1
|
Rodriguez-Madrid R, Sinha S, Parejo L, Hernando J, Núñez R. Fluorescent molecular systems based on carborane-perylenediimide conjugates. Dalton Trans 2024; 53:17841-17851. [PMID: 39420813 DOI: 10.1039/d4dt02477j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
This study presents the successful synthesis of two perylenediimide (PDI)-based ortho-carborane (o-carborane) derivatives, PDI-CB1 and PDI-CB2, through the insertion of decaborane into alkyne-terminated PDIs (PDI1 and PDI2). The introduction of o-carborane groups did not alter the optical properties of the PDI units in solution compared to their carborane-free counterparts, maintaining excellent fluorescence quantum yields of around 100% in various solvents. This was achieved by using a methylene linker to minimize electronic interaction between PDI and o-carborane, and by incorporating bulky o-carborane groups at imide- position to enhance solubility and prevent π-π stacking-induced aggregation. Aggregation studies demonstrated that PDI-CB1 and PDI-CB2 have greater solubility than PDI1 and PDI2 in both nonpolar and aqueous solvents. Despite the steric hindrance imparted by the o-carborane units, the solid state emission of PDI-CB1 and PDI-CB2 was affected by aggregation-caused fluorescence quenching. However, solid PDI-CB1 preserved bright red excimer-type emission, which persisted in water-dispersible nanoparticles, indicating potential for application as a theranostic agent combining fluorescence bioimaging with anticancer boron neutron capture therapy (BNCT) due to its high boron content.
Collapse
Affiliation(s)
- Ruben Rodriguez-Madrid
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Barcelona, Spain.
- Departament de Química. Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain.
| | - Sohini Sinha
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Barcelona, Spain.
| | - Laura Parejo
- Departament de Química. Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain.
| | - Jordi Hernando
- Departament de Química. Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain.
| | - Rosario Núñez
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
2
|
Mahanta CS, Hansdah S, Khuntia K, Jena BB, Swain BR, Acharya S, Dash BP, Debata PR, Satapathy R. Novel carboranyl-BODIPY conjugates: design, synthesis and anti-cancer activity. RSC Adv 2024; 14:34643-34660. [PMID: 39479484 PMCID: PMC11521004 DOI: 10.1039/d4ra07241c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024] Open
Abstract
A series of four carboranyl-BODIPY conjugates (o-CB-10, m-CB-15, Me-o-CB-28, and Me-o-CB-35) and one phenylene-BODIPY conjugate (PB-20) were synthesized. The carboranyl-BODIPY conjugates incorporate boron clusters, specifically ortho- and meta-carboranes, covalently linked to BODIPY fluorophores while the phenylene-BODIPY conjugate features a phenylene ring covalently linked to BODIPY fluorophore. The newly synthesized conjugates were characterized by 1H NMR, 13C NMR, 11B NMR, 19F NMR, FT-IR, and high-resolution mass spectral analysis. In vitro cytotoxicity of the synthesized conjugates has been evaluated against the HeLa cervical cancer cell line. The study reveals that o-CB-10 shows a maximum cell death potential at lower concentrations (12.03 μM) and inhibited cell proliferation and migration in cancer (HeLa) cells. Additionally, flow cytometry study reveals that o-CB-10 and Me-o-CB-28 arrest the cell cycle at the S phase. The results indicate that the carboranyl-BODIPY conjugates have the potential to be effective anticancer agents.
Collapse
Affiliation(s)
| | - Sunitee Hansdah
- Department of Zoology Maharaja Sriram Chandra Bhanja Deo University Sri Ram Chandra Vihar, Takatpur, Mayurbhanj Baripada 757003 Odisha India
| | - Kabita Khuntia
- Department of Zoology Maharaja Sriram Chandra Bhanja Deo University Sri Ram Chandra Vihar, Takatpur, Mayurbhanj Baripada 757003 Odisha India
| | - Bibhuti Bhusan Jena
- Department of Chemistry Ravenshaw University College Square Cuttack 753003 Odisha India
| | - Biswa Ranjan Swain
- Department of Chemistry Ravenshaw University College Square Cuttack 753003 Odisha India
| | - Subhadeep Acharya
- Department of Chemistry Ravenshaw University College Square Cuttack 753003 Odisha India
| | | | - Priya Ranjan Debata
- Department of Zoology Maharaja Sriram Chandra Bhanja Deo University Sri Ram Chandra Vihar, Takatpur, Mayurbhanj Baripada 757003 Odisha India
| | - Rashmirekha Satapathy
- Department of Chemistry Ravenshaw University College Square Cuttack 753003 Odisha India
| |
Collapse
|
3
|
Tüzün EZ, Pazderová L, Bavol D, Litecká M, Hnyk D, Růžičková Z, Horáček O, Kučera R, Grűner B. Carbon-Substituted Amines of the Cobalt Bis(dicarbollide) Ion: Stereochemistry and Acid-Base Properties. Inorg Chem 2024; 63:20600-20616. [PMID: 39393080 PMCID: PMC11523243 DOI: 10.1021/acs.inorgchem.4c03257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024]
Abstract
Organic amines are found to be abundant in natural living systems. They also constitute an inestimable family of building blocks available in drug design. Considering the man-made cluster [(1,2-C2B9H11)2-3,3'-Co(III)]- ion (1-) and its application as an emerging unconventional pharmacophore, the availability of the corresponding amines has been limited and those with amino groups attached directly to carbon atoms have remained unknown. This paper describes the synthesis of compounds containing one or two primary amino groups attached to the carbon atoms of the cobaltacarborane cage that are accessible via the reduction of newly synthesized azides or via the Curtius rearrangement of the corresponding acyl azide. This substitution represents the first members of the series of azides and primary amines with functional groups bound directly to the carbon atoms of the cage. As expected, the absence of the linker along with the presence of the bulky anionic polyhedral ion leads to a significant alteration of the chemical and physicochemical properties. On a broader series of amines of the ion 1- we have thus observed significant differences in the acidity of the amino groups, depending on whether these are attached to the carbon or boron atoms of the cage, or the C-substituted amines contain an aliphatic linker of variable length. The compounds are relevant for potential use as cobalt bis(dicarbollide) structural blocks in medicinal chemistry and material science. Our study includes single-crystal X-ray diffraction (XRD) structures of both amines and a discussion of their stereochemical and structural features.
Collapse
Affiliation(s)
- Ece Zeynep Tüzün
- Institute
of Inorganic Chemistry of the Czech Academy of Sciences, 25068 Řež, Czech Republic
- Dpt.
of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague, Czech Republic
| | - Lucia Pazderová
- Institute
of Inorganic Chemistry of the Czech Academy of Sciences, 25068 Řež, Czech Republic
| | - Dmytro Bavol
- Institute
of Inorganic Chemistry of the Czech Academy of Sciences, 25068 Řež, Czech Republic
| | - Miroslava Litecká
- Institute
of Inorganic Chemistry of the Czech Academy of Sciences, 25068 Řež, Czech Republic
| | - Drahomír Hnyk
- Institute
of Inorganic Chemistry of the Czech Academy of Sciences, 25068 Řež, Czech Republic
| | - Zdeňka Růžičková
- Dpt.
of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 95, 53210 Pardubice, Czech Republic
| | - Ondřej Horáček
- Faculty
of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Radim Kučera
- Faculty
of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Bohumír Grűner
- Institute
of Inorganic Chemistry of the Czech Academy of Sciences, 25068 Řež, Czech Republic
| |
Collapse
|
4
|
Donarska B, Cytarska J, Kołodziej-Sobczak D, Studzińska R, Kupczyk D, Baranowska-Łączkowska A, Jaroch K, Szeliska P, Bojko B, Różycka D, Olejniczak AB, Płaziński W, Łączkowski KZ. Synthesis of Carborane-Thiazole Conjugates as Tyrosinase and 11β-Hydroxysteroid Dehydrogenase Inhibitors: Antiproliferative Activity and Molecular Docking Studies. Molecules 2024; 29:4716. [PMID: 39407644 PMCID: PMC11477717 DOI: 10.3390/molecules29194716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
The presented study depicts the synthesis of 11 carborane-thiazole conjugates with anticancer activity, as well as an evaluation of their biological activity as inhibitors of two enzymes: tyrosinase and 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). The overexpression of tyrosinase results in the intracellular accumulation of melanin and can be observed in melanoma. The overexpression of 11β-HSD1 results in an elevation of glucocorticoid levels and has been associated with the aggravation of metabolic disorders such as type II diabetes mellitus and obesity. Recently, as the comorbidity of melanomas and metabolic disorders is being recognized as an important issue, the search for new therapeutic options has intensified. This study demonstrates that carborane-thiazole derivatives inhibit both enzymes, exerting beneficial effects. The antiproliferative action of all newly synthesized compounds was evaluated using three cancer cell lines, namely A172 (human brain glioblastoma), B16F10 (murine melanoma) and MDA-MB-231 (human breast adenocarcinoma), as well as a healthy control cell line of HUVEC (human umbilical vein endothelial cells). The results show that 9 out of 11 newly synthesized compounds demonstrated similar antiproliferative action against the B16F10 cell line to the reference drug, and three of these compounds surpassed it. To the best of our knowledge, this study is the first to demonstrate dual inhibitory action of carborane-thiazole derivatives against both tyrosinase and 11β-HSD1. Therefore, it represents the first step towards the simultaneous treatment of melanoma and comorbid diseases such as type II diabetes mellitus.
Collapse
Affiliation(s)
- Beata Donarska
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland; (B.D.); (J.C.); (D.K.-S.)
| | - Joanna Cytarska
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland; (B.D.); (J.C.); (D.K.-S.)
| | - Dominika Kołodziej-Sobczak
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland; (B.D.); (J.C.); (D.K.-S.)
| | - Renata Studzińska
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland;
| | - Daria Kupczyk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum, Nicolaus Copernicus University, Karłowicza 24, 85-092 Bydgoszcz, Poland;
| | | | - Karol Jaroch
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland; (K.J.); (P.S.); (B.B.)
| | - Paulina Szeliska
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland; (K.J.); (P.S.); (B.B.)
| | - Barbara Bojko
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland; (K.J.); (P.S.); (B.B.)
| | - Daria Różycka
- Screening Laboratory, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland; (D.R.); (A.B.O.)
| | - Agnieszka B. Olejniczak
- Screening Laboratory, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland; (D.R.); (A.B.O.)
| | - Wojciech Płaziński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Cracow, Poland;
- Department of Biopharmacy, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland
| | - Krzysztof Z. Łączkowski
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland; (B.D.); (J.C.); (D.K.-S.)
| |
Collapse
|
5
|
Wang J, Bai S, Yang C, Qi X. Enantioselective Decarboxylative C(sp 3)-C(sp 3) Cross-Coupling of Aliphatic Redox-Active Esters with gem-Borazirconocene Alkanes. J Am Chem Soc 2024; 146:27070-27079. [PMID: 39288446 DOI: 10.1021/jacs.4c09245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Asymmetric decarboxylative cross-couplings of carboxylic acids are powerful methods for synthesizing chiral building blocks essential in medicinal chemistry and material science. Despite their potential, creating versatile chiral alkylboron derivatives through asymmetric decarboxylative C(sp3)-C(sp3) cross-coupling from readily available primary aliphatic acids and mild organometallic reagents remains challenging. In this study, we present a visible light-induced Ni-catalyzed enantioconvergent C(sp3)-C(sp3) cross-coupling of unactivated primary aliphatic acid NHPI esters with gem-borazirconocene alkanes, producing a diverse array of valuable chiral alkylboron building blocks. The method boasts a broad substrate scope, high functional group tolerance, and the ability for late-stage modification of complex drug molecules and natural products with high enantioselectivity, showcasing its synthetic potential. Mechanistic investigations suggest a nickel-catalyzed enantioconvergent radical cross-coupling pathway, wherein the primary radical from a redox-active ester is generated through single-electron reduction with ZrIII species. This represents an unprecedented example of enantioselective radical C(sp3)-C(sp3) cross-coupling in the absence of photocatalysts.
Collapse
Affiliation(s)
- Jing Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Songlin Bai
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Chao Yang
- Celluranics New Materials Co., No. 18-28, Tongjiang Road, Taixing Economic and Technological Development Zone, Taizhou City, Jiangsu 225400, China
| | - Xiangbing Qi
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Gutiérrez-Gálvez L, García-Mendiola T, Lorenzo E, Nuez-Martinez M, Ocal C, Yan S, Teixidor F, Pinheiro T, Marques F, Viñas C. Compelling DNA intercalation through 'anion-anion' anti-coulombic interactions: boron cluster self-vehicles as promising anticancer agents. J Mater Chem B 2024; 12:9550-9565. [PMID: 39141010 DOI: 10.1039/d4tb01177e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Anticancer drugs inhibit DNA replication by intercalating between DNA base pairs, forming covalent bonds with nucleotide bases, or binding to the DNA groove. To develop safer drugs, novel molecular structures with alternative binding mechanisms are essential. Stable boron hydrides offer a promising alternative for cancer therapy, opening up additional options like boron neutron capture therapy based on 10B and thermal neutron beams or proton boron fusion therapy using 11B and proton beams. These therapies are more efficient when the boron compound is ideally located inside cancer cells, particularly in the nucleus. Current cancer treatments often utilize small, polycyclic, aromatic, planar molecules that intercalate between ds-DNA base pairs, requiring only a spacing of approximately 0.34 nm. In this paper, we demonstrate another type of intercalation. Notably, [3,3'-Fe(1,2-C2B9H11)2]-, ([o-FESAN]-), a compact 3D molecule measuring 1.1 nm × 0.6 nm, can as well intercalate by strong non-bonding interactions preferentially with guanine. Unlike known intercalators, which are positive or neutral, [o-FESAN]- is a negative species and when an [o-FESAN]- molecule approaches the negatively charged DNA phosphate chain an anion-anion interaction consistently anti-electrostatic via Ccluster-H⋯O-P bonds occurs. Then, when more molecules approach, an elongated outstandingly self-assembled structure of [o-FESAN]--[o-FESAN]- forms moving anions towards the interthread region to interact with base pairs and form aggregates of four [o-FESAN]- anions per base pair. These aggregates, in this environment, are generated by Ccluster-H⋯O-C, N-H⋯H-B and Ccluster-H⋯H-B interactions. The ferrabis(dicarbollide) boron-rich small molecules not only effectively penetrate the nucleus but also intercalate with ds-DNA, making them promising for cancer treatment. This amphiphilic anionic molecule, used as a carrier-free drug, can enhance radiotherapy in a multimodal perspective, providing healthcare professionals with improved tools for cancer treatment. This work demonstrates these findings with a plethora of techniques.
Collapse
Affiliation(s)
- Laura Gutiérrez-Gálvez
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Tania García-Mendiola
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Encarnación Lorenzo
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Miquel Nuez-Martinez
- Institut de Ciència de Materials de Barcelona (C.S.I.C.) Campus U.A.B, 08193 Bellaterra, Barcelona, Spain.
| | - Carmen Ocal
- Institut de Ciència de Materials de Barcelona (C.S.I.C.) Campus U.A.B, 08193 Bellaterra, Barcelona, Spain.
| | - Shunya Yan
- Institut de Ciència de Materials de Barcelona (C.S.I.C.) Campus U.A.B, 08193 Bellaterra, Barcelona, Spain.
| | - Francesc Teixidor
- Institut de Ciència de Materials de Barcelona (C.S.I.C.) Campus U.A.B, 08193 Bellaterra, Barcelona, Spain.
| | - Teresa Pinheiro
- iBB - Instituto de Bioengenharia e Biociências, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - Fernanda Marques
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
- C2TN - Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona (C.S.I.C.) Campus U.A.B, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
7
|
Bastick KAC, Roberts DD, Watson AJB. The current utility and future potential of multiborylated alkanes. Nat Rev Chem 2024; 8:741-761. [PMID: 39327469 DOI: 10.1038/s41570-024-00650-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 09/28/2024]
Abstract
Organoboron chemistry has become a cornerstone of modern synthetic methodology. Most of these reactions use an organoboron starting material that contains just one C(sp2)-B or C(sp3)-B bond; however, there has been a recent and accelerating trend to prepare multiborylated alkanes that possess two or more C(sp3)-B bonds. This is despite a lack of general reactivity, meaning many of these compounds currently offer limited downstream synthetic value. This Review summarizes recent advances in the exploration of multiborylated alkanes, including a discussion on how these products may be elaborated in further synthetic manipulations.
Collapse
Affiliation(s)
- Kane A C Bastick
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, UK
| | - Dean D Roberts
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, UK
| | - Allan J B Watson
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, UK.
| |
Collapse
|
8
|
Ren H, Zhou N, Ma W, Zhang P, Tu D, Lu CS, Yan H. Dative Bonding Activation Enables Precise Functionalization of the Remote B-H Bond of nido-Carborane Clusters. J Am Chem Soc 2024; 146:26543-26555. [PMID: 39267603 DOI: 10.1021/jacs.4c10728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
The innovation of synthetic strategies for selective B-H functionalization is a pivotal objective in the realm of boron cluster chemistry. However, the precise, efficient, and rapid functionalization of a B-H bond of carboranes that is distant from the existing functional groups remains intractable owing to the limited approaches for site-selective control from the established methods. Herein, we report a dative bonding activation strategy for the selective functionalization of a nonclassical remote B-H site of nido-carboranes. By leveraging the electronic effects brought by the exopolyhedral B(9)-dative bond, a cross-nucleophile B-H/S-H coupling protocol of the distal B(5)-H bond has been established. The dative bond not only amplifies the subtle reactivity difference among B-H bonds but also significantly changes the reactive sites, further infusing nido-carboranes with additional structural diversity. This reaction paradigm features mild conditions, rapid conversion, efficient production, broad scope, and excellent group tolerance, thus enabling the applicability to an array of complex bioactive molecules. The efficient and scalable reaction platform is amenable to the modular construction of photofunctional molecules and boron delivery agents for boron neutron capture therapy. This work not only provides an unprecedented solution for the selective diversification of distal B-H sites in nido-carboranes but also holds the potential for expediting the discovery of novel carborane-based functional molecules.
Collapse
Affiliation(s)
- Hongyuan Ren
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ningning Zhou
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenli Ma
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ping Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Deshuang Tu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chang-Sheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
9
|
Gruzdev DA, Telegina AA, Ezhikova MA, Kodess MI, Levit GL, Krasnov VP. Synthesis of Novel Planar-Chiral Charge-Compensated nido-Carborane-Based Amino Acid. Molecules 2024; 29:4487. [PMID: 39339482 PMCID: PMC11434195 DOI: 10.3390/molecules29184487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Amino acids with unusual types of chirality and their derivatives have recently attracted attention as precursors in the synthesis of chiral catalysts and peptide analogues with unique properties. In this study, we have synthesized a new nido-carborane-based planar-chiral amino acid, in the molecule of which the amino group is directly bonded to the B(3) atom, and the carboxyl group is attached to the B(9) atom through the CH2S+(Me) fragment. 3-Amino-9-dimethylsulfonio-nido-carborane, prepared in three steps from 3-amino-closo-carborane in a high yield, was a key intermediate in the synthesis of the target planar-chiral amino acid. The carboxymethyl group at the sulfur atom was introduced by the demethylation reaction of the dimethylsulfonio derivative, followed by S-alkylation. The structure of new 3,9-disubstituted nido-carboranes was studied for the first time using NMR spectroscopy. The resonances of all boron atoms in the 11B NMR spectrum of 3-amino-9-dimethylsulfonio-nido-carborane were assigned based on the 2D NMR correlation experiments. The nido-carborane-based planar-chiral amino acid and related compounds are of interest as a basis for peptide-like compounds and chiral ligands.
Collapse
Affiliation(s)
- Dmitry A Gruzdev
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia
| | - Angelina A Telegina
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia
| | - Marina A Ezhikova
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia
| | - Mikhail I Kodess
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia
| | - Galina L Levit
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia
| | - Victor P Krasnov
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia
| |
Collapse
|
10
|
Sun Z, Zong J, Ren H, Lu C, Tu D, Poater J, Solà M, Shi Z, Yan H. Couple-close construction of non-classical boron cluster-phosphonium conjugates. Nat Commun 2024; 15:7934. [PMID: 39256342 PMCID: PMC11387837 DOI: 10.1038/s41467-024-51506-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/09/2024] [Indexed: 09/12/2024] Open
Abstract
Heteropolycyclic molecular systems, which are essential components in the fields of materials and pharmacology, frequently consist of 2D extended organic aromatic rings. Here, we introduce a type of inorganic-organic hybrid 3D conjugates by merging an aromatic boron cluster with a phosphine and a π-conjugated unit. To achieve this, a couple-close synthetic strategy via B-H activation of nido-carboranes with alkynes has been developed, which leads to diverse boron cluster-extended phosphoniums in a twisted structure with high yields under mild conditions. Experimental and theoretical results reveal that the fusion between the boron cluster and the formed borophosphonium heterocycle facilitates electron delocalization throughout the structure. The unusual framework demonstrates distinct properties from bare boron clusters and pure aromatic ring-extended counterparts, such as improved thermal/chemical stability and photophysical properties. Thus, the boron cluster-based 3D conjugates expand the library of aromatic-based heterocyclics, showcasing great potential in functional materials.
Collapse
Affiliation(s)
- Zhaofeng Sun
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jibo Zong
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hongyuan Ren
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Deshuang Tu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Jordi Poater
- Departament de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, Martí i Franquès 1-11, Barcelona, 08028, Spain.
- ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain.
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi, Universitat de Girona, C/ Maria Aurèlia Capmany, 69, Girona, 17003, Catalonia, Spain.
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
11
|
Guo W, Yang Z, Shu L, Cai H, Wei Z. The First Discovery of Spherical Carborane Molecular Ferroelectric Crystals. Angew Chem Int Ed Engl 2024; 63:e202407934. [PMID: 38877767 DOI: 10.1002/anie.202407934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/16/2024]
Abstract
Carborane compounds, known for their exceptional thermal stability and non-toxic attributes, have garnered widespread utility in medicine, supramolecular design, coordination/organometallic chemistry, and others. Although there is considerable interest among chemists, the integration of suitable carborane molecules into ferroelectric materials remains a formidable challenge. In this study, we employ the quasi-spherical design strategy to introduce functional groups at the boron vertices of the o-carborane cage, aiming to reduce molecular symmetry. This approach led to the successful synthesis of the pioneering ferroelectric crystals composed of cage-like carboranes: 9-OH-o-carborane (1) and 9-SH-o-carborane (2), which undergo above-room ferroelectric phase transitions (Tc) at approximately 367 K and 347 K. Interestingly, 1 and 2 represent uniaxial and multiaxial ferroelectrics respectively, with 2 exhibiting six polar axes and as many as twelve equivalent polarization directions. As the pioneering instance of carborane ferroelectric crystals, this study introduces a novel structural archetype for molecular ferroelectrics, thereby providing fresh insights into the exploration of molecular ferroelectric crystals with promising applications.
Collapse
Affiliation(s)
- Wenjing Guo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang City, 330031, P.R. China
| | - Zhao Yang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang City, 330031, P.R. China
| | - Longlong Shu
- School of Physics and Materials Science, Nanchang University, Nanchang City, 330031, P.R. China
| | - Hu Cai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang City, 330031, P.R. China
| | - Zhenhong Wei
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang City, 330031, P.R. China
| |
Collapse
|
12
|
Zhu M, Wang P, Wu Z, Zhong Y, Su L, Xin Y, Spokoyny AM, Zou C, Mu X. A Pd-catalyzed route to carborane-fused boron heterocycles. Chem Sci 2024; 15:10392-10401. [PMID: 38994428 PMCID: PMC11234826 DOI: 10.1039/d4sc02214a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/28/2024] [Indexed: 07/13/2024] Open
Abstract
Due to the expanding applications of icosahedral carboranes in medicinal and materials chemistry research, their functionalizations have become one of the central themes in boron-rich cluster chemistry. Although several strategies for incorporating nitrogen-containing nucleophiles on a single boron vertex of the icosahedral carboranes (C2B10H12) have been developed, methods for preparing clusters with vicinal B-N moieties are still lacking. The steric bulk of icosahedral carboranes and disparate electronic and steric nature of the N-containing groups have rendered the vicinal diamination challenging. In this article, we show how a developed Pd-catalyzed process is used to incorporate an array of NH-heterocycles, anilines, and heteroanilines with various electronic and steric profiles onto the vicinal boron vertices of a meta-carborane cluster via sequential or one-pot fashion. Importantly, oxidative cyclizations of the cross-coupling products with indoles and pyrroles appended to boron vertices generate a previously unknown class of all-boron-vertex bound carborane-fused six- and seven-membered ring heterocycles. Photophysical studies of the meta-carborane-fused heterocycles show that these structures can exhibit luminescence with high quantum yields and are amenable to further manipulations.
Collapse
Affiliation(s)
- Mengjie Zhu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
| | - Puzhao Wang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
| | - Zhengqiu Wu
- Functional Coordination Material Group-Frontier Research Center, Songshan Lake Materials Laboratory, Dongguan Dongguan 523808 Guangdong China
| | - Yangfa Zhong
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
| | - Laiman Su
- School of Biotechnology, East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
| | - Yuquan Xin
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
| | - Alexander M Spokoyny
- Department of Chemistry and Biochemistry, University of California, Los Angeles 607 Charles E. Young Drive East Los Angeles California 90095 USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles Los Angeles California 90095 USA
| | - Chao Zou
- Functional Coordination Material Group-Frontier Research Center, Songshan Lake Materials Laboratory, Dongguan Dongguan 523808 Guangdong China
| | - Xin Mu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
| |
Collapse
|
13
|
Cao J, Jin T, Shao S, Mao B, Feng J. Polymeric nanomaterials encapsulating fluorescent polyindole-nido- carborane: design, synthesis and biological evaluation. Front Chem 2024; 12:1402640. [PMID: 39036658 PMCID: PMC11257873 DOI: 10.3389/fchem.2024.1402640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/11/2024] [Indexed: 07/23/2024] Open
Abstract
The water-soluble nido-carborane was prepared by alkali treatment of o-carborane. A polymer PInd containing a polyindole structure was synthesized and employed to label the modified o-carborane. Subsequently, four polymeric nanomaterials were synthesized with the objective of encapsulating them in order to enhance its bioavailability. The experimental results showed that the fluorescent complex encapsulated by the pH-sensitive polymer A had the best UV absorption and fluorescence intensity, and thus A-PInd-C was chosen for subsequent experiments. The Transmission electron microscopy images revealed that the compounds exhibited a rounded internal morphology, with the layers exhibiting a tightly stacked arrangement. The AFM imaging revealed that the surface of the sample exhibited a relatively uniform and smooth appearance. In vitro release experiments conducted under acidic conditions demonstrated that A-PInd-C was released in a predominantly linear manner, with a maximum release rate of 80% observed within 48 h. Cellular imaging experiments showed that the compound could enter HeLa and HCT-116 cells and was mainly distributed around the nucleus, especially in the acidic environment. The results of the cell proliferation toxicity experiments demonstrated that A-PInd-C exhibited inhibitory effects on HeLa, PC-3 and L02 cells. Among these, the inhibitory effect on PC-3 cells was the most pronounced, reaching up to 70%. In conclusion, this paper solves the problem of poor bioavailability of carborane by improving the boron containing compounds and also makes the system have potential for Boron neutron capture therapy.
Collapse
Affiliation(s)
- Jia Cao
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tao Jin
- Medical College of Anhui University of Science and Technology, Huainan, China
| | - Shihe Shao
- Medical College of Anhui University of Science and Technology, Huainan, China
| | - Boneng Mao
- Medical College of Anhui University of Science and Technology, Huainan, China
| | - Jin Feng
- Department of Gastroenterology, Yixing People’s Hospital Affiliated to Jiangsu University, Yixing, China
| |
Collapse
|
14
|
Huang JH, Liu YJ, Si Y, Cui Y, Dong XY, Zang SQ. Carborane-Cluster-Wrapped Copper Cluster with Cyclodextrin-like Cavities for Chiral Recognition. J Am Chem Soc 2024. [PMID: 38838264 DOI: 10.1021/jacs.4c04294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Chiral atomically precise metal clusters, known for their remarkable chiroptical properties, hold great potential for applications in chirality recognition. However, advancements in this field have been constrained by the limited exploration of host-guest chemistry, involving metal clusters. This study reports the synthesis of a chiral Cu16(C2B10H10S2)8 (denoted as Cu16@CB8, where C2B10H12S2H2 = 9,12-(HS)2-1,2-closo-carborane) cluster by an achiral carboranylthiolate ligand. The chiral R-/S-Cu16@CB8 cluster features chiral cavities reminiscent of cyclodextrins, which are surrounded by carborane clusters, yet they crystallize in a racemate. These cyclodextrin-like cavities demonstrated the specific recognition of amino acids, as indicated by the responsive output of circular dichroism and circularly polarized luminescence signals of Cu16 moieties of the Cu16@CB8 cluster. Notably, a quantitative chiroptical analysis of amino acids in a short time and a concomitant deracemization of Cu16@CB8 were achieved. Density functional tight-binding molecular dynamics simulation and noncovalent interaction analysis further unraveled the great importance of the cavities and binding sites for chiral recognition. Dipeptide, tripeptide, and polypeptide containing the corresponding amino acids (Cys, Arg, or His residues) display the same chiral recognition, showing the generality of this approach. The functional synergy of dual clusters, comprising carborane and metal clusters, is for the first time demonstrated in the Cu16@CB8 cluster, resulting in the valuable quantification of the enantiomeric excess (ee) value of amino acids. This work opens a new avenue for chirality sensors based on chiral metal clusters with unique chiroptical properties and inspires the development of carborane clusters in host-guest chemistry.
Collapse
Affiliation(s)
- Jia-Hong Huang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ya-Jie Liu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yubing Si
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yao Cui
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
15
|
Huang J, Ji A, Wang Z, Wang Q, Zang S. Boosting 2000-Fold Hypergolic Ignition Rate of Carborane by Substitutes Migration in Metal Clusters. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401861. [PMID: 38569464 PMCID: PMC11186111 DOI: 10.1002/advs.202401861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/20/2024] [Indexed: 04/05/2024]
Abstract
Hypergolic propellants rely on fuel and oxidizer that spontaneously ignite upon contact, which fulfill a wide variety of mission roles in launch vehicles and spacecraft. Energy-rich carboranes are promising hypergolic fuels, but triggering their energy release is quite difficult because of their ultrastable aromatic cage structure. To steer the development of carborane-based high-performance hypergolic material, carboranylthiolated compounds integrated with atomically precise copper clusters are presented, yielding two distinct isomers, Cu14B-S and Cu14C-S, both possessing similar ligands and core structures. With the migration of thiolate groups from carbon atoms to boron atoms, the ignition delay (ID) time shortened from 6870 to 3 ms when contacted with environmentally benign oxidizer high-test peroxide (HTP, with a H2O2 concentration of 90%). The extraordinarily short ignition ID time of Cu14B-S is ranking among the best of HTP-active hypergolic materials. The experimental and theoretical findings reveal that benefitting from the migration of thiolate groups, Cu14B-S, characterized by an electron-rich metal kernel, displays enhanced reducibility and superior charge transfer efficiency. This results in exceptional activation rates with HTP, consequently inducing carborane combustion and the simultaneous release of energy. This fundamental investigation shed light on the development of advanced green hypergolic propulsion systems.
Collapse
Affiliation(s)
- Jia‐Hong Huang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, and College of ChemistryZhengzhou UniversityZhengzhou450001China
| | - Ao‐Qi Ji
- Henan Key Laboratory of Crystalline Molecular Functional Materials, and College of ChemistryZhengzhou UniversityZhengzhou450001China
| | - Zhao‐Yang Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, and College of ChemistryZhengzhou UniversityZhengzhou450001China
| | - Qian‐You Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, and College of ChemistryZhengzhou UniversityZhengzhou450001China
| | - Shuang‐Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, and College of ChemistryZhengzhou UniversityZhengzhou450001China
| |
Collapse
|
16
|
Tan S, Li C, Peng C, Yan W, Bu H, Jiang H, Yue F, Zhang L, Gao H, Zhou Z. Sustainable thermal regulation improves stability and efficiency in all-perovskite tandem solar cells. Nat Commun 2024; 15:4136. [PMID: 38755156 PMCID: PMC11099067 DOI: 10.1038/s41467-024-48552-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 05/04/2024] [Indexed: 05/18/2024] Open
Abstract
Mixed Sn-Pb perovskites have emerged as promising photovoltaic materials for both single- and multi-junction solar cells. However, achieving their scale-up and practical application requires further enhancement in stability. We identify that their poor thermal conductivity results in insufficient thermal transfer, leading to heat accumulation within the absorber layer that accelerates thermal degradation. A thermal regulation strategy by incorporating carboranes into perovskites is developed; these are electron-delocalized carbon-boron molecules known for their efficient heat transfer capability. We specifically select ortho-carborane due to its low thermal hysteresis. We observe its existence through the perovskite layer showing a decreasing trend from the buried interface to the top surface, effectively transferring heat and lowering the surface temperature by around 5 °C under illumination. o-CB also facilitates hole extraction at the perovskite/PEDOT:PSS interface and reduces charge recombination. These enable mixed Sn-Pb cells to exhibit improved thermal stability, retaining 80% of their initial efficiencies after aging at 85 °C for 1080 hours. When integrated into monolithic all-perovskite tandems, we achieve efficiencies of over 27%. A tandem cell maintains 87% of its initial PCE after 704 h of continuous operation under illumination.
Collapse
Affiliation(s)
- Shuchen Tan
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Chongwen Li
- Department of Electrical and Computer Engineering, University of Toronto, 35 St. George Street, Toronto, ON, M5S 1A4, Canada.
| | - Cheng Peng
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Wenjian Yan
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Hongkai Bu
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Haokun Jiang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Fang Yue
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Linbao Zhang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Hongtao Gao
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhongmin Zhou
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
17
|
Aniés F, Hamilton I, De Castro CSP, Furlan F, Marsh AV, Xu W, Pirela V, Patel A, Pompilio M, Cacialli F, Martín J, Durrant JR, Laquai F, Gasparini N, Bradley DDC, Heeney M. A Conjugated Carboranyl Main Chain Polymer with Aggregation-Induced Emission in the Near-Infrared. J Am Chem Soc 2024; 146:13607-13616. [PMID: 38709316 PMCID: PMC11100012 DOI: 10.1021/jacs.4c03521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
Materials exhibiting aggregation-induced emission (AIE) are both highly emissive in the solid state and prompt a strongly red-shifted emission and should therefore pose as good candidates toward emerging near-infrared (NIR) applications of organic semiconductors (OSCs). Despite this, very few AIE materials have been reported with significant emissivity past 700 nm. In this work, we elucidate the potential of ortho-carborane as an AIE-active component in the design of NIR-emitting OSCs. By incorporating ortho-carborane in the backbone of a conjugated polymer, a remarkable solid-state photoluminescence quantum yield of 13.4% is achieved, with a photoluminescence maximum of 734 nm. In contrast, the corresponding para and meta isomers exhibited aggregation-caused quenching. The materials are demonstrated for electronic applications through the fabrication of nondoped polymer light-emitting diodes. Devices employing the ortho isomer achieved nearly pure NIR emission, with 86% of emission at wavelengths longer than 700 nm and an electroluminescence maximum at 761 nm, producing a significant light output of 1.37 W sr-1 m-2.
Collapse
Affiliation(s)
- Filip Aniés
- Department
of Chemistry, Centre for Processable Electronics, Molecular Sciences
Research Hub, Imperial College London, 80 Wood Lane, London, W12 0BZ, U.K.
| | - Iain Hamilton
- KAUST
Solar Center, King Abdullah University of
Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Catherine S. P. De Castro
- KAUST
Solar Center, King Abdullah University of
Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Francesco Furlan
- Department
of Chemistry, Centre for Processable Electronics, Molecular Sciences
Research Hub, Imperial College London, 80 Wood Lane, London, W12 0BZ, U.K.
| | - Adam V. Marsh
- KAUST
Solar Center, King Abdullah University of
Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Weidong Xu
- Department
of Chemistry, Centre for Processable Electronics, Molecular Sciences
Research Hub, Imperial College London, 80 Wood Lane, London, W12 0BZ, U.K.
| | - Valentina Pirela
- POLYMAT
University of the Basque Country UPV/EHU, Av. de Tolosa 72, Donostia-San
Sebastián, 20018, Spain
| | - Adil Patel
- Department
of Physics and Astronomy, London Centre for Nanotechnology, University College London, London, WC1E 6BT, U.K.
| | - Michele Pompilio
- Department
of Physics and Astronomy, London Centre for Nanotechnology, University College London, London, WC1E 6BT, U.K.
| | - Franco Cacialli
- Department
of Physics and Astronomy, London Centre for Nanotechnology, University College London, London, WC1E 6BT, U.K.
- Department
of Engineering, Free University of Bozen-Bolzano, Università 5, Bolzano, I-39100, Italy
| | - Jaime Martín
- Universidade
da Coruña, Campus Industrial de Ferrol, CITENI, Esteiro, Ferrol, 15471, Spain
| | - James R. Durrant
- Department
of Chemistry, Centre for Processable Electronics, Molecular Sciences
Research Hub, Imperial College London, 80 Wood Lane, London, W12 0BZ, U.K.
| | - Frédéric Laquai
- KAUST
Solar Center, King Abdullah University of
Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Nicola Gasparini
- Department
of Chemistry, Centre for Processable Electronics, Molecular Sciences
Research Hub, Imperial College London, 80 Wood Lane, London, W12 0BZ, U.K.
| | - Donal D. C. Bradley
- KAUST
Solar Center, King Abdullah University of
Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- NEOM
Education, Research, and Innovation Foundation and University Neom, Al Khuraybah, Tabuk 49643-9136, Saudi Arabia
| | - Martin Heeney
- Department
of Chemistry, Centre for Processable Electronics, Molecular Sciences
Research Hub, Imperial College London, 80 Wood Lane, London, W12 0BZ, U.K.
- KAUST
Solar Center, King Abdullah University of
Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
18
|
Sun M, Feng L, Lu JY. Breaking the Base Barrier: Cu(II)-Mediated C-H Heteroarylation of o-Carboranes with Base-Sensitive Heteroaryl Halides. Org Lett 2024; 26:3697-3702. [PMID: 38685484 DOI: 10.1021/acs.orglett.4c00489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
While cage C-arylation reactions using strong bases are among the most frequently used transformations in carborane chemistry, there has been no general solution to allow for the use of weak bases in the reaction. Moreover, base-metal-promoted C-H heteroarylation with base-sensitive heteroaryl halides remained elusive. Herein, copper-mediated cage C-H (hetero)arylation has been achieved without the need for strong bases, leading to the facile synthesis of a wide range of C-(hetero)arylated carboranes in good to excellent yields with a broad substrate scope and good functional group compatibility.
Collapse
Affiliation(s)
- Mengfan Sun
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Leijun Feng
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Ju-You Lu
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
19
|
Phang YL, Jin JK, Zhang FL, Wang YF. Radical hydroboration for the synthesis of organoboron compounds. Chem Commun (Camb) 2024; 60:4275-4289. [PMID: 38566567 DOI: 10.1039/d4cc00398e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Organoboron compounds demonstrate diverse applications in the fields of organic synthesis, materials science, and medicinal chemistry. Compared to the conventional hydroboration reaction, radical hydroboration serves as an alternative approach for the synthesis of organoborons via different mechanisms. In radical hydroboration, a boryl radical is initially generated from homolytic cleavage of a B-H or a B-B bond, which is then added to an unsaturated double bond to deliver a carbon radical. Subsequent hydrogen atom transfer or reduction of the carbon radical to form a carbanion followed by protonation gave the final product. Over the past few years, numerous efforts have been made for efficient synthesis of boryl radicals and the expansion of substrate scope of the radical hydroboration reaction. Here, we discuss the recent advancement of radical hydroboration and its associated mechanisms. Numerous radical hydroboration strategies employing N-heterocyclic carbene borane, bis(pinacolato)diboron and pinacolborane as the boron source were illustrated. Thermochemical, photochemical and electrochemical strategies for the generation of boryl radicals were also discussed in detail.
Collapse
Affiliation(s)
- Yee Lin Phang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Ji-Kang Jin
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Feng-Lian Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Yi-Feng Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
20
|
Lanfranco A, Rakhshan S, Alberti D, Renzi P, Zarechian A, Protti N, Altieri S, Crich SG, Deagostino A. Combining BNCT with carbonic anhydrase inhibition for mesothelioma treatment: Synthesis, in vitro, in vivo studies of ureidosulfamido carboranes. Eur J Med Chem 2024; 270:116334. [PMID: 38552427 DOI: 10.1016/j.ejmech.2024.116334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/21/2024]
Abstract
Mesothelioma is a malignant neoplasm of mesothelial cells caused by exposure to asbestos. The average survival time after diagnosis is usually nine/twelve months. A multi-therapeutic approach is therefore required to treat and prevent recurrence. Boronated derivatives containing a carborane cage, a sulfamido group and an ureido functionality (CA-USF) have been designed, synthesised and tested, in order to couple Boron Neutron Capture Therapy (BNCT) and the inhibition of Carbonic Anhydrases (CAs), which are overexpressed in many tumours. In vitro studies showed greater inhibition than the reference drug acetazolamide (AZ). To increase solubility in aqueous media, CA-USFs were used as inclusion complexes of hydroxypropyl β-cyclodextrin (HP-β-CD) in all the inhibition and cell experiments. BNCT experiments carried out on AB22 (murine mesothelioma) cell lines showed a marked inhibition of cell proliferation by CA-USFs, and in one case a complete inhibition of proliferation twenty days after neutron irradiation. Finally, in vivo neutron irradiation experiments on a mouse model of mesothelioma demonstrated the efficiency of combining CA IX inhibition and BNCT treatment. Indeed, a greater reduction in tumour mass was observed in treated mice compared to untreated mice, with a significant higher effect when combined with BNCT. For in vivo experiments CA-USFs were administered as inclusion complexes of higher molecular weight β-CD polymers thus increasing the selective extravasation into tumour tissue and reducing clearance. In this way, boron uptake was maximised and CA-USFs demonstrated to be in vivo well tolerated at a therapeutic dose. The therapeutic strategy herein described could be expanded to other cancers with increased CA IX activity, such as melanoma, glioma, and breast cancer.
Collapse
Affiliation(s)
- Alberto Lanfranco
- Department of Chemistry, University of Torino, Via P. Giuria, 7, 10125, Turin, Italy
| | - Sahar Rakhshan
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza, 52, 10126, Turin, Italy
| | - Diego Alberti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza, 52, 10126, Turin, Italy
| | - Polyssena Renzi
- Department of Chemistry, University of Torino, Via P. Giuria, 7, 10125, Turin, Italy
| | - Ayda Zarechian
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza, 52, 10126, Turin, Italy
| | - Nicoletta Protti
- Department of Physics, University of Pavia, Via Agostino Bassi 6, 27100, Pavia, Italy; Nuclear Physics National Institute (INFN), Unit of Pavia, Via Agostino Bassi 6, 27100, Pavia, Italy
| | - Saverio Altieri
- Department of Physics, University of Pavia, Via Agostino Bassi 6, 27100, Pavia, Italy; Nuclear Physics National Institute (INFN), Unit of Pavia, Via Agostino Bassi 6, 27100, Pavia, Italy
| | - Simonetta Geninatti Crich
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza, 52, 10126, Turin, Italy.
| | - Annamaria Deagostino
- Department of Chemistry, University of Torino, Via P. Giuria, 7, 10125, Turin, Italy.
| |
Collapse
|
21
|
Wu L, Holzapfel M, Schmiedel A, Peng F, Moos M, Mentzel P, Shi J, Neubert T, Bertermann R, Finze M, Fox MA, Lambert C, Ji L. Optically induced charge-transfer in donor-acceptor-substituted p- and m- C 2B 10H 12 carboranes. Nat Commun 2024; 15:3005. [PMID: 38589381 PMCID: PMC11001991 DOI: 10.1038/s41467-024-47384-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/28/2024] [Indexed: 04/10/2024] Open
Abstract
Icosahedral carboranes, C2B10H12, have long been considered to be aromatic but the extent of conjugation between these clusters and their substituents is still being debated. m- and p-Carboranes are compared with m- and p-phenylenes as conjugated bridges in optical functional chromophores with a donor and an acceptor as substituents here. The absorption and fluorescence data for both carboranes from experimental techniques (including femtosecond transient absorption, time-resolved fluorescence and broadband fluorescence upconversion) show that the absorption and emission processes involve strong intramolecular charge transfer between the donor and acceptor substituents via the carborane cluster. From quantum chemical calculations on these carborane systems, the charge transfer process depends on the relative torsional angles of the donor and acceptor groups where an overlap between the two frontier orbitals exists in the bridging carborane cluster.
Collapse
Affiliation(s)
- Lin Wu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Marco Holzapfel
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Alexander Schmiedel
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Fuwei Peng
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Michael Moos
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Paul Mentzel
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Junqing Shi
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Thomas Neubert
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Rüdiger Bertermann
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Maik Finze
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Mark A Fox
- Department of Chemistry, University of Durham, South Road, Durham, DH1 3LE, UK
| | - Christoph Lambert
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.
| | - Lei Ji
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China.
| |
Collapse
|
22
|
Ma W, Wang Y, Xue Y, Wang M, Lu C, Guo W, Liu YH, Shu D, Shao G, Xu Q, Tu D, Yan H. Molecular engineering of AIE-active boron clustoluminogens for enhanced boron neutron capture therapy. Chem Sci 2024; 15:4019-4030. [PMID: 38487248 PMCID: PMC10935674 DOI: 10.1039/d3sc06222h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/01/2024] [Indexed: 03/17/2024] Open
Abstract
The development of boron delivery agents bearing an imaging capability is crucial for boron neutron capture therapy (BNCT), yet it has been rarely explored. Here we present a new type of boron delivery agent that integrates aggregation-induced emission (AIE)-active imaging and a carborane cluster for the first time. In doing so, the new boron delivery agents have been rationally designed by incorporating a high boron content unit of a carborane cluster, an erlotinib targeting unit towards lung cancer cells, and a donor-acceptor type AIE unit bearing naphthalimide. The new boron delivery agents demonstrate both excellent AIE properties for imaging purposes and highly selective accumulation in tumors. For example, at a boron delivery agent dose of 15 mg kg-1, the boron amount reaches over 20 μg g-1, and both tumor/blood (T/B) and tumor/normal cell (T/N) ratios reach 20-30 times higher than those required by BNCT. The neutron irradiation experiments demonstrate highly efficient tumor growth suppression without any observable physical tissue damage and abnormal behavior in vivo. This study not only expands the application scopes of both AIE-active molecules and boron clusters, but also provides a new molecular engineering strategy for a deep-penetrating cancer therapeutic protocol based on BNCT.
Collapse
Affiliation(s)
- Wenli Ma
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yanyang Wang
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University Nanjing 210008 China
| | - Yilin Xue
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University Nanjing 210033 China
| | - Mengmeng Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Wanhua Guo
- Department of Nuclear Medicine, Nanjing Tongren Hospital, the Affiliated Hospital of Southeast University Medical School Nanjing 210033 China
| | - Yuan-Hao Liu
- Neuboron Therapy System Ltd. Xiamen 361028 China
- Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
- Neuboron Medtech Ltd. Nanjing 211112 China
| | - Diyun Shu
- Neuboron Therapy System Ltd. Xiamen 361028 China
- Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
- Neuboron Medtech Ltd. Nanjing 211112 China
| | - Guoqiang Shao
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University Nanjing 210033 China
| | - Qinfeng Xu
- Department of Nuclear Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing 210029 China
| | - Deshuang Tu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
23
|
Riffle JR, Hemingway TM, Smith MD, Peryshkov DV. Synthesis and cluster structure distortions of biscarborane dithiol, thioether, and disulfide. Dalton Trans 2024; 53:4444-4450. [PMID: 38353929 DOI: 10.1039/d3dt04289h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
The synthesis and structural characterization of the first sulfur-containing derivatives of the C,C-biscarborane {ortho-C2B10}2 cluster - thiol, thioether, and disulfide - are reported. The biscarboranyl dithiol (1-HS-C2B10H10)2 exhibits an exceedingly long intracluster carbon-carbon bond length of 1.858(3) Å, which is attributed to the extensive interaction between the lone pairs of the thiol groups and the unoccupied molecular orbital of the carborane cluster. The structures of the doubly deprotonated biscarboranyl dithiolate anion (1-S-C2B10H10)22- with various counter cations feature an even longer carbon-carbon bond length of 2.062(10) Å within the cluster along with a short carbon-sulfur bond of 1.660(7) Å, both indicative of significant delocalization of electron density from the sulfur atoms into the cluster.
Collapse
Affiliation(s)
- Jared R Riffle
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St, Columbia, South Carolina 29208, USA.
| | - Tyler M Hemingway
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St, Columbia, South Carolina 29208, USA.
| | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St, Columbia, South Carolina 29208, USA.
| | - Dmitry V Peryshkov
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St, Columbia, South Carolina 29208, USA.
| |
Collapse
|
24
|
Ravi Sankar A, Arunachalam S, Gnanasekaran R. A computational study to determine the role of σ-hole in Br/OH substituted nido-carborane and its binding capabilities. J Mol Graph Model 2024; 127:108680. [PMID: 38039786 DOI: 10.1016/j.jmgm.2023.108680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/19/2023] [Indexed: 12/03/2023]
Abstract
A detailed investigation of the σ-hole on the halogen atom present in the nido-heteroboranes is made by employing quantum mechanical methods. The bromide and the hydroxyl groups are incorporated in the exo-substituents of the nido-boranes. The potential of the bromide σ-hole was compared to that of electrostatic potential of hydroxyl group counterpart. The presence of a carbon atom vertex, in a different position of a system, influences the σ-hole and hence its binding abilities. Bromide substituted nido-carboranes have less potential and hence weaker binding ability compared to their closo-counterparts. Binding affinity with aliphatic is found to be more compared to that of aromatic system. The presence of solvent dampened the electrostatic interactions. Apart from the neutral system, the binding capabilities of charged nido-heteroboranes were also studied. The results of this study will be further useful for several applications viz., crystal engineering, drug designing (Pharmaceuticals), medicine, material science, energy storage devices, etc.
Collapse
|
25
|
Sun ZZ, Gao P, Yang Y, Wang T, Wu XJ, Wang YQ. Synthesis of Carboranylated Dihydropyrrolo[1,2- a]quinoxalines and Dihydroindolo[1,2- a]quinoxalines by BF 3·OEt 2-Catalyzed Heterocyclization of C-Formyl- o-carboranes and Investigation of Their Oxidation Stability. J Org Chem 2024; 89:3573-3579. [PMID: 38377489 DOI: 10.1021/acs.joc.3c02443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
A BF3·OEt2-catalyzed synthesis of carboranylated dihydropyrrolo[1,2-a]quinoxalines and dihydroindolo[1,2-a]quinoxalines in 30-99% yields is presented through the heterocyclization of various C-modified C-formyl-o-carboranes with 1-(2-aminophenyl)-pyrroles/indoles. A systematic comparative investigation of their oxidation stability in air confirmed that 4-carboranyl-4,5-dihydropyrrolo[1,2-a]quinoxaline had better stability than the 4-phenyl analogue. A cage-deboronation reaction for N-acetyl-substituted carboranylated dihydropyrrolo[1,2-a]quinoxaline produced the corresponding 7,8-nido-carborane cesium salt. A kinetic resolution was also realized to obtain an optically pure carboranylated N-heterocycle scaffold bearing a carborane cage carbon-bonded chiral stereocenter.
Collapse
Affiliation(s)
- Zhen-Zhen Sun
- Provincial Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Pan Gao
- Provincial Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Yong Yang
- Zhengzhou Yuanli Biological Technology Co., Ltd., Zhengzhou, Henan 450000, P. R. China
| | - Tao Wang
- Provincial Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Xiao-Jun Wu
- Zhengzhou Yuanli Biological Technology Co., Ltd., Zhengzhou, Henan 450000, P. R. China
| | - You-Qing Wang
- Provincial Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
- Zhengzhou Yuanli Biological Technology Co., Ltd., Zhengzhou, Henan 450000, P. R. China
| |
Collapse
|
26
|
Zhang X, Rendina LM, Müllner M. Carborane-Containing Polymers: Synthesis, Properties, and Applications. ACS POLYMERS AU 2024; 4:7-33. [PMID: 38371730 PMCID: PMC10870755 DOI: 10.1021/acspolymersau.3c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 02/20/2024]
Abstract
Carboranes are an important class of electron-delocalized icosahedral carbon-boron clusters with unique physical and chemical properties, which can offer various functions to polymers including enhanced heat-resistance, tuned electronic properties and hydrophobicity, special ability of dihydrogen bond formation, and thermal neutron capture. Carborane-containing polymers have been synthesized mainly by means of step-growth polymerizations of disubstituted carborane monomers, with chain-growth polymerizations of monosubstituted carborane monomers including ATRP, RAFT, and ROMP only utilized recently. Carborane-containing polymers may find application as harsh-environment resistant materials, ceramic precursors, fluorescent materials with tuned emissive properties, novel optoelectronic devices, potential BNCT agents, and drug carriers with low cytotoxicity. This review highlights carborane-containing polymer synthesis strategies and potential applications, showcasing the versatile properties and possibilities that this unique family of boron compounds can provide to the polymeric systems.
Collapse
Affiliation(s)
- Xinyi Zhang
- School
of Chemistry, The University of Sydney, Sydney 2006 New South Wales, Australia
| | - Louis M. Rendina
- School
of Chemistry, The University of Sydney, Sydney 2006 New South Wales, Australia
- The
University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney 2006 New South Wales, Australia
| | - Markus Müllner
- Key
Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney 2006 New South Wales, Australia
- The
University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney 2006 New South Wales, Australia
| |
Collapse
|
27
|
Yang HB, Guo Y, Cao K, Jiang QJ, Teng CC, Zhu DY, Wang SH. Iridium-catalyzed selective arylation of B(6)-H of 3-aryl- o-carboranes with arylboronic acid via direct B-H activation. Chem Commun (Camb) 2024; 60:1124-1127. [PMID: 38193475 DOI: 10.1039/d3cc05630a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
This work discloses an iridium-catalyzed selective arylation of B(6)-H of 3-Ar-o-carboranes with arylboronic acid via direct B-H activation for the first time. A series of unsymmetric and symmetric 3,6-diaryl-o-carboranes decorated with diverse active groups have been synthesized with moderate to excellent yields under mild conditions. This work offers an efficient approach for selective arylation of B(6)-H with arylboronic acid and has important value for selective functionalization of o-carboranes.
Collapse
Affiliation(s)
- Han-Bo Yang
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan, P. R. China.
| | - Yan Guo
- Department of Oncology, Sichuan Science City Hospital, Mianyang, Sichuan, 621000, P. R. China
| | - Ke Cao
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan, P. R. China.
| | - Qi-Jia Jiang
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan, P. R. China.
| | - Chao-Chao Teng
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan, P. R. China.
| | - Dao-Yong Zhu
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Shao-Hua Wang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
28
|
Stockmann P, Kuhnert L, Krajnović T, Mijatović S, Maksimović-Ivanić D, Honscha W, Hey-Hawkins E. Carboranes as Potent Phenyl Mimetics: A Comparative Study on the Reversal of ABCG2-Mediated Drug Resistance by Carboranylquinazolines and Their Organic Isosteres. ChemMedChem 2024; 19:e202300506. [PMID: 38012078 DOI: 10.1002/cmdc.202300506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 11/29/2023]
Abstract
Multidrug resistance is a major challenge in clinical cancer therapy. In particular, overexpression of certain ATP-binding cassette (ABC) transporter proteins, like the efflux transporter ABCG2, also known as breast cancer resistance protein (BCRP), has been associated with the development of resistance to applied chemotherapeutic agents in cancer therapies, and therefore targeted inhibition of BCRP-mediated transport might lead to reversal of this (multidrug) resistance (MDR). In a previous study, we have described the introduction of a boron-carbon cluster, namely closo-dicarbadodecaborane or carborane, as an inorganic pharmacophore into a polymethoxylated 2-phenylquinazolin-4-amine backbone. In this work, the scope was extended to the corresponding amide derivatives. As most of the amide derivatives suffered from poor solubility, only the amide derivative QCe and the two amine derivatives DMQCc and DMQCd were further investigated. Carboranes are often considered as sterically demanding phenyl mimetics or isosteres. Therefore, the organic phenyl and sterically demanding adamantyl analogues of the most promising carborane derivatives were also investigated. The studies showed that the previously described DMQCd, a penta-methoxylated N-carboranyl-2-phenylquinazolin-4-amine, was by far superior to its organic analogues in terms of cytotoxicity, inhibition of the human ABCG2 transporter, as well as the ability to reverse BCRP-mediated mitoxantrone resistance in MDCKII-hABCG2 and HT29 colon cancer cells. Our results indicate that DMQCd is a promising candidate for further in vitro as well as in vivo studies in combination therapy for ABCG2-overexpressing cancers.
Collapse
Affiliation(s)
- Philipp Stockmann
- Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Lydia Kuhnert
- Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 15, 04103, Leipzig, Germany
| | - Tamara Krajnović
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bul. despota Stefana 142, 11108, Belgrade, Serbia
| | - Sanja Mijatović
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bul. despota Stefana 142, 11108, Belgrade, Serbia
| | - Danijela Maksimović-Ivanić
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bul. despota Stefana 142, 11108, Belgrade, Serbia
| | - Walther Honscha
- Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 15, 04103, Leipzig, Germany
| | - Evamarie Hey-Hawkins
- Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| |
Collapse
|
29
|
Chen F, Guo W, Ma YN, Chen X. 9,9'-Bis- o-carboranes: synthesis and exploration of properties. Chem Commun (Camb) 2024; 60:614-617. [PMID: 38100063 DOI: 10.1039/d3cc05041f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
A highly efficient Pd-catalyzed B(9)-H/B(9)-H oxidative dehydrogenation coupling of carboranes to synthesize 9,9'-bis-o-carboranes has been developed. The properties and derivatization of 9,9'-bis-o-carborane were also examined, which provided diverse bis-o-carborane derivatives and bis-nido-carborane.
Collapse
Affiliation(s)
- Feijing Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Wenjing Guo
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Yan-Na Ma
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Xuenian Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China.
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
30
|
Khalil A, Adam MSS. Nucleoside Scaffolds and Carborane Clusters for Boron Neutron Capture Therapy: Developments and Future Perspective. Curr Med Chem 2024; 31:5739-5754. [PMID: 37818562 DOI: 10.2174/0109298673245020230929152030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/19/2023] [Accepted: 08/24/2023] [Indexed: 10/12/2023]
Abstract
Nucleosides containing carboranes are one of the most important boron delivery agents for boron neutron capture therapy, BNCT, which are good substrates of hTK1. The development of several nucleosides containing carboranes at early stages led to the discovery of the first generation of 3CTAs by incorporating a hydrocarbon spacer between the thymidine scaffold and carborane cluster and attaching dihydroxylpropyl group on the second carbon (C2) atom of the carborane cluster (e.g., N5 and N5-2OH). Phosphorylation rate, tumor cellular uptake, and retention have been evaluated in parallel to change the length of the tether arm of spacers in these compounds. Many attempts were reported and discussed to overcome the disadvantage of the first generation of 3CTAs by a) incorporating modified spacers between thymidine and carborane clusters, such as ethyleneoxide, polyhydroxyl, triazole, and tetrazole units, b) attaching hydrophilic groups at C2 of the carborane cluster, c) transforming lipophilic closo-carboranes to hydrophilic nidocarborane. The previous modifications represented the second generation of 3CTAs to improve the hydrogen bond formation with the hTK1 active site. Moreover, amino acid prodrugs were developed to enhance biological and physicochemical properties. The structure-activity relationship (SAR) of carboranyl thymidine analogues led to the roadmap for the development of the 3rd generation of the 3CTAs for BNCT.
Collapse
Affiliation(s)
- Ahmed Khalil
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed Shaker S Adam
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Department of Chemistry, Faculty of Science, Sohag University, Sohag 82534, Egypt
| |
Collapse
|
31
|
Rykowski S, Gurda-Woźna D, Fedoruk-Wyszomirska A, Orlicka-Płocka M, Kowalczyk A, Stączek P, Denel-Bobrowska M, Biniek-Antosiak K, Rypniewski W, Wyszko E, Olejniczak AB. Carboranyl-1,8-naphthalimide intercalators induce lysosomal membrane permeabilization and ferroptosis in cancer cell lines. J Enzyme Inhib Med Chem 2023; 38:2171028. [PMID: 36715272 PMCID: PMC9888480 DOI: 10.1080/14756366.2023.2171028] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
The synthesis of carborane-1,8-naphthalimide conjugates and evaluation of their DNA-binding ability and anticancer activity were performed. A series of 4-carboranyl-3-nitro-1,8-naphthalimide derivatives, mitonafide and pinafide analogs, were synthesised via amidation and reductive amination reactions, and their calf thymus DNA (ct-DNA)-binding properties were investigated using circular dichroism, UV-vis spectroscopy, and thermal denaturation. Results showed that conjugates 34-37 interacted very strongly with ct-DNA (ΔTm = 10.00-13.00 °C), indicating their ability to intercalate with DNA, but did not inhibit the activity of topoisomerase II. The conjugates inhibited the cell growth of the HepG2 cancer cell line in vitro. The same compounds caused the G2M phase arrest. Cell lines treated with these conjugates showed an increase in reactive oxygen species, glutathione, and Fe2+ levels, lipid peroxidation, and mitochondrial membrane potential relative to controls, indicating the involvement of ferroptosis. Furthermore, these conjugates caused lysosomal membrane permeabilization in HepG2 cells but not in MRC-5 cells.
Collapse
Affiliation(s)
| | - Dorota Gurda-Woźna
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | | | - Aleksandra Kowalczyk
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | - Paweł Stączek
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | | | | | - Wojciech Rypniewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Eliza Wyszko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | |
Collapse
|
32
|
Marforio TD, Carboni A, Calvaresi M. In Vivo Application of Carboranes for Boron Neutron Capture Therapy (BNCT): Structure, Formulation and Analytical Methods for Detection. Cancers (Basel) 2023; 15:4944. [PMID: 37894311 PMCID: PMC10605826 DOI: 10.3390/cancers15204944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Carboranes have emerged as one of the most promising boron agents in boron neutron capture therapy (BNCT). In this context, in vivo studies are particularly relevant, since they provide qualitative and quantitative information about the biodistribution of these molecules, which is of the utmost importance to determine the efficacy of BNCT, defining their localization and (bio)accumulation, as well as their pharmacokinetics and pharmacodynamics. First, we gathered a detailed list of the carboranes used for in vivo studies, considering the synthesis of carborane derivatives or the use of delivery system such as liposomes, micelles and nanoparticles. Then, the formulation employed and the cancer model used in each of these studies were identified. Finally, we examined the analytical aspects concerning carborane detection, identifying the main methodologies applied in the literature for ex vivo and in vivo analysis. The present work aims to identify the current strengths and weakness of the use of carboranes in BNCT, establishing the bottlenecks and the best strategies for future applications.
Collapse
Affiliation(s)
| | - Andrea Carboni
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy;
| | - Matteo Calvaresi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy;
| |
Collapse
|
33
|
Pazderová L, Tüzün EZ, Bavol D, Litecká M, Fojt L, Grűner B. Chemistry of Carbon-Substituted Derivatives of Cobalt Bis(dicarbollide)(1 -) Ion and Recent Progress in Boron Substitution. Molecules 2023; 28:6971. [PMID: 37836814 PMCID: PMC10574808 DOI: 10.3390/molecules28196971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
The cobalt bis(dicarbollide)(1-) anion (1-), [(1,2-C2B9H11)2-3,3'-Co(III)](1-), plays an increasingly important role in material science and medicine due to its high chemical stability, 3D shape, aromaticity, diamagnetic character, ability to penetrate cells, and low cytotoxicity. A key factor enabling the incorporation of this ion into larger organic molecules, biomolecules, and materials, as well as its capacity for "tuning" interactions with therapeutic targets, is the availability of synthetic routes that enable easy modifications with a wide selection of functional groups. Regarding the modification of the dicarbollide cage, syntheses leading to substitutions on boron atoms are better established. These methods primarily involve ring cleavage of the ether rings in species containing an oxonium oxygen atom connected to the B(8) site. These pathways are accessible with a broad range of nucleophiles. In contrast, the chemistry on carbon vertices has remained less elaborated over the previous decades due to a lack of reliable methods that permit direct and straightforward cage modifications. In this review, we present a survey of methods based on metalation reactions on the acidic C-H vertices, followed by reactions with electrophiles, which have gained importance in only the last decade. These methods now represent the primary trends in the modifications of cage carbon atoms. We discuss the scope of currently available approaches, along with the stereochemistry of reactions, chirality of some products, available types of functional groups, and their applications in designing unconventional drugs. This content is complemented with a report of the progress in physicochemical and biological studies on the parent cobalt bis(dicarbollide) ion and also includes an overview of recent syntheses and emerging applications of boron-substituted compounds.
Collapse
Affiliation(s)
- Lucia Pazderová
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Řež, Czech Republic; (L.P.); (E.Z.T.); (D.B.); (M.L.)
| | - Ece Zeynep Tüzün
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Řež, Czech Republic; (L.P.); (E.Z.T.); (D.B.); (M.L.)
- Department of Inorganic Chemistry, Faculty of Natural Science, Charles University, Hlavova 2030/8, 128 43 Prague, Czech Republic
| | - Dmytro Bavol
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Řež, Czech Republic; (L.P.); (E.Z.T.); (D.B.); (M.L.)
| | - Miroslava Litecká
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Řež, Czech Republic; (L.P.); (E.Z.T.); (D.B.); (M.L.)
| | - Lukáš Fojt
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic;
| | - Bohumír Grűner
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Řež, Czech Republic; (L.P.); (E.Z.T.); (D.B.); (M.L.)
| |
Collapse
|
34
|
Gruzdev DA, Telegina AA, Levit GL, Ezhikova MA, Kodess MI, Krasnov VP. Synthesis of Charge-Compensated nido-Carboranyl Derivatives of Sulfur-Containing Amino Acids and Biotin. J Org Chem 2023; 88:14022-14032. [PMID: 37737724 DOI: 10.1021/acs.joc.3c01569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
A new group of charge-compensated nido-carboranyl derivatives of sulfur-containing amino acids and biotin has been synthesized in which the boron atom in position 9 or 10 of carborane is attached to a positively charged sulfur atom. The possibilities of obtaining symmetrical B(10)-substituted and asymmetric B(9)-substituted nido-carboranes were studied. Using the example of (S)-methionine and D-biotin derivatives, water-soluble S-substituted charge-compensated nido-carboranes with free functional groups were prepared. The results obtained open up prospects for the development of potential boron delivery agents for BNCT as well as new bioactive compounds containing a negatively charged nido-carboranyl fragment bearing a positive charge on the sulfur atom associated with the boron cluster.
Collapse
Affiliation(s)
- Dmitry A Gruzdev
- Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, 22/20, S. Kovalevskoy St., Ekaterinburg 620108, Russia
| | - Angelina A Telegina
- Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, 22/20, S. Kovalevskoy St., Ekaterinburg 620108, Russia
| | - Galina L Levit
- Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, 22/20, S. Kovalevskoy St., Ekaterinburg 620108, Russia
| | - Marina A Ezhikova
- Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, 22/20, S. Kovalevskoy St., Ekaterinburg 620108, Russia
| | - Mikhail I Kodess
- Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, 22/20, S. Kovalevskoy St., Ekaterinburg 620108, Russia
| | - Victor P Krasnov
- Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, 22/20, S. Kovalevskoy St., Ekaterinburg 620108, Russia
| |
Collapse
|
35
|
Cui PF, Liu XR, Jin GX. Supramolecular Architectures Bearing Half-Sandwich Iridium- or Rhodium-Based Carboranes: Design, Synthesis, and Applications. J Am Chem Soc 2023; 145:19440-19457. [PMID: 37643971 DOI: 10.1021/jacs.3c05563] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The utilization of carboranes in supramolecular chemistry has attracted considerable attention. The unique spatial configuration and weak interaction forces of carboranes can help to explore the properties of supramolecular complexes, particularly via host-guest chemistry. Additionally, certain difficulties encountered in carborane development─such as controlled B-H bond activation─can be overcome by judiciously selecting metal centers and their adjacent ligands. However, few studies are being conducted in this nascent research area. With advances in this field, novel carborane-based supramolecular complexes will likely be prepared, structurally characterized, and intrinsically investigated. To expedite these efforts, we present major findings from recent studies, including π-π interactions, host-guest associations, and steric effects, which have been leveraged to implement a regioselective process for activating B(2,9)-, B(2,8)-, and B(2,7)-H bonds of para-carboranes and B(4,7)-H bonds of ortho-carboranes. Future studies should clarify the unique weak interactions of carboranes and their potential for enhancing the utility of supramolecular complexes. Although carboranes exhibit several unique weak interactions (such as dihydrogen-bond [Bδ+-Hδ-···Hδ+-Cδ-], Bδ+-Hδ-···M+, and Bδ+-Hδ-···π interactions), the manner in which they can be utilized remains unclear. Supramolecular complexes, particularly those based on host-guest chemistry, can be utilized as a platform for demonstrating potential applications of these weak interactions. Owing to the importance of alkane separation, applications related to the recognition and separation of alkane isomers via dihydrogen-bond interactions are primarily summarized. Advances in the research of unique weak interactions in carboranes will certainly lead to more possibilities for supramolecular chemistry.
Collapse
Affiliation(s)
- Peng-Fei Cui
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, People's Republic of China
| | - Xin-Ran Liu
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, People's Republic of China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, People's Republic of China
| |
Collapse
|
36
|
Coghi P, Li J, Hosmane NS, Zhu Y. Next generation of boron neutron capture therapy (BNCT) agents for cancer treatment. Med Res Rev 2023; 43:1809-1830. [PMID: 37102375 DOI: 10.1002/med.21964] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/27/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023]
Abstract
Boron neutron capture therapy (BNCT) is one of the most promising treatments among neutron capture therapies due to its long-term clinical application and unequivocally obtained success during clinical trials. Boron drug and neutron play an equivalent crucial role in BNCT. Nevertheless, current clinically used l-boronophenylalanine (BPA) and sodium borocaptate (BSH) suffer from large uptake dose and low blood to tumor selectivity, and that initiated overwhelm screening of next generation of BNCT agents. Various boron agents, such as small molecules and macro/nano-vehicles, have been explored with better success. In this featured article, different types of agents are rationally analyzed and compared, and the feasible targets are shared to present a perspective view for the future of BNCT in cancer treatment. This review aims at summarizing the current knowledge of a variety of boron compounds, reported recently, for the application of BCNT.
Collapse
Affiliation(s)
- Paolo Coghi
- School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Jinxin Li
- School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Narayan S Hosmane
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois, USA
| | | |
Collapse
|
37
|
Mahfouz N, Abi-Ghaida F, Kotob W, Mehdi A, Naoufal D. Selective Functionalization of Carbonyl Closo-Decaborate [2-B 10H 9CO] - with Building Block Properties via Grignard Reagents. Molecules 2023; 28:6076. [PMID: 37630327 PMCID: PMC10458521 DOI: 10.3390/molecules28166076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
A green, fast and selective approach for the synthesis of mono-substituted closo-decaborate derivatives [2-B10H9COR]2- has been established via a nucleophilic addition reaction between the carbonyl derivative of closo-decaborate [2-B10H9CO]- and the corresponding Grignard reagent RMgX, where R is the ethyl, iso-propyl, pentyl, allyl, vinyl and propynyl groups. This approach is accomplished under mild conditions with 70-80% yields. The significance of these derivative is their ability to constitute building blocks for polymeric integration via the allyl, vinyl and propynyl substituents. All products were characterized by 11B, 1H and 13C NMR, elemental analysis and mass spectrometry.
Collapse
Affiliation(s)
- Nadine Mahfouz
- Inorganic and Organometallic Coordination Chemistry Laboratory LCIO, Faculty of Sciences, Lebanese University, Beirut P.O. Box 6573, Lebanon; (N.M.); (W.K.)
- Institut Charles Gerhardt ICGM, CNRS, ENSCM, Université de Montpellier, 34090 Montpellier, France
| | - Fatima Abi-Ghaida
- Inorganic and Organometallic Coordination Chemistry Laboratory LCIO, Faculty of Sciences, Lebanese University, Beirut P.O. Box 6573, Lebanon; (N.M.); (W.K.)
| | - Wael Kotob
- Inorganic and Organometallic Coordination Chemistry Laboratory LCIO, Faculty of Sciences, Lebanese University, Beirut P.O. Box 6573, Lebanon; (N.M.); (W.K.)
| | - Ahmad Mehdi
- Institut Charles Gerhardt ICGM, CNRS, ENSCM, Université de Montpellier, 34090 Montpellier, France
| | - Daoud Naoufal
- Inorganic and Organometallic Coordination Chemistry Laboratory LCIO, Faculty of Sciences, Lebanese University, Beirut P.O. Box 6573, Lebanon; (N.M.); (W.K.)
| |
Collapse
|
38
|
Braun S, Jelača S, Laube M, George S, Hofmann B, Lönnecke P, Steinhilber D, Pietzsch J, Mijatović S, Maksimović-Ivanić D, Hey-Hawkins E. Synthesis and In Vitro Biological Evaluation of p-Carborane-Based Di- tert-butylphenol Analogs. Molecules 2023; 28:molecules28114547. [PMID: 37299023 DOI: 10.3390/molecules28114547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Targeting inflammatory mediators and related signaling pathways may offer a rational strategy for the treatment of cancer. The incorporation of metabolically stable, sterically demanding, and hydrophobic carboranes in dual cycloxygenase-2 (COX-2)/5-lipoxygenase (5-LO) inhibitors that are key enzymes in the biosynthesis of eicosanoids is a promising approach. The di-tert-butylphenol derivatives R-830, S-2474, KME-4, and E-5110 represent potent dual COX-2/5-LO inhibitors. The incorporation of p-carborane and further substitution of the p-position resulted in four carborane-based di-tert-butylphenol analogs that showed no or weak COX inhibition but high 5-LO inhibitory activities in vitro. Cell viability studies on five human cancer cell lines revealed that the p-carborane analogs R-830-Cb, S-2474-Cb, KME-4-Cb, and E-5110-Cb exhibited lower anticancer activity compared to the related di-tert-butylphenols. Interestingly, R-830-Cb did not affect the viability of primary cells and suppressed HCT116 cell proliferation more potently than its carbon-based R-830 counterpart. Considering all the advantages of boron cluster incorporation for enhancement of drug biostability, selectivity, and availability of drugs, R-830-Cb can be tested in further mechanistic and in vivo studies.
Collapse
Affiliation(s)
- Sebastian Braun
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Sanja Jelača
- Department of Immunology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia
| | - Markus Laube
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Sven George
- Institute of Pharmaceutical Chemistry, University of Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - Bettina Hofmann
- Institute of Pharmaceutical Chemistry, University of Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - Peter Lönnecke
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, University of Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, School of Science, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia
| | - Evamarie Hey-Hawkins
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| |
Collapse
|
39
|
Marforio TD, Mattioli EJ, Zerbetto F, Calvaresi M. Exploiting Blood Transport Proteins as Carborane Supramolecular Vehicles for Boron Neutron Capture Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111770. [PMID: 37299673 DOI: 10.3390/nano13111770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
Carboranes are promising agents for applications in boron neutron capture therapy (BNCT), but their hydrophobicity prevents their use in physiological environments. Here, by using reverse docking and molecular dynamics (MD) simulations, we identified blood transport proteins as candidate carriers of carboranes. Hemoglobin showed a higher binding affinity for carboranes than transthyretin and human serum albumin (HSA), which are well-known carborane-binding proteins. Myoglobin, ceruloplasmin, sex hormone-binding protein, lactoferrin, plasma retinol-binding protein, thyroxine-binding globulin, corticosteroid-binding globulin and afamin have a binding affinity comparable to transthyretin/HSA. The carborane@protein complexes are stable in water and characterized by favorable binding energy. The driving force in the carborane binding is represented by the formation of hydrophobic interactions with aliphatic amino acids and BH-π and CH-π interactions with aromatic amino acids. Dihydrogen bonds, classical hydrogen bonds and surfactant-like interactions also assist the binding. These results (i) identify the plasma proteins responsible for binding carborane upon their intravenous administration, and (ii) suggest an innovative formulation for carboranes based on the formation of a carborane@protein complex prior to the administration.
Collapse
Affiliation(s)
- Tainah Dorina Marforio
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum-Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy
| | - Edoardo Jun Mattioli
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum-Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy
| | - Francesco Zerbetto
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum-Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy
| | - Matteo Calvaresi
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum-Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
40
|
Teixidor F, Núñez R, Viñas C. Towards the Application of Purely Inorganic Icosahedral Boron Clusters in Emerging Nanomedicine. Molecules 2023; 28:molecules28114449. [PMID: 37298925 DOI: 10.3390/molecules28114449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Traditionally, drugs were obtained by extraction from medicinal plants, but more recently also by organic synthesis. Today, medicinal chemistry continues to focus on organic compounds and the majority of commercially available drugs are organic molecules, which can incorporate nitrogen, oxygen, and halogens, as well as carbon and hydrogen. Aromatic organic compounds that play important roles in biochemistry find numerous applications ranging from drug delivery to nanotechnology or biomarkers. We achieved a major accomplishment by demonstrating experimentally/theoretically that boranes, carboranes, as well as metallabis(dicarbollides), exhibit global 3D aromaticity. Based on the stability-aromaticity relationship, as well as on the progress made in the synthesis of derivatized clusters, we have opened up new applications of boron icosahedral clusters as key components in the field of novel healthcare materials. In this brief review, we present the results obtained at the Laboratory of Inorganic Materials and Catalysis (LMI) of the Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) with icosahedral boron clusters. These 3D geometric shape clusters, the semi-metallic nature of boron and the presence of exo-cluster hydrogen atoms that can interact with biomolecules through non-covalent hydrogen and dihydrogen bonds, play a key role in endowing these compounds with unique properties in largely unexplored (bio)materials.
Collapse
Affiliation(s)
- Francesc Teixidor
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, 08193 Bellaterra, Spain
| | - Rosario Núñez
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, 08193 Bellaterra, Spain
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, 08193 Bellaterra, Spain
| |
Collapse
|
41
|
Śmiałkowski K, Sardo C, Leśnikowski ZJ. Metallacarborane Synthons for Molecular Construction-Oligofunctionalization of Cobalt Bis(1,2-dicarbollide) on Boron and Carbon Atoms with Extendable Ligands. Molecules 2023; 28:molecules28104118. [PMID: 37241858 DOI: 10.3390/molecules28104118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The exploitation of metallacarboranes' potential in various fields of research and practical applications requires the availability of convenient and versatile methods for their functionalization with various functional moieties and/or linkers of different types and lengths. Herein, we report a study on cobalt bis(1,2-dicarbollide) functionalization at 8,8'-boron atoms with different hetero-bifunctional moieties possessing a protected hydroxyl function allowing further modification after deprotection. Moreover, an approach to the synthesis of three and four functionalized metallacarboranes, at boron and carbon atoms simultaneously via additional functionalization at carbon to obtain derivatives carrying three or four rationally oriented and distinct reactive surfaces, is described.
Collapse
Affiliation(s)
- Krzysztof Śmiałkowski
- Laboratory of Medicinal Chemistry, Institute of Medical Biology Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
- Lodz Institutes of the Polish Academy of Science, The Bio-Med-Chem Doctoral School, University of Lodz, 90-237 Lodz, Poland
| | - Carla Sardo
- Laboratory of Medicinal Chemistry, Institute of Medical Biology Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Zbigniew J Leśnikowski
- Laboratory of Medicinal Chemistry, Institute of Medical Biology Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| |
Collapse
|
42
|
Harmgarth N, Liebing P, Lorenz V, Engelhardt F, Hilfert L, Busse S, Goldhahn R, Edelmann FT. Synthesis and Structural Characterization of p-Carboranylamidine Derivatives. Molecules 2023; 28:molecules28093837. [PMID: 37175246 PMCID: PMC10179778 DOI: 10.3390/molecules28093837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
In this contribution, the first amidinate and amidine derivatives of p-carborane are described. Double lithiation of p-carborane (1) with n-butyllithium followed by treatment with 1,3-diorganocarbodiimides, R-N=C=N-R (R = iPr, Cy (= cyclohexyl)), in DME or THF afforded the new p-carboranylamidinate salts p-C2H10B10[C(NiPr)2Li(DME)]2 (2) and p-C2H10B10[C(NCy)2Li(THF)2]2 (3). Subsequent treatment of 2 and 3 with 2 equiv. of chlorotrimethylsilane (Me3SiCl) provided the silylated neutral bis(amidine) derivatives p-C2H10B10[C{iPrN(SiMe3)}(=NiPr)]2 (4) and p-C2H10B10[C{CyN(SiMe3)}(=NCy)]2 (5). The new compounds 3 and 4 have been structurally characterized by single-crystal X-ray diffraction. The lithium carboranylamidinate 3 comprises a rare trigonal planar coordination geometry around the lithium ions.
Collapse
Affiliation(s)
- Nicole Harmgarth
- Chemisches Institut, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Phil Liebing
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Volker Lorenz
- Chemisches Institut, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Felix Engelhardt
- Chemisches Institut, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Liane Hilfert
- Chemisches Institut, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Sabine Busse
- Chemisches Institut, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Rüdiger Goldhahn
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Frank T Edelmann
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
43
|
Vakhrushev AV, Gruzdev DA, Demin AM, Levit GL, Krasnov VP. Synthesis of Novel Carborane-Containing Derivatives of RGD Peptide. Molecules 2023; 28:molecules28083467. [PMID: 37110700 PMCID: PMC10143838 DOI: 10.3390/molecules28083467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Short peptides containing the Arg-Gly-Asp (RGD) fragment can selectively bind to integrins on the surface of tumor cells and are attractive transport molecules for the targeted delivery of therapeutic and diagnostic agents to tumors (for example, glioblastoma). We have demonstrated the possibility of obtaining the N- and C-protected RGD peptide containing 3-amino-closo-carborane and a glutaric acid residue as a linker fragment. The resulting carboranyl derivatives of the protected RGD peptide are of interest as starting compounds in the synthesis of unprotected or selectively protected peptides, as well as building blocks for preparation of boron-containing derivatives of the RGD peptide of a more complex structure.
Collapse
Affiliation(s)
- Alexander V Vakhrushev
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620108 Ekaterinburg, Russia
| | - Dmitry A Gruzdev
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620108 Ekaterinburg, Russia
| | - Alexander M Demin
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620108 Ekaterinburg, Russia
| | - Galina L Levit
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620108 Ekaterinburg, Russia
| | - Victor P Krasnov
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620108 Ekaterinburg, Russia
| |
Collapse
|
44
|
Ueberham L, Gündel D, Kellert M, Deuther-Conrad W, Ludwig FA, Lönnecke P, Kazimir A, Kopka K, Brust P, Moldovan RP, Hey-Hawkins E. Development of the High-Affinity Carborane-Based Cannabinoid Receptor Type 2 PET Ligand [ 18F]LUZ5- d8. J Med Chem 2023; 66:5242-5260. [PMID: 36944112 PMCID: PMC10782483 DOI: 10.1021/acs.jmedchem.3c00195] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Indexed: 03/23/2023]
Abstract
The development of cannabinoid receptor type 2 (CB2R) radioligands for positron emission tomography (PET) imaging was intensively explored. To overcome the low metabolic stability and simultaneously increase the binding affinity of known CB2R radioligands, a carborane moiety was used as a bioisostere. Here we report the synthesis and characterization of carborane-based 1,8-naphthyridinones and thiazoles as novel CB2R ligands. All tested compounds showed low nanomolar CB2R affinity, with (Z)-N-[3-(4-fluorobutyl)-4,5-dimethylthiazole-2(3H)-ylidene]-(1,7-dicarba-closo-dodecaboranyl)-carboxamide (LUZ5) exhibiting the highest affinity (0.8 nM). Compound [18F]LUZ5-d8 was obtained with an automated radiosynthesizer in high radiochemical yield and purity. In vivo evaluation revealed the improved metabolic stability of [18F]LUZ5-d8 compared to that of [18F]JHU94620. PET experiments in rats revealed high uptake in spleen and low uptake in brain. Thus, the introduction of a carborane moiety is an appropriate tool for modifying literature-known CB2R ligands and gaining access to a new class of high-affinity CB2R ligands, while the in vivo pharmacology still needs to be addressed.
Collapse
Affiliation(s)
- Lea Ueberham
- Universität
Leipzig, Faculty of Chemistry
and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, Germany
| | - Daniel Gündel
- Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals,
Research Site Leipzig, 04318 Leipzig, Germany
| | - Martin Kellert
- Universität
Leipzig, Faculty of Chemistry
and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, Germany
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals,
Research Site Leipzig, 04318 Leipzig, Germany
| | - Friedrich-Alexander Ludwig
- Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals,
Research Site Leipzig, 04318 Leipzig, Germany
| | - Peter Lönnecke
- Universität
Leipzig, Faculty of Chemistry
and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, Germany
| | - Aleksandr Kazimir
- Universität
Leipzig, Faculty of Chemistry
and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, Germany
| | - Klaus Kopka
- Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals,
Research Site Leipzig, 04318 Leipzig, Germany
- Faculty
of Chemistry and Food Chemistry, School of Science, TU Dresden, 01069 Dresden, Germany
| | - Peter Brust
- Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals,
Research Site Leipzig, 04318 Leipzig, Germany
- The
Lübeck Institute of Experimental Dermatology, University Medical Center Schleswig-Holstein, 23562 Lübeck, Germany
| | - Rareş-Petru Moldovan
- Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals,
Research Site Leipzig, 04318 Leipzig, Germany
| | - Evamarie Hey-Hawkins
- Universität
Leipzig, Faculty of Chemistry
and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, Germany
| |
Collapse
|
45
|
Ma YN, Ren H, Wu Y, Li N, Chen F, Chen X. B(9)-OH- o-Carboranes: Synthesis, Mechanism, and Property Exploration. J Am Chem Soc 2023; 145:7331-7342. [PMID: 36962083 DOI: 10.1021/jacs.2c13570] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Herein, we present a chemically robust and efficient synthesis route for B(9)-OH-o-carboranes by the oxidation of o-carboranes with commercially available 68% HNO3 under the assistance of trifluoromethanesulfonic acid (HOTf) and hexafluoroisopropanol (HFIP). The reaction is highly efficient with a wide scope of carboranes, and the selectivity of B(9)/B(8) is up to 98:2. The success of this transformation relies on the strong electrophilicity and oxidizability of HNO3, promoted through hydrogen bonds of the Brønsted acid HOTf and the solvent HFIP. Mechanism studies reveal that the oxidation of o-carborane involves an initial electrophilic attack of HNO3 to the hydrogen atom at the most electronegative B(9) of o-carborane. In this transformation, the hydrogen atom of the B-H bond is the nucleophilic site, which is different from the electrophilic substitution reaction, where the boron atom is the nucleophilic site. Therefore, this is an oxidation-reduction reaction of o-carborane under mild conditions in which N(V) → N(III) and H(-I) → H(I). The derivatization of 9-OH-o-carborane was further examined, and the carboranyl group was successfully introduced to an amino acid, polyethylene glycol, biotin, deoxyuridine, and saccharide. Undoubtedly, this approach provides a selective way for the rapid incorporation of carborane moieties into small molecules for application in boron neutron capture therapy, which requires the targeted delivery of boron-rich groups.
Collapse
Affiliation(s)
- Yan-Na Ma
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Huazhan Ren
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yanxuan Wu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Na Li
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Feijing Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xuenian Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
46
|
Ren H, Zhang P, Xu J, Ma W, Tu D, Lu CS, Yan H. Direct B-H Functionalization of Icosahedral Carboranes via Hydrogen Atom Transfer. J Am Chem Soc 2023; 145:7638-7647. [PMID: 36946888 DOI: 10.1021/jacs.3c01314] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The efficient and selective functionalization of icosahedral carboranes (C2B10H12) at the boron vertexes is a long-standing challenge owing to the presence of 10 inert B-H bonds in a similar chemical environment. Herein, we report a new reaction paradigm for direct B-H functionalization of icosahedral carboranes via B-H homolysis enabled by a nitrogen-centered radical-mediated hydrogen atom transfer (HAT) strategy. Both the HAT process of the carborane B-H bond and the resulting boron-centered carboranyl radical intermediate have been confirmed experimentally. The reaction occurs at the most electron-rich boron vertex with the lowest B-H bond dissociation energy (BDE). Using this strategy, diverse carborane derivatization, including thiolation, selenation, alkynylation, alkenylation, cyanation, and halogenation, have been achieved in satisfactory yields under a photoinitiated condition in a metal-free and redox-neutral fashion. Moreover, the synthetic utility of the current protocol was also demonstrated by both the scale-up reaction and the construction of carborane-based functional molecules. Therefore, this methodology opens a radical pathway to carborane functionalization, which is distinct from the B-H heterolytic mechanism in the traditional strategies.
Collapse
Affiliation(s)
- Hongyuan Ren
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ping Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jingkai Xu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenli Ma
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Deshuang Tu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chang-Sheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
47
|
Useini L, Mojić M, Laube M, Lönnecke P, Mijatović S, Maksimović-Ivanić D, Pietzsch J, Hey-Hawkins E. Carborane Analogues of Fenoprofen Exhibit Improved Antitumor Activity. ChemMedChem 2023; 18:e202200583. [PMID: 36583943 DOI: 10.1002/cmdc.202200583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 12/31/2022]
Abstract
Fenoprofen is a widely used nonsteroidal anti-inflammatory drug (NSAID) against rheumatoid arthritis, degenerative joint disease, ankylosing spondylitis and gout. Like other NSAIDs, fenoprofen inhibits the synthesis of prostaglandins by blocking both cyclooxygenase (COX) isoforms, COX-1 the "house-keeping" enzyme and COX-2 the induced isoform from pathological stimuli. Unselective inhibition of both COX isoforms results in many side effects, but off-target effects have also been reported. The steric modifications of the drugs could afford the desired COX-2 selectivity. Furthermore, NSAIDs have shown promising cytotoxic properties. The structural modification of fenoprofen using bulky dicarba-closo-dodecaborane(12) (carborane) clusters and the biological evaluation of the carborane analogues for COX inhibition and antitumor potential showed that the carborane analogues exhibit stronger antitumor potential compared to their respective aryl-based compounds.
Collapse
Affiliation(s)
- Liridona Useini
- Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, 04103, Leipzig, Germany
| | - Marija Mojić
- Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia
| | - Markus Laube
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328, Dresden, Germany
| | - Peter Lönnecke
- Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, 04103, Leipzig, Germany
| | - Sanja Mijatović
- Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia
| | - Danijela Maksimović-Ivanić
- Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328, Dresden, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, 01069, Dresden, Germany
| | - Evamarie Hey-Hawkins
- Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, 04103, Leipzig, Germany
| |
Collapse
|
48
|
Różycka D, Kowalczyk A, Denel-Bobrowska M, Kuźmycz O, Gapińska M, Stączek P, Olejniczak AB. Acridine/Acridone-Carborane Conjugates as Strong DNA-Binding Agents with Anticancer Potential. ChemMedChem 2023; 18:e202200666. [PMID: 36734215 DOI: 10.1002/cmdc.202200666] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/04/2023]
Abstract
Synthesis of acridine derivatives that act as DNA-targeting anticancer agents is an evolving field and has resulted in the introduction of several drugs into clinical trials. Carboranes can be of importance in designing biologically active compounds due to their specific properties. Therefore, a series of novel acridine analogs modified with carborane clusters were synthesized. The DNA-binding ability of these analogs was evaluated on calf thymus DNA (ct-DNA). Results of these analyses showed that 9-[(1,7-dicarba-closo-dodecaborane-1-yl)propylamino]acridine (30) interacted strongly with ct-DNA, indicating its ability to intercalate into DNA, whereas 9-[(1,7-dicarba-closo-dodecaborane-1-yl)propanamido]acridine (29) changed the B-form of ct-DNA to the Z form. Compound 30 demonstrated cytotoxicity, was able to inhibit cell proliferation, arrest the cell cycle in the S phase in the HeLa cancer cell line, and induced the production of reactive oxygen species (ROS). In addition, it was specifically localized in lysosomes and was a weak inhibitor of Topo IIα.
Collapse
Affiliation(s)
- Daria Różycka
- Screening Laboratory, Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa St., Łódź, 93-232, Poland
| | - Aleksandra Kowalczyk
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., Łódź, 90-237, Poland
| | - Marta Denel-Bobrowska
- Screening Laboratory, Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa St., Łódź, 93-232, Poland
| | - Olga Kuźmycz
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., Łódź, 90-237, Poland
| | - Magdalena Gapińska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology Environmental Protection, University of Lodz, 12/16 Banacha St., Łódź, 90-237, Poland
| | - Paweł Stączek
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., Łódź, 90-237, Poland
| | - Agnieszka B Olejniczak
- Screening Laboratory, Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa St., Łódź, 93-232, Poland
| |
Collapse
|
49
|
Lu W, Wu Y, Ma YN, Chen F, Chen X. A Method for Highly Selective Halogenation of o-Carboranes and m-Carboranes. Inorg Chem 2023; 62:885-892. [PMID: 36584667 DOI: 10.1021/acs.inorgchem.2c03694] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A facile halogenation method for highly selective synthesis of 9-X-o-carboranes, 9,12-X2-o-carboranes, 9-X-12-X'-o-carboranes, 9-X-m-carboranes, 9,10-X2-m-carboranes, and 9-X-10-X'-m-carboranes (X, X' = Cl, Br, I) has been developed on the basis of our previous work. The success of this transformation relies on the usage of trifluoromethanesulfonic acid (HOTf), the easily available strong Brønsted acid. The addition of HOTf greatly increases the electrophilicity of N-haloamides through hydrogen bonding interaction, resulting in the low loading of N-haloamides, short reaction time, and mild reaction conditions. Additionally, the solvent 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) is also essential to further increase the acidity of HOTf.
Collapse
Affiliation(s)
- Wen Lu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yanxuan Wu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yan-Na Ma
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Feijing Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xuenian Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
50
|
Stockmann P, Kuhnert L, Leinung W, Lakoma C, Scholz B, Paskas S, Mijatović S, Maksimović-Ivanić D, Honscha W, Hey-Hawkins E. The More the Better-Investigation of Polymethoxylated N-Carboranyl Quinazolines as Novel Hybrid Breast Cancer Resistance Protein Inhibitors. Pharmaceutics 2023; 15:241. [PMID: 36678870 PMCID: PMC9866861 DOI: 10.3390/pharmaceutics15010241] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
The ineffectiveness and failing of chemotherapeutic treatments are often associated with multidrug resistance (MDR). MDR is primarily linked to the overexpression of ATP-binding cassette (ABC) transporter proteins in cancer cells. ABCG2 (ATP-binding cassette subfamily G member 2, also known as the breast cancer resistance protein (BCRP)) mediates MDR by an increased drug efflux from the cancer cells. Therefore, the inhibition of ABCG2 activity during chemotherapy ought to improve the efficacy of the administered anti-cancer agents by reversing MDR or by enhancing the agents' pharmacokinetic properties. Significant efforts have been made to develop novel, powerful, selective, and non-toxic inhibitors of BCRP. However, thus far the clinical relevance of BCRP-selective MDR-reversal has been unsuccessful, due to either adverse drug reactions or significant toxicities in vivo. We here report a facile access towards carboranyl quinazoline-based inhibitors of ABCG2. We determined the influence of different methoxy-substitution patterns on the 2-phenylquinazoline scaffold in combination with the beneficial properties of an incorporated inorganic carborane moiety. A series of eight compounds was synthesized and their inhibitory effect on the ABCG2-mediated Hoechst transport was evaluated. Molecular docking studies were performed to better understand the structure-protein interactions of the novel inhibitors, exhibiting putative binding modes within the inner binding site. Further, the most potent, non-toxic compounds were investigated for their potential to reverse ABCG2-mediated mitoxantrone (MXN) resistance. Of these five evaluated compounds, N-(closo-1,7-dicarbadodecaboran(12)-9-yl)-6,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-quinazolin-4-amine (DMQCd) exhibited the strongest inhibitory effect towards ABCG2 in the lower nanomolar ranges. Additionally, DMQCd was able to reverse BCRP-mediated MDR, making it a promising candidate for further research on hybrid inorganic-organic compounds.
Collapse
Affiliation(s)
- Philipp Stockmann
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Lydia Kuhnert
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, Universität Leipzig, An den Tierkliniken 15, 04103 Leipzig, Germany
| | - Wencke Leinung
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Cathleen Lakoma
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, Universität Leipzig, An den Tierkliniken 15, 04103 Leipzig, Germany
| | - Birte Scholz
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, Universität Leipzig, An den Tierkliniken 15, 04103 Leipzig, Germany
| | - Svetlana Paskas
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, Belgrade University, 11060 Belgrade, Serbia
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, Belgrade University, 11060 Belgrade, Serbia
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, Belgrade University, 11060 Belgrade, Serbia
| | - Walther Honscha
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, Universität Leipzig, An den Tierkliniken 15, 04103 Leipzig, Germany
| | - Evamarie Hey-Hawkins
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| |
Collapse
|