesis remains poorly defined, however, its infection has also been associated with neurological symptoms such as acute flaccid paralysis. To decipher the pathogenic mechanisms of these two viruses, we investigated their tropism and innate immunity induction in relevant human respiratory, intestinal and neural tissue culture models. Our results highlight the critical role of temperature in restricting EV-D68 tropism. Furthermore, using transcriptomic analysis, we identified key differences between respiratory and intestinal tissues, with the latter exhibiting higher cell proliferation and being more immunotolerant. More importantly, we could demonstrate the different strategies applied by EV-D94 and EV-D68 towards the host antiviral response, with EV-D68 strongly activating antiviral pathways and EV-D94, in contrast, inducing few host antiviral transcripts. This work identifies key differences in the pathogenesis of these representative respiratory and enteric EVs, which may contribute to the development of targeted antiviral therapies.
Collapse
Affiliation(s)
- Ines Cordeiro Filipe
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Han Kang Tee
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Julien Prados
- Bioinformatics Support Platform, University of Geneva, Geneva, Switzerland
| | - Isabelle Piuz
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | | | - Song Huang
- Epithelix SAS Geneva, Geneva, Switzerland
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
19
|
Duncan MC. New directions for the clathrin adaptor AP-1 in cell biology and human disease. Curr Opin Cell Biol 2022; 76:102079. [DOI: 10.1016/j.ceb.2022.102079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/03/2022]
|
20
|
Goldstein ME, Scull MA. Modeling Innate Antiviral Immunity in Physiological Context. J Mol Biol 2022; 434:167374. [PMID: 34863779 PMCID: PMC8940657 DOI: 10.1016/j.jmb.2021.167374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022]
Abstract
An effective innate antiviral response is critical for the mitigation of severe disease and host survival following infection. In vivo, the innate antiviral response is triggered by cells that detect the invading pathogen and then communicate through autocrine and paracrine signaling to stimulate the expression of genes that inhibit viral replication, curtail cell proliferation, or modulate the immune response. In other words, the innate antiviral response is complex and dynamic. Notably, in the laboratory, culturing viruses and assaying viral life cycles frequently utilizes cells that are derived from tissues other than those that support viral replication during natural infection, while the study of viral pathogenesis often employs animal models. In recapitulating the human antiviral response, it is important to consider that variation in the expression and function of innate immune sensors and antiviral effectors exists across species, cell types, and cell differentiation states, as well as when cells are placed in different contexts. Thus, to gain novel insight into the dynamics of the host response and how specific sensors and effectors impact infection kinetics by a particular virus, the model system must be selected carefully. In this review, we briefly introduce key signaling pathways involved in the innate antiviral response and highlight how these differ between systems. We then review the application of tissue-engineered or 3D models for studying the antiviral response, and suggest how these in vitro culture systems could be further utilized to assay physiologically-relevant host responses and reveal novel insight into virus-host interactions.
Collapse
Affiliation(s)
- Monty E Goldstein
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, 3134 Bioscience Research Building, University of Maryland, College Park, MD 20742, USA
| | - Margaret A Scull
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, 3134 Bioscience Research Building, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
21
|
Krall LJ, Klein S, Boutin S, Wu CC, Sähr A, Stanifer ML, Boulant S, Heeg K, Nurjadi D, Hildebrand D. Invasiveness of Escherichia coli Is Associated with an IncFII Plasmid. Pathogens 2021; 10:pathogens10121645. [PMID: 34959600 PMCID: PMC8707275 DOI: 10.3390/pathogens10121645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/25/2022] Open
Abstract
Escherichia coli is one of the most prevalent pathogens, causing a variety of infections including bloodstream infections. At the same time, it can be found as a commensal, being part of the intestinal microflora. While it is widely accepted that pathogenic strains can evolve from colonizing E. coli strains, the evolutionary route facilitating the commensal-to-pathogen transition is complex and remains not fully understood. Identification of the underlying mechanisms and genetic changes remains challenging. To investigate the factors involved in the transition from intestinal commensal to invasive E. coli causing bloodstream infections, we compared E. coli isolated from blood culture to isolates from the rectal flora of the same individuals by whole genome sequencing to identify clonally related strains and potentially relevant virulence factors. in vitro invasion assays using a Caco- 2 cell intestinal epithelial barrier model and a gut organoid model were performed to compare clonally related E. coli. The experiments revealed a correlation between the presence of an IncFII plasmid carrying hha and the degree of invasiveness. In summary, we provide evidence for the role of an IncFII plasmid in the transition of colonization to invasion in clinical E. coli isolates.
Collapse
Affiliation(s)
- Lars Johannes Krall
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany; (L.J.K.); (S.K.); (S.B.); (C.C.W.); (A.S.); (K.H.); (D.N.)
- DZIF German Center for Infection Research, 38124 Braunschweig, Germany
| | - Sabrina Klein
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany; (L.J.K.); (S.K.); (S.B.); (C.C.W.); (A.S.); (K.H.); (D.N.)
| | - Sébastien Boutin
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany; (L.J.K.); (S.K.); (S.B.); (C.C.W.); (A.S.); (K.H.); (D.N.)
| | - Chia Ching Wu
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany; (L.J.K.); (S.K.); (S.B.); (C.C.W.); (A.S.); (K.H.); (D.N.)
| | - Aline Sähr
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany; (L.J.K.); (S.K.); (S.B.); (C.C.W.); (A.S.); (K.H.); (D.N.)
| | - Megan L. Stanifer
- Department of Infectious Diseases, Molecular Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany;
| | - Steeve Boulant
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany;
- Research Group “Cellular Polarity and Viral Infection”, DKFZ, 69120 Heidelberg, Germany
| | - Klaus Heeg
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany; (L.J.K.); (S.K.); (S.B.); (C.C.W.); (A.S.); (K.H.); (D.N.)
- DZIF German Center for Infection Research, 38124 Braunschweig, Germany
| | - Dennis Nurjadi
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany; (L.J.K.); (S.K.); (S.B.); (C.C.W.); (A.S.); (K.H.); (D.N.)
| | - Dagmar Hildebrand
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany; (L.J.K.); (S.K.); (S.B.); (C.C.W.); (A.S.); (K.H.); (D.N.)
- Correspondence:
| |
Collapse
|
22
|
Constant DA, Nice TJ, Rauch I. Innate immune sensing by epithelial barriers. Curr Opin Immunol 2021; 73:1-8. [PMID: 34392232 PMCID: PMC8648961 DOI: 10.1016/j.coi.2021.07.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 02/02/2023]
Abstract
Epithelial cells in barrier tissues perform a critical immune function by detecting, restricting, and often directly eliminating extrinsic pathogens. Membrane-bound and cytosolic pattern recognition receptors in epithelial cells bind to diverse ligands, detecting pathogen components and behaviors and stimulating cell-autonomous immunity. In addition to directly acting as first-responders to pathogens, epithelial cells detect commensal-derived and diet-derived products to promote homeostasis. Recent advances have clarified the array of molecular sensors expressed by epithelial cells, and how epithelial cells responses are wired to promote homeostatic balance while simultaneously allowing elimination of pathogens. These new studies emphatically position epithelial cells as central to an effective innate immune response.
Collapse
Affiliation(s)
- David A Constant
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, United States
| | - Timothy J Nice
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, United States
| | - Isabella Rauch
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, United States.
| |
Collapse
|
23
|
Toll-Like Receptors as Drug Targets in the Intestinal Epithelium. Handb Exp Pharmacol 2021; 276:291-314. [PMID: 34783909 DOI: 10.1007/164_2021_563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Toll-like receptors (TLRs) receptors are responsible for initiation of inflammatory responses by their recognition of molecular patterns present in invading microorganisms (such as bacteria, viruses or fungi) or in molecules released following tissue damage in disease states. Expressed in the intestinal epithelium, they initiate an intracellular signalling cascade in response to molecular patterns resulting in the activation of transcription factors and the release of cytokines, chemokines and vasoactive molecules. Intestinal epithelial cells are exposed to microorganisms on a daily basis and form part of the primary defence against pathogens by using TLRs. TLRs and their accessory molecules are subject to tight regulation in these cells so as to not overreact or react in unnecessary circumstances. TLRs have more recently been associated with chronic inflammatory diseases as a result of inappropriate regulation, this can be damaging and lead to chronic inflammatory diseases such as inflammatory bowel disease (IBD). Targeting Toll-like receptors offers a potential therapeutic approach for IBD. In this review, the current knowledge on the TLRs is reviewed along with their association with intestinal diseases. Finally, compounds that target TLRs in animal models of IBD, clinic trials and their future merit as targets are discussed.
Collapse
|
24
|
Aguilar C, Alves da Silva M, Saraiva M, Neyazi M, Olsson IAS, Bartfeld S. Organoids as host models for infection biology - a review of methods. Exp Mol Med 2021; 53:1471-1482. [PMID: 34663936 PMCID: PMC8521091 DOI: 10.1038/s12276-021-00629-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/26/2021] [Accepted: 02/24/2021] [Indexed: 01/10/2023] Open
Abstract
Infectious diseases are a major threat worldwide. With the alarming rise of antimicrobial resistance and emergence of new potential pathogens, a better understanding of the infection process is urgently needed. Over the last century, the development of in vitro and in vivo models has led to remarkable contributions to the current knowledge in the field of infection biology. However, applying recent advances in organoid culture technology to research infectious diseases is now taking the field to a higher level of complexity. Here, we describe the current methods available for the study of infectious diseases using organoid cultures.
Collapse
Affiliation(s)
- Carmen Aguilar
- grid.8379.50000 0001 1958 8658Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, Julius Maximilians Universität Wuerzburg, Wuerzburg, Germany
| | - Marta Alves da Silva
- grid.5808.50000 0001 1503 7226i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226IBMC- Instituto de Biologia Celular e Molecular, Universidade do Porto, Porto, Portugal
| | - Margarida Saraiva
- grid.5808.50000 0001 1503 7226i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226IBMC- Instituto de Biologia Celular e Molecular, Universidade do Porto, Porto, Portugal
| | - Mastura Neyazi
- grid.8379.50000 0001 1958 8658Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, Julius Maximilians Universität Wuerzburg, Wuerzburg, Germany
| | - I. Anna S. Olsson
- grid.5808.50000 0001 1503 7226i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226IBMC- Instituto de Biologia Celular e Molecular, Universidade do Porto, Porto, Portugal
| | - Sina Bartfeld
- grid.8379.50000 0001 1958 8658Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, Julius Maximilians Universität Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
25
|
Cheng Z, Si X, Tan H, Zang Z, Tian J, Shu C, Sun X, Li Z, Jiang Q, Meng X, Chen Y, Li B, Wang Y. Cyanidin-3- O-glucoside and its phenolic metabolites ameliorate intestinal diseases via modulating intestinal mucosal immune system: potential mechanisms and therapeutic strategies. Crit Rev Food Sci Nutr 2021; 63:1629-1647. [PMID: 34420433 DOI: 10.1080/10408398.2021.1966381] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The incidence of the intestinal disease is globally increasing, and the intestinal mucosa immune system is an important defense line. A potential environmental cause to regulate gut health is diet. Cyanidin-3-O-glucoside is a natural plant bioactive substance that has shown rising evidence of improving intestinal disease and keeping gut homeostasis. This review summarized the intestinal protective effect of Cyanidin-3-O-glucoside in vivo and in vitro and discussed the potential mechanisms by regulating the intestinal mucosal immune system. Cyanidin-3-O-glucoside and phenolic metabolites inhibited the presence and progression of intestinal diseases and explained from the aspects of repairing the intestinal wall, inhibiting inflammatory reaction, and regulating the gut microbiota. Although the animal and clinical studies are inadequate, based on the accumulated evidence, we propose that the interaction of Cyanidin-3-O-glucoside with the intestinal mucosal immune system is at the core of most mechanisms by which affect host gut diseases. This review puts forward the potential mechanism of action and targeted treatment strategies.
Collapse
Affiliation(s)
- Zhen Cheng
- College of Food Science, Shenyang Agricultural University, Liaoning, P. R. China.,National R&D Professional Center For Berry Processing, Shenyang Agricultural University, Liaoning, P. R. China
| | - Xu Si
- College of Food Science, Shenyang Agricultural University, Liaoning, P. R. China.,National R&D Professional Center For Berry Processing, Shenyang Agricultural University, Liaoning, P. R. China
| | - Hui Tan
- College of Food Science, Shenyang Agricultural University, Liaoning, P. R. China.,National R&D Professional Center For Berry Processing, Shenyang Agricultural University, Liaoning, P. R. China
| | - Zhihuan Zang
- College of Food Science, Shenyang Agricultural University, Liaoning, P. R. China.,National R&D Professional Center For Berry Processing, Shenyang Agricultural University, Liaoning, P. R. China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Liaoning, P. R. China.,National R&D Professional Center For Berry Processing, Shenyang Agricultural University, Liaoning, P. R. China
| | - Chi Shu
- College of Food Science, Shenyang Agricultural University, Liaoning, P. R. China.,National R&D Professional Center For Berry Processing, Shenyang Agricultural University, Liaoning, P. R. China
| | - Xiyun Sun
- College of Food Science, Shenyang Agricultural University, Liaoning, P. R. China.,National R&D Professional Center For Berry Processing, Shenyang Agricultural University, Liaoning, P. R. China
| | - Zhiying Li
- College of Food Science, Shenyang Agricultural University, Liaoning, P. R. China.,National R&D Professional Center For Berry Processing, Shenyang Agricultural University, Liaoning, P. R. China
| | - Qiao Jiang
- College of Food Science, Shenyang Agricultural University, Liaoning, P. R. China.,National R&D Professional Center For Berry Processing, Shenyang Agricultural University, Liaoning, P. R. China
| | - Xianjun Meng
- College of Food Science, Shenyang Agricultural University, Liaoning, P. R. China.,National R&D Professional Center For Berry Processing, Shenyang Agricultural University, Liaoning, P. R. China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Peoples Republic of China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Liaoning, P. R. China.,National R&D Professional Center For Berry Processing, Shenyang Agricultural University, Liaoning, P. R. China
| | - Yuehua Wang
- College of Food Science, Shenyang Agricultural University, Liaoning, P. R. China.,National R&D Professional Center For Berry Processing, Shenyang Agricultural University, Liaoning, P. R. China
| |
Collapse
|
26
|
Triana S, Stanifer ML, Metz‐Zumaran C, Shahraz M, Mukenhirn M, Kee C, Serger C, Koschny R, Ordoñez‐Rueda D, Paulsen M, Benes V, Boulant S, Alexandrov T. Single-cell transcriptomics reveals immune response of intestinal cell types to viral infection. Mol Syst Biol 2021; 17:e9833. [PMID: 34309190 PMCID: PMC8311733 DOI: 10.15252/msb.20209833] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Human intestinal epithelial cells form a primary barrier protecting us from pathogens, yet only limited knowledge is available about individual contribution of each cell type to mounting an immune response against infection. Here, we developed a framework combining single-cell RNA-Seq and highly multiplex RNA FISH and applied it to human intestinal organoids infected with human astrovirus, a model human enteric virus. We found that interferon controls the infection and that astrovirus infects all major cell types and lineages and induces expression of the cell proliferation marker MKI67. Intriguingly, each intestinal epithelial cell lineage exhibits a unique basal expression of interferon-stimulated genes and, upon astrovirus infection, undergoes an antiviral transcriptional reprogramming by upregulating distinct sets of interferon-stimulated genes. These findings suggest that in the human intestinal epithelium, each cell lineage plays a unique role in resolving virus infection. Our framework is applicable to other organoids and viruses, opening new avenues to unravel roles of individual cell types in viral pathogenesis.
Collapse
Affiliation(s)
- Sergio Triana
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Faculty of BiosciencesCollaboration for Joint PhD degree between EMBL and Heidelberg UniversityHeidelbergGermany
| | - Megan L Stanifer
- Department of Infectious Diseases, Molecular VirologyHeidelberg UniversityHeidelbergGermany
- Research Group “Cellular Polarity and Viral Infection”German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Camila Metz‐Zumaran
- Department of Infectious Diseases, VirologyHeidelberg UniversityHeidelbergGermany
| | - Mohammed Shahraz
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Markus Mukenhirn
- Department of Infectious Diseases, VirologyHeidelberg UniversityHeidelbergGermany
| | - Carmon Kee
- Research Group “Cellular Polarity and Viral Infection”German Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Infectious Diseases, VirologyHeidelberg UniversityHeidelbergGermany
| | - Clara Serger
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Ronald Koschny
- Department of Internal Medicine IVInterdisciplinary Endoscopy CenterUniversity Hospital HeidelbergHeidelbergGermany
| | - Diana Ordoñez‐Rueda
- Flow Cytometry Core FacilityEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Malte Paulsen
- Flow Cytometry Core FacilityEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Vladimir Benes
- Genomics Core FacilityEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Steeve Boulant
- Research Group “Cellular Polarity and Viral Infection”German Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Infectious Diseases, VirologyHeidelberg UniversityHeidelbergGermany
| | - Theodore Alexandrov
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Molecular Medicine Partnership UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCAUSA
| |
Collapse
|
27
|
Oncolytic reovirus induces ovarian cancer cell apoptosis in a TLR3-dependent manner. Virus Res 2021; 301:198440. [PMID: 33940002 DOI: 10.1016/j.virusres.2021.198440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 02/05/2023]
Abstract
Globally, ovarian cancer is the seventh most common cancer and the eighth-most common cause of cancer death among women with a five-year survival rate of less than 45%. Although reovirus is known to be effective for treating ovarian cancer, some types of tumor cells still exhibit resistance to reovirus. In order to solve this resistance problem in the treatment of ovarian cancer, we selected the reovirus-resistant OV-90 ovarian cancer cells to study reovirus oncolytic effects. We found that the viability of OV-90 cells decreased after reovirus double-stranded RNA (dsRNA) genome transfection. Interestingly, we observed that chemical blockage of the Toll-like receptor 3 (TLR3)-dsRNA binding complex in OV-90 cells and the inhibition of downstream TLR3 signaling disrupted OV-90 apoptosis triggered by reovirus dsRNA. Together, these results demonstrate that reovirus dsRNA induces reovirus-resistant tumor cell apoptosis through the TLR3 signaling pathway.
Collapse
|
28
|
Triana S, Metz‐Zumaran C, Ramirez C, Kee C, Doldan P, Shahraz M, Schraivogel D, Gschwind AR, Sharma AK, Steinmetz LM, Herrmann C, Alexandrov T, Boulant S, Stanifer ML. Single-cell analyses reveal SARS-CoV-2 interference with intrinsic immune response in the human gut. Mol Syst Biol 2021; 17:e10232. [PMID: 33904651 PMCID: PMC8077299 DOI: 10.15252/msb.202110232] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 12/26/2022] Open
Abstract
Exacerbated pro-inflammatory immune response contributes to COVID-19 pathology. However, despite the mounting evidence about SARS-CoV-2 infecting the human gut, little is known about the antiviral programs triggered in this organ. To address this gap, we performed single-cell transcriptomics of SARS-CoV-2-infected intestinal organoids. We identified a subpopulation of enterocytes as the prime target of SARS-CoV-2 and, interestingly, found the lack of positive correlation between susceptibility to infection and the expression of ACE2. Infected cells activated strong pro-inflammatory programs and produced interferon, while expression of interferon-stimulated genes was limited to bystander cells due to SARS-CoV-2 suppressing the autocrine action of interferon. These findings reveal that SARS-CoV-2 curtails the immune response and highlights the gut as a pro-inflammatory reservoir that should be considered to fully understand SARS-CoV-2 pathogenesis.
Collapse
Affiliation(s)
- Sergio Triana
- Structural and Computational Biology Unit, European Molecular Biology LaboratoryHeidelbergGermany
- Faculty of BiosciencesCollaboration for Joint PhD Degree between EMBL and Heidelberg UniversityHeidelbergGermany
| | - Camila Metz‐Zumaran
- Department of Infectious Diseases, VirologyHeidelberg University HospitalHeidelbergGermany
| | - Carlos Ramirez
- Health Data Science UnitMedical Faculty University Heidelberg and BioQuantHeidelbergGermany
| | - Carmon Kee
- Department of Infectious Diseases, VirologyHeidelberg University HospitalHeidelbergGermany
- Research Group “Cellular Polarity and Viral Infection”German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Patricio Doldan
- Department of Infectious Diseases, VirologyHeidelberg University HospitalHeidelbergGermany
- Research Group “Cellular Polarity and Viral Infection”German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Mohammed Shahraz
- Structural and Computational Biology Unit, European Molecular Biology LaboratoryHeidelbergGermany
| | - Daniel Schraivogel
- Genome Biology Unit, European Molecular Biology LaboratoryHeidelbergGermany
| | - Andreas R Gschwind
- Department of GeneticsStanford University School of MedicineStanfordCAUSA
| | - Ashwini K Sharma
- Department of Infectious Diseases, VirologyHeidelberg University HospitalHeidelbergGermany
- Health Data Science UnitMedical Faculty University Heidelberg and BioQuantHeidelbergGermany
| | - Lars M Steinmetz
- Genome Biology Unit, European Molecular Biology LaboratoryHeidelbergGermany
- Department of GeneticsStanford University School of MedicineStanfordCAUSA
- Stanford Genome Technology CenterPalo AltoCAUSA
| | - Carl Herrmann
- Health Data Science UnitMedical Faculty University Heidelberg and BioQuantHeidelbergGermany
| | - Theodore Alexandrov
- Structural and Computational Biology Unit, European Molecular Biology LaboratoryHeidelbergGermany
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCAUSA
- Molecular Medicine Partnership Unit (MMPU)European Molecular Biology LaboratoryHeidelbergGermany
| | - Steeve Boulant
- Department of Infectious Diseases, VirologyHeidelberg University HospitalHeidelbergGermany
- Research Group “Cellular Polarity and Viral Infection”German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Megan L Stanifer
- Department of Infectious DiseasesMolecular VirologyHeidelberg University HospitalHeidelbergGermany
| |
Collapse
|
29
|
Kayisoglu O, Weiss F, Niklas C, Pierotti I, Pompaiah M, Wallaschek N, Germer CT, Wiegering A, Bartfeld S. Location-specific cell identity rather than exposure to GI microbiota defines many innate immune signalling cascades in the gut epithelium. Gut 2021; 70:687-697. [PMID: 32571970 PMCID: PMC7948175 DOI: 10.1136/gutjnl-2019-319919] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 05/06/2020] [Accepted: 05/19/2020] [Indexed: 01/10/2023]
Abstract
OBJECTIVE The epithelial layer of the GI tract is equipped with innate immune receptors to sense invading pathogens. Dysregulation in innate immune signalling pathways is associated with severe inflammatory diseases, but the responsiveness of GI epithelial cells to bacterial stimulation remains unclear. DESIGN We generated 42 lines of human and murine organoids from gastric and intestinal segments of both adult and fetal tissues. Genome-wide RNA-seq of the organoids provides an expression atlas of the GI epithelium. The innate immune response in epithelial cells was assessed using several functional assays in organoids and two-dimensional monolayers of cells from organoids. RESULTS Results demonstrate extensive spatial organisation of innate immune signalling components along the cephalocaudal axis. A large part of this organisation is determined before birth and independent of exposure to commensal gut microbiota. Spatially restricted expression of Toll-like receptor 4 (Tlr4) in stomach and colon, but not in small intestine, is matched by nuclear factor kappa B (NF-κB) responses to lipopolysaccharide (LPS) exposure. Gastric epithelial organoids can sense LPS from the basal as well as from the apical side. CONCLUSION We conclude that the epithelial innate immune barrier follows a specific pattern per GI segment. The majority of the expression patterns and the function of TLR4 is encoded in the tissue-resident stem cells and determined primarily during development.
Collapse
Affiliation(s)
- Ozge Kayisoglu
- Research Center for Infectious Diseases (ZINF)/Institute for Molecular Infection Biology (IMIB), Julius Maximilian University of Wuerzburg, Wuerzburg, Germany
| | - Franziska Weiss
- Research Center for Infectious Diseases (ZINF)/Institute for Molecular Infection Biology (IMIB), Julius Maximilian University of Wuerzburg, Wuerzburg, Germany
| | - Carolin Niklas
- Research Center for Infectious Diseases (ZINF)/Institute for Molecular Infection Biology (IMIB), Julius Maximilian University of Wuerzburg, Wuerzburg, Germany
| | - Isabella Pierotti
- Research Center for Infectious Diseases (ZINF)/Institute for Molecular Infection Biology (IMIB), Julius Maximilian University of Wuerzburg, Wuerzburg, Germany
| | - Malvika Pompaiah
- Research Center for Infectious Diseases (ZINF)/Institute for Molecular Infection Biology (IMIB), Julius Maximilian University of Wuerzburg, Wuerzburg, Germany
| | - Nina Wallaschek
- Research Center for Infectious Diseases (ZINF)/Institute for Molecular Infection Biology (IMIB), Julius Maximilian University of Wuerzburg, Wuerzburg, Germany
| | - Christoph-Thomas Germer
- Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Armin Wiegering
- Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Sina Bartfeld
- Research Center for Infectious Diseases (ZINF)/Institute for Molecular Infection Biology (IMIB), Julius Maximilian University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
30
|
Kayisoglu Ö, Schlegel N, Bartfeld S. Gastrointestinal epithelial innate immunity-regionalization and organoids as new model. J Mol Med (Berl) 2021; 99:517-530. [PMID: 33538854 PMCID: PMC8026474 DOI: 10.1007/s00109-021-02043-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/18/2020] [Accepted: 01/19/2021] [Indexed: 12/27/2022]
Abstract
The human gastrointestinal tract is in constant contact with microbial stimuli. Its barriers have to ensure co-existence with the commensal bacteria, while enabling surveillance of intruding pathogens. At the centre of the interaction lies the epithelial layer, which marks the boundaries of the body. It is equipped with a multitude of different innate immune sensors, such as Toll-like receptors, to mount inflammatory responses to microbes. Dysfunction of this intricate system results in inflammation-associated pathologies, such as inflammatory bowel disease. However, the complexity of the cellular interactions, their molecular basis and their development remains poorly understood. In recent years, stem cell-derived organoids have gained increasing attention as promising models for both development and a broad range of pathologies, including infectious diseases. In addition, organoids enable the study of epithelial innate immunity in vitro. In this review, we focus on the gastrointestinal epithelial barrier and its regional organization to discuss innate immune sensing and development.
Collapse
Affiliation(s)
- Özge Kayisoglu
- Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, Julius Maximilians University of Wuerzburg, Wuerzburg, Germany
| | - Nicolas Schlegel
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Oberduerrbacher Strasse 6, Wuerzburg, Germany
| | - Sina Bartfeld
- Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, Julius Maximilians University of Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
31
|
Brewer SM, Twittenhoff C, Kortmann J, Brubaker SW, Honeycutt J, Massis LM, Pham THM, Narberhaus F, Monack DM. A Salmonella Typhi RNA thermosensor regulates virulence factors and innate immune evasion in response to host temperature. PLoS Pathog 2021; 17:e1009345. [PMID: 33651854 PMCID: PMC7954313 DOI: 10.1371/journal.ppat.1009345] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 03/12/2021] [Accepted: 01/28/2021] [Indexed: 12/20/2022] Open
Abstract
Sensing and responding to environmental signals is critical for bacterial pathogens to successfully infect and persist within hosts. Many bacterial pathogens sense temperature as an indication they have entered a new host and must alter their virulence factor expression to evade immune detection. Using secondary structure prediction, we identified an RNA thermosensor (RNAT) in the 5' untranslated region (UTR) of tviA encoded by the typhoid fever-causing bacterium Salmonella enterica serovar Typhi (S. Typhi). Importantly, tviA is a transcriptional regulator of the critical virulence factors Vi capsule, flagellin, and type III secretion system-1 expression. By introducing point mutations to alter the mRNA secondary structure, we demonstrate that the 5' UTR of tviA contains a functional RNAT using in vitro expression, structure probing, and ribosome binding methods. Mutational inhibition of the RNAT in S. Typhi causes aberrant virulence factor expression, leading to enhanced innate immune responses during infection. In conclusion, we show that S. Typhi regulates virulence factor expression through an RNAT in the 5' UTR of tviA. Our findings demonstrate that limiting inflammation through RNAT-dependent regulation in response to host body temperature is important for S. Typhi's "stealthy" pathogenesis.
Collapse
Affiliation(s)
- Susan M. Brewer
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | | | - Jens Kortmann
- Genentech, Inc., South San Francisco, California, United States of America
| | - Sky W. Brubaker
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jared Honeycutt
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Liliana Moura Massis
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Trung H. M. Pham
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | | | - Denise M. Monack
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
32
|
Iftekhar A, Sigal M. Defence and adaptation mechanisms of the intestinal epithelium upon infection. Int J Med Microbiol 2021; 311:151486. [PMID: 33684844 DOI: 10.1016/j.ijmm.2021.151486] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/15/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
The intestinal epithelium is a monolayer of polarized columnar cells that act as a border between the host and its environment and are the first line of defence against the luminal microbes. In addition to providing a physical barrier, the epithelium possesses a multitude of active mechanisms to fight invading pathogens and regulate the composition and spatial distribution of commensals. The different epithelial cell types have unique functions in this context, and crosstalk with the immune system further modulates their intricate antimicrobial responses. The epithelium is organized into clonal crypt units with a high cellular turnover that is driven by stem cells located at the base. There is increasing evidence that this anatomical organization, the stem cell turnover, and the lineage determination processes are essential for barrier maintenance. These processes can be modulated by microbes directly or by the immune responses to enteric pathogens, resulting in a rapid and efficient adaptation of the epithelium to environmental perturbations, injuries, and infections. Here we discuss the complex host-microbial interactions that shape the mucosa and how the epithelium maintains and re-establishes homeostasis after infection.
Collapse
Affiliation(s)
- Amina Iftekhar
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Michael Sigal
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany; Department of Internal Medicine, Gastroenterology and Hepatology, Charité University Medicine, Berlin, Germany; Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
33
|
Inoue C, Negoro R, Takayama K, Mizuguchi H, Sakurai F. Asymmetric profiles of infection and innate immunological responses in human iPS cell-derived small intestinal epithelial-like cell monolayers following infection with mammalian reovirus. Virus Res 2021; 296:198334. [PMID: 33581186 DOI: 10.1016/j.virusres.2021.198334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 11/20/2022]
Abstract
The intestinal mucosa plays an important role as an immune barrier due to its continual exposure to invading pathogens, including viruses. It is thus highly important to evaluate virus infection profiles in the intestinal mucosa for prevention of virus infection and development of antivirus medicines; however, only a few enterocyte lines are available as in vitro intestinal models for the evaluation of virus infection. In this study, we evaluated profiles of infection and innate immune responses following infection with a mammalian orthoreovirus (hereafter reovirus), which has often been used as a tractable model for studies of viral pathogenesis, in human iPS cell-derived small intestinal epithelial-like cell (hiPS-SIEC) monolayers and cells of a human colon adenocarcinoma cell line, Caco-2. The levels of reovirus infection were similar between hiPS-SIEC and Caco-2 cell monolayers, which are often used as an intestinal model, after apical and basolateral infection. In hiPS-SIEC monolayers, more efficient replication of the virus genome was observed following basolateral infection than apical infection, while apical infection resulted in higher levels of virus protein expression and progeny virus production than basolateral infection. Reovirus significantly induced innate immune responses, including expression of type I and III interferons (IFNs), in hiPS-SIEC monolayers more efficiently than Caco-2 cells. Higher levels of type I and III interferon (IFN) expression were found in hiPS-SIEC monolayers following apical infection than basolateral infection. These results suggested that hiPS-SIECs are a promising in vitro model for the evaluation of virus infection.
Collapse
Affiliation(s)
- Chieko Inoue
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Ryosuke Negoro
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Kazuo Takayama
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; PRESTO, Japan Science and Technology Agency, Saitama, Japan; Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; PRESTO, Japan Science and Technology Agency, Saitama, Japan; The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan.
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.
| |
Collapse
|
34
|
Stanifer ML, Guo C, Doldan P, Boulant S. Importance of Type I and III Interferons at Respiratory and Intestinal Barrier Surfaces. Front Immunol 2020; 11:608645. [PMID: 33362795 PMCID: PMC7759678 DOI: 10.3389/fimmu.2020.608645] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/11/2020] [Indexed: 12/23/2022] Open
Abstract
Interferons (IFNs) constitute the first line of defense against microbial infections particularly against viruses. They provide antiviral properties to cells by inducing the expression of hundreds of genes known as interferon-stimulated genes (ISGs). The two most important IFNs that can be produced by virtually all cells in the body during intrinsic innate immune response belong to two distinct families: the type I and type III IFNs. The type I IFN receptor is ubiquitously expressed whereas the type III IFN receptor's expression is limited to epithelial cells and a subset of immune cells. While originally considered to be redundant, type III IFNs have now been shown to play a unique role in protecting mucosal surfaces against pathogen challenges. The mucosal specific functions of type III IFN do not solely rely on the restricted epithelial expression of its receptor but also on the distinct means by which type III IFN mediates its anti-pathogen functions compared to the type I IFN. In this review we first provide a general overview on IFNs and present the similarities and differences in the signal transduction pathways leading to the expression of either type I or type III IFNs. By highlighting the current state-of-knowledge of the two archetypical mucosal surfaces (e.g. the respiratory and intestinal epitheliums), we present the differences in the signaling cascades used by type I and type III IFNs to uniquely induce the expression of ISGs. We then discuss in detail the role of each IFN in controlling pathogen infections in intestinal and respiratory epithelial cells. Finally, we provide our perspective on novel concepts in the field of IFN (stochasticity, response heterogeneity, cellular polarization/differentiation and tissue microenvironment) that we believe have implications in driving the differences between type I and III IFNs and could explain the preferences for type III IFNs at mucosal surfaces.
Collapse
Affiliation(s)
- Megan L. Stanifer
- Department of Infectious Diseases, Molecular Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Cuncai Guo
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Patricio Doldan
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Steeve Boulant
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
- Research Group “Cellular polarity and viral infection”, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
35
|
Sridhar A, Simmini S, Ribeiro CMS, Tapparel C, Evers MM, Pajkrt D, Wolthers K. A Perspective on Organoids for Virology Research. Viruses 2020; 12:E1341. [PMID: 33238561 PMCID: PMC7700289 DOI: 10.3390/v12111341] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/12/2020] [Accepted: 11/22/2020] [Indexed: 12/27/2022] Open
Abstract
Animal models and cell lines are invaluable for virology research and host-pathogen interaction studies. However, it is increasingly evident that these models are not sufficient to fully understand human viral diseases. With the advent of three-dimensional organotypic cultures, it is now possible to study viral infections in the human context. This perspective explores the potential of these organotypic cultures, also known as organoids, for virology research, antiviral testing, and shaping the virology landscape.
Collapse
Affiliation(s)
- Adithya Sridhar
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, 1100 AZ Amsterdam, The Netherlands; (A.S.); (D.P.)
- Department of Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, 1100 AZ Amsterdam, The Netherlands
| | - Salvatore Simmini
- Gastrointestinal Biology Group, STEMCELL Technologies UK Ltd., Cambridge CB28 9TL, UK;
| | - Carla M. S. Ribeiro
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, 1100 AZ Amsterdam, The Netherlands;
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland;
- Division of Infectious Diseases, Geneva University Hospital, 1205 Geneva, Switzerland
| | - Melvin M. Evers
- Department of Research and Development, uniQure Biopharma B.V., 1105 BE Amsterdam, The Netherlands;
| | - Dasja Pajkrt
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, 1100 AZ Amsterdam, The Netherlands; (A.S.); (D.P.)
- Department of Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, 1100 AZ Amsterdam, The Netherlands
| | - Katja Wolthers
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, 1100 AZ Amsterdam, The Netherlands; (A.S.); (D.P.)
| |
Collapse
|
36
|
Chang D, Whiteley AT, Bugda Gwilt K, Lencer WI, Mekalanos JJ, Thiagarajah JR. Extracellular cyclic dinucleotides induce polarized responses in barrier epithelial cells by adenosine signaling. Proc Natl Acad Sci U S A 2020; 117:27502-27508. [PMID: 33087577 PMCID: PMC7959571 DOI: 10.1073/pnas.2015919117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cyclic dinucleotides (CDNs) are secondary messengers used by prokaryotic and eukaryotic cells. In mammalian cells, cytosolic CDNs bind STING (stimulator of IFN gene), resulting in the production of type I IFN. Extracellular CDNs can enter the cytosol through several pathways but how CDNs work from outside eukaryotic cells remains poorly understood. Here, we elucidate a mechanism of action on intestinal epithelial cells for extracellular CDNs. We found that CDNs containing adenosine induced a robust CFTR-mediated chloride secretory response together with cAMP-mediated inhibition of Poly I:C-stimulated IFNβ expression. Signal transduction was strictly polarized to the serosal side of the epithelium, dependent on the extracellular and sequential hydrolysis of CDNs to adenosine by the ectonucleosidases ENPP1 and CD73, and occurred via activation of A2B adenosine receptors. These studies highlight a pathway by which microbial and host produced extracellular CDNs can regulate the innate immune response of barrier epithelial cells lining mucosal surfaces.
Collapse
Affiliation(s)
- Denis Chang
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Aaron T Whiteley
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309
| | - Katlynn Bugda Gwilt
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Wayne I Lencer
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
- Harvard Digestive Disease Center, Harvard Medical School, Boston, MA 02115
| | - John J Mekalanos
- Harvard Digestive Disease Center, Harvard Medical School, Boston, MA 02115;
- Department of Microbiology, Harvard Medical School, Boston, MA 02115
| | - Jay R Thiagarajah
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115;
- Harvard Digestive Disease Center, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
37
|
Heuberger C, Pott J, Maloy KJ. Why do intestinal epithelial cells express MHC class II? Immunology 2020; 162:357-367. [PMID: 32966619 PMCID: PMC7968399 DOI: 10.1111/imm.13270] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/23/2022] Open
Abstract
Intestinal epithelial cells (IECs) constitute the border between the vast antigen load present in the intestinal lumen and the mucosal immune compartment. Their ability to express antigen processing and presentation machinery evokes the question whether IECs function as non-conventional antigen-presenting cells. Major histocompatibility complex (MHC) class II expression by non-haematopoietic cells, such as IECs, is tightly regulated by the class II transactivator (CIITA) and is classically induced by IFN-γ. As MHC class II expression by IECs is upregulated under inflammatory conditions, it has been proposed to activate effector CD4+ T (Teff) cells. However, other studies have reported contradictory results and instead suggested a suppressive role of antigen presentation by IECs, through regulatory T (Treg)-cell activation. Recent studies investigating the role of MHC class II + exosomes released by IECs also reported conflicting findings of either immune enhancing or immunosuppressive activities. Moreover, in addition to modulating inflammatory responses, recent findings suggest that MHC class II expression by intestinal stem cells may elicit crosstalk that promotes epithelial renewal. A more complete understanding of the different consequences of IEC MHC class II antigen presentation will guide future efforts to modulate this pathway to selectively invoke protective immunity while maintaining tolerance to beneficial antigens.
Collapse
Affiliation(s)
- Cornelia Heuberger
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.,Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Johanna Pott
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.,Hubrecht Organoid Technology, Utrecht, Netherlands
| | - Kevin Joseph Maloy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.,Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
38
|
Tekes G, Ehmann R, Boulant S, Stanifer ML. Development of Feline Ileum- and Colon-Derived Organoids and Their Potential Use to Support Feline Coronavirus Infection. Cells 2020; 9:E2085. [PMID: 32932592 PMCID: PMC7563363 DOI: 10.3390/cells9092085] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 12/29/2022] Open
Abstract
Feline coronaviruses (FCoVs) infect both wild and domestic cat populations world-wide. FCoVs present as two main biotypes: the mild feline enteric coronavirus (FECV) and the fatal feline infectious peritonitis virus (FIPV). FIPV develops through mutations from FECV during a persistence infection. So far, the molecular mechanism of FECV-persistence and contributing factors for FIPV development may not be studied, since field FECV isolates do not grow in available cell culture models. In this work, we aimed at establishing feline ileum and colon organoids that allow the propagation of field FECVs. We have determined the best methods to isolate, culture and passage feline ileum and colon organoids. Importantly, we have demonstrated using GFP-expressing recombinant field FECV that colon organoids are able to support infection of FECV, which were unable to infect traditional feline cell culture models. These organoids in combination with recombinant FECVs can now open the door to unravel the molecular mechanisms by which FECV can persist in the gut for a longer period of time and how transition to FIPV is achieved.
Collapse
Affiliation(s)
- Gergely Tekes
- Institute of Virology, Justus Liebig University Giessen, 35390 Giessen, Germany
| | - Rosina Ehmann
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany;
| | - Steeve Boulant
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany;
- Research Group “Cellular Polarity and Viral Infection”, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Megan L. Stanifer
- Department of Infectious Diseases, Molecular Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| |
Collapse
|
39
|
Stanifer ML, Kee C, Cortese M, Zumaran CM, Triana S, Mukenhirn M, Kraeusslich HG, Alexandrov T, Bartenschlager R, Boulant S. Critical Role of Type III Interferon in Controlling SARS-CoV-2 Infection in Human Intestinal Epithelial Cells. Cell Rep 2020; 32:107863. [PMID: 32610043 PMCID: PMC7303637 DOI: 10.1016/j.celrep.2020.107863] [Citation(s) in RCA: 246] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/18/2020] [Accepted: 06/15/2020] [Indexed: 12/21/2022] Open
Abstract
Severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) is an unprecedented worldwide health problem that requires concerted and global approaches to stop the coronavirus 2019 (COVID-19) pandemic. Although SARS-CoV-2 primarily targets lung epithelium cells, there is growing evidence that the intestinal epithelium is also infected. Here, using both colon-derived cell lines and primary non-transformed colon organoids, we engage in the first comprehensive analysis of the SARS-CoV-2 life cycle in human intestinal epithelial cells (hIECs). Our results demonstrate that hIECs fully support SARS-CoV-2 infection, replication, and production of infectious de novo virus particles. We found that viral infection elicits an extremely robust intrinsic immune response where interferon-mediated responses are efficient at controlling SARS-CoV-2 replication and de novo virus production. Taken together, our data demonstrate that hIECs are a productive site of SARS-CoV-2 replication and suggest that the enteric phase of SARS-CoV-2 may participate in the pathologies observed in COVID-19 patients by contributing to increasing patient viremia and fueling an exacerbated cytokine response.
Collapse
Affiliation(s)
- Megan L Stanifer
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg 69120, Germany; Research Group "Cellular polarity and viral infection," German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.
| | - Carmon Kee
- Research Group "Cellular polarity and viral infection," German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg 69120, Germany
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg 69120, Germany
| | - Camila Metz Zumaran
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg 69120, Germany
| | - Sergio Triana
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany; Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg 69120, Germany
| | - Markus Mukenhirn
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg 69120, Germany
| | - Hans-Georg Kraeusslich
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg 69120, Germany
| | - Theodore Alexandrov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg 69120, Germany; Division "Virus-associated Carcinogenesis," German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; German Center for Infection Research, Heidelberg Partner site, Heidelberg 69120, Germany
| | - Steeve Boulant
- Research Group "Cellular polarity and viral infection," German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg 69120, Germany.
| |
Collapse
|
40
|
Segrist E, Cherry S. Using Diverse Model Systems to Define Intestinal Epithelial Defenses to Enteric Viral Infections. Cell Host Microbe 2020; 27:329-344. [PMID: 32164844 DOI: 10.1016/j.chom.2020.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The intestine is an essential physical and immunological barrier comprised of a monolayer of diverse and specialized epithelial cells that perform functions ranging from nutrient absorption to pathogen sensing and intestinal homeostasis. The intestinal barrier prevents translocation of intestinal microbes into internal compartments. The microbiota is comprised of a complex community largely populated by diverse bacterial species that provide metabolites, nutrients, and immune stimuli that promote intestinal and organismal health. Although commensal organisms promote health, enteric pathogens, including a diverse plethora of enteric viruses, cause acute and chronic diseases. The barrier epithelium plays fundamental roles in immune defenses against enteric viral infections by integrating diverse signals, including those from the microbiota, to prevent disease. Importantly, many model systems have contributed to our understanding of this complex interface. This review will focus on the antiviral mechanisms at play within the intestinal epithelium and how these responses are shaped by the microbiota.
Collapse
Affiliation(s)
- Elisha Segrist
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|