1
|
Sharma S, Kundu P, Tyagi D, Shanmugam V. Graphene-based nanomaterials applications for agricultural and food sector. Adv Colloid Interface Sci 2025; 336:103377. [PMID: 39662337 DOI: 10.1016/j.cis.2024.103377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
In the past decade, graphene-based nanomaterials (GBNs) have been considerably investigated in agriculture due to their exceptionally enriched physicochemical properties. Productivity in the agricultural sector relies significantly on agrochemicals. However, conventional systems suffer from a lack of application efficiency, resulting in environmental pollution and associated problems. Due to high surface area, easy functionalization, high chemical stability, biocompatibility, and ability to adhere to biological structures, GBNs become a promising candidate for agro-delivery carriers. A comprehensive review on developments of GBNs for pesticide delivery, nutrient delivery, food packaging and preservation, and their impacts on plant growth and development are missing in the literature. To address this, here we presented a detailed review on the material design, agrochemicals loading, release or diffusion kinetics, in-vivo applications, and effects of GBNs on plants. The GBNs found to improve the efficacy of existing agrochemicals and food preservatives, aiming to decrease the overall burden of these substances. The incorporation of GBNs in biocompatible and biodegradable polymers is reported to improve their oxygen barrier and mechanical properties for food packaging applications, targeting to reduce the use of petroleum-derived polymers based current food packaging materials, which leads to serious environmental impacts. In the context of plant nanobionics, GBNs has been found to boost the plant growth at low concentrations. Here, recommendations for future research have been deliberated, drawing reference from the relevant area to gain a deeper understanding of the underlying science, and to develop better delivery and packaging applications approaches. Additionally, discussions on recommendations regarding the safe concentration of GBNs for plant nanobionics are presented to facilitate their secure and effective utilization.
Collapse
Affiliation(s)
- Sandeep Sharma
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States.
| | - Priya Kundu
- National Agri-Food Biotechnology Institute, Sector-81, S.A.S Nagar, Mohali 140306, Punjab, India
| | - Deepak Tyagi
- Zang Crop Care (OPC) Pvt. Ltd, Sonipat 131039, Haryana, India
| | | |
Collapse
|
2
|
Yu H, Zhang S, Zhang X, Gao L, Chi W, Zhu M, Yuan Y, Zhang Y. Novel ZnO-TiO 2@MSC nanomaterial based on corn stover template enhances disease resistance in tomato plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:124075. [PMID: 39827603 DOI: 10.1016/j.jenvman.2025.124075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/14/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Crop diseases significantly threaten global food security, driving the need for innovative control strategies. This study explored using ZnO-TiO2@MSC, a novel nanomaterial synthesized using a corn stover template, to enhance disease resistance in tomato plants. In vitro assays demonstrated potent antimicrobial activity of ZnO-TiO2@MSC against the pathogen Pseudomonas syringae pv. tomato DC3000 (Pst. DC3000) by disrupting bacterial cell membranes and modulating oxidative stress-related gene expression. When applied to tomato leaves in pot trials, ZnO-TiO2@MSC achieved 79.83% control of bacterial leaf spot disease while promoting plant growth and photosynthesis. The nanomaterial triggered plant defense mechanisms, upregulating resistance genes and increasing the activities of key enzymes. Metabolomic profiling revealed elevated lipids, lipid-like molecules, and organic acid derivative levels in treated leaves, suggesting cell membrane remodeling as part of the defense response. These findings highlight the potential of biologically-templated nanomaterials like ZnO-TiO2@MSC as multifunctional tools for sustainable disease management in crops. The corn stover-based synthesis approach also provides a way to valorize agricultural waste. Further research is needed to understand the long-term impacts and viability of field-scale application of ZnO-TiO2@MSC as an alternative to conventional pesticides.
Collapse
Affiliation(s)
- Hui Yu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shuang Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xinyuan Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Longfei Gao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Wenshi Chi
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Mengmeng Zhu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yingcai Yuan
- Harbin Xunyang Internet of Things Technology Co., Ltd, Harbin, 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
3
|
Liu Y, Shou K, Wu S, Tan Q, Hu C, Sun X. Effects of nano-MoO 3 on growth, quality and toxicity of soybean. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2012-2020. [PMID: 39444325 DOI: 10.1002/jsfa.13977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/17/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Metal nanoparticles are widely used in agricultural production. As a new type of molybdenum fertilizer, MoO3NPs have the properties of nanomaterials and the characteristics of molybdenum nutrition. Previous studies have focused on their role in promoting crop growth. However, it is unknown whether excessive MoO3NPs will affect crop quality and nutritional value. In this study, the effects of different concentrations of MoO3NPs (0, 0.15, 0.5, 1.0, 5.0, 10, 50, 100 mg kg-1) on the growth and quality of soybean were investigated by pot experiments to analyze the plant effects caused by MoO3NPs. RESULTS The results showed that the effects of MoO3NPs treatment on plant biomass and nodule number were promoted at low concentrations (0.15-5 mg kg-1) and inhibited at high concentrations (10-100 mg kg-1). According to the logistic distribution model, it was predicted that MoO3NPs would have the strongest toxic effect on soybean flowering stage. The contents of MoO3NPs which reduced the yield of soybean by 10% and 20% were 12.38 and 30.81 mg kg-1. NP0.15 could significantly improve the total amount of amino acids in grains, while NP100 reduced the total amount of amino acids in grains, both of them significantly increasing the contents of linolenic acid and linoleic acid in soybean seeds. CONCLUSION A change of MoO3NPs concentration had no negative effect on the nutritional value of soybean grains. The research could lead to a better understanding of the potential impact of nutritional changes caused by MoO3NPs on human health. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yining Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan, China
| | - Kailing Shou
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan, China
| | - Songwei Wu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan, China
| | - Qiling Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan, China
| | - Chengxiao Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan, China
| | - Xuecheng Sun
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
4
|
Sharma B, Kohay H, Sharma S, Youngblood M, Cochran JP, Unrine JM, Tsyusko OV, Lowry GV, Giraldo JP. Controlled Nitrogen Release by Hydroxyapatite Nanomaterials in Leaves Enhances Plant Growth and Nitrogen Uptake. ACS NANO 2025; 19:3906-3919. [PMID: 39804241 DOI: 10.1021/acsnano.4c16362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Nitrogen fertilizer delivery inefficiencies limit crop productivity and contribute to environmental pollution. Herein, we developed Zn- and Fe-doped hydroxyapatite nanomaterials (ZnHAU, FeHAU) loaded with urea (∼26% N) through hydrogen bonding and metal-ligand interactions. The nanomaterials attach to the leaf epidermal cuticle and localize in the apoplast of leaf epidermal cells, triggering a slow N release at acidic conditions (pH 5.8) that promote wheat (Triticum aestivum) growth and increased N uptake compared to conventional urea fertilizers. ZnHAU and FeHAU exhibited prolonged N release compared to urea in model plant apoplast fluid pH in vitro (up to 2 days) and in leaf membranes in plants (up to 10 days) with a high N retention (32% to 53%) under simulated high rainfall events (50 mm). Foliar N delivery doses of up to 4% as ZnHAU and FeHAU did not induce toxicity in plant cells. The foliar-applied ZnHAU and FeHAU enhanced fresh and dry biomass by ∼214% and ∼161%, and N uptake by ∼108% compared to foliar-applied urea under low soil N conditions in greenhouse experiments. Controlled N release by leaf-attached nanomaterials improves N delivery and use efficiency in crop plants, creating nanofertilizers with reduced environmental impact.
Collapse
Affiliation(s)
- Bhaskar Sharma
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States
| | - Hagay Kohay
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Sandeep Sharma
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States
| | - Marina Youngblood
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States
| | - Jarad P Cochran
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Jason M Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546, United States
- Kentucky Water Research Institute, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Olga V Tsyusko
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Gregory V Lowry
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Juan Pablo Giraldo
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States
| |
Collapse
|
5
|
Wang J, Hou J, Wang L, Zhu Z, Han B, Chen L, Liu W. Pollution characteristics, environmental issues, and green development of neonicotinoid insecticides in China: Insights from Imidacloprid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 365:125394. [PMID: 39586452 DOI: 10.1016/j.envpol.2024.125394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Imidacloprid (IMI), a leading neonicotinoid insecticide, is widely used in China. Nevertheless, owing to its high toxicity to pollinators, regulatory scrutiny of its usage has increased in recent years. Despite this, no relevant issues have been announced in China, and its usage continues to rise. In this study, we systematically reviewed the development history, pollution characteristics, and environmental problems associated with IMI in China, which is imperative to promote its green development. The results show that most IMI products (97.1%) in China are registered for agricultural use. Owing to its extensive use and strong migration ability in different environmental matrices, IMI has been broadly detected in multiple environmental media. The average detection rate (DR) of IMI in soils, ambient water, and sediments were 90.7%, 81.3% and 84.5%, respectively, and the corresponding concentrations were 54.6 ± 83.8 ng/g dry weight (dw), 32.8 ± 103 ng/L, and 1.7 ± 2.9 ng/g dw, respectively, indicating high IMI abundance in multiple environmental media in China. The spatiotemporal distribution of IMI was generally determined by its application modes, transport, and degradation rates. IMI is commonly overused in China, leading to the development of high IMI resistance in many pests, and a high DR of IMI in food, drinking water, and human bodies. To alleviate IMI pollution in China, the joint efforts of the government, farmers, and scientists are necessary, including but not limited to formulating laws and regulations, strengthening governmental supervision, improving farmers' knowledge of IMI use, and promoting technological innovation in IMI and application methods.
Collapse
Affiliation(s)
- JinZe Wang
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Jie Hou
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - LiXi Wang
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - ZiYang Zhu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - BingJun Han
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - LiYuan Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - WenXin Liu
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
6
|
Liu H, Shangguan W, Zhao P, Cao C, Yu M, Huang Q, Cao L. Size Effects of Nanoenabled Agrochemicals in Sustainable Crop Production: Advances, Challenges, and Perspectives. ACS NANO 2025; 19:54-72. [PMID: 39725553 DOI: 10.1021/acsnano.4c09803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Nanoenabled agrochemicals mainly including nanopesticides and nanofertilizers based on nanotechnology play a crucial role in plant protection and food security. These agrochemicals exhibit high dose delivery efficiency and biological activity due to their unique nanoscale properties. However, nanoscale properties can also be a double-edged sword, posing potential risks to both humans and the environment. As nanoenabled agrochemicals become more widely used, it is essential to have an objective and comprehensive discussion of the size effects of these agrochemicals. In this paper, we reviewed the research progress on the size effects of nanoenabled agrochemicals in terms of dose delivery, biological activity, and nontarget safety. We investigated the complex factors affecting size effects and sought to draw insights from research in biomedicine, engineering, food, and other relevant fields. Based on the literatures review, it could be concluded that "the smaller the better" is not always the case. We further outlooked the development prospects of studying the size effects of nanoenabled agrochemicals, emphasizing the necessity for thorough and in-depth research while critically identifying key issues that need to be addressed. In conclusion, a proper comprehension of the size effects of nanoenabled agrochemicals bridges the gap between the scientific community and industry, bolstering the role in advancing sustainable agriculture.
Collapse
Affiliation(s)
- Hongyi Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection of Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| | - Wenjie Shangguan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection of Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| | - Pengyue Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection of Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| | - Chong Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection of Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| | - Manli Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection of Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| | - Qiliang Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection of Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| | - Lidong Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection of Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| |
Collapse
|
7
|
Sangwan A, Singh N. Advanced Nanostrategies for Biomolecule Delivery in Plant Disease Management. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:66-84. [PMID: 39715428 DOI: 10.1021/acs.jafc.4c08396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Sustainable plant disease management has long been a major issue in agriculture since the excessive reliance on broad-spectrum pesticides exacerbates chemical resistance, presenting environmental and health hazards. Taking cues from nature's intricate defense mechanisms, scientists are exploiting bioactive agents involved in plant-pathogen/pest interactions to develop novel strategies to combat diseases. Embracing biomolecules in agriculture offers an ecofriendly alternative to chemical pesticides. However, traditional delivery methods for biomolecules often suffer from low utilization rates and low field stability, diminishing the overall effectiveness of active compounds. The advent of nanotechnology has facilitated the design of novel delivery systems for biomolecular cargos, further enhancing their capacity to adhere to plant surfaces and make disease control strategies effective. Tailored depending upon the extent of infection and type of plant species, innovative nanoparticle strategies maximize the effectiveness of delivery by modifying the size, surface characteristics, and adhesion capacity of the particles to suit particular requirements. This review examines how the various biological factors involved in innate plant defenses can be exploited, as well as the potential of various nanocarriers in biomolecule delivery for plant disease management.
Collapse
Affiliation(s)
- Anju Sangwan
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Neetu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Biomedical Engineering Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
8
|
Sun XD, Ma JY, Feng LJ, Duan JL, Yuan XZ. Precise tracking of nanoparticles in plant roots. Nat Protoc 2025; 20:248-271. [PMID: 39237831 DOI: 10.1038/s41596-024-01044-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/19/2024] [Indexed: 09/07/2024]
Abstract
One of the foremost challenges in nanobiotechnology is obtaining direct evidence of nanoparticles' absorption and internalization in plants. Although confocal laser scanning microscopy (CLSM) or transmission electron microscopy (TEM) are currently the most commonly used tools to characterize nanoparticles in plants, subjectivity of researchers, incorrect sample handling, inevitable fluorescence leakage and limitations of imaging instruments lead to false positives and non-reproducibility of experimental results. This protocol provides an easy-to-operate dual-step method, combining CLSM for macroscopic tissue examination and TEM for cellular-level analysis, to effectively trace single particles in plant roots with accuracy and precision. In addition, we also provide detailed methods for processing plant materials before imaging, including cleaning, and staining, to maximize the accuracy and reliability of imaging. This protocol involves currently commonly used nanomaterial types, such as metal-based and doped carbon-based materials, and enables accurate localization of nanoparticles with different sizes at the cell level in Arabidopsis thaliana root samples either through contrast or element mapping analysis. It serves as a valuable reference and benchmark for scholars in plant science, chemistry and environmental studies to understand the interaction between plant roots and nanomaterials and to detect the distribution of nanomaterials in plants. Excluding plant culture time, the protocol can be completed in 4-5 d.
Collapse
Affiliation(s)
- Xiao-Dong Sun
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, P. R. China
- Sino-French Research Institute for Ecology and Environment (ISFREE), Shandong University, Qingdao, Shandong, P. R. China
| | - Jing-Ya Ma
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, P. R. China
- Sino-French Research Institute for Ecology and Environment (ISFREE), Shandong University, Qingdao, Shandong, P. R. China
| | - Li-Juan Feng
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, P. R. China
| | - Jian-Lu Duan
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, P. R. China
- Sino-French Research Institute for Ecology and Environment (ISFREE), Shandong University, Qingdao, Shandong, P. R. China
| | - Xian-Zheng Yuan
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, P. R. China.
- Sino-French Research Institute for Ecology and Environment (ISFREE), Shandong University, Qingdao, Shandong, P. R. China.
| |
Collapse
|
9
|
Sun C, Sun B, Chen L, Zhang M, Lu P, Wu M, Xue Q, Guo Q, Tang D, Lai H. Harnessing biosynthesized selenium nanoparticles for recruitment of beneficial soil microbes to plant roots. Cell Host Microbe 2024; 32:2148-2160.e7. [PMID: 39561780 DOI: 10.1016/j.chom.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/13/2024] [Accepted: 10/24/2024] [Indexed: 11/21/2024]
Abstract
Root exudates can benefit plant growth and health by reshaping the rhizosphere microbiome. Whether nanoparticles biosynthesized by rhizosphere microbes play a similar role in plant microbiome manipulation remains enigmatic. Herein, we collect elemental selenium nanoparticles (SeNPs) from selenobacteria associated with maize roots. In vitro and soil assays show that the SeNPs enhanced plant performance by recruiting plant growth-promoting bacteria (e.g., Bacillus) in a dose-dependent manner. Multiomic profilings unravel a cross-kingdom-signaling cascade that mediates efficient biosynthesis of SeNPs by selenobacteria. Specifically, maize roots perceive histamine signaling from Bacillus spp., which stimulates the plant to produce p-coumarate via root exudation. The rpoS gene in selenobacteria (e.g., Pseudomonas sp. ZY71) responds to p-coumarate signaling and positively regulates the biosynthesis of SeNPs. This study demonstrates a novel mechanism for recruiting host-beneficial soil microbes by microbially synthesized nanoparticles and unlocks promising possibilities for plant microbiome manipulation.
Collapse
Affiliation(s)
- Chenyu Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bin Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lin Chen
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China
| | - Meilin Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Pingping Lu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mengfan Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Quanhong Xue
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qiao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Dejian Tang
- Key Laboratory of Selenium-enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs, Ankang Research and Development Center for Selenium-enriched Products, Ankang 725000, Shaanxi, China
| | - Hangxian Lai
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
10
|
Cai Z, Ma C, Hao Y, Jia W, Cao Y, Wu H, Xu X, Han L, Li C, Shang H, Liang A, White JC, Xing B. Molecular Evidence of CeO 2 Nanoparticle Modulation of ABA and Genes Containing ABA-Responsive Cis-Elements to Promote Rice Drought Resistance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21804-21816. [PMID: 39584419 DOI: 10.1021/acs.est.4c08485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Cerium dioxide nanoparticles (CeO2 NPs) have enzyme-like properties and scavenge excess ROS induced by stressors such as drought. However, the underlying molecular mechanisms by which CeO2 NPs enhance drought resistance are unknown. In this work, both foliar application and soil injection of CeO2 NPs were used to rice seedlings under a 30 day moderate drought (40% soil relative moisture). Foliar application of 4 mg of CeO2 NPs per pot reduced excess reactive oxygen species and abscisic acid (ABA) in rice leaves, thereby maintaining chloroplast structural integrity and photosynthetic output, ultimately increasing drought-stressed rice biomass by 31.3%. Genes associated with photosynthesis and ribosome activity provided the foundation by which CeO2 NPs enhanced rice drought resistance. Importantly, these genes were tightly regulated by ABA due to the large number of abscisic acid responsive elements in their promoter regions. CeO2 NPs also upregulated the expression of soluble sugar and fatty acid synthesis associated genes in drought-stressed rice, thereby contributing to osmotic balance and membrane lipid stability. These results highlight the potential of CeO2 NPs to enhance rice photosynthesis and drought-resistant biomolecule accumulation by regulating ABA-dependent responses. This work provides further evidence demonstrating nanomaterials have great potential to sustainably promote stress resistance and climate resilient crops.
Collapse
Affiliation(s)
- Zeyu Cai
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Chuanxin Ma
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yi Hao
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Weili Jia
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yini Cao
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Honghong Wu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinxin Xu
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Lanfang Han
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Chunyang Li
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Heping Shang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Anqi Liang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, United States
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
11
|
He E, Li X, Xu X, Fu Z, Romero-Freire A, Qiu H. Distinct accumulation patterns, translocation efficiencies, and impacts of nano-fertilizer and nano-pesticide in wheat through foliar versus soil application. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136357. [PMID: 39486329 DOI: 10.1016/j.jhazmat.2024.136357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
The use of nano-chemicals in agriculture has been shown to enhance crop production through soil additions or foliar sprays. However, the accumulation pattern, translocation efficiency, mode of action of nanomaterials (NMs) via different application methods remain unclear. In this study, wheat was treated with CuO-NPs/CeO2-NPs (50 and 100 nm) for 21 days using soil and foliar application separately. Foliar spray resulted in higher accumulation and more efficient translocation of NMs compared to soil addition. Smaller NMs exhibited higher accumulation and transfer capabilities under the same application method. The accumulation of CuO-NPs was approximately 20 times greater than that of CeO2-NPs, particularly under the soil addition treatment. Scanning electron microscopy analysis demonstrated that NMs could directly enter wheat leaves via stomata during foliar application. Wheat growth was inhibited by roughly 15 % following CuO-NPs exposure, whereas no significant effects on growth were observed with CeO2-NPs. By integrating nontargeted metabolomics analysis with targeted physiological characteristics assessments, it was revealed that CuO-NPs mainly disturbed nitrogen metabolism pathways and induced oxidative damage. In contrast, CeO2-NPs enhanced carbohydrates related biological processes such as starch and sucrose metabolism, glycolysis, and TCA cycle, which are crucial for carbon metabolism. These findings suggest that the type of nanomaterial is a crucial factor to consider when evaluating their foliar or soil application in agriculture.
Collapse
Affiliation(s)
- Erkai He
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Xing Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xueqing Xu
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Zhuozhong Fu
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Ana Romero-Freire
- Department of Soil Science, University of Granada, Granada 18002, Spain
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
12
|
Xing G, Chen Q, Sun Y, Wang J, Zhou J, Sun L, Shu Q, Zhang J, Yan M. Synergistic promotion mechanism and structure-function relationship of nonmetallic atoms doped carbon nanodots driving Tagetes patula L. to remediate cadmium-contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136479. [PMID: 39549400 DOI: 10.1016/j.jhazmat.2024.136479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/23/2024] [Accepted: 11/09/2024] [Indexed: 11/18/2024]
Abstract
Phytoremediation is an economical and effective strategy to remove cadmium (Cd) from polluted environments. To improve its efficiency, nanotechnology has been proposed to collaborate with hyperaccumulators in the remediation of Cd-polluted soils. However, the intricate structure-function relationship and the underlying regulatory mechanisms by which nanomaterials regulate Cd migration and conversion within the soil-plant system remained unrevealed. In this study, functional carbon nanodots (FCNs) were modified by doping with nitrogen and (or) sulfur elements. The synthesized nonmetallic atoms-doped FCNs were utilized to investigate their structure-function relationship and the regulatory mechanisms underlying their role in the phytoremediation of Cd-polluted soils by Tagetes patula L. FCNs-based nanomaterials can regulate the migration and bioaccumulation of Cd in the soil-plant system, which exhibits an obvious structural dependency. Specifically, the synergistic application of sulfur doped FCNs and Tagetes patula L. had the highest Cd removal efficiency of 53.2 %, which was 20.1 % higher than Tagetes patula L. alone. The uptake and migration of Cd in the soil-plant system are regulated by FCNs-based nanomaterials through both direct and indirect mechanisms, involving interfacial reactions, plant physiology regulation and environmental influence. This study not only sheds light on the fate of FCNs-based nanomaterials and Cd in the soil-plant system, but also provides innovative nanotools for reinforcing phytoremediation efficiency in contaminated soils.
Collapse
Affiliation(s)
- Guling Xing
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Qiong Chen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| | - Yiwen Sun
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Jianquan Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Junbo Zhou
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Lanxuan Sun
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Quyu Shu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Jing Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Mei Yan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China; Collaborative Innovation Center of Yellow River Basin Pharmaceutical Green Manufacturing and Engineering Equipment, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|
13
|
Zhang K, Liu Q, Wang Y, Liu X, Zhou X, Yan B. Advances and Challenges in Tracking Interactions Between Plants and Metal-Based Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1939. [PMID: 39683327 DOI: 10.3390/nano14231939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
Metal-based nanoparticles (MNPs) are increasingly prevalent in the environment due to both natural processes and human activities, leading to direct interactions with plants through soil, water, and air exposure that can have beneficial and detrimental effects on plant growth and health. Understanding the uptake, translocation, and transformation of MNPs in plants is crucial for assessing environmental risks and leveraging nanotechnology in agriculture. However, accurate analysis of MNPs in plant tissues poses significant challenges due to complex plant matrices and the dynamic nature of nanoparticles. This short review summarizes recent advances in analytical methods for determining MNP-plant interactions, focusing on pre-processing and quantitative nanoparticle analysis. It highlights the importance of selecting appropriate extraction and analytical techniques to preserve nanoparticle integrity and accurate quantification. Additionally, recent advances in mass spectrometry, microscopy, and other spectroscopic techniques that improve the characterization of MNPs within plant systems are discussed. Future perspectives highlight the need to develop real-time in situ monitoring techniques and sensitive tools for characterizing nanoparticle biotransformation.
Collapse
Affiliation(s)
- Kena Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266701, China
| | - Qingmeng Liu
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yukun Wang
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xigui Liu
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xiaoxia Zhou
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Bing Yan
- School of Environmental Science and Engineering, Shandong University, Qingdao 266701, China
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
14
|
Yin J, Zhao J, Wang Z, Fang Z, Guo H, Cheng H, Li J, Shen J, Yin M, Su X, Yan S. Preparation of Multifunctional Nano-Protectants for High-Efficiency Green Control of Anthracnose. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2410585. [PMID: 39556712 DOI: 10.1002/advs.202410585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/19/2024] [Indexed: 11/20/2024]
Abstract
Nanomaterials cannot only act as active ingredients (AIs), but also adjuvants to encapsulate or attach AIs to improve their fungicidal activity. Herein, a hydrophilic and lipophilic diblock polymer (HLDP) is designed and synthesized to prepare a series of HLDP nano-protectants to explore the best HLDP nano-protectant for anthracnose management. These results demonstrate that the HLDP-CS nano-protectant displays the best control effects on mango anthracnose via the direct pathogen inhibition and amplified plant immune responses. The HLDP can be spontaneously conjugated with CS into nanoscale spherical particles through hydrophobic interaction. The complexation of CS with HLDP remarkably improves the deposition and adhesion of CS droplets on mango leaves. The HLDP can interact with mycelium via electrostatic interaction to damage the cell wall/membrane, which can act as an AI to directly suppress the spore germination and mycelial growth. Meanwhile, HLDP can be applied as an adjuvant for CS to amplify the plant immune responses via accelerating the biosynthesis of secondary metabolites and plant hormones. This work reports the multiple missions for nanomaterials in pathogen control, which proposes a novel strategy for designing nano-protectant with dual-synergistic mechanism.
Collapse
Affiliation(s)
- Jiaming Yin
- Frontiers Science Center for Molecular Design Breeding, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Jiajia Zhao
- Frontiers Science Center for Molecular Design Breeding, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Zeng Wang
- Frontiers Science Center for Molecular Design Breeding, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Zhen Fang
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Huiming Guo
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572000, China
| | - Hongmei Cheng
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572000, China
| | - Jie Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jie Shen
- Frontiers Science Center for Molecular Design Breeding, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaofeng Su
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572000, China
| | - Shuo Yan
- Frontiers Science Center for Molecular Design Breeding, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| |
Collapse
|
15
|
Dalei G, Pattanaik C, Patra R, Jena D, Das BR, Das S. Chitosan xerogel embedded with green synthesized cerium oxide nanoparticle: An effective controlled release fertilizer for improved cabbage growth. Int J Biol Macromol 2024; 282:136704. [PMID: 39442846 DOI: 10.1016/j.ijbiomac.2024.136704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
With the growing awareness on the adverse effects of conventional fertilizers; the use of sustainable and controlled release fertilizers has garnered much significance. In the present study, we report the synthesis of chitosan-benzaldehyde Schiff base xerogel incorporated with green synthesized cerium oxide nanoparticle using Psidium guajava leaves extract as a sustainable fertilizer. Spherical CeO2 NPs having an average particle size of 15.3 nm and zeta potential of - 39.9 mV was obtained. The urea-loaded nanocomposite xerogel (CsB@U/CeO2) was examined for cabbage growth. The water retention capacity extended for >2 weeks. A controlled release profile for urea was accomplished from CsB@U/CeO2 for a period extending for 30 days. The kinetics assay suggested that presence of CeO2 NPs asserted a greater role in urea-controlled release from the CsB@U/CeO2 nanocomposite hydrogel owing to polymer relaxation. The growth parameters of cabbages such as head height, diameter, fresh head weight, head circumference was enhanced in plants fertilized by CsB@U/CeO2 as compared to urea. Furthermore, the phenolic content, free radical scavenging activity, protein content, sugar and flavonoid content were also found higher in CsB@U/CeO2 fertilized plants. This study puts forth CsB@U/CeO2 xerogel can be potentially harnessed as an alternative to urea in sustainable agriculture.
Collapse
Affiliation(s)
- Ganeswar Dalei
- Department of Chemistry, Odisha University of Technology and Research, Bhubaneswar 751029, Odisha, India
| | - Chiranjib Pattanaik
- Department of Chemistry, Odisha University of Technology and Research, Bhubaneswar 751029, Odisha, India
| | - Ritisma Patra
- Department of Chemistry, Odisha University of Technology and Research, Bhubaneswar 751029, Odisha, India
| | - Debasis Jena
- Department of Chemistry, Ravenshaw University, Cuttack 753003, Odisha, India
| | - Bijnyan Ranjan Das
- Department of Chemistry, Odisha University of Technology and Research, Bhubaneswar 751029, Odisha, India
| | - Subhraseema Das
- Department of Chemistry, Odisha University of Technology and Research, Bhubaneswar 751029, Odisha, India; Department of Chemistry, Ravenshaw University, Cuttack 753003, Odisha, India.
| |
Collapse
|
16
|
Ansari MM, Shin M, Kim M, Ghosh M, Kim SH, Son YO. Nano-enabled strategies in sustainable agriculture for enhanced crop productivity: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 372:123420. [PMID: 39581009 DOI: 10.1016/j.jenvman.2024.123420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/28/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
The global food demand is increasing with the world population, burdening agriculture with unprecedented challenges. Agricultural techniques that ushered in the green revolution are now unsustainable, owing to population growth and climate change. The agri-tech revolution that promises a robust, efficient, and sustainable agricultural system while enhancing food security is expected to be greatly aided by advancements in nanotechnology, which have been reviewed here. Nanofertilizers and nanoinsecticides can benefit agricultural practices economically without major environment impact. Owing to their unique size and features, nano-agrochemicals provide enhanced delivery of active ingredients and increased bioavailability, and posing lesser environment hazard. Nano-agrochemicals should be improved for increased efficiency in the future. In this context, nanocomposites have drawn considerable interest with regard to food security. Nanocomposites can overcome the drawbacks of chemical fertilizers and improve plant output and nutrient bioavailability. Similarly, metallic and polymeric nanoparticles (NPs) can potentially improve sustainable agriculture via better plant development, increased nutrient uptake, and soil healing. Hence, they can be employed as nanofertilizers, nanopesticides, and nanoherbicides. Nanotechnology is also being used to enhance crop production via genetic modification of traits for efficient use of soil nutrients and higher yields. Furthermore, NPs can help plants overcome salinity stress-induced oxidative damage. We also review the fate of NPs in the soil system, plants, animals, and humans, highlight the shortcomings of previous research, and offer suggestions for toxicity studies that would aid regulatory bodies and benefit the agrochemical sector, consequently promoting efficient and sustainable use of nano-agrochemicals.
Collapse
Affiliation(s)
- Md Meraj Ansari
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, 63243, Republic of Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si, 63243, Republic of Korea
| | - Myeongyeon Shin
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, 63243, Republic of Korea
| | - Minhye Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si, 63243, Republic of Korea
| | - Mrinmoy Ghosh
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, 63243, Republic of Korea
| | - Sung-Hak Kim
- Animal Molecular Biochemistry Laboratory, Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Young-Ok Son
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, 63243, Republic of Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si, 63243, Republic of Korea; Bio-Health Materials Core-Facility Center, Jeju National University, Jeju-si, 63243, Republic of Korea; Practical Translational Research Center, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
17
|
Nepal J, Xin X, Maltais-Landry G, Barra Netto-Ferreira J, Wright AL, He Z. Water dispersible carbon nanomaterials reduced N, P, and K leaching potential in sandy soils: A column leaching study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176755. [PMID: 39374699 DOI: 10.1016/j.scitotenv.2024.176755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Carbon nanomaterials (CNMs) - amendments with carbon in nanoscale form -could potentially enhance fertilizer delivery efficiency in agriculture, but their interaction with soil properties and nutrient co-mobility, especially in coarse-textured soils, remain poorly understood. We conducted a column leaching study in repacked soil columns to compare the co-leaching of novel water-dispersible CNMs and soil nutrients across two levels of CNMs applications (200 & 400 mg kg-1), two fertilization rates (low:80 mg kg-1 of N, P and K and high: 200 mg N kg-1, 100 mg P kg-1, 200 mg K kg-1, applied as ammonium nitrate, potassium phosphate, and potassium nitrate) and two soils (Spodosol with pH = 5.1, Alfisol with pH = 6.5). We imposed 12 leaching events to each column, with each leaching event adding water equivalent to the soil-pore volume (250 mL), resulting in cumulative leaching of 3000 mL of water through each column. CNMs applications reduced cumulative leaching losses of NO3-N (Spodosol: 8-12 %, Alfisol: 9-19 %), NH4-N (Spodosol: 2-14 %, Alfisol: 9-14 %), P (Spodosol: 23-27 %, Alfisol: 23-36 %) and K (Spodosol: 17-23 %, Alfisol: 24-26 %) compared to fertilized columns without CNMs. CNMs increased soil pH by up to 0.3 units (Spodosol) or 0.5 units (Alfisol), while lowering electrical conductivity by 15-20 % at the high fertilization rate in both soils. Columns with water-dispersible CNMs accumulated 25-30 % more total C in the base sections of the Alfisol compared to the Spodosol, indicating faster downward movement through the soil profile. Overall, we demonstrated that CNMs have the potential to reduce nutrient leaching in coarse-textured soils, which could be particularly beneficial in high-input intensive agricultural systems.
Collapse
Affiliation(s)
- Jaya Nepal
- Department of Soil, Water, and Ecosystem Sciences, Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL, United States of America; School of Integrative Plant Science-Soil and Crop Sciences Section, Cornell University, Ithaca, NY, United States of America
| | - Xiaoping Xin
- Department of Soil, Water, and Ecosystem Sciences, Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL, United States of America
| | - Gabriel Maltais-Landry
- Department of Soil, Water, and Ecosystem Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States of America
| | - Julia Barra Netto-Ferreira
- Department of Soil, Water, and Ecosystem Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States of America
| | - Alan L Wright
- Department of Soil, Water, and Ecosystem Sciences, Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL, United States of America
| | - Zhenli He
- Department of Soil, Water, and Ecosystem Sciences, Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL, United States of America.
| |
Collapse
|
18
|
Deng W, Zhang Y, He L, Xu L, Ye X, Xu H, Zhu L, Jia J. Optimized nanopesticide delivery of thiamethoxam to cowpeas (Vigna unguiculata) controls thrips (Megalurothrips usitatus) and reduces toxicity to non-target worker bees (Apis mellifera). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176327. [PMID: 39299328 DOI: 10.1016/j.scitotenv.2024.176327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/14/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Thrips [Megalurothrips usitatus (Bagnall)] (Thysanoptera: Thripidae) is a pest that poses a serious challenge to global crop production and food supply, especially to the cowpea industry. Nano-delivery systems have broad application prospects in the prevention and control of pests in agriculture. Herein, three types of amino acid (AA) modified polysuccinimide nano-delivery carriers (PSI-GABA, PSI-ASP and PSI-GLU) were constructed with a diameter of approximately 150 nm to load thiamethoxam (THX), which enhanced THX effective distribution and use with cowpea plants. Significantly, the PSI-GLU nanocarrier effectively delivered THX to cowpea plant tissues following 6 h of soil application. Compared with commercial THX suspension (SC), the THX content in the leaves of cowpea plants was increased by 2.3 times. Confocal laser scanning microscopy revealed that the FITC-labeled PSI-GLU nanocarrier reached the leaves through the vascular system after being absorbed by the roots of cowpea plants. The PSI-GLU nanocarrier decreased the LC50 of THX from 11.45 to 7.79 mg/L and significantly enhanced the insecticidal effect. The PSI-GLU nanocarrier also improved the safety of THX to worker bees at 48 h, and moreover showed a growth-promoting effect on cowpea seedlings. These results demonstrated that the PSI-GLU nano-delivery carrier has promising uses on improving the effective utilization of THX for the sustainable control of thrips and reducing the risk to non-target pollutions.
Collapse
Affiliation(s)
- Wenjie Deng
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yanheng Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Liangheng He
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Li Xu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Xulang Ye
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Li Zhu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Jinliang Jia
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
19
|
Thirumurugan NK, Velu G, Murugaiyan S, Maduraimuthu D, Ponnuraj S, D J S, Subramanian KS. Nano-biofertilizers: utilizing nanopolymers as coating matrix-a comprehensive review. Biofabrication 2024; 17:012007. [PMID: 39569883 DOI: 10.1088/1758-5090/ad94a8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024]
Abstract
In modern agriculture, nanotechnology was recognized as a potentially transformative innovation. Nanopolymers as coating matrix in nano-biofertilizer has a massive impact on agricultural productivity. The integration of nanotechnology with biofertilizers has led to the creation of nano-biofertilizer formulations that enhance nutrient delivery, improve plant growth, and increase resistance to environmental stress. Nanopolymers, both synthetic and biogenic, including chitosan, cellulose, gelatin, sodium alginate, starch, and polyvinyl alcohol, are utilized as encapsulating materials. They are effective in ensuring controlled nutrient release and shielding beneficial microorganisms from external environmental conditions. Studies indicate that nano-biofertilizers improve soil quality, raise crop yields, and reduce the usage of chemical fertilizers to enhance sustainable agricultural practices. The review also addresses the microbial encapsulation methodology, release kinetics, phytotoxicity, challenges and future prospects of nano-biofertilizer technology, including nanoparticle-bacteria interaction, scalability, and regulatory considerations. This paper elaborates the potential and limitations of nano-biofertilizers, providing insights for future advancements in the agriculture field.
Collapse
Affiliation(s)
- Navin Kumar Thirumurugan
- Centre for Agricultural Nanotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - Gomathi Velu
- Centre for Agricultural Nanotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - Senthilkumar Murugaiyan
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | | | - Sathyamoorthy Ponnuraj
- Centre for Agricultural Nanotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - Sharmila D J
- Centre for Agricultural Nanotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - K S Subramanian
- Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| |
Collapse
|
20
|
Zhao Y, Thenarianto C, Sevencan C, Rajappa S, Shen D, Puangpathumanond S, Yao X, Lew TTS. Rational nanoparticle design for efficient biomolecule delivery in plant genetic engineering. NANOSCALE 2024; 16:21264-21278. [PMID: 39474836 DOI: 10.1039/d4nr03760j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The pressing issue of food security amid climate change necessitates innovative agricultural practices, including advanced plant genetic engineering techniques. Efficient delivery of biomolecules such as DNA, RNA, and proteins into plant cells is essential for targeted crop improvements, yet traditional methods face significant barriers. This review discusses the multifaceted challenges of biomolecule delivery into plant cells, emphasizing the limitations of conventional methods. We explore the promise of nanoparticle-mediated delivery systems as a versatile alternative. By highlighting the diverse design parameters used to tune the physical and chemical properties of nanoparticles, we analyze how these factors influence delivery efficacy. Furthermore, we summarize recent advancements in nanoparticle-mediated delivery, showcasing successful examples of DNA, RNA, and protein transport into plant cells. By understanding and optimizing these design parameters, we can enhance the potential of nanoparticle technologies in plant genetic engineering, paving the way for more resilient and productive agriculture.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Calvin Thenarianto
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Cansu Sevencan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Sivamathini Rajappa
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Di Shen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Suppanat Puangpathumanond
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Xiaomin Yao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Tedrick Thomas Salim Lew
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| |
Collapse
|
21
|
Chen Y, Jiang S, Wang Y, Zhang F, Wang L, Zhao L, Liu S, Tan J, Persson S, Sun B, Chen J, Blennow A. Small-sized starch nanoparticles for efficient penetration of plant cells. Chem Commun (Camb) 2024; 60:14113-14116. [PMID: 39526607 DOI: 10.1039/d4cc05493h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Starch nanoparticles (sNPs) are considered ideal materials for applications in plant and agricultural sciences aiming at increasing crop yields, and improving resilience due to their non-toxicity, global availability, hydrophilicity, and biodegradability. However, the lack of research on the interaction between sNPs and plant cell walls has limited their application in these fields. Here, we designed Nile blue A-based sNPs (NB@G50-NPs) to investigate the penetration of small-sized sNPs (G50-NPs) through the plant cell wall. We demonstrate that 20 nm NB@G50-NPs can spontaneously cross the cell wall barrier and are rapidly taken up by Arabidopsis roots within a short time (30 min), showing nearly 10-fold higher fluorescence intensity compared to the free fluorescent dye. Additionally, the fluorescence quantum yield of NB@G50-NPs increases from 9% (for free dye) to 14%, and the particles show high stability across a broad pH range (3-10). This pH stability covers the entire pH range found in plant tissues. Our findings suggest that sNPs offer significant advantages for live cell imaging in plants and provide a foundation for future applications of sNPs in plant nanotechnology, including nanofertilizers, nanopesticides, and plant genetic engineering.
Collapse
Affiliation(s)
- Yongxian Chen
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark.
| | - Simin Jiang
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Yang Wang
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark.
| | - Fuxue Zhang
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Liu Wang
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark.
| | - Li Zhao
- College of Science, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Siyu Liu
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Junjun Tan
- Section of Biological Chemistry, Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Staffan Persson
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark.
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Junsheng Chen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Andreas Blennow
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark.
| |
Collapse
|
22
|
Aseel DG, Rabie M, El-Far A, Abdelkhalek A. Antiviral properties and molecular docking studies of eco-friendly biosynthesized copper oxide nanoparticles against alfalfa mosaic virus. BMC PLANT BIOLOGY 2024; 24:1089. [PMID: 39551727 PMCID: PMC11571894 DOI: 10.1186/s12870-024-05802-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/08/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Nanotechnology has been recognized as a viable technology for enhancing agriculture, particularly in the plant pathogen management area. Alfalfa mosaic virus (AMV) is a global pathogen that affects many plant species, especially economically valuable crops. Currently, there is less data on the interaction of nanoparticles with phytopathogens, particularly viruses. The current study looked into how copper oxide nanoparticles (CuO-NPs)-mediated Haloxylon salicornicum aqueous extract can fight AMV infections on tobacco plants. RESULTS Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses showed that CuO-NPs have a spherical and hexagonal structure ranging from 20 to 70 nm in size. Fourier transform infrared spectroscopy (FTIR) analysis showed that the produced CuO-NPs have many functional groups and a lot of secondary plant metabolites. Under greenhouse conditions, the foliar application of CuO-NPs (100 ppm) enhanced tobacco growth and decreased viral symptoms. Treatment with CuO-NPs 48 h before (protective treatment) or 48 h after (curative treatment) AMV infection significantly reduced AMV accumulation levels by 97%. Additionally, the levels of total chlorophyll, phenolic, and flavonoid contents, as well as DPPH, exhibited a significant increase in tobacco leaves 30 days after inoculation in comparison to untreated plants. Moreover, considerable differences in levels of different antioxidant enzymes, including SOD, PPO, POX, and CAT, were also observed. On the other hand, the oxidative stress markers (MDA and H2O2) were significantly reduced in CuO-NPs-treated plants compared with non-treated plants. It was also found that the protective treatment increased the expression levels of genes involved in the jasmonic pathway (JERF3 and WRKY1). On the other hand, the curative treatment increased the expression levels of polyphenolic pathway acid (CHI and HQT) and the SA-signaling pathway genes (PR-2 and POD). The study of molecular docking interactions with four AMV target proteins showed that CuO-NPs had high binding energy with the viral replication protein 1a, measured at -3.2 kcal/mol. The binding with these proteins can suppress AMV replication and spread, potentially clarifying the mechanism behind the antiviral effect. CONCLUSIONS The overall analysis results indicate that the curative treatment is more influential and successful than the protective treatment in combating AMV infection. Consequentially, CuO-NPs could potentially be employed in foliar sprays for the effective and environmentally friendly management of plant virus infections.
Collapse
Affiliation(s)
- Dalia G Aseel
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, 21934, Egypt
| | - Mona Rabie
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Ali El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Ahmed Abdelkhalek
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, 21934, Egypt.
| |
Collapse
|
23
|
Javaid A, Hameed S, Li L, Zhang Z, Zhang B, -Rahman MU. Can nanotechnology and genomics innovations trigger agricultural revolution and sustainable development? Funct Integr Genomics 2024; 24:216. [PMID: 39549144 PMCID: PMC11569009 DOI: 10.1007/s10142-024-01485-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/18/2024]
Abstract
At the dawn of new millennium, policy makers and researchers focused on sustainable agricultural growth, aiming for food security and enhanced food quality. Several emerging scientific innovations hold the promise to meet the future challenges. Nanotechnology presents a promising avenue to tackle the diverse challenges in agriculture. By leveraging nanomaterials, including nano fertilizers, pesticides, and sensors, it provides targeted delivery methods, enhancing efficacy in both crop production and protection. This integration of nanotechnology with agriculture introduces innovations like disease diagnostics, improved nutrient uptake in plants, and advanced delivery systems for agrochemicals. These precision-based approaches not only optimize resource utilization but also reduce environmental impact, aligning well with sustainability objectives. Concurrently, genetic innovations, including genome editing and advanced breeding techniques, enable the development of crops with improved yield, resilience, and nutritional content. The emergence of precision gene-editing technologies, exemplified by CRISPR/Cas9, can transform the realm of genetic modification and enabled precise manipulation of plant genomes while avoiding the incorporation of external DNAs. Integration of nanotechnology and genetic innovations in agriculture presents a transformative approach. Leveraging nanoparticles for targeted genetic modifications, nanosensors for early plant health monitoring, and precision nanomaterials for controlled delivery of inputs offers a sustainable pathway towards enhanced crop productivity, resource efficiency, and food safety throughout the agricultural lifecycle. This comprehensive review outlines the pivotal role of nanotechnology in precision agriculture, emphasizing soil health improvement, stress resilience against biotic and abiotic factors, environmental sustainability, and genetic engineering.
Collapse
Affiliation(s)
- Arzish Javaid
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE- C, PIEAS), Faisalabad, 38000, Punjab, Pakistan
| | - Sadaf Hameed
- Faculty of Science and Technology, University of Central Punjab, Lahore, 54000, Pakistan
| | - Lijie Li
- School of Life Sciences, Henan Institute of Sciences and Technology, Xinxiang, 453003, Henan, China
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Zhiyong Zhang
- School of Life Sciences, Henan Institute of Sciences and Technology, Xinxiang, 453003, Henan, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA.
| | - Mehboob-Ur -Rahman
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE- C, PIEAS), Faisalabad, 38000, Punjab, Pakistan.
| |
Collapse
|
24
|
Zhang Y, Zhang Y, Wu A. Design and construction of magnetic nanomaterials and their remediation mechanisms for heavy metal contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175369. [PMID: 39122020 DOI: 10.1016/j.scitotenv.2024.175369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Soil heavy metal pollution poses huge threat to ecosystem and human health. In-situ chemical remediation aims to immobilize free heavy metals in soil through adding passivators, thereby greatly reducing the mobility and bioavailability of heavy metals. Magnetic nanomaterials (MaN) have strong adsorption and immobilization capabilities for heavy metals due to their significant surface effects, small size effects and interfacial effects. Compared with traditional remediation materials, MaN can be recovered and reused using external magnetic fields. These advantages give MaN broad application prospects in the field of soil remediation. This work provides a comprehensive review of the application of MaN in heavy metal contaminated soil, including the design and application effect of various types of MaN, the influence of MaN on soil properties, environmental toxicity, and microbial composition, the in-situ remediation mechanism of MaN on heavy metal contaminated soil. On the other hand, there are potential risks associated with the remediation of heavy metal contaminated soil using MaN, including their impact on the soil ecosystem and biosafety concerns, requiring further research. Finally, this review proposes the future prospects for the application of MaN in the remediation of heavy metal polluted soil.
Collapse
Affiliation(s)
- Yuenan Zhang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujie Zhang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China.
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China.
| |
Collapse
|
25
|
Shirvani-Naghani S, Fallah S, Pokhrel LR, Rostamnejadi A. Drought stress mitigation and improved yield in Glycine max through foliar application of zinc oxide nanoparticles. Sci Rep 2024; 14:27898. [PMID: 39537733 PMCID: PMC11560926 DOI: 10.1038/s41598-024-78504-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
The impact of climate change on agricultural production is apparent due to declining irrigation water availability vis-à-vis rising drought stress, particularly affecting summer crops. Growing evidence suggests that zinc (Zn) supplementation may serve as a potential drought stress management strategy in agriculture. Field studies were conducted using soybean (Glycine max var. Saba) as a model crop to test whether foliar application of zinc oxide nanoparticles (ZnO-NPs) or conventional Zn fertilizer (ZnSO4) would mitigate drought-related water stress and improve soybean yield. Each fertilizer was foliar applied twice at a two-week interval during the flowering stage. Experiments were concurrently conducted under non-drought conditions (70% field capacity) for comparison. Results showed drought significantly reduced relative water content, chlorophyll-a, and chlorophyll-b in untreated control plants by 35.7%, 47.7%, and 41.4%, respectively, compared to non-drought conditions (p < 0.05). Under drought conditions, ZnO-NPs (200 mg Zn/L) led to 33.1% and 20.7% increase in chlorophyll-a and chlorophyll-b levels, respectively, compared to ZnSO4 at 400 mg Zn/L. Likewise, catalase, peroxidase and superoxide dismutase activities increased by 62.6%, 39.5% and 28.5%, respectively, with ZnO-NPs (200 mg Zn/L) under drought compared to non-drought conditions. Proline was significantly increased under drought but was remarkably suppressed (~ 54% lower) with ZnO-NPs (200 mg Zn/L) treatment. More importantly, the highest seed yield was observed with ZnO-NPs (200 mg Zn/L) treatment under drought (39% higher than untreated control) and non-drought (79.4% higher than control) conditions. Overall, the findings suggest that ZnO-NPs could promote seed yield in soybean under drought stress via increased antioxidant activities, increased relative water content, decreased stress-related proline content, and increased photosynthetic pigments. It is recommended that foliar application of 200 mg Zn/L as ZnO-NPs could serve as an effective drought stress management strategy to improve soybean yield.
Collapse
Affiliation(s)
| | - Sina Fallah
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran.
| | - Lok Raj Pokhrel
- Department of Public Health, The Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| | - Ali Rostamnejadi
- Department of Electroceramics and Electrical Engineering, Malek Ashtar University of Technology, Tehran, Iran
| |
Collapse
|
26
|
Zhang H, Zheng T, Wang Y, Li T, Chi Q. Multifaceted impacts of nanoparticles on plant nutrient absorption and soil microbial communities. FRONTIERS IN PLANT SCIENCE 2024; 15:1497006. [PMID: 39606675 PMCID: PMC11600800 DOI: 10.3389/fpls.2024.1497006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024]
Abstract
With the growth of the global population and the increasing scarcity of resources, the sustainability and efficiency improvement of agricultural production have become urgent needs. The rapid development of nanotechnology provides new solutions to this challenge, especially the application of nanoparticles in agriculture, which is gradually demonstrating its unique advantages and broad prospects. Nonetheless, various nanoparticles can influence plant growth in diverse manners, often through distinct mechanisms of action. Beyond their direct effects on the plant itself, they frequently alter the physicochemical properties of the soil and modulate the structure of microbial communities in the rhizosphere. This review focuses intently on the diverse methods through which nanoparticles can modulate plant growth, delving deeply into the interactions between nanoparticles and plants, as well as nanoparticles with soil and microbial communities. The aim is to offer a comprehensive reference for the utilization of functionalized nanoparticles in the agricultural sector.
Collapse
Affiliation(s)
- Hanfeng Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Tiantian Zheng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yue Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Ting Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Qing Chi
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
27
|
Fonseca JDS, Wojciechowska E, Kulesza J, Barros BS. Carbon Nanomaterials in Seed Priming: Current Possibilities. ACS OMEGA 2024; 9:44891-44906. [PMID: 39554415 PMCID: PMC11561606 DOI: 10.1021/acsomega.4c07230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/30/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024]
Abstract
The prevailing agricultural system has become deeply ingrained and insufficient due to outdated practices inherited from the Green Revolution, necessitating innovative approaches for sustainable agricultural development. Nanomaterials possess the potential to significantly improve the efficient utilization of resources while simultaneously encouraging sustainability. Among these, carbonaceous nanomaterials have found diverse applications in agriculture, exhibiting remarkable capabilities in this domain. Notably, using biowaste to produce these materials makes them both cost-effective and environmentally friendly for seed priming. Seed priming is a technique that can potentially enhance germination rates and stress tolerance by effectively regulating gene pathways and metabolism. This review provides a comprehensive summary of recent progress in the field, highlighting the challenges and opportunities of applying carbonaceous materials in seed priming to advance sustainable agriculture practices. The existing reviews provide a general overview of using carbonaceous materials (graphene and derivatives) in agriculture. Yet, they often lack a comprehensive examination of their specific application in seed-related contexts. In this review, we aim to offer a detailed analysis of the application of carbonaceous materials in seed priming and elucidate their influence on germination. Furthermore, the review shows that crop response to carbonaceous nanomaterials is linked to material concentration and crop species.
Collapse
Affiliation(s)
- José
Daniel da Silva Fonseca
- Programa
de Pós-graduação em Ciência de Materiais,
Centro de Ciências Exatas e da Natureza-CCEN, Universidade Federal de Pernambuco, Av. Prof. Morais Rego, 1235-Cidade Universitária, Recife, Pernambuco 50670-901, Brasil
| | - Ewa Wojciechowska
- Gdansk
University of Technology, Faculty of Civil
and Environmental Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Joanna Kulesza
- Departamento
de Química Fundamental, Centro de Ciências Exatas e
da Natureza-CCEN, Universidade Federal de
Pernambuco, Av. Prof. Morais Rego, 1235-Cidade Universitária, Recife, Pernambuco 50670-901, Brasil
| | - Bráulio Silva Barros
- Departamento
de Engenharia Mecânica, Centro de Tecnologia e Geociências-CTG, Universidade Federal de Pernambuco, Av. Prof. Morais Rego, 1235-Cidade
Universitária, Recife, Pernambuco 50670-901, Brasil
| |
Collapse
|
28
|
Sharma S, Perring TM, Jeon SJ, Huang H, Xu W, Islamovic E, Sharma B, Giraldo YM, Giraldo JP. Nanocarrier mediated delivery of insecticides into tarsi enhances stink bug mortality. Nat Commun 2024; 15:9737. [PMID: 39528534 PMCID: PMC11554816 DOI: 10.1038/s41467-024-54013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Current delivery practices for insecticide active ingredients are inefficient with only a fraction reaching their intended target. Herein, we developed carbon dot based nanocarriers with molecular baskets (γ-cyclodextrin) that enhance the delivery of active ingredients into insects (southern green stink bugs, Nezara viridula L.) via their tarsal pores. Nezara viridula feeds on leguminous plants worldwide and is a primary pest of soybeans. After two days of exposure, most of the nanocarriers and their active ingredient cargo (>85%) remained on the soybean leaf surface, rendering them available to the insects. The nanocarriers enter stink bugs through their tarsi, enhancing the delivery of a fluorescent chemical cargo by 2.6 times. The insecticide active ingredient nanoformulation (10 ppm) was 25% more effective in controlling the stink bugs than the active ingredient alone. Styletectomy experiments indicated that the improved active ingredient efficacy was due to the nanoformulation entering through the insect tarsal pores, consistent with fluorescent chemical cargo assays. This new nanopesticide approach offers efficient active ingredient delivery and improved integrated pest management for a more sustainable agriculture.
Collapse
Affiliation(s)
- Sandeep Sharma
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Thomas M Perring
- Department of Entomology, University of California, Riverside, CA, 92521, USA
| | - Su-Ji Jeon
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Huazhang Huang
- BASF corporation, 26 Davis Drive, Research Triangle Park, NC, 27709-3528, USA
| | - Wen Xu
- BASF corporation, 26 Davis Drive, Research Triangle Park, NC, 27709-3528, USA
| | - Emir Islamovic
- BASF corporation, 26 Davis Drive, Research Triangle Park, NC, 27709-3528, USA
| | - Bhaskar Sharma
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | | | - Juan Pablo Giraldo
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
29
|
Xing RX, Sun XD, Wang Y, Xie XM, Tan MM, Xu MX, Liu XY, Jiang YQ, Liu MY, Duan JL, Ma JY, Sun YC, Meng G, Yuan XZ. Seed Priming with Dynamically Transformed Selenium Nanoparticles to Enhance Salt Tolerance in Rice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19725-19735. [PMID: 39446910 DOI: 10.1021/acs.est.4c07121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Seed priming with nanomaterials is an emerging approach for improving plant stress tolerance. Here, we demonstrated a mechanism for enhancing salt tolerance in rice under salt stress via priming with nonstimulatory nanoparticles such as selenium nanoparticles (SeNPs), distinct from stimulatory nanomaterials. Due to the dynamic transformation ability of SeNPs, SeNP priming could enhance rice salt tolerance by mediating the glutathione cycle to eliminate excess reactive oxygen species (ROS). During priming, SeNPs penetrated rice seeds and transitioned into a soluble form (99.9%) within the embryo endosperm. Subsequently, the soluble selenium (Se) was transported to rice roots and metabolized into various Se-related derivatives, including selenomethionine (SeMet), Na2SeO3 (Se IV), selenocysteine (SeCys2), and methylselenocysteine (MeSeCys). These derivatives significantly enhanced the root activities of key enzymes such as glutathione peroxidase (GSH-PX), glutathione reductase (GR), catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) by 24.97%, 47.98%, 16.23%, 16.81%, and 14.82%, respectively, thus reinforcing the glutathione cycle and ROS scavenging pathways. Moreover, these alterations induced transcriptional changes in rice seedlings, with genes involved in signal transduction, transcription factors (TFs), ROS scavenging, and protein folding being upregulated, activating signal perception and self-repair mechanisms. These findings offer valuable insights for the agricultural application of nanomaterials.
Collapse
Affiliation(s)
- Rong-Xiang Xing
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P R China
- Sino-French Research Institute for Ecology and Environment (ISFREE), Shandong University, Qingdao, Shandong 266237, P R China
| | - Xiao-Dong Sun
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P R China
- Sino-French Research Institute for Ecology and Environment (ISFREE), Shandong University, Qingdao, Shandong 266237, P R China
| | - Yue Wang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P R China
- Sino-French Research Institute for Ecology and Environment (ISFREE), Shandong University, Qingdao, Shandong 266237, P R China
| | - Xiao-Min Xie
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P R China
- Sino-French Research Institute for Ecology and Environment (ISFREE), Shandong University, Qingdao, Shandong 266237, P R China
- College of Resources and Environmental Sciences, Qingdao Agricultural University, Qingdao 266109, P R China
| | - Miao-Miao Tan
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P R China
- Sino-French Research Institute for Ecology and Environment (ISFREE), Shandong University, Qingdao, Shandong 266237, P R China
| | - Meng-Xin Xu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P R China
- Sino-French Research Institute for Ecology and Environment (ISFREE), Shandong University, Qingdao, Shandong 266237, P R China
| | - Xiao-Yu Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P R China
- Sino-French Research Institute for Ecology and Environment (ISFREE), Shandong University, Qingdao, Shandong 266237, P R China
| | - Yu-Qian Jiang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P R China
- Sino-French Research Institute for Ecology and Environment (ISFREE), Shandong University, Qingdao, Shandong 266237, P R China
| | - Mei-Yan Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P R China
- Sino-French Research Institute for Ecology and Environment (ISFREE), Shandong University, Qingdao, Shandong 266237, P R China
| | - Jian-Lu Duan
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P R China
- Sino-French Research Institute for Ecology and Environment (ISFREE), Shandong University, Qingdao, Shandong 266237, P R China
| | - Jing-Ya Ma
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P R China
- Sino-French Research Institute for Ecology and Environment (ISFREE), Shandong University, Qingdao, Shandong 266237, P R China
| | - Yu-Chen Sun
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P R China
- Sino-French Research Institute for Ecology and Environment (ISFREE), Shandong University, Qingdao, Shandong 266237, P R China
| | - Ge Meng
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P R China
- Sino-French Research Institute for Ecology and Environment (ISFREE), Shandong University, Qingdao, Shandong 266237, P R China
| | - Xian-Zheng Yuan
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P R China
- Sino-French Research Institute for Ecology and Environment (ISFREE), Shandong University, Qingdao, Shandong 266237, P R China
| |
Collapse
|
30
|
Hernandez LE, Ruiz JM, Espinosa F, Alvarez-Fernandez A, Carvajal M. Plant nutrition challenges for a sustainable agriculture of the future. PHYSIOLOGIA PLANTARUM 2024; 176:e70018. [PMID: 39691080 DOI: 10.1111/ppl.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/19/2024]
Abstract
This article offers a comprehensive review of sustainable plant nutrition concepts, examining a multitude of cutting-edge techniques that are revolutionizing the modern area. The review copes with the crucial role of biostimulants as products that stimulate plant nutrition processes, including their potential for biofertilization, followed by an exploration of the significance of micronutrients in plant health and growth. We then delve into strategies for enhancing plants' tolerance to mineral nutrient contaminants and the promising realm of biofortification to increase the essential nutrients necessary for human health. Furthermore, this work also provides a concise overview of the burgeoning field of nanotechnologies in fertilization, while the integration of circular economy principles underscores the importance of sustainable resource management. Then, with examined the interrelation between micronutrients. We conclude with the future challenges and opportunities that lie ahead in the pursuit of more sustainable and resilient plant systems.
Collapse
Affiliation(s)
- Luis E Hernandez
- Laboratory of Plant Physiology-Department of Biology, Universidad Autónoma Madrid, Madrid, Spain
| | - Juan M Ruiz
- Department of Plant Physiology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Francisco Espinosa
- Plant Biology, Ecology and Earth Sciences Department, Extremadura University, Badajoz, Spain
| | | | - Micaela Carvajal
- Aquaporins Group. Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS, CSIC), Campus Universitario de Espinardo, Murcia, Spain
| |
Collapse
|
31
|
Ma X, Zhou P. Promising prospects of nanomaterials in crop safety. NATURE FOOD 2024; 5:886-887. [PMID: 39468308 DOI: 10.1038/s43016-024-01072-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Affiliation(s)
- Xianzhong Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
32
|
Cao Y, Ma C, White JC, Cao Y, Zhang F, Tong R, Yu H, Hao Y, Yan W, Kah M, Xing B. Engineered nanomaterials reduce metal(loid) accumulation and enhance staple food production for sustainable agriculture. NATURE FOOD 2024; 5:951-962. [PMID: 39394358 DOI: 10.1038/s43016-024-01063-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 09/09/2024] [Indexed: 10/13/2024]
Abstract
Metal(loid) contaminants in food pose a global health concern. This study offers a global analysis of the impact of nanomaterials (NMs) on crop responses to metal(loid) stresses. Our findings reveal that NMs have a positive effect on the biomass production of staple crops (22.8%), while showing inhibitory effects on metal(loid) accumulation in plants (-38.3%) and oxidative damage (-21.6%) under metal(loid) stress conditions. These effects are influenced by various factors such as NM dose, exposure duration, size and composition. Here we introduce a method using interval-valued intuitionistic fuzzy values by integrating the technique for order preference by similarity to an ideal solution and entropy weights to compare the effectiveness of different NM application patterns. These results offer practical insights for the application of NMs in similar multi-criteria decision-making scenarios, contributing to sustainable agriculture and global food safety.
Collapse
Affiliation(s)
- Yini Cao
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha, China
| | - Chuanxin Ma
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, China.
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Yuchi Cao
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha, China
| | - Fan Zhang
- School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Ran Tong
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Hao Yu
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Yi Hao
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, China
| | - Wende Yan
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha, China.
| | - Melanie Kah
- School of Environment, University of Auckland, Auckland, New Zealand
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
33
|
Kheiriabad S, Jafari A, Namvar Aghdash S, Ezzati Nazhad Dolatabadi J, Andishmand H, Jafari SM. Applications of Advanced Nanomaterials in Biomedicine, Pharmaceuticals, Agriculture, and Food Industry. BIONANOSCIENCE 2024; 14:4298-4321. [DOI: 10.1007/s12668-024-01506-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2024] [Indexed: 01/06/2025]
|
34
|
Ma H, You L, Yi X, Ding C, Zhou J, Zhou J. Effects of foliar spraying different sizes of zinc fertilizer on the growth and cadmium accumulation in rice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8480-8491. [PMID: 39031780 DOI: 10.1002/jsfa.13675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/28/2024] [Accepted: 06/07/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND Nanotechnology has been widely applied in agricultural science. During the process of reducing metal toxicity and accumulation in rice, nanomaterials exhibit size effects. However, there is limited knowledge regarding these size effects. We aim to explore the impact of fertilizer with various sizes of ZnO nanoparticles (ZnO-NPs) on rice growth and cadmium (Cd) accumulation and to elucidate the potential mechanism of Cd reduction in rice. Foliar applications of different concentrations (0.5 and 2 mmol L-1) and different sizes (30 and 300 nm ZnO-NPs) of zinc (Zn) fertilizer (Zn(NO3)2) were performed to investigate the effects on rice growth, Cd accumulation and subcellular distribution, and the expression of Zn-Cd transport genes. RESULTS The results suggested that all the foliar sprayings can significantly reduce the Cd concentrations in rice grains by 41-61% with the highest reduction in the application of ZnO-NPs with large size and low concentration. This is related to the enhancement of Cd fixation in leaf cell walls and downregulation of Cd transport genes (OsZIP7, OsHMA2, OsHMA3) in stem nodes. Foliar ZnO-NPs applications can increase the Zn concentration in grains by 9-21%. Foliar applications of Zn(NO3)2 and small-sized ZnO-NPs promoted plant growth and rice yield, while the application of large-sized ZnO-NPs significantly reduced rice growth and yield. CONCLUSION The study suggests that the rice yield and Cd reduction are dependent on the size and concentration of foliar spraying and the use of large-sized ZnO-NPs is the most effective strategy when considering both yield and Cd reduction comprehensively. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Haorui Ma
- School of Water and Environment, Chang'an University, Xi'an, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, China
| | - Laiyong You
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiu Yi
- School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, China
| | - Chengcheng Ding
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, China
| | - Jing Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Wang Z, Fan N, Li X, Yue L, Wang X, Liao H, Xiao Z. Trophic Transfer of Metal Oxide Nanoparticles in the Tomato- Helicoverpa armigera Food Chain: Effects on Phyllosphere Microbiota, Insect Oxidative Stress, and Gut Microbiome. ACS NANO 2024; 18:26631-26642. [PMID: 39297401 DOI: 10.1021/acsnano.4c05063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Understanding the trophic transfer and ecological cascade effects of nanofertilizers and nanopesticides in terrestrial food chains is crucial for assessing their nanotoxicity and environmental risks. Herein, the trophic transfer of La2O3 (nLa2O3) and CuO (nCuO) nanoparticles from tomato leaves to Helicoverpa armigera (Lepidoptera: Noctuidae) caterpillars and their subsequent effects on caterpillar growth and intestinal health were investigated. We found that 50 mg/L foliar nLa2O3 and nCuO were transferred from tomato leaves to H. armigera, with particulate trophic transfer factors of 1.47 and 0.99, respectively. While nCuO exposure reduced larval weight gain more (34.7%) than nLa2O3 (11.3%), owing to higher oxidative stress (e.g., MDA and H2O2) and more serious intestinal pathological damage (i.e., crumpled columnar cell and disintegrated goblet cell) by nCuO. Moreover, nCuO exposure led to a more compact antagonism between the phyllosphere and gut microbiomes compared to nLa2O3. Specifically, nCuO exposure resulted in a greater increase in pathogenic bacteria (e.g., Mycobacterium, Bacillus, and Ralstonia) and a more significant decrease in probiotics (e.g., Streptomyces and Arthrobacter) than nLa2O3, ultimately destroying larval intestinal immunity. Altogether, our findings systematically revealed the cascade effect of metal oxide nanomaterials on higher trophic consumers through alteration in the phyllosphere and insect gut microbiome interaction, thus providing insights into nanotoxicity and environmental risk assessment of nanomaterials applied in agroecosystems.
Collapse
Affiliation(s)
- Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Ningke Fan
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Xie Wang
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Huimin Liao
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Zhenggao Xiao
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
36
|
Jiang Q, Xie Y, Zhou B, Wang Z, Ning D, Li H, Zhang J, Yin M, Shen J, Yan S. Nanomaterial inactivates environmental virus and enhances plant immunity for controlling tobacco mosaic virus disease. Nat Commun 2024; 15:8509. [PMID: 39353964 PMCID: PMC11445512 DOI: 10.1038/s41467-024-52851-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
Tobacco mosaic virus (TMV) is extremely pathogenic and resistant to stress There are great needs to develop methods to reduce the virus in the environment and induce plant immunity simultaneously. Here, we report a multifunctional nano-protectant to reduce the virus in the environment and induce plant immunity simultaneously. The star polycation (SPc) nanocarrier can act as an active ingredient to interact with virus coat protein via electrostatic interaction, which reduces the proportion of TMV particles to 2.9% and leads to a reduction of the amount of virus in the environment by half. SPc can act as an adjuvant to spontaneously assemble with an immune inducer lentinan (LNT) through hydrogen bonding into nanoscale (142 nm diameter) LNT/SPc complex, which improves the physicochemical property of LNT for better wetting performance on leaves and cellular uptake, and further activates plant immune responses. Finally, the LNT/SPc complex displays preventive and curative effects on TMV disease, reducing TMV-GFP relative expression by 26% in the laboratory and achieving 82% control efficacy in the field We hope the strategy reported here would be useful for control of crop virus disease.
Collapse
Affiliation(s)
- Qinhong Jiang
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Yonghui Xie
- Kunming Branch of Yunnan Provincial Tobacco Company, 650051, Kunming, China
| | - Bingcheng Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Zhijiang Wang
- Kunming Branch of Yunnan Provincial Tobacco Company, 650051, Kunming, China
| | - Dekai Ning
- Kunming Branch of Yunnan Provincial Tobacco Company, 650051, Kunming, China
| | - Hongming Li
- Kunming Branch of Yunnan Provincial Tobacco Company, 650051, Kunming, China
| | - Junzheng Zhang
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Jie Shen
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, 100193, Beijing, China.
| | - Shuo Yan
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
37
|
Dai Z, Huang Z, Hu D, Naz M, Afzal MR, Raza MA, Benavides-Mendoza A, Tariq M, Qi S, Du D. Role of nanofertilization in plant nutrition under abiotic stress conditions. CHEMOSPHERE 2024; 366:143496. [PMID: 39374674 DOI: 10.1016/j.chemosphere.2024.143496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/18/2024] [Accepted: 10/05/2024] [Indexed: 10/09/2024]
Abstract
Plants require nutrients for growth, which they obtain from the soil via the root system. Fertilizers offer the essential nutrients (nitrogen, phosphorus, and potassium, as well as critical secondary elements) required by plants. Soil productivity falls with each crop until nutrients are provided. A wide range of so-called fertilizer products, such as organic fertilizers, argon mineral fertilizers, and mineral fertilizers, can assist farmers in adjusting fertilization methods based on the environment and agricultural conditions (inhibitors, restricted materials, growth mediums, plant bio-stimulants, etc.). Agricultural land is reduced by erosion, pollution, careless irrigation, and fertilization. On the other hand, more agricultural production is needed to meet the demands of expanding industries and the nutritional needs of a growing population. Nano fertilizers have recently started to be manufactured to obtain the highest yield and its quality per unit area. Previous researchers found that nano fertilizers could improve plant nutrient uptake efficiency, lower soil toxicity, mitigate the potential negative effects of excessive chemical fertilizer use, and reduce the frequency of fertilization. To maximize crop yields and optimize nutrient use while reducing the overuse of chemical fertilizers, nano fertilizersNFs are crucial in agriculture. The key component of these fertilizers is that they contain one or more macro- and micronutrients that can be applied regularly in minute doses while not damaging the environment. However, they have a minimal effect on plant growth and agricultural yields when employed in high numbers, like synthetic fertilizers. This article explains the features, relevance and classification of nano-fertilizers, their use in plant development, their advantages and disadvantages, and the results achieved in this field.
Collapse
Affiliation(s)
- Zhicong Dai
- School of Emergency Management, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, PR China; Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, PR China.
| | - Zhiyun Huang
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China.
| | - Die Hu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Prov-ince, PR China.
| | - Misbah Naz
- School of Emergency Management, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, PR China; Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China.
| | - Muhammad Rahil Afzal
- School of Emergency Management, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, PR China; Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China.
| | - Muhammad Ammar Raza
- School of Food Science and Biotechnology, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, 310018, PR China.
| | | | - Muhammad Tariq
- Department of Pharmacology, Lahore Pharmacy Collage, Lahore, 54000, Pakistan.
| | - Shanshan Qi
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Prov-ince, PR China.
| | - Daolin Du
- Jingjiang College, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
38
|
Yan X, White JC, He E, Peijnenburg WJGM, Zhang P, Qiu H. Temporal Dynamics of Copper-Based Nanopesticide Transfer and Subsequent Modulation of the Interplay Between Host and Microbiota Across Trophic Levels. ACS NANO 2024; 18:25552-25564. [PMID: 39171664 DOI: 10.1021/acsnano.4c06047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
During agricultural production, significant quantities of copper-based nanopesticides (CBNPs) may be released into terrestrial ecosystems through foliar spraying, thereby posing a potential risk of biological transmission via food chains. Consequently, we investigated the trophic transfer of two commonly available commercial CBNPs, Reap2000 (RP) and HolyCu (HC), in a plant-caterpillar terrestrial food chain and evaluated impacts on host microbiota. Upon foliar exposure (with 4 rounds of spraying, totaling 6.0 mg CBNPs per plant), leaf Cu accumulation levels were 726 ± 180 and 571 ± 121 mg kg-1 for RP and HC, respectively. HC exhibited less penetration through the cuticle compared to RP (RP: 55.5%; HC: 32.8%), possibly due to size exclusion limitations. While caterpillars accumulated higher amounts of RP, HC exhibited a slightly higher trophic transfer factor (TTF; RP: 0.69 ± 0.20; HC: 0.74 ± 0.17, p > 0.05) and was more likely to be transferred through the food chain. The application of RP promoted the dispersal of phyllosphere microbes and perturbed the original host intestinal microbiota, whereas the HC group was largely host-modulated (control: 65%; RP: 94%; HC: 34%). Integrating multiomics analyses and modeling approaches, we elucidated two pathways by which plants exert bottom-up control over caterpillar health. Beyond the direct transmission of phyllosphere microbes, the leaf microbiome recruited upon exposure to CBNPs further influenced the ingestion behavior and intestinal microbiota of caterpillars via altered leaf metabolites. Elevated Proteobacteria abundance benefited caterpillar growth with RP, while the reduction of Proteobacteria with HC increased the risk of lipid metabolism issues and gut disease. The recruited Bacteroidota in the RP phyllosphere proliferated more extensively into the caterpillar gut to enhance stress resistance. Overall, the gut microbes reshaped in RP caterpillars exerted a strong regulatory effect on host health. These findings expand our understanding of the dynamic transmission of host-microbiota interactions with foliar CBNPs exposure, and provide critical insight necessary to ensure the safety and sustainability of nanoenabled agricultural strategies.
Collapse
Affiliation(s)
- Xuchen Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven06511, Connecticut, United States
| | - Erkai He
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Willie J G M Peijnenburg
- Center for the Safety of Substances and Products, National Institute of Public Health and the Environment, Bilthoven 3720BA, The Netherlands
- Institute of Environmental Sciences, Leiden University, Leiden 2300RA, The Netherlands
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, Birmingham, U.K
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
39
|
Jiang X, Yang F, Jia W, Jiang Y, Wu X, Song S, Shen H, Shen J. Nanomaterials and Nanotechnology in Agricultural Pesticide Delivery: A Review. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18806-18820. [PMID: 39177444 DOI: 10.1021/acs.langmuir.4c01842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Pesticides play a crucial role in ensuring food production and food security. Conventional pesticide formulations can not meet the current needs of social and economic development, and they also can not meet the requirements of green agriculture. Therefore, there is an urgent need to develop efficient, stable, safe, and environmentally friendly pesticide formulations to gradually replace old formulations which have high pollution and low efficacy. The rise of nanotechnology provides new possibilities for innovation in pesticide formulations. Through reasonable design and construction of an environmentally friendly pesticide delivery system (PDS) based on multifunctional nanocarriers, the drawbacks of conventional pesticides can be effectively solved, realizing a water-based, nanosized, targeted, efficient, and safe pesticide system. In the past five years, researchers in chemistry, materials science, botany, entomology, plant protection, and other fields are paying close attention to the research of nanomaterials based PDSs and nanopesticide formulations and have made certain research achievements. These explorations provide useful references for promoting the innovation of nanopesticides and developing a new generation of green and environmentally friendly pesticide formulations. This Perspective summarizes the recent advances of nanomaterials in PDSs and nanopesticide innovation, aiming to provide useful guidance for carrier selection, surface engineering, controlled release conditions, and application in agriculture.
Collapse
Affiliation(s)
- Xuefeng Jiang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Fang Yang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Wei Jia
- Jiangsu Yangnong Chemical Co., Ltd., Yangzhou, 225009, China
| | - Youfa Jiang
- Jiangsu Yangnong Chemical Co., Ltd., Yangzhou, 225009, China
| | - Xiaoju Wu
- Jiangsu Yangnong Chemical Co., Ltd., Yangzhou, 225009, China
| | - Saijie Song
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - He Shen
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Engineering Research Center of Interfacial Chemistry, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
40
|
Lowry GV, Giraldo JP, Steinmetz NF, Avellan A, Demirer GS, Ristroph KD, Wang GJ, Hendren CO, Alabi CA, Caparco A, da Silva W, González-Gamboa I, Grieger KD, Jeon SJ, Khodakovskaya MV, Kohay H, Kumar V, Muthuramalingam R, Poffenbarger H, Santra S, Tilton RD, White JC. Towards realizing nano-enabled precision delivery in plants. NATURE NANOTECHNOLOGY 2024; 19:1255-1269. [PMID: 38844663 DOI: 10.1038/s41565-024-01667-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/27/2024] [Indexed: 09/18/2024]
Abstract
Nanocarriers (NCs) that can precisely deliver active agents, nutrients and genetic materials into plants will make crop agriculture more resilient to climate change and sustainable. As a research field, nano-agriculture is still developing, with significant scientific and societal barriers to overcome. In this Review, we argue that lessons can be learned from mammalian nanomedicine. In particular, it may be possible to enhance efficiency and efficacy by improving our understanding of how NC properties affect their interactions with plant surfaces and biomolecules, and their ability to carry and deliver cargo to specific locations. New tools are required to rapidly assess NC-plant interactions and to explore and verify the range of viable targeting approaches in plants. Elucidating these interactions can lead to the creation of computer-generated in silico models (digital twins) to predict the impact of different NC and plant properties, biological responses, and environmental conditions on the efficiency and efficacy of nanotechnology approaches. Finally, we highlight the need for nano-agriculture researchers and social scientists to converge in order to develop sustainable, safe and socially acceptable NCs.
Collapse
Affiliation(s)
- Gregory V Lowry
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Juan Pablo Giraldo
- Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA.
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California San Diego, San Diego, CA, USA
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
- Department of Radiology, University of California San Diego, San Diego, CA, USA
- Center for Nano-ImmunoEngineering, University of California San Diego, San Diego, CA, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, San Diego, CA, USA
- Center for Engineering in Cancer, Institute of Engineering in Medicine, University of California San Diego, San Diego, CA, USA
- Moores Cancer Center, University of California, University of California San Diego, San Diego, CA, USA
- Institute for Materials Discovery and Design, University of California San Diego, San Diego, CA, USA
| | | | - Gozde S Demirer
- Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Kurt D Ristroph
- Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA
| | - Gerald J Wang
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Christine O Hendren
- Geological and Environmental Sciences, Appalachian State University, Boone, NC, USA
| | | | - Adam Caparco
- Department of NanoEngineering, University of California San Diego, San Diego, CA, USA
| | | | | | - Khara D Grieger
- Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Su-Ji Jeon
- Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | | | - Hagay Kohay
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Vivek Kumar
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | | | - Swadeshmukul Santra
- Department of Chemistry and Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Robert D Tilton
- Chemical Engineering and Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jason C White
- The Connecticut Agricultural Research Station, New Haven, CT, USA
| |
Collapse
|
41
|
Huang F, Chen L, Zeng Y, Dai W, Wu F, Hu Q, Zhou Y, Shi S, Fang L. Unveiling influences of metal-based nanomaterials on wheat growth and physiology: From benefits to detriments. CHEMOSPHERE 2024; 364:143212. [PMID: 39222697 DOI: 10.1016/j.chemosphere.2024.143212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Metal-based nanomaterials (MNs) are widely used in agricultural production. However, our current understanding of the overall effects of MNs on crop health is insufficient. A global meta-analysis of 144 studies involving approximately 2000 paired observations was conducted to explore the impacts of MNs on wheat growth and physiology. Our analysis revealed that the MN type plays a key role in influencing wheat growth. Ag MNs had significant negative effects on wheat growth and physiology, whereas Fe, Ti, and Zn MNs significantly increased wheat biomass and photosynthesis. Our study also observed a clear dose-specific effect, with a decrease in wheat shoot biomass with increasing MN concentrations. Meanwhile, MNs with small sizes (<25 nm) have no significant impacts on wheat growth. Furthermore, both the root and foliar applications significantly improved wheat growth, with no considerable differences. Using a machine learning approach, we found that the MN type was the main driving factor affecting wheat shoot biomass, followed by MN dose and size. Overall, wheat growth and physiology can be negatively influenced by specific MNs, for which a high dose and small size should be avoided in practical applications. Therefore, our study can provide insights into the future design and safe use of MNs in agriculture and increase the public acceptance of nano-agriculture.
Collapse
Affiliation(s)
- Fengyu Huang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China; College of Environment and Resource, Xichang University, Xichang, 615000, China
| | - Li Chen
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China.
| | - Yi Zeng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Wei Dai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Fang Wu
- College of Environment and Resource, Xichang University, Xichang, 615000, China
| | - Qing Hu
- College of Environment and Resource, Xichang University, Xichang, 615000, China
| | - Ying Zhou
- College of Environment and Resource, Xichang University, Xichang, 615000, China
| | - Shunmei Shi
- College of Environment and Resource, Xichang University, Xichang, 615000, China
| | - Linchuan Fang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
42
|
Wei L, Ji L, Rico C, He C, Shakoor I, Fakunle M, Lu X, Xia Y, Hou Y, Hong J. Transcriptomics Reveals the Pathway for Increasing Brassica chinensis L. Yield under Foliar Application of Titanium Oxide Nanoparticles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18957-18970. [PMID: 39137250 DOI: 10.1021/acs.jafc.4c04075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
In this study, Brassica chinensis L seedlings after 6 weeks of soil cultivation were treated with foliar application of TiO2 NPs (20 mg/L) for different times. Transcriptomics analysis was employed to investigate the impact of TiO2 NPs on the physiology, growth, and yield of B. chinensis L. Results showed that TiO2 NPs' exposure significantly increased the biomass, total phosphorus, and catalase enzyme activity by 23.60, 23.72, and 44.01%, respectively, compared to the untreated ones (not bulk or ion).TiO2 NPs increased the leaf chlorophyll content by 4.9% and photosynthetic rate by 16.62%, which was attributed to the upregulated expression of seven genes (PetH, PetF, PsaF, PsbA, PsbB, PsbD, and Lhcb) associated with electron transport in photosystem I and light-harvesting in leaves. The water balance of B. chinensis was improved correlating with the altered expressions of 19 aquaporin genes (e.g., PIP2;1 and NIP6;1). The expressions of 58 genes related to plant hormone signaling and growth were dysregulated, with notable downregulations in GA20, SnRK2, and PP2C and upregulations of DELLAs, SAM, and ETR. Moreover, the 11 tricarboxylic acid cycle genes and 13 glycolysis genes appear to stimulate pathways involved in promoting the growth and physiology of B. chinensis. This research contributes valuable insights into new strategies for increasing the yield of B. chinensis.
Collapse
Affiliation(s)
- Lan Wei
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
- Wuxi Public Utilities Environment Testing Research Institute, Wuxi, Jiangsu 214026, China
| | - Lei Ji
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Cyren Rico
- Chemistry Department, Missouri State University, Springfield, Missouri 65897, United States
| | - Changyu He
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Iqra Shakoor
- Chemistry Department, Missouri State University, Springfield, Missouri 65897, United States
| | - Mary Fakunle
- Chemistry Department, Missouri State University, Springfield, Missouri 65897, United States
| | - Xiaohua Lu
- Wuxi Public Utilities Environment Testing Research Institute, Wuxi, Jiangsu 214026, China
| | - Yuhong Xia
- Wuxi Public Utilities Environment Testing Research Institute, Wuxi, Jiangsu 214026, China
| | - Ying Hou
- Wuxi Public Utilities Environment Testing Research Institute, Wuxi, Jiangsu 214026, China
| | - Jie Hong
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
43
|
Wang J, Xiong Z, Fan Y, Wang H, An C, Wang B, Yang M, Li X, Wang Y, Wang Y. Lignin/Surfactin Coacervate as an Eco-Friendly Pesticide Carrier and Antifungal Agent against Phytopathogen. ACS NANO 2024; 18:22415-22430. [PMID: 39126678 DOI: 10.1021/acsnano.4c07173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Excessive usage of biologically toxic fungicides and their matrix materials poses a serious threat to public health. Leveraging fungicide carriers with inherent pathogen inhibition properties is highly promising for enhancing fungicide efficacy and reducing required dosage. Herein, a series of coacervates have been crafted with lignin and surfactin, both of which are naturally derived and demonstrate substantial antifungal properties. This hierarchically assembled carrier not only effectively loads fungicides with a maximum encapsulation efficiency of 95% but also stably deposits on hydrophobic leaves for high-speed impacting droplets. Intriguingly, these coacervates exhibit broad spectrum fungicidal activity against eight ubiquitous phytopathogens and even act as a standalone biofungicide to replace fungicides. This performance can significantly reduce the fungicide usage and be further strengthened by an encapsulated fungicide. The inhibition rate reaches 87.0% when 0.30 mM pyraclostrobin (Pyr) is encapsulated within this coacervate, comparable to the effectiveness of 0.80 mM Pyr alone. Additionally, the preventive effects against tomato gray mold reached 53%, significantly surpassing those of commercial adjuvants. Thus, it demonstrates that utilizing biosurfactants and biomass with intrinsic antifungal activity to fabricate fully biobased coacervates can synergistically combine the functions of a fungicide carrier and antifungal agent against phytopathogens and guarantee environmental friendliness. This pioneering approach provides deeper insights into synergistically enhancing the effectiveness of agrochemicals from multiple aspects, including fungicide encapsulation, cooperative antifungal action, and droplet deposition.
Collapse
Affiliation(s)
- Jie Wang
- CAS Key Laboratory of Colloid, Interface, and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhichen Xiong
- University of Science and Technology of China, Hefei 230026, P. R. China
- Suzhou Institute for Advanced Research, and Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, P. R. China
| | - Yaxun Fan
- University of Science and Technology of China, Hefei 230026, P. R. China
- Suzhou Institute for Advanced Research, and Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, P. R. China
| | - Hongliang Wang
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China
| | - Changcheng An
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Bo Wang
- CAS Key Laboratory of Colloid, Interface, and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Ming Yang
- CAS Key Laboratory of Colloid, Interface, and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xue Li
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China
| | - Yan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Yilin Wang
- CAS Key Laboratory of Colloid, Interface, and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
- Suzhou Institute for Advanced Research, and Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
44
|
Pathak HK, Seth CS, Chauhan PK, Dubey G, Singh G, Jain D, Upadhyay SK, Dwivedi P, Khoo KS. Recent advancement of nano-biochar for the remediation of heavy metals and emerging contaminants: Mechanism, adsorption kinetic model, plant growth and development. ENVIRONMENTAL RESEARCH 2024; 255:119136. [PMID: 38740295 DOI: 10.1016/j.envres.2024.119136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
Even though researches have shown that biochar can improve soil-health and plant-growth even in harsh environments and get rid of harmful heavy metals and new contaminants, it is still not sustainable, affordable, or effective enough. Therefore, scientists are required to develop nanomaterials in order to preserve numerous aquatic and terrestrial species. The carbonaceous chemical known as nano-biochar (N-BC) can be used to get rid of metal contamination and emerging contaminants. However, techniques to reduce hetero-aggregation and agglomeration of nano-biochar are needed that lead to the emergence of emerging nano-biochar (EN-BC) in order to maximise its capacity for adsorption of nano-biochar. To address concerns in regards to the expanding human population and sustain a healthy community, it is imperative to address the problems associated with toxic heavy metals, emerging contaminants, and other abiotic stressors that are threatening agricultural development. Nano-biochar can provide an effective solution for removal of emerging contaminants, toxic heavy metals, and non-degradable substance. This review provides the detailed functional mechanistic and kinetics of nano-biochar, its effectiveness in promoting plant growth, and soil health under abiotic stress. Nonetheless, this review paper has comprehensively illustrated various adsorption study models that will be employed in future research.
Collapse
Affiliation(s)
- Himanshu K Pathak
- Department of Environmental Science, Veer Bahadur Singh Purvanchal University, Jaunpur, 222003, Uttar Pradesh, India
| | | | - Prabhat K Chauhan
- Department of Environmental Science, Veer Bahadur Singh Purvanchal University, Jaunpur, 222003, Uttar Pradesh, India
| | - Gopal Dubey
- Department of Environmental Science, Veer Bahadur Singh Purvanchal University, Jaunpur, 222003, Uttar Pradesh, India
| | - Garima Singh
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Devendra Jain
- Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, 313001, India
| | - Sudhir K Upadhyay
- Department of Environmental Science, Veer Bahadur Singh Purvanchal University, Jaunpur, 222003, Uttar Pradesh, India.
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221 005, India
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and education, Kelambakkam, 603103, Tamil Nadu, India.
| |
Collapse
|
45
|
Shukla K, Mishra V, Singh J, Varshney V, Verma R, Srivastava S. Nanotechnology in sustainable agriculture: A double-edged sword. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5675-5688. [PMID: 38285130 DOI: 10.1002/jsfa.13342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/16/2023] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
Nanotechnology is a rapidly developing discipline that has the potential to transform the way we approach problems in a variety of fields, including agriculture. The use of nanotechnology in sustainable agriculture has gained popularity in recent years. It has various applications in agriculture, such as the development of nanoscale materials and devices to boost agricultural productivity, enhance food quality and safety, improve the efficiency of water and nutrient usage, and reduce environmental pollution. Nanotechnology has proven to be very beneficial in this field, particularly in the development of nanoscale delivery systems for agrochemicals such as pesticides, fertilizers, and growth regulators. These nanoscale delivery technologies offer various benefits over conventional delivery systems, including better penetration and distribution, enhanced efficacy, and lower environmental impact. Encapsulating agrochemicals in nanoscale particles enables direct delivery to the targeted site in the plant, thereby reducing waste and minimizing off-target effects. Plants are fundamental building blocks of all ecosystems and evaluating the interaction between nanoparticles (NPs) and plants is a crucial aspect of risk assessment. This critical review therefore aims to provide an overview of the latest advances regarding the positive and negative effects of nanotechnology in agriculture. It also explores potential future research directions focused on ensuring the safe utilization of NPs in this field, which could lead to sustainable development. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kavita Shukla
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| | - Vishnu Mishra
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Jawahar Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
- University of Cambridge, Sainsbury Laboratory (SLCU), Cambridge, UK
| | - Vishal Varshney
- Department of Botany, Govt. Shaheed GendSingh College, Charama, Chattisgarh, India
| | - Rajnandini Verma
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| | - Sudhakar Srivastava
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| |
Collapse
|
46
|
Zhu Z, Bao Y, Yang Y, Zhao Q, Li R. Research Progress on Heat Stress Response Mechanism and Control Measures in Medicinal Plants. Int J Mol Sci 2024; 25:8600. [PMID: 39201287 PMCID: PMC11355039 DOI: 10.3390/ijms25168600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Medicinal plants play a pivotal role in traditional medicine and modern pharmacology due to their various bioactive compounds. However, heat stress caused by climate change will seriously affect the survival and quality of medicinal plants. In this review, we update our understanding of the research progress on medicinal plants' response mechanisms and control measures under heat stress over the last decade. This includes physiological changes, molecular mechanisms, and technical means to improve the heat tolerance of medicinal plants under heat stress. It provides a reference for cultivating heat-resistant varieties of medicinal plants and the rational utilization of control measures to improve the heat resistance of medicinal plants.
Collapse
Affiliation(s)
- Ziwei Zhu
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu 610106, China; (Z.Z.); (Y.B.); (Y.Y.)
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ying Bao
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu 610106, China; (Z.Z.); (Y.B.); (Y.Y.)
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yixi Yang
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu 610106, China; (Z.Z.); (Y.B.); (Y.Y.)
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Qi Zhao
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu 610106, China; (Z.Z.); (Y.B.); (Y.Y.)
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Rui Li
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu 610106, China; (Z.Z.); (Y.B.); (Y.Y.)
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
47
|
Gatasheh MK, Shah AA, Noreen Z, Usman S, Shaffique S. FeONPs alleviate cadmium toxicity in Solanum melongena through improved morpho-anatomical and physiological attributes, along with oxidative stress and antioxidant defense regulations. BMC PLANT BIOLOGY 2024; 24:742. [PMID: 39095745 PMCID: PMC11297600 DOI: 10.1186/s12870-024-05464-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
In this study, various constraints of Cd toxicity on growth, morpho-anatomical characters along with physiological and biochemical metabolic processes of Solanum melongena L. plants were analyzed. Conversely, ameliorative role of iron oxide nanoparticles (FeONPs) was examined against Cd stress. For this purpose, the following treatments were applied in completely randomized fashion; 3 mM CdCl2 solution applied with irrigation water, 40 and 80 ppm solutions of FeONPs applied via foliar spray. Regarding the results, Cd caused oxidative damage to plants' photosynthetic machinery, resulting in elevated levels of stress-markers like malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolytic leakage (EL) along with slight increase in antioxidants activities, including glutathione (GsH), ascorbate (AsA), catalases (CAT), peroxidases (POD), superoxide dismutase (SOD), and ascorbate peroxidases (APX). Also, high Cd level in plants disturb ions homeostasis and reduced essential minerals uptake, including Ca and K. This ultimately reduced growth and development of S. melongena plants. In contrast, FeONPs supplementations improved antioxidants (enzymatic and non-enzymatic) defenses which in turn limited ROS generation and lowered the oxidative damage to photosynthetic machinery. Furthermore, it maintained ionic balance resulting in enhanced uptake of Ca and K nutrients which are necessary for photosynthesis, hence also improved photosynthesis rate of S. melongena plants. Overall, FeONPs foliar spray effectively mitigated Cd toxicity imposed on S. melongena plants.
Collapse
Affiliation(s)
- Mansour K Gatasheh
- Department of Biochemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh, 11451, Saudi Arabia
| | - Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan.
| | - Zahra Noreen
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Sheeraz Usman
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan.
| | - Shifa Shaffique
- College of Agriculture & Life Science, School of Applied Biosciences, Kyungpook National University, 80 Daehak-ro, Buk-Gu, 41566, Daegu, South Korea
| |
Collapse
|
48
|
Yang YM, Naseer M, Zhu Y, Wang BZ, Zhu SG, Chen YL, Ma Y, Ma BL, Guo JC, Wang S, Tao HY, Xiong YC. Iron Nanostructure Primes Arbuscular Mycorrhizal Fungi Symbiosis Tightly Connecting Maize Leaf Photosynthesis via a Nanofilm Effect. ACS NANO 2024. [PMID: 39072481 DOI: 10.1021/acsnano.4c04145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
It is crucial to clarify how the iron nanostructure activates plant growth, particularly in combination with arbuscular mycorrhizal fungi (AMF). We first identified 1.0 g·kg-1 of nanoscale zerovalent iron (nZVI) as appropriate dosage to maximize maize growth by 12.7-19.7% in non-AMF and 18.9-26.4% in AMF, respectively. Yet, excessive nZVI at 2.0 g·kg-1 exerted inhibitory effects while FeSO4 showed slight effects (p > 0.05). Under an appropriate dose, a nano core-shell structure was formed and the transfer and diffusion of electrons between PS II and PS I were facilitated, significantly promoting the reduction of ferricyanide and NADP (p < 0.05). SEM images showed that excessive nZVI particles can form stacked layers on the surface of roots and hyphae, inhibiting water and nutrient uptake. TEM observations showed that excessive nanoparticles can penetrate into root cortical cells, disrupt cellular homeostasis, and substantially elevate Fe content in roots (p < 0.05). This exacerbated membrane lipid peroxidation and osmotic regulation, accordingly restricting photosynthetic capacity and AMF colonization. Yet, appropriate nZVI can be adhered to a mycelium surface, forming a uniform nanofilm structure. The strength of the mycelium network was evidently enhanced, under an increased root colonization rate and an extramatrical hyphal length (p < 0.05). Enhanced mycorrhizal infection was tightly associated with higher gas exchange and Rubisco and Rubisco enzyme activities. This enabled more photosynthetic carbon to input into AMF symbiont. There existed a positive feedback loop connecting downward transfer of photosynthate and upward transport of water/nutrients. FeSO4 only slightly affected mycorrhizal development. Thus, it was the Fe nanostructure but not its inorganic salt state that primed AMF symbionts for better growth.
Collapse
Affiliation(s)
- Yu-Miao Yang
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, Gansu 730000, China
| | - Minha Naseer
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Ying Zhu
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, Gansu 730000, China
| | - Bao-Zhong Wang
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Shuang-Guo Zhu
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Ying-Long Chen
- The UWA Institute of Agriculture, and School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| | - Yue Ma
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Bao-Luo Ma
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa K1A 0C6, Canada
| | - Jia-Cheng Guo
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Song Wang
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Hong-Yan Tao
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - You-Cai Xiong
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
49
|
Sousa BT, Carvalho LB, Preisler AC, Saraiva-Santos T, Oliveira JL, Verri WA, Dalazen G, Fraceto LF, Oliveira H. Chitosan Coating as a Strategy to Increase Postemergent Herbicidal Efficiency and Alter the Interaction of Nanoatrazine with Bidens pilosa Plants. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38995313 DOI: 10.1021/acsami.4c03800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The atrazine nanodelivery system, composed of poly(ε-caprolactone) (PCL+ATZ) nanocapsules (NCs), has demonstrated efficient delivery of the active ingredient to target plants in previous studies, leading to greater herbicide effectiveness than conventional formulations. Established nanosystems can be enhanced or modified to generate new biological activity patterns. Therefore, this study aimed to evaluate the effect of chitosan coating of PCL+ATZ NCs on herbicidal activity and interaction mechanisms with Bidens pilosa plants. Chitosan-coated NCs (PCL/CS+ATZ) were synthesized and characterized for size, zeta potential, polydispersity, and encapsulation efficiency. Herbicidal efficiency was assessed in postemergence greenhouse trials, comparing the effects of PCL/CS+ATZ NCs (coated), PCL+ATZ NCs (uncoated), and conventional atrazine (ATZ) on photosystem II (PSII) activity and weed control. Using a hydroponic system, we evaluated the root absorption and shoot translocation of fluorescently labeled NCs. PCL/CS+ATZ presented a positive zeta potential (25 mV), a size of 200 nm, and an efficiency of atrazine encapsulation higher than 90%. The postemergent herbicidal activity assay showed an efficiency gain of PSII activity inhibition of up to 58% compared to ATZ and PCL+ATZ at 96 h postapplication. The evaluation of weed control 14 days after application ratified the positive effect of chitosan coating on herbicidal activity, as the application of PCL/CS+ATZ at 1000 g of a.i. ha-1 resulted in better control than ATZ at 2000 g of a.i. ha-1 and PCL+ATZ at 1000 g of a.i. ha-1. In the hydroponic experiment, chitosan-coated NCs labeled with a fluorescent probe accumulated in the root cortex, with a small quantity reaching the vascular cylinder and leaves up to 72 h after exposure. This behavior resulted in lower leaf atrazine levels and PSII inhibition than ATZ. In summary, chitosan coating of nanoatrazine improved the herbicidal activity against B. pilosa plants when applied to the leaves but negatively affected the root-to-shoot translocation of the herbicide. This study opens avenues for further investigations to improve and modify established nanosystems, paving the way for developing novel biological activity patterns.
Collapse
Affiliation(s)
- Bruno T Sousa
- Department of Agronomy, State University of Londrina (UEL), 86057-970 Londrina, Paraná, Brazil
- Department of Animal and Plant Biology and Department of Agronomy, State University of Londrina (UEL), 86057-970 Londrina, Paraná, Brazil
| | - Lucas B Carvalho
- Institute of Science and Technology, São Paulo State University (UNESP), 18087-180 Sorocaba, São Paulo, Brazil
| | - Ana C Preisler
- Department of Agronomy, State University of Londrina (UEL), 86057-970 Londrina, Paraná, Brazil
- Department of Animal and Plant Biology and Department of Agronomy, State University of Londrina (UEL), 86057-970 Londrina, Paraná, Brazil
| | - Telma Saraiva-Santos
- Department of Pathology, State University of Londrina (UEL), 86057-970 Londrina, Paraná, Brazil
| | - Jhones L Oliveira
- Institute of Science and Technology, São Paulo State University (UNESP), 18087-180 Sorocaba, São Paulo, Brazil
| | - Waldiceu A Verri
- Department of Pathology, State University of Londrina (UEL), 86057-970 Londrina, Paraná, Brazil
| | - Giliardi Dalazen
- Department of Agronomy, State University of Londrina (UEL), 86057-970 Londrina, Paraná, Brazil
| | - Leonardo F Fraceto
- Institute of Science and Technology, São Paulo State University (UNESP), 18087-180 Sorocaba, São Paulo, Brazil
| | - Halley Oliveira
- Department of Animal and Plant Biology and Department of Agronomy, State University of Londrina (UEL), 86057-970 Londrina, Paraná, Brazil
| |
Collapse
|
50
|
Yadav A, Sohlot M, Sahu SR, Banerjee T, Bhattacharya J, Bandyopadhyay K, Das S, Debnath N. Determination of antifungal efficacy and phytotoxicity of a unique silica coated porous zinc oxide nanocomposite medium for slow-release agrochemicals. J Appl Microbiol 2024; 135:lxae153. [PMID: 38925655 DOI: 10.1093/jambio/lxae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
AIMS In this study, the antifungal efficacy and phytotoxicity of silica coated porous zinc oxide nanoparticle (SZNP) were analyzed as this nanocomposite was observed to be a suitable platform for slow release fungicides and has the promise to bring down the dosage of other agrochemicals as well. METHODS AND RESULTS Loading and release kinetics of tricyclazole, a potent fungicide, were analyzed by measuring surface area (SBET) using Brunauer-Emmett-Teller (BET) isotherm and liquid chromatography tandem mass spectrometry (LC-MS/MS), respectively. The antifungal efficacy of ZnO nanoparticle (ZNP) and SZNP was investigated on two phytopathogenic fungi (Alternaria solani and Aspergillus niger). The morphological changes to the fungal structure due to ZNP and SZNP treatment were studied by field emission-scanning electron microscopy. Nanoparticle mediated elevation of reactive oxygen species (ROS) in fungal samples was detected by analyzing the levels of superoxide dismutase, catalase, thiol content, lipid peroxidation, and by 2,7-dichlorofluorescin diacetate assay. The phytotoxicity of these two nanostructures was assessed in rice plants by measuring primary plant growth parameters. Further, the translocation of the nanocomposite in the same plant model system was examined by checking the presence of fluorescein isothiocyanate tagged SZNP within the plant tissue. CONCLUSIONS ZNP had superior antifungal efficacy than SZNP and caused the generation of more ROS in the fungal samples. Even then, SZNP was preferred as an agrochemical delivery vehicle because, unlike ZNP alone, it was not toxic to plant system. Moreover, as silica in nanoform is entomotoxic in nature and nano ZnO has antifungal property, both the cargo (agrochemical) and the carrier system (silica coated porous nano zinc oxide) will have a synergistic effect in crop protection.
Collapse
Affiliation(s)
- Annu Yadav
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India
| | - Monika Sohlot
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India
| | - Sudama Ram Sahu
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Tirthankar Banerjee
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | | | | | - Sumistha Das
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India
| | - Nitai Debnath
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India
| |
Collapse
|