1
|
Ma Y, Wang Y, Tuo P, Meng Z, Jiang B, Yuan Y, Ding Y, Naeem A, Guo X, Wang X. Downregulation of C1R promotes hepatocellular carcinoma development by activating HIF-1α-regulated glycolysis. Mol Carcinog 2024; 63:2237-2253. [PMID: 39150096 DOI: 10.1002/mc.23806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/11/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024]
Abstract
C1R has been identified to have a distinct function in cutaneous squamous cell carcinoma that goes beyond its role in the complement system. However, it is currently unknown whether C1R is involved in the progression of hepatocellular carcinoma (HCC). HCC tissues were used to examine C1R expression in relation to clinical and pathological factors. Malignant characteristics of HCC cells were assessed through in vitro and in vivo experiments. The mechanism underlying the role of C1R in HCC was explored through RNA-seq, methylation-specific PCR, immuno-precipitation, and dual-luciferase reporter assays. This study found that the expression of C1R decreased as the malignancy of HCC increased and was associated with poor prognosis. C1R promoter was highly methylated through DNMT1 and DNMT3a, resulting in a decrease in C1R expression. Downregulation of C1R expression resulted in heightened malignant characteristics of HCC cells through the activation of HIF-1α-mediated glycolysis. Additionally, decreased C1R expression was found to promote xenograft tumor formation. We found that C-reactive protein (CRP) binds to C1R, and the free CRP activates the NF-κB signaling pathway, which in turn boosts the expression of HIF-1α. This increase in HIF-1α leads to higher glycolysis levels, ultimately promoting aggressive behavior in HCC. Methylation of the C1R promoter region results in the downregulation of C1R expression in HCC. C1R inhibits aggressive behavior in HCC in vitro and in vivo by inhibiting HIF-1α-regulated glycolysis. These findings indicate that C1R acts as a tumor suppressor gene during HCC progression, opening up new possibilities for innovative therapeutic approaches.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Glycolysis/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Animals
- Gene Expression Regulation, Neoplastic
- Mice
- Down-Regulation
- DNA Methylation
- Promoter Regions, Genetic
- Male
- Cell Line, Tumor
- Mice, Nude
- Female
- Prognosis
- Cell Proliferation
- C-Reactive Protein/genetics
- C-Reactive Protein/metabolism
- Signal Transduction
- DNA Methyltransferase 3A/metabolism
- DNA Methyltransferase 3A/genetics
- Mice, Inbred BALB C
Collapse
Affiliation(s)
- Yuying Ma
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yuehua Wang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Peng Tuo
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhongji Meng
- Department of Infectious Diseases, Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Shiyan, China
| | - Bin Jiang
- Department of Hepatobiliary Pancreatic Surgery, Taihe Hospital, Shiyan, China
| | - Yahong Yuan
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yan Ding
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Abid Naeem
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, China
| | - Xingrong Guo
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiaoli Wang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
2
|
O'Brien RM, Meltzer S, Buckley CE, Heeran AB, Nugent TS, Donlon NE, Reynolds JV, Ree AH, Redalen KR, Hafeez A, O'Ríordáin DS, Hannon RA, Neary P, Kalbassi R, Mehigan BJ, McCormick PH, Dunne C, Kelly ME, Larkin JO, O'Sullivan J, Lysaght J, Lynam-Lennon N. Complement is increased in treatment resistant rectal cancer and modulates radioresistance. Cancer Lett 2024; 604:217253. [PMID: 39278399 DOI: 10.1016/j.canlet.2024.217253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
Resistance to neoadjuvant chemoradiation therapy (neo-CRT) is a significant clinical problem in the treatment of locally advanced rectal cancer. Identification of novel therapeutic targets and biomarkers predicting therapeutic response is required to improve patient outcomes. Increasing evidence supports a role for the complement system in resistance to anti-cancer therapy. In this study, increased expression of complement effectors C3 and C5 and increased production of anaphylatoxins, C3a and C5a, was observed in radioresistant rectal cancer cells. Modulation of the central complement effector, C3, was demonstrated to functionally alter the radioresponse, with C3 overexpression significantly enhancing radioresistance, whilst C3 inhibition significantly increased sensitivity to a clinically-relevant dose of radiation. Inhibition of C3 was demonstrated to increase DNA damage and alter cell cycle distribution, mediating a shift towards a radiosensitive cell cycle phenotype suggesting a role for C3 in reprogramming of the tumoural radioresponse. Expression of the complement effectors C3 and C5 was significantly increased in human rectal tumour tissue, as was expression of CFB, a component of the alternative pathway of activation. Elevated levels of C3a and C5b-9 in pre-treatment sera from rectal cancer patients was associated with subsequent poor responses to neo-CRT and poorer survival. Together these data demonstrate a role for complement in the radioresistance of rectal cancer and identify key complement components as potential biomarkers predicting response to neo-CRT and outcome in rectal cancer.
Collapse
Affiliation(s)
- Rebecca M O'Brien
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland; Cancer Immunology and Immunotherapy Group, Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland; Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland.
| | - Sebastian Meltzer
- Department of Oncology, Akershus University Hospital, 1478 Lørenskog, Norway.
| | - Croí E Buckley
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland.
| | - Aisling B Heeran
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland.
| | - Timothy S Nugent
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland; Department of Surgery, Beacon Hospital, Dublin, Ireland.
| | - Noel E Donlon
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland; Cancer Immunology and Immunotherapy Group, Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland; Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland; Department of Surgery, Beacon Hospital, Dublin, Ireland; Gastrointestinal Medicine and Surgery (GEMS) Directorate, St. James's Hospital, Dublin, Ireland.
| | - John V Reynolds
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland.
| | - Anne Hansen Ree
- Department of Oncology, Akershus University Hospital, 1478 Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Kathrine Røe Redalen
- Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim, Norway.
| | - Adnan Hafeez
- Department of Surgery, Beacon Hospital, Dublin, Ireland.
| | | | | | - Paul Neary
- Department of Surgery, Beacon Hospital, Dublin, Ireland.
| | - Reza Kalbassi
- Department of Surgery, Beacon Hospital, Dublin, Ireland.
| | - Brian J Mehigan
- Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland; Gastrointestinal Medicine and Surgery (GEMS) Directorate, St. James's Hospital, Dublin, Ireland.
| | - Paul H McCormick
- Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland; Gastrointestinal Medicine and Surgery (GEMS) Directorate, St. James's Hospital, Dublin, Ireland.
| | - Cara Dunne
- Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland; Gastrointestinal Medicine and Surgery (GEMS) Directorate, St. James's Hospital, Dublin, Ireland.
| | - Michael E Kelly
- Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland; Gastrointestinal Medicine and Surgery (GEMS) Directorate, St. James's Hospital, Dublin, Ireland.
| | - John O Larkin
- Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland; Gastrointestinal Medicine and Surgery (GEMS) Directorate, St. James's Hospital, Dublin, Ireland.
| | - Jacintha O'Sullivan
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland.
| | - Joanne Lysaght
- Cancer Immunology and Immunotherapy Group, Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland; Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland.
| | - Niamh Lynam-Lennon
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
3
|
Zhang R, Hu M, Liu Y, Li W, Xu Z, He S, Lu Y, Gong Y, Wang X, Hai S, Li S, Qi S, Li Y, Shu Y, Du D, Zhang H, Xu H, Zhou Z, Lei P, Chen HN, Dai L. Integrative Omics Uncovers Low Tumorous Magnesium Content as A Driver Factor of Colorectal Cancer. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae053. [PMID: 39052867 PMCID: PMC11514849 DOI: 10.1093/gpbjnl/qzae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 03/04/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Magnesium (Mg) deficiency is associated with increased risk and malignancy in colorectal cancer (CRC), yet the underlying mechanisms remain elusive. Here, we used genomic, proteomic, and phosphoproteomic data to elucidate the impact of Mg deficiency on CRC. Genomic analysis identified 160 genes with higher mutation frequencies in Low-Mg tumors, including key driver genes such as KMT2C and ERBB3. Unexpectedly, initiation driver genes of CRC, such as TP53 and APC, displayed higher mutation frequencies in High-Mg tumors. Additionally, proteomic and phosphoproteomic data indicated that low Mg content in tumors may activate epithelial-mesenchymal transition (EMT) by modulating inflammation or remodeling the phosphoproteome of cancer cells. Notably, we observed a negative correlation between the phosphorylation of DBN1 at S142 (DBN1S142p) and Mg content. A mutation in S142 to D (DBN1S142D) mimicking DBN1S142p up-regulated MMP2 and enhanced cell migration, while treatment with MgCl2 reduced DBN1S142p, thereby reversing this phenotype. Mechanistically, Mg2+ attenuated the DBN1-ACTN4 interaction by decreasing DBN1S142p, which in turn enhanced the binding of ACTN4 to F-actin and promoted F-actin polymerization, ultimately reducing MMP2 expression. These findings shed new light on the crucial role of Mg deficiency in CRC progression and suggest that Mg supplementation may be a promising preventive and therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Rou Zhang
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meng Hu
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yu Liu
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wanmeng Li
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiqiang Xu
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Siyu He
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ying Lu
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanqiu Gong
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiuxuan Wang
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shan Hai
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shuangqing Li
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shiqian Qi
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuan Li
- Institute of Digestive Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yang Shu
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dan Du
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huiyuan Zhang
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Heng Xu
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zongguang Zhou
- Institute of Digestive Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Peng Lei
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hai-Ning Chen
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Peng Q, Zhu J, Zhang Y, Jing Y. Blood hypercoagulability and thrombosis mechanisms in cancer patients -A brief review. Heliyon 2024; 10:e38831. [PMID: 39435109 PMCID: PMC11492250 DOI: 10.1016/j.heliyon.2024.e38831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/23/2024] Open
Abstract
Patients with malignant tumors are prone to present hypercoagulability of blood and form thrombosis, and its pathogenesis is complex involving various factors from clinical and histopathological to genetic influences. Current studies on the potential mechanism of blood hypercoagulability in patients with malignant tumors focus on the following aspects but are not limited: (1) tumor cells release coagulant-promoting substances, (2) tumor cells interact with the fibrinolytic system, (3) tumor cell-mediated platelet activation, (4) tumor-associated complement activation, and (5) genetic factors and clinical factors. Especially, the pathogenesis of blood hypercoagulability is in-depth analyzed covering tumor cells' release of procoagulant substances, the interplay of cancer cells and fibrinolytic system, platelet activation mediated by cancer cells, cancer-associated complement activation, and the action of genetic and clinical factors. We review the pathogenesis of blood hypercoagulability in patients with malignant tumors, which will assist in the research and development of new drugs and providing theoretical support for the formulation of the best treatment plan for patients, to prolong the survival of patients.
Collapse
Affiliation(s)
- Qiongle Peng
- Department of Blood Transfusion, Affiliated Hospital of Jiangsu University, No. 438 Jiefang Road, Zhenjiang, 212000, PR China
| | - Jinmei Zhu
- School of Medicine, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, PR China
| | - Yanhu Zhang
- School of Mechanical Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, PR China
| | - Yanping Jing
- Department of Blood Transfusion, Affiliated Hospital of Jiangsu University, No. 438 Jiefang Road, Zhenjiang, 212000, PR China
- School of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, PR China
| |
Collapse
|
5
|
Merle NS, Roumenina LT. The complement system as a target in cancer immunotherapy. Eur J Immunol 2024; 54:e2350820. [PMID: 38996361 DOI: 10.1002/eji.202350820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
Malignant cells are part of a complex network within the tumor microenvironment, where their interaction with host cells and soluble mediators, including complement components, is pivotal. The complement system, known for its role in immune defense and homeostasis, exhibits a dual effect on cancer progression. This dichotomy arises from its antitumoral opsonophagocytosis and cytotoxicity versus its protumoral chronic inflammation mediated by the C5a/C5aR1 axis, influencing antitumor T-cell responses. Recent studies have revealed distinct co-expression patterns of complement genes in various cancer types, correlating with prognosis. Notably, some cancers exhibit co-regulated overexpression of complement genes associated with poor prognosis, while others show favorable outcomes. However, significant intra-patient heterogeneity further complicates this classification. Moreover, the involvement of locally produced and intracellular complement proteins adds complexity to the tumor microenvironment dynamics. This review highlights the unique interplay of complement components within different cancers and patient cohorts, showing that "one size does not fit all", for complement in cancer. It summarizes the clinical trials for complement targeting in cancer, emphasizing the need for tailored therapeutic approaches. By elucidating the mechanistic basis of complement's context-dependent role, this review aims to facilitate the development of personalized cancer therapies, ultimately improving patient care and outcomes.
Collapse
Affiliation(s)
- Nicolas S Merle
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France
| | - Lubka T Roumenina
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France
| |
Collapse
|
6
|
Moura DS, López López D, di Lernia D, Martin-Ruiz M, Lopez-Alvarez M, Ramos R, Merino J, Dopazo J, Lopez-Guerrero J, Mondaza-Hernandez JL, Romero P, Hindi N, Garcia-Foncillas J, Martin-Broto J. Shared germline genomic variants in two patients with double primary gastrointestinal stromal tumours (GISTs). J Med Genet 2024; 61:927-934. [PMID: 39153853 DOI: 10.1136/jmg-2024-110109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Gastrointestinal stromal tumours (GISTs) are prevalent mesenchymal tumours of the gastrointestinal tract, commonly exhibiting structural variations in KIT and PDGFRA genes. While the mutational profiling of somatic tumours is well described, the genes behind the susceptibility to develop GIST are not yet fully discovered. This study explores the genomic landscape of two primary GIST cases, aiming to identify shared germline pathogenic variants and shed light on potential key players in tumourigenesis. METHODS Two patients with distinct genotypically and phenotypically GISTs underwent germline whole genome sequencing. CNV and single nucleotide variant (SNV) analyses were performed. RESULTS Both patients harbouring low-risk GISTs with different mutations (PDGFRA and KIT) shared homozygous germline pathogenic deletions in both CFHR1 and CFHR3 genes. CNV analysis revealed additional shared pathogenic deletions in other genes such as SLC25A24. No particular pathogenic SNV shared by both patients was detected. CONCLUSION Our study provides new insights into germline variants that can be associated with the development of GISTs, namely, CFHR1 and CFHR3 deep deletions. Further functional validation is warranted to elucidate the precise contributions of identified germline mutations in GIST development.
Collapse
Affiliation(s)
- David S Moura
- Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Daniel López López
- Computational Medicine Platform, Fundación progreso y salud (FPS), Hospital Virgen del Rocío, Seville, Spain
- Bioinformatics in Rare Diseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocio, Seville, Spain
| | - Davide di Lernia
- Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Marta Martin-Ruiz
- Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | | | - Rafael Ramos
- Pathology Department, University Hospital Son Espases, Mallorca, Spain
| | - Jose Merino
- Pathology Department, Fundación Jimenez Diaz University Hospital, Madrid, Spain
| | - Joaquin Dopazo
- Computational Medicine Platform, Fundación progreso y salud (FPS), Hospital Virgen del Rocío, Seville, Spain
- Bioinformatics in Rare Diseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocio, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS; HUVR, CSIC, US), Sevilla, Spain
| | - Jose Lopez-Guerrero
- Laboratory of Molecular Biology, Fundación Instituto Valenciano de Oncologia, Valencia, Spain
| | - Jose L Mondaza-Hernandez
- Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Pablo Romero
- Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Nadia Hindi
- Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Medical Oncology Department, Fundación Jimenez Diaz University Hospital, Madrid, Spain
- General de Villalba University Hospital, Madrid, Spain
| | - Jesus Garcia-Foncillas
- Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Medical Oncology Department, Fundación Jimenez Diaz University Hospital, Madrid, Spain
| | - Javier Martin-Broto
- Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Medical Oncology Department, Fundación Jimenez Diaz University Hospital, Madrid, Spain
- General de Villalba University Hospital, Madrid, Spain
| |
Collapse
|
7
|
Li L, Jiang D, Liu H, Guo C, Zhang Q, Li X, Chen X, Chen Z, Feng J, Tan S, Huang W, Huang J, Xu C, Liu CY, Yu W, Hou Y, Ding C. Comprehensive Proteogenomic Profiling Reveals the Molecular Characteristics of Colorectal Cancer at Distinct Stages of Progression. Cancer Res 2024; 84:2888-2910. [PMID: 38861363 PMCID: PMC11372369 DOI: 10.1158/0008-5472.can-23-1878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 02/13/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
Colorectal cancer is the second most common malignant tumor worldwide. Analysis of the changes that occur during colorectal cancer progression could provide insights into the molecular mechanisms driving colorectal cancer development and identify improved treatment strategies. In this study, we performed an integrated multiomic analysis of 435 trace tumor samples from 148 patients with colorectal cancer, covering nontumor, intraepithelial neoplasia (IEN), infiltration, and advanced stage colorectal cancer phases. Proteogenomic analyses demonstrated that KRAS and BRAF mutations were mutually exclusive and elevated oxidative phosphorylation in the IEN phase. Chr17q loss and chr20q gain were also mutually exclusive, which occurred predominantly in the IEN and infiltration phases, respectively, and impacted the cell cycle. Mutations in TP53 were frequent in the advanced stage colorectal cancer phase and associated with the tumor microenvironment, including increased extracellular matrix rigidity and stromal infiltration. Analysis of the profiles of colorectal cancer based on consensus molecular subtype and colorectal cancer intrinsic subtype classifications revealed the progression paths of each subtype and indicated that microsatellite instability was associated with specific subtype classifications. Additional comparison of molecular characteristics of colorectal cancer based on location showed that ANKRD22 amplification by chr10q23.31 gain enhanced glycolysis in the right-sided colorectal cancer. The AOM/DSS-induced colorectal cancer carcinogenesis mouse model indicated that DDX5 deletion due to chr17q loss promoted colorectal cancer development, consistent with the findings from the patient samples. Collectively, this study provides an informative resource for understanding the driving events of different stages of colorectal cancer and identifying the potential therapeutic targets. Significance: Characterization of the proteogenomic landscape of colorectal cancer during progression provides a multiomic map detailing the alterations in each stage of carcinogenesis and suggesting potential diagnostic and therapeutic approaches for patients.
Collapse
Affiliation(s)
- Lingling Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dongxian Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hui Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunmei Guo
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiao Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuedong Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaojian Chen
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheqi Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinwen Feng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Subei Tan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wen Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Xu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen-Ying Liu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yingyong Hou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Zhang J, Zhao Q, Du Y, Wang W, Liu C. Pan-cancer analysis identifies venous thromboembolism-related genes F3, PLAT, and C1S as potential prognostic biomarkers for glioblastoma and lower grade glioma. MOLECULAR BIOMEDICINE 2024; 5:34. [PMID: 39179711 PMCID: PMC11343955 DOI: 10.1186/s43556-024-00197-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/16/2024] [Indexed: 08/26/2024] Open
Abstract
Venous thromboembolism (VTE) is a prevalent complication among patients with cancer, contributing significantly to morbidity and mortality. However, the relationship between VTE-related genes (VRGs) and their potential impact on prognosis, immune response, and therapeutic targets in various cancer types remains unclear. Based on the coagulation and complement pathways, we identified hub VRGs that play a role in regulating the immune response in cancer. Specifically, coagulation factor III (F3), plasminogen activator (PLAT) and complement C1s (C1S) were identified as genes that exhibit high expression levels, positively correlating with tumor stemness and copy number variations, while inversely correlating with methylation levels, in particular cancer types. Pan-cancer survival analysis revealed detrimental effects of these VRGs in several cancer types, notably in glioblastoma and lower grade glioma (GMBLGG). Further analysis using receiver operating characteristic (ROC) curves demonstrated a high accuracy of F3, PLAT and C1S in predicting outcomes in GBMLGG, with area under the curve (AUC) values ranging from 0.78 to 0.9. Validation of the prognostic value of these three genes in GMBLGG was conducted using an independent Gene Expression Omnibus (GEO) dataset. Additionally, gene-drug association analysis identified ciclosporin, ouabain and 6- mercaptopurine, which all exhibit immunosuppressive properties, as potential therapeutic options for tumor patients exhibiting high F3, PLAT or C1S expression, respectively. In summary, our findings provide a bioinformatics perspective on VRGs in pan-cancer, highlighting the pivotal roles of F3, PLAT and C1S, which could potentially be therapeutically exploited and targeted in several cancers, especially in GBMLGG.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, 510630, Guangzhou, China.
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, College of Life Science and Technology, Institute of Life and Health Engineering, Jinan University, 510632, Guangzhou, China.
| | - Qian Zhao
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, College of Life Science and Technology, Institute of Life and Health Engineering, Jinan University, 510632, Guangzhou, China
| | - Yun Du
- Department of Nursing, The First Affiliated Hospital of Jinan University, 510630, Guangzhou, China
| | - Wannan Wang
- Department of Radiology, The First Affiliated Hospital of Jinan University, 510630, Guangzhou, China
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, College of Life Science and Technology, Institute of Life and Health Engineering, Jinan University, 510632, Guangzhou, China
| | - Cuiqing Liu
- Department of Surgery, The First Affiliated Hospital of Jinan University, 510630, Guangzhou, China.
| |
Collapse
|
9
|
Zhang T, Li Z, He A, Zhou W, Zhu X, Song Y. Clinical Significance and Potential Function of Complement Factor D in Acute Myeloid Leukemia. Cureus 2024; 16:e67260. [PMID: 39310420 PMCID: PMC11414840 DOI: 10.7759/cureus.67260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a hematologic malignancy characterized by aggressive proliferation and a poor prognosis. The objective of this study is to elucidate the specific role of complement factor D (CFD) in AML, with the aim of identifying robust prognostic markers for the disease. METHODS We performed a systematic investigation on clinical significance and potential function of CFD in AML by using the R Programming Language with The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), The Human Protein Atlas (HPA), The University of ALabama at Birmingham CANcer data analysis Portal (UALCAN), Gene Expression Profiling Interactive Analysis (GEPIA), Kaplan-Meier plotter, Cancer Cell Line Encyclopedia (CCLE) database, and Comprehensive Analysis on Multi-Omics of Immunotherapy in Pan-cancer (CAMOIP) database. The expression of CFD in AML patients was verified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). RESULTS The expression of CFD was the highest in AML cells than in other tumor cell lines. The expression of CFD was also higher in AML patients than in the matched normal group. Compared with the low expression of the CFD group, high expression of CFD predicted better overall survival (OS) and lower tumor mutational burden (TMB) in AML patients. Moreover, a nomogram model based on CFD was successfully constructed to predict the OS of AML patients. Notably, the expression of CFD was associated with drug sensitivity and monocyte cell infiltration. CONCLUSION CFD could serve as a potential OS prognostic biomarker and guide clinical treatment for AML.
Collapse
Affiliation(s)
- Taigang Zhang
- Department of Clinical Laboratory, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, CHN
| | - Zhaozhong Li
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fuzhou, CHN
| | - Aoyu He
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fuzhou, CHN
| | - Wenjuan Zhou
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fuzhou, CHN
| | - Xianjin Zhu
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fuzhou, CHN
| | - Yanfang Song
- Department of Clinical Laboratory, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, CHN
| |
Collapse
|
10
|
Li W, You L, Lin J, Zhang J, Zhou Z, Wang T, Wu Y, Zheng C, Gao Y, Kong X, Sun X. An herbal formula Shenlian decoction upregulates M1/M2 macrophage proportion in hepatocellular carcinoma by suppressing complement cascade. Biomed Pharmacother 2024; 177:116943. [PMID: 38878636 DOI: 10.1016/j.biopha.2024.116943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 07/28/2024] Open
Abstract
The immunosuppressive microenvironment is a vital factor for the hepatocellular carcinoma (HCC) progression. However, effective treatment is lacking at current. Shenlian decoction (SLD) is a registered herbal therapy for the HCC treatment, but the underlying mechanism of SLD remains largely elusive. Here, we aimed to explore the anti-tumor effect of SLD in the treatment of HCC. SLD was intragastrically given after the tumor initiation in β-catenin/C-Met or DEN and CCl4 induced HCC mouse model. The tumor growth levels were evaluated by liver weight and histological staining. The tumor-infiltrating immune cells were detected by immunological staining and flow cytometry. The mechanism of the SLD was detected by non-targeted proteomics and verified by a cell co-culture system. The result showed that SLD significantly attenuated HCC progression. SLD promoted macrophage infiltration and increased the M1/M2 macrophage ratio within the tumor tissues. Non-targeted proteomics showed the inhibition of complement C5/C5a signaling is the key mechanism of SLD. Immunological staining showed SLD inhibited C5/C5a expression and C5aR1+ macrophage infiltration. The suggested mechanism was demonstrated by application of C5aR1 inhibitor, PMX-53 in mouse HCC model. Hepatoma cell-macrophage co-culture showed SLD targeted hepatoma cells and inhibited the supernatant-induced macrophage M2 polarization. SLD inhibited AMPK/p38 signaling which is an upstream mechanism of C5 transcription. In conclusion, we found SLD relieved immune-suppressive environment by inhibiting C5 expression. SLD could suppress the C5 secretion in hepatoma cells via inhibition of AMPK/p38 signaling. We suggested that SLD is a potential herbal therapy for the treatment of HCC by alleviating immune-suppressive status.
Collapse
Affiliation(s)
- Wenxuan Li
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liping You
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiacheng Lin
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinghao Zhang
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhijia Zhou
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Wang
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuelan Wu
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao Zheng
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueqiu Gao
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xiaoni Kong
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xuehua Sun
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
11
|
Bernatz S, Schulze F, Bein J, Bankov K, Mahmoudi S, Grünewald LD, Koch V, Stehle A, Schnitzbauer AA, Walter D, Finkelmeier F, Zeuzem S, Vogl TJ, Wild PJ, Kinzler MN. Small duct and large duct type intrahepatic cholangiocarcinoma reveal distinct patterns of immune signatures. J Cancer Res Clin Oncol 2024; 150:357. [PMID: 39034327 PMCID: PMC11271402 DOI: 10.1007/s00432-024-05888-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
PURPOSE Dedicated gene signatures in small (SD-iCCA) and large (LD-iCCA) duct type intrahepatic cholangiocarcinoma remain unknown. We performed immune profiling in SD- and LD-iCCA to identify novel biomarker candidates for personalized medicine. METHODS Retrospectively, 19 iCCA patients with either SD-iCCA (n = 10, median age, 63.1 years (45-86); men, 4) or LD-iCCA (n = 9, median age, 69.7 years (62-85); men, 5)) were included. All patients were diagnosed and histologically confirmed between 04/2009 and 01/2021. Tumor tissue samples were processed for differential expression profiling using NanoString nCounter® PanCancer Immune Profiling Panel. RESULTS With the exception of complement signatures, immune-related pathways were broadly downregulated in SD-iCCA vs. LD-iCCA. A total of 20 immune-related genes were strongly downregulated in SD-iCCA with DMBT1 (log2fc = -5.39, p = 0.01) and CEACAM6 (log2fc = -6.38, p = 0.01) showing the strongest downregulation. Among 7 strongly (log2fc > 2, p ≤ 0.02) upregulated genes, CRP (log2fc = 5.06, p = 0.02) ranked first, and four others were associated with complement (C5, C4BPA, C8A, C8B). Total tumor-infiltrating lymphocytes (TIL) signature was decreased in SD-iCCA with elevated ratios of exhausted-CD8/TILs, NK/TILs, and cytotoxic cells/TILs while having decreased ratios of B-cells/TILs, mast cells/TILs and dendritic cells/TILs. The immune profiling signatures in SD-iCCA revealed downregulation in chemokine signaling pathways inclulding JAK2/3 and ERK1/2 as well as nearly all cytokine-cytokine receptor interaction pathways with the exception of the CXCL1/CXCR1-axis. CONCLUSION Immune patterns differed in SD-iCCA versus LD-iCCA. We identified potential biomarker candidate genes, including CRP, CEACAM6, DMBT1, and various complement factors that could be explored for augmented diagnostics and treatment decision-making.
Collapse
Affiliation(s)
- Simon Bernatz
- Department of Diagnostic and Interventional Radiology, University Hospital, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Dr. Senckenberg Institute for Pathology, University Hospital, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- University Cancer Center Frankfurt (UCT), University Hospital, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Falko Schulze
- Dr. Senckenberg Institute for Pathology, University Hospital, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Julia Bein
- Dr. Senckenberg Institute for Pathology, University Hospital, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Katrin Bankov
- Dr. Senckenberg Institute for Pathology, University Hospital, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Department of Pediatric Oncology and Hematology, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Scherwin Mahmoudi
- Department of Diagnostic and Interventional Radiology, University Hospital, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Leon D Grünewald
- Department of Diagnostic and Interventional Radiology, University Hospital, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Vitali Koch
- Department of Diagnostic and Interventional Radiology, University Hospital, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Angelika Stehle
- Medical Clinic 1, University Hospital, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Andreas A Schnitzbauer
- Department of General, Visceral, Transplant and Thoracic Surgery, University Hospital, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Dirk Walter
- Medical Clinic 1, University Hospital, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Fabian Finkelmeier
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Medical Clinic 1, University Hospital, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Stefan Zeuzem
- Medical Clinic 1, University Hospital, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Thomas J Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Peter J Wild
- Dr. Senckenberg Institute for Pathology, University Hospital, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main, Germany
| | - Maximilian N Kinzler
- Medical Clinic 1, University Hospital, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
12
|
Rahman S, Affleck AG, Ruhl RA, Patel RK, Gao L, Brinkerhoff BT, Tsikitis VL, Anand S. Combinatorial Inhibition of Complement Factor D and BCL2 for Early-Onset Colorectal Cancer. Dis Colon Rectum 2024; 67:940-950. [PMID: 38479005 DOI: 10.1097/dcr.0000000000003199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
BACKGROUND The tumor immune microenvironment is distinct between early-onset and late-onset colorectal cancer, which facilitates tumor progression. We previously identified several genes, including complement factor D, as having increased expression in patients with early-onset colorectal cancer. OBJECTIVE This study aimed to assess and validate the differential expression of immune genes in early-onset and late-onset colorectal cancer. We also aimed to test known drugs targeting genes increased in early-onset colorectal cancer in preclinical mouse models. DESIGN A retrospective cohort study with analysis was performed using tumor RNA from formalin-fixed paraffin-embedded cell culture and immunohistochemistry to validate gene expression and function and in vivo preclinical tumor study to assess drug efficacy. SETTINGS The Oregon Colorectal Cancer Registry was queried to identify patients with colorectal cancer. PATIENTS The study included 67 patients with early-onset colorectal cancer and 54 patients with late-onset colorectal cancer. INTERVENTIONS Preclinical animal models using the HCT-116 colon cancer cell line were treated with the complement factor D inhibitor danicopan and the BCL2 inhibitor venetoclax, or with vehicle controls. MAIN OUTCOME MEASURES Elevated RNA signatures using NanoString data were evaluated by the retrospective cohort. When inhibiting these markers in the mouse preclinical model, tumor volume and weight were the main outcome measures. RESULTS After updating our sample size from our previously published data, we found that complement factor D and BCL2, genes with known function and small molecule inhibitors, are elevated in patients with early-onset colorectal cancer. When inhibiting these markers with the drugs danicopan and venetoclax in a mouse model, we found that the combination of these drugs decreased tumor burden but also resulted in toxicity. LIMITATIONS This study is limited by a small sample size and a subcutaneous tumor model. CONCLUSIONS Combinatorial inhibition of early-onset associated genes complement factor D and BCL2 slows the growth of early-onset colorectal cancer in a mouse preclinical model. See Video Abstract . INHIBICIN COMBINADA DEL FACTOR DCOMPLEMENTARIO Y DEL BCL EN CASOS DE CNCER COLORRECTAL DE APARICIN TEMPRANA ANTECEDENTES:El microambiente inmunológico del tumor es distinto entre el cáncer colorrectal de aparición temprana y el de aparición tardía, lo que facilita la progresión de dicho tumor. Anteriormente identificamos varios genes, incluidos el factor D-Complementario, con una mayor expresión en pacientes con cáncer colorrectal de aparición temprana.OBJETIVO:El presente estudio tuvo como objetivo el evaluar y validar la expresión diferenciada de genes inmunes en casos de cáncer colorrectal de aparición temprana y tardía. También nos propusimos evaluar los fármacos conocidos dirigidos sobre los genes aumentados en el cáncer colorrectal de aparición temprana en modelos pre-clínicos en ratones.DISEÑO:Estudio de cohortes con análisis retrospectivo utilizando el ARN tumoral procedente de cultivos celulares fijados con formalina e incluidos en parafina, y el analisis por inmunohistoquímica para validar la expresión y la función genética. Se realizó el estudio pre-clínico de los tumores in vivo para evaluar la eficacia de los fármacos.AJUSTES:Se consultó el Registro de Oregon de casos de Cáncer Colorrectal para encontrar los pacientes afectados.SUJETOS:67 pacientes con cáncer colorrectal de aparición temprana y 54 pacientes con cáncer colorrectal de aparición tardía.INTERVENCIONES (SI LAS HUBIESE):Los modelos animales pre-clínicos que utilizaron la línea celular de cáncer de colon HCT-116 se trataron con el inhibidor del factor D-Complementario o Danicopan y con el inhibidor de BCL-2 o Venetoclax, ambos con control del transportador.PRINCIPALES MEDIDAS DE RESULTADO:Se evaluaron las firmas de ARN elevadas utilizando los datos del NanoString a partir de la cohorte retrospectiva. Al inhibir estos marcadores del modelo pre-clínico en los ratones, el volumen y el peso del tumor fueron las principales medidas de resultado.RESULTADOS:Después de actualizar el tamaño de nuestra muestra a partir de datos publicados con anterioridad, encontramos que el factor D-Complementario y BCL-2, genes con función conocida e inhibidores de moléculas pequeñas, se encuentran elevados en aquellos pacientes con cáncer colorrectal de aparición temprana. Al inhibir estos marcadores con los medicamentos Danicopan y Venetoclax en el modelo de ratones vivos, encontramos que la combinación de estos dos farmacos disminuyó la carga tumoral pero también produjo toxicidad.LIMITACIONES:Estudio limitado por un tamaño de muestra pequeño y el modelo de tumor subcutáneo.CONCLUSIONES:La inhibición combinada de genes asociados de aparición temprana, el factor D-Complementario y el BCL-2, enlentecen el crecimiento del cáncer colorrectal de aparición temprana del modelo preclínico en ratones. (Traducción-Dr. Xavier Delgadillo ).
Collapse
Affiliation(s)
- Shahrose Rahman
- Department of Surgery, Oregon Health and Science University, Portland, Oregon
| | - Arthur G Affleck
- Department of Surgery, Oregon Health and Science University, Portland, Oregon
| | - Rebecca A Ruhl
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon
| | - Ranish K Patel
- Department of Surgery, Oregon Health and Science University, Portland, Oregon
| | - Lina Gao
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Brian T Brinkerhoff
- Department of Pathology and Laboratory Medicine, Oregon Health and Science University, Portland, Oregon
| | | | - Sudarshan Anand
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
- Department of Radiation Medicine, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
13
|
Haykin H, Avishai E, Krot M, Ghiringhelli M, Reshef M, Abboud Y, Melamed S, Merom S, Boshnak N, Azulay-Debby H, Ziv T, Gepstein L, Rolls A. Reward system activation improves recovery from acute myocardial infarction. NATURE CARDIOVASCULAR RESEARCH 2024; 3:841-856. [PMID: 39196183 DOI: 10.1038/s44161-024-00491-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 05/16/2024] [Indexed: 08/29/2024]
Abstract
Psychological processes have a crucial role in the recovery from acute myocardial infarction (AMI), yet the underlying mechanisms of these effects remain elusive. Here we demonstrate the impact of the reward system, a brain network associated with motivation and positive expectations, on the clinical outcomes of AMI in mice. Chemogenetic activation of dopaminergic neurons in the reward system improved the remodeling processes and vascularization after AMI, leading to enhanced cardiac performance compared to controls. These effects were mediated through several physiological mechanisms, including alterations in immune activity and reduced adrenergic input to the liver. We further demonstrate an anatomical connection between the reward system and the liver, functionally manifested by altered transcription of complement component 3, which in turn affects vascularization and recovery from AMI. These findings establish a causal connection between a motivational brain network and recovery from AMI, introducing potential therapeutic avenues for intervention.
Collapse
Affiliation(s)
- H Haykin
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Physiology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - E Avishai
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - M Krot
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - M Ghiringhelli
- Department of Physiology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - M Reshef
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Y Abboud
- Department of Physiology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - S Melamed
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - S Merom
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - N Boshnak
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - H Azulay-Debby
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - T Ziv
- Smoler Proteomics Center, Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - L Gepstein
- Department of Physiology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
- Cardiology Department, Rambam Health Care Campus, Haifa, Israel.
| | - A Rolls
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
14
|
Li Y, Li H, Sun G, Xu S, Tang X, Zhang L, Wan L, Zhang L, Tang M. Integrative analyses of multi-omics data constructing tumor microenvironment and immune-related molecular prognosis model in human colorectal cancer. Heliyon 2024; 10:e32744. [PMID: 38975206 PMCID: PMC11226854 DOI: 10.1016/j.heliyon.2024.e32744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
The increasing prevalence and incidence of colorectal cancer (CRC), particularly in young adults, underscore the imperative to comprehend its fundamental mechanisms, discover novel diagnostic and prognostic markers, and enhance therapeutic strategies. Here, we integrated multi-omics data, including gene expression, somatic mutation data and DNA methylation data, to unravel the intricacies of tumor microenvironment (TME) in CRC and search for novel prognostic markers. By calculating the immune score for each patient from the expression profile, we delineated the differential immune cell fraction, constructed an immune-related multi-omics atlas, and identified molecular characteristics. The entire colorectal dataset (n = 343) was randomly divided into training (n = 249) and testing datasets (n = 94). We screened 144 immune-related genes, 6 mutant genes, and 38 methylation probes associated with overall survival (OS). These makers were then incorporated into a 10-gene prognostic model using Lasso and Cox regression in the training dataset, and the model's performance was evaluated in an independent validation dataset. The model exhibited satisfactory results (average concordance index [C-index] = 0.77), with the average 1-year, 3-year, and 5-year AUCs being 0.79, 0.76, and 0.76 in the training dataset and 0.74, 0.80, and 0.90 in the testing dataset. Furthermore, the prognostic model demonstrated applicability in guiding chemotherapy for CRC patients and exhibited a degree of pan-cancer utility in risk stratification. In conclusion, our integrated analysis of multi-omics data revealed immune-related genetic and epigenetic characteristics of the TME. We propose an integrative prognostic model that can stratify risk and guide chemotherapy for CRC patients. The generalizability of the model in risk stratification across different cancer types was validated in Pan-Cancer cohort.
Collapse
Affiliation(s)
- Yifei Li
- Clinical Biobank, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Hexin Li
- Clinical Biobank, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Gaoyuan Sun
- Clinical Biobank, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Siyuan Xu
- Clinical Biobank, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiaokun Tang
- Clinical Biobank, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Lanxin Zhang
- Clinical Biobank, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Li Wan
- Clinical Biobank, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Lili Zhang
- Clinical Biobank, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Min Tang
- Department of Medical Oncology, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Stillger MN, Kurowski K, Bronsert P, Brombacher E, Kreutz C, Werner M, Tang L, Timme-Bronsert S, Schilling O. Neoadjuvant chemo- or chemo-radiation-therapy of pancreatic ductal adenocarcinoma differentially shift ECM composition, complement activation, energy metabolism and ribosomal proteins of the residual tumor mass. Int J Cancer 2024; 154:2162-2175. [PMID: 38353498 DOI: 10.1002/ijc.34867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/08/2023] [Accepted: 12/20/2023] [Indexed: 04/14/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer, often diagnosed at stages that dis-qualify for surgical resection. Neoadjuvant therapies offer potential tumor regression and improved resectability. Although features of the tumor biology (e.g., molecular markers) may guide adjuvant therapy, biological alterations after neoadjuvant therapy remain largely unexplored. We performed mass spectrometry to characterize the proteomes of 67 PDAC resection specimens of patients who received either neoadjuvant chemo (NCT) or chemo-radiation (NCRT) therapy. We employed data-independent acquisition (DIA), yielding a proteome coverage in excess of 3500 proteins. Moreover, we successfully integrated two publicly available proteome datasets of treatment-naïve PDAC to unravel proteome alterations in response to neoadjuvant therapy, highlighting the feasibility of this approach. We found highly distinguishable proteome profiles. Treatment-naïve PDAC was characterized by enrichment of immunoglobulins, complement and extracellular matrix (ECM) proteins. Post-NCT and post-NCRT PDAC presented high abundance of ribosomal and metabolic proteins as compared to treatment-naïve PDAC. Further analyses on patient survival and protein expression identified treatment-specific prognostic candidates. We present the first proteomic characterization of the residual PDAC mass after NCT and NCRT, and potential protein candidate markers associated with overall survival. We conclude that residual PDAC exhibits fundamentally different proteome profiles as compared to treatment-naïve PDAC, influenced by the type of neoadjuvant treatment. These findings may impact adjuvant or targeted therapy options.
Collapse
Affiliation(s)
- Maren N Stillger
- Faculty of Medicine, Institute for Surgical Pathology, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Konrad Kurowski
- Faculty of Medicine, Institute for Surgical Pathology, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Core Facility for Histopathology and Digital Pathology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Peter Bronsert
- Faculty of Medicine, Institute for Surgical Pathology, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Core Facility for Histopathology and Digital Pathology, Medical Center-University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eva Brombacher
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Faculty of Medicine and Medical Center, Institute of Medical Biometry and Statistics, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Clemens Kreutz
- Faculty of Medicine and Medical Center, Institute of Medical Biometry and Statistics, University of Freiburg, Freiburg, Germany
| | - Martin Werner
- Faculty of Medicine, Institute for Surgical Pathology, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Core Facility for Histopathology and Digital Pathology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Laura Tang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sylvia Timme-Bronsert
- Faculty of Medicine, Institute for Surgical Pathology, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Oliver Schilling
- Faculty of Medicine, Institute for Surgical Pathology, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Core Facility for Histopathology and Digital Pathology, Medical Center-University of Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
Nissinen L, Riihilä P, Viiklepp K, Rajagopal V, Storek MJ, Kähäri VM. C1s targeting antibodies inhibit the growth of cutaneous squamous carcinoma cells. Sci Rep 2024; 14:13465. [PMID: 38866870 PMCID: PMC11169539 DOI: 10.1038/s41598-024-64088-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer. The incidence of cSCC is increasing globally and the prognosis of metastatic disease is poor. Currently there are no specific targeted therapies for advanced or metastatic cSCC. We have previously shown abundant expression of the complement classical pathway C1 complex components, serine proteases C1r and C1s in tumor cells in invasive cSCCs in vivo, whereas the expression of C1r and C1s was lower in cSCCs in situ, actinic keratoses and in normal skin. We have also shown that knockdown of C1s expression results in decreased viability and growth of cSCC cells by promoting apoptosis both in culture and in vivo. Here, we have studied the effect of specific IgG2a mouse monoclonal antibodies TNT003 and TNT005 targeting human C1s in five primary non-metastatic and three metastatic cSCC cell lines that show intracellular expression of C1s and secretion of C1s into the cell culture media. Treatment of cSCC cells with TNT003 and TNT005 significantly inhibited their growth and viability and promoted apoptosis of cSCC cells. These data indicate that TNT003 and TNT005 inhibit cSCC cell growth in culture and warrant further investigation of C1s targeted inhibition in additional in vitro and in vivo models of cSCC.
Collapse
Affiliation(s)
- Liisa Nissinen
- Department of Dermatology and FICAN West Cancer Centre Research Laboratory, University of Turku and Turku University Hospital, Hämeentie 11 TE6, 20520, Turku, Finland
| | - Pilvi Riihilä
- Department of Dermatology and FICAN West Cancer Centre Research Laboratory, University of Turku and Turku University Hospital, Hämeentie 11 TE6, 20520, Turku, Finland
| | - Kristina Viiklepp
- Department of Dermatology and FICAN West Cancer Centre Research Laboratory, University of Turku and Turku University Hospital, Hämeentie 11 TE6, 20520, Turku, Finland
| | | | | | - Veli-Matti Kähäri
- Department of Dermatology and FICAN West Cancer Centre Research Laboratory, University of Turku and Turku University Hospital, Hämeentie 11 TE6, 20520, Turku, Finland.
| |
Collapse
|
17
|
Janneh AH. Sphingolipid Signaling and Complement Activation in Glioblastoma: A Promising Avenue for Therapeutic Intervention. BIOCHEM 2024; 4:126-143. [PMID: 38894892 PMCID: PMC11185840 DOI: 10.3390/biochem4020007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Glioblastoma is the most common and aggressive type of malignant brain tumor with a poor prognosis due to the lack of effective treatment options. Therefore, new treatment options are required. Sphingolipids are essential components of the cell membrane, while complement components are integral to innate immunity, and both play a critical role in regulating glioblastoma survival signaling. This review focuses on recent studies investigating the functional roles of sphingolipid metabolism and complement activation signaling in glioblastoma. It also discusses how targeting these two systems together may emerge as a novel therapeutic approach.
Collapse
Affiliation(s)
- Alhaji H Janneh
- Hollings Cancer Center, Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
18
|
Donado CA, Jonsson AH, Theisen E, Zhang F, Nathan A, Rupani KV, Jones D, Raychaudhuri S, Dwyer DF, Brenner MB. Granzyme K drives a newly-intentified pathway of complement activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595315. [PMID: 38826230 PMCID: PMC11142156 DOI: 10.1101/2024.05.22.595315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Granzymes are a family of serine proteases mainly expressed by CD8+ T cells, natural killer cells, and innate-like lymphocytes1,2. Although their major role is thought to be the induction of cell death in virally infected and tumor cells, accumulating evidence suggests some granzymes can regulate inflammation by acting on extracellular substrates2. Recently, we found that the majority of tissue CD8+ T cells in rheumatoid arthritis (RA) synovium, inflammatory bowel disease and other inflamed organs express granzyme K (GZMK)3, a tryptase-like protease with poorly defined function. Here, we show that GZMK can activate the complement cascade by cleaving C2 and C4. The nascent C4b and C2a fragments form a C3 convertase that cleaves C3, allowing further assembly of a C5 convertase that cleaves C5. The resulting convertases trigger every major event in the complement cascade, generating the anaphylatoxins C3a and C5a, the opsonins C4b and C3b, and the membrane attack complex. In RA synovium, GZMK is enriched in areas with abundant complement activation, and fibroblasts are the major producers of complement C2, C3, and C4 that serve as targets for GZMK-mediated complement activation. Our findings describe a previously unidentified pathway of complement activation that is entirely driven by lymphocyte-derived GZMK and proceeds independently of the classical, lectin, or alternative pathways. Given the widespread abundance of GZMK-expressing T cells in tissues in chronic inflammatory diseases and infection, GZMK-mediated complement activation is likely to be an important contributor to tissue inflammation in multiple disease contexts.
Collapse
Affiliation(s)
- Carlos A. Donado
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- These authors contributed equally: Carlos A. Donado, A. Helena Jonsson
| | - A. Helena Jonsson
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Current affiliation: Division of Rheumatology and the Center for Health Artificial Intelligence, University of Colorado School of Medicine, Aurora, CO, USA
- These authors contributed equally: Carlos A. Donado, A. Helena Jonsson
| | - Erin Theisen
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Department of Dermatology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Fan Zhang
- Division of Rheumatology and the Center for Health Artificial Intelligence, University of Colorado School of Medicine, Aurora, CO, USA
| | - Aparna Nathan
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA USA
- Center for Data Sciences, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Karishma Vijay Rupani
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Dominique Jones
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | | | - Soumya Raychaudhuri
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA USA
- Center for Data Sciences, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel F. Dwyer
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Michael B. Brenner
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Li S, Zhao J, Wang G, Yao Q, Leng Z, Liu Q, Jiang J, Wang W. Based on scRNA-seq and bulk RNA-seq to establish tumor immune microenvironment-associated signature of skin melanoma and predict immunotherapy response. Arch Dermatol Res 2024; 316:262. [PMID: 38795156 DOI: 10.1007/s00403-024-03080-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 10/28/2023] [Accepted: 04/26/2024] [Indexed: 05/27/2024]
Abstract
Skin cutaneous melanoma (SKCM), a form of skin cancer, ranks among the most formidable and lethal malignancies. Exploring tumor microenvironment (TME)-based prognostic indicators would help improve the efficacy of immunotherapy for SKCM patients. This study analyzed SKCM scRNA-seq data to cluster non-malignant cells that could be used to explore the TME into nine immune/stromal cell types, including B cells, CD4 T cells, CD8 T cells, dendritic cells, endothelial cells, Fibroblasts, macrophages, neurons, and natural killer (NK) cells. Using data from The Cancer Genome Atlas (TCGA), we employed SKCM expression profiling to identify differentially expressed immune-associated genes (DEIAGs), which were then incorporated into weighted gene co-expression network analysis (WGCNA) to investigate TME-associated hub genes. Discover candidate small molecule drugs based on pivotal genes. Tumor immune microenvironment-associated genes (TIMAGs) for constructing TIMAS were identified and validated. Finally, the characteristics of TIAMS subgroups and the ability of TIMAS to predict immunotherapy outcomes were analyzed. We identified five TIMAGs (CD86, CD80, SEMA4D, C1QA, and IRF1) and used them to construct TIMAS. In addition, five potential SKCM drugs were identified. The results showed that TIMAS-low patients were associated with immune-related signaling pathways, high MUC16 mutation frequency, high T cell infiltration, and M1 macrophages, and were more favorable for immunotherapy. Collectively, TIMAS constructed by comprehensive analysis of scRNA-seq and bulk RNA-seq data is a promising marker for predicting ICI treatment outcomes and improving individualized therapy for SKCM patients.
Collapse
Affiliation(s)
- Shanshan Li
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Junjie Zhao
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Guangyu Wang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Qingping Yao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhe Leng
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Qinglei Liu
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Jun Jiang
- Department of Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Wei Wang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, 201418, China.
| |
Collapse
|
20
|
Saxena R, Bushey RT, Campa MJ, Gottlin EB, Guo J, Patz EF, He YW. Promotion of an Antitumor Immune Program by a Tumor-specific, Complement-activating Antibody. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1589-1601. [PMID: 38558134 DOI: 10.4049/jimmunol.2300728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Tumor-targeting Abs can be used to initiate an antitumor immune program, which appears essential to achieve a long-term durable clinical response to cancer. We previously identified an anti-complement factor H (CFH) autoantibody associated with patients with early-stage non-small cell lung cancer. We cloned from their peripheral B cells an mAb, GT103, that specifically recognizes CFH on tumor cells. Although the underlying mechanisms are not well defined, GT103 targets a conformationally distinct CFH epitope that is created when CFH is associated with tumor cells, kills tumor cells in vitro, and has potent antitumor activity in vivo. In the effort to better understand how an Ab targeting a tumor epitope can promote an effective antitumor immune response, we used the syngeneic CMT167 lung tumor C57BL/6 mouse model, and we found that murinized GT103 (mGT103) activates complement and enhances antitumor immunity through multiple pathways. It creates a favorable tumor microenvironment by decreasing immunosuppressive regulatory T cells and myeloid-derived suppressor cells, enhances Ag-specific effector T cells, and has an additive antitumor effect with anti-PD-L1 mAb. Furthermore, the immune landscape of tumors from early-stage patients expressing the anti-CFH autoantibody is associated with an immunologically active tumor microenvironment. More broadly, our results using an mAb cloned from autoantibody-expressing B cells provides novel, to our knowledge, mechanistic insights into how a tumor-specific, complement-activating Ab can generate an immune program to kill tumor cells and inhibit tumor growth.
Collapse
Affiliation(s)
- Ruchi Saxena
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC
| | - Ryan T Bushey
- Department of Radiology, Duke University School of Medicine, Durham, NC
| | - Michael J Campa
- Department of Radiology, Duke University School of Medicine, Durham, NC
| | | | - Jian Guo
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC
| | - Edward F Patz
- Department of Radiology, Duke University School of Medicine, Durham, NC
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC
| | - You-Wen He
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC
| |
Collapse
|
21
|
Janowski M, Łuczkowska K, Gniot M, Lewandowski K, Safranow K, Helbig G, Machaliński B, Paczkowska E. The Depth of the Molecular Response in Patients with Chronic Myeloid Leukemia Correlates with Changes in Humoral Immunity. J Clin Med 2024; 13:2353. [PMID: 38673624 PMCID: PMC11051126 DOI: 10.3390/jcm13082353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Background and Objectives: The effective treatment of chronic myeloid leukemia leads to the restoration of proper immune system function. We aimed to investigate fluctuations in circulating cytokines, angiogenic factors and complement components in patients with CML during the first year of treatment with TKI and correlate them with the degree of achieved molecular response. Material and Methods: We recruited 31 patients with newly diagnosed CML. Peripheral blood and bone marrow samples were obtained, and concentrations of serum proteins were measured using an immunology multiplex assay. Results: The study cohort was divided into two groups of optimal or non-optimal in accordance with the European Leukemia Net (ELN) guidelines. We found significantly higher concentrations of C1q, C4 and C5a in serum after 3 months of TKI treatment in patients who achieved optimal responses in the 6 months after diagnosis. The most alterations were observed during 12 months of therapy. Patients in the optimal response group were characterized by higher serum concentrations of TGF-β, EGF, VEGF, Angiopoietin 1, IFN-γ and IL-8. Conclusions: The later plasma concentrations of complement components were significantly increased in patients with optimal responses. The changes after 12 months of treatment were particularly significant. Similar changes in bone marrow samples were observed.
Collapse
Affiliation(s)
- Michał Janowski
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (M.J.); (K.Ł.); (B.M.)
| | - Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (M.J.); (K.Ł.); (B.M.)
| | - Michał Gniot
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, 60-569 Poznań, Poland; (M.G.); (K.L.)
| | - Krzysztof Lewandowski
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, 60-569 Poznań, Poland; (M.G.); (K.L.)
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Grzegorz Helbig
- Department of Hematology and Bone Marrow Transplantation, Medical University of Silesia, 40-027 Katowice, Poland;
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (M.J.); (K.Ł.); (B.M.)
| | - Edyta Paczkowska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (M.J.); (K.Ł.); (B.M.)
| |
Collapse
|
22
|
Flippot R, Teixeira M, Rey-Cardenas M, Carril-Ajuria L, Rainho L, Naoun N, Jouniaux JM, Boselli L, Naigeon M, Danlos FX, Escudier B, Scoazec JY, Cassard L, Albiges L, Chaput N. B cells and the coordination of immune checkpoint inhibitor response in patients with solid tumors. J Immunother Cancer 2024; 12:e008636. [PMID: 38631710 PMCID: PMC11029261 DOI: 10.1136/jitc-2023-008636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2024] [Indexed: 04/19/2024] Open
Abstract
Immunotherapy profoundly changed the landscape of cancer therapy by providing long-lasting responses in subsets of patients and is now the standard of care in several solid tumor types. However, immunotherapy activity beyond conventional immune checkpoint inhibition is plateauing, and biomarkers are overall lacking to guide treatment selection. Most studies have focused on T cell engagement and response, but there is a growing evidence that B cells may be key players in the establishment of an organized immune response, notably through tertiary lymphoid structures. Mechanisms of B cell response include antibody-dependent cellular cytotoxicity and phagocytosis, promotion of CD4+ and CD8+ T cell activation, maintenance of antitumor immune memory. In several solid tumor types, higher levels of B cells, specific B cell subpopulations, or the presence of tertiary lymphoid structures have been associated with improved outcomes on immune checkpoint inhibitors. The fate of B cell subpopulations may be widely influenced by the cytokine milieu, with versatile roles for B-specific cytokines B cell activating factor and B cell attracting chemokine-1/CXCL13, and a master regulatory role for IL-10. Roles of B cell-specific immune checkpoints such as TIM-1 are emerging and could represent potential therapeutic targets. Overall, the expanding field of B cells in solid tumors of holds promise for the improvement of current immunotherapy strategies and patient selection.
Collapse
Affiliation(s)
- Ronan Flippot
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Marcus Teixeira
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Macarena Rey-Cardenas
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Lucia Carril-Ajuria
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
- Medical Oncology, CHU Brugmann, Brussels, Belgium
| | - Larissa Rainho
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Natacha Naoun
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Jean-Mehdi Jouniaux
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Lisa Boselli
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Marie Naigeon
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Francois-Xavier Danlos
- LRTI, INSERM U1015, Gustave Roussy, Villejuif, France
- Drug Development Department, Gustave Roussy, Villejuif, France
| | - Bernard Escudier
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
| | | | - Lydie Cassard
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Laurence Albiges
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Nathalie Chaput
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
23
|
Rupp L, Dietsche I, Kießler M, Sommer U, Muckenhuber A, Steiger K, van Eijck CWF, Richter L, Istvanffy R, Jäger C, Friess H, van Eijck CHJ, Demir IE, Reyes CM, Schmitz M. Neoadjuvant chemotherapy is associated with suppression of the B cell-centered immune landscape in pancreatic ductal adenocarcinoma. Front Immunol 2024; 15:1378190. [PMID: 38629072 PMCID: PMC11018975 DOI: 10.3389/fimmu.2024.1378190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is typically diagnosed at advanced stages and associated with early distant metastasis and poor survival. Besides clinical factors, the tumor microenvironment (TME) emerged as a crucial determinant of patient survival and therapy response in many tumors, including PDAC. Thus, the presence of tumor-infiltrating lymphocytes and the formation of tertiary lymphoid structures (TLS) is associated with longer survival in PDAC. Although neoadjuvant therapy (NeoTx) has improved the management of locally advanced tumors, detailed insight into its effect on various TME components is limited. While a remodeling towards a proinflammatory state was reported for PDAC-infiltrating T cells, the effect of NeoTx on B cell subsets, including plasma cells, and TLS formation is widely unclear. We thus investigated the frequency, composition, and spatial distribution of PDAC-infiltrating B cells in primary resected (PR) versus neoadjuvant-treated patients using a novel multiplex immunohistochemistry panel. The NeoTx group displayed significantly lower frequencies of pan B cells, GC B cells, plasmablasts, and plasma cells, accompanied by a reduced abundance of TLS. This finding was supported by bulk RNA-sequencing analysis of an independent fresh frozen tissue cohort, which revealed that major B cell pathways were downregulated in the NeoTx group. We further observed that plasma cells frequently formed aggregates that localized close to TLS and that TLS+ patients displayed significantly higher plasma cell frequencies compared to TLS- patients in the PR group. Additionally, high densities of CD20+ intratumoral B cells were significantly associated with longer overall survival in the PR group. While CD20+ B cells held no prognostic value for NeoTx patients, an increased frequency of proliferating CD20+Ki67+ B cells emerged as an independent prognostic factor for longer survival in the NeoTx group. These results indicate that NeoTx differentially affects PDAC-infiltrating immune cells and may have detrimental effects on the existing B cell landscape and the formation of TLS. Gaining further insight into the underlying molecular mechanisms is crucial to overcome the intrinsic immunotherapy resistance of PDAC and develop novel strategies to improve the long-term outcome of PDAC patients.
Collapse
Affiliation(s)
- Luise Rupp
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Ina Dietsche
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Maximilian Kießler
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Neural Influences in Cancer (NIC), International Research Consortium, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Ulrich Sommer
- Institute of Pathology, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Alexander Muckenhuber
- Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Katja Steiger
- Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Casper W. F. van Eijck
- Department of Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center, Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Leonard Richter
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Rouzanna Istvanffy
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Carsten Jäger
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Helmut Friess
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Casper H. J. van Eijck
- Department of Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center, Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Ihsan Ekin Demir
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Neural Influences in Cancer (NIC), International Research Consortium, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Department of General Surgery, Hepato-Pancreato-Biliary (HPB) Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
- Else Kröner Clinician Scientist Professor for Translational Pancreatic Surgery, Technical University of Munich, Munich, Germany
| | - Carmen Mota Reyes
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Neural Influences in Cancer (NIC), International Research Consortium, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Marc Schmitz
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technical University Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
24
|
Tuysuz EC, Mourati E, Rosberg R, Moskal A, Gialeli C, Johansson E, Governa V, Belting M, Pietras A, Blom AM. Tumor suppressor role of the complement inhibitor CSMD1 and its role in TNF-induced neuroinflammation in gliomas. J Exp Clin Cancer Res 2024; 43:98. [PMID: 38561856 PMCID: PMC10986120 DOI: 10.1186/s13046-024-03019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND The complement inhibitor CSMD1 acts as a tumor suppressor in various types of solid cancers. Despite its high level of expression in the brain, its function in gliomas, malignant brain tumors originating from glial cells, has not been investigated. METHODS Three cohorts of glioma patients comprising 1500 patients were analyzed in our study along with their clinical data. H4, U-118 and U-87 cell lines were used to investigate the tumor suppressor function of CSMD1 in gliomas. PDGFB-induced brain tumor model was utilized for the validation of in vitro data. RESULTS The downregulation of CSMD1 expression correlated with reduced overall and disease-free survival, elevated tumor grade, wild-type IDH genotype, and intact 1p/19q status. Moreover, enhanced activity was noted in the neuroinflammation pathway. Importantly, ectopic expression of CSMD1 in glioma cell lines led to decreased aggressiveness in vitro. Mechanically, CSMD1 obstructed the TNF-induced NF-kB and STAT3 signaling pathways, effectively suppressing the secretion of IL-6 and IL-8. There was also reduced survival in PDGFB-induced brain tumors in mice when Csmd1 was downregulated. CONCLUSIONS Our study has identified CSMD1 as a tumor suppressor in gliomas and elucidated its role in TNF-induced neuroinflammation, contributing to a deeper understanding of glioma pathogenesis.
Collapse
Affiliation(s)
- Emre Can Tuysuz
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden
| | - Eleni Mourati
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden
| | - Rebecca Rosberg
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden
| | - Aleksandra Moskal
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden
| | - Chrysostomi Gialeli
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden
- Department of Clinical Sciences, Cardiovascular Research Translational Studies, Lund University, Malmö, Sweden
| | - Elinn Johansson
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden
| | - Valeria Governa
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - Mattias Belting
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - Alexander Pietras
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden
| | - Anna M Blom
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden.
| |
Collapse
|
25
|
Obeagu EI, Obeagu GU. Exploring neutrophil functionality in breast cancer progression: A review. Medicine (Baltimore) 2024; 103:e37654. [PMID: 38552040 PMCID: PMC10977563 DOI: 10.1097/md.0000000000037654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/28/2024] [Indexed: 04/02/2024] Open
Abstract
Breast cancer remains a pressing global health concern, with a myriad of intricate factors contributing to its development, progression, and heterogeneity. Among these multifaceted elements, the role of immune cells within the tumor microenvironment is gaining increasing attention. In this context, neutrophils, traditionally regarded as the first responders to infections, are emerging as noteworthy participants in the complex landscape of breast cancer. This paper seeks to unravel the intricate and multifaceted role of neutrophils in breast cancer. Neutrophils, classically known for their phagocytic and pro-inflammatory functions, are now recognized for their involvement in promoting or restraining tumor growth. While their presence within the tumor microenvironment may exert antitumor effects through immune surveillance and cytotoxic activities, these innate immune cells can also facilitate tumor progression by fostering an immunosuppressive milieu, promoting angiogenesis, and aiding metastatic dissemination. The intricacies of neutrophil-tumor cell interactions, signaling pathways, and mechanisms governing their recruitment to the tumor site are explored in detail. Challenges and gaps in current knowledge are acknowledged, and future directions for research are outlined. This review underscores the dynamic and context-dependent role of neutrophils in breast cancer and emphasizes the significance of unraveling their multifaceted contributions. As we delve into the complexities of the immune landscape in breast cancer, a deeper understanding of the warriors within, the neutrophils, presents exciting prospects for the development of novel therapeutic strategies and a more comprehensive approach to breast cancer management.
Collapse
|
26
|
Revel M, Rezola Artero M, Hamidi H, Grunenwald A, Blasco L, Vano YA, Marie Oudard S, Sanchez-Salas R, Macek P, Rodriguez Sanchez L, Cathelineau X, Vedié B, Sautes-Fridman C, Herman Fridman W, Roumenina LT, Dragon-Durey MA. Humoral complementomics - exploration of noninvasive complement biomarkers as predictors of renal cancer progression. Oncoimmunology 2024; 13:2328433. [PMID: 38487624 PMCID: PMC10939156 DOI: 10.1080/2162402x.2024.2328433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/06/2024] [Indexed: 03/17/2024] Open
Abstract
Despite the progress of anti-cancer treatment, the prognosis of many patients with solid tumors is still dismal. Reliable noninvasive biomarkers are needed to predict patient survival and therapy response. Here, we propose a Humoral Complementomics approach: a work-up of assays to comprehensively evaluate complement proteins, activation fragments, and autoantibodies targeting complement proteins in plasma, which we correlated with the intratumoral complement activation, and/or local production, focusing on localized and metastatic clear cell renal cell carcinoma (ccRCC). In two prospective ccRCC cohorts, plasma C2, C5, Factor D and properdin were elevated compared to healthy controls, reflecting an inflammatory phenotype that correlated with plasma calprotectin levels but did not associate with CRP or with patient prognosis. Conversely, autoantibodies against the complement C3 and the reduced form of FH (a tumor neo-epitope reported in lung cancer) correlated with a favorable outcome. Our findings pointed to a specific group of patients with elevated plasma C4d and C1s-C1INH complexes, indicating the initiation of the classical pathway, along with elevated Ba and Bb, indicating alternative pathway activation. Boostrapped Lasso regularized Cox regression revealed that the most predictive complement biomarkers were elevated plasma C4d and Bb levels at the time of surgery, which correlated with poor prognosis. In conclusion, we propose Humoral Complementomics as an unbiased approach to study the global state of the complement system in any pathological plasma sample and disease context. Its implementation for ccRCC revealed that elevated C4d and Bb in plasma are promising prognostic biomarkers, correlating with shorter progression-free survival.
Collapse
Affiliation(s)
- Margot Revel
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France
| | - Mikel Rezola Artero
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France
- Department of Bacteriology and Immunology, Haartman Institute, and Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Houcine Hamidi
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France
- Laboratoire d’Immunologie, Hôpital Européen Georges Pompidou, APHP, Paris, France
| | - Anne Grunenwald
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France
- Department of Nephrology and Hemodialysis, Service de néphrologie - hémodialyse, Poissy, France
| | - Loris Blasco
- Laboratoire d’Immunologie, Hôpital Européen Georges Pompidou, APHP, Paris, France
| | - Yann A. Vano
- Hôpital Européen Georges-Pompidou, Oncology Department, Assistance Publique Hopitaux de Paris, Université Paris Cité, Paris, France
| | - Stephane Marie Oudard
- Hôpital Européen Georges-Pompidou, Oncology Department, Assistance Publique Hopitaux de Paris, Université Paris Cité, Paris, France
| | | | - Petr Macek
- Department of Urology Institut Mutualiste Montsouris, Paris, France
| | | | | | - Benoit Vedié
- Hôpital Européen Georges-Pompidou, Department of Biochemistry, Assistance Publique Hopitaux de Paris, Paris, France
| | - Catherine Sautes-Fridman
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France
- Equipe labellisée Ligue contre le Cancer, Paris
| | - Wolf Herman Fridman
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France
- Equipe labellisée Ligue contre le Cancer, Paris
| | - Lubka T. Roumenina
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France
| | - Marie-Agnes Dragon-Durey
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France
- Laboratoire d’Immunologie, Hôpital Européen Georges Pompidou, APHP, Paris, France
| |
Collapse
|
27
|
Zhang G, Li S, Xiao W, Zhang C, Li T, Liao Z, Liu H, Xing R, Yao W, Yang J. Tumoral C2 Regulates the Tumor Microenvironment by Increasing the Ratio of M1/M2 Macrophages and Tertiary Lymphoid Structures to Improve Prognosis in Melanoma. Cancers (Basel) 2024; 16:908. [PMID: 38473271 DOI: 10.3390/cancers16050908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/21/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Immunotherapy is an essential therapy for individuals with advanced melanoma. However, not all patients respond to such treatment due to individual differences. We conducted a multidimensional analysis using transcriptome data from our center, as well as publicly available databases. We found that effective nivolumab treatment led to an upregulation of C2 levels, and higher levels following treatment are indicative of a good outcome. Through bioinformatics analyses and immunofluorescence, we identified a correlation between C2 and M1 macrophages. To further investigate the role of C2 in melanoma, we constructed subcutaneous tumorigenic models in C57BL/6 mice. The tumors in the C2 overexpression group exhibited significantly smaller sizes. Flow cytometric analysis of the mouse tumors demonstrated enhanced recruitment of macrophages, particularly of the M1 subtype, in the overexpression group. Moreover, single-cell RNA sequencing analysis revealed that C2-positive tumor cells exhibited enhanced communication with immune cells. We co-cultured tumor cell supernatants with macrophages in vitro and observed the induction of M1 subtype polarization. In addition, we discovered a close correlation between C2 and tertiary lymphoid structures. C2 has been demonstrated to exert a protective effect, mediated by its ability to modulate the tumor microenvironment. C2 serves as a prognostic marker for melanoma and can be employed to monitor the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Gengpu Zhang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Shengnan Li
- Department of Oncology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 519000, China
| | - Wanyi Xiao
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Chao Zhang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Ting Li
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Zhichao Liao
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Haotian Liu
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Ruwei Xing
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Wei Yao
- Department of Oncology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 519000, China
| | - Jilong Yang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
28
|
Krizova L, Benesova I, Zemanova P, Spacek J, Strizova Z, Humlova Z, Mikulova V, Petruzelka L, Vocka M. Immunophenotyping of peripheral blood in NSCLC patients discriminates responders to immune checkpoint inhibitors. J Cancer Res Clin Oncol 2024; 150:99. [PMID: 38383923 PMCID: PMC10881622 DOI: 10.1007/s00432-024-05628-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
PURPOSE Immune checkpoint inhibitors (ICIs) dramatically changed the prognosis of patients with NSCLC. Unfortunately, a reliable predictive biomarker is still missing. Commonly used biomarkers, such as PD-L1, MSI, or TMB, are not quite accurate in predicting ICI efficacy. METHODS In this prospective observational cohort study, we investigated the predictive role of erythrocytes, thrombocytes, innate and adaptive immune cells, complement proteins (C3, C4), and cytokines from peripheral blood of 224 patients with stage III/IV NSCLC treated with ICI alone (pembrolizumab, nivolumab, and atezolizumab) or in combination (nivolumab + ipilimumab) with chemotherapy. These values were analyzed for associations with the response to the treatment and survival endpoints. RESULTS Higher baseline Tregs, MPV, hemoglobin, and lower monocyte levels were associated with favorable PFS and OS. Moreover, increased baseline basophils and lower levels of C3 predicted significantly improved PFS. The levels of the baseline immature granulocytes, C3, and monocytes were significantly associated with the occurrence of partial regression at the first restaging. Multiple studied parameters (n = 9) were related to PFS benefit at the time of first restaging as compared to baseline values. In addition, PFS nonbenefit group showed a decrease in lymphocyte count after three months of therapy. The OS benefit was associated with higher levels of lymphocytes, erythrocytes, hemoglobin, MCV, and MPV, and a lower value of NLR after three months of treatment. CONCLUSION Our work suggests that parameters from peripheral venous blood may be potential biomarkers in NSCLC patients on ICI. The baseline values of Tregs, C3, monocytes, and MPV are especially recommended for further investigation.
Collapse
Affiliation(s)
- Ludmila Krizova
- Department of Oncology, General University Hospital in Prague and First Faculty of Medicine, Charles University, U Nemocnice 499/2, 128 00, Prague 2, Czech Republic
| | - Iva Benesova
- Department of Immunology, Second Faculty of Medicine, Charles University in Prague and University Hospital in Motol, Prague, Czech Republic
| | - Petra Zemanova
- Department of Oncology, General University Hospital in Prague and First Faculty of Medicine, Charles University, U Nemocnice 499/2, 128 00, Prague 2, Czech Republic
| | - Jan Spacek
- Department of Oncology, General University Hospital in Prague and First Faculty of Medicine, Charles University, U Nemocnice 499/2, 128 00, Prague 2, Czech Republic
| | - Zuzana Strizova
- Department of Immunology, Second Faculty of Medicine, Charles University in Prague and University Hospital in Motol, Prague, Czech Republic
| | - Zuzana Humlova
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Veronika Mikulova
- Institute of Medical Biochemistry and Laboratory Diagnostics, Laboratory of Clinical Immunology and Allergology, General University Hospital in Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lubos Petruzelka
- Department of Oncology, General University Hospital in Prague and First Faculty of Medicine, Charles University, U Nemocnice 499/2, 128 00, Prague 2, Czech Republic
| | - Michal Vocka
- Department of Oncology, General University Hospital in Prague and First Faculty of Medicine, Charles University, U Nemocnice 499/2, 128 00, Prague 2, Czech Republic.
| |
Collapse
|
29
|
Sándor N, Schneider AE, Matola AT, Barbai VH, Bencze D, Hammad HH, Papp A, Kövesdi D, Uzonyi B, Józsi M. The human factor H protein family - an update. Front Immunol 2024; 15:1135490. [PMID: 38410512 PMCID: PMC10894998 DOI: 10.3389/fimmu.2024.1135490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/08/2024] [Indexed: 02/28/2024] Open
Abstract
Complement is an ancient and complex network of the immune system and, as such, it plays vital physiological roles, but it is also involved in numerous pathological processes. The proper regulation of the complement system is important to allow its sufficient and targeted activity without deleterious side-effects. Factor H is a major complement regulator, and together with its splice variant factor H-like protein 1 and the five human factor H-related (FHR) proteins, they have been linked to various diseases. The role of factor H in inhibiting complement activation is well studied, but the function of the FHRs is less characterized. Current evidence supports the main role of the FHRs as enhancers of complement activation and opsonization, i.e., counter-balancing the inhibitory effect of factor H. FHRs emerge as soluble pattern recognition molecules and positive regulators of the complement system. In addition, factor H and some of the FHR proteins were shown to modulate the activity of immune cells, a non-canonical function outside the complement cascade. Recent efforts have intensified to study factor H and the FHRs and develop new tools for the distinction, quantification and functional characterization of members of this protein family. Here, we provide an update and overview on the versatile roles of factor H family proteins, what we know about their biological functions in healthy conditions and in diseases.
Collapse
Affiliation(s)
- Noémi Sándor
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| | | | | | - Veronika H. Barbai
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dániel Bencze
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Hani Hashim Hammad
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Alexandra Papp
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dorottya Kövesdi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| | - Barbara Uzonyi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| | - Mihály Józsi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| |
Collapse
|
30
|
Luan X, Lei T, Fang J, Liu X, Fu H, Li Y, Chu W, Jiang P, Tong C, Qi H, Fu Y. Blockade of C5a receptor unleashes tumor-associated macrophage antitumor response and enhances CXCL9-dependent CD8 + T cell activity. Mol Ther 2024; 32:469-489. [PMID: 38098230 PMCID: PMC10861991 DOI: 10.1016/j.ymthe.2023.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/17/2023] [Accepted: 12/11/2023] [Indexed: 12/25/2023] Open
Abstract
Macrophages play a crucial role in shaping the immune state within the tumor microenvironment (TME) and are often influenced by tumors to hinder antitumor immunity. However, the underlying mechanisms are still elusive. Here, we observed abnormal expression of complement 5a receptor (C5aR) in human ovarian cancer (OC), and identified high levels of C5aR expression on tumor-associated macrophages (TAMs), which led to the polarization of TAMs toward an immunosuppressive phenotype. C5aR knockout or inhibitor treatment restored TAM antitumor response and attenuated tumor progression. Mechanistically, C5aR deficiency reprogrammed macrophages from a protumor state to an antitumor state, associating with the upregulation of immune response and stimulation pathways, which in turn resulted in the enhanced antitumor response of cytotoxic T cells in a manner dependent on chemokine (C-X-C motif) ligand 9 (CXCL9). The pharmacological inhibition of C5aR also improved the efficacy of immune checkpoint blockade therapy. In patients, C5aR expression associated with CXCL9 production and infiltration of CD8+ T cells, and a high C5aR level predicted poor clinical outcomes and worse benefits from anti-PD-1 therapy. Thus, our study sheds light on the mechanisms underlying the modulation of TAM antitumor immune response by the C5a-C5aR axis and highlights the potential of targeting C5aR for clinical applications.
Collapse
Affiliation(s)
- Xiaojin Luan
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ting Lei
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jie Fang
- Department of Gynecology, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, Jiangsu, China
| | - Xue Liu
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Huijia Fu
- Department of Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yiran Li
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Chu
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Peng Jiang
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Chao Tong
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Hongbo Qi
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China.
| | - Yong Fu
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
31
|
Mastellos DC, Hajishengallis G, Lambris JD. A guide to complement biology, pathology and therapeutic opportunity. Nat Rev Immunol 2024; 24:118-141. [PMID: 37670180 DOI: 10.1038/s41577-023-00926-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2023] [Indexed: 09/07/2023]
Abstract
Complement has long been considered a key innate immune effector system that mediates host defence and tissue homeostasis. Yet, growing evidence has illuminated a broader involvement of complement in fundamental biological processes extending far beyond its traditional realm in innate immunity. Complement engages in intricate crosstalk with multiple pattern-recognition and signalling pathways both in the extracellular and intracellular space. Besides modulating host-pathogen interactions, this crosstalk guides early developmental processes and distinct cell trajectories, shaping tissue immunometabolic and regenerative programmes in different physiological systems. This Review provides a guide to the system-wide functions of complement. It highlights illustrative paradigm shifts that have reshaped our understanding of complement pathobiology, drawing examples from evolution, development of the central nervous system, tissue regeneration and cancer immunity. Despite its tight spatiotemporal regulation, complement activation can be derailed, fuelling inflammatory tissue pathology. The pervasive contribution of complement to disease pathophysiology has inspired a resurgence of complement therapeutics with major clinical developments, some of which have challenged long-held dogmas. We thus highlight major therapeutic concepts and milestones in clinical complement intervention.
Collapse
Affiliation(s)
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
32
|
West EE, Woodruff T, Fremeaux-Bacchi V, Kemper C. Complement in human disease: approved and up-and-coming therapeutics. Lancet 2024; 403:392-405. [PMID: 37979593 PMCID: PMC10872502 DOI: 10.1016/s0140-6736(23)01524-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/07/2023] [Accepted: 07/20/2023] [Indexed: 11/20/2023]
Abstract
The complement system is recognised as a protector against blood-borne pathogens and a controller of immune system and tissue homoeostasis. However, dysregulated complement activity is associated with unwanted or non-resolving immune responses and inflammation, which induce or exacerbate the pathogenesis of a broad range of inflammatory and autoimmune diseases. Although the merit of targeting complement clinically has long been acknowledged, the overall complement drug approval rate has been modest. However, the success of the humanised anti-C5 antibody eculizumab in effectively treating paroxysmal nocturnal haemoglobinuria and atypical haemolytic syndrome has revitalised efforts to target complement therapeutically. Increased understanding of complement biology has led to the identification of novel targets for drug development that, in combination with advances in drug discovery and development technologies, has resulted in a surge of interest in bringing new complement therapeutics into clinical use. The rising number of approved drugs still almost exclusively target rare diseases, but the substantial pipeline of up-and-coming treatment options will possibly provide opportunities to also expand the clinical targeting of complement to common diseases.
Collapse
Affiliation(s)
- Erin E West
- Complement and Inflammation Research Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Trent Woodruff
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Veronique Fremeaux-Bacchi
- Inserm UMRS1138, Centre de Recherche des Cordeliers, Inflammation, Complement, and Cancer Team, Paris, France; Department of Immunology, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Claudia Kemper
- Complement and Inflammation Research Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
33
|
Dobó J, Kocsis A, Farkas B, Demeter F, Cervenak L, Gál P. The Lectin Pathway of the Complement System-Activation, Regulation, Disease Connections and Interplay with Other (Proteolytic) Systems. Int J Mol Sci 2024; 25:1566. [PMID: 38338844 PMCID: PMC10855846 DOI: 10.3390/ijms25031566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
The complement system is the other major proteolytic cascade in the blood of vertebrates besides the coagulation-fibrinolytic system. Among the three main activation routes of complement, the lectin pathway (LP) has been discovered the latest, and it is still the subject of intense research. Mannose-binding lectin (MBL), other collectins, and ficolins are collectively termed as the pattern recognition molecules (PRMs) of the LP, and they are responsible for targeting LP activation to molecular patterns, e.g., on bacteria. MBL-associated serine proteases (MASPs) are the effectors, while MBL-associated proteins (MAps) have regulatory functions. Two serine protease components, MASP-1 and MASP-2, trigger the LP activation, while the third component, MASP-3, is involved in the function of the alternative pathway (AP) of complement. Besides their functions within the complement system, certain LP components have secondary ("moonlighting") functions, e.g., in embryonic development. They also contribute to blood coagulation, and some might have tumor suppressing roles. Uncontrolled complement activation can contribute to the progression of many diseases (e.g., stroke, kidney diseases, thrombotic complications, and COVID-19). In most cases, the lectin pathway has also been implicated. In this review, we summarize the history of the lectin pathway, introduce their components, describe its activation and regulation, its roles within the complement cascade, its connections to blood coagulation, and its direct cellular effects. Special emphasis is placed on disease connections and the non-canonical functions of LP components.
Collapse
Affiliation(s)
- József Dobó
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary; (J.D.); (A.K.); (B.F.)
| | - Andrea Kocsis
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary; (J.D.); (A.K.); (B.F.)
| | - Bence Farkas
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary; (J.D.); (A.K.); (B.F.)
| | - Flóra Demeter
- Cell Biology and Cell Therapy Group, Research Laboratory, Department of Internal Medicine and Hematology, Semmelweis University, 1085 Budapest, Hungary; (F.D.); (L.C.)
| | - László Cervenak
- Cell Biology and Cell Therapy Group, Research Laboratory, Department of Internal Medicine and Hematology, Semmelweis University, 1085 Budapest, Hungary; (F.D.); (L.C.)
| | - Péter Gál
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary; (J.D.); (A.K.); (B.F.)
| |
Collapse
|
34
|
Panebianco M, Ciccarese C, Strusi A, Beccia V, Carbone C, Agostini A, Piro G, Tortora G, Iacovelli R. The Role of the Complement in Clear Cell Renal Carcinoma (ccRCC)-What Future Prospects Are There for Its Use in Clinical Practice? Cancers (Basel) 2024; 16:490. [PMID: 38339243 PMCID: PMC10854780 DOI: 10.3390/cancers16030490] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
In recent years, the first-line available therapeutic options for metastatic renal cell carcinoma (mRCC) have radically changed with the introduction into clinical practice of new immune checkpoint inhibitor (ICI)-based combinations. Many efforts are focusing on identifying novel prognostic and predictive markers in this setting. The complement system (CS) plays a central role in promoting the growth and progression of mRCC. In particular, mRCC has been defined as an "aggressive complement tumor", which encompasses a group of malignancies with poor prognosie and highly expressed complement components. Several preclinical and retrospective studies have demonstrated the negative prognostic role of the complement in mRCC; however, there is little evidence on its possible role as a predictor of the response to ICIs. The purpose of this review is to explore more deeply the physio-pathological role of the complement in the development of RCC and its possible future use in clinical practice as a prognostic and predictive factor.
Collapse
Affiliation(s)
- Martina Panebianco
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (C.C.); (C.C.); (A.A.); (G.P.); (G.T.)
| | - Chiara Ciccarese
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (C.C.); (C.C.); (A.A.); (G.P.); (G.T.)
| | - Alessandro Strusi
- Medical Oncology, Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.S.); (V.B.)
| | - Viria Beccia
- Medical Oncology, Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.S.); (V.B.)
| | - Carmine Carbone
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (C.C.); (C.C.); (A.A.); (G.P.); (G.T.)
| | - Antonio Agostini
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (C.C.); (C.C.); (A.A.); (G.P.); (G.T.)
| | - Geny Piro
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (C.C.); (C.C.); (A.A.); (G.P.); (G.T.)
| | - Giampaolo Tortora
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (C.C.); (C.C.); (A.A.); (G.P.); (G.T.)
- Medical Oncology, Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.S.); (V.B.)
| | - Roberto Iacovelli
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (C.C.); (C.C.); (A.A.); (G.P.); (G.T.)
- Medical Oncology, Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.S.); (V.B.)
| |
Collapse
|
35
|
Liu T, Ul-Haq W, Tang Q, Li W, Wang Z, Shan Q, Serfraz S, Shakir Y, Ullah Kakar M, Sun L. Novel integrated Omics based computational approach for drug repurposing for non-muscle invasive bladder cancer (NMIBC). J Biomol Struct Dyn 2024:1-11. [PMID: 38247255 DOI: 10.1080/07391102.2024.2302343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/04/2023] [Indexed: 01/23/2024]
Abstract
Non-muscle invasive bladder cancer (NMIBC) refers to a subtype of bladder carcinoma where cancer is localized in the inner lining of bladder. NMIBC consider as one of most costly malignancy and requires significant surgical and therapeutic measure. However, recurrence and progression of tumor is common in treated patients. Here we presented an integrated OMICs approach for the identification and inhibition of NMIBC specific genes. We utilized a case study where three group of patients were compared: 1) Relapsed tumors 2) recurrent tumors and 3) tumor in progression. Common transcriptome signature between patients facing recurrence and progression allowed us to identify three NMIBC specific genes FLT-1, WHSC-1 and CD34. We further utilized novel approach of Co-expressed gene-set enrichment analysis (COGENA) on the differentially expressed genes of this case study. Three drugs (paroxetine, adiphenine and H-89) with role of receptors inhibition were identified and predicted as repurposed drugs for the inhibition NMIBC specific genes. We further tested this hypothesis by performing molecular docking and simulation analysis between cancer specific proteins and drugs. FLT-1 have shown significant stable interaction with both drugs paroxetine and adiphenine whereas WHSC-1 have shown compact interaction with adiphenine and H-89. In the light of these evidence, we suggest that adiphenine could be repositioned as alternate targeted medicine for the treatment of NMIBC. In the future, this study will help for strengthening the strategies development at the molecular level for the control of carcinomas at early as well as detection of active and binding site, receptor-ligand interaction and also make drug repurposing for the early treatment of the carcinomas.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tiantian Liu
- The Department of Oncology, Affiliated with Shuyang Hospital of Xuzhou Medical University, Suqian City, Jiangsu Province, China
| | - Waqar- Ul-Haq
- Evolutionary Biology Lab, CABB, University of Agriculture Faisalabad, Pakistan
| | - Qing Tang
- The Department of Oncology, Affiliated with Shuyang Hospital of Xuzhou Medical University, Suqian City, Jiangsu Province, China
| | - Wei Li
- The Department of Oncology, Affiliated with Shuyang Hospital of Xuzhou Medical University, Suqian City, Jiangsu Province, China
| | - Zhixia Wang
- The Department of Oncology, Affiliated with Shuyang Hospital of Xuzhou Medical University, Suqian City, Jiangsu Province, China
| | - Qiujie Shan
- The Department of Oncology, Affiliated with Shuyang Hospital of Xuzhou Medical University, Suqian City, Jiangsu Province, China
| | - Saad Serfraz
- Evolutionary Biology Lab, CABB, University of Agriculture Faisalabad, Pakistan
| | - Yasmeen Shakir
- Department of Biochemistry, Hazara University, Mansehra, Khyber Pakhtunkhua, Pakistan
| | - Mohib Ullah Kakar
- Faculty of Marine Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Balochistan, Pakistan
| | - Lizhu Sun
- The Department of Oncology, Affiliated with Shuyang Hospital of Xuzhou Medical University, Suqian City, Jiangsu Province, China
| |
Collapse
|
36
|
Tian W, Huang J, Zhang W, Wang Y, Jin R, Guo H, Tang Y, Wang Y, Lai H, Leung ELH. Harnessing natural product polysaccharides against lung cancer and revisit its novel mechanism. Pharmacol Res 2024; 199:107034. [PMID: 38070793 DOI: 10.1016/j.phrs.2023.107034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024]
Abstract
The incidence and mortality of lung cancer are on the rise worldwide. However, the benefit of clinical treatment in lung cancer is limited. Owning to important sources of drug development, natural products have received constant attention around the world. Main ingredient polysaccharides in natural products have been found to have various activities in pharmacological research. In recent years, more and more scientists are looking for the effects and mechanisms of different natural product polysaccharides on lung cancer. In this review, we focus on the following aspects: First, natural product polysaccharides have been discovered to directly suppress the growth of lung cancer cells, which can be effective in limiting tumor progression. Additionally, polysaccharides have been considered to enhance immune function, which can play a pivotal role in fighting lung cancer. Lastly, polysaccharides can improve the efficacy of drugs in lung cancer treatment by regulating the gut microbiota. Overall, the research of natural product polysaccharides in the treatment of lung cancer is a promising area that has the potential to lead to new clinical treatments. With better understanding, natural product polysaccharides have the potential to become important components of future lung cancer treatments.
Collapse
Affiliation(s)
- Wangqi Tian
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Jumin Huang
- Cancer Center, Faculty of Health Sciences, and MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau
| | - Weitong Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Yifan Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Ruyi Jin
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Hui Guo
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Yuping Tang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Yuwei Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China.
| | - Huanling Lai
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangdong Province, China; Guangzhou Laboratory, Guangzhou 510005, Guangdong Province, China.
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Sciences, and MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau; State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau.
| |
Collapse
|
37
|
Jin X, Wu H, Yu J, Cao Y, Zhang L, Zhang Z, Lv H. Glutamate affects self-assembly, protein corona, and anti-4 T1 tumor effects of melittin/vitamin E-succinic acid-(glutamate)n nanoparticles. J Control Release 2024; 365:802-817. [PMID: 38092255 DOI: 10.1016/j.jconrel.2023.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/02/2023] [Accepted: 12/08/2023] [Indexed: 12/18/2023]
Abstract
Melittin (M) has attracted increasing attention for its significant antitumor effects and various immunomodulatory effects. However, various obstacles such as the short plasma half-life and adverse reactions restrict its application. This study aimed to systematically investigate the self-assembly mechanism, components of the protein corona, targeting behavior, and anti-4 T1 tumor effect of vitamin E-succinic acid-(glutamate)n /melittin nanoparticles with varying amounts of glutamic acid. Here, we present a new vitamin E-succinic acid-(glutamate)5 (E5), vitamin E-succinic acid-(glutamate)10 (E10) or vitamin E-succinic acid-(glutamate)15 (E15), and their co-assembly system with positively charged melittin in water. The molecular dynamics simulations demonstrated that the electrostatic energy and van der Waals force in the system decreased significantly with the increase in the amount of glutamic acid. The melittin and E15 system exhibited the optimal stability for nanoparticle self-assembly. When nanoparticles derived from different self-assembly systems were co-incubated with plasma from patients with breast cancer, the protein corona showed heterogeneity. In vivo imaging demonstrated that an increase in the number of glutamic acid residues enhanced circulation duration and tumor-targeting effects. Both in vitro and in vivo antitumor evaluation indicated a significant increase in the antitumor effect with the addition of glutamic acid. According to our research findings, the number of glutamic acid residues plays a crucial role in the targeted delivery of melittin for immunomodulation and inhibition of 4 T1 breast cancer. Due to the self-assembly capabilities of vitamin E-succinic acid-(glutamate)n in water, these nanoparticles carry significant potential for delivering cationic peptides such as melittin.
Collapse
Affiliation(s)
- Xin Jin
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China; Department of Pharmaceutics, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, Jiangsu, China
| | - Hangyi Wu
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Jie Yu
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yanni Cao
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Lanyi Zhang
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Zhenhai Zhang
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu, China.
| | - Huixia Lv
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.
| |
Collapse
|
38
|
Ostrowska-Lesko M, Rajtak A, Moreno-Bueno G, Bobinski M. Scientific and clinical relevance of non-cellular tumor microenvironment components in ovarian cancer chemotherapy resistance. Biochim Biophys Acta Rev Cancer 2024; 1879:189036. [PMID: 38042260 DOI: 10.1016/j.bbcan.2023.189036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
The tumor microenvironment (TME) components play a crucial role in cancer cells' resistance to chemotherapeutic agents. This phenomenon is exceptionally fundamental in patients with ovarian cancer (OvCa), whose outcome depends mainly on their response to chemotherapy. Until now, most reports have focused on the role of cellular components of the TME, while less attention has been paid to the stroma and other non-cellular elements of the TME, which may play an essential role in the therapy resistance. Inhibiting these components could help define new therapeutic targets and potentially restore chemosensitivity. The aim of the present article is both to summarize the knowledge about non-cellular components of the TME in the development of OvCa chemoresistance and to suggest targeting of non-cellular elements of the TME as a valuable strategy to overcome chemoresistance and to develop new therapeutic strategies in OvCA patients.
Collapse
Affiliation(s)
- Marta Ostrowska-Lesko
- Chair and Department of Toxicology, Medical University of Lublin, 8b Jaczewskiego Street, 20-090 Lublin, Poland.
| | - Alicja Rajtak
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Poland
| | - Gema Moreno-Bueno
- Biochemistry Department, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas 'Sols-Morreale' (IIBm-CISC), Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Spain; Fundación MD Anderson Internacional (FMDA), Spain.
| | - Marcin Bobinski
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Poland.
| |
Collapse
|
39
|
Meri S, Magrini E, Mantovani A, Garlanda C. The Yin Yang of Complement and Cancer. Cancer Immunol Res 2023; 11:1578-1588. [PMID: 37902610 DOI: 10.1158/2326-6066.cir-23-0399] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/07/2023] [Accepted: 09/12/2023] [Indexed: 10/31/2023]
Abstract
Cancer-related inflammation is a crucial component of the tumor microenvironment (TME). Complement activation occurs in cancer and supports the development of an inflammatory microenvironment. Complement has traditionally been considered a mechanism of immune resistance against cancer, and its activation is known to contribute to the cytolytic effects of antibody-based immunotherapeutic treatments. However, several studies have recently revealed that complement activation may exert protumoral functions by sustaining cancer-related inflammation and immunosuppression through different molecular mechanisms, targeting both the TME and cancer cells. These new discoveries have revealed that complement manipulation can be considered a new strategy for cancer therapies. Here we summarize our current understanding of the mechanisms by which the different elements of the complement system exert antitumor or protumor functions, both in preclinical studies and in human tumorigenesis. Complement components can serve as disease biomarkers for cancer stratification and prognosis and be exploited for tumor treatment.
Collapse
Affiliation(s)
- Seppo Meri
- Department of Bacteriology and Immunology and Translational Immunology Research Program, University and University Hospital of Helsinki, Helsinki, Finland
| | | | - Alberto Mantovani
- IRCCS-Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Cecilia Garlanda
- IRCCS-Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
40
|
Lasorsa F, Rutigliano M, Milella M, Ferro M, Pandolfo SD, Crocetto F, Simone S, Gesualdo L, Battaglia M, Ditonno P, Lucarelli G. Complement System and the Kidney: Its Role in Renal Diseases, Kidney Transplantation and Renal Cell Carcinoma. Int J Mol Sci 2023; 24:16515. [PMID: 38003705 PMCID: PMC10671650 DOI: 10.3390/ijms242216515] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
The crosstalk among the complement system, immune cells, and mediators of inflammation provides an efficient mechanism to protect the organism against infections and support the repair of damaged tissues. Alterations in this complex machinery play a role in the pathogenesis of different diseases. Core complement proteins C3 and C5, their activation fragments, their receptors, and their regulators have been shown to be active intracellularly as the complosome. The kidney is particularly vulnerable to complement-induced damage, and emerging findings have revealed the role of complement system dysregulation in a wide range of kidney disorders, including glomerulopathies and ischemia-reperfusion injury during kidney transplantation. Different studies have shown that activation of the complement system is an important component of tumorigenesis and its elements have been proved to be present in the TME of various human malignancies. The role of the complement system in renal cell carcinoma (RCC) has been recently explored. Clear cell and papillary RCC upregulate most of the complement genes relative to normal kidney tissue. The aim of this narrative review is to provide novel insights into the role of complement in kidney disorders.
Collapse
Affiliation(s)
- Francesco Lasorsa
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Monica Rutigliano
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Martina Milella
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Matteo Ferro
- Division of Urology, European Institute of Oncology, IRCCS, 71013 Milan, Italy
| | - Savio Domenico Pandolfo
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Felice Crocetto
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Simona Simone
- Department of Precision and Regenerative Medicine and Ionian Area-Nephrology, Dialysis and Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Loreto Gesualdo
- Department of Precision and Regenerative Medicine and Ionian Area-Nephrology, Dialysis and Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Michele Battaglia
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Pasquale Ditonno
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Giuseppe Lucarelli
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| |
Collapse
|
41
|
Fridman WH, Meylan M, Pupier G, Calvez A, Hernandez I, Sautès-Fridman C. Tertiary lymphoid structures and B cells: An intratumoral immunity cycle. Immunity 2023; 56:2254-2269. [PMID: 37699391 DOI: 10.1016/j.immuni.2023.08.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 09/14/2023]
Abstract
The generation of anti-tumor immunity in the draining lymph nodes is known as the cancer immunity cycle. Accumulating evidence supports the occurrence of such a cycle at tumor sites in the context of chronic inflammation. Here, we review the role of tertiary lymphoid structures (TLS) in the generation of T and B cell immunities, focusing on the impact of B cells that undergo full maturation, resulting in the generation of plasma cells (PCs) producing high-affinity IgG and IgA antibodies. In this context, we propose that antibodies binding to tumor cells induce macrophage or natural killer (NK)-cell-dependent apoptosis. Subsequently, released antigen-antibody complexes are internalized and processed by dendritic cells (DCs), amplifying antigen presentation to T cells. Immune complexes may also be fixed by follicular DCs (FDCs) in TLS, thereby increasing memory B cell responses. This amplification loop creates an intra-tumoral immunity cycle, capable of increasing sensitivity of tumors to immunotherapy even in cancers with low mutational burden.
Collapse
Affiliation(s)
- Wolf H Fridman
- Centre de Recherche des Cordeliers, INSERM U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France; Equipe labellisée Ligue Contre le Cancer (EL 2021), Paris, France.
| | - Maxime Meylan
- Centre de Recherche des Cordeliers, INSERM U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France; Equipe labellisée Ligue Contre le Cancer (EL 2021), Paris, France
| | - Guilhem Pupier
- Centre de Recherche des Cordeliers, INSERM U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France; Equipe labellisée Ligue Contre le Cancer (EL 2021), Paris, France
| | - Anne Calvez
- Centre de Recherche des Cordeliers, INSERM U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France; Equipe labellisée Ligue Contre le Cancer (EL 2021), Paris, France
| | - Isaïas Hernandez
- Centre de Recherche des Cordeliers, INSERM U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France; Equipe labellisée Ligue Contre le Cancer (EL 2021), Paris, France
| | - Catherine Sautès-Fridman
- Centre de Recherche des Cordeliers, INSERM U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France; Equipe labellisée Ligue Contre le Cancer (EL 2021), Paris, France
| |
Collapse
|
42
|
Nirgude S, Desai S, Khanchandani V, Nagarajan V, Thumsi J, Choudhary B. Integration of exome-seq and mRNA-seq using DawnRank, identified genes involved in innate immunity as drivers of breast cancer in the Indian cohort. PeerJ 2023; 11:e16033. [PMID: 37810779 PMCID: PMC10552747 DOI: 10.7717/peerj.16033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/14/2023] [Indexed: 10/10/2023] Open
Abstract
Genetic heterogeneity influences the prognosis and therapy of breast cancer. The cause of disease progression varies and can be addressed individually. To identify the mutations and their impact on disease progression at an individual level, we sequenced exome and transcriptome from matched normal-tumor samples. We utilised DawnRank to prioritise driver genes and identify specific mutations in Indian patients. Mutations in the C3 and HLA genes were identified as drivers of disease progression, indicating the involvement of the innate immune system. We performed immune profiling on 16 matched normal/tumor samples using CIBERSORTx. We identified CD8+ve T cells, M2 macrophages, and neutrophils to be enriched in luminal A and T cells CD4+naïve, natural killer (NK) cells activated, T follicular helper (Tfh) cells, dendritic cells activated, and neutrophils in triple-negative breast cancer (TNBC) subtypes. Weighted gene co-expression network analysis (WGCNA) revealed activation of T cell-mediated response in ER positive samples and Interleukin and Interferons in ER negative samples. WGCNA analysis also identified unique pathways for each individual, suggesting that rare mutations/expression signatures can be used to design personalised treatment.
Collapse
Affiliation(s)
- Snehal Nirgude
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka, India
- Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, USA
| | - Sagar Desai
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka, India
| | - Vartika Khanchandani
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka, India
| | | | | | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka, India
| |
Collapse
|
43
|
Li R, Sexton WJ, Dhillon J, Berglund A, Naidu S, Borjas G, Rose K, Kim Y, Wang X, Conejo-Garcia JR, Jain RK, Poch MA, Spiess PE, Pow-Sang J, Gilbert SM, Zhang J. A Phase II Study of Durvalumab for Bacillus Calmette-Guerin (BCG) Unresponsive Urothelial Carcinoma In Situ of the Bladder. Clin Cancer Res 2023; 29:3875-3881. [PMID: 37505486 DOI: 10.1158/1078-0432.ccr-23-0354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/04/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023]
Abstract
PURPOSE Immune checkpoint blockade holds promise for treating bacillus Calmette-Guerin (BCG)-unresponsive non-muscle-invasive bladder cancer (NMIBC). In this phase II study, we investigated the safety and efficacy of durvalumab, a human IgG1 monoclonal antibody, against BCG-unresponsive carcinoma in situ (CIS). PATIENTS AND METHODS Patients with BCG-unresponsive CIS-containing NMIBC received durvalumab IV at 1,500 mg every 4 weeks for up to 12 months. The primary endpoint was complete response (CR) rate at month 6, defined by negative cystoscopy, urine cytology, and absence of high-grade recurrence on bladder mapping biopsy. The null hypothesis specified a CR rate of 18% and alternative hypothesis of 40%. According to the Simon two-stage design, if ≤3/13 patients achieved CR during stage 1, the trial is stopped due to futility. RESULTS Between March 8, 2017, and January 24, 2020, 17 patients were accrued whereas 4 withdrew from study treatment after bladder biopsy at month 3 was positive for CIS. Two of 17 (12%) achieved a CR at month 6, with duration of response of 10 and 18 months, respectively. A single grade 3 lipase elevation was attributed to durvalumab, and immune-related adverse events were observed in 7/17 (41%) patients. Only 1/17 patients had high programmed death-ligand 1 expression pretreatment. On RNA sequencing, complement activation genes were elevated posttreatment, along with enrichment of tumor-associated macrophage signature. CONCLUSIONS Durvalumab monotherapy conferred minimal efficacy in treating BCG-unresponsive CIS of the bladder, with 6-month CR of 12%. Complement activation is a potential mechanism behind treatment resistance.
Collapse
Affiliation(s)
- Roger Li
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Wade J Sexton
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Jasreman Dhillon
- Department of Pathology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Anders Berglund
- Department of Biostatistics/Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Shreyas Naidu
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Gustavo Borjas
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Kyle Rose
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Youngchul Kim
- Department of Biostatistics/Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Xuefeng Wang
- Department of Biostatistics/Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, Florida
| | | | - Rohit K Jain
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Michael A Poch
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Philippe E Spiess
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Julio Pow-Sang
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Scott M Gilbert
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Jingsong Zhang
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
44
|
Kareem S, Jacob A, Mathew J, Quigg RJ, Alexander JJ. Complement: Functions, location and implications. Immunology 2023; 170:180-192. [PMID: 37222083 PMCID: PMC10524990 DOI: 10.1111/imm.13663] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
The complement system, an arm of the innate immune system plays a critical role in both health and disease. The complement system is highly complex with dual possibilities, helping or hurting the host, depending on the location and local microenvironment. The traditionally known functions of complement include surveillance, pathogen recognition, immune complex trafficking, processing and pathogen elimination. The noncanonical functions of the complement system include their roles in development, differentiation, local homeostasis and other cellular functions. Complement proteins are present in both, the plasma and on the membranes. Complement activation occurs both extra- and intracellularly, which leads to considerable pleiotropy in their activity. In order to design more desirable and effective therapies, it is important to understand the different functions of complement, and its location-based and tissue-specific responses. This manuscript will provide a brief overview into the complex nature of the complement cascade, outlining some of their complement-independent functions, their effects at different locale, and their implication in disease settings.
Collapse
Affiliation(s)
- Samer Kareem
- Department of Medicine, University at Buffalo, Buffalo, New York, United States
| | - Alexander Jacob
- Department of Medicine, University at Buffalo, Buffalo, New York, United States
| | - John Mathew
- Department of Rheumatology, Christian Medical College, Vellore, India
| | - Richard J Quigg
- Department of Medicine, University at Buffalo, Buffalo, New York, United States
| | - Jessy J Alexander
- Department of Medicine, University at Buffalo, Buffalo, New York, United States
| |
Collapse
|
45
|
Janneh AH, Atkinson C, Tomlinson S, Ogretmen B. Sphingolipid metabolism and complement signaling in cancer progression. Trends Cancer 2023; 9:782-787. [PMID: 37507302 PMCID: PMC10528689 DOI: 10.1016/j.trecan.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/20/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
Cancer treatment options are limited due to therapeutic resistance; thus, understanding the tumor microenvironment (TME) is crucial. Sphingolipid metabolism and complement activation products have essential roles in promoting tumor survival. Emerging evidence shows that sphingolipid signaling can regulate intracellular complement activation to induce inflammasome-mediated metastasis, offering a promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Alhaji H Janneh
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Carl Atkinson
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Stephen Tomlinson
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
46
|
Li Q, Liu H, Jin Y, Yu Y, Wang Y, Wu D, Guo Y, Xi L, Ye D, Pan Y, Zhang X, Li J. Analysis of a new therapeutic target and construction of a prognostic model for breast cancer based on ferroptosis genes. Comput Biol Med 2023; 165:107370. [PMID: 37643511 DOI: 10.1016/j.compbiomed.2023.107370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/09/2023] [Accepted: 08/12/2023] [Indexed: 08/31/2023]
Abstract
Breast cancer, which is the most common malignant tumor among women worldwide and an important cause of death in women. The existing prognostic model for patients with breast cancer is not accurate as breast cancer is resistant to commonly used antitumor drugs. Ferroptosis is a novel mechanism of programmed cell death that depends on iron accumulation and lipid peroxidation. Various studies have confirmed the role of ferroptosis in tumor regulation and ferroptosis is now considered to play an important role in breast cancer development. At present, the association between breast cancer prognosis and ferroptosis-related gene expression remains unclear. Further exploration of this research area may optimize the evaluation and prediction of prognosis of patients with breast cancer and finding of new therapeutic targets. In this study, clinical factors and the expression of multiple genes were evaluated in breast cancer samples from the Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database database. Eleven prognostication-related genes (TP63, IFNG, MT3, ANO6, FLT3, PTGS2, SLC1A4, JUN, SLC7A5, CHAC1, and TF) were identified from differentially expressed genes to construct a survival prediction model, which showed a good prediction ability. KEGG pathway analysis revealed that immune-related pathways were the primary pathways. ssGSEA analysis showed significant differences in the distribution of certain immune-related cell subsets, such as CD8+T cells and B cells, and in the expression of multiple immune genes, including type II IFN response and APC coinhibition. In addition, 10 immune targets related to ferroptosis in breast cancer were found: CD276, CD80, HHLA2, LILRA2, NCR3LG1, NECTIN3, PVR, SLAMF9,TNFSF4, and BTN1A1. Using TCGA, new ferroptosis genes related to breast cancer prognosis were identified, a new reliable and accurate prognosis model was developed, and 10 new potential therapeutic targets different from the traditional targeted drugs were identified to provide a reference for improving the poor prognosis of patients with breast cancer.
Collapse
Affiliation(s)
- Qi Li
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| | - Hengchen Liu
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang Provincial Clinical Research Center for Cancer, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| | - Yun Jin
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| | - Yuanquan Yu
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| | - Yihang Wang
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| | - Di Wu
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| | - Yinghao Guo
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| | - Longfu Xi
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| | - Dan Ye
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| | - Yanzhi Pan
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| | - Xiaoxiao Zhang
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| | - Jiangtao Li
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| |
Collapse
|
47
|
Zhang C, Cao K, Yang M, Wang Y, He M, Lu J, Huang Y, Zhang G, Liu H. C5aR1 blockade reshapes immunosuppressive tumor microenvironment and synergizes with immune checkpoint blockade therapy in high-grade serous ovarian cancer. Oncoimmunology 2023; 12:2261242. [PMID: 37791232 PMCID: PMC10543342 DOI: 10.1080/2162402x.2023.2261242] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/15/2023] [Indexed: 10/05/2023] Open
Abstract
High-grade serous ovarian cancer (HGSC), with a modest response to immune checkpoint blockade (ICB) targeting PD-1/PD-L1 monotherapy, is densely infiltrated by M2-polarized tumor-associated macrophages (TAMs) and regulatory T (Treg) cells. The complement C5a/C5aR1 axis contributes to the programming of the immunosuppressive phenotype of TAMs in solid tumors and represents a promising immunomodulatory target for treating HGSCs. Here, we aimed to identify the relevance of C5aR1 in prognosis, immune microenvironment, and immunotherapy response in HGSCs. The expression and relationship of C5aR1 with tumor-infiltrating immune cells were assessed by immunohistochemistry and flow cytometry in the training cohort (n = 120) and fresh HGSC tissues (n = 36). Transcriptomic analyses of the xenografts delineated the mechanisms driving the immunomodulatory activity of PMX53, an orally bioavailable C5aR1 inhibitor. Therapeutic relevance was confirmed in ex vivo tumor cultures and The Cancer Genome Atlas (TCGA) datasets. C5aR1 expression independently predicted dismal prognosis and was linked to the immunoevasive subtype of HGSC, characterized by increased infiltration of pro-tumor cells (Treg cells, M2-polarized macrophages, and neutrophils) and impaired CD8+T functions. PMX53 antagonized subcutaneous tumor growth, modulated immunosuppressive mechanisms and synergized with aPD-1 in several tumor types. Single-cell RNA-seq analysis revealed predominant C5aR1 expression in TAMs, with an immunosuppressive-related expression signature in C5aR1+TAMs. Furthermore, the combination of C5aR1 and PD-L1 was associated with specific molecular characteristics and matched clinical response annotations. Therefore, the abundance of C5aR1 could predict an inferior prognosis in HGSCs, and incorporating PD-L1 may serve as a novel predictive biomarker to guide therapeutic options.
Collapse
Affiliation(s)
- Chen Zhang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Kankan Cao
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Moran Yang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yiying Wang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Mengdi He
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Jiaqi Lu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yan Huang
- Department of Gynecologic Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Guodong Zhang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Haiou Liu
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| |
Collapse
|
48
|
Kotol D, Woessmann J, Hober A, Álvez MB, Tran Minh KH, Pontén F, Fagerberg L, Uhlén M, Edfors F. Absolute Quantification of Pan-Cancer Plasma Proteomes Reveals Unique Signature in Multiple Myeloma. Cancers (Basel) 2023; 15:4764. [PMID: 37835457 PMCID: PMC10571728 DOI: 10.3390/cancers15194764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Mass spectrometry based on data-independent acquisition (DIA) has developed into a powerful quantitative tool with a variety of implications, including precision medicine. Combined with stable isotope recombinant protein standards, this strategy provides confident protein identification and precise quantification on an absolute scale. Here, we describe a comprehensive targeted proteomics approach to profile a pan-cancer cohort consisting of 1800 blood plasma samples representing 15 different cancer types. We successfully performed an absolute quantification of 253 proteins in multiplex. The assay had low intra-assay variability with a coefficient of variation below 20% (CV = 17.2%) for a total of 1013 peptides quantified across almost two thousand injections. This study identified a potential biomarker panel of seven protein targets for the diagnosis of multiple myeloma patients using differential expression analysis and machine learning. The combination of markers, including the complement C1 complex, JCHAIN, and CD5L, resulted in a prediction model with an AUC of 0.96 for the identification of multiple myeloma patients across various cancer patients. All these proteins are known to interact with immunoglobulins.
Collapse
Affiliation(s)
- David Kotol
- Science For Life Laboratory, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden; (D.K.); (J.W.); (A.H.); (M.B.Á.); (K.H.T.M.); (L.F.); (M.U.)
- Department of Protein Science, Division of Systems Biology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden
| | - Jakob Woessmann
- Science For Life Laboratory, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden; (D.K.); (J.W.); (A.H.); (M.B.Á.); (K.H.T.M.); (L.F.); (M.U.)
- Department of Protein Science, Division of Systems Biology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden
| | - Andreas Hober
- Science For Life Laboratory, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden; (D.K.); (J.W.); (A.H.); (M.B.Á.); (K.H.T.M.); (L.F.); (M.U.)
- Department of Protein Science, Division of Systems Biology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden
| | - María Bueno Álvez
- Science For Life Laboratory, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden; (D.K.); (J.W.); (A.H.); (M.B.Á.); (K.H.T.M.); (L.F.); (M.U.)
- Department of Protein Science, Division of Systems Biology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden
| | - Khue Hua Tran Minh
- Science For Life Laboratory, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden; (D.K.); (J.W.); (A.H.); (M.B.Á.); (K.H.T.M.); (L.F.); (M.U.)
- Department of Protein Science, Division of Systems Biology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden
| | - Fredrik Pontén
- Rudbeck Laboratory, Uppsala University, 752 36 Uppsala, Sweden;
| | - Linn Fagerberg
- Science For Life Laboratory, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden; (D.K.); (J.W.); (A.H.); (M.B.Á.); (K.H.T.M.); (L.F.); (M.U.)
- Department of Protein Science, Division of Systems Biology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden
| | - Mathias Uhlén
- Science For Life Laboratory, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden; (D.K.); (J.W.); (A.H.); (M.B.Á.); (K.H.T.M.); (L.F.); (M.U.)
- Department of Protein Science, Division of Systems Biology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden
| | - Fredrik Edfors
- Science For Life Laboratory, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden; (D.K.); (J.W.); (A.H.); (M.B.Á.); (K.H.T.M.); (L.F.); (M.U.)
- Department of Protein Science, Division of Systems Biology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden
| |
Collapse
|
49
|
Gong Z, He Y, Mi X, Li C, Sun X, Wang G, Li L, Han Y, Xu C, Wang W, Cai S, Wang L, Liu Z. Complement and coagulation cascades pathway-related signature as a predictor of immunotherapy in metastatic urothelial cancer. Aging (Albany NY) 2023; 15:9479-9498. [PMID: 37747262 PMCID: PMC10564431 DOI: 10.18632/aging.205022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have shown efficacy in patients with metastatic urothelial cancer (mUC), however, only a small subset of patients could benefit from ICIs. Identifying predictive biomarkers of ICIs in patients with mUC is clinical meaningful for patient stratification and administration. METHODS Clinical and transcriptomic data of mUC patients treated with ICIs from mUC cohort (IMvigor210 study) was utilized to explore the predictive biomarkers. LASSO Cox regression was performed to construct a predictive model. The predictive model was trained and tested in the mUC cohort, and then exploratively tested in clear cell renal cell carcinoma (ccRCC) and melanoma cohorts in which patients also received ICIs regimens. RESULTS The differentially expressed genes (DEGs) in complement and coagulation cascades pathway (CCCP) were mainly enriched in non-responders of ICIs in the mUC cohort. A CCCP risk score was constructed based on the DEGs in CCCP. Patients with a low-risk score were more responsive to ICIs and had better overall survival (OS) than those with a high-risk score in the training set (HR, 0.38; 95%CI, 0.27-0.53, P<0.001) and the test set (HR, 0.34; 95%CI, 0.17-0.71, P=0.003). The association between the CCCP risk score and OS remained significant in the multivariable cox regression by adjusting PD-L1 expression and TMB (P<0.05). In addition, there was no difference for OS in the bladder cancer patients without ICIs (TCGA-BLCA cohort, HR, 0.76, 95%CI, 0.49-1.18, P=0.22), suggesting a predictive but not prognostic effect of the risk score. For the exploratory analysis, consistent results were observed that low-risk group showed superior OS in ccRCC cohort (HR, 0.52, 95%CI, 0.37-0.75, P<0.001) and melanoma cohort (HR, 0.27, 95%CI, 0.12-0.62, P=0.001). CONCLUSIONS Our study showed that the CCCP risk score is an independent biomarker that predicts the efficacy of ICIs in mUC patients. The patients with a low-risk score tend to have a better response to ICIs and a longer life time probably due to the immune-activated TME. Further studies are needed to validate the clinical utility of the seven-gene signature.
Collapse
Affiliation(s)
- Zheng Gong
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110001, China
| | - Yuming He
- Burning Rock Biotech, Guangzhou 510300, China
| | - Xiao Mi
- Burning Rock Biotech, Guangzhou 510300, China
| | | | - Xiaoran Sun
- Burning Rock Biotech, Guangzhou 510300, China
| | | | - Leo Li
- Burning Rock Biotech, Guangzhou 510300, China
| | - Yusheng Han
- Burning Rock Biotech, Guangzhou 510300, China
| | - Chunwei Xu
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Wenxian Wang
- Department of Clinical Trial, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Shangli Cai
- Burning Rock Biotech, Guangzhou 510300, China
| | - Liang Wang
- The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Zhongyuan Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
50
|
Baylis RA, Gao H, Wang F, Bell CF, Luo L, Björkegren JL, Leeper NJ. Identifying shared transcriptional risk patterns between atherosclerosis and cancer. iScience 2023; 26:107513. [PMID: 37636064 PMCID: PMC10448075 DOI: 10.1016/j.isci.2023.107513] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/18/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Cancer and cardiovascular disease (CVD) are the leading causes of death worldwide. Numerous overlapping pathophysiologic mechanisms have been hypothesized to drive the development of both diseases. Further investigation of these common pathways could allow for the identification of mutually detrimental processes and therapeutic targeting to derive mutual benefit. In this study, we intersect transcriptomic datasets correlated with disease severity or patient outcomes for both cancer and atherosclerotic CVD. These analyses confirmed numerous pathways known to underlie both diseases, such as inflammation and hypoxia, but also identified several novel shared pathways. We used these to explore common translational targets by applying the drug prediction software, OCTAD, to identify compounds that simultaneously reverse the gene expression signature for both diseases. These analyses suggest that certain tumor-specific therapeutic approaches may be implemented so that they avoid cardiovascular consequences, and in some cases may even be used to simultaneously target co-prevalent cancer and atherosclerosis.
Collapse
Affiliation(s)
- Richard A. Baylis
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford, CA, USA
- Department of Medicine, Division of Cardiology, University of California, San Francisco, CA, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Hua Gao
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Fudi Wang
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Caitlin F. Bell
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Lingfeng Luo
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Johan L.M. Björkegren
- Department of Medicine, Karolinska Institute, Huddinge, Sweden
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicholas J. Leeper
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|