1
|
Chen F, Guo S, Li Y, Lu Y, Liu L, Chen S, An J, Zhang G. Fusobacterium nucleatum-driven CX3CR1 + PD-L1 + phagocytes route to tumor tissues and reshape tumor microenvironment. Gut Microbes 2025; 17:2442037. [PMID: 39710592 DOI: 10.1080/19490976.2024.2442037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/18/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024] Open
Abstract
The intracellular bacterium Fusobacterium nucleatum (Fn) mediates tumorigenesis and progression in colorectal cancer (CRC). However, the origin of intratumoral Fn and the role of Fn-infected immunocytes in the tumor microenvironment remain unclear. Here, we observed that Fn-infected neutrophils/macrophages (PMNs/MΦs), especially PMNs, accumulate in tumor tissues and fecal Fn abundance correlates positively with an abundance of blood PD-L1+ PMNs in CRC patients. Moreover, Fn accumulates in tumor tissues of tumor-bearing mice via intragingival infection and intravenous injection. Mechanistically, Fn can survive inside PMNs by reducing intracellular ROS levels and producing H2S. Specifically, the lysozyme inhibitor Fn1792 as a novel virulence factor of Fn suppressed apoptosis of phagocytes by inducing CX3CR1 expression. Furthermore, Fn-driven CX3CR1+PD-L1+ phagocytes transfer intracellular Fn to tumor cells, which recruit PMNs/MΦs through the CXCL2/8-CXCR2 and CCL5/CCR5 axes. Consequently, CX3CR1+PD-L1+ PMNs infiltration promotes CRC metastasis and weakens the efficacy of immunotherapy. Treatment with the doxycycline eradicated intracellular Fn, thereby reducing the CX3CR1+PD-L1+ PMNs populations and slowing Fn-promoted tumor growth and metastasis in mice. These results suggest phagocytes as Fn-presenting cells use mutualistic strategies to home to tumor tissues and induce immunosuppression, and treatment with ROS-enhanced antibiotics can inhibit Fn-positive tumor progression.
Collapse
Affiliation(s)
- Fangfang Chen
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Songhe Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yiqiu Li
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yongfan Lu
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Le Liu
- Department of Gastroenterology, Integrated Clinical Microecology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Shengxin Chen
- Graduate School, Chinese PLA General Hospital, Beijing, China
| | - Jun An
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ge Zhang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Li H, Zeng J, You Q, Zhang M, Shi Y, Yang X, Gu W, Liu Y, Hu N, Wang Y, Chen X, Mu J. X-ray-activated nanoscintillators integrated with tumor-associated neutrophils polarization for improved radiotherapy in metastatic colorectal cancer. Biomaterials 2025; 316:123031. [PMID: 39709848 DOI: 10.1016/j.biomaterials.2024.123031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/26/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024]
Abstract
Radiotherapy, employing high-energy rays to precisely target and eradicate tumor cells, plays a pivotal role in the treatment of various malignancies. Despite its therapeutic potential, the effectiveness of radiotherapy is hindered by the tumor's inherent low radiosensitivity and the immunosuppressive microenvironment. Here we present an innovative approach that integrates peroxynitrite (ONOO-)-mediated radiosensitization with the tumor-associated neutrophils (TANs) polarization for the reversal of immunosuppressive tumor microenvironment (TME), greatly amplifying the potency of radiotherapy. Our design employs X-ray-activated lanthanide-doped scintillators (LNS) in tandem with photosensitive NO precursor to achieve in-situ ONOO- generation. Concurrently, the co-loaded TGF-β inhibitor SB525334, released from the LNS-RS nanoplatform in response to the overexpressed GSH in tumor site, promotes the reprogramming of TANs from N2 phenotype toward N1 phenotype, effectively transforming the tumor-promoting microenvironment into a tumor-inhibiting state. This 'one-two punch' therapy efficiently trigger a robust anti-tumor immune response and exert potent therapeutic effects in orthotopic colorectal cancer and melanoma mouse model. Meanwhile, it also significantly prevents liver metastasis and recurrence in metastatic colorectal cancer. The development of X-ray-controlled platforms capable of activating multiple therapeutic modalities may accelerate the clinical application of radiotherapy-based collaborative therapy.
Collapse
Affiliation(s)
- Hui Li
- Institute of Precision Medicine, Peking University Shenzhen Hospital, 518036, Shenzhen, China; Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Junyi Zeng
- Institute of Precision Medicine, Peking University Shenzhen Hospital, 518036, Shenzhen, China; Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Qing You
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
| | - Miaomiao Zhang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, 518036, Shenzhen, China
| | - Yuanchao Shi
- Institute of Precision Medicine, Peking University Shenzhen Hospital, 518036, Shenzhen, China
| | - Xiaodong Yang
- Department of Radiation Oncology, Peking University Shenzhen Hospital, 518036, Shenzhen, China
| | - Wenxing Gu
- Institute of Precision Medicine, Peking University Shenzhen Hospital, 518036, Shenzhen, China; Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Yajie Liu
- Department of Radiation Oncology, Peking University Shenzhen Hospital, 518036, Shenzhen, China
| | - Ning Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Yu Wang
- Institute of Microscale Optoelectronics, Shenzhen University, 518060, Shenzhen, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
| | - Jing Mu
- Institute of Precision Medicine, Peking University Shenzhen Hospital, 518036, Shenzhen, China.
| |
Collapse
|
3
|
Srinivasarao DA, Shah S, Famta P, Vambhurkar G, Jain N, Pindiprolu SKSS, Sharma A, Kumar R, Padhy HP, Kumari M, Madan J, Srivastava S. Unravelling the role of tumor microenvironment responsive nanobiomaterials in spatiotemporal controlled drug delivery for lung cancer therapy. Drug Deliv Transl Res 2025; 15:407-435. [PMID: 39037533 DOI: 10.1007/s13346-024-01673-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
Design and development of efficient drug delivery technologies that impart site-specificity is the need of the hour for the effective treatment of lung cancer. The emergence of materials science and nanotechnology partially helped drug delivery scientists to achieve this objective. Various stimuli-responsive materials that undergo degradation at the pathological tumor microenvironment (TME) have been developed and explored for drug delivery applications using nanotechnological approaches. Nanoparticles (NPs), owing to their small size and high surface area to volume ratio, demonstrated enhanced cellular internalization, permeation, and retention at the tumor site. Such passive accumulation of stimuli-responsive materials helped to achieve spatiotemporally controlled and targeted drug delivery within the tumors. In this review, we discussed various stimuli-physical (interstitial pressure, temperature, and stiffness), chemical (pH, hypoxia, oxidative stress, and redox state), and biological (receptor expression, efflux transporters, immune cells, and their receptors or ligands)-that are characteristic to the TME. We mentioned an array of biomaterials-based nanoparticulate delivery systems that respond to these stimuli and control drug release at the TME. Further, we discussed nanoparticle-based combinatorial drug delivery strategies. Finally, we presented our perspectives on challenges related to scale-up, clinical translation, and regulatory approvals.
Collapse
Affiliation(s)
- Dadi A Srinivasarao
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India.
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Ganesh Vambhurkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Naitik Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Sai Kiran S S Pindiprolu
- Aditya Pharmacy College, Surampalem, 533 437, Andhra Pradesh, India
- Jawaharlal Nehru Technological University, Kakinada, 533 003, Andhra Pradesh, India
| | - Anamika Sharma
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), 500037, Telangana, Hyderabad, India
| | - Rahul Kumar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), 500037, Telangana, Hyderabad, India
| | - Hara Prasad Padhy
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), 500037, Telangana, Hyderabad, India
| | - Meenu Kumari
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), 500037, Telangana, Hyderabad, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India.
| |
Collapse
|
4
|
Ng M, Cerezo-Wallis D, Ng LG, Hidalgo A. Adaptations of neutrophils in cancer. Immunity 2025; 58:40-58. [PMID: 39813993 DOI: 10.1016/j.immuni.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025]
Abstract
There is a renewed interest in neutrophil biology, largely instigated by their prominence in cancer. From an immunologist's perspective, a conceptual breakthrough is the realization that prototypical inflammatory, cytotoxic leukocytes can be tamed to promote the survival and growth of other cells. This has sparked interest in defining the biological principles and molecular mechanisms driving the adaptation of neutrophils to cancer. Yet, many questions remain: is this adaptation mediated by reprogramming mature neutrophils inside the tumoral mass, or rather by rewiring granulopoiesis in the bone marrow? Why, in some instances, are neutrophils beneficial and in others detrimental to cancer? How many different functional programs can be induced in neutrophils by tumors, and is this dependent on the type of tumor? This review summarizes what we know about these questions and discusses therapeutic strategies based on our incipient knowledge of how neutrophils adapt to cancer.
Collapse
Affiliation(s)
- Melissa Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore.
| | - Daniela Cerezo-Wallis
- Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| | - Lai Guan Ng
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Andres Hidalgo
- Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
He F, Xu J, Zeng F, Wang B, Yang Y, Xu J, Sun X, Ren T, Tang X. Integrative analysis of Ewing's sarcoma reveals that the MIF-CD74 axis is a target for immunotherapy. Cell Commun Signal 2025; 23:23. [PMID: 39800691 PMCID: PMC11727170 DOI: 10.1186/s12964-024-02020-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/28/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Ewing's sarcoma (EwS), a common pediatric bone cancer, is associated with poor survival due to a lack of therapeutic targets for immunotherapy or targeted therapy. Therefore, more effective treatment options are urgently needed. METHODS Since novel immunotherapies may address this need, we performed an integrative analysis involving single-cell RNA sequencing, cell function experiments, and humanized models to dissect the immunoregulatory interactions in EwS and identify strategies for optimizing immunotherapeutic efficacy. RESULTS EwS is infiltrated by immunosuppressive myeloid populations, T and B lymphocytes, and natural killer cells. We found that SLC40A1 and C1QA macrophages were associated with a poor prognosis, whereas CD8+ T-cell infiltration was associated with a good prognosis. A comparative analysis of paired samples revealed that in tumors with a good chemotherapeutic response, macrophages presented increased antigen presentation and reduced release of protumor cytokines, whereas CD8+ T cells presented increased cytotoxicity and reduced exhaustion. An interaction analysis revealed a vast immunoregulatory network and identified MIF-CD74 as a crucial immunoregulatory target that can simultaneously promote M2 polarization of macrophages and inhibit CD8+ T-cell infiltration. Importantly, MIF blockade effectively reshaped the tumor immune microenvironment, turning cold tumors hot and inhibiting tumor growth. CONCLUSIONS Our integrative analysis revealed that the MIF/CD74 axis is a promising target for the treatment of Ewing sarcoma and provides a rationale for this novel immunotherapy.
Collapse
MESH Headings
- Sarcoma, Ewing/immunology
- Sarcoma, Ewing/therapy
- Sarcoma, Ewing/pathology
- Sarcoma, Ewing/metabolism
- Sarcoma, Ewing/genetics
- Humans
- Macrophage Migration-Inhibitory Factors/metabolism
- Immunotherapy
- Histocompatibility Antigens Class II/metabolism
- Histocompatibility Antigens Class II/immunology
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Antigens, Differentiation, B-Lymphocyte/immunology
- Intramolecular Oxidoreductases/metabolism
- Intramolecular Oxidoreductases/genetics
- Animals
- Macrophages/immunology
- Macrophages/metabolism
- Cell Line, Tumor
- CD8-Positive T-Lymphocytes/immunology
- Bone Neoplasms/immunology
- Bone Neoplasms/pathology
- Bone Neoplasms/therapy
- Bone Neoplasms/metabolism
- Mice
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Fangzhou He
- Department of Musculoskeletal Tumor, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Jiuhui Xu
- Department of Musculoskeletal Tumor, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Fanwei Zeng
- Department of Musculoskeletal Tumor, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Boyang Wang
- Department of Musculoskeletal Tumor, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Yi Yang
- Department of Musculoskeletal Tumor, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Jie Xu
- Department of Musculoskeletal Tumor, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Xin Sun
- Department of Musculoskeletal Tumor, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Tingting Ren
- Department of Musculoskeletal Tumor, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China.
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China.
| | - Xiaodong Tang
- Department of Musculoskeletal Tumor, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China.
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China.
| |
Collapse
|
6
|
Peyraud F, Guegan JP, Vanhersecke L, Brunet M, Teyssonneau D, Palmieri LJ, Bessede A, Italiano A. Tertiary lymphoid structures and cancer immunotherapy: From bench to bedside. MED 2025; 6:100546. [PMID: 39798544 DOI: 10.1016/j.medj.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 01/15/2025]
Abstract
Tertiary lymphoid structures (TLSs) are organized ectopic lymphoid aggregates within the tumor microenvironment that serve as crucial sites for the development of adaptive antitumor cellular and humoral immunity. TLSs have been consistently documented in numerous cancer types, correlating with improved prognosis and enhanced responses to immunotherapy, especially immune-checkpoint blockade (ICB). Given the potential role of TLSs as predictive biomarkers for the efficacy of ICB in cancer patients, the therapeutic manipulation of TLSs is gaining significant attention as a promising avenue for cancer treatment. Herein, we comprehensively review the composition, definition, and detection methods of TLSs in humans. We also discuss the contributions of TLSs to antitumor immunity, their prognostic value in cancer patients, and their association with therapeutic response to ICB-based immunotherapy. Finally, we present preclinical data supporting the potential of therapeutically manipulating TLSs as a promising approach for innovative cancer immunotherapy.
Collapse
Affiliation(s)
- Florent Peyraud
- Department of Medicine, Institut Bergonié, Bordeaux, France; Faculty of Medicine, University of Bordeaux, Bordeaux, France; Explicyte Immuno-Oncology, Bordeaux, France.
| | | | - Lucile Vanhersecke
- Faculty of Medicine, University of Bordeaux, Bordeaux, France; Department of Pathology, Institut Bergonié, Bordeaux, France
| | - Maxime Brunet
- Department of Medicine, Institut Bergonié, Bordeaux, France; Faculty of Medicine, University of Bordeaux, Bordeaux, France
| | - Diego Teyssonneau
- Department of Medicine, Institut Bergonié, Bordeaux, France; Faculty of Medicine, University of Bordeaux, Bordeaux, France; Explicyte Immuno-Oncology, Bordeaux, France
| | - Lola-Jade Palmieri
- Department of Medicine, Institut Bergonié, Bordeaux, France; Faculty of Medicine, University of Bordeaux, Bordeaux, France; Explicyte Immuno-Oncology, Bordeaux, France
| | | | - Antoine Italiano
- Department of Medicine, Institut Bergonié, Bordeaux, France; Faculty of Medicine, University of Bordeaux, Bordeaux, France.
| |
Collapse
|
7
|
Ma C, Li Y, Li M, Lv C, Tian Y. Targeting immune checkpoints on myeloid cells: current status and future directions. Cancer Immunol Immunother 2025; 74:40. [PMID: 39751898 PMCID: PMC11699031 DOI: 10.1007/s00262-024-03856-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/07/2024] [Indexed: 01/04/2025]
Abstract
Myeloid cells accumulate extensively in most tumors and play a critical role in immunosuppression of the tumor microenvironment (TME). Like T cells, myeloid cells also express immune checkpoint molecules, which induce the immunosuppressive phenotype of these cells. In this review, we summarize the tumor-promoting function and immune checkpoint expression of four types of myeloid cells: macrophages, neutrophils, dendritic cells, and myeloid-derived suppressor cells, which are the main components of the TME. By summarizing the research status of myeloid checkpoints, we propose that blocking immune checkpoints on myeloid cells might be an effective strategy to reverse the immunosuppressive status of the TME. Moreover, combining nanotechnology, cellular therapy, and bispecific antibodies to achieve precise targeting of myeloid immune checkpoints can help to avoid the adverse effects of systemic administration, ultimately achieving a balance between efficacy and safety in cancer therapy.
Collapse
Affiliation(s)
- Chuhan Ma
- Department of General Surgery, Shengjing Hospital of China Medical University, ShenyangLiaoning Province, 110004, China
| | - Yang Li
- Department of General Surgery, Shengjing Hospital of China Medical University, ShenyangLiaoning Province, 110004, China
| | - Min Li
- Department of Mammary Gland, Dalian Women and Children's Medical Center (Group), DalianLiaoning Province, 116000, China
| | - Chao Lv
- Department of General Surgery, Shengjing Hospital of China Medical University, ShenyangLiaoning Province, 110004, China.
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, ShenyangLiaoning Province, 110004, China.
| |
Collapse
|
8
|
Eruslanov E, Nefedova Y, Gabrilovich DI. The heterogeneity of neutrophils in cancer and its implication for therapeutic targeting. Nat Immunol 2025; 26:17-28. [PMID: 39747431 DOI: 10.1038/s41590-024-02029-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/05/2024] [Indexed: 01/04/2025]
Abstract
Neutrophils have a pivotal role in safeguarding the host against pathogens and facilitating tissue remodeling. They possess a large array of tools essential for executing these functions. Neutrophils have a critical role in cancer, where they are largely associated with negative clinical outcome and resistance to therapy. However, the specific role of neutrophils in cancer is complex and controversial, owing to their high functional diversity and acute sensitivity to the microenvironment. In this Perspective, we discuss the accumulated evidence that suggests that the functional diversity of neutrophils can be ascribed to two principal functional states, each with distinct characteristics: classically activated neutrophils and pathologically activated immunosuppressive myeloid-derived suppressor cells. We discuss how the antimicrobial factors in neutrophils can contribute to tumor progression and the fundamental mechanisms that govern the pathologically activated myeloid-derived suppressor cells. These functional states play divergent roles in cancer and thus require separate consideration in therapeutic targeting.
Collapse
Affiliation(s)
- Evgeniy Eruslanov
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
9
|
Fan G, Na J, Shen Z, Lin F, Zhong L. Heterogeneity of tumor-associated neutrophils in hepatocellular carcinoma. Mol Immunol 2025; 177:1-16. [PMID: 39642781 DOI: 10.1016/j.molimm.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/08/2024] [Accepted: 11/17/2024] [Indexed: 12/09/2024]
Abstract
Neutrophils are the most abundant cell type in human blood and play a crucial role in the immune system and development of tumors. This review begins with the generation and development of neutrophils, traces their release from the bone marrow into the bloodstream, and finally discusses their role in the hepatocellular carcinoma (HCC) microenvironment. It elaborates in detail the mechanisms by which tumor-associated neutrophils (TANs) exert antitumor or protumor effects under the influence of various mediators in the tumor microenvironment. Neutrophils can exert antitumor effects through direct cytotoxic action. However, they can also accelerate the formation and progression of HCC by being recruited and infiltrated, promoting tumor angiogenesis, and maintaining an immunosuppressive microenvironment. Therefore, based on the heterogeneity and plasticity of neutrophils in tumor development, this review summarizes the current immunotherapies targeting TANs, discusses potential opportunities and challenges, and provides new insights into exploring more promising strategies for treating HCC.
Collapse
Affiliation(s)
- Guixiang Fan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning, Guangxi 530021, China; Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Zhen Shen
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning, Guangxi 530021, China; Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Faquan Lin
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning, Guangxi 530021, China; Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
10
|
Zeng Q, Zhang S, Leng N, Xing Y. Advancing tumor vaccines: Overcoming TME challenges, delivery strategies, and biomaterial-based vaccine for enhanced immunotherapy. Crit Rev Oncol Hematol 2025; 205:104576. [PMID: 39581246 DOI: 10.1016/j.critrevonc.2024.104576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/03/2024] [Accepted: 11/16/2024] [Indexed: 11/26/2024] Open
Abstract
Tumor vaccines, as an immunotherapeutic approach, harness the body's immune cells to provoke antitumor responses, which have shown promising efficacy in clinical settings. However, the immunosuppressive tumor microenvironment (TME) and the ineffective vaccine delivery systems hinder the progression of many vaccines beyond phase II trials. This article begins with a comprehensive review of the complex interactions between tumor vaccines and TME, summarizing the current state of vaccine clinical research. Subsequently, we review recent advancements in targeted vaccine delivery systems and explore biomaterial-based tumor vaccines as a strategy to improve the efficacy of both delivery systems and treatment. Finally, we have presented our perspectives on tumor vaccine development, aiming to advance the field towards the creation of more effective tumor vaccines.
Collapse
Affiliation(s)
- Qingsong Zeng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Shibo Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Ning Leng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yingying Xing
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
11
|
Dai D, Li X, Zhuang H, Ling Y, Chen L, Long C, Zhang J, Wang Y, Li Y, Tang H, Chen B. Landscape of the Peripheral Immune Response Induced by Intraoperative Radiotherapy Combined with Surgery in Early Breast Cancer Patients. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2308174. [PMID: 39494578 PMCID: PMC11714210 DOI: 10.1002/advs.202308174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 09/12/2024] [Indexed: 11/05/2024]
Abstract
A comprehensive analysis of the immune response triggered by intraoperative radiation therapy (IORT) remains incomplete. In this study, single-cell RNA sequencing and single-cell T cell receptor sequencing are conducted on peripheral blood mononuclear cells (PBMCs) from patient with early-stage breast cancer before and after IORT. Following IORT combined with surgery (defined as IORT+Surgery), PBMC counts remained stable, with increased proportions of T cells, mononuclear phagocytes, and plasma cells, and a reduction in neutrophil proportions. The cytotoxic score of CD8Teff_GZMK cells increased significantly post-IORT. Communication between CD8Teff_GZMK cells and other immune cells via MIF_CD74 and MIF_TNFRSF14 is decreased after IORT. cDCs showed an upregulation of the MCH II signaling pathway, while memory B cells exhibited enhanced activation of the B cell pathway. T cell clones expanded significantly after treatment. IORT+Surgery demonstrated the ability to partially suppress the anti-tumor effects of neutrophils. Flow cytometry analysis and co-culture experiments are utilized to delve deeper into the functional alterations in T cells. IORT+Surgery significantly enhanced T cell cytotoxic activity. Blockade of PD-1 of post-IORT PBMCs shows higher T-cell activity than that of pre-IORT PBMCs. This research highlights IORT's impact on immune cells, offering insights for targeting immune responses in breast cancer.
Collapse
Affiliation(s)
- Danian Dai
- Department of Plastic and Peripheral Vascular SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouGuangdong510080China
| | - Xuerui Li
- Department of Breast CancerCancer CenterGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouGuangdong510080China
| | - Hongkai Zhuang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouGuangdong510120China
| | - Yun Ling
- Department of Breast SurgeryThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510260China
| | - Lezi Chen
- Department of Plastic and Peripheral Vascular SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouGuangdong510080China
| | - Cheng Long
- Department of PathologyYueyang Maternal Child Health‐Care HospitalYueyangHunan414000China
| | - Jinhui Zhang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdong510060China
| | - Yunjie Wang
- School of MedicineHunan University of Chinese MedicineChangshaHunan410208China
| | - Yuehua Li
- Department of Oncology, The First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Hailin Tang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdong510060China
| | - Bo Chen
- Department of Breast CancerCancer CenterGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouGuangdong510080China
| |
Collapse
|
12
|
Santiago-Sánchez GS, Fabian KP, Hodge JW. A landscape of checkpoint blockade resistance in cancer: underlying mechanisms and current strategies to overcome resistance. Cancer Biol Ther 2024; 25:2308097. [PMID: 38306161 PMCID: PMC10841019 DOI: 10.1080/15384047.2024.2308097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024] Open
Abstract
The discovery of immune checkpoints and the development of immune checkpoint inhibitors (ICI) have achieved a durable response in advanced-stage cancer patients. However, there is still a high proportion of patients who do not benefit from ICI therapy due to a lack of response when first treated (primary resistance) or detection of disease progression months after objective response is observed (acquired resistance). Here, we review the current FDA-approved ICI for the treatment of certain solid malignancies, evaluate the contrasting responses to checkpoint blockade in different cancer types, explore the known mechanisms associated with checkpoint blockade resistance (CBR), and assess current strategies in the field that seek to overcome these mechanisms. In order to improve current therapies and develop new ones, the immunotherapy field still has an unmet need in identifying other molecules that act as immune checkpoints, and uncovering other mechanisms that promote CBR.
Collapse
Affiliation(s)
- Ginette S. Santiago-Sánchez
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kellsye P. Fabian
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James W. Hodge
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
13
|
Duan R, Jiang L, Wang T, Li Z, Yu X, Gao Y, Jia R, Fan X, Su W. Aging-induced immune microenvironment remodeling fosters melanoma in male mice via γδ17-Neutrophil-CD8 axis. Nat Commun 2024; 15:10860. [PMID: 39738047 DOI: 10.1038/s41467-024-55164-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/28/2024] [Indexed: 01/01/2025] Open
Abstract
Aging is associated with increased tumor metastasis and poor prognosis. However, how an aging immune system contributes to the process is unclear. Here, single-cell RNA sequencing reveals that in male mice, aging shifts the lung immune microenvironment towards a premetastatic niche, characterized by an increased proportion of IL-17-expressing γδT (γδ17) and neutrophils. Mechanistically, age-dependent downregulation of the immune trafficking receptor S1pr1 drives the expansion of γδ17. Compared to young mice, expanded γδ17 recruit tumor-promoting neutrophils with lower expression levels of CD62L and higher levels of C-kit and CXCR4. These neutrophils suppress the stemness and tumor-killing functions of CD8+ T cells in aged male mice. Accordingly, antibody-mediated depletion of γδT or neutrophils reduces tumor metastatic foci in aged animals, and the administration of the senolytic agent procyanidin C1 reverses the observed immune-mediated, tumor-promoting effects of aging. Thus, we uncover a γδ17-Neutrophil-CD8 axis that promotes aging-driven tumor metastasis in male mice and provides potential insights for managing metastatic tumors.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Tumor Microenvironment/immunology
- Aging/immunology
- Neutrophils/immunology
- Neutrophils/metabolism
- CD8-Positive T-Lymphocytes/immunology
- Mice, Inbred C57BL
- Interleukin-17/metabolism
- Interleukin-17/immunology
- Melanoma/immunology
- Melanoma/pathology
- Melanoma/genetics
- Cell Line, Tumor
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Intraepithelial Lymphocytes/immunology
- Intraepithelial Lymphocytes/metabolism
Collapse
Affiliation(s)
- Runping Duan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Loujing Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Tianfu Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Zhaohuai Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Xiaoyang Yu
- Guangzhou University of Chinese Medicine, Guangzhou, 510060, China
| | - Yuehan Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
14
|
Chen Q, Zhai B, Li J, Wang H, Liu Z, Shi R, Wu H, Xu Y, Ji S. Systemic immune-inflammatory index predict short-term outcome in recurrent/metastatic and locally advanced cervical cancer patients treated with PD-1 inhibitor. Sci Rep 2024; 14:31528. [PMID: 39732889 DOI: 10.1038/s41598-024-82976-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/10/2024] [Indexed: 12/30/2024] Open
Abstract
This study aims to assess the predictive value of certain markers of inflammation in patients with locally advanced or recurrent/metastatic cervical cancer who are undergoing treatment with anti-programmed death 1 (PD-1) therapy. A total of 105 patients with cervical cancer, who received treatment involving immunocheckpoint inhibitors (ICIs), were included in this retrospective study. We collected information on various peripheral blood indices, including the neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), lymphocyte-to-monocyte ratio (LMR), systemic immune-inflammation index (SII), and prognostic nutritional index (PNI). To determine the appropriate cutoff values for these inflammatory markers, we performed receiver operating characteristic curve (ROC) analysis. Progression-free survival (PFS) was estimated using the Kaplan-Meier method, and we conducted both univariate and multivariate Cox regression analyses to evaluate the prognostic value of these markers. Out of the 105 patients who received ICI treatment, the median progression-free survival (mPFS) was 19.0 months. We obtained the patients' clinical characteristics, such as age, pathological type, therapy regimen, Figo stage, NLR, PLR, LMR, SII, and PNI from their medical records. The optimal cutoff values for NLR, PLR, LMR, SII, and PNI were determined as 3.76, 218.1, 3.34, 1147.7, 43.75, respectively. In the univariate analysis, age, pathological type, therapy regimen, Figo stage, and LMR were not found to be associated with PFS. However, high NLR(P=0.001), high PLR(P<0.001), high SII(P<0.001), and low PNI (P=0.003)were all associated with shorter PFS. Multivariate analysis indicated that SII (P=0.017) was an independent risk factor for PFS. This study highlights the potential use of SII as a predictor of progression-free survival in cervical cancer patients undergoing immunotherapy.
Collapse
Affiliation(s)
- Qingqing Chen
- Department of Radiotherapy & Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215001, JiangSu Province, China
| | - Baoqian Zhai
- Department of Radiotherapy Oncology, Yancheng City No.1 People's Hospital, The Fourth Affiliated Hospital of Nantong University, Yancheng, 224000, JiangSu Province, China
| | - Jingjing Li
- Department of Radiotherapy & Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215001, JiangSu Province, China
| | - Hui Wang
- Department of Radiotherapy Oncology, Yancheng City No.1 People's Hospital, The Fourth Affiliated Hospital of Nantong University, Yancheng, 224000, JiangSu Province, China
| | - Zhengcao Liu
- Department of Radiotherapy & Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215001, JiangSu Province, China
| | - Runjun Shi
- Department of Radiotherapy & Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215001, JiangSu Province, China
| | - Haohao Wu
- Department of Radiotherapy Oncology, Yancheng City No.1 People's Hospital, The Fourth Affiliated Hospital of Nantong University, Yancheng, 224000, JiangSu Province, China.
| | - Yingying Xu
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215001, JiangSu Province, China.
| | - Shengjun Ji
- Department of Radiotherapy & Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215001, JiangSu Province, China.
| |
Collapse
|
15
|
Yang L, Fang A, Zhou S, Liu H. -RAMP3 promotes hepatocellular carcinoma tumor cell-mediated CCL2 degradation by supporting membrane distribution of ACKR2. Int Immunopharmacol 2024; 143:113419. [PMID: 39437486 DOI: 10.1016/j.intimp.2024.113419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
This study aimed to explore the potential bind of Receptor Activity-Modifying Protein 3 (RAMP3) with atypical chemokine receptor 2 (ACKR2), and their cooperative regulation on the degradation of the immunosuppressive chemokine CCL2 in the tumor microenvironment of HCC. Bioinformatic analysis was conducted using available bulk-tissue RNA-seq, single-cell RNA-seq, and protein-protein interaction datasets. Human HCC cell line Huh7 and HepG2 and mouse HCC cell line Hepa1-6 were utilized for experiments. Results showed that RAMP3 binds with ACKR2 in HCC tumor cells and promotes the membrane distribution of ACKR2 through RAB4-positive vesicles. RAMP3 promotes CCL2 scavenging through ACKR2 in HCC cells. Mouse RAMP3 inhibited the proliferation of mouse liver cancer cell line (Hepa1-6)-derived syngeneic tumors through ACKR2, reduced the intratumoral concentration of CCL2 in the tumor, and inhibited the phosphorylation of Signal Transducer and Activator of Transcription 3 (STAT3) and protein kinase B (AKT). In addition, mouse RAMP3 inhibited CD11b+/Gr-1 + myeloid cell infiltration and neovascularization in the tumors through ACKR2. In TCGA-LIHC, RAMP3low/ACKR2low group had the worst progression-free interval (PFI), while the RAMP3high/ACKR2high group had the best overall survival (OS). In summary, restoring RAMP3 expression in HCC cells may generate synergistic support for the anticancer effect of ACKR2.
Collapse
Affiliation(s)
- Lan Yang
- Department of Oncology Centre, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Aiping Fang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 610072 Chengdu, China
| | - Shijie Zhou
- Jinruijie Biotechnology Center, Chengdu 610041, China.
| | - Hao Liu
- Department of Oncology Centre, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
16
|
Masui H, Kawada K, Obama K. Neutrophil and Colorectal Cancer. Int J Mol Sci 2024; 26:6. [PMID: 39795864 PMCID: PMC11720084 DOI: 10.3390/ijms26010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Colorectal cancer (CRC) is often associated with metastasis and recurrence and is the leading cause of cancer-related mortality. In the progression of CRC, recent studies have highlighted the critical role of neutrophils, particularly tumor-associated neutrophils (TANs). TANs have both tumor-promoting and tumor-suppressing activities, contributing to metastasis, immunosuppression, angiogenesis, and epithelial-to-mesenchymal transition. Tumor-promoting TANs promote tumor growth by releasing proteases, reactive oxygen species, and cytokines, whereas tumor-suppressing TANs enhance immune responses by activating T cells and natural killer cells. Understanding the mechanisms underlying TAN mobilization, plasticity, and their role in the tumor microenvironment has revealed potential therapeutic targets. This review provides a comprehensive overview of TAN biology in CRC and discusses both the tumor-promoting and tumor-suppressing functions of neutrophils. Novel therapeutic approaches targeting TANs, such as chemokine receptor antagonists, aim to modulate neutrophil reprogramming and offer promising avenues for improving treatment outcomes of CRC.
Collapse
Affiliation(s)
- Hideyuki Masui
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.M.); (K.O.)
- Department of Surgery, Hirakata Kohsai Hospital, Osaka 573-0153, Japan
| | - Kenji Kawada
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.M.); (K.O.)
- Department of Surgery, Kurashiki Central Hospital, Okayama 710-8602, Japan
| | - Kazutaka Obama
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.M.); (K.O.)
| |
Collapse
|
17
|
Liu H, Zhao H, Zhou M, Zhao X, Lu Y. Neutrophils in cancer drug resistance: Roles and therapeutic opportunities. Cancer Lett 2024; 611:217417. [PMID: 39722405 DOI: 10.1016/j.canlet.2024.217417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/09/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
The tumor microenvironment (TME) is closely associated with the therapeutic response and clinical outcome of cancer drug therapies, which mainly include immunotherapy, chemotherapy and targeted therapy. Neutrophils that infiltrate tumors, also known as tumor-associated neutrophils (TANs), constitute a primary part of the TME. However, the functional importance of TANs in cancer drug therapy has long been overlooked because of their relatively short life span. Recent studies have shown that TANs play crucial protumoral or antitumoral roles in cancer drug treatment, largely because of their diversity and plasticity. This review describes the development, heterogeneity and recruitment of neutrophils in the context of cancer and emphasizes the role and mechanisms of TANs in cancer drug resistance. Additionally, several potential neutrophil-targeted strategies are discussed.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Hongyu Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Mingzhen Zhou
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Xiaodi Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China.
| | - Yuanyuan Lu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China.
| |
Collapse
|
18
|
Ju JA, Thompson KN, Annis DA, Mull ML, Gilchrist DE, Moriarty A, Chang KT, Stemberger MB, Noto MJ, Vitolo MI, Martin SS. Tubulin-Based Microtentacles Aid in Heterotypic Clustering of Neutrophil-Differentiated HL-60 Cells and Breast Tumor Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2409260. [PMID: 39696759 DOI: 10.1002/advs.202409260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/30/2024] [Indexed: 12/20/2024]
Abstract
Circulating tumor cells (CTCs) travel through the vasculature to seed secondary sites and serve as direct precursors of metastatic outgrowth for many solid tumors. Heterotypic cell clusters form between CTCs and white blood cells (WBCs) and recent studies report that a majority of these WBCs are neutrophils in patient and mouse models. The lab discovered that CTCs produce tubulin-based protrusions, microtentacles (McTNs), which promote reattachment, retention in distant sites during metastasis and formation of tumor cell clusters. Neutrophil-CTC clusters help CTCs survive the harsh vascular environment to promote successful metastasis, however, the specific mechanism of this interaction is not fully understood. Utilizing TetherChip technology, it is found that primary and differentiated neutrophils produce McTNs composed of detyrosinated and acetylated α-tubulin and vimentin. Neutrophil McTNs aid in cluster formation, migration, and reattachment, which are suppressed with the tubulin-depolymerizing agent, Vinorelbine. Co-culturing differentiated neutrophils and tumor cells formed heterotypic clusters that enhanced migration. CTC-neutrophil clusters have higher metastatic efficiency, and by demonstrating that neutrophils form McTNs, a new possible mechanism for how neutrophils interact with tumor cells is revealed. These findings further support the idea that developing cluster-disrupting therapies can provide a new targeted strategy to reduce the metastatic potential of cancer cells.
Collapse
Affiliation(s)
- Julia A Ju
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD, 21201, USA
- Graduate Program in Molecular Medicine, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD, 21201, USA
| | - Keyata N Thompson
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD, 21201, USA
| | - David A Annis
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD, 21201, USA
- Graduate Program in Epidemiology and Human Genetics, University of Maryland Baltimore, 800 W. Baltimore St., Baltimore, MD, 21201, USA
| | - Makenzy L Mull
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD, 21201, USA
- Graduate Program in Molecular Medicine, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD, 21201, USA
| | - Darin E Gilchrist
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD, 21201, USA
- Graduate Program in Molecular Medicine, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD, 21201, USA
| | - Aidan Moriarty
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD, 21201, USA
- Graduate Program in Molecular Medicine, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD, 21201, USA
| | - Katarina T Chang
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD, 21201, USA
- Graduate Program in Molecular Medicine, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD, 21201, USA
| | - Megan B Stemberger
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD, 21201, USA
| | - Michael J Noto
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Maryland School of Medicine, 22 S. Greene St., Baltimore, MD, 21201, USA
| | - Michele I Vitolo
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD, 21201, USA
- Graduate Program in Molecular Medicine, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD, 21201, USA
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD, 21201, USA
| | - Stuart S Martin
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD, 21201, USA
- Graduate Program in Molecular Medicine, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD, 21201, USA
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD, 21201, USA
- United States Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, 21201, USA
| |
Collapse
|
19
|
Rouaen JRC, Salerno A, Shai-Hee T, Murray JE, Castrogiovanni G, McHenry C, Jue TR, Pham V, Bell JL, Poursani E, Valli E, Cazzoli R, Damstra N, Nelson DJ, Stevens KLP, Chee J, Slapetova I, Kasherman M, Whan R, Lin F, Cochran BJ, Tedla N, Veli FC, Yuksel A, Mayoh C, Saletta F, Mercatelli D, Chtanova T, Kulasinghe A, Catchpoole D, Cirillo G, Biro M, Lode HN, Luciani F, Haber M, Gray JC, Trahair TN, Vittorio O. Copper chelation redirects neutrophil function to enhance anti-GD2 antibody therapy in neuroblastoma. Nat Commun 2024; 15:10462. [PMID: 39668192 PMCID: PMC11638255 DOI: 10.1038/s41467-024-54689-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 11/19/2024] [Indexed: 12/14/2024] Open
Abstract
Anti-disialoganglioside (GD2) antibody therapy has provided clinical benefit to patients with neuroblastoma however efficacy is likely impaired by the immunosuppressive tumor microenvironment. We have previously defined a link between intratumoral copper levels and immune evasion. Here, we report that adjuvant copper chelation potentiates anti-GD2 antibody therapy to confer durable tumor control in immunocompetent models of neuroblastoma. Mechanistic studies reveal copper chelation creates an immune-primed tumor microenvironment through enhanced infiltration and activity of Fc-receptor-bearing cells, specifically neutrophils which are emerging as key effectors of antibody therapy. Moreover, we report copper sequestration by neuroblastoma attenuates neutrophil function which can be successfully reversed using copper chelation to increase pro-inflammatory effector functions. Importantly, we repurpose the clinically approved copper chelating agent Cuprior as a non-toxic, efficacious immunomodulatory strategy. Collectively, our findings provide evidence for the clinical testing of Cuprior as an adjuvant to enhance the activity of anti-GD2 antibody therapy and improve outcomes for patients with neuroblastoma.
Collapse
Affiliation(s)
- Jourdin R C Rouaen
- School of Biomedical Sciences, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Antonietta Salerno
- School of Biomedical Sciences, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Tyler Shai-Hee
- School of Biomedical Sciences, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Jayne E Murray
- School of Biomedical Sciences, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Giulia Castrogiovanni
- School of Biomedical Sciences, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | - Charlotte McHenry
- School of Biomedical Sciences, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Toni Rose Jue
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Vu Pham
- School of Biomedical Sciences, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | - Jessica Lilian Bell
- School of Biomedical Sciences, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Ensieh Poursani
- School of Biomedical Sciences, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Emanuele Valli
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Riccardo Cazzoli
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Naomi Damstra
- Institute for Respiratory Health, National Centre for Asbestos Related Diseases, University of Western Australia, Perth, WA, Australia
- Curtin Medical School, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
| | - Delia J Nelson
- Curtin Medical School, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
- Curtin Health Innovation Research Institute, Bentley, WA, Australia
| | - Kofi L P Stevens
- Institute for Respiratory Health, National Centre for Asbestos Related Diseases, University of Western Australia, Perth, WA, Australia
- Curtin Medical School, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
| | - Jonathan Chee
- Institute for Respiratory Health, National Centre for Asbestos Related Diseases, University of Western Australia, Perth, WA, Australia
| | - Iveta Slapetova
- Katharina Gaus Light Microscopy Facility, University of New South Wales, Sydney, NSW, Australia
| | - Maria Kasherman
- Katharina Gaus Light Microscopy Facility, University of New South Wales, Sydney, NSW, Australia
| | - Renee Whan
- Katharina Gaus Light Microscopy Facility, University of New South Wales, Sydney, NSW, Australia
| | - Francis Lin
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW Sydney, Sydney, NSW, Australia
| | - Blake J Cochran
- School of Biomedical Sciences, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | - Nicodemus Tedla
- School of Biomedical Sciences, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | - Feyza Colakoglu Veli
- EMBL Australia, Single Molecule Science Node, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Aysen Yuksel
- Tumour Bank, Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Chelsea Mayoh
- School of Biomedical Sciences, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Federica Saletta
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Daniele Mercatelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Tatyana Chtanova
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW Sydney, Sydney, NSW, Australia
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Arutha Kulasinghe
- Frazer Institute, University of Queensland, Brisbane, QLD, Australia
| | - Daniel Catchpoole
- Tumour Bank, Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Giuseppe Cirillo
- Department of Pharmacy Health and Nutritional Science, University of Calabria, Rende, Italy
| | - Maté Biro
- EMBL Australia, Single Molecule Science Node, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Holger N Lode
- Department of Pediatric Hematology-Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Fabio Luciani
- School of Biomedical Sciences, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- Kirby Institute for Infection and Immunity, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Michelle Haber
- School of Biomedical Sciences, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Juliet C Gray
- Centre for Cancer Immunology, University of Southampton, Southampton, UK
| | - Toby N Trahair
- School of Biomedical Sciences, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Orazio Vittorio
- School of Biomedical Sciences, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia.
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
20
|
Leven AS, Wagner N, Nienaber S, Messiha D, Tasdogan A, Ugurel S. Changes in tumor and cardiac metabolism upon immune checkpoint. Basic Res Cardiol 2024:10.1007/s00395-024-01092-8. [PMID: 39658699 DOI: 10.1007/s00395-024-01092-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024]
Abstract
Cardiovascular disease and cancer are the leading causes of death in the Western world. The associated risk factors are increased by smoking, hypertension, diabetes, sedentary lifestyle, aging, unbalanced diet, and alcohol consumption. Therefore, the study of cellular metabolism has become of increasing importance, with current research focusing on the alterations and adjustments of the metabolism of cancer patients. This may also affect the efficacy and tolerability of anti-cancer therapies such as immune-checkpoint inhibition (ICI). This review will focus on metabolic adaptations and their consequences for various cell types, including cancer cells, cardiac myocytes, and immune cells. Focusing on ICI, we illustrate how anti-cancer therapies interact with metabolism. In addition to the desired tumor response, we highlight that ICI can also lead to a variety of side effects that may impact metabolism or vice versa. With regard to the cardiovascular system, ICI-induced cardiotoxicity is increasingly recognized as one of the most life-threatening adverse events with a mortality of up to 50%. As such, significant efforts are being made to assess the specific interactions and associated metabolic changes associated with ICIs to improve both efficacy and management of side effects.
Collapse
Affiliation(s)
- Anna-Sophia Leven
- Department of Dermatology, Venereology and Allergology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| | - Natalie Wagner
- Department of Dermatology, Venereology and Allergology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Stephan Nienaber
- Clinic III for Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Daniel Messiha
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Centre, University of Duisburg-Essen, Essen, Germany
| | - Alpaslan Tasdogan
- Department of Dermatology, Venereology and Allergology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
- National Center for Tumor Diseases (NCT)-West, Campus Essen, and Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Essen, Germany
| | - Selma Ugurel
- Department of Dermatology, Venereology and Allergology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
- National Center for Tumor Diseases (NCT)-West, Campus Essen, and Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
21
|
Tan H, Jiang Y, Shen L, Nuerhashi G, Wen C, Gu L, Wang Y, Qi H, Cao F, Huang T, Liu Y, Xie W, Deng W, Fan W. Cryoablation-induced neutrophil Ca 2+ elevation and NET formation exacerbate immune escape in colorectal cancer liver metastasis. J Exp Clin Cancer Res 2024; 43:319. [PMID: 39648199 PMCID: PMC11626751 DOI: 10.1186/s13046-024-03244-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/30/2024] [Indexed: 12/10/2024] Open
Abstract
BACKGROUND Liver metastasis poses a significant barrier to effective immunotherapy in patients with colorectal cancer. Cryoablation has emerged as a vital supplementary therapeutic approach for these patients. However, its impact on the tumor microenvironment following the ablation of liver metastases remains unclear. METHODS We acquired multi-omics time-series data at 1 day, 5 days, and 14 days post-cryoablation, based on tumor and peripheral blood samples from clinical patients, cell co-culture models, and a liver metastases mouse model built on the MC38 cell line in C57BL/6 J mice. This dataset included single-cell transcriptomic sequencing, bulk tissue transcriptomic sequencing, 4D-Label-Free proteomics, flow cytometry data, western blot data, and histological immunofluorescence staining of pathological specimens. RESULTS We found that a neutrophil-related inflammatory state persisted for at least 14 days post-cryoablation. During this period, neutrophils underwent phenotypic changes, shifting from the N1 to the N2 type. Cryoablation also caused a significant increase in intracellular Ca2+ concentration in neutrophils, which triggered the formation of PAD4-dependent neutrophil extracellular traps (NETs), further promoting immune evasion. Moreover, animal studies demonstrated that depleting or inhibiting the CXCL2-CXCR2 signaling axis within neutrophils, or degrading NETs, could effectively restore the host's anti-tumor immune response. CONCLUSIONS These findings underscore the critical role of neutrophils and their NETs in immune escape following cryoablation. Targeting the CXCL2-CXCR2-Ca2+-PAD4 axis could enhance the therapeutic response to PD-1 antibodies, providing a potential strategy to improve treatment outcomes for colorectal cancer with liver metastases.
Collapse
Affiliation(s)
- Hongtong Tan
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yiquan Jiang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Lujun Shen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Gulijiayina Nuerhashi
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Chunyong Wen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ling Gu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yujia Wang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Han Qi
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Fei Cao
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Tao Huang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ying Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Weining Xie
- Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Guangdong, China
| | - Wuguo Deng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Weijun Fan
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
22
|
Schol P, van Elsas MJ, Middelburg J, Nijen Twilhaar MK, van Hall T, van der Sluis TC, van der Burg SH. Myeloid effector cells in cancer. Cancer Cell 2024; 42:1997-2014. [PMID: 39658540 DOI: 10.1016/j.ccell.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/21/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024]
Abstract
The role of myeloid cells in tumor immunity is multifaceted. While dendritic cells support T cell-mediated tumor control, the highly heterogenous populations of macrophages, neutrophils, and immature myeloid cells were generally considered immunosuppressive. This view has led to effective therapies reinvigorating tumor-reactive T cells; however, targeting the immunosuppressive effects of macrophages and neutrophils to boost the cancer immunity cycle was clinically less successful. Recent studies interrogating the role of immune cells in the context of successful immunotherapy affirm the key role of T cells, but simultaneously challenge the idea that the cytotoxic function of T cells is the main contributor to therapy-driven tumor regression. Rather, therapy-activated intra-tumoral T cells recruit and activate or reprogram several myeloid effector cell types, the presence of which is necessary for tumor rejection. Here, we reappreciate the key role of myeloid effector cells in tumor rejection as this may help to shape future successful immunotherapies.
Collapse
Affiliation(s)
- Pieter Schol
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Marit J van Elsas
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Jim Middelburg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Maarten K Nijen Twilhaar
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Tetje C van der Sluis
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
23
|
O'Reilly A, Zhao W, Wickström S, Arnér ESJ, Kiessling R. Reactive oxygen species: Janus-faced molecules in the era of modern cancer therapy. J Immunother Cancer 2024; 12:e009409. [PMID: 39645234 PMCID: PMC11629020 DOI: 10.1136/jitc-2024-009409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/11/2024] [Indexed: 12/09/2024] Open
Abstract
Oxidative stress, that is, an unbalanced increase in reactive oxygen species (ROS), contributes to tumor-induced immune suppression and limits the efficacy of immunotherapy. Cancer cells have inherently increased ROS production, intracellularly through metabolic perturbations and extracellularly through activation of NADPH oxidases, which promotes cancer progression. Further increased ROS production or impaired antioxidant systems, induced, for example, by chemotherapy or radiotherapy, can preferentially kill cancer cells over healthy cells. Inflammatory cell-derived ROS mediate immunosuppressive effects of myeloid-derived suppressor cells and activated granulocytes, hampering antitumor effector cells such as T cells and natural killer (NK) cells. Cancer therapies modulating ROS levels in tumors may thus have entirely different consequences when targeting cancer cells versus immune cells. Here we discuss the possibility of developing more efficient cancer therapies based on reduction-oxidation modulation, as either monotherapies or in combination with immunotherapy. Short-term, systemic administration of antioxidants or drugs blocking ROS production can boost the immune system and act in synergy with immunotherapy. However, prolonged use of antioxidants can instead enhance tumor progression. Alternatives to systemic antioxidant administration are under development where gene-modified or activated T cells and NK cells are shielded ex vivo against the harmful effects of ROS before the infusion to patients with cancer.
Collapse
Affiliation(s)
- Aine O'Reilly
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Medicine, University College Cork, Cork, Ireland
- The Christie NHS Foundation Trust, Manchester, UK
| | - Wenchao Zhao
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Stina Wickström
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Theme Cancer, Patient area Head and Neck, Lung and Skin, Karolinska University Hospital, Stockholm, Sweden
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Department of Selenoprotein Research and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Rolf Kiessling
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Theme Cancer, Patient area Head and Neck, Lung and Skin, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
24
|
Wu A, Li H, Gao M, Liang J, Huang J, Farrés J, Cao D, Li G. The pan-cancer landscape of aldo-keto reductase1B10 reveals that its expression is diminished in gastric cancer. Front Immunol 2024; 15:1488042. [PMID: 39712017 PMCID: PMC11659136 DOI: 10.3389/fimmu.2024.1488042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024] Open
Abstract
Introduction Aldo-keto reductase 1B10 (AKR1B10) is a multifunctional enzyme, which is important in cancer development and progression, but the landscape of AKR1B10 in pan-cancers and in tumor microenvironment is unclear. Method This study integrated the sequencing data of 33 cancer types, including gastric cancer, from TCGA project to explored the expression pattern and genetic and epigenetic alterations of AKR1B10. The association of AKR1B10 expression with clinical progression of cancers was evaluated by Kaplan-Meier analysis; the potential role of AKR1B10 in tumor microenvironment (TME) and immune-related gene expression were analyzed by PURITY, ESTIMATE, TIMER and CIBERSORT algorithms. The expression of AKR1B10 and immune cell markers in gastric cancer were evaluated with multiplex immunofluorescence staining. Result Results indicated that AKR1B10 was highly expressed in the gastrointestinal tract in health donors, but the expression of AKR1B10 was significantly changed in most of cancer types, which may be ascribed to DNA methylation in its promoter. The AKR1B10 expression in cancers and its value in disease progression was bidirectional and functionally enriched in metabolism in pan-cancers. In tumor microenvironment, AKR1B10 was significantly correlated with immune cell infiltrations and immune gene expression. In the stomach, along with the diminishing of AKR1B10 expression, CD68+ macrophage increased and CD19+ B cell decreased in gastric cancer. Discussion These data indicates that AKR1B10 may be an important factor in the development and progression and a potential therapeutic target for multiple cancers, but plays as a protector in the gastric tissues.
Collapse
Affiliation(s)
- Anqi Wu
- Department of Clinical Research Center, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Hunan Province Key Laboratory of Basic and Clinical Pharmacological Research on Gastrointestinal Tumors, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Hao Li
- Department of Pathology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Mengnan Gao
- Department of Gastroenterology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Juan Liang
- Department of Gastroenterology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jiaqi Huang
- Department of Gastroenterology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jaume Farrés
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Deliang Cao
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, China
| | - Guoqing Li
- Hunan Province Key Laboratory of Basic and Clinical Pharmacological Research on Gastrointestinal Tumors, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Department of Gastroenterology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
25
|
Yipeng Z, Chao C, Ranran L, Tingting P, Hongping Q. Metabolism: a potential regulator of neutrophil fate. Front Immunol 2024; 15:1500676. [PMID: 39697327 PMCID: PMC11652355 DOI: 10.3389/fimmu.2024.1500676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024] Open
Abstract
Neutrophils are essential components of the innate immune system that defend against the invading pathogens, such as bacteria, viruses, and fungi, as well as having regulatory roles in various conditions, including tissue repair, cancer immunity, and inflammation modulation. The function of neutrophils is strongly related to their mode of cell death, as different types of cell death involve various cellular and molecular alterations. Apoptosis, a non-inflammatory and programmed type of cell death, is the most common in neutrophils, while other modes of cell death, including NETOsis, necrosis, necroptosis, autophagy, pyroptosis, and ferroptosis, have specific roles in neutrophil function regulation. Immunometabolism refers to energy and substance metabolism in immune cells, and profoundly influences immune cell fate and immune system function. Intercellular and intracellular signal transduction modulate neutrophil metabolism, which can, in turn, alter their activities by influencing various cell signaling pathways. In this review, we compile an extensive body of evidence demonstrating the role of neutrophil metabolism in their various forms of cell death. The review highlights the intricate metabolic characteristics of neutrophils and their interplay with various types of cell death.
Collapse
Affiliation(s)
| | | | | | - Pan Tingting
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University
School of Medicine, Shanghai, China
| | - Qu Hongping
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University
School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Valcenko A, Zwick A, Schneider L, Linxweiler M, Lohse S. The tumor cell killing capacity of head and neck cancer patient-derived neutrophils depends on tumor stage, gender and the antibody isotype. Oral Oncol 2024; 159:107042. [PMID: 39306937 DOI: 10.1016/j.oraloncology.2024.107042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 11/30/2024]
Abstract
Neutrophils play a crucial role in the tumor microenvironment (TME) of head and neck squamous cell carcinomas (HNSCC) and significantly influence treatment outcomes. Phenotypic and functional properties of neutrophils adapt to the TME with distinct subsets modulating disease progression and therapeutic interventions. Here, we evaluated phenotypic and functional differences of neutrophils derived from HNSCC patients and healthy donors. We observed significant phenotypic differences between neutrophils from healthy donors and HNSCC patient-derived neutrophils. Gender and tumor stage influenced neutrophil phenotypes and their ability to lyse tumor cells through antibody-dependent cell-mediated cytotoxicity (ADCC). Patients with advanced HNSCC and males may benefit less from neutrophil-centered immunotherapy. An engineered IgA2 antibody specific for the epidermal growth factor receptor (EGFR) demonstrated superior efficacy in activating neutrophils for ADCC compared to Panitumumab using healthy and patient-derived neutrophils, underscoring the potential of the IgA isotype as a therapeutic alternative. The distinct behavior and antibody-isotype dependent ADCC competence of CD177+/- neutrophils of healthy but not HNSCC donors warrants further exploration. Our study emphasizes the importance of personalized immunotherapy treatments that consider the characteristics of neutrophils, patient demographics, and the type of antibody to improve ADCC and ultimately enhance treatment outcomes for HNSCC.
Collapse
Affiliation(s)
- Alexander Valcenko
- Institute for Virology, Saarland University Medical Center, Homburg, Germany
| | - Anabel Zwick
- Institute for Virology, Saarland University Medical Center, Homburg, Germany
| | - Lissy Schneider
- Institute for Virology, Saarland University Medical Center, Homburg, Germany
| | - Maximilian Linxweiler
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University Medical Center, 66421, Homburg/Saar, Germany
| | - Stefan Lohse
- Institute for Virology, Saarland University Medical Center, Homburg, Germany.
| |
Collapse
|
27
|
Li J, Zhou W, Wang H, Huang M, Deng H. Exosomal circular RNAs in tumor microenvironment: An emphasis on signaling pathways and clinical opportunities. MedComm (Beijing) 2024; 5:e70019. [PMID: 39584047 PMCID: PMC11586091 DOI: 10.1002/mco2.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024] Open
Abstract
Exosomes can regulate the malignant progression of tumors by carrying a variety of genetic information and transmitting it to target cells. Recent studies indicate that exosomal circular RNAs (circRNAs) regulate multiple biological processes in carcinogenesis, such as tumor growth, metastasis, epithelial-mesenchymal transition, drug resistance, autophagy, metabolism, angiogenesis, and immune escape. In the tumor microenvironment (TME), exosomal circRNAs can be transferred among tumor cells, endothelial cells, cancer-associated fibroblasts, immune cells, and microbiota, affecting tumor initiation and progression. Due to the high stability and widespread presence of exosomal circRNAs, they hold promise as biomarkers for tumor diagnosis and prognosis prediction in blood and urine. In addition, designing nanoparticles targeting exosomal circRNAs and utilizing exosomal circRNAs derived from immune cells or stem cells provide new strategies for cancer therapy. In this review, we examined the crucial role of exosomal circRNAs in regulating tumor-related signaling pathways and summarized the transmission of exosomal circRNAs between various types of cells and their impact on the TME. Finally, our review highlights the potential of exosomal circRNAs as diagnostic and prognostic prediction biomarkers, as well as suggesting new strategies for clinical therapy.
Collapse
Affiliation(s)
- Junshu Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Wencheng Zhou
- Department of Medical AestheticsWest China School of Public Health and West China Fourth HospitalSichuan UniversityChengduChina
| | - Huiling Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Meijuan Huang
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical OncologyCancer CenterWest China Hospital, Sichuan UniversityChengduChina
| | - Hongxin Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
28
|
Kim DH, Jang SY, Keam B. Predictive value of early dynamic changes of NLR and PLR for the efficacy of immune checkpoint inhibitor in head and neck squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 138:763-771. [PMID: 39181857 DOI: 10.1016/j.oooo.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/27/2024]
Abstract
OBJECTIVE We analyzed the predictive value of dynamic changes in neutrophil-lymphocyte ratio (NLR) and platelet-lymphocyte ratio (PLR) in recurrent and/or metastatic (R/M) head and neck squamous cell carcinoma (HNSCC) treated with immune checkpoint inhibitors (ICIs). STUDY DESIGN A total of 104 patients with R/M HNSCC treated with ICIs during August 2018 to June 2023 were included. Dynamic changes were defined as the difference between NLR and PLR on day 1 of cycles 1 and 2. RESULTS Patients with increased NLR or PLR had an independently increased risk of disease progression at the first response evaluation (odds ratio [OR] 5.26, P = .005; OR 2.29, P = .042), disease progression (hazard ratio [HR] 2.29, P = .003; HR 1.68, P = .027), and death (HR 1.86, P = .027; HR 1.68, P = .037). Furthermore, patients with a decrease in NLR showed longer progression-free survival, with HRs of 0.36 (P < .001) for those with low pre-ICI NLR and 0.52 (P = .041) for those with high pre-ICI NLR, compared to those with increased NLR. CONCLUSIONS Increased NLR or PLR was associated with adverse outcomes after ICI treatment in patients with R/M HNSCC.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seo Yoon Jang
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Bhumsuk Keam
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
29
|
Zhang Y, Dong X, Zhang Y, Chen Z, Zhou G, Chen N, Shen W, Yang K, Pei P. Biomaterials to regulate tumor extracellular matrix in immunotherapy. J Control Release 2024; 376:149-166. [PMID: 39389365 DOI: 10.1016/j.jconrel.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
The tumor extracellular matrix (ECM) provides physical support and influences tumor development, metastasis, and the tumor microenvironment, creating barriers to immune drug delivery and cell infiltration. Therefore, modulating or degrading the ECM is of significant importance to enhance the efficacy of tumor immunotherapy. This manuscript initially summarizes the main strategies and mechanisms of biomaterials in modulating various components of the ECM, including collagen, fibronectin, hyaluronic acid, and in remodeling the ECM. Subsequently, it discusses the benefits of biomaterials for immunotherapy following ECM modulation, such as promoting the infiltration of drugs and immune cells, regulating immune cell function, and alleviating the immunosuppressive microenvironment. The manuscript also briefly introduces the application of biomaterials that utilize and mimic the ECM for tumor immunotherapy. Finally, it addresses the current challenges and future directions in this field, providing a comprehensive overview of the potential and innovation in leveraging biomaterials to enhance cancer treatment outcomes. Our work will offer a comprehensive overview of ECM modulation strategies and their application in biomaterials to enhance tumor immunotherapy.
Collapse
Affiliation(s)
- Yujie Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xuexue Dong
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China
| | - Yanxiang Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zetong Chen
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China; Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China
| | - Ni Chen
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China.
| | - Wenhao Shen
- Department of Oncology, Taizhou People's Hospital Affiliated to Nanjing Medical University, Jiangsu, China.
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Pei Pei
- Department of Nuclear Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province 230022, China; Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China.
| |
Collapse
|
30
|
Lika J, Fan J. Carbohydrate metabolism in supporting and regulating neutrophil effector functions. Curr Opin Immunol 2024; 91:102497. [PMID: 39366310 PMCID: PMC11609006 DOI: 10.1016/j.coi.2024.102497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024]
Abstract
Neutrophils, the first responders of the innate immune system, can turn on a range of effector functions upon activation. Emerging research shows activated neutrophils undergo highly dynamic metabolic rewiring. This metabolic rewiring provides energy and reducing power to fuel effector functions and modulate signaling molecules to regulate neutrophil functions. Here, we review the current understanding of the specific metabolic requirements and regulators of neutrophil migration, neutrophil extracellular traps release, and pathogen killing. Particularly, we discuss how major carbohydrate metabolic pathways, including glycolysis, glycogen cycling, pentose phosphate pathway, and TCA cycle, are rewired upon neutrophil activation to support these functions. Continued investigation into the metabolic regulators of neutrophil functions can lead to therapeutic opportunities in various diseases.
Collapse
Affiliation(s)
- Jorgo Lika
- Morgridge Institute for Research, Madison, WI, USA; Medical Scientist Training Program, University of Wisconsin-Madison, Madison, WI, USA; Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Jing Fan
- Morgridge Institute for Research, Madison, WI, USA; Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
31
|
Kang W, Wang C, Wang M, Liu M, Hu W, Liang X, Yang J, Zhang Y. A key regulator of tumor-associated neutrophils: the CXCR2 chemokine receptor. J Mol Histol 2024; 55:1051-1061. [PMID: 39269537 DOI: 10.1007/s10735-024-10260-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
In recent years, with the advance of research, the role of tumor-associated neutrophils (TANs) in tumors has become a research hotspot. As important effector cells in the innate immune system, neutrophils play a key role in the immune and inflammatory responses of the body. As the first line of defense against bacterial and fungal infections, neutrophils have the ability to kill invading pathogens. In the pathological state of malignant tumors, the phenotype of neutrophils is altered and has an important regulatory function in tumor development. The C-X-C motif chemokine receptor 2(CXCR2) is a key molecule that mediates the migration and aggregation signaling pathway of immune cells, especially neutrophils. This review focuses on the regulation of CXCR2 on TANs in the process of tumorigenesis and development, and emphasizes the application significance of CXCR2 inhibitors in blocking the migration of TANs to tumors.
Collapse
Affiliation(s)
- Wenyan Kang
- Department of Gynecology, The First Affiliated Hospital, Hengyang School of Medicine, University of South China, Hengyang, 421001, Hunan, P.R. China
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 420001, Hunan, China
| | - Chengkun Wang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 420001, Hunan, China
| | - Minhui Wang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 420001, Hunan, China
| | - Meiqi Liu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 420001, Hunan, China
| | - Wei Hu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 420001, Hunan, China
| | - Xiaoqiu Liang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 420001, Hunan, China
| | - Juanli Yang
- Department of Gynecology, The First Affiliated Hospital, Hengyang School of Medicine, University of South China, Hengyang, 421001, Hunan, P.R. China.
| | - Yang Zhang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 420001, Hunan, China.
| |
Collapse
|
32
|
Herro R, Grimes HL. The diverse roles of neutrophils from protection to pathogenesis. Nat Immunol 2024; 25:2209-2219. [PMID: 39567761 DOI: 10.1038/s41590-024-02006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/07/2024] [Indexed: 11/22/2024]
Abstract
Neutrophil granulocytes are the most abundant leukocytes in the blood and constitute a critical arm of innate immunity. They are generated in the bone marrow, and under homeostatic conditions enter the bloodstream to patrol tissues and scout for potential pathogens that they quickly destroy through phagocytosis, intracellular degradation, release of granules and formation of extracellular traps. Thus, neutrophils are important effector cells involved in antibacterial defense. However, neutrophils can also be pathogenic. Emerging data suggest they have critical functions related to tissue repair and fibrosis. Moreover, similarly to other innate immune cells, neutrophil cell states are affected by their microenvironment. Notably, this includes tumors that co-opt neutrophils. Neutrophils can undergo transcriptional and epigenetic reprogramming, thus causing or modulating inflammation and injury. It is also possible that distinct neutrophil subsets are generated with designated functions in the bone marrow. Understanding neutrophil plasticity and alternative cell states will help resolve their contradictive roles. This Review summarizes the most recent key findings surrounding protective versus pathogenic functions of neutrophils; elaborating on phenotype-specific subsets of neutrophils and their involvement in homeostasis and disease.
Collapse
Affiliation(s)
- Rana Herro
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA.
| | - H Leighton Grimes
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
33
|
Eren E, Das J, Tollefsbol TO. Polyphenols as Immunomodulators and Epigenetic Modulators: An Analysis of Their Role in the Treatment and Prevention of Breast Cancer. Nutrients 2024; 16:4143. [PMID: 39683540 DOI: 10.3390/nu16234143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Breast cancer poses a substantial health challenge for women globally. Recently, there has been a notable increase in scholarly attention regarding polyphenols, primarily attributed to not only the adverse effects associated with conventional treatments but also their immune-preventive impacts. Polyphenols, nature-derived substances present in vegetation, including fruits and vegetables, have received considerable attention in various fields of science due to their probable wellness merits, particularly in the treatment and hindrance of cancer. This review focuses on the immunomodulatory effects of polyphenols in breast cancer, emphasizing their capacity to influence the reaction of adaptive and innate immune cells within the tumor-associated environment. Polyphenols are implicated in the modulation of inflammation, the enhancement of antioxidant defenses, the promotion of epigenetic modifications, and the support of immune functions. Additionally, these compounds have been shown to influence the activity of critical immune cells, including macrophages and T cells. By targeting pathways involved in immune evasion, polyphenols may augment the capacity of the defensive system to detect and eliminate tumors. The findings suggest that incorporating polyphenol-rich foods into the diet could offer a promising, collaborative (integrative) approach to classical breast cancer remedial procedures by regulating how the defense mechanism interacts with the disease.
Collapse
Affiliation(s)
- Esmanur Eren
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jyotirmoyee Das
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O'Neal Comprehensive Cancer Research, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
34
|
Lustig M, Hahn C, Leangen Herigstad M, Andersen JT, Leusen JHW, Burger R, Valerius T. Sialylation inhibition improves macrophage mediated tumor cell phagocytosis of breast cancer cells triggered by therapeutic antibodies of different isotypes. Front Oncol 2024; 14:1488668. [PMID: 39659795 PMCID: PMC11628485 DOI: 10.3389/fonc.2024.1488668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024] Open
Abstract
Tumor cell phagocytosis by macrophages is considered a relevant mechanism of action for many therapeutic IgG antibodies. However, tumor cells employ several mechanisms to evade immune recognition, including hypersialylation. Here, we describe how reduction of sialic acid exposure on tumor cells promotes antibody-dependent tumor cell phagocytosis (ADCP) by macrophages. Incubation with the sialyltransferase inhibitor (STi) P-3Fax-Neu5Ac reduced sialylation on two breast cancer cell lines, rendering these cells more susceptible to macrophage mediated phagocytosis by EGFR or HER2 antibodies. This was observed with not only IgG1 and IgG2 antibodies but also IgA2 variants. These results show that inhibiting sialic acid exposure triggers enhanced tumor cell phagocytosis by macrophages irrespective of the antibody isotype and the tumor target antigen. Investigating the underlying mechanisms of enhanced ADCP, we observed reduced binding of soluble sialic acid-binding immunoglobulin-like lectins (Siglec)-7 and Siglec-9 to tumor cells after sialylation inhibition. However, Fc silent blocking antibodies against Siglec-7 or Siglec-9, or their combination, only marginally improved ADCP. Our results further promote the concept of cancer hypersialylation as immune escape mechanism, which could serve as target to improve tumor immunotherapy with monoclonal antibodies.
Collapse
Affiliation(s)
- Marta Lustig
- Division of Stem Cell Transplantation and Cellular Immunotherapies, Department of Medicine II, University Medical Center Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Christoph Hahn
- Division of Stem Cell Transplantation and Cellular Immunotherapies, Department of Medicine II, University Medical Center Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
- Institute for Clinical Medicine, Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Marie Leangen Herigstad
- Institute for Clinical Medicine, Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo, Norway
| | - Jan Terje Andersen
- Institute for Clinical Medicine, Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo, Norway
| | - Jeanette H. W. Leusen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Renate Burger
- Division of Stem Cell Transplantation and Cellular Immunotherapies, Department of Medicine II, University Medical Center Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Thomas Valerius
- Division of Stem Cell Transplantation and Cellular Immunotherapies, Department of Medicine II, University Medical Center Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
35
|
Guo R, Wang P. The complex role of regulatory cells in breast cancer: implication for immunopathogenesis and immunotherapy. Breast Cancer 2024:10.1007/s12282-024-01654-7. [PMID: 39589625 DOI: 10.1007/s12282-024-01654-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
Breast cancers (BCs) are frequently linked to an immunosuppressive microenvironment that facilitates tumor evasion of anti-cancer immunity. The cells that suppress the immune system such as regulatory B cells (Bregs), regulatory T cells (Tregs), tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), myeloid-derived suppressor cells (MDSCs), play a crucial role in immune resistance. Also, tumor progression and immune evasion of cancers are facilitated by cytokines and factors released by tumor cells or immunosuppressive cells. Targeting these regulatory cells therapeutically, whether through elimination, inactivation, or reprogramming, has resulted in hopeful anti-tumor reactions. Yet, the substantial diversity and adaptability of these cells, both in terms of appearance and function, as well as their variation over time and depending on where they are in the body, have posed significant challenges for using them as reliable biomarkers and creating focused therapies that could target their creation, growth, and various tumor-promoting roles. The immunotherapy approaches in BC and their effectiveness in treating certain subtypes are still in their initial phases. In this review, we thoroughly outlined the characteristics, roles, and possible treatment options for these immune-suppressing cells in the tumor environment.
Collapse
Affiliation(s)
- RuiJuan Guo
- Department of Oncology, Yantaishan Hospital Affiliated to Binzhou Medical University, Shandong Province, Yantai City, People's Republic of China
| | - Ping Wang
- Department of Oncology, Yantaishan Hospital Affiliated to Binzhou Medical University, Shandong Province, Yantai City, People's Republic of China.
| |
Collapse
|
36
|
Zhang J, Zhang M, Lou J, Wu L, Zhang S, Liu X, Ke Y, Zhao S, Song Z, Bai X, Cai Y, Jiang T, Zhang G. Machine Learning Integration with Single-Cell Transcriptome Sequencing Datasets Reveals the Impact of Tumor-Associated Neutrophils on the Immune Microenvironment and Immunotherapy Outcomes in Gastric Cancer. Int J Mol Sci 2024; 25:12715. [PMID: 39684426 DOI: 10.3390/ijms252312715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
The characteristics of neutrophils play a crucial role in defining the tumor inflammatory environment. However, the function of tumor-associated neutrophils (TANs) in tumor immunity and their response to immune checkpoint inhibitors (ICIs) remains incompletely understood. By analyzing single-cell RNA sequencing data from over 600,000 cells in gastric cancer (GSE163558 and GSE183904), colorectal cancer (GSE205506), and lung cancer (GSE207422), we identified neutrophil subsets in primary gastric cancer that are associated with the treatment response to ICIs. Specifically, we focused on neutrophils with high expression of CD44 (CD44_NEU), which are abundant during tumor progression and exert significant influence on the gastric cancer immune microenvironment. Machine learning analysis revealed 22 core genes associated with CD44_NEU, impacting inflammation, proliferation, migration, and oxidative stress. In addition, multiple immunofluorescence staining and gastric cancer spatial transcriptome data (GSE203612) showed a correlation between CD44_NEU and T-cell infiltration in gastric cancer tissues. A risk score model derived from seven essential genes (AQP9, BASP1, BCL2A1, PLEK, PDE4B, PROK2, and ACSL1) showed better predictive capability for patient survival compared to clinical features alone, and integrating these scores with clinical variables resulted in a prognostic nomogram. Overall, this study highlights the heterogeneity of TANs, particularly the CD44_NEU critical influence on immunotherapy outcomes, paving the way for personalized treatment strategies.
Collapse
Affiliation(s)
- Jingcheng Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Mingsi Zhang
- Musculoskeletal Sport Science and Health, Loughborough University, Loughborough LE11 3TU, UK
| | - Jiaheng Lou
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Linyue Wu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shuo Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaojuan Liu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yani Ke
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Sicheng Zhao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhiyuan Song
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xing Bai
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yan Cai
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Tao Jiang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Guangji Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
37
|
Arleo A, Montagner A, Giovannini C, Suzzi F, Piscaglia F, Gramantieri L. Multifaceted Aspects of Dysfunctional Myelopoiesis in Cancer and Therapeutic Perspectives with Focus on HCC. Biomolecules 2024; 14:1496. [PMID: 39766202 PMCID: PMC11673139 DOI: 10.3390/biom14121496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 01/04/2025] Open
Abstract
Myelopoiesis provides for the formation and continued renewal of cells belonging primarily to the innate immune system. It is a highly plastic process that secures the response to external and internal stimuli to face acute and changing needs. Infections and chronic diseases including cancer can modulate it by producing several factors, impacting proliferation and differentiation programs. While the lymphocytic compartment has attracted major attention due to the role of adaptive immunity in anticancer immune response, in recent years, research has found convincing evidence that confirms the importance of innate immunity and the key function played by emergency myelopoiesis. Due to cancer's ability to manipulate myelopoiesis to its own advantage, the purpose of this review is to outline myelopoiesis processes within the tumor microenvironment and suggest possible therapeutic lines of research to restore the physiological functioning of the host's immune system, with a special outlook on hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Andrea Arleo
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.M.); (C.G.); (F.S.); (F.P.)
| | - Annapaola Montagner
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.M.); (C.G.); (F.S.); (F.P.)
| | - Catia Giovannini
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.M.); (C.G.); (F.S.); (F.P.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Fabrizia Suzzi
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.M.); (C.G.); (F.S.); (F.P.)
| | - Fabio Piscaglia
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.M.); (C.G.); (F.S.); (F.P.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Laura Gramantieri
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
38
|
Liu S, Zhang X, Wang W, Li X, Sun X, Zhao Y, Wang Q, Li Y, Hu F, Ren H. Metabolic reprogramming and therapeutic resistance in primary and metastatic breast cancer. Mol Cancer 2024; 23:261. [PMID: 39574178 PMCID: PMC11580516 DOI: 10.1186/s12943-024-02165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/31/2024] [Indexed: 11/25/2024] Open
Abstract
Metabolic alterations, a hallmark of cancer, enable tumor cells to adapt to their environment by modulating glucose, lipid, and amino acid metabolism, which fuels rapid growth and contributes to treatment resistance. In primary breast cancer, metabolic shifts such as the Warburg effect and enhanced lipid synthesis are closely linked to chemotherapy failure. Similarly, metastatic lesions often display distinct metabolic profiles that not only sustain tumor growth but also confer resistance to targeted therapies and immunotherapies. The review emphasizes two major aspects: the mechanisms driving metabolic resistance in both primary and metastatic breast cancer, and how the unique metabolic environments in metastatic sites further complicate treatment. By targeting distinct metabolic vulnerabilities at both the primary and metastatic stages, new strategies could improve the efficacy of existing therapies and provide better outcomes for breast cancer patients.
Collapse
Affiliation(s)
- Shan Liu
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xingda Zhang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenzheng Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Sun
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuqian Zhao
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qi Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yingpu Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Fangjie Hu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - He Ren
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
39
|
Yu D, Liu J, Meng C, Liu B, Liao J. Pan-immune-inflammation value as a novel prognostic biomarker for digestive system cancers: a meta-analysis. World J Surg Oncol 2024; 22:306. [PMID: 39563378 PMCID: PMC11577901 DOI: 10.1186/s12957-024-03595-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/17/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Digestive system cancers pose a significant global health challenge with high incidence and mortality rates. Inflammation is a key factor in cancer progression, necessitating reliable prognostic indicators. The pan-immune-inflammation value (PIV), as a new biomarker of immune-inflammatory response, has emerged as a potential prognostic biomarker for cancers. METHODS We performed a meta-analysis to evaluate the prognostic significance of PIV in digestive system cancers. Our search, up to June 2024, included 20 studies from 19 articles with 5037 patients. We extracted and analyzed data on PIV levels and assessed hazard ratios (HRs) for overall survival (OS), progression-free survival (PFS), disease-free survival (DFS), recurrence-free survival (RFS), and cancer-specific survival (CSS) using STATA 14.0. RESULTS Our analysis found that high PIV levels were significantly associated with poor prognosis in patients with digestive system cancers. Specifically, high PIV was linked to shorter OS (HR = 2.039, P < 0.001), PFS (HR = 1.877, P = 0.028), DFS (HR = 1.624, P = 0.005), RFS (HR = 2.393, P = 0.037), and CSS (HR = 2.053, P < 0.001). Additionally, the adverse prognostic impact of high PIV on OS was consistent across different cancer types, including digestive tract, colorectal, esophageal, and hepatobiliary pancreatic cancers. Although some heterogeneity was observed, sensitivity and bias analyses confirmed the reliability of these findings. CONCLUSIONS PIV was a valuable and practical prognostic marker for digestive system cancers, providing significant predictive value across multiple survival metrics. Its simplicity and minimal invasiveness nature support its potential integration into routine clinical practice.
Collapse
Affiliation(s)
- Dongli Yu
- Department of Surgery, Zhejiang Hospital, 12 Lingyin Road, Zhejiang, 310013, China
| | - Jingting Liu
- Department of Health management, Sir Run Run Shaw International Medical Centre, 9 Jingtan Road, Hangzhou, 310000, Zhejiang, China
| | - Chunyan Meng
- Department of Surgery, Zhejiang Hospital, 12 Lingyin Road, Zhejiang, 310013, China
| | - Baoqing Liu
- Department of Surgery, Zhejiang Hospital, 12 Lingyin Road, Zhejiang, 310013, China
| | - Jianhua Liao
- Department of Surgery, Zhejiang Hospital, 12 Lingyin Road, Zhejiang, 310013, China.
| |
Collapse
|
40
|
Bakker NAM, Burrello C, de Visser KE. Ex vivo assessment of human neutrophil motility and migration. Methods Cell Biol 2024; 191:115-133. [PMID: 39824552 DOI: 10.1016/bs.mcb.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Neutrophils are pivotal in orchestrating tumor-induced systemic inflammation and are increasingly recognized for their critical involvement in both the initiation and progression of cancer. A fundamental facet of neutrophil biology is their migratory capacity, which enables them to extravasate and infiltrate tumors in other tissues, where they carry out essential effector functions. Unraveling the intricate mechanisms of neutrophil motility and migration is crucial for comprehending immune responses and inflammatory processes, shedding light on their substantial contribution to cancer progression. Here, we provide a comprehensive protocol to assess direct ex vivo motility and migration of freshly isolated human neutrophils, offering valuable insights into their behavior.
Collapse
Affiliation(s)
- Noor A M Bakker
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands; Oncode Institute, Utrecht, The Netherlands
| | - Claudia Burrello
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Oncode Institute, Utrecht, The Netherlands
| | - Karin E de Visser
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands; Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
41
|
Baumann Z, Wiethe C, Vecchi CM, Richina V, Lopes T, Bentires-Alj M. Optimized full-spectrum flow cytometry panel for deep immunophenotyping of murine lungs. CELL REPORTS METHODS 2024; 4:100885. [PMID: 39481389 PMCID: PMC11705587 DOI: 10.1016/j.crmeth.2024.100885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/22/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024]
Abstract
The lung immune system consists of both resident and circulating immune cells that communicate intricately. The immune system is activated by exposure to bacteria and viruses, when cancer initiates in the lung (primary lung cancer), or when metastases of other cancer types, including breast cancer, spread to and develop in the lung (secondary lung cancer). Thus, in these pathological situations, a comprehensive and quantitative assessment of changes in the lung immune system is of paramount importance for understanding mechanisms of infectious diseases, lung cancer, and metastasis but also for developing efficacious treatments. Unfortunately, lung tissue exhibits high autofluorescence, and this high background signal makes high-parameter flow cytometry analysis complicated. Here, we provide an optimized 30-parameter antibody panel for the analysis of all major immune cell types and states in normal and metastatic murine lungs using spectral flow cytometry.
Collapse
Affiliation(s)
- Zora Baumann
- Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; Department of Surgery, University Hospital Basel, 4031 Basel, Switzerland
| | | | - Cinja M Vecchi
- Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; Department of Surgery, University Hospital Basel, 4031 Basel, Switzerland
| | - Veronica Richina
- Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; Department of Surgery, University Hospital Basel, 4031 Basel, Switzerland
| | - Telma Lopes
- Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Mohamed Bentires-Alj
- Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; Department of Surgery, University Hospital Basel, 4031 Basel, Switzerland.
| |
Collapse
|
42
|
Wei ZH, Tuo M, Ye C, Wu XF, Wang HH, Ren WZ, Liu G, Xiang T. Prognostic value of neutrophil-to-lymphocyte ratio in gastric cancer patients undergoing neoadjuvant chemotherapy: A systematic review and meta-analysis. World J Gastrointest Oncol 2024; 16:4477-4488. [PMID: 39554738 PMCID: PMC11551644 DOI: 10.4251/wjgo.v16.i11.4477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND In recent studies, accumulating evidence has revealed a strong association between the inflammatory response and the prognosis of many tumors. There is a certain correlation of neutrophil-to-lymphocyte ratio (NLR) with the prognosis in gastric cancer (GC) patients undergoing neoadjuvant chemotherapy (NAC). However, the existing research results have remained controversial. AIM To explore the relationship between NLR ratio and prognosis of GC patients receiving NAC. METHODS A thorough systematic search was performed in databases such as PubMed, Embase, Web of Science, and Cochrane Library, the search is available until February 29, 2024, and studies exploring the interaction of NLR with clinical outcomes were collected. Relevant studies meeting pre-defined inclusion and exclusion criteria were carefully chosen. The outcomes included progression-free survival (PFS), relapse-free survival, disease-free survival (DFS), and overall survival (OS). The hazard ratio (HR) and its corresponding 95% confidence interval (CI) were utilized for estimation. RESULTS Our analysis encompassed 852 patients and incorporated data from 12 cohort studies. The comprehensive analysis revealed a significant association of high NLR with reduced OS (HR = 1.76; 95%CI: 1.22-2.54, P = 0.003), relapse-free survival (HR = 3.73; 95%CI: 1.74-7.96, P = 0.0007), and PFS (HR = 2.32; 95%CI: 1.42-3.81, P = 0.0008) in patients. However, this correlation in disease-free survival was not significant. NLR demonstrated its crucial role in effectively predicting the OS of GC patients undergoing NAC at different detection times, ages, regions, and NLR thresholds. CONCLUSION In GC patients receiving NAC, an elevated NLR is strongly associated with reduced OS and PFS. NLR has become an effective biomarker for patient prognosis evaluation, providing valuable insights for the treatment strategies of NAC in GC patients.
Collapse
Affiliation(s)
- Zhen-Hua Wei
- Hubei Minzu University, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, Hubei Province, China
| | - Min Tuo
- Department of Breast Surgery, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, Hubei Province, China
| | - Chen Ye
- Department of Central Hospital of Tujia and Miao Autonomous Prefecture, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Xiao-Fan Wu
- Department of Central Hospital of Tujia and Miao Autonomous Prefecture, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Hong-Hao Wang
- Department of Gastrointestinal Surgery, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, Hubei Province, China
| | - Wen-Zhen Ren
- Department of Abdominal Oncology, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, Hubei Province, China
| | - Gao Liu
- Department of Gastrointestinal Surgery, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, Hubei Province, China
| | - Tian Xiang
- Department of Clinical Laboratory Center, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, Hubei Province, China
| |
Collapse
|
43
|
Chen S, Zhu H, Jounaidi Y. Comprehensive snapshots of natural killer cells functions, signaling, molecular mechanisms and clinical utilization. Signal Transduct Target Ther 2024; 9:302. [PMID: 39511139 PMCID: PMC11544004 DOI: 10.1038/s41392-024-02005-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/25/2024] [Accepted: 09/17/2024] [Indexed: 11/15/2024] Open
Abstract
Natural killer (NK) cells, initially identified for their rapid virus-infected and leukemia cell killing and tumor destruction, are pivotal in immunity. They exhibit multifaceted roles in cancer, viral infections, autoimmunity, pregnancy, wound healing, and more. Derived from a common lymphoid progenitor, they lack CD3, B-cell, or T-cell receptors but wield high cytotoxicity via perforin and granzymes. NK cells orchestrate immune responses, secreting inflammatory IFNγ or immunosuppressive TGFβ and IL-10. CD56dim and CD56bright NK cells execute cytotoxicity, while CD56bright cells also regulate immunity. However, beyond the CD56 dichotomy, detailed phenotypic diversity reveals many functional subsets that may not be optimal for cancer immunotherapy. In this review, we provide comprehensive and detailed snapshots of NK cells' functions and states of activation and inhibitions in cancer, autoimmunity, angiogenesis, wound healing, pregnancy and fertility, aging, and senescence mediated by complex signaling and ligand-receptor interactions, including the impact of the environment. As the use of engineered NK cells for cancer immunotherapy accelerates, often in the footsteps of T-cell-derived engineering, we examine the interactions of NK cells with other immune effectors and relevant signaling and the limitations in the tumor microenvironment, intending to understand how to enhance their cytolytic activities specifically for cancer immunotherapy.
Collapse
Affiliation(s)
- Sumei Chen
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China.
| | - Haitao Zhu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Youssef Jounaidi
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
44
|
Xia M, Han Y, Sun L, Li D, Zhu C, Li D. The role of neutrophils in osteosarcoma: insights from laboratory to clinic. Front Immunol 2024; 15:1490712. [PMID: 39582869 PMCID: PMC11582048 DOI: 10.3389/fimmu.2024.1490712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/21/2024] [Indexed: 11/26/2024] Open
Abstract
Osteosarcoma, a highly aggressive malignant bone tumor, is significantly influenced by the intricate interactions within its tumor microenvironment (TME), particularly involving neutrophils. This review delineates the multifaceted roles of neutrophils, including tumor-associated neutrophils (TANs) and neutrophil extracellular traps (NETs), in osteosarcoma's pathogenesis. TANs exhibit both pro- and anti-tumor phenotypes, modulating tumor growth and immune evasion, while NETs facilitate tumor cell adhesion, migration, and immunosuppression. Clinically, neutrophil-related markers such as the neutrophil-to-lymphocyte ratio (NLR) predict patient outcomes, highlighting the potential for neutrophil-targeted therapies. Unraveling these complex interactions is crucial for developing novel treatment strategies that harness the TME to improve osteosarcoma management.
Collapse
Affiliation(s)
| | | | | | | | | | - Dongsong Li
- Department of Orthopedics, The First Hospital of Jilin University,
Changchun, Jilin, China
| |
Collapse
|
45
|
Li C, Li Z, Wang L, Zhang K, Li Z, Ji Y, Li J, Zhang Y, Chen L. Conquering dual challenges: A sialic-modified liposome for targeting activated neutrophils to tackle comorbid lung inflammation and cancer metastasis. J Control Release 2024; 376:930-948. [PMID: 39476871 DOI: 10.1016/j.jconrel.2024.10.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/05/2024] [Accepted: 10/21/2024] [Indexed: 11/09/2024]
Abstract
In clinical settings, cancer frequently coexists with multi-system diseases. Owing to compromised immune systems, patients with cancer exhibit an increased susceptibility to infections and inflammation. Notably, lung inflammation occurs with high incidence among these patients. Furthermore, the inflammatory milieu within the lungs often accelerates the metastasis of cancer, thereby enhancing mortality rates and posing substantial challenges for clinical management. To date, effective strategies addressing both lung inflammation and cancer concurrently are lacking. In this context, we introduce a novel therapeutic approach involving a sialic acid-lipid derivative (SA-PG10-C18) modified doxorubicin-curcumin co-loaded liposome (DOX/CUR-SAL). This formulation effectively targeted activated neutrophils, which are abundantly present in inflammatory and metastatic lung tissues. DOX/CUR-SAL notably inhibited neutrophil-mediated pro-inflammatory and pro-metastatic processes. Utilizing a newly established mouse model of acute lung injury (ALI) and metastasis comorbidity, DOX/CUR-SAL modulated the lung immune microenvironment and arrested the progression of both inflammation and metastasis, without inducing side effects. The treated animals demonstrated favorable survival conditions, persisting beyond 45 days. This innovative therapeutic strategy offers a novel concept and reference for treating comorbid conditions of tumors and inflammation, thus breaking the clinical impasse where lung inflammation and cancer metastasis have been treated separately.
Collapse
Affiliation(s)
- Cong Li
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China; Liaoning Key Laboratory of New Drug Research & Development, Shenyang 110036, China
| | - Zhihang Li
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Lihong Wang
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Kexin Zhang
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Zehao Li
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Yating Ji
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Jing Li
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Yifan Zhang
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Lijiang Chen
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China; Liaoning Key Laboratory of New Drug Research & Development, Shenyang 110036, China.
| |
Collapse
|
46
|
Zhang Y, Wang C, Jia R, Long H, Zhou J, Sun G, Wang Y, Zhang Z, Rong X, Jiang Y. Transfer from ciliate to zebrafish: Unveiling mechanisms and combined effects of microplastics and heavy metals. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135645. [PMID: 39191009 DOI: 10.1016/j.jhazmat.2024.135645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/13/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
The impacts and toxicological mechanisms of microplastics (MPs) or heavy metals on aquatic ecosystems have been the subject of extensive research and initial understanding. However, the combined toxicity of co-pollutants on organisms and cumulative toxic effects along the food chain are still underexplored. In this study, the ciliate protozoan Paramecium caudatum and zebrafish Danio rerio were used to represent the microbial loop and the higher trophic level, respectively, to illustrate the progressive exposure of MPs and cadmium (Cd2+). The findings indicate that MPs (ca. 1 ×105 items/L) containing with Cd2+ (below 0.1 µg/L) could permeate the bodies of zebrafish through trophic levels after primary ingestion by ciliates. This could cause adverse effects on zebrafish, including alterations in bioindicators (total sugar, triglycerides, lactate, and glycogen) associated with metabolism, delayed hepatic development, disruption of intestinal microbiota, DNA damage, inflammatory responses, and abnormal cellular apoptosis. In addition, the potential risks associated with the transfer of composite pollutants through the microbial loop into traditional food chain were examined, offering novel insights on the evaluation of the ecological risks associated with MPs. As observed, understanding the bioaccumulation and toxic effects of combined pollutants in zebrafish holds crucial implications for food safety and human health.
Collapse
Affiliation(s)
- Yan Zhang
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Caixia Wang
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Ruiqi Jia
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Hongan Long
- MoE Key Laboratory of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Jianfeng Zhou
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Gaojingwen Sun
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - YunLong Wang
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Zhaoji Zhang
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xiaozhi Rong
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Yong Jiang
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China; MoE Key Laboratory of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
47
|
Egelston CA, Guo W, Simons DL, Ye J, Avalos C, Solomon ST, Nwangwu M, Nelson MS, Tan J, Bacon ER, Ihle K, Schmolze D, Tumyan L, Waisman JR, Lee PP. Organ-Specific Immune Setpoints Underlie Divergent Immune Profiles across Metastatic Sites in Breast Cancer. Cancer Immunol Res 2024; 12:1559-1573. [PMID: 39051632 PMCID: PMC11534553 DOI: 10.1158/2326-6066.cir-23-0718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/06/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024]
Abstract
Immune composition within the tumor microenvironment (TME) plays a central role in the propensity of cancer cells to metastasize and respond to therapy. Previous studies have suggested that the metastatic TME is immune-suppressed. However, limited accessibility to multiple metastatic sites within patients has made assessing the immune TME difficult in the context of multiorgan metastases. We utilized a rapid postmortem tissue collection protocol to assess the immune composition of numerous sites of breast cancer metastasis and paired tumor-free tissues. Metastases had comparable immune cell densities and compositions to paired tumor-free tissues of the same organ type. In contrast, immune cell densities in both metastatic and tumor-free tissues differed significantly between organ types, with lung immune infiltration being consistently greater than that in the liver. These immune profiling results were consistent between flow cytometry and multiplex immunofluorescence-based spatial analysis. Furthermore, we found that granulocytes were the predominant tumor-infiltrating immune cells in lung and liver metastases, and these granulocytes comprised most PD-L1-expressing cells in many tissue sites. We also identified distinct potential mechanisms of immunosuppression in lung and liver metastases, with the lung having increased expression of PD-L1+ antigen-presenting cells and the liver having higher numbers of activated regulatory T cells and HLA-DRlow monocytes. Together, these results demonstrate that the immune contexture of metastases is dictated by organ type and that immunotherapy strategies may benefit from unique tailoring to the tissue-specific features of the immune TME.
Collapse
Affiliation(s)
- Colt A. Egelston
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA
| | - Weihua Guo
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA
| | - Diana L. Simons
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA
| | - Jian Ye
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA
| | - Christian Avalos
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA
| | - Shawn T. Solomon
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA
| | - Mary Nwangwu
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA
| | - Michael S. Nelson
- The Light Microscopy and Digital Imaging Core, Beckman Research Institute, City of Hope, Duarte, CA
| | - Jiayi Tan
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA
| | - Eliza R. Bacon
- Department of Medical Oncology, City of Hope, Duarte, CA
| | - Kena Ihle
- Department of Medical Oncology, City of Hope, Duarte, CA
| | | | - Lusine Tumyan
- Department of Diagnostic Radiology, City of Hope, Duarte, CA
| | | | - Peter P. Lee
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA
| |
Collapse
|
48
|
Chen H, Zhou Y, Tang Y, Lan J, Lin C, Chen Q, Kuang H. Neutrophil extracellular traps in tumor progression of gynecologic cancers. Front Immunol 2024; 15:1421889. [PMID: 39555072 PMCID: PMC11563837 DOI: 10.3389/fimmu.2024.1421889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/30/2024] [Indexed: 11/19/2024] Open
Abstract
This article delves into the intricate interplay between tumors, particularly gynecologic malignancies, and neutrophil extracellular traps (NETs). The relationship between tumors, specifically gynecologic malignancies, and NETs is a multifaceted and pivotal area of study. Neutrophils, pivotal components of the immune system, are tasked with combating foreign invaders. NETs, intricate structures released by neutrophils, play a vital role in combating systemic infections but also play a role in non-infectious conditions such as inflammation, autoimmune diseases, and cancer. Cancer cells have the ability to attract neutrophils, creating tumor-associated neutrophils, which then stimulate the release of NETs into the tumor microenvironment. The impact of NETs within the tumor microenvironment is profound and intricate. They play a significant role in influencing cancer development and metastasis, as well as modulating tumor immune responses. Through the release of proteases and pro-inflammatory cytokines, NETs directly alter the behavior of tumor cells, increasing invasiveness and metastatic potential. Additionally, NETs can trigger epithelial-mesenchymal transition in tumor cells, a process associated with increased invasion and metastasis. The interaction between tumors and NETs is particularly critical in gynecologic malignancies such as ovarian, cervical, and endometrial cancer. Understanding the mechanisms through which NETs operate in these tumors can offer valuable insights for the development of targeted therapeutic interventions. Researchers are actively working towards harnessing this interaction to impede tumor progression and metastasis, opening up new avenues for future treatment modalities. As our understanding of the interplay between tumors and NETs deepens, it is anticipated that novel treatment strategies will emerge, potentially leading to improved outcomes for patients with gynecologic malignancies. This article provides a comprehensive overview of the latest research findings on the interaction between NETs and cancer, particularly in gynecologic tumors, serving as a valuable resource for future exploration in this field.
Collapse
Affiliation(s)
- Hong Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yaling Tang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jianfa Lan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Chao Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Qionghua Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Hongying Kuang
- The Second Department of Gynecology, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
49
|
Hu C, Long L, Lou J, Leng M, Yang Q, Xu X, Zhou X. CTC-neutrophil interaction: A key driver and therapeutic target of cancer metastasis. Biomed Pharmacother 2024; 180:117474. [PMID: 39316968 DOI: 10.1016/j.biopha.2024.117474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024] Open
Abstract
Circulating tumor cells (CTCs) are cancer cells that detach from the primary tumor and enter the bloodstream, where they can seed new metastatic lesions in distant organs. CTCs are often associated with white blood cells (WBCs), especially neutrophils, the most abundant and versatile immune cells in the blood. Neutrophils can interact with CTCs through various mechanisms, such as cell-cell adhesion, cytokine secretion, protease release, and neutrophil extracellular traps (NETs) formation. These interactions can promote the survival, proliferation, invasion, and extravasation of CTCs, as well as modulate the pre-metastatic niche and the tumor microenvironment. Therefore, inhibiting CTC-neutrophils interaction could be a potential strategy to reduce tumor metastasis and improve the prognosis of cancer patients. In this review, we summarize the current literature on CTC-neutrophils interaction' role in tumor metastasis and discuss the possible therapeutic approaches to target this interaction.
Collapse
Affiliation(s)
- Chengyi Hu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China; Yunnan Key Laboratory of Stem Cell and Regenerative Medicine & School of Rehabilitation, Kunming Medical University, Kunming 650500, PR China
| | - Ling Long
- School of Pharmacy, Kunming Medical University, Kunming 650500, PR China; Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing 400054, PR China
| | - Jie Lou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Mingjing Leng
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Qingqing Yang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Xiang Xu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine & School of Rehabilitation, Kunming Medical University, Kunming 650500, PR China; Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, No. 10, Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China.
| | - Xing Zhou
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine & School of Rehabilitation, Kunming Medical University, Kunming 650500, PR China.
| |
Collapse
|
50
|
Pan X, Wang Q, Sun B. Multifaceted roles of neutrophils in tumor microenvironment. Biochim Biophys Acta Rev Cancer 2024; 1879:189231. [PMID: 39615862 DOI: 10.1016/j.bbcan.2024.189231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 12/14/2024]
Abstract
Neutrophils, the most abundant leukocyte population in circulation, play a crucial role in detecting and responding to foreign cells, such as pathogens and tumor cells. However, the impact of neutrophils on cancer pathogenesis has been overlooked because of their short lifespan, terminal differentiation, and limited transcriptional activity. Within the tumor microenvironment (TME), neutrophils can be influenced by tumor cells or other stromal cells to acquire either protumor or antitumor properties via the cytokine environment. Despite progress in neutrophil-related research, a comprehensive understanding of tissue-specific neutrophil diversity and adaptability in the TME is still lacking, which poses a significant obstacle to the development of neutrophil-based cancer therapies. This review evaluated the current studies on the dual roles of neutrophils in cancer progression, emphasizing their importance in predicting clinical outcomes, and explored various approaches for targeting neutrophils in cancer treatment, including their potential synergy with cancer immunotherapy.
Collapse
Affiliation(s)
- Xueyin Pan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Provincial Innovation Institute for Pharmaceutical Basic Research, Hefei, Anhui, China; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China
| | - Qiang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Provincial Innovation Institute for Pharmaceutical Basic Research, Hefei, Anhui, China; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China.
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Provincial Innovation Institute for Pharmaceutical Basic Research, Hefei, Anhui, China; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China.
| |
Collapse
|