1
|
Almeida-Ferreira C, Rodrigues F, Marto CM, Botelho MF, Laranjo M. Cold atmospheric plasma for breast cancer treatment: what next? Med Gas Res 2025; 15:110-111. [PMID: 39436174 PMCID: PMC11515082 DOI: 10.4103/mgr.medgasres-d-24-00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/20/2024] [Accepted: 07/09/2024] [Indexed: 10/23/2024] Open
Affiliation(s)
- Catarina Almeida-Ferreira
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), and Institute of Biophysics, Faculty of Medicine, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Univ Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, Coimbra, Portugal
| | - Francisca Rodrigues
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), and Institute of Biophysics, Faculty of Medicine, Coimbra, Portugal
| | - Carlos Miguel Marto
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), and Institute of Biophysics, Faculty of Medicine, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Univ Coimbra, Institute of Integrated Clinical Practice and Laboratory for Evidence-Based Sciences and Precision Dentistry, Coimbra, Portugal; Univ Coimbra, Institute of Experimental Pathology, Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), Advanced Production and Intelligent Systems (ARISE), Coimbra, Portugal
| | - Maria Filomena Botelho
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), and Institute of Biophysics, Faculty of Medicine, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Mafalda Laranjo
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), and Institute of Biophysics, Faculty of Medicine, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| |
Collapse
|
2
|
Cai C, Yang D, Cao Y, Peng Z, Wang Y, Xi J, Yan C, Li X. Anticancer potential of active alkaloids and synthetic analogs derived from marine invertebrates. Eur J Med Chem 2024; 279:116850. [PMID: 39270448 DOI: 10.1016/j.ejmech.2024.116850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/30/2023] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
In recent years, the number of cancers has soared, becoming one of the leading causes of human death. At the same time, marine anticancer substances have been the focus of marine drug research. Marine alkaloids derived from marine invertebrates like sponges are an important class of secondary metabolites, which have good bioactivities of blocking the cancer cell cycle, inducing autophagy and apoptosis of cancer cells, inhibiting cancer cell invasion and proliferation. They show potential as anticancer drug candidates. Therefore, in this review, we focus on the detailed introduction of bioactive alkaloids and their synthetic analogs from marine invertebrates, such as 4-chloro fascapysin and other 41 kinds of marine alkaloids or marine alkaloid synthetic analogs. They have significant anticancer activities on breast cancer, cervical cancer, colorectal cancer, prostate cancer, lung cancer, liver cancer, and so on. It provides new candidate compounds for anticancer drug research and provides a reference basis for marine drug resources research.
Collapse
Affiliation(s)
- Chunyan Cai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dejun Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhaolei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yulin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jingjing Xi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
3
|
Cheng Y, Yu G, Du C, Chen Z, Liu X. Yanghe Decoction promotes ferroptosis through PPARγ-dependent autophagy to inhibit the malignant progression of triple-negative breast cancer. Prostaglandins Other Lipid Mediat 2024; 175:106909. [PMID: 39284544 DOI: 10.1016/j.prostaglandins.2024.106909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous subtype of breast cancer that displays highly aggressive with poor prognosis. Yanghe Decoction (YHD) has been used in the treatment of breast cancer for many years. We aimed to explore the effects of YHD on the malignant phenotypes of MDA-MB-231 cells and the potential mechanism related to PPARγ, autophagy and ferroptosis. The serum of rat containing different concentrations of YHD were collected to culture MDA-MB-231 cells. Cell viability and proliferation were assessed by the CCK-8 assay and EDU staining. Wound healing- and transwell assays were used to detect the capacities of MDA-MB-231 cell migration and invasion. Additionally, the levels of lipid peroxidation, Fe2+ and the expression of ferroptosis-related proteins were evaluated. The expression of PPARγ and autophagy-related proteins was assessed using immunofluorescence staining or western blot assay. Then, the PPARγ inhibitor (GW9662), autophagy inhibitor (3-MA) and autophagy inducer (rapamycin; Rap) were used to further study the potential mechanism of YHD on TNBC. Results indicated that contained-YHD serum significantly decreased the viability, proliferation, migration and invasion of TNBC cells. Moreover, YHD promoted lipid peroxidation level, elevated Fe2+ content and downregulated GPX4, SLC7A11 and SLC3A2 expression. Besides, autophagy was induced and PPARγ was upregulated by YHD in MDA-MB-231 cells. Furthermore, GW9662 alleviated the impacts of YHD on autophagy of MDA-MB-231 cells. Rap reversed the effects of GW9662 on lipid peroxidation, ferroptosis, proliferation, migration and invasion of MDA-MB-231 cells. 3-MA had the similar effects to GW9662. Collectively, YHD suppressed the malignant progression of MDA-MB-231 cells by inducing ferroptosis through PPARγ-dependent autophagy.
Collapse
Affiliation(s)
- YangZi Cheng
- Department of Medical Oncology, Xi'an Ninth Hospital, Xi'an, Shaanxi 710054, China.
| | - GuiPing Yu
- Department of Medical Oncology, Xi'an Ninth Hospital, Xi'an, Shaanxi 710054, China
| | - Chen Du
- Department of Medical Oncology, Xi'an Ninth Hospital, Xi'an, Shaanxi 710054, China
| | - ZhaoHui Chen
- Department of Medical Oncology, Xi'an Ninth Hospital, Xi'an, Shaanxi 710054, China
| | - XuFeng Liu
- Department of Medical Oncology, Xi'an Ninth Hospital, Xi'an, Shaanxi 710054, China
| |
Collapse
|
4
|
Luo HJ, Ren JL, Mei Guo L, Liang Niu J, Song XL. MRI-based machine learning radiomics for prediction of HER2 expression status in breast invasive ductal carcinoma. Eur J Radiol Open 2024; 13:100592. [PMID: 39149534 PMCID: PMC11324846 DOI: 10.1016/j.ejro.2024.100592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/08/2024] [Accepted: 07/14/2024] [Indexed: 08/17/2024] Open
Abstract
Background Human epidermal growth factor receptor 2 (HER2) is a tumor biomarker with significant prognostic and therapeutic implications for invasive ductal breast carcinoma (IDC). Objective This study aimed to explore the effectiveness of a multisequence magnetic resonance imaging (MRI)-based machine learning radiomics model in classifying the expression status of HER2, including HER2-positive, HER2-low, and HER2 completely negative (HER2-zero), among patients with IDC. Methods A total of 402 female patients with IDC confirmed through surgical pathology were enrolled and subsequently divided into a training group (n = 250, center I) and a validation group (n = 152, center II). Radiomics features were extracted from the preoperative MRI. A simulated annealing algorithm was used for key feature selection. Two classification tasks were performed: task 1, the classification of HER2-positive vs. HER2-negative (HER2-low and HER2-zero), and task 2, the classification of HER2-low vs. HER2-zero. Logistic regression, random forest (RF), and support vector machine were conducted to establish radiomics models. The performance of the models was evaluated using the area under the curve (AUC) of the operating characteristics (ROC). Results In total, 4506 radiomics features were extracted from multisequence MRI. A radiomics model for prediction of expression state of HER2 was successfully developed. Among the three classification algorithms, RF achieved the highest performance in classifying HER2-positive from HER2-negative and HER2-low from HER2-zero, with AUC values of 0.777 and 0.731, respectively. Conclusions Machine learning-based MRI radiomics may aid in the non-invasive prediction of the different expression status of HER2 in IDC.
Collapse
Affiliation(s)
- Hong-Jian Luo
- Department of Radiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zuiyi, Guizhou province, China
| | | | - Li Mei Guo
- Department of Radiology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Jin Liang Niu
- Department of Radiology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Xiao-Li Song
- Department of Radiology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi province, China
| |
Collapse
|
5
|
Ma F, Yan X, Guan X, Liu T. Development and validation of the NCC-BC-A scale to assess patient-reported outcomes for breast cancer patients in China. CANCER INNOVATION 2024; 3:e141. [PMID: 39430623 PMCID: PMC11487329 DOI: 10.1002/cai2.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/05/2024] [Accepted: 07/18/2024] [Indexed: 10/22/2024]
Abstract
Background The commonly used international patient-reported outcome scales for breast cancer were developed before the advent of multiple targeted therapies and immunotherapies, rendering them potentially insufficient for current clinical practices. Therefore, it is necessary to develop a specific patient-reported outcome scale tailored for breast cancer patients in China to optimize the management model for these patients. Methods A comprehensive literature search was performed in the PubMed, Embase, Wanfang, and CNKI databases to extract dimensions and items for a potential patient-reported outcome scale. The Delphi method was used to modify, add, subtract, and adjust the language of items until the experts reached a consensus on the first draft. This draft was further refined using a cognitive test and a presurvey. The optimized scale was used for a formal survey, and the items were further analyzed and screened using metrics such as the coefficient of variation, correlation coefficient, internal item consistency, factor analysis, reliability, and validity. Results A total of 10,954 articles were analyzed, and 237 were used to create a pool of 277 patient-reported outcome items. Through two rounds of Delphi expert consultation, the experts' authority coefficients were 0.739 and 0.826. After a cognitive test, several items were adjusted to enhance understanding. Further adjustments were made following a presurvey of 200 advanced breast cancer patients, resulting in a 38-item patient-reported outcomes scale, termed NCC-BC-A. In the national formal survey, 588 advanced breast cancer patients participated. Principal component analysis showed good consistency among the items and sufficient difference between the dimensions. The results were normally distributed with good variation. The Cronbach's α coefficient of the scale was 0.925 and the test-retest reliability was 0.9041. Conclusion The NCC-BC-A scale has high validity and reliability. It comprehensively considered the characteristics of systemic treatment for breast cancer, and the specific context within China. Its implementation may help clinicians to pay more attention to quality of life of breast cancer patients and to optimize the system for managing this condition.
Collapse
Affiliation(s)
- Fei Ma
- National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiaoyan Yan
- Clinical Research Institute, Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
| | - Xiuwen Guan
- National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Tianmou Liu
- Department of Epidemiology and Biostatistics, School of Public HealthPeking UniversityBeijingChina
| | | |
Collapse
|
6
|
Sun P, Han J, Li M, Wang Z, Guo R, Zhang Y, Qian L, Ma J, Hu X. Spectral Ultrasound Combined With Clinical Pathological Parameters in Prediction of Axillary Lymph Node Metastasis in Breast Cancer. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2024; 43:2311-2324. [PMID: 39230251 DOI: 10.1002/jum.16564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/26/2024] [Accepted: 08/17/2024] [Indexed: 09/05/2024]
Abstract
OBJECTIVES To explore the clinical value of the nomogram based on spectral Doppler ultrasound combined with clinical pathological parameter in predicting axillary lymph node metastasis in breast cancer. METHODS We prospectively gathered clinicopathologic and ultrasonic data from 240 patients confirmed breast cancer. The risk factors of axillary lymph node metastasis were analyzed by univariate and multivariate logistic regression, and the prediction model was established. The model calibration, predictive ability, and diagnostic efficiency in the training set and the testing set were analyzed by receiver operating characteristic curve and calibration curve analysis, respectively. RESULTS Univariate analysis showed that lymph node metastasis was related with tumor size, Ki-67, axillary ultrasound, ultrasound spectral quantitative parameter, internal echo, and calcification (P < .05). Multivariate logistic regression analysis showed that the Ki-67, axillary ultrasound, quantitative parameter (the mean of the mid-band fit in tumor and posterior tumor) were independent risk factors of axillary lymph node metastasis (P < .05). The models developed using Ki-67, axillary ultrasound, and quantitative parameters for predicting axillary lymph node metastasis demonstrated an area under the receiver operating characteristic curve of 0.83. Additionally, the prediction model exhibited outstanding predictability for axillary lymph node metastasis, as evidenced by a Harrell C-index of 0.83 (95% confidence interval 0.73-0.93). CONCLUSION Axillary ultrasound combined with Ki-67 and spectral ultrasound parameters has the potential to predict axillary lymph node metastasis in breast cancer, which is superior to axillary ultrasound alone.
Collapse
Affiliation(s)
- Pengfei Sun
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jiaqi Han
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China
| | - Min Li
- Clinical Epidemiology and EBM Unit, Beijing Friendship Hospital, Capital Medical University, Beijing Clinical Research Institute, Beijing, China
| | - Zhixiang Wang
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ruifang Guo
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yanning Zhang
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Linxue Qian
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jianguo Ma
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China
| | - Xiangdong Hu
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Kuang Y, Luo R, Chen A, Zhang Z, Wang K, Lu J, Luo Y, Liu X, Zhu Y. Vacancy-engineered Mn-doped iron oxide nano-crystals for enhanced sonodynamic therapy through self-supplied oxygen. Colloids Surf B Biointerfaces 2024; 244:114172. [PMID: 39191114 DOI: 10.1016/j.colsurfb.2024.114172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
Sonodynamic therapy (SDT) is a minimally invasive therapeutic approach, that uses ultrasound activating sonosensitizers to generate reactive oxygen species (ROS) for inducing the tumor cell death. However, the SDT is always limited by the dissatisfactory performance of sonosensitizers and hypoxic tumor microenvironment (TME). Nano iron oxide is a narrow bandgap semiconductor material with good biocompatibility. The doping of manganese into iron oxide (Mn-doped iron oxide nano-crystals named Mn-Fe2O3 NCs) not only reduced the band gap of iron oxide and altered the valence band position of iron oxide, but also introduced more oxygen vacancies and inhibited the complexation of electrons (e-) and holes (h+), significantly enhancing the ability to generate ROS. The Mn-Fe2O3 NCs improved the hypoxic TME by self-generating oxygen and consuming endogenous glutathione (GSH), which amplified oxidative stress and further enhanced the SDT. The therapeutic results showed that the prepared Mn-Fe2O3 NCs could efficiently inhibit the triple-negative breast cancer (TNBC) cells by SDT (80.49 % inhibition ratio in vivo). Overall, we propose a simple method to design inorganic sonosensitizers for enhancing efficient sonodynamic therapy.
Collapse
Affiliation(s)
- Yunqi Kuang
- School of Chemistry and Chemical Engineering, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Ruixin Luo
- School of Chemistry and Chemical Engineering, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Aihong Chen
- School of Chemistry and Chemical Engineering, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Ziwen Zhang
- School of Chemistry and Chemical Engineering, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Kaiyang Wang
- School of Chemistry and Chemical Engineering, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Jie Lu
- School of Chemistry and Chemical Engineering, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yu Luo
- School of Chemistry and Chemical Engineering, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Xijian Liu
- School of Chemistry and Chemical Engineering, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Yicheng Zhu
- Department of Ultrasound, Shanghai Pudong New Area People's Hospital, China.
| |
Collapse
|
8
|
Galassi C, Chan TA, Vitale I, Galluzzi L. The hallmarks of cancer immune evasion. Cancer Cell 2024; 42:1825-1863. [PMID: 39393356 DOI: 10.1016/j.ccell.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024]
Abstract
According to the widely accepted "three Es" model, the host immune system eliminates malignant cell precursors and contains microscopic neoplasms in a dynamic equilibrium, preventing cancer outgrowth until neoplastic cells acquire genetic or epigenetic alterations that enable immune escape. This immunoevasive phenotype originates from various mechanisms that can be classified under a novel "three Cs" conceptual framework: (1) camouflage, which hides cancer cells from immune recognition, (2) coercion, which directly or indirectly interferes with immune effector cells, and (3) cytoprotection, which shields malignant cells from immune cytotoxicity. Blocking the ability of neoplastic cells to evade the host immune system is crucial for increasing the efficacy of modern immunotherapy and conventional therapeutic strategies that ultimately activate anticancer immunosurveillance. Here, we review key hallmarks of cancer immune evasion under the "three Cs" framework and discuss promising strategies targeting such immunoevasive mechanisms.
Collapse
Affiliation(s)
- Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Timothy A Chan
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA; Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA; National Center for Regenerative Medicine, Cleveland, OH, USA; Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Ilio Vitale
- Italian Institute for Genomic Medicine, c/o IRCSS Candiolo, Torino, Italy; Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA; Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Kasprzak A, Żuchowska A, Sakurai H. Complexation by γ-cyclodextrin as a way of improving anticancer potential of sumanene. Sci Rep 2024; 14:27158. [PMID: 39511291 PMCID: PMC11543856 DOI: 10.1038/s41598-024-78110-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024] Open
Abstract
Biological applications of sumanene buckybowl molecule have been widely discussed over the years yet remain still unexplored experimentally. On the other hand, creating cyclodextrin-containing supramolecular assemblies was demonstrated to be a powerful tool in terms of designing effective systems for medicinal chemistry purposes. Here, we show that sumanene molecule exclusively forms 1:1 host-guest complexes with γ-cyclodextrin (γCD) or (2-hydroxypropyl)-γ-cyclodextrin (HP-γCD), as revealed by extensive spectroscopic studies supported with density functional theory (DFT) computations. Based on our preliminary biological studies, we discovered that the formation of such complexes resulted in the improvement of anticancer properties of sumanene, expressed by high cell viabilities in vitro of healthy human mammary fibroblasts (HMF) together with low viabilities of human breast adenocarcinoma cells (MDA-MB-231). Improved pharmacokinetic (ADME-Tox) properties for sumanene@γCD and sumanene@HP-γCD complexes in comparison to native sumanene were also supported by in sillico modeling studies. This work provides the method how to focus the cytotoxic action of sumanene toward cancer cells using supramolecular assembly strategy, paving the way to the further exploration of biological properties of sumanene-containing supramolecular systems with bioactive features and applications of this buckybowl in general.
Collapse
Affiliation(s)
- Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, Warsaw, 00-664, Poland.
| | - Agnieszka Żuchowska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, Warsaw, 00-664, Poland
| | - Hidehiro Sakurai
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, 565-0871, Osaka, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, 565-0871, Osaka, Japan
| |
Collapse
|
10
|
Bogdanov FB, Balakhonov RY, Volkov ES, Sonin IV, Andreeva OE, Sorokin DV, Piven YA, Scherbakov AM, Shirinian VZ. Photochemical Metal-Free synthesis and biological Assessment of isocryptolepine analogues targeting estrogen receptor Alpha in breast cancer cells. Bioorg Chem 2024; 153:107942. [PMID: 39515131 DOI: 10.1016/j.bioorg.2024.107942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
The aim of this study was to develop a new series of isocryptolepines and evaluate their antiproliferative and antiestrogenic activities on cancer cells. A series of isocryptolepine derivatives were synthesized using developed one-pot photochemical, metal-free protocol, employing readily available 2-arylindoles as starting compounds. The resulting isocryptolepines demonstrated (sub)micromolar inhibitory activity against selected breast cancer cell lines. The IC50 values of lead compound 3c against hormone-dependent breast cancer types (MCF7 and T47D) were 0.3 μM and 0.12 μM, respectively, and significantly greater than 3 μM against estrogen receptor α (ERα)-deficient cell lines, MDA-MB-231 and HCC1954, respectively. To assess the antiestrogenic potency of compound 3c, MCF7 cells were transfected with a plasmid containing a luciferase reporter gene under the control of an estrogen-responsive element (ERE), creating the MCF7/ERE-LUC cell subline. In these cells, luciferase activity was induced by the natural ERα ligand, 17β-estradiol (E2). Compound 3c inhibited luciferase activity by 50 % at a concentration of 0.12 μM, highlighting its potent inhibitory effect on ERα. Molecular modeling further indicated that compound 3c could directly bind to ERα. Compound 3c induced apoptosis, as evidenced by PARP cleavage and downregulation of p-Bcl-2 and Bcl-2, and demonstrated synergistic effects in combination with the chemotherapeutic agent 5-fluorouracil. Compound 3c also showed selectivity towards hormone-dependent breast cancer cells, likely targeting ERα - a key driver in this cancer subtype. In summary, we report the development of a first-in-class antiestrogenic isocryptolepine with notable pro-apoptotic efficacy.
Collapse
Affiliation(s)
- F B Bogdanov
- Department of Experimental Tumor Biology, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24 bldg.15, 115522 Moscow, Russia; Faculty of Medicine, Moscow State University, Lomonosov prospect 27 bldg.1, 119991 Moscow, Russia.
| | - R Yu Balakhonov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia.
| | - E S Volkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia.
| | - I V Sonin
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia.
| | - O E Andreeva
- Department of Experimental Tumor Biology, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24 bldg.15, 115522 Moscow, Russia.
| | - D V Sorokin
- Department of Experimental Tumor Biology, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24 bldg.15, 115522 Moscow, Russia.
| | - Yu A Piven
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Akad. Kuprevicha st. 5/2, Minsk 220084, Belarus.
| | - A M Scherbakov
- Department of Experimental Tumor Biology, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24 bldg.15, 115522 Moscow, Russia; Gause Institute of New Antibiotics, Bol'shaya Pirogovskaya ulitsa 11, 119021 Moscow, Russia.
| | - V Z Shirinian
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia.
| |
Collapse
|
11
|
Li G, Munawar A, Su Su Win N, Fan M, Zeeshan Nawaz M, Lin L. Multispectral breast image grayscale and quality enhancement by repeated pair image registration & accumulation method. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124558. [PMID: 38870695 DOI: 10.1016/j.saa.2024.124558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024]
Abstract
Nowadays, for detecting breast cancer in its early stages, the focus is on multispectral transmission imaging. Frame accumulation is a promising technique to enhance the grayscale level of the multispectral transmission images. Still, during the image acquisition process, human respiration or camera jitter causes the displacement of the frame's sequence which leads to the loss of accuracy and image quality of the frame accumulated image is reduced. In this article, we have proposed a new method named "repeated pair image registration and accumulation "to resolve the issue. In this method first pair of images from the sequence is first registered and accumulated followed by the next pair to be registered and accumulated. Then these two accumulated frames are registered and accumulated again. This process is repeated until all the frames from the sequence are processed and the final image is obtained. This method is tested on the sequence of breast frames taken at 600 nm, 620 nm, 670 nm, and 760 nm wavelength of light and proved the enhancement of quality, accuracy, and grayscale by various mathematical assessments. Furthermore, the processing time of our proposed method is very low because descent gradient optimization algorithm is used here for image registration purpose. This optimization algorithm has high speed as compared to other methods and is verified by registering a single image of each wavelength by three different methods. It has laid the foundations of early detection of breast cancer using multispectral transmission imaging.
Collapse
Affiliation(s)
- Gang Li
- Medical School of Tianjin University, Tianjin 300072, China; State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Adnan Munawar
- Medical School of Tianjin University, Tianjin 300072, China; State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Nan Su Su Win
- Medical School of Tianjin University, Tianjin 300072, China; State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Meiling Fan
- Medical School of Tianjin University, Tianjin 300072, China; State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Muhammad Zeeshan Nawaz
- Medical School of Tianjin University, Tianjin 300072, China; State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Ling Lin
- Medical School of Tianjin University, Tianjin 300072, China; State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
12
|
Braga CB, Perli G, Fonseca R, Grigolo TA, Ionta M, Ornelas C, Pilli RA. Enhanced Synergistic Efficacy Against Breast Cancer Cells Promoted by Co-Encapsulation of Piplartine and Paclitaxel in Acetalated Dextran Nanoparticles. Mol Pharm 2024; 21:5577-5597. [PMID: 39365693 DOI: 10.1021/acs.molpharmaceut.4c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Malignant breast tumors constitute the most frequent cancer diagnosis among women. Notwithstanding the progress in treatments, this condition persists as a major public health issue. Paclitaxel (PTX) is a first-line classical chemotherapeutic drug used as a single active pharmaceutical ingredient (API) or in combination therapy for breast cancer (BC) treatment. Adverse effects, poor water solubility, and inevitable susceptibility to drug resistance seriously limit its therapeutic efficacy in the clinic. Piplartine (PPT), an alkaloid extracted from Piper longum L., has been shown to inhibit cancer cell proliferation in several cell lines due to its pro-oxidant activity. However, PPT has low water solubility and bioavailability in vivo, and new strategies should be developed to optimize its use as a chemotherapeutic agent. In this context, the present study aimed to synthesize a series of acetalated dextran nanoparticles (Ac-Dex NPs) encapsulating PPT and PTX to overcome the limitations of PPT and PTX, maximizing their therapeutic efficacy and achieving prolonged and targeted codelivery of these anticancer compounds into BC cells. Biodegradable, pH-responsive, and biocompatible Ac-Dex NPs with diameters of 100-200 nm and spherical morphologies were formulated using a single emulsion method. Selected Ac-Dex NPs containing only PPT or PTX as well as those coloaded with PPT and PTX achieved excellent drug-loading capabilities (PPT, ca. 11-33%; PTX, ca. 2-14%) and high encapsulation efficiencies (PPT, ∼57-98%; PTX, ∼80-97%). Under physiological conditions (pH 7.4), these NPs exhibited excellent colloidal stability and were capable of protecting drug release, while under acidic conditions (pH 5.5) they showed structural collapse, releasing the therapeutics in an extended manner. Cytotoxicity results demonstrated that the encapsulation in Ac-Dex NPs had a positive effect on the activities of both PPT and PTX against the MCF-7 human breast cancer cell line after 48 h of treatment, as well as toward MDA-MB-231 triple-negative BC cells. PPT/PTX@Ac-Dex NPs were significantly more cytotoxic (IC50/PPT = 0.25-1.77 μM and IC50/PTX = 0.07-0.75 μM) and selective (SI = 2.9-6.7) against MCF-7 cells than all the control therapeutic agents: free PPT (IC50 = 4.57 μM; SI = 1.2), free PTX (IC50 = 0.97 μM; SI = 1.0), the single-drug-loaded Ac-Dex NPs, and the physical mixture of both free drugs. All combinations of PPT and PTX resulted in pronounced synergistic antiproliferative effects in MCF-7 cells, with an optimal molar ratio of PPT to PTX of 2.3:1. PPT/PTX-2@Ac-Dex NPs notably promoted apoptosis, cell cycle arrest at the G2/M, accumulation of intracellular reactive oxygen species (ROS), and combined effects from both PPT and PTX on the microtubule network of MCF-7 cells. Overall, the combination of PTX and PPT in pH-responsive Ac-Dex NPs may offer great potential to improve the therapeutic efficacy, overcome the limitations, and provide effective simultaneous delivery of these therapeutics for BC treatment.
Collapse
Affiliation(s)
- Carolyne Brustolin Braga
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13083-970, Campinas, São Paulo Brazil
| | - Gabriel Perli
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13083-970, Campinas, São Paulo Brazil
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, 20018 Donostia-San Sebastián Spain
| | - Rafael Fonseca
- Institute of Biomedical Sciences, Federal University of Alfenas, UNIFAL-MG, 37130-001 Alfenas, Minas Gerais, Brazil
| | - Thiago Augusto Grigolo
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13083-970, Campinas, São Paulo Brazil
| | - Marisa Ionta
- Institute of Biomedical Sciences, Federal University of Alfenas, UNIFAL-MG, 37130-001 Alfenas, Minas Gerais, Brazil
| | - Catia Ornelas
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13083-970, Campinas, São Paulo Brazil
- R&D Department, ChemistryX, R&D and Consulting Company, 9000 Funchal, Portugal
- R&D Department, Dendriwave, Research & Development Start-Up Company, 9000 Funchal, Portugal
| | - Ronaldo A Pilli
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13083-970, Campinas, São Paulo Brazil
| |
Collapse
|
13
|
Wang SF, Ho YC, Chou CY, Chang YL, Lee HC, Tseng LM. Integrated stress response-upregulated mitochondrial SLC1A5var enhances glucose dependency in human breast cancer cells in vitro. Int J Biochem Cell Biol 2024; 177:106688. [PMID: 39505107 DOI: 10.1016/j.biocel.2024.106688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/30/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
Breast cancer is the most commonly diagnosed cancer among women. The growth of triple-negative breast cancer (TNBC) cells is glucose-dependent. The integrated stress response (ISR) is a cellular stress response to glucose depletion. The ISR-solute carrier family 7 member 11 pathway is activated during glucose depletion and contributes to glucose dependence by decreasing intracellular glutamate levels. Solute carrier family 1 member 5 (SLC1A5) and the mitochondrial solute carrier family 1 member 5 variant (SLC1A5var) are glutamine transporters that play essential roles in the reprogramming of cancer metabolism. However, whether ISR can regulate mitochondrial SLC1A5var expression and further affect glucose dependence remains unclear. Glucose depletion-, oligomycin-, and salubrinal-activated activating transcription factor-4 (ATF4) induced SLC1A5var expression. ATF4 is critical for SLC1A5var regulation, as it binds to specific regulatory elements in its promoter. SLC1A5var knockdown decreases glucose depletion-induced cell death, whereas SLC1A5var overexpression increases glucose depletion-induced cell death in TNBC cells. SLC1A5var knockdown reduced cancer cell proliferation, colony formation, and migration, whereas SLC1A5var overexpression increased cell proliferation and migration. Moreover, the knockdown of SLC1A5var reduces the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) while increasing the maximal OCR and ECAR under glucose depletion. These results suggest that activated ISR-induced increased expression of SLC1A5var may regulate mitochondrial oxidative phosphorylation and glycolytic metabolic characteristics to enhance glucose depletion-induced cell death. In conclusion, SLC1A5var plays a vital role in metabolic reprogramming and may be a potential target for breast cancer treatment.
Collapse
Affiliation(s)
- Sheng-Fan Wang
- Department of Pharmacy, Taipei Veterans General Hospital, No. 201, Section 2, Shipai Rd., Beitou Dist., Taipei 112, Taiwan; School of Pharmacy, Taipei Medical University, No. 250, Wuxing St., Xinyi Dist., Taipei 110, Taiwan; Department and Institute of Pharmacology, College of Medicine, National Yang-Ming Chiao-Tung University, No. 155, Section 2, Li-Nong St., Beitou Dist., Taipei 112, Taiwan; Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang-Ming Chiao-Tung University, No. 155, Section 2, Li-Nong St., Beitou Dist., Taipei 112, Taiwan.
| | - Yu-Chieh Ho
- Department and Institute of Pharmacology, College of Medicine, National Yang-Ming Chiao-Tung University, No. 155, Section 2, Li-Nong St., Beitou Dist., Taipei 112, Taiwan.
| | - Chian-Ying Chou
- Department of Pharmacy, Taipei Veterans General Hospital, No. 201, Section 2, Shipai Rd., Beitou Dist., Taipei 112, Taiwan; Department of Pharmacy, College of Pharmaceutical Sciences, National Yang-Ming Chiao-Tung University, No. 155, Section 2, Li-Nong St., Beitou Dist., Taipei 112, Taiwan.
| | - Yuh-Lih Chang
- Department of Pharmacy, Taipei Veterans General Hospital, No. 201, Section 2, Shipai Rd., Beitou Dist., Taipei 112, Taiwan; Department of Pharmacy, College of Pharmaceutical Sciences, National Yang-Ming Chiao-Tung University, No. 155, Section 2, Li-Nong St., Beitou Dist., Taipei 112, Taiwan.
| | - Hsin-Chen Lee
- Department and Institute of Pharmacology, College of Medicine, National Yang-Ming Chiao-Tung University, No. 155, Section 2, Li-Nong St., Beitou Dist., Taipei 112, Taiwan; Department of Pharmacy, College of Pharmaceutical Sciences, National Yang-Ming Chiao-Tung University, No. 155, Section 2, Li-Nong St., Beitou Dist., Taipei 112, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, No. 201, Section 2, Shipai Rd., Beitou Dist., Taipei 112, Taiwan.
| | - Ling-Ming Tseng
- Division of General Surgery, Department of Surgery, Comprehensive Breast Health Center, Taipei Veterans General Hospital, No. 201, Section 2, Shipai Rd., Beitou Dist., Taipei 112, Taiwan; Department of Surgery, College of Medicine, National Yang-Ming Chiao-Tung University, No. 155, Section 2, Li-Nong St., Beitou Dist., Taipei 112, Taiwan.
| |
Collapse
|
14
|
Lewis MW, King CM, Wisniewska K, Regner MJ, Coffey A, Kelly MR, Mendez-Giraldez R, Davis ES, Phanstiel DH, Franco HL. CRISPR Screening of Transcribed Super-Enhancers Identifies Drivers of Triple-Negative Breast Cancer Progression. Cancer Res 2024; 84:3684-3700. [PMID: 39186674 PMCID: PMC11534545 DOI: 10.1158/0008-5472.can-23-3995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/03/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most therapeutically recalcitrant form of breast cancer, which is due in part to the paucity of targeted therapies. A systematic analysis of regulatory elements that extend beyond protein-coding genes could uncover avenues for therapeutic intervention. To this end, we analyzed the regulatory mechanisms of TNBC-specific transcriptional enhancers together with their noncoding enhancer RNA (eRNA) transcripts. The functions of the top 30 eRNA-producing super-enhancers were systematically probed using high-throughput CRISPR-interference assays coupled to RNA sequencing that enabled unbiased detection of target genes genome-wide. Generation of high-resolution Hi-C chromatin interaction maps enabled annotation of the direct target genes for each super-enhancer, which highlighted their proclivity for genes that portend worse clinical outcomes in patients with TNBC. Illustrating the utility of this dataset, deletion of an identified super-enhancer controlling the nearby PODXL gene or specific degradation of its eRNAs led to profound inhibitory effects on target gene expression, cell proliferation, and migration. Furthermore, loss of this super-enhancer suppressed tumor growth and metastasis in TNBC mouse xenograft models. Single-cell RNA sequencing and assay for transposase-accessible chromatin with high-throughput sequencing analyses demonstrated the enhanced activity of this super-enhancer within the malignant cells of TNBC tumor specimens compared with nonmalignant cell types. Collectively, this work examines several fundamental questions about how regulatory information encoded into eRNA-producing super-enhancers drives gene expression networks that underlie the biology of TNBC. Significance: Integrative analysis of eRNA-producing super-enhancers defines molecular mechanisms controlling global patterns of gene expression that regulate clinical outcomes in breast cancer, highlighting the potential of enhancers as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Michael W. Lewis
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Caitlin M. King
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kamila Wisniewska
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Matthew J. Regner
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Bioinformatics and Computational Biology Graduate Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alisha Coffey
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Michael R. Kelly
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Bioinformatics and Computational Biology Graduate Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Raul Mendez-Giraldez
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Eric S. Davis
- Bioinformatics and Computational Biology Graduate Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Douglas H. Phanstiel
- Bioinformatics and Computational Biology Graduate Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hector L. Franco
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Bioinformatics and Computational Biology Graduate Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- The Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Division of Clinical and Translational Cancer Research, University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935
| |
Collapse
|
15
|
Amoako E, Amuzu S, Ofori EO, Akligoh HS, Tackie R, Ibrahim BA, Quaye EK, Akakpo PK, Aniakwo LA, Jimah B, Ulzen-Appiah K, Hutchful D, Manu A, Ngoi JM, Paemka L, Alhassan Y, Obeng EA, Lim N, Rajah L, Pek M, Challis J, Rahman GA, Tan MH, Bediako Y. Targeted gene panel sequencing of liquid and tissue biopsies reveals actionable genomic alterations in Ghanaian metastatic breast cancer cases. Transl Oncol 2024; 49:102100. [PMID: 39154426 PMCID: PMC11381797 DOI: 10.1016/j.tranon.2024.102100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/22/2024] [Accepted: 08/11/2024] [Indexed: 08/20/2024] Open
Abstract
PURPOSE Breast cancer is a major cause of cancer-related mortality among African women. The adoption of molecular genomic technologies in the management of cancer cases is limited in Africa. To provide much-needed insights on the feasibility and utility of such precision medicine paradigms in Africa, we conducted a prospective, non-interventional study involving combined tissue and plasma Next-generation sequencing (NGS)-based testing in cancer patients in Ghana. METHODS We recruited 20 newly diagnosed, histologically confirmed, treatment-naïve women with metastatic breast cancer at the Cape Coast Teaching Hospital in Ghana. Tissue (NGS) and cell-free DNA (cfDNA) liquid biopsy analysis were ordered on all 20 patients. RESULTS All 20/20 (100 %) liquid biopsy samples were acceptable for analysis, whereas only 6/20 (30 %) passed quality control for tissue NGS testing. Liquid biopsy detected 42 cfDNA mutations in 17/20 patients. Of the 17 patients, 3 (17.6 %) had mutations previously associated with African ancestry, including BRCA1 p.K719E, ARAF p.S262I and GATA3 p.G125dup. Eight potentially actionable alterations specific to breast cancer were found in 6/17 (35.3 %) liquid biopsy samples, while potentially actionable mutations non-specific to breast cancer were detected in 12/17 (70.6 %). Tissue biopsy analysis detected mutations in all 6 patients tested, with 3/6 (50 %) patients presenting potentially actionable mutations relevant to breast cancer. CONCLUSION Liquid biopsy detected multiple additional actionable variants in Ghanaian women with breast cancer. Plasma cfDNA analysis featured fewer variations in sample preparation which is a key consideration in resource-limited settings. Liquid biopsy presents a great opportunity to improve cancer care in Africa.
Collapse
Affiliation(s)
- Emmanuella Amoako
- Yemaachi Biotech, 222 Swaniker Street, Accra, Ghana; Cape Coast Teaching Hospital, Cape Coast, Ghana; University of Cape Coast, School of Medical Sciences, Cape Coast, Ghana.
| | - Setor Amuzu
- Yemaachi Biotech, 222 Swaniker Street, Accra, Ghana
| | | | | | - Randy Tackie
- Yemaachi Biotech, 222 Swaniker Street, Accra, Ghana
| | | | | | - Patrick Kafui Akakpo
- Cape Coast Teaching Hospital, Cape Coast, Ghana; University of Cape Coast, School of Medical Sciences, Cape Coast, Ghana; Pathologists without Borders, Accra, Ghana
| | | | - Bashiro Jimah
- Cape Coast Teaching Hospital, Cape Coast, Ghana; University of Cape Coast, School of Medical Sciences, Cape Coast, Ghana
| | - Kofi Ulzen-Appiah
- Cape Coast Teaching Hospital, Cape Coast, Ghana; University of Cape Coast, School of Medical Sciences, Cape Coast, Ghana
| | | | - Aida Manu
- Yemaachi Biotech, 222 Swaniker Street, Accra, Ghana
| | - Joyce M Ngoi
- Yemaachi Biotech, 222 Swaniker Street, Accra, Ghana
| | - Lily Paemka
- Yemaachi Biotech, 222 Swaniker Street, Accra, Ghana
| | - Yakubu Alhassan
- Yemaachi Biotech, 222 Swaniker Street, Accra, Ghana; Department of Biostatistics, University of Ghana, Accra, Ghana
| | | | - Nicole Lim
- Lucence Health Inc, Palo Alto, CA, United States
| | - Lisa Rajah
- Lucence Health Inc, Palo Alto, CA, United States
| | - Michelle Pek
- Lucence Health Inc, Palo Alto, CA, United States
| | - Jack Challis
- Lucence Health Inc, Palo Alto, CA, United States
| | | | - Min-Han Tan
- Lucence Health Inc, Palo Alto, CA, United States
| | - Yaw Bediako
- Yemaachi Biotech, 222 Swaniker Street, Accra, Ghana
| |
Collapse
|
16
|
Hamdy NM, El-Sisi MG, Ibrahim SM, ElNokoudy H, Hady AA, Abd-Ellatef GEF, Sallam AAM, Barakat BM. In silico analysis and comprehensive review of circular-RNA regulatory roles in breast diseases; a step-toward non-coding RNA precision. Pathol Res Pract 2024; 263:155651. [PMID: 39454476 DOI: 10.1016/j.prp.2024.155651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
In the current comprehensive review, we first highlighted circRNAs, which are key ncRNAs. Next, we discussed the relationships among circRNAs and breast cancer subtypes via in silico databases analysis and extensive literature search. CircRNAs, that sponge miRNA axes or act as silencers of oncogenic mRNAs, have been extensively addressed in the context of this review. During BC pathogenesis, the circRNA/microRNA/messenger RNA (mRNA) axis plays a major role in disease growth, progression, and survival/resistance and could be targeted for improved treatment options. This review also aimed to address oncogenic and tumor suppressor mRNAs, which are regulated by various circRNAs in BC. Moreover, we mentioned the relation of different circRNAs with cancer hallmarks, patient survival together with drug resistance. Additionally, we discussed circRNAs as vaccines and biomarkers in BC. Finally, we studied exosomal circRNAs as a hot interesting area in the research. REVIEW SIGNIFICANCE: Via using in silico databases, bioinformatics analysis, and a thorough literature search to first highlight circRNA as a crucial ncRNA and its biogenesis, and then we explored the connection between circRNA and breast illnesses. In the framework of the review, circRNA sponged-miRNAs axis or as silencers to oncogenic mRNAs were extensively discussed. In the pathophysiology of BC, the circular RNA/microRNA/messenger RNA axis is crucial for the propagation of the disease and resistance that may be targeted for more effective treatment options, in order to confront tumor suppressor and oncogenic mRNAs that are presently regulated by circRNAs in BC. For better patient results, we advised further mechanistic research to elucidate additional ncRNA axis that may be targeted for the therapy of BC and for prognosis/ or early diagnosis.
Collapse
Affiliation(s)
- Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt.
| | - Mona G El-Sisi
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt
| | - Sherine M Ibrahim
- Biochemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Heba ElNokoudy
- Medication Management & Pharmacy Affairs, Egypt Healthcare Authority, Cairo, Egypt
| | - Ahmad A Hady
- Clinical Oncology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Gamal Eldein Fathy Abd-Ellatef
- Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt
| | - Al-Aliaa M Sallam
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt; Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Bassant Mohamed Barakat
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al Baha University, Al Baha 1988, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11651, Egypt
| |
Collapse
|
17
|
Yu L, Wei W, Lv J, Lu Y, Wang Z, Cai C. FABP4-mediated lipid metabolism promotes TNBC progression and breast cancer stem cell activity. Cancer Lett 2024; 604:217271. [PMID: 39306229 DOI: 10.1016/j.canlet.2024.217271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Metabolic remodeling is a pivotal feature of cancer, with cancer stem cells frequently showcasing distinctive metabolic behaviors. Nonetheless, understanding the metabolic intricacies of triple-negative breast cancer (TNBC) and breast cancer stem cells (BCSCs) has remained elusive. In this study, we meticulously characterized the metabolic profiles of TNBC and BCSCs and delved into their potential implications for TNBC treatment. Our findings illuminated the robust lipid metabolism activity within TNBC tumors, especially in BCSCs. Furthermore, we discovered that Fabp4, through its mediation of fatty acid uptake, plays a crucial role in regulating TNBC lipid metabolism. Knocking down Fabp4 or inhibiting its activity significantly suppressed TNBC tumor progression in both the MMTV-Wnt1 spontaneous TNBC model and the TNBC patient-derived xenograft model. Mechanistically, Fabp4's influence on TNBC tumor progression was linked to its regulation of mitochondrial stability, the CPT1-mediated fatty acid oxidation process, and ROS production. Notably, in a high-fat diet model, Fabp4 deficiency proved to be a substantial inhibitor of obesity-accelerated TNBC progression. Collectively, these findings shed light on the unique metabolic patterns of TNBC and BCSCs, underscore the biological significance of Fabp4-mediated fatty acid metabolism in governing TNBC progression, and offer a solid theoretical foundation for considering metabolic interventions in breast cancer treatment. SIGNIFICANCE: Triple-negative breast cancer progression and breast cancer stem cell activity can be restricted by targeting a critical regulator of lipid responses, FABP4.
Collapse
Affiliation(s)
- Liya Yu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Wei Wei
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Jian Lv
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, 518057, China
| | - Yu Lu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Zhihua Wang
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, 518057, China
| | - Cheguo Cai
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
18
|
Rodríguez-Rojas K, Cortes-Reynosa P, Torres-Alamilla P, Rodríguez-Ochoa N, Salazar EP. A novel role of IGFBP5 in the migration, invasion and spheroids formation induced by IGF-I and insulin in MCF-7 breast cancer cells. Breast Cancer Res Treat 2024; 208:79-88. [PMID: 38896333 PMCID: PMC11452427 DOI: 10.1007/s10549-024-07397-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
PURPOSE The insulin-like growth factor (IGF) system includes IGF-I, IGF-II insulin and their membrane receptors. IGF system also includes a family of proteins namely insulin-like growth factor-binding proteins (IGFBPs) composed for six major members (IGFBP-1 to IGFBP6), which capture, transport and prolonging half-life of IGFs. However, it has been described that IGFBPs can also have other functions. METHODS IGFBP5 expression was inhibited by shRNAs, migration was analyzed by scratch-wound assays, invasion assays were performed by the Boyden chamber method, spheroids formation assays were performed on ultra-low attachment surfaces, expression and phosphorylation of proteins were analyzed by Western blot. RESULTS IGFBP5 is a repressor of IGF-IR expression, but it is not a repressor of IR in MCF-7 breast cancer cells. In addition, IGFBP5 is a suppressor of migration and MMP-9 secretion induced by IGF-I and insulin, but it does not regulate invasion in MCF-7 cells. IGFBP5 also is a repressor of MCF-7 spheroids formation. However treatment with 340 nM rescues the inhibitory effect of IGFBP in the MCF-7 spheroids formation. CONCLUSION IGFBP5 regulates IGF-IR expression, migration and MMP-9 secretion induced by IGF-I and/or insulin, and the spheroids formation in MCF-7 breast cancer cells.
Collapse
Affiliation(s)
- Karem Rodríguez-Rojas
- Departamento de Biologia Celular. Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Av. IPN # 2508, 07360, Mexico City, Mexico
| | - Pedro Cortes-Reynosa
- Departamento de Biologia Celular. Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Av. IPN # 2508, 07360, Mexico City, Mexico
| | - Pablo Torres-Alamilla
- Departamento de Biologia Celular. Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Av. IPN # 2508, 07360, Mexico City, Mexico
| | - Nínive Rodríguez-Ochoa
- Departamento de Biologia Celular. Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Av. IPN # 2508, 07360, Mexico City, Mexico
| | - Eduardo Perez Salazar
- Departamento de Biologia Celular. Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Av. IPN # 2508, 07360, Mexico City, Mexico.
| |
Collapse
|
19
|
Babaei Khorzoughi S, Tavakoli M, Mortazavi M, Jafarnejad Z, Malekpour A, Kopaiee Malek T, Kargar F. A review of recombinant HER3 affibodies with an effective diagnostic view of cancer cells. J Drug Target 2024:1-24. [PMID: 39485069 DOI: 10.1080/1061186x.2024.2420202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/10/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024]
Abstract
One of the most common causes of cancer-related death in women worldwide is breast cancer(Edited)Restore original. Factors such as increased expression of HER family members can contribute to its development. Elevated HER3 expression, especially when combined with other tyrosine kinase receptors such as HER2, plays a significant role in activating cancer pathways crucial for cell survival and proliferation in breast cancer. Detecting high HER3 levels is essential for effective cancer treatment. Affibody proteins, a class including antibodies, are utilized to detect elevated HER3 receptor expression due to their specific high binding affinity. Affibodies, a new type of non-immune probe, show promise in therapy, diagnostics, and biotechnology due to their exceptional specificity and high target protein affinity. The innovative design of these recombinant affibodies not only enhances the accuracy of HER3 detection but also facilitates the development of targeted therapeutic strategies. By employing advanced engineering techniques, these affibodies can be optimized for improved stability and binding efficacy, making them ideal candidates for clinical applications. Additionally, the versatility of affibody-based systems allows for potential integration with imaging technologies, enabling real-time monitoring of HER3 expression and therapeutic response. This multifaceted approach could ultimately lead to more personalized treatment options for patients with HER3-positive breast cancers, thereby improving overall patient management and outcomes in this challenging disease landscape. This study presents recombinant affibodies tailored to bind to HER3 for cancer cell identification, along with novel methods for producing a range of affibody molecules.
Collapse
Affiliation(s)
- Sahar Babaei Khorzoughi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Mehrnoosh Tavakoli
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Mojtaba Mortazavi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Zahra Jafarnejad
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | | | - Tara Kopaiee Malek
- Department of Cell and Molecular biology, Faculty of science, Azad University of Damghan
| | - Farzane Kargar
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Boretto C, Muzio G, Autelli R. PPARγ antagonism as a new tool for preventing or overcoming endocrine resistance in luminal A breast cancers. Biomed Pharmacother 2024; 180:117461. [PMID: 39326102 DOI: 10.1016/j.biopha.2024.117461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
PURPOSE This research investigates the role of PPARγ in the complex molecular events underlying the acquisition of resistance to tamoxifen (Tam) in luminal A breast cancer (BC) cells. Furthermore, it focuses on evaluating the possibility of repurposing Imatinib mesylate, an FDA-approved anticancer agent recently recognized also as a PPARγ antagonist, for the personalized therapy of endocrine-resistant BC with increased PPARγ expression. METHODS Differential gene expression between parental and Tam-resistant MCF7 cells was assessed by RNA-seq followed by bioinformatics analysis and validation by RT-qPCR. PPARγ was downregulated by esiRNAs or inhibited by the antagonist GW9662. Cell viability and proliferation were measured by MTT and colony formation assays. Spheroids were prepared from parental and Tam-resistant MCF7 cells. Other luminal A BC cell lines resistant to Tam were generated. RESULTS In MCF7-TamR cells, PPARγ and several of its target genes were significantly upregulated. Increased PPARγ expression was due to the modulation of its positive/negative transcriptional regulators. Downregulating PPARγ with esiRNAs or GW9662 effectively killed parental and Tam-resistant cells and spheroids. Imatinib revealed to be as effective as GW9662 in restoring Tam susceptibility of these cells. PPARγ overexpression was also observed in the newly-selected Tam-resistant luminal A BC cells, in which GW9662 and Imatinib restored their susceptibility to Tam. CONCLUSION Our findings demonstrate that the overexpression of PPARγ is a frequent occurrence during acquisition of Tam resistance in luminal A BC cells, and that PPARγ antagonism represents an alternative therapeutic approach for the personalized treatment of BC showing dysregulation of this nuclear receptor.
Collapse
Affiliation(s)
- Cecilia Boretto
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, Turin 10125, Italy
| | - Giuliana Muzio
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, Turin 10125, Italy
| | - Riccardo Autelli
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, Turin 10125, Italy.
| |
Collapse
|
21
|
Fu R, Chen Y, Zhao J, Xie X. The signature of SARS-CoV-2-related genes predicts the immune therapeutic response and prognosis in breast cancer. BMC Med Genomics 2024; 17:260. [PMID: 39482662 PMCID: PMC11526603 DOI: 10.1186/s12920-024-02032-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/15/2024] [Indexed: 11/03/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an exceptionally contagious single-stranded RNA virus with a strong positive contagion. The COVID-19 pandemic refers to the swift worldwide dissemination of SARS-CoV-2 infection, which began in late 2019. The COVID-19 epidemic has disrupted many cancer treatments. A few reports indicate that the prevalence of SARS-CoV-2 has disrupted the treatment of breast cancer patients (BCs). However, the role of SARS-CoV-2 in the occurrence and prognosis of BC has not been elucidated. Here, we applied bioinformatics to construct a prognostic signature of SARS-CoV-2-related genes (SCRGs). Specifically, weighted gene co-expression network analysis (WGCNA) was utilized to extract co-expressed genes of differentially expressed genes (DEGs) in breast cancer and SCRGs. Then, we utilized the least absolute shrinkage and selection operator (LASSO) algorithm and univariate regression analysis to screen out three hub genes (DCTPP1, CLIP4 and ANO6) and constructed a risk score model. We further analyzed tumor immune invasion, HLA-related genes, immune checkpoint inhibitors (ICIs), and sensitivity to anticancer drugs in different SARS-CoV-2 related risk subgroups. In addition, we have developed a nomination map to expand clinical applicability. The results of our study indicate that BCs with a high-risk score are linked to negative outcomes, lower immune scores, and reduced responsiveness to anticancer medications. This suggests that the SARS-CoV-2 related signature could be used to guide prognosis assessment and treatment decisions for BCs.
Collapse
Affiliation(s)
- Ruizhi Fu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, China
| | - Yequn Chen
- Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, China
| | - Jiajing Zhao
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, China.
| | - Xiaojun Xie
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, China.
| |
Collapse
|
22
|
Hardy L, Kannan B, Rigon M, Benton-Hawthorn G, Previdelli RL, Reichler IM, Guscetti F, Kowalewski MP, Campanella M. Canine Mammary Tumours (CMTs) exploit mitochondrial cholesterol for aggressive reprogramming. Biochim Biophys Acta Mol Basis Dis 2024:167546. [PMID: 39486658 DOI: 10.1016/j.bbadis.2024.167546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024]
Abstract
In human breast cancer the mitochondrial translocator protein (TSPO) aids pro-survival cellular response by facilitating the formation of mitochondrial contact sites with the nucleus termed Nucleus Associated Mitochondria (NAM). Here, we show that TSPO positively associates with the aggressiveness of tissues and cells isolated from Canine Mammary Tumours (CMTs). TSPO is also readily upregulated in reprogrammed mammary tumour cells following long-term deprivation of oestrogen or exposure to the endocrine chemotherapeutic (ET) agent Tamoxifen. The latter triggers mitochondrial handling of cholesterol which is facilitated by TSPO whose upregulation reduces susceptibility to Tamoxifen. TSPO binding ligands boost, on the other hand, the efficacy of Tamoxifen and Chemotherapy agents. In aggressive canine mammary tumour cells, TSPO repression impairs the NF-kB pattern thus confirming the pro-survival role of the NAM uncovered in the human counterpart. Mitochondrial cholesterol handling via TSPO emerges therefore as a signature in the aggressive reprogramming of CMTs thus advancing our understanding of the molecular mechanisms underpinning this pathology. A novel target mechanism to improve bio-marking and therapeutic protocols is here proposed.
Collapse
Affiliation(s)
- Liana Hardy
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW01 TU, United Kingdom
| | - Brindha Kannan
- William Harvey Research Institute, Queen Mary University of London, EC1M 6BQ, United Kingdom
| | - Manuel Rigon
- William Harvey Research Institute, Queen Mary University of London, EC1M 6BQ, United Kingdom
| | - Genevieve Benton-Hawthorn
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW01 TU, United Kingdom
| | - Renato L Previdelli
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW01 TU, United Kingdom
| | - Iris M Reichler
- Clinic for Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich, 8057 Zurich, Switzerland
| | - Franco Guscetti
- Institute of Veterinary Pathology, University of Zurich, Zurich, 8057 Zurich, Switzerland
| | - Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, 8057 Zurich, Switzerland
| | - Michelangelo Campanella
- William Harvey Research Institute, Queen Mary University of London, EC1M 6BQ, United Kingdom; Department of Biomedical Science, University of Padua, 35131, Italy; Institute Gustave Roussy, 94805, France.
| |
Collapse
|
23
|
Amani AM, Tayebi L, Vafa E, Bazargan-Lari R, Abbasi M, Vaez A, Kamyab H, Gnanasekaran L, Chelliapan S, Azizli MJ. Innovative cancer therapy: Unleashing the potential of macromolecule-loaded mesoporous bioactive glasses for precision diagnosis and treatment. Int J Pharm 2024; 667:124847. [PMID: 39486491 DOI: 10.1016/j.ijpharm.2024.124847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 11/04/2024]
Abstract
Cancer continues to pose a formidable threat, claiming millions of lives annually. A beacon of hope in this battle lies in the realm of bioactive glasses, which have undergone a remarkable evolution over the past five decades. Among these, mesoporous bioactive glasses (MBGs) emerge as a dynamic subset endowed with customizable attributes such as high surface area and porosity. While holding immense promise for cancer care, the full clinical potential of MBGs remains largely unexplored. This review delves into the cutting-edge advancements in MBG technology, illuminating their pivotal role in cancer management - spanning from early detection to targeted therapeutic interventions like photothermal and photodynamic treatments. Furthermore, the molecular mechanisms underpinning MBGs' anticancer properties are elucidated, alongside an exploration of existing limitations in their application. Through this comprehensive synthesis, the significance of MBGs in revolutionizing cancer therapy is underscored, underscoring the urgent need for continued research to unlock their full potential in reshaping the landscape of cancer care.
Collapse
Affiliation(s)
- Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lobat Tayebi
- Institute for Engineering in Medicine, Health & Human Performance (EnMed), Batten College of Engineering and Technology, Old Dominion University, Norfolk, VA 23529, USA
| | - Ehsan Vafa
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Reza Bazargan-Lari
- Department of Materials Science and Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hesam Kamyab
- Universidad UTE, Centro de Investigación en Salud Públicay Epidemiología Clínica (CISPEC), Quito 170527, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India; The KU-KIST Graduate School of Energy and Environment, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea.
| | | | - Shreeshivadasan Chelliapan
- Department of Smart Engineering and Advanced Technology, Faculty of Artificial Intelligence, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| | - Mohammad Javad Azizli
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
24
|
Suo S, Liu R, Yu X, Wang J, Wang M, Zhang Y, Liu Y. Incidence and risk factors of pain following breast cancer surgery: a retrospective national inpatient sample database study. BMC Womens Health 2024; 24:583. [PMID: 39472876 PMCID: PMC11520449 DOI: 10.1186/s12905-024-03430-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Postoperative pain (PP) is a dynamic process that reflects the complex interplay between symptoms, treatment, and patient experiences, and its intensity is reportedly primarily related to the severity of surgical trauma. However, no large-scale national database-based study has hitherto been conducted to assess the occurrence and features related to PP following breast cancer (BC) surgery. METHODS In this retrospective analysis, we screened BC surgery cases between 2015 and 2019 within the National Inpatient Sample (NIS) Database, utilizing the International Classification of Diseases (ICD) 10th edition clinical modification codes. The researchers identified patients who developed PP and compared them to those who did not. Factors associated with PP were then screened: patient demographics (age and race), hospital characteristics (type of insurance, bed size, teaching status, type of admission, location, and hospital area), length of stay (LOS), total cost during hospitalization, inpatient mortality, comorbidities, and perioperative complications. Data were analyzed using descriptive statistics. Multivariate logistic regression analysis was used to determine the independent risk factors for postoperative pain in BC surgery. RESULTS 39,870 BC surgery cases were identified over a five-year period from 2015 to 2019. The overall occurrence of PP following breast cancer surgery was 6.15% (2,387 cases), with a slight upward trend every year. Significant racial disparities were observed, Whites associated with a higher incidence of PP (P < 0.001). In addition, the incidence of elective admission was 11.96% lower (67.491% vs. 79.451%) than that of patients without PP following breast cancer surgery (P < 0.001). Besides, PP was related to prolonged hospitalization duration (3 vs. 2 days; P < 0.001), and higher total cost ($68,283 vs. $60,036; P < 0.001). Multivariate logistic regression identified breast cancer surgery-independent risk factors for PP, including younger age, non-elective hospital admission, rural hospitals, depression, drug abuse, metastatic cancer, psychoses, weight loss, and chronic pulmonary disease. In addition, postoperative pain for BC was associated with urinary retention, gastrointestinal complications, continuous invasive ventilation, deep vein thrombosis, urinary tract infection, blood transfusion, arrhythmia, and chest pain. CONCLUSION Despite the low incidence of postoperative pain in BC surgery cases, it is essential to investigate factors predisposing to PP to allow optimal care management and improve the outcomes of this patient population.
Collapse
Affiliation(s)
- Shanlian Suo
- Department of Anesthesiology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Rui Liu
- Department of Anesthesiology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Xuegao Yu
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510000, China
| | - Jian Wang
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Min Wang
- Department of Anesthesiology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, 730030, China.
| | - Yan Zhang
- Department of Anesthesiology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, 730030, China.
| | - Yuqian Liu
- Department of Anesthesiology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, 730030, China.
| |
Collapse
|
25
|
Peng R, Zhan Y, Li A, Lv Q, Xu S. Research progress and development strategy of PI3K inhibitors for breast cancer treatment: A review (2016-present). Bioorg Chem 2024; 153:107934. [PMID: 39509786 DOI: 10.1016/j.bioorg.2024.107934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/21/2024] [Accepted: 10/27/2024] [Indexed: 11/15/2024]
Abstract
Phosphatidylinositol 3-kinases (PI3Ks) are widely expressed in tissues and cells throughout the body and are involved in a variety of physiological processes including cell growth and metabolism. The phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of the rapamycin (mTOR) signaling pathway (PI3K/AKT/mTOR, PAM) is a promising target for the treatment of many cancer types because it is significantly linked to tumorigenesis and development. Aberrant activation of this pathway is observed in the majority of tumors, particularly in breast cancer. The development of PI3K inhibitors has received much attention in recent years. PI3K inhibitors are effective drugs for the treatment of various types of malignant tumors. The FDA has approved a few PI3K inhibitors for commercialization, and the majority of PI3K inhibitors under clinical trials are expected to conquer cancers, including breast cancer. This article discusses the link between the PAM signaling system and breast cancer, as well as the current clinical applications of PAM pathway inhibitors in the treatment of breast cancer. This work summarizes and describes the development tactics of seven types of PI3K inhibitors targeting breast cancer, including morpholine-substituted thienopyrimidines, with the goal of informing future PI3K inhibitor research.
Collapse
Affiliation(s)
- Rujue Peng
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Yujie Zhan
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Anqi Li
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Qiaoli Lv
- Department of Oncology, Jiangxi Cancer Hospital, Nanchang 330029, China.
| | - Shan Xu
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China.
| |
Collapse
|
26
|
Rabani S, Gunes EG, Gunes M, Pellegrino B, Lampert B, David K, Pillai R, Li A, Becker-Herman S, Rosen ST, Shachar I. CD84 as a therapeutic target for breaking immune tolerance in triple-negative breast cancer. Cell Rep 2024; 43:114920. [PMID: 39466774 DOI: 10.1016/j.celrep.2024.114920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/11/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype. The tumor microenvironment (TME) plays a major regulatory role in TNBC progression and is highly infiltrated by suppressive immune cells that reduce anti-tumor immune activity. Although regulatory B cells (Bregs) are a key TME component, knowledge of their function in TNBC is limited. CD84 is a homophilic adhesion molecule that promotes the survival of blood tumors. In the current study, we followed the role of CD84 in the regulation of the TME in TNBC. We demonstrate that CD84 induces a cascade in Bregs that involves the β-catenin and Tcf4 pathway, which induces the transcription of interleukin-10 by binding to its promoter and the promoter of its regulator, AhR. This leads to the expansion of Bregs, which in turn control the activity of other immune cells and immune suppression. Accordingly, we suggest CD84 as a therapeutic target for breaking immune tolerance in TNBC.
Collapse
Affiliation(s)
- Stav Rabani
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Emine Gulsen Gunes
- Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Duarte, CA, USA
| | - Martin Gunes
- Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Duarte, CA, USA
| | - Bianca Pellegrino
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Bar Lampert
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Keren David
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Raju Pillai
- Pathology Core, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Aimin Li
- Pathology Core, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | | | - Steven T Rosen
- Department of Hematology and Stem Cell Transplantation, City of Hope and Beckman Research Institute, Duarte, CA, USA
| | - Idit Shachar
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
27
|
Bazzazan MA, Fattollazadeh P, Keshavarz Shahbaz S, Rezaei N. Polymeric nanoparticles as a promising platform for treating triple-negative breast cancer: Current status and future perspectives. Int J Pharm 2024; 664:124639. [PMID: 39187034 DOI: 10.1016/j.ijpharm.2024.124639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/04/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer that lacks expression of estrogen, progesterone, and HER2 receptor targets for therapy. Polymeric nanoparticles help address the challenges in treating TNBC by enabling tailored and targeted drug delivery. Biocompatible polymeric nanoparticles leverage enhanced tumor permeability for site-specific accumulation and ligand-mediated active targeting to boost specificity. Controlled, sustained intratumorally release of encapsulated chemotherapies, such as paclitaxel and curcumin, improves antitumor efficacy as demonstrated through preclinical TNBC models. However, the practical application of these nanomedicines still has room for improvement. Advancing personalized nanoparticle platforms that align treatments to TNBC's expanding molecular subtypes shows promise. Expanding the polymer range through novel copolymers or drug conjugates may improve tumor penetration, stability, and drug encapsulation. Incorporating gene therapies, imaging agents, or triggering stimuli responsiveness into polymeric nanoparticles can also overcome innate and acquired drug resistance in TNBC while monitoring outcomes. This article reviews the different types of nanoparticles used to treat TNBC and the different mechanisms of nanoparticles that can deliver drugs to tumor cells. Collaboration across different disciplines aimed at developing combination therapies, immuno-oncology, tumor-targeting ligands, and translating preclinical safety/efficacy via scalable manufacturing practices is essential. Well-designed polymeric nanoparticles offer immense potential for patient-centric TNBC treatment, but continued optimization across bench to bedside efforts is critical for clinical realization and transforming patient outcomes.
Collapse
Affiliation(s)
- Mohammad Amin Bazzazan
- Student Research Committee, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran; USERN Office, Qazvin University of Medical Science, Qazvin, Iran
| | - Pouriya Fattollazadeh
- Student Research Committee, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran; USERN Office, Qazvin University of Medical Science, Qazvin, Iran
| | - Sanaz Keshavarz Shahbaz
- USERN Office, Qazvin University of Medical Science, Qazvin, Iran; Cellular and Molecular Research Center, Research Institute for Prevention of Noncommunicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
28
|
Rammali S, Idir A, Aherkou M, Ciobică A, Kamal FZ, Aalaoui ME, Rahim A, Khattabi A, Abdelmajid Z, Aasfar A, Burlui V, Calin G, Mavroudis I, Bencharki B. In vitro and computational investigation of antioxidant and anticancer properties of Streptomyces coeruleofuscus SCJ extract on MDA-MB-468 triple-negative breast cancer cells. Sci Rep 2024; 14:25251. [PMID: 39448707 PMCID: PMC11502701 DOI: 10.1038/s41598-024-76200-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
This study aimed to explore the antioxidant potential of the ethyl acetate extract of Streptomyces coeruleofuscus SCJ strain, along with its inhibitory effects on the triple-negative human breast carcinoma cell line (MDA-MB-468). The ethyl acetate extract's total phenolic and flavonoid contents were quantified, and its antioxidant activity was investigated using DPPH (1,1-Diphenyl-2-picrylhydrazyl), ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid), and FRAP (Ferric Reducing Antioxidant Power) assays. Furthermore, the cytotoxic effect of the organic extract from Streptomyces coeruleofuscus SCJ on MDA-MB-468 cancer cells was assessed via the crystal violet assay. In tandem, a thorough computational investigation was conducted to explore the pharmacokinetic properties of the identified components of the extract, utilizing the SwissADME and pKCSM web servers. Additionally, the molecular interactions between these components and Estrogen Receptor Beta, identified as a potential target, were probed through molecular docking studies. The results revealed that ethyl acetate extract of SCJ strain exhibited remarkable antioxidant activity, with 39.899 ± 1.56% and 35.798 ± 0.082% scavenging activities against DPPH and ABTS, respectively, at 1 mg/mL. The extract also displayed significant ferric reducing power, with a concentration of 1.087 ± 0.026 mg ascorbic acid equivalents per mg of dry extract. Furthermore, a strong positive correlation (p < 0.0001) between the antioxidant activity, the polyphenol and the flavonoid contents. Regarding anticancer activity, the SCJ strain extract demonstrated significant anticancer activity against TNBC MDA-MB-468 cancer cells, with an inhibition percentage of 62.76 ± 0.62%, 62.67 ± 0.93%, and 58.07 ± 4.82% at 25, 50, and 100 µg/mL of the extract, respectively. The HPLC-UV/vis analysis revealed nine phenolic compounds: gallic acid, sinapic acid, p-coumaric acid, cinnamic acid, trans-fereulic acid, syringic acid, chloroqenic acid, ellagic acid, epicatechin. Streptomyces coeruleofuscus SCJ showed promise for drug discovery, exhibiting antioxidant and anticancer effects.
Collapse
Affiliation(s)
- Said Rammali
- Laboratory of Agro-Alimentary and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, Settat, 26000, Morocco.
| | - Abderrazak Idir
- Agro-Industrial and Medical Biotechnology Laboratory, Team of Experimental Oncology and Natural Substances, Faculty of Sciences and Technology, Sultan Moulay Slimane University, Beni-Mellal, Morocco
- Science and Technology Team, Higher School of Education and Training, Chouaîb Doukkali University, El Jadida, Morocco
| | - Marouane Aherkou
- Mohammed VI University of Sciences and Health, Casablanca, Morocco
- Mohammed VI Centre for Research and Innovation (CM6RI), Casablanca, Morocco
- Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Alin Ciobică
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 20th Carol I Avenue, Iasi, 700506, Romania.
- Center of Biomedical Research, Iasi Branch, Romanian Academy, Teodor Codrescu 2, Iasi, 700481, Romania.
- Academy of Romanian Scientists, 3 Ilfov, Bucharest, 050044, Romania.
| | - Fatima Zahra Kamal
- Higher Institute of Nursing Professions and Health Technical (ISPITS), Marrakech, 40000, Morocco
- Laboratory of Physical Chemistry of Processes and Materials, Faculty of Sciences and Techniques, Hassan First University, Settat, 26000, Morocco
| | - Mohamed El Aalaoui
- Regional Center of Agronomic Research of Settat, Tertiary Road 1406, At 5 Km from Settat, Settat, 26400, Morocco
| | - Abdellatif Rahim
- Laboratory of Biochemistry, Neurosciences, Natural Ressources and Environment, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, Settat, 26000, Morocco
| | - Abdelkrim Khattabi
- Laboratory of Agro-Alimentary and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, Settat, 26000, Morocco
| | - Zyad Abdelmajid
- Agro-Industrial and Medical Biotechnology Laboratory, Team of Experimental Oncology and Natural Substances, Faculty of Sciences and Technology, Sultan Moulay Slimane University, Beni-Mellal, Morocco
| | - Abderrahim Aasfar
- Plant and Microbial Biotechnology center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Vasile Burlui
- "Ioan Haulica Institute", Apollonia University, Păcurari Street 11, Iasi, 700511, Romania
| | - Gabriela Calin
- "Ioan Haulica Institute", Apollonia University, Păcurari Street 11, Iasi, 700511, Romania
| | | | - Bouchaib Bencharki
- Laboratory of Agro-Alimentary and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, Settat, 26000, Morocco
| |
Collapse
|
29
|
Baumann Z, Wiethe C, Vecchi CM, Richina V, Lopes T, Bentires-Alj M. Optimized full-spectrum flow cytometry panel for deep immunophenotyping of murine lungs. CELL REPORTS METHODS 2024:100885. [PMID: 39481389 DOI: 10.1016/j.crmeth.2024.100885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/22/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024]
Abstract
The lung immune system consists of both resident and circulating immune cells that communicate intricately. The immune system is activated by exposure to bacteria and viruses, when cancer initiates in the lung (primary lung cancer), or when metastases of other cancer types, including breast cancer, spread to and develop in the lung (secondary lung cancer). Thus, in these pathological situations, a comprehensive and quantitative assessment of changes in the lung immune system is of paramount importance for understanding mechanisms of infectious diseases, lung cancer, and metastasis but also for developing efficacious treatments. Unfortunately, lung tissue exhibits high autofluorescence, and this high background signal makes high-parameter flow cytometry analysis complicated. Here, we provide an optimized 30-parameter antibody panel for the analysis of all major immune cell types and states in normal and metastatic murine lungs using spectral flow cytometry.
Collapse
Affiliation(s)
- Zora Baumann
- Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; Department of Surgery, University Hospital Basel, 4031 Basel, Switzerland
| | | | - Cinja M Vecchi
- Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; Department of Surgery, University Hospital Basel, 4031 Basel, Switzerland
| | - Veronica Richina
- Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; Department of Surgery, University Hospital Basel, 4031 Basel, Switzerland
| | - Telma Lopes
- Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Mohamed Bentires-Alj
- Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; Department of Surgery, University Hospital Basel, 4031 Basel, Switzerland.
| |
Collapse
|
30
|
Ji M, Li L, Yu J, Wu Z, Sheng Y, Wang F. New insights into the function and therapeutic potential of RNA-binding protein TRBP in viral infection, chronic metabolic diseases, brain disorders and cancer. Life Sci 2024; 358:123159. [PMID: 39447729 DOI: 10.1016/j.lfs.2024.123159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
RNA-binding proteins (RBPs) and non-coding RNAs are crucial trans-acting factors that bind to specific cis-acting elements in mRNAs, thereby regulating their stability and translation. The trans-activation response (TAR) RNA-binding protein (TRBP) recognizes precursor microRNAs (pre-miRNAs), modulates miRNA maturation, and influences miRNA interference (mi-RNAi) mediated by the RNA-induced silencing complex (RISC). TRBP also directly binds and mediates the degradation of certain mRNAs. Thus, TRBP acts as a hub for regulating gene expression and influences a variety of biological processes, including immune evasion, metabolic abnormalities, stress response, angiogenesis, hypoxia, and metastasis. Aberrant TRBP expression has been proven to be closely related to the initiation and progression of diseases, such as viral infection, chronic metabolic diseases, brain disorders, and cancer. This review summarizes the roles of TRBP in cancer and other diseases, the therapeutic potential of TRBP inhibition, and the current status of drug discovery on TRBP.
Collapse
Affiliation(s)
- Minghui Ji
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingyu Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jialing Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhao Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuwen Sheng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Fei Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
31
|
Naji O, Ghouzlani A, Rafii S, Sadiqi RU, Kone AS, Harmak Z, Choukri K, Kandoussi S, Karkouri M, Badou A. Investigating tumor immunogenicity in breast cancer: deciphering the tumor immune response to enhance therapeutic approaches. Front Immunol 2024; 15:1399754. [PMID: 39507526 PMCID: PMC11538072 DOI: 10.3389/fimmu.2024.1399754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/18/2024] [Indexed: 11/08/2024] Open
Abstract
The interplay between immune cells and malignant cells represents an essential chapter in the eradication of breast cancer. This widely distributed and diverse form of cancer represents a major threat to women worldwide. The incidence of breast cancer is related to several risk factors, notably genetic predisposition and family antecedents. Despite progress in treatment modalities varying from surgery and chemotherapy to radiotherapy and targeted therapies, persistently high rates of recurrence, metastasis, and treatment resistance underscore the urgent need for new therapeutic approaches. Immunotherapy has gained considerable ground in the treatment of breast cancer, as it takes advantage of the complex interactions within the tumor microenvironment. This dynamic interplay between immune and tumor cells has become a key point of focus in immunological research. This study investigates the role of various cancer markers, such as neoantigens and immune regulatory genes, in the diagnosis and treatment of breast tumors. Moreover, it explores the future potential of immune checkpoint inhibitors as therapeutically effective agents, as well as the challenges that prevent their efficacy, in particular tumor-induced immunosuppression and the difficulty of achieving tumor specificity.
Collapse
Affiliation(s)
- Oumayma Naji
- Immuno-Genetics and Human Pathologies Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Amina Ghouzlani
- Immuno-Genetics and Human Pathologies Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Soumaya Rafii
- Immuno-Genetics and Human Pathologies Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Rizwan ullah Sadiqi
- Faculty of Science and Technology, Middlesex University, London, United Kingdom
| | - Abdou-samad Kone
- Immuno-Genetics and Human Pathologies Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Zakia Harmak
- Immuno-Genetics and Human Pathologies Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Khalil Choukri
- Immuno-Genetics and Human Pathologies Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Sarah Kandoussi
- Immuno-Genetics and Human Pathologies Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Mehdi Karkouri
- Department of Pathological Anatomy, University Hospital Center (CHU) Ibn Rochd and Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca, Morocco
| | - Abdallah Badou
- Immuno-Genetics and Human Pathologies Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Mohammed VI Center for Research and Innovation, Rabat and Mohammed VI University for Sciences and Health, Casablanca, Morocco
| |
Collapse
|
32
|
Anh NK, Lee A, Phat NK, Yen NTH, Thu NQ, Tien NTN, Kim HS, Kim TH, Kim DH, Kim HY, Phuoc Long N. Combining metabolomics and machine learning to discover biomarkers for early-stage breast cancer diagnosis. PLoS One 2024; 19:e0311810. [PMID: 39432469 PMCID: PMC11493280 DOI: 10.1371/journal.pone.0311810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/25/2024] [Indexed: 10/23/2024] Open
Abstract
There is an urgent need for better biomarkers for the detection of early-stage breast cancer. Utilizing untargeted metabolomics and lipidomics in conjunction with advanced data mining approaches for metabolism-centric biomarker discovery and validation may enhance the identification and validation of novel biomarkers for breast cancer screening. In this study, we employed a multimodal omics approach to identify and validate potential biomarkers capable of differentiating between patients with breast cancer and those with benign tumors. Our findings indicated that ether-linked phosphatidylcholine exhibited a significant difference between invasive ductal carcinoma and benign tumors, including cases with inconsistent mammography results. We observed alterations in numerous lipid species, including sphingomyelin, triacylglycerol, and free fatty acids, in the breast cancer group. Furthermore, we identified several dysregulated hydrophilic metabolites in breast cancer, such as glutamate, glycochenodeoxycholate, and dimethyluric acid. Through robust multivariate receiver operating characteristic analysis utilizing machine learning models, either linear support vector machines or random forest models, we successfully distinguished between cancerous and benign cases with promising outcomes. These results emphasize the potential of metabolic biomarkers to complement other criteria in breast cancer screening. Future studies are essential to further validate the metabolic biomarkers identified in our study and to develop assays for clinical applications.
Collapse
Affiliation(s)
- Nguyen Ky Anh
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Anbok Lee
- Department of Surgery, Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, Gyeonggi-do, Republic of Korea
| | - Nguyen Ky Phat
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Nguyen Thi Hai Yen
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Nguyen Quang Thu
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Nguyen Tran Nam Tien
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Ho-Sook Kim
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Tae Hyun Kim
- Department of Surgery, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Dong Hyun Kim
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Hee-Yeon Kim
- Department of Surgery, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Nguyen Phuoc Long
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
33
|
Li B, Li X, Liu J, Gao Y, Li Y. Immunocyte phenotype and breast cancer risk: A Mendel randomization analysis. PLoS One 2024; 19:e0311172. [PMID: 39418291 PMCID: PMC11486363 DOI: 10.1371/journal.pone.0311172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/14/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Breast cancer remains a significant global health challenge. Understanding its etiological factors, particularly the role of immune system components, is crucial. This study leverages Mendelian randomization (MR) to investigate the causal relationship between various immune cell features and the risk of developing breast cancer. METHODS Utilizing two-sample MR analysis, we examined 731 immune cell features across 7 groups for their potential causal links to breast cancer. We analyzed genome-wide association studies (GWAS) data of 257,730 Europeans, comprising 17,389 cases and 240,341 controls, focusing on 24,133,589 single nucleotide polymorphisms (SNPs). Instrumental variables (IVs) were selected based on genetic associations, with rigorous statistical methods employed, including inverse variance weighting (IVW) and weighted median-based estimation. RESULTS Our analysis identified 20 immunophenotypes with significant causal associations with breast cancer risk. Notably, contain B cell, mature T cell, T + B + NK (TBNK) cells, regulatory T (Treg) cell, Classic dendritic cells (cDCs), Monocyte, and Myeloid cell group features displayed positive or negative correlations with breast cancer. For instance, specific B cell phenotypes were found to have both positive and negative causal relationships with breast cancer. Additionally, reverse MR analysis revealed no significant causal effects of breast cancer on these immune characteristics. CONCLUSIONS This study underscores the complex interplay between various immune cell phenotypes and breast cancer risk. The identified immunophenotypes could be potential biomarkers or targets for future therapeutic interventions. Our findings contribute to a deeper understanding of the immunological dimensions of breast cancer etiology.
Collapse
Affiliation(s)
- Bolin Li
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinmeng Li
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jialing Liu
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuanhe Gao
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yan Li
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
34
|
Bezerra DP, Ni J, Mohammed SI, De Miglio MR. Editorial: Reviews in breast cancer: 2023. Front Oncol 2024; 14:1488263. [PMID: 39479015 PMCID: PMC11522449 DOI: 10.3389/fonc.2024.1488263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/02/2024] [Indexed: 11/02/2024] Open
Affiliation(s)
- Daniel P. Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA, Brazil
| | - Jie Ni
- School of Clinical Medicine Faculty of Medicine and Health, University of New South Wales (UNSW), Sydney, NSW, Australia
- Cancer Care Centre, St. George Hospital, Kogarah, NSW, Australia
| | - Sulma I. Mohammed
- Purdue University Institute for Cancer Research, Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| | | |
Collapse
|
35
|
Kang JH, Uddin N, Kim S, Zhao Y, Yoo KC, Kim MJ, Hong SA, Bae S, Lee JY, Shin I, Jin YW, O'Hagan HM, Yi JM, Lee SJ. Tumor-intrinsic role of ICAM-1 in driving metastatic progression of triple-negative breast cancer through direct interaction with EGFR. Mol Cancer 2024; 23:230. [PMID: 39415210 PMCID: PMC11481280 DOI: 10.1186/s12943-024-02150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024] Open
Abstract
Triple-negative breast cancer (TNBC), the most aggressive subtype, presents a critical challenge due to the absence of approved targeted therapies. Hence, there is an urgent need to identify effective therapeutic targets for this condition. While epidermal growth factor receptor (EGFR) is prominently expressed in TNBC and recognized as a therapeutic target, anti-EGFR therapies have yet to gain approval for breast cancer treatment due to their associated side effects and limited efficacy. Here, we discovered that intercellular adhesion molecule-1 (ICAM-1) exhibits elevated expression levels in metastatic breast cancer and serves as a pivotal binding adaptor for EGFR activation, playing a crucial role in malignant progression. The activation of EGFR by tumor-expressed ICAM-1 initiates biased signaling within the JAK1/STAT3 pathway, consequently driving epithelial-to-mesenchymal transition and facilitating heightened metastasis without influencing tumor growth. Remarkably, ICAM-1-neutralizing antibody treatment significantly suppressed cancer metastasis in a breast cancer orthotopic xenograft mouse model. In conclusion, our identification of ICAM-1 as a novel tumor intrinsic regulator of EGFR activation offers valuable insights for the development of TNBC-specific anti-EGFR therapies.
Collapse
Affiliation(s)
- Jae-Hyeok Kang
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Nizam Uddin
- Center for Cell Analysis & Modeling, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Seungmo Kim
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Yi Zhao
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Ki-Chun Yoo
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Min-Jung Kim
- Fibrosis and Cancer Targeting Biotechnology (FNCT BIOTECH), Toegye-Ro 36 Gil, Seoul, 04626, South Korea
| | - Sung-Ah Hong
- Genomic Medicine Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Sangsu Bae
- Department of Biochemistry and Molecular Biology, College of Medicine, Seoul National University, Seoul, 03080, South Korea
| | - Jeong-Yeon Lee
- Department of Pathology, College of Medicine, Hanyang University, Seoul, 04763, South Korea
| | - Incheol Shin
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Young Woo Jin
- Fibrosis and Cancer Targeting Biotechnology (FNCT BIOTECH), Toegye-Ro 36 Gil, Seoul, 04626, South Korea
| | - Heather M O'Hagan
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Bloomington, IN, 47405, USA
| | - Joo Mi Yi
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Bloomington, IN, 47405, USA.
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan, 47392, South Korea.
| | - Su-Jae Lee
- Fibrosis and Cancer Targeting Biotechnology (FNCT BIOTECH), Toegye-Ro 36 Gil, Seoul, 04626, South Korea.
| |
Collapse
|
36
|
Shi J, Cui G, Jin Y, Mi B, Liu K, Zhao L, Bao K, Lu Z, Liu J, Wang Y, He H, Guo Z. Glutathione-Depleted Photodynamic Nanoadjuvant for Triggering Nonferrous Ferroptosis to Amplify Radiotherapy of Breast Cancer. Adv Healthc Mater 2024:e2402474. [PMID: 39397336 DOI: 10.1002/adhm.202402474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/10/2024] [Indexed: 10/15/2024]
Abstract
Radiotherapy plays a crucial role in the treatment of advanced breast cancer, but the increased antioxidant system, especially the rise in glutathione (GSH), presents a significant obstacle to its effectiveness. To address this challenge, a versatile GSH-depleted photodynamic nanoadjuvant is developed to augment the efficacy of radiotherapy for breast cancer treatment. This nanoadjuvant operates within the tumor microenvironment to effectively deplete intracellular GSH through a sequence of cascaded processes, including GSH exhaustion, biosynthetic inhibition, and photodynamic oxidation. This leads to a notable accumulation of lipid peroxides (LPO) and subsequent suppression of glutathione peroxidase 4 (GPX4) activity. Consequently, the combined GSH depletion induced by the nanoadjuvant markedly promotes nonferrous ferroptosis, thereby contributing to the augmentation of antitumor efficiency during radiotherapy in breast cancer. This work presents an innovative approach to designing and synthesizing biocompatible nanoadjuvants with the goal of improving the efficacy of radiotherapy for breast cancer in prospective clinical scenarios.
Collapse
Affiliation(s)
- Jiangnan Shi
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Guoqing Cui
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Yaqi Jin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Boyu Mi
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Kenan Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Linqian Zhao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Kewang Bao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Ziyao Lu
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Jie Liu
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215000, China
| | - Yuwei Wang
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Hui He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Zhengqing Guo
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| |
Collapse
|
37
|
Saini H, Gupta PK, Mahapatra AK, Rajagopala S, Tripathi R, Nesari T. Deciphering the multi-scale mechanism of herbal phytoconstituents in targeting breast cancer: a computational pharmacological perspective. Sci Rep 2024; 14:23795. [PMID: 39394443 PMCID: PMC11479599 DOI: 10.1038/s41598-024-75059-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024] Open
Abstract
Breast Cancer (BC) is the most common cause of cancer-associated deaths in females worldwide. Despite advancements in BC treatment driven by extensive characterization of its molecular hallmarks, challenges such as drug resistance, tumor relapse, and metastasis persist. Therefore, there is an urgent need for alternative treatment approaches with multi-modal efficacy to overcome these hurdles. In this context, natural bioactives are increasingly recognized for their pivotal role as anti-cancer compounds. This study focuses on predicting molecular targets for key herbal phytoconstituents-gallic acid, piperine, quercetin, resveratrol, and beta-sitosterol-present in the polyherbal formulation, Krishnadi Churna. Using an in-silico network pharmacology model, key genes were identified and docked against these marker compounds and controls. Mammary carcinoma emerged as the most significant phenotype of the putative targets. Analysis of an online database revealed that out of 135 predicted targets, 134 were mutated in breast cancer patients. Notably, ESR1, CYP19A1, and EGFR were identified as key genes which are known to regulate the BC progression. Docking studies demonstrated that the herbal phytoconstituents had similar or better docking scores than positive controls for these key genes, with convincing protein-ligand interactions confirmed by molecular dynamics simulations, MM/GBSA and free energy landscape (FEL) analysis. Overall, this study highlights the predictive potential of herbal phytoconstituents in targeting BC genes, suggesting their promise as a basis for developing new therapeutic formulations for BC.
Collapse
Affiliation(s)
- Heena Saini
- Integrated Translational Molecular Biology Unit (ITMBU), Department of Rog Nidan Evam Vikriti Vigyan (Pathology), All India Institute of Ayurveda, New Delhi, 110076, India.
| | - Prashant Kumar Gupta
- Ayurinformatics Laboratory, Department of Kaumarabhritya (Pediatrics), All India Institute of Ayurveda, New Delhi, 110076, India
| | - Arun Kumar Mahapatra
- Ayurinformatics Laboratory, Department of Kaumarabhritya (Pediatrics), All India Institute of Ayurveda, New Delhi, 110076, India
| | - Shrikrishna Rajagopala
- Ayurinformatics Laboratory, Department of Kaumarabhritya (Pediatrics), All India Institute of Ayurveda, New Delhi, 110076, India
| | - Richa Tripathi
- Integrated Translational Molecular Biology Unit (ITMBU), Department of Rog Nidan Evam Vikriti Vigyan (Pathology), All India Institute of Ayurveda, New Delhi, 110076, India
| | - Tanuja Nesari
- Department of DravyaGuna (Materia Medica & Pharmacology), All India Institute of Ayurveda, New Delhi, 110076, India.
| |
Collapse
|
38
|
Rutckeviski R, Corso CR, Fonseca AS, Rodrigues ML, Román-Ochoa Y, Cipriani TR, Cavalli LR, Cadena SMSC, Smiderle FR. Anti-Cancer Potential of Linear β-(1→6)-D-Glucan from Agaricus bisporus on Estrogen Receptor-Positive (ER+) Breast Cancer Cells. Molecules 2024; 29:4781. [PMID: 39407709 PMCID: PMC11482474 DOI: 10.3390/molecules29194781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/02/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024] Open
Abstract
Mushroom β-D-glucans can be isolated from several species, including the widely consumed Agaricus bisporus. Besides immunomodulatory responses, some β-D-glucans may exhibit direct antitumoral effects. It was previously observed that a β-(1→6)-D-glucan (BDG16) has indirect cytotoxicity on triple-negative breast cancer cells. In this study, the cytotoxicity of this same glucan was observed on estrogen receptor-positive (ER+) breast cancer cells (MCF-7). Cell viability was determined by multiple methods to assess metabolic activity, lysosomal membrane integrity, and adhesion capacity. Assays to evaluate cell respiration, cell cycle, apoptosis, necroptosis, and oxidative stress were performed to determine the action of BDG16 on MCF-7 cells. A gradual and significant cell viability reduction was observed when the cells were treated with BDG16 (10-1000 µg/mL). This result could be associated with the inhibition of the basal state respiration after incubation with the β-D-glucan. The cells showed a significant arrest in G1 phase population at 1000 µg/mL, with no induction of apoptosis. However, an increase in necrosis and necroptosis at the same concentration was observed. No difference in oxidative stress-related molecules was observed. Altogether, our findings demonstrate that BDG16 directly induces toxicity in MCF-7 cells, primarily by impairing mitochondrial respiration and promoting necroptosis. The specific mechanisms that mediate this action are being investigated.
Collapse
Affiliation(s)
- Renata Rutckeviski
- Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil; (R.R.); (C.R.C.)
- Instituto de Pesquisa Pelé Pequeno Príncipe, Avenida Munhoz da Rocha, 490, Curitiba 80035-000, PR, Brazil;
| | - Claudia Rita Corso
- Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil; (R.R.); (C.R.C.)
- Instituto de Pesquisa Pelé Pequeno Príncipe, Avenida Munhoz da Rocha, 490, Curitiba 80035-000, PR, Brazil;
| | - Aline Simoneti Fonseca
- Instituto de Pesquisa Pelé Pequeno Príncipe, Avenida Munhoz da Rocha, 490, Curitiba 80035-000, PR, Brazil;
| | - Mariane Londero Rodrigues
- Departamento de Bioquímica Biologia Molecular, Universidade Federal do Paraná, Curitiba 81531-980, PR, Brazil; (M.L.R.); (S.M.S.C.C.)
| | - Yony Román-Ochoa
- Departamento de Bioquímica Biologia Molecular, Universidade Federal do Paraná, Curitiba 81531-980, PR, Brazil; (M.L.R.); (S.M.S.C.C.)
| | - Thales Ricardo Cipriani
- Departamento de Bioquímica Biologia Molecular, Universidade Federal do Paraná, Curitiba 81531-980, PR, Brazil; (M.L.R.); (S.M.S.C.C.)
| | - Luciane Regina Cavalli
- Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil; (R.R.); (C.R.C.)
- Instituto de Pesquisa Pelé Pequeno Príncipe, Avenida Munhoz da Rocha, 490, Curitiba 80035-000, PR, Brazil;
- Department of Oncology, Lombardi Comprenhensive Cancer Center, Georgetown University, Washington, DC 20007, USA;
| | - Silvia Maria Suter Correia Cadena
- Departamento de Bioquímica Biologia Molecular, Universidade Federal do Paraná, Curitiba 81531-980, PR, Brazil; (M.L.R.); (S.M.S.C.C.)
| | - Fhernanda Ribeiro Smiderle
- Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil; (R.R.); (C.R.C.)
- Instituto de Pesquisa Pelé Pequeno Príncipe, Avenida Munhoz da Rocha, 490, Curitiba 80035-000, PR, Brazil;
| |
Collapse
|
39
|
Khamaneh AM, Mohajeri N, Naghili B, Zarghami N. Profiling mRNA and miRNA expression variations associated with cyclin-dependent kinase pathway in the low-grade luminal early breast cancer. J Appl Genet 2024:10.1007/s13353-024-00909-5. [PMID: 39373948 DOI: 10.1007/s13353-024-00909-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 07/03/2024] [Accepted: 09/22/2024] [Indexed: 10/08/2024]
Abstract
Luminal A and B subtypes of breast tumors have fluctuated in proliferation rates, which arise from cell cycle dysregulation in cancer. Besides, microRNAs can regulate various cell processes through integration with mRNA. miRNAs that target the cell cycle are significant because of their prediction capability of prognosis. The objective of this study is to discover the integration between miRNA-mRNA and miRNA-miRNA related to cyclin-dependent kinase. Thirty-four pairs of human primary breast cancer and tumor margin samples from luminal breast cancer patients were investigated to assess the expression levels of CCND1, E2F1, miR-124, miR-503, miR-449a, and miR-449b. Afterward, the expression levels of mRNAs and miRNAs were investigated by real-time PCR. Statistical analysis was conducted to compare the expression levels between breast cancer and corresponding normal tissues. The protein expressions of E2F1 and CCND1 were verified by western blotting. Further, the correlation between mRNAs and miRNAs was calculated. E2F1 was significantly increased in both luminal A and B patients, while CCND1 was upregulated only in luminal B. Significant differences in all miRNAs were detected in both luminal A and B biopsy specimens (p < 0.0001). The correlation analysis revealed a positive strong correlation between miR-124 and E2F1 in luminal A patient. Moreover, the correlation test confirmed the ability of miR-449a to increase the CCND1 gene in luminal B subtypes. Also, miRNA correlation exhibited the miRNA-miRNA interaction in luminal breast cancer. This study demonstrated the novel miRNA-mRNA and miRNA-miRNA interactions, providing new insights into the molecular integration in luminal A and B patients. The authors propose that this research could contribute to introducing valuable biomarkers for luminal cancerous cells.
Collapse
Affiliation(s)
- Amir Mahdi Khamaneh
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasrin Mohajeri
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | - Behrooz Naghili
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey.
| |
Collapse
|
40
|
Liu Q, Zhou H, Zhang W, Zhao C, Tao X, Tong C, Liu B. Visual monitoring of cisplatin-regulated caspase-3 activity in living cells based on a reduced graphene oxide-loaded fluorescent probe. Analyst 2024; 149:5073-5080. [PMID: 39221458 DOI: 10.1039/d4an01059k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Cisplatin (DDP) is a potent chemotherapeutic drug, which can regulate tumor cell apoptosis by up-regulating caspase-3 activity. Thus, monitoring caspase-3 activity in breast cancer cells can directly illustrate the efficiency of DDP treatment. In this study, by using reduced graphene oxide (rGO) as a quencher of a fluorescence labeled peptide, we developed an "off to on" method to monitor the effect of DDP on caspase-3 in breast cancer cells. In this method, the rGO quenched fluorescence with an ultra-high level of efficiency. Caspase-3 hydrolyzed the polypeptide probe, generating two segments of different lengths. The release of a short segment marked with fluorophores led to the recovery of the fluorescence signal (Ex/Em = 450/521 nm). Under the optimal conditions, the linear range of caspase-3 was 0.4-7 U mL-1 and the limit of detection was 0.33 U mL-1. The upregulating effect of DDP on intracellular caspase-3 activity was visualized with the "off to on" method and flow cytometry assay showed that caspase-3 activity increased along with the apoptosis rate of tumor cells. The above results show the practical application of the method for evaluating the efficacy of drugs against cancer cells.
Collapse
Affiliation(s)
- Qing Liu
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China.
| | - Hongyan Zhou
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Wei Zhang
- Neurology Department of Xiangtan Central Hospital, Xiangtan, 411199, China
| | - Chuan Zhao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan 410205, China
| | - Xueqing Tao
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China.
| | - Chunyi Tong
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China.
| | - Bin Liu
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China.
| |
Collapse
|
41
|
Godina C, Pollak MN, Jernström H. Targeting IGF-IR improves neoadjuvant chemotherapy efficacy in breast cancers with low IGFBP7 expression. NPJ Precis Oncol 2024; 8:212. [PMID: 39362991 PMCID: PMC11450189 DOI: 10.1038/s41698-024-00712-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024] Open
Abstract
There has been a long-standing interest in targeting the type 1 insulin-like growth factor receptor (IGF-1R) signaling system in breast cancer due to its key role in neoplastic proliferation and survival. However, no IGF-1R targeting agent has shown substantial clinical benefit in controlled phase 3 trials, and no biomarker has been shown to have clinical utility in the prediction of benefit from an IGF-1R targeting agent. IGFBP7 is an atypical insulin-like growth factor binding protein as it has a higher affinity for the IGF-1R than IGF ligands. We report that low IGFBP7 gene expression identifies a subset of breast cancers for which the addition of ganitumab, an anti-IGF-1R monoclonal antibody, to neoadjuvant chemotherapy, substantially improved the pathological complete response rate compared to neoadjuvant chemotherapy alone. The pCR rate in the chemotherapy plus ganitumab arm was 46.9% in patients in the lowest quartile of IGFBP7 expression, in contrast to only 5.6% in the highest quartile. Furthermore, high IGFBP7 expression predicted increased distant metastasis risk. If our findings are confirmed, decisions to halt the development of IGF-1R targeting drugs, which were based on disappointing results of prior trials that did not use predictive biomarkers, should be reviewed.
Collapse
Affiliation(s)
- Christopher Godina
- Division of Oncology, Department of Clinical Sciences in Lund, Lund University Cancer Center/Kamprad, Lund University and Skåne University Hospital, Barngatan 4, SE-221 85, Lund, Sweden.
| | - Michael N Pollak
- Lady Davis Institute for Medical Research, Jewish General Hospital and Department of Oncology, McGill University, Montreal, QC, Canada
| | - Helena Jernström
- Division of Oncology, Department of Clinical Sciences in Lund, Lund University Cancer Center/Kamprad, Lund University and Skåne University Hospital, Barngatan 4, SE-221 85, Lund, Sweden.
| |
Collapse
|
42
|
Lan X, Xie H, Fu L, Peng W. Effects of mindfulness-based stress reduction on cancer-related fatigue in patients with breast cancer: a meta-analysis of randomized controlled trials. Front Oncol 2024; 14:1425563. [PMID: 39421452 PMCID: PMC11484075 DOI: 10.3389/fonc.2024.1425563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Mindfulness-based stress reduction (MBSR) has been widely used for improving psychological symptoms and sleep quality in breast cancer patients and has a positive impact on posttraumatic growth and immunology. Moreover, MBSR is increasingly being used in cancer-related fatigue (CRF) intervention studies for breast cancer patients, but conflicting results also exist. Objective This study aimed to evaluate the effect of MBSR on CRF in patients with breast cancer. Methods A comprehensive computer search of the Pubmed, Cochrane Library, Embase, Web of Science, China Biomedical Document Service System, China Knowledge Infrastructure Engineering, Wanfang Data Knowledge Service Platform, and VIP databases was performed. Randomized controlled trials (RCTs) published before April 10, 2023, were identified. The primary outcome was cancer-related fatigue associated with breast cancer. Two researchers independently screened the studies, extracted the data, and evaluated the methodological quality of the studies according to the inclusion and exclusion criteria. The Meta-analysis of the outcome indicators was performed using STATA 16.0 software. Results A total of 13 studies were included, including 1992 patients (997 patients in the MBSR group and 1015 patients in the control group). Compared with conventional care, MBSR significantly alleviated the symptoms of CRF in breast cancer patients (SMD=-0.32, 95% CI [-0.42, -0.22], z=6.54, p<.01). Under the supervision of experts, the 8-week MBSR had a great influence on CRF, especially in the Asian population. Conclusions MBSR is effective in the treatment of CRF induced by breast cancer, and no obvious adverse effects occur; thus, MBSR can be recommended as a beneficial adjuvant therapy for treating CRF in breast cancer patients. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42021245365.
Collapse
Affiliation(s)
- XiaoQian Lan
- West China School of Nursing, Sichuan University/Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - HongMei Xie
- West China School of Nursing, Sichuan University/Department of General Surgery, West China Hospital, Sichuan University/Breast Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lan Fu
- West China School of Nursing, Sichuan University/Department of General Surgery, West China Hospital, Sichuan University/Breast Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - WenTao Peng
- Department of Nursing, West China Second University Hospital, Sichuan University/West China School of Nursing, Sichuan University/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
43
|
Hsu E, Arezo SM, Graff SL. Updates in Systemic Treatment of Hormone Receptor-Positive Early-Stage Breast Cancer. Curr Treat Options Oncol 2024; 25:1323-1334. [PMID: 39361142 DOI: 10.1007/s11864-024-01258-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 10/17/2024]
Abstract
OPINION STATEMENT Hormone-receptor positive (HR +) and human epidermal growth factor receptor 2 (HER2) negative early breast cancer (eBC) is a heterogeneous disease with several contributing factors for increased risk of recurrence, including tumor features, individual biomarkers, and genomic risk. The current standard approach in the management of HR + /HER2neg eBC includes chemotherapy and endocrine therapy (ET), and additional therapies based on risk profile, menopausal status, and genetics are sometimes appropriate. The risk of recurrence is more pronounced in patients with high-risk eBC including large tumor size, nodal involvement, high proliferative index, and genetic predisposition. In premenopausal patients with high-risk eBC, ovarian function suppression in combination with adjuvant ET improves survival. In postmenopausal patients, extended aromatase inhibitor (AI) therapy can be considered. Recent trials have identified novel treatment approaches to reduce the risk of recurrence in high-risk HR + /HER2neg eBC including the addition of cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors to adjuvant ET. For patients with germline BRCA1/BRCA2 mutations, adjuvant poly(adenosine diphosphate-ribose) polymerase (PARP) inhibitors have been shown to improve overall survival (OS). However, despite these recent advances, the risk of recurrence remains substantial, highlighting an area of unmet need. There are several ongoing clinical trials further investigating the role of CDK 4/6 inhibitors and immunotherapy in high-risk HR + /HER2neg eBC.
Collapse
Affiliation(s)
- Emily Hsu
- Legorreta Cancer Center at Brown University, Providence, RI, USA
- Lifespan Cancer Institute, Providence, RI, USA
| | - Sabrina M Arezo
- Warren Alpert School of Medicine, Brown University, Providence, RI, USA
| | - Stephanie L Graff
- Legorreta Cancer Center at Brown University, Providence, RI, USA.
- Lifespan Cancer Institute, Providence, RI, USA.
| |
Collapse
|
44
|
Wang X, Ba R, Huang Y, Cao Y, Chen H, Xu H, Shen H, Liu D, Huang H, Yin T, Wu D, Zhang J. Time-Dependent Diffusion MRI Helps Predict Molecular Subtypes and Treatment Response to Neoadjuvant Chemotherapy in Breast Cancer. Radiology 2024; 313:e240288. [PMID: 39436292 DOI: 10.1148/radiol.240288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Background Time-dependent diffusion MRI has the potential to help characterize tumor cell properties; however, to the knowledge of the authors, its usefulness for breast cancer diagnosis and prognostic evaluation is unknown. Purpose To investigate the clinical value of time-dependent diffusion MRI-based microstructural mapping for noninvasive prediction of molecular subtypes and pathologic complete response (pCR) in participants with breast cancer. Materials and Methods Participants with invasive breast cancer who underwent pretreatment with time-dependent diffusion MRI between February 2021 and May 2023 were prospectively enrolled. Four microstructural parameters were estimated using the IMPULSED method (a form of time-dependent diffusion MRI), along with three apparent diffusion coefficient (ADC) measurements and a relative ADC diffusion-weighted imaging parameter. Multivariable logistic regression analysis was used to identify parameters associated with each molecular subtype and pCR. A predictive model based on associated parameters was constructed, and its performance was assessed using the area under the receiver operating characteristic curve (AUC) and compared by using the DeLong test. The time-dependent diffusion MRI parameters were validated based on correlation with pathologic measurements. Results The analysis included 408 participants with breast cancer (mean age, 51.9 years ± 9.1 [SD]). Of these, 221 participants were administered neoadjuvant chemotherapy and 54 (24.4%) achieved pCR. The time-dependent diffusion MRI parameters showed reasonable performance in helping to identify luminal A (AUC, 0.70), luminal B (AUC, 0.78), and triple-negative breast cancer (AUC, 0.72) subtypes and high performance for human epidermal growth factor receptor 2 (HER2)-enriched breast cancer (AUC, 0.85), outperforming ADC measurements (all P < .05). Progesterone receptor status (odds ratio [OR], 0.08; P = .02), HER2 status (OR, 3.36; P = .009), and the cellularity index (OR, 0.01; P = .02) were independently associated with the odds of achieving pCR. The combined model showed high performance for predicting pCR (AUC, 0.88), outperforming ADC measurements and the clinical-pathologic model (AUC, 0.73 and 0.79, respectively; P < .001). The time-dependent diffusion MRI-estimated parameters correlated well with the pathologic measurements (n = 100; r = 0.67-0.81; P < .001). Conclusion Time-dependent diffusion MRI-based microstructural mapping was an effective method for helping to predict molecular subtypes and pCR to neoadjuvant chemotherapy in participants with breast cancer. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Partridge and Xu in this issue.
Collapse
Affiliation(s)
- Xiaoxia Wang
- From the Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), No. 181 Hanyu Road, Shapingba, Chongqing 400030, China (X.W., H.C., H.X., H.S., D.L., J.Z.); Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University College of Biomedical Engineering and Instrument Science, Hangzhou China (R.B., D.W.); Chongqing University School of Medicine, Chongqing, China (Y.H., Y.C.); Department of Pathology, Chongqing University Cancer Hospital, Chongqing, China (H.H.); and MR Collaborations, Siemens Healthineers, Chengdu, China (T.Y.)
| | - Ruicheng Ba
- From the Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), No. 181 Hanyu Road, Shapingba, Chongqing 400030, China (X.W., H.C., H.X., H.S., D.L., J.Z.); Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University College of Biomedical Engineering and Instrument Science, Hangzhou China (R.B., D.W.); Chongqing University School of Medicine, Chongqing, China (Y.H., Y.C.); Department of Pathology, Chongqing University Cancer Hospital, Chongqing, China (H.H.); and MR Collaborations, Siemens Healthineers, Chengdu, China (T.Y.)
| | - Yao Huang
- From the Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), No. 181 Hanyu Road, Shapingba, Chongqing 400030, China (X.W., H.C., H.X., H.S., D.L., J.Z.); Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University College of Biomedical Engineering and Instrument Science, Hangzhou China (R.B., D.W.); Chongqing University School of Medicine, Chongqing, China (Y.H., Y.C.); Department of Pathology, Chongqing University Cancer Hospital, Chongqing, China (H.H.); and MR Collaborations, Siemens Healthineers, Chengdu, China (T.Y.)
| | - Ying Cao
- From the Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), No. 181 Hanyu Road, Shapingba, Chongqing 400030, China (X.W., H.C., H.X., H.S., D.L., J.Z.); Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University College of Biomedical Engineering and Instrument Science, Hangzhou China (R.B., D.W.); Chongqing University School of Medicine, Chongqing, China (Y.H., Y.C.); Department of Pathology, Chongqing University Cancer Hospital, Chongqing, China (H.H.); and MR Collaborations, Siemens Healthineers, Chengdu, China (T.Y.)
| | - Huifang Chen
- From the Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), No. 181 Hanyu Road, Shapingba, Chongqing 400030, China (X.W., H.C., H.X., H.S., D.L., J.Z.); Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University College of Biomedical Engineering and Instrument Science, Hangzhou China (R.B., D.W.); Chongqing University School of Medicine, Chongqing, China (Y.H., Y.C.); Department of Pathology, Chongqing University Cancer Hospital, Chongqing, China (H.H.); and MR Collaborations, Siemens Healthineers, Chengdu, China (T.Y.)
| | - Hanshan Xu
- From the Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), No. 181 Hanyu Road, Shapingba, Chongqing 400030, China (X.W., H.C., H.X., H.S., D.L., J.Z.); Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University College of Biomedical Engineering and Instrument Science, Hangzhou China (R.B., D.W.); Chongqing University School of Medicine, Chongqing, China (Y.H., Y.C.); Department of Pathology, Chongqing University Cancer Hospital, Chongqing, China (H.H.); and MR Collaborations, Siemens Healthineers, Chengdu, China (T.Y.)
| | - Hesong Shen
- From the Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), No. 181 Hanyu Road, Shapingba, Chongqing 400030, China (X.W., H.C., H.X., H.S., D.L., J.Z.); Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University College of Biomedical Engineering and Instrument Science, Hangzhou China (R.B., D.W.); Chongqing University School of Medicine, Chongqing, China (Y.H., Y.C.); Department of Pathology, Chongqing University Cancer Hospital, Chongqing, China (H.H.); and MR Collaborations, Siemens Healthineers, Chengdu, China (T.Y.)
| | - Daihong Liu
- From the Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), No. 181 Hanyu Road, Shapingba, Chongqing 400030, China (X.W., H.C., H.X., H.S., D.L., J.Z.); Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University College of Biomedical Engineering and Instrument Science, Hangzhou China (R.B., D.W.); Chongqing University School of Medicine, Chongqing, China (Y.H., Y.C.); Department of Pathology, Chongqing University Cancer Hospital, Chongqing, China (H.H.); and MR Collaborations, Siemens Healthineers, Chengdu, China (T.Y.)
| | - Haiping Huang
- From the Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), No. 181 Hanyu Road, Shapingba, Chongqing 400030, China (X.W., H.C., H.X., H.S., D.L., J.Z.); Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University College of Biomedical Engineering and Instrument Science, Hangzhou China (R.B., D.W.); Chongqing University School of Medicine, Chongqing, China (Y.H., Y.C.); Department of Pathology, Chongqing University Cancer Hospital, Chongqing, China (H.H.); and MR Collaborations, Siemens Healthineers, Chengdu, China (T.Y.)
| | - Ting Yin
- From the Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), No. 181 Hanyu Road, Shapingba, Chongqing 400030, China (X.W., H.C., H.X., H.S., D.L., J.Z.); Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University College of Biomedical Engineering and Instrument Science, Hangzhou China (R.B., D.W.); Chongqing University School of Medicine, Chongqing, China (Y.H., Y.C.); Department of Pathology, Chongqing University Cancer Hospital, Chongqing, China (H.H.); and MR Collaborations, Siemens Healthineers, Chengdu, China (T.Y.)
| | - Dan Wu
- From the Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), No. 181 Hanyu Road, Shapingba, Chongqing 400030, China (X.W., H.C., H.X., H.S., D.L., J.Z.); Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University College of Biomedical Engineering and Instrument Science, Hangzhou China (R.B., D.W.); Chongqing University School of Medicine, Chongqing, China (Y.H., Y.C.); Department of Pathology, Chongqing University Cancer Hospital, Chongqing, China (H.H.); and MR Collaborations, Siemens Healthineers, Chengdu, China (T.Y.)
| | - Jiuquan Zhang
- From the Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), No. 181 Hanyu Road, Shapingba, Chongqing 400030, China (X.W., H.C., H.X., H.S., D.L., J.Z.); Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University College of Biomedical Engineering and Instrument Science, Hangzhou China (R.B., D.W.); Chongqing University School of Medicine, Chongqing, China (Y.H., Y.C.); Department of Pathology, Chongqing University Cancer Hospital, Chongqing, China (H.H.); and MR Collaborations, Siemens Healthineers, Chengdu, China (T.Y.)
| |
Collapse
|
45
|
Zhu E, Zhang L, Liu Y, Ji T, Dai J, Tang R, Wang J, Hu C, Chen K, Yu Q, Lu Q, Ai Z. Determining individual suitability for neoadjuvant systemic therapy in breast cancer patients through deep learning. Clin Transl Oncol 2024; 26:2584-2593. [PMID: 38678522 DOI: 10.1007/s12094-024-03459-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/08/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND The survival advantage of neoadjuvant systemic therapy (NST) for breast cancer patients remains controversial, especially when considering the heterogeneous characteristics of individual patients. OBJECTIVE To discern the variability in responses to breast cancer treatment at the individual level and propose personalized treatment recommendations utilizing deep learning (DL). METHODS Six models were developed to offer individualized treatment suggestions. Outcomes for patients whose actual treatments aligned with model recommendations were compared to those whose did not. The influence of certain baseline features of patients on NST selection was visualized and quantified by multivariate logistic regression and Poisson regression analyses. RESULTS Our study included 94,487 female breast cancer patients. The Balanced Individual Treatment Effect for Survival data (BITES) model outperformed other models in performance, showing a statistically significant protective effect with inverse probability treatment weighting (IPTW)-adjusted baseline features [IPTW-adjusted hazard ratio: 0.51, 95% confidence interval (CI), 0.41-0.64; IPTW-adjusted risk difference: 21.46, 95% CI 18.90-24.01; IPTW-adjusted difference in restricted mean survival time: 21.51, 95% CI 19.37-23.80]. Adherence to BITES recommendations is associated with reduced breast cancer mortality and fewer adverse effects. BITES suggests that patients with TNM stage IIB, IIIB, triple-negative subtype, a higher number of positive axillary lymph nodes, and larger tumors are most likely to benefit from NST. CONCLUSIONS Our results demonstrated the potential of BITES to aid in clinical treatment decisions and offer quantitative treatment insights. In our further research, these models should be validated in clinical settings and additional patient features as well as outcome measures should be studied in depth.
Collapse
Affiliation(s)
- Enzhao Zhu
- School of Medicine, Tongji University, Shanghai, China
| | - Linmei Zhang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| | - Yixian Liu
- Department of Gynecology and Obstetrics, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Tianyu Ji
- School of Medicine, Tongji University, Shanghai, China
| | - Jianmeng Dai
- School of Medicine, Tongji University, Shanghai, China
| | - Ruichen Tang
- College of Electronic and Information Engineering, Tongji University, Shanghai, China
| | - Jiayi Wang
- School of Medicine, Tongji University, Shanghai, China
| | - Chunyu Hu
- Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Kai Chen
- College of Electronic and Information Engineering, Tongji University, Shanghai, China
| | - Qianyi Yu
- School of Medicine, Tongji University, Shanghai, China
| | - Qiuyi Lu
- School of Medicine, Tongji University, Shanghai, China
| | - Zisheng Ai
- Department of Medical Statistics, School of Medicine, Tongji University, Shanghai, China.
- Clinical Research Center for Mental Disorders, School of Medicine, Chinese-German Institute of Mental Health, Shanghai Pudong New Area Mental Health Center, Tongji University, Shanghai, China.
| |
Collapse
|
46
|
Mangone L, Morabito F, Tripepi G, D'Arrigo G, Romeo SMG, Bisceglia I, Braghiroli MB, Marinelli F, Bisagni G, Neri A, Pinto C. Survival Risk Score for Invasive Nonmetastatic Breast Cancer: A Real-World Analysis. JCO Glob Oncol 2024; 10:e2300390. [PMID: 39481052 DOI: 10.1200/go.23.00390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/20/2023] [Accepted: 08/05/2024] [Indexed: 11/02/2024] Open
Abstract
PURPOSE This study aimed to develop a multivariable, weighted overall survival (OS) risk score (SRS) for nonmetastatic (M0) invasive breast cancer (M0-BC, SRSM0-BC). MATERIALS AND METHODS This study included a training (1,890 patients) and a validation cohort (850 patients) from the Reggio Emilia Cancer Registry (RE-CR). Ten traditional prognostic variables were evaluated. RESULTS In the training set, all the variables but the human epidermal growth factor receptor were significantly associated with OS at univariable analysis. A multivariable model identified an increased death risk for estrogen receptor (hazard ratio [HR], 2.0 [95% CI, 1.1 to 3.1]; P = .021), tumor stages T2-T3 (HR, 2.4 [95% CI, 1.3 to 4.7]; P = .009) and T4 (HR, 5.1 [95% CI, 2.0 to 13.0]; P < .001), and age >74 years (HR, 5.7 [95% CI, 4.0 to 8.2]; P < .001). By assigning scores according to HRs, four risk categories were generated (P for trend <.001). The HRs of death in the high- (282 patients, 15.6%), intermediate-high (275 patients, 15.2%), and intermediate-risk (349 patients, 19.2%) categories patients were, respectively, 27.3, 12.9, and 3.5 times higher, compared with the low-risk (909 patients, 50%) group. Harrell'C index was 81.1%, and the explained variation in mortality was 66.6. Internal cross-validation performed on the accrual index dates yielded a Harrell'C index ranging from 79.5% to 82.3% and an explained variation in mortality ranging from 60.3% to 69.4%. In the validation set, the same risk categories (P for trend <.001) were devised. The Harrell'C index and the explained variation in mortality were 76.1% and 53.7%, respectively, in the whole cohort, maintaining an elevated percentage according to the two accrual index dates. CONCLUSION SRSM0-BC using the real-world RE-CR data set may represent a low-cost, accessible, globally applicable model in daily clinical practice, helping to prognostically stratify patients with invasive M0-BC.
Collapse
Affiliation(s)
- Lucia Mangone
- Epidemiology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Fortunato Morabito
- Biotechnology Research Unit, Azienda Sanitaria Provinciale di Cosenza, Aprigliano, Italy
| | - Giovanni Tripepi
- Consiglio Nazionale delle Ricerche, Istituto di Fisiologia Clinica del CNR, Reggio Calabria, Italy
| | - Graziella D'Arrigo
- Consiglio Nazionale delle Ricerche, Istituto di Fisiologia Clinica del CNR, Reggio Calabria, Italy
| | | | - Isabella Bisceglia
- Epidemiology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | | | | | - Giancarlo Bisagni
- Medical Oncology Unit, Azienda-USL di IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Antonino Neri
- Scientific Directorate, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Carmine Pinto
- Medical Oncology Unit, Azienda-USL di IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
47
|
Kothari R, Doshi M, Chaithanya PK, Ct S, Kumar A, Mallavarapu KM, Nagarkar R, Mahobia V, Bhatt N, Priyadarshini KL, Gogia A, Maksud T, Prasad S, Velavan K, L K R, Ss P, Talreja V, Kalra K, Nemade B, Dastidar AG, Gupta T, Patil T, Bondarde S, Patel P, Gupta S, Biswas G, Vaghela M, Mahato P, Parekh H, Kalloli M, Shetty R, Prakash G, Goel A, Mandal S, Choudhury T, Jain M, Goswami C, H M YK, Mukherjee KK, Shrivastava R, Parmar D. A Randomized, Double-Blind, Phase III Study in India for Comparing Efficacy, Safety, and PK of ZRC-3277 (Pertuzumab Biosimilar) With Perjeta® in Patients With HER2-Positive Metastatic Breast Cancer. Clin Breast Cancer 2024; 24:639-646.e2. [PMID: 39069436 DOI: 10.1016/j.clbc.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/20/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION To evaluate the efficacy, safety, pharmacokinetics (PK), and immunogenicity of ZRC-3277 (pertuzumab biosimilar) with Perjeta® (pertuzumab) in previously untreated patients with human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer (MBC). PATIENTS AND METHODS This phase III, multicenter, double-blind study across 38 sites in India randomized (1:1) patients with HER2-positive MBC in either the ZRC-3277 or Perjeta® group. Both groups also received trastuzumab and docetaxel. Of 268 enrolled patients, mITT population had 243 patients (119 and 124 in the ZRC-3277 and Perjeta® groups, respectively). The primary objective was to compare the between-group objective response rate (ORR) after 6 cycles of treatment. ORR was determined by evaluating scans of computed tomography or magnetic resonance imaging following Response Evaluation Criteria in Solid Tumor (RECIST 1.1). Two-sided 95% confidence interval (95% CI) for the difference in ORR was determined to evaluate the noninferiority of ZRC-3277 to Perjeta®. The secondary outcomes included the assessment of PK, immunogenicity, and safety between the 2 groups. RESULTS In the mITT population, 104 (87.39%) and 114 (91.94%) participants achieved the ORR in the ZRC-3277 and Perjeta® groups, respectively. For predefined -15% noninferiority margin, obtained 2-sided 95% CIs (-12.19%, 3.11%) for the difference in ORR (-4.55%) between the 2 groups demonstrated the noninferiority of ZRC-3277 to Perjeta®. PK, immunogenicity, and safety were not significantly different between the 2 groups. CONCLUSION Efficacy, PK, immunogenicity, and safety profiles of ZRC-3277 was found to be similar to those of Perjeta®.
Collapse
MESH Headings
- Humans
- Female
- Breast Neoplasms/drug therapy
- Breast Neoplasms/pathology
- Breast Neoplasms/metabolism
- Receptor, ErbB-2/metabolism
- Middle Aged
- Double-Blind Method
- India
- Biosimilar Pharmaceuticals/therapeutic use
- Biosimilar Pharmaceuticals/administration & dosage
- Biosimilar Pharmaceuticals/adverse effects
- Adult
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antibodies, Monoclonal, Humanized/adverse effects
- Aged
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Antineoplastic Agents, Immunological/therapeutic use
- Antineoplastic Agents, Immunological/adverse effects
- Antineoplastic Agents, Immunological/pharmacokinetics
- Treatment Outcome
- Trastuzumab/therapeutic use
- Trastuzumab/administration & dosage
- Docetaxel/therapeutic use
- Docetaxel/administration & dosage
Collapse
Affiliation(s)
- Rushabh Kothari
- Oncology Department, Narayana Multispeciality Hospital, Opp. Rakhiyal Police Station, Ahmedabad, Gujarat, India
| | - Maulik Doshi
- Clinical Research and Development Department, Zydus Research Center, Ahmedabad, India.
| | - P K Chaithanya
- Oncology Department, MNJ Institute of Oncology and Regional Cancer Centre, Hyderabad, Telangana, India
| | - Satheesh Ct
- Oncology Department, HealthCare Global Enterprises Ltd #8, HCG Towers, Bengaluru, Karnataka, India
| | - Anil Kumar
- Oncoville Cancer Hospital and Research Centre, Oncology Department, Bengaluru, Karnataka, India
| | - Krishna Mohan Mallavarapu
- Department of Medical Oncology, Basavatarakam Indo American Cancer Hospital and Research Institute, Hyderabad, Telangana, India
| | - Rajnish Nagarkar
- HCG Manavata Cancer Centre, Oncology Department, Nashik, Maharashtra, India
| | - Vijay Mahobia
- Government Medical College and Hospital, Department of Radiation Oncology, Nagpur, Maharashtra, India
| | - Niraj Bhatt
- Medical Oncology, Kailash Cancer Hospital and Research Center, Vadodara, Gujarat, India
| | - K L Priyadarshini
- Medical Oncology, HCG city cancer centre, Vijayawada, Andhra Pradesh, India
| | - Ajay Gogia
- All India Institute of Medical Sciences (AIIMS), Department of Medical Oncology, Dr. B. R. Ambedkar. IRCH, New Delhi, India
| | - Tanveer Maksud
- Oncology, Unique Hospital, Multispeciality and Research Institute, Surat, Gujarat, India
| | - Saurabh Prasad
- Oncology, Kingsway Hospitals, Nagpur, Maharashtra, India
| | - K Velavan
- Radiation Oncology, Erode cancer centre, Erode, Tamil Nadu, India
| | - Rajeev L K
- Medical Oncology, The Bengaluru Hospital, Bengaluru, Karnataka, India
| | - Prakash Ss
- Surgical Oncology, K.R. Hospital, Clinical Research Room, Mysore, Karnataka, India
| | - Vikas Talreja
- Medical Oncology, Regency Hospital Ltd, Kanpur, Uttar Pradesh, India
| | - Kaushal Kalra
- VMMC and Safdarjung Hospital, Department of Medical Oncology, New Delhi, India
| | - Bhushan Nemade
- Medical Oncology, Navsanjeevani Hospital (Sankalp Speciality Healthcare Pvt. Ltd), Nashik, Maharashtra, India
| | - Aloke Ghosh Dastidar
- Radiotherapy, Institute of Postgraduate Medical Education and Research, SSKM Hospital, Kolkata, West Bengal, India
| | - Tarachand Gupta
- Geriatric Oncology, Bhagwan Mahaveer Cancer Hospital and Research Centre, Jaipur, Rajasthan, India
| | - Tushar Patil
- Oncology, Sahyadri Super Speciality Hospital, Pune, Maharashtra, India
| | - Shailesh Bondarde
- Medical Oncology, Apex wellness Hospital, Nashik, Maharashtra, India
| | - Pinakin Patel
- SMS Medical College and Hospital, Department of Surgical Oncology, Jaipur, 302004, Rajasthan, India
| | - Sudeep Gupta
- Medical Oncology, TATA Memorial Hospital, Mumbai, Maharashtra, India
| | - Ghanashyam Biswas
- Medical Oncology, Sparsh Hospitals and Critical care Pvt. Ltd, Bhubaneswar, Odisha, India
| | - Manan Vaghela
- Oncology Department, HCG Multispeciality Hospital, Bhavnagar, Gujarat, India
| | - Pinaki Mahato
- Oncology Department, HCG Cancer Centre, Vadodara, Gujarat, India
| | - Honey Parekh
- Global Hospital, Oncology Department, Surat, Gujarat, India
| | - Mahesh Kalloli
- Department of Surgical Oncology, KLE'S and Prabhakar Kore Hospital and MRC, Belagavi, Karnataka, India
| | - Rachan Shetty
- Medical Oncology, Omega Hospital, Mangalore, Karnataka, India
| | - Gaurav Prakash
- Department of Clinical Hematology and Medical Oncology, Nehru Hospital, Post Graduate Institute of Medical Education and Research (PGIMER) Sector 12, Chandigarh, India
| | - Anil Goel
- Department of Radiation Oncology, SSG Hospital, Vadodara, Gujarat, India
| | - Srikrishna Mandal
- Department of Radiation Oncology, Nil Ratan Sircar Medical College and Hospital, Kolkata, West Bengal, India
| | - Tamohan Choudhury
- Oncology, Saroj Gupta Cancer Centre and Research Institute, Kolkata, West Bengal, India
| | - Minish Jain
- Surgical Oncology, CIMET's Inamdar Multispeciality Hospital, Pune, Maharashtra, India
| | - Chanchal Goswami
- Department of Radiation Oncology, Ruby General Hospital Ltd, Kolkata, West Bengal, India
| | | | - K K Mukherjee
- Department of Medical Oncology, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Rahul Shrivastava
- Clinical Research and Development Department, Zydus Research Center, Ahmedabad, India
| | - Deven Parmar
- Clinical Research and Development, Zydus Therapeutics Inc, Pennington, USA
| |
Collapse
|
48
|
Lin J, Ouyang Y, Li Y, Jin L, Li S, Liu Y, Yang Y, Shi Q, Zhu M, Cai Z, Wang J, Liu N, Hu Y, Wu Z, Wu M, Wong LL, Jiang X, Wang Q, Yang W, Liu Q. Different dosage forms of gonadotropin-releasing hormone agonist with endocrine therapy in premenopausal hormone receptor-positive breast cancer. J Natl Cancer Inst 2024; 116:1587-1597. [PMID: 38833681 DOI: 10.1093/jnci/djae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/07/2024] [Accepted: 05/23/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Despite the wide use of a 3-month gonadotropin-releasing hormone (GnRH) agonist for ovarian function suppression in premenopausal breast cancer patients, it remains unclear whether it is as effective and safe as a 1-month GnRH agonist regimen when combined with selective estrogen receptor modulators or aromatase inhibitors, especially in younger patients. METHODS This retrospective cohort study included 1109 premenopausal hormone receptor-positive breast cancer patients treated with GnRH agonist plus selective estrogen receptor modulator or aromatase inhibitor. The estradiol (E2) inhibition rate within 1-24 months after treatment with 1-month or 3-month GnRH agonist in cohorts and different subgroups was analyzed. RESULTS Following 1:1 propensity score matching, 950 patients with a mean age of 39 years and a median follow-up of 46 months were included. Both the 1-month and 3-month groups achieved more than 90% E2 inhibition within 24 months (94.53% vs 92.84%, with a 95% confidence interval for the difference ranging from -4.78% to 1.41%), confirming the noninferiority of 3-month GnRH agonist. Both 1-month and 3-month GnRH agonist rapidly and consistently reduced E2 levels. Of the patients, 60 (6.3%) experienced incomplete ovarian function suppression, with similar rates in the 1-month and 3-month groups (5.5% vs 7.2%). Incomplete ovarian function suppression mainly occurred within the first 12 months, with age younger than 40 years and no prior chemotherapy being the risk factors. Similar disease-free survival and overall survival were found in the 1-month and 3-month groups and in patients with complete and incomplete ovarian function suppression (P > .05). CONCLUSIONS The ovarian function suppression with 3-month GnRH agonist was not inferior to that with 1-month GnRH agonist, regardless of age or combination with a selective estrogen receptor modulator or an aromatase inhibitor.
Collapse
Affiliation(s)
- Jinna Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yiye Ouyang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yudong Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Liang Jin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shunying Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yujie Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yaping Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qianfeng Shi
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Mengdi Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zijie Cai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jingru Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Nianqiu Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yue Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zongqi Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Mengzi Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lok Lam Wong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoting Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qi Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wang Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qiang Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
49
|
Leduc S, Nguyen HL, Richard F, Zels G, Mahdami A, De Schepper M, Maetens M, Pabba A, Jaekers J, Latacz E, Bohlok A, Vanderheyden E, Van Brussel T, Boeckx B, Schepers R, Lambrechts D, Dirix L, Larsimont D, Vankerckhove S, Lucidi V, Topal B, Bachir I, Donckier V, Floris G, Vermeulen P, Desmedt C. Transcriptomic characterization of the histopathological growth patterns in breast cancer liver metastases. Clin Exp Metastasis 2024; 41:699-705. [PMID: 38548918 PMCID: PMC11499425 DOI: 10.1007/s10585-024-10279-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/06/2024] [Indexed: 10/25/2024]
Abstract
Metastatic breast cancer (mBC) remains incurable and liver metastases (LM) are observed in approximately 50% of all patients with mBC. In some cases, surgical resection of breast cancer liver metastases (BCLM) is associated with prolonged survival. However, there are currently no validated marker to identify these patients. The interactions between the metastatic cancer cells and the liver microenvironment result in two main histopathological growth patterns (HGP): replacement (r-HGP), characterized by a direct contact between the cancer cells and the hepatocytes, and desmoplastic (d-HGP), in which a fibrous rim surrounds the tumor cells. In patients who underwent resection of BCLM, the r-HGP is associated with a worse postoperative prognosis than the d-HGP. Here, we aim at unraveling the biological differences between these HGP within ten patients presenting both HGP within the same metastasis. The transcriptomic analyses reveal overexpression of genes involved in cell cycle, DNA repair, vessel co-option and cell motility in r-HGP while angiogenesis, wound healing, and several immune processes were found overexpressed in d-HGP LM. Understanding the biology of the LM could open avenues to refine treatment of BC patients with LM.
Collapse
Affiliation(s)
- Sophia Leduc
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Herestraat 49, box 810, Leuven, 3000, Belgium
| | - Ha-Linh Nguyen
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Herestraat 49, box 810, Leuven, 3000, Belgium
| | - François Richard
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Herestraat 49, box 810, Leuven, 3000, Belgium
| | - Gitte Zels
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Herestraat 49, box 810, Leuven, 3000, Belgium
| | - Amena Mahdami
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Herestraat 49, box 810, Leuven, 3000, Belgium
| | - Maxim De Schepper
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Herestraat 49, box 810, Leuven, 3000, Belgium
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Marion Maetens
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Herestraat 49, box 810, Leuven, 3000, Belgium
| | - Anirudh Pabba
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Herestraat 49, box 810, Leuven, 3000, Belgium
| | - Joris Jaekers
- Department of Visceral Surgery, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Emily Latacz
- Translational Cancer Research Unit, GZA Hospitals Antwerp, Antwerp, Belgium
| | - Ali Bohlok
- Department of Surgical Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Evy Vanderheyden
- Laboratory of Translational Genetics, VIB-KU Leuven, Leuven, Belgium
| | | | - Bram Boeckx
- Laboratory of Translational Genetics, VIB-KU Leuven, Leuven, Belgium
| | - Rogier Schepers
- Laboratory of Translational Genetics, VIB-KU Leuven, Leuven, Belgium
| | | | - Luc Dirix
- Translational Cancer Research Unit, GZA Hospitals Antwerp, Antwerp, Belgium
| | - Denis Larsimont
- Department of Anatomopathology, Institut Jules Bordet, Brussels, Belgium
| | - Sophie Vankerckhove
- Department of Surgical Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Valerio Lucidi
- Department of Abdominal Surgery, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Baki Topal
- Department of Visceral Surgery, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Imane Bachir
- Department of Anesthesiology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Vincent Donckier
- Department of Surgical Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Giuseppe Floris
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
- Department of Imaging and Pathology, Laboratory of Translational Cell & Tissue Research and University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Peter Vermeulen
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Herestraat 49, box 810, Leuven, 3000, Belgium
- Translational Cancer Research Unit, GZA Hospitals Antwerp, Antwerp, Belgium
| | - Christine Desmedt
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Herestraat 49, box 810, Leuven, 3000, Belgium.
| |
Collapse
|
50
|
Jia X, Zhao Y, Li Q, Lu X, Wang X, Wang H, Shi Z, Xu Y, Huang B, Huang F, Wang Y. Targeted Inhibition of p21 Promotes the Growth of Breast Cancer Cells and Impairs the Tumor-Killing Effect of the Vaccinia Virus. J Breast Cancer 2024; 27:293-304. [PMID: 39344409 PMCID: PMC11543277 DOI: 10.4048/jbc.2024.0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/18/2024] [Accepted: 08/15/2024] [Indexed: 10/01/2024] Open
Abstract
PURPOSE Vaccinia virus is widely used as an oncolytic agent for human cancer therapy, and several versions of vaccinia virus have demonstrated robust antitumor effects in breast cancer. Most vaccinia viruses are modified by thymidine kinase (TK) deletion. The function of the cyclin-dependent kinase inhibitor p21 in breast cancer remains controversial. We explored the impact of p21 gene knockdown (KD) on breast cancer cells and whether p21 KD interferes with the antitumor effect of TK-negative vaccinia virus. METHODS p21 KD MDA-MB-231 and p21 KD MCF-7 cells were prepared, and cell proliferation and migration rates were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and scratch healing assays. The tumor growth of xenografts originating from p21KD MDA-MB-231 cells and control cells was compared in a mouse model. The colony formation and sphere-forming abilities of p21 KD breast cancer cells were also determined using low-melting agarose and serum-free culture. The tumor-killing effect of the vaccinia virus was determined in breast cancer cells and mouse models using an MTT assay and tumor cell xenografts. RESULTS p21 KD increased the growth and migration of MDA-MB-231 and MCF-7 cells and promoted the cell growth of MDA-MB-231 cells in mice, while decreasing the colony formation and sphere formation abilities. Expression of TK was reduced in p21 KD MDA-MB-231 cells. Oncolytic effects of both wild-type and TK-deleted vaccinia viruses were attenuated in p21KD MDA-MB-231 cells. The tumor-killing effect of TK-deleted vaccinia virus was also weakened in xenografted mice bearing p21 KD MDA-MB-231 cells. CONCLUSION Targeted inhibition of p21 accelerates the proliferation and migration of breast cancer cells and impairs the tumor-killing effect of vaccinia virus, suggesting that p21 levels in cancer cells interfere with vaccinia virus oncolytic therapy.
Collapse
Affiliation(s)
- Xiaoyuan Jia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yujia Zhao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qiang Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiaming Lu
- Cancer Center, Department of Pathology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Xiaoyan Wang
- Oncology Department, Zhejiang Xiaoshan HospitaI, Hangzhou, China
| | - Hui Wang
- Oncology Department, Zhejiang Xiaoshan HospitaI, Hangzhou, China
| | - Ziyi Shi
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yipeng Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Biao Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Fang Huang
- Cancer Center, Department of Pathology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China.
| | - Yigang Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.
| |
Collapse
|