1
|
Merki-Feld GS, Bove R, Haddad LB, Hellwig K, Hillert J, Houtchens M, Magyari M, Montgomery S, Simoni M, Stenager E, Thompson H, Tulek Z, Marhardt K, Nappi RE. Family planning and contraception in people with multiple sclerosis: perspectives for obstetricians, gynaecologists, and other health care professionals involved in reproductive planning. EUR J CONTRACEP REPR 2024:1-15. [PMID: 39676715 DOI: 10.1080/13625187.2024.2434843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024]
Abstract
PURPOSE Multiple sclerosis (MS) is often diagnosed in people of reproductive age. However, family planning counselling is not always integrated within MS care. Decisions on family planning can be further complicated by potential side effects associated with several disease-modifying therapies. While neurologists may lack training in contraceptive use and family planning counselling, obstetricians and gynaecologists (OB-GYNs) and other health care professionals involved in reproductive life planning (RHCPs) may lack detailed knowledge and experience around the use of contemporary MS treatments. MATERIAL AND METHODS Through a modified Delphi consensus programme, a multidisciplinary steering committee of 13 international experts developed practical clinical recommendations on contraceptive use and family planning for people with MS (PwMS). This article offers insights to help OB-GYNs and RHCPs implement these recommendations, focusing on contraceptive decision-making and MS medications. RESULTS The perspectives discussed emphasise providing education on MS to OB-GYNs and other RHCPs, enabling informed counselling for PwMS and their partners regarding contraception and family planning. Close collaboration among the multidisciplinary team, including neurologists, is crucial in providing reproductive care for PwMS. CONCLUSIONS The detailed perspectives provided aim to enable OB-GYNs and other RHCPs to provide informed counselling for PwMS and their partners regarding contraception and family planning.
Collapse
Affiliation(s)
- Gabriele S Merki-Feld
- Clinic of Reproductive Endocrinology, University Hospital Zürich, Zürich, Switzerland
| | - Riley Bove
- University of California San Francisco Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Lisa B Haddad
- Center for Biomedical Research, Population Council, New York, NY, USA
| | - Kerstin Hellwig
- Katholisches Klinikum Bochum GmbH, Ruhr-University Bochum, Nordrhein-Westfalen, Bochum, Germany
| | - Jan Hillert
- Clinical Epidemiology Division, Department of Medicine, Solna Karolinska Institutet, Stockholm, Sweden
| | - Maria Houtchens
- Harvard Medical School, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Melinda Magyari
- Danish Multiple Sclerosis Center, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Scott Montgomery
- Clinical Epidemiology Division, Department of Medicine, Solna Karolinska Institutet, Stockholm, Sweden
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Manuela Simoni
- Unit of Endocrinology, Department of Medical Specialties, University Hospital and Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Egon Stenager
- Department of Regional Research, University of Southern Denmark, Odense, Denmark
- MS-Clinic of Southern Jutland (Aabenraa, Esbjerg, Kolding), Aabenraa, Denmark
| | - Heidi Thompson
- Southern Health & Social Care Trust, Portadown, Northern Ireland, UK
| | - Zeliha Tulek
- Istanbul University-Cerrahpasa, Florence Nightingale Faculty of Nursing, Istanbul, Turkey
| | - Kurt Marhardt
- Merck GmbH, Vienna, Austria, an affiliate of Merck KGaA, Darmstadt, Germany
| | - Rossella E Nappi
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Research Center of Reproductive Medicine, IRCCS San Matteo Foundation, Pavia, Italy
| |
Collapse
|
2
|
Absinta M. Multiple sclerosis: a smoldering disease. Trends Mol Med 2024:S1471-4914(24)00306-X. [PMID: 39681498 DOI: 10.1016/j.molmed.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024]
Affiliation(s)
- Martina Absinta
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; Experimental Neuropathology Lab, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.
| |
Collapse
|
3
|
Sastri KT, Gupta NV, Kannan A, Dutta S, Ali M Osmani R, V B, Ramkishan A, S S. The next frontier in multiple sclerosis therapies: Current advances and evolving targets. Eur J Pharmacol 2024; 985:177080. [PMID: 39491741 DOI: 10.1016/j.ejphar.2024.177080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
Recent advancements in research have significantly enhanced our comprehension of the intricate immune components that contribute to multiple sclerosis (MS) pathogenesis. By conducting an in-depth analysis of complex molecular interactions involved in the immunological cascade of the disease, researchers have successfully identified novel therapeutic targets, leading to the development of innovative therapies. Leveraging pioneering technologies in proteomics, genomics, and the assessment of environmental factors has expedited our understanding of the vulnerability and impact of these factors on the progression of MS. Furthermore, these advances have facilitated the detection of significant biomarkers for evaluating disease activity. By integrating these findings, researchers can design novel molecules to identify new targets, paving the way for improved treatments and enhanced patient care. Our review presents recent discoveries regarding the pathogenesis of MS, highlights their genetic implications, and proposes an insightful approach for engaging with newer therapeutic targets in effectively managing this debilitating condition.
Collapse
Affiliation(s)
- K Trideva Sastri
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India.
| | - N Vishal Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India.
| | - Anbarasu Kannan
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Suman Dutta
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India
| | - Balamuralidhara V
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India
| | - A Ramkishan
- Deputy Drugs Controller (India), Central Drugs Standard Control Organization, Directorate General of Health Services, Ministry of Health & Family Welfare, Government of India, India
| | | |
Collapse
|
4
|
Perdaens O, van Pesch V. Should We Consider Neurodegeneration by Itself or in a Triangulation with Neuroinflammation and Demyelination? The Example of Multiple Sclerosis and Beyond. Int J Mol Sci 2024; 25:12637. [PMID: 39684351 DOI: 10.3390/ijms252312637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Neurodegeneration is preeminent in many neurological diseases, and still a major burden we fail to manage in patient's care. Its pathogenesis is complicated, intricate, and far from being completely understood. Taking multiple sclerosis as an example, we propose that neurodegeneration is neither a cause nor a consequence by itself. Mitochondrial dysfunction, leading to energy deficiency and ion imbalance, plays a key role in neurodegeneration, and is partly caused by the oxidative stress generated by microglia and astrocytes. Nodal and paranodal disruption, with or without myelin alteration, is further involved. Myelin loss exposes the axons directly to the inflammatory and oxidative environment. Moreover, oligodendrocytes provide a singular metabolic and trophic support to axons, but do not emerge unscathed from the pathological events, by primary myelin defects and cell apoptosis or secondary to neuroinflammation or axonal damage. Hereby, trophic failure might be an overlooked contributor to neurodegeneration. Thus, a complex interplay between neuroinflammation, demyelination, and neurodegeneration, wherein each is primarily and secondarily involved, might offer a more comprehensive understanding of the pathogenesis and help establishing novel therapeutic strategies for many neurological diseases and beyond.
Collapse
Affiliation(s)
- Océane Perdaens
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Vincent van Pesch
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
- Department of Neurology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| |
Collapse
|
5
|
Soroush A, Dunn JF. A Hypoxia-Inflammation Cycle and Multiple Sclerosis: Mechanisms and Therapeutic Implications. Curr Treat Options Neurol 2024; 27:6. [PMID: 39569339 PMCID: PMC11573864 DOI: 10.1007/s11940-024-00816-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/22/2024]
Abstract
Purpose of Review Multiple sclerosis (MS) is a complex neurodegenerative disease characterized by inflammation, demyelination, and neurodegeneration. Significant hypoxia exists in brain of people with MS (pwMS), likely contributing to inflammatory, neurodegenerative, and vascular impairments. In this review, we explore the concept of a negative feedback loop between hypoxia and inflammation, discussing its potential role in disease progression based on evidence of hypoxia, and its implications for therapeutic targets. Recent Findings In the experimental autoimmune encephalomyelitis (EAE) model, hypoxia has been detected in gray matter (GM) using histological stains, susceptibility MRI and implanted oxygen sensitive probes. In pwMS, hypoxia has been quantified using near-infrared spectroscopy (NIRS) to measure cortical tissue oxygen saturation (StO2), as well as through blood-based biomarkers such as Glucose Transporter-1 (GLUT-1). We outline the potential for the hypoxia-inflammation cycle to drive tissue damage even in the absence of plaques. Inflammation can drive hypoxia through blood-brain barrier (BBB) disruption and edema, mitochondrial dysfunction, oxidative stress, vessel blockage and vascular abnormalities. The hypoxia can, in turn, drive more inflammation. Summary The hypoxia-inflammation cycle could exacerbate neuroinflammation and disease progression. We explore therapeutic approaches that target this cycle, providing information about potential treatments in MS. There are many therapeutic approaches that could block this cycle, including inhibiting hypoxia-inducible factor 1-α (HIF-1α), blocking cell adhesion or using vasodilators or oxygen, which could reduce either inflammation or hypoxia. This review highlights the potential significance of the hypoxia-inflammation pathway in MS and suggests strategies to break the cycle. Such treatments could improve quality of life or reduce rates of progression.
Collapse
Affiliation(s)
- Ateyeh Soroush
- Department of Neuroscience, University of Calgary, Calgary, Alberta Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta Canada
- Experimental Imaging Center (EIC), Cal Wenzel Precision Health Building (CWPH Building) University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4 Canada
| | - Jeff F Dunn
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta Canada
- Department of Radiology, University of Calgary, Calgary, Alberta Canada
- Experimental Imaging Center (EIC), Cal Wenzel Precision Health Building (CWPH Building) University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4 Canada
| |
Collapse
|
6
|
Fazio L, Naik VN, Therpurakal RN, Gomez Osorio FM, Rychlik N, Ladewig J, Strüber M, Cerina M, Meuth SG, Budde T. Retigabine, a potassium channel opener, restores thalamocortical neuron functionality in a murine model of autoimmune encephalomyelitis. Brain Behav Immun 2024; 122:202-215. [PMID: 39142423 DOI: 10.1016/j.bbi.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Multiple Sclerosis (MS) is an autoimmune neurodegenerative disease, whose primary hallmark is the occurrence of inflammatory lesions in white and grey matter structures. Increasing evidence in MS patients and respective murine models reported an impaired ionic homeostasis driven by inflammatory-demyelination, thereby profoundly affecting signal propagation. However, the impact of a focal inflammatory lesion on single-cell and network functionality has hitherto not been fully elucidated. OBJECTIVES In this study, we sought to determine the consequences of a localized cortical inflammatory lesion on the excitability and firing pattern of thalamic neurons in the auditory system. Moreover, we tested the neuroprotective effect of Retigabine (RTG), a specific Kv7 channel opener, on disease outcome. METHODS To resemble the human disease, we focally administered pro-inflammatory cytokines, TNF-α and IFN-γ, in the primary auditory cortex (A1) of MOG35-55 immunized mice. Thereafter, we investigated the impact of the induced inflammatory milieu on afferent thalamocortical (TC) neurons, by performing ex vivo recordings. Moreover, we explored the effect of Kv7 channel modulation with RTG on auditory information processing, using in vivo electrophysiological approaches. RESULTS Our results revealed that a cortical inflammatory lesion profoundly affected the excitability and firing pattern of neighboring TC neurons. Noteworthy, RTG restored control-like values and TC tonotopic mapping. CONCLUSION Our results suggest that RTG treatment might robustly mitigate inflammation-induced altered excitability and preserve ascending information processing.
Collapse
Affiliation(s)
- Luca Fazio
- Department of Neurology, University of Düsseldorf, Düsseldorf, Germany.
| | - Venu Narayanan Naik
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany.
| | | | | | - Nicole Rychlik
- Institute of Physiology I, University of Münster, Münster, Germany.
| | - Julia Ladewig
- Department of Translational Brain Research, Central Institute of Mental Health (ZI), University of Heidelberg/Medical Faculty Mannheim, Germany; HITBR Hector Institute for Translational Brain Research gGmbH, Mannheim, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Michael Strüber
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe University, Frankfurt, Germany.
| | - Manuela Cerina
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Sven G Meuth
- Department of Neurology, University of Düsseldorf, Düsseldorf, Germany.
| | - Thomas Budde
- Institute of Physiology I, University of Münster, Münster, Germany.
| |
Collapse
|
7
|
Schild H, Bopp T. [Immunological foundations of neurological diseases]. DER NERVENARZT 2024; 95:894-908. [PMID: 38953921 DOI: 10.1007/s00115-024-01696-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Neurodegenerative diseases represent an increasing challenge in ageing societies, as only limited treatment options are currently available. OBJECTIVE New research methods and interdisciplinary interaction of different disciplines have changed the way neurological disorders are viewed and paved the way for the comparatively new field of neuroimmunology, which was established in the early 1980s. Starting from neurological autoimmune diseases, such as multiple sclerosis, knowledge about the involvement of immunological processes in other contexts, such as stroke or traumatic brain injury, has been significantly expanded in recent years. MATERIAL AND METHODS This review article provides an overview of the role of the immune system and the resulting potential for novel treatment approaches. RESULTS The immune system plays a central role in fighting infections but is also able to react to the body's own signals under sterile conditions and cause inflammation and subsequent adaptive immune responses through the release of immune mediators and the recruitment and differentiation of certain immune cell types. This can be beneficial in initiating healing processes; however, chronic inflammatory conditions usually have destructive consequences for the tissue and the organism and must be interrupted. CONCLUSION It is now known that different cells of the immune system play an important role in neurological diseases. Regulatory mechanisms, which are mediated by regulatory T cells or Th2 cells, are usually associated with a good prognosis, whereas inflammatory processes and polarization towards Th1 or Th17 have a destructive character. Novel immunomodulators, which are also increasingly being used in cancer treatment, can now be used in a tissue-specific manner and therefore offer great potential for use in neurological diseases.
Collapse
Affiliation(s)
- Hansjörg Schild
- Institut für Immunologie, Universitätsmedizin Mainz, Langenbeckstraße 1, 55131, Mainz, Deutschland
| | - Tobias Bopp
- Institut für Immunologie, Universitätsmedizin Mainz, Langenbeckstraße 1, 55131, Mainz, Deutschland.
| |
Collapse
|
8
|
Keshavarz F, Mokhtari MJ, Poursadeghfard M. Increased level of GATA3-AS1 long non-coding RNA is correlated with the upregulation of GATA3 and IL-4 genes in multiple sclerosis patients. Mol Biol Rep 2024; 51:874. [PMID: 39080124 DOI: 10.1007/s11033-024-09818-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/23/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) play various roles in gene regulation. GATA3 antisense RNA 1 (GATA3-AS1) is an lncRNA gene neighboring GATA binding protein 3 (GATA3). The current study aims to quantitatively compare the levels of the expression of GATA3-AS1, GATA3, and Interleukin-4 (IL-4) in peripheral blood mononuclear cells (PBMC) samples of MS patients and healthy individuals under the hypothesis of regulation of GATA3 and IL-4 expression orchestrated by GATA3-AS1. METHODS AND RESULTS In this case-control study, the GATA3-AS1, GATA3 and IL-4 expression profiles were assessed using real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). Also, we assessed the IL-4 levels in the serum. The median fold changes in MS patients vs. controls were (4.39 ± 0.38 vs. 2.44 ± 0.20) for GATA3-AS1, (5.22 ± 0.51 vs. 2.86 ± 0.30) for GATA3, and (6.16 ± 0.52 vs. 3.57 ± 0.38) for IL-4, (P < 0.001). Furthermore, the mean serum levels of IL-4 were 30.85 ± 1.53 pg/ml in MS patients and 11.15 ± 4.23 pg/ml in healthy controls (P < 0.001). ROC curve analysis showed that the level of GATA3-AS1 might serve as a biomarker for diagnosing MS patients with the area under the curve (AUC = 0.918, P < 0.0001). Based on our results, this GATA3-AS1/GATA3/IL-4 pathway may increase IL-4 expression in MS patients. CONCLUSIONS Our results indicate a probably regulatory function for GATA3-AS1and the levels of GATA3-AS1 in blood could be important biomarkers for MS diagnosis. To confirm and be more certain of these results, it is necessary to study neuromyelitis optica (NMO) and asthma patients in future studies.
Collapse
Affiliation(s)
- Fatemeh Keshavarz
- Department of Biology, Zarghan Branch, Islamic Azad University, Zarghan, Iran
| | | | - Maryam Poursadeghfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Woo MS, Mayer C, Binkle-Ladisch L, Sonner JK, Rosenkranz SC, Shaposhnykov A, Rothammer N, Tsvilovskyy V, Lorenz SM, Raich L, Bal LC, Vieira V, Wagner I, Bauer S, Glatzel M, Conrad M, Merkler D, Freichel M, Friese MA. STING orchestrates the neuronal inflammatory stress response in multiple sclerosis. Cell 2024; 187:4043-4060.e30. [PMID: 38878778 DOI: 10.1016/j.cell.2024.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/08/2024] [Accepted: 05/16/2024] [Indexed: 07/28/2024]
Abstract
Inflammation-induced neurodegeneration is a defining feature of multiple sclerosis (MS), yet the underlying mechanisms remain unclear. By dissecting the neuronal inflammatory stress response, we discovered that neurons in MS and its mouse model induce the stimulator of interferon genes (STING). However, activation of neuronal STING requires its detachment from the stromal interaction molecule 1 (STIM1), a process triggered by glutamate excitotoxicity. This detachment initiates non-canonical STING signaling, which leads to autophagic degradation of glutathione peroxidase 4 (GPX4), essential for neuronal redox homeostasis and thereby inducing ferroptosis. Both genetic and pharmacological interventions that target STING in neurons protect against inflammation-induced neurodegeneration. Our findings position STING as a central regulator of the detrimental neuronal inflammatory stress response, integrating inflammation with glutamate signaling to cause neuronal cell death, and present it as a tractable target for treating neurodegeneration in MS.
Collapse
Affiliation(s)
- Marcel S Woo
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christina Mayer
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lars Binkle-Ladisch
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jana K Sonner
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sina C Rosenkranz
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Artem Shaposhnykov
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Rothammer
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Volodymyr Tsvilovskyy
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Svenja M Lorenz
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
| | - Lukas Raich
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas C Bal
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vanessa Vieira
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingrid Wagner
- Department of Pathology and Immunology, Division of Clinical Pathology, Faculty of Medicine, University and University Hospital of Geneva, Geneva, Switzerland
| | - Simone Bauer
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, Faculty of Medicine, University and University Hospital of Geneva, Geneva, Switzerland
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
10
|
Borriello G, Chisari CG, Maimone D, Mirabella M, Paolicelli D, Assogna F, Caradonna S, Patti F. Cladribine effects on patient-reported outcomes and their clinical and biometric correlates in highly active relapsing multiple sclerosis at first switch: the observational, multicenter, prospective, phase IV CLADFIT-MS study. Front Neurol 2024; 15:1422078. [PMID: 39114529 PMCID: PMC11305121 DOI: 10.3389/fneur.2024.1422078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/05/2024] [Indexed: 08/10/2024] Open
Abstract
Patient-reported outcomes (PROs) are essential for understanding the effects of MS and its treatments on patients' lives; they play an important role in multiple sclerosis (MS) research and practice. We present the protocol for an observational study to prospectively assess the effect of cladribine tablets on PROs and their correlation to disability and physical activity in adults with highly active relapsing MS switching from a first disease modifying drug (DMD) to cladribine tablets in routine clinical practice at study sites in Italy. The primary objective will be to evaluate changes from baseline in the impact of highly active MS on self-assessed physical functioning 52 weeks after the switch to cladribine tablets using the Multiple Sclerosis Impact Scale-29 (MSIS-29). Secondary objectives will include self-assessed psychological impact of highly active MS in daily life and general health after the switch to cladribine tablets as well as changes in cognitive function, anxiety, and depression symptoms. Additional PRO measures will include the Hospital Anxiety and Depression Scale (HADS), the EuroQoL 5-Dimension 5-Level (EQ-5D-5L), the Work Productivity and Activity Impairment Questionnaire: Multiple Sclerosis (WPAI:MS), and the Patient-Reported Outcomes Measurement Information System (PROMIS). Wearable devices will acquire activity data (step counts, walking speed, time asleep, and energy expenditure). Additional clinical, radiological, and laboratory data will be collected when available during routine management. The findings will complement data from controlled trials by providing insight from daily clinical practice into the effect of cladribine tablets on the patient's experience and self-assessed impact of treatment on daily life.
Collapse
Affiliation(s)
- Giovanna Borriello
- Multiple Sclerosis Center, San Pietro Fatebenefratelli Hospital, Rome, Italy
- Department of Public Health, Federico II University, Naples, Italy
| | - Clara Grazia Chisari
- Department of Medical and Surgical Sciences and Advanced Technologies, GF Ingrassia, University of Catania, Catania, Italy
- UOS Multiple Sclerosis, AOU Policlinico “G Rodolico-San Marco”, University of Catania, Catania, Italy
| | - Davide Maimone
- Centro Sclerosi Multipla, UOC Neurologia, Azienda Ospedaliera per l’Emergenza Cannizzaro, Catania, Italy
| | - Massimiliano Mirabella
- Multiple Sclerosis Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
- Centro di Ricerca per la Sclerosi Multipla “Anna Paola Batocchi”, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Damiano Paolicelli
- Neurology Unit, Department of Translational Biomedicine and Neuroscience (DiBraiN), Policlinico General Hospital, University of Study of Bari, Bari, Italy
| | | | - Sandro Caradonna
- Merck Serono S.p.A. Italy, An Affiliate of Merck KGaA, Rome, Italy
| | - Francesco Patti
- Department of Medical and Surgical Sciences and Advanced Technologies, GF Ingrassia, University of Catania, Catania, Italy
- UOS Multiple Sclerosis, AOU Policlinico “G Rodolico-San Marco”, University of Catania, Catania, Italy
| |
Collapse
|
11
|
Belenichev I, Ryzhenko V, Popazova O, Bukhtiyarova N, Gorchakova N, Oksenych V, Kamyshnyi O. Optimization of the Search for Neuroprotectors among Bioflavonoids. Pharmaceuticals (Basel) 2024; 17:877. [PMID: 39065728 PMCID: PMC11279701 DOI: 10.3390/ph17070877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
For the first time, to optimize the creation of new neuroprotective agents based on bioflavonoids, we applied information technologies; these include docking analysis to calculate the binding of candidate molecules to the pharmacological target protein transthyretin as well as a program of virtual screening of NO scavengers. As a result of this approach, the substance catechin was isolated from candidate molecules-quercetin, catechin, Epicatechin gallate, Epicatechin, Procyanidin B1, Procyanidin B2, Procyanidin B3, and Catechin-3-gallate-according to docking analysis. As a result of virtual screening, catechin was identified as a potential NO scavenger (55.15% prediction). The results of the prediction were confirmed by in vitro experiments. Course administration of catechin to animals with experimental multiple sclerosis (MS) against the background of methylprednisolone administration completely eliminated lethal cases, reduced the number of diseased animals by 20% as well as prevented the development of severe neurological symptoms by 20% (compared to the methylprednisolone group) and by 60% compared to the control group. Course administration of catechin with methylprednisolone leads to a decrease in the neurodegradation markers in the cytosol of rats, with EAE: NSE by 37% and S-100 by 54.8%. The combined administration of methylprednisolone significantly exceeds the combination of methylprednisolone with the reference drug mexidol by the degree of NSE reduction. The obtained results indicate a significant neuroprotective effect of ocular combinations of methylprednisolone and catechin. The above-mentioned confirms the correctness of the bioflavonoid selection with the help of a virtual screening program.
Collapse
Affiliation(s)
- Igor Belenichev
- Department of Pharmacology and Medical Formulation with Course of Normal Physiology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Victor Ryzhenko
- Department of Medical and Pharmaceutical Informatics and Advanced Technologies, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Olena Popazova
- Department of Histology, Cytology and Embryology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Nina Bukhtiyarova
- Department of Clinical Laboratory Diagnostics, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Nadia Gorchakova
- Department of Pharmacology, Bogomolets National Medical University, 01601 Kyiv, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology and Immunology, I. Horbachevsky Ternopil State Medical University, 46001 Ternopil, Ukraine;
| |
Collapse
|
12
|
Woo MS, Engler JB, Friese MA. The neuropathobiology of multiple sclerosis. Nat Rev Neurosci 2024; 25:493-513. [PMID: 38789516 DOI: 10.1038/s41583-024-00823-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
Chronic low-grade inflammation and neuronal deregulation are two components of a smoldering disease activity that drives the progression of disability in people with multiple sclerosis (MS). Although several therapies exist to dampen the acute inflammation that drives MS relapses, therapeutic options to halt chronic disability progression are a major unmet clinical need. The development of such therapies is hindered by our limited understanding of the neuron-intrinsic determinants of resilience or vulnerability to inflammation. In this Review, we provide a neuron-centric overview of recent advances in deciphering neuronal response patterns that drive the pathology of MS. We describe the inflammatory CNS environment that initiates neurotoxicity by imposing ion imbalance, excitotoxicity and oxidative stress, and by direct neuro-immune interactions, which collectively lead to mitochondrial dysfunction and epigenetic dysregulation. The neuronal demise is further amplified by breakdown of neuronal transport, accumulation of cytosolic proteins and activation of cell death pathways. Continuous neuronal damage perpetuates CNS inflammation by activating surrounding glia cells and by directly exerting toxicity on neighbouring neurons. Further, we explore strategies to overcome neuronal deregulation in MS and compile a selection of neuronal actuators shown to impact neurodegeneration in preclinical studies. We conclude by discussing the therapeutic potential of targeting such neuronal actuators in MS, including some that have already been tested in interventional clinical trials.
Collapse
Affiliation(s)
- Marcel S Woo
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Broder Engler
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
13
|
Sgroi S, Romeo E, Albanesi E, Piccardi F, Catalano F, Debellis D, Bertozzi F, Reggiani A. Combined in vivo effect of N-acylethanolamine-hydrolyzing acid amidase and glycogen synthase kinase-3β inhibition to treat multiple sclerosis. Biomed Pharmacother 2024; 175:116677. [PMID: 38701570 DOI: 10.1016/j.biopha.2024.116677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024] Open
Abstract
The current pharmacological approaches to multiple sclerosis (MS) target its inflammatory and autoimmune components, but effective treatments to foster remyelination and axonal repair are still lacking. We therefore selected two targets known to be involved in MS pathogenesis: N-acylethanolamine-hydrolyzing acid amidase (NAAA) and glycogen synthase kinase-3β (GSK-3β). We tested whether inhibiting these targets exerted a therapeutic effect against experimental autoimmune encephalomyelitis (EAE), an animal model of MS. The combined inhibition of NAAA and GSK-3β by two selected small-molecule compounds, ARN16186 (an NAAA inhibitor) and AF3581 (a GSK-3β inhibitor), effectively mitigated disease progression, rescuing the animals from paralysis and preventing a worsening of the pathology. The complementary activity of the two inhibitors reduced the infiltration of immune cells into the spinal cord and led to the formation of thin myelin sheaths around the axons post-demyelination. Specifically, the inhibition of NAAA and GSK-3β modulated the over-activation of NF-kB and STAT3 transcription factors in the EAE-affected mice and induced the nuclear translocation of β-catenin, reducing the inflammatory insult and promoting the remyelination process. Overall, this work demonstrates that the dual-targeting of key aspects responsible for MS progression could be an innovative pharmacological approach to tackle the pathology.
Collapse
Affiliation(s)
- Stefania Sgroi
- D3-Validation, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Elisa Romeo
- Structural Biophysics Facility, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Ennio Albanesi
- Department of Neuroscience and Brain Technologies, Neurofacility, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Federica Piccardi
- Animal Facility, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Federico Catalano
- Electron Microscopy Facility, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Doriana Debellis
- Electron Microscopy Facility, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Fabio Bertozzi
- D3-PharmaChemistry, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Angelo Reggiani
- D3-Validation, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy.
| |
Collapse
|
14
|
Vanheule E, Cambron M, Dobai A, Casselman JW. Rim lesions in MS at 3T: clinical correlation and possible radiological alternatives for daily practice at lower field strength. J Neuroradiol 2024; 51:101165. [PMID: 37907156 DOI: 10.1016/j.neurad.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/28/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND AND PURPOSE Paramagnetic rim lesions (PRLs) have been described as an imaging feature specific to multiple sclerosis (MS) using high-field strength phase-sensitive MR imaging. These lesions are suggested to reflect chronic active inflammation associated with greater disease severity and a more rapid disability progression. The aim of our study is to investigate the relationship between PRLs, clinical parameters, other radiological findings and disease progression. MATERIAL AND METHODS This cross-sectional study included MS patients treated with teriflunomide, fingolimod, natalizumab or ocrelizumab for at least 2 years. PRLs seen at 3T MRI were analysed and correlated with clinical data and radiological progression, defined as an increase of the T2/FLAIR-lesion load during therapy. In the search for alternatives for these PRLs, we defined two additional radiological markers: 'FLAIR-bullet lesions', and on post-contrast black-blood (BB) images, 'BB-bullet lesions'. RESULTS We included 84 MS patients of whom 27 (32 %) had at least 1 PRL. PRLs were associated with radiological progression under therapy (p=0.039) and higher clinical disability scores, although only significant for 9-Hole Peg Test (p=0.023). Patients with FLAIR-bullet or BB-bullet lesions at 3T MRI had a higher chance of PRL (p<0.001) with a likelihood ratio of 13.2 for FLAIR-bullets and 12.6 for BB-bullet lesions, thanks to the high negative predictive value of respectively 83 % and 90 %. CONCLUSION PRLs are associated with an increase of T2/FLAIR-lesion load under therapy and unfavourable clinical outcome. Our newly defined 'bullet lesions' are associated with PRLs and might be an interesting MRI marker for centres without access to high-field SWI images.
Collapse
Affiliation(s)
- Eva Vanheule
- Department of Radiology, AZ Sint-Jan Brugge-Oostende, Campus Brugge, Ruddershove 10, Bruges 8000, Belgium.
| | - Melissa Cambron
- Department of Neurology, AZ Sint-Jan Brugge-Oostende, Campus Brugge, Ruddershove 10, Bruges 8000, Belgium
| | - Adrienn Dobai
- Department of Oral Diagnostics, Faculty of Dentistry, Semmelweis University, Szentkirályi u. 47, Budapest, 1088, Hungary; Department of Neuroradiology, Medical Imaging Centre, Semmelweis University, Balassa street 6, Budapest, 1083, Hungary
| | - Jan W Casselman
- Department of Radiology, AZ Sint-Jan Brugge-Oostende, Campus Brugge, Ruddershove 10, Bruges 8000, Belgium; Department of Diagnostic Radiology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
15
|
Prathapan V, Eipert P, Wigger N, Kipp M, Appali R, Schmitt O. Modeling and simulation for prediction of multiple sclerosis progression. Comput Biol Med 2024; 175:108416. [PMID: 38657465 DOI: 10.1016/j.compbiomed.2024.108416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
In light of extensive work that has created a wide range of techniques for predicting the course of multiple sclerosis (MS) disease, this paper attempts to provide an overview of these approaches and put forth an alternative way to predict the disease progression. For this purpose, the existing methods for estimating and predicting the course of the disease have been categorized into clinical, radiological, biological, and computational or artificial intelligence-based markers. Weighing the weaknesses and strengths of these prognostic groups is a profound method that is yet in need and works directly at the level of diseased connectivity. Therefore, we propose using the computational models in combination with established connectomes as a predictive tool for MS disease trajectories. The fundamental conduction-based Hodgkin-Huxley model emerged as promising from examining these studies. The advantage of the Hodgkin-Huxley model is that certain properties of connectomes, such as neuronal connection weights, spatial distances, and adjustments of signal transmission rates, can be taken into account. It is precisely these properties that are particularly altered in MS and that have strong implications for processing, transmission, and interactions of neuronal signaling patterns. The Hodgkin-Huxley (HH) equations as a point-neuron model are used for signal propagation inside a small network. The objective is to change the conduction parameter of the neuron model, replicate the changes in myelin properties in MS and observe the dynamics of the signal propagation across the network. The model is initially validated for different lengths, conduction values, and connection weights through three nodal connections. Later, these individual factors are incorporated into a small network and simulated to mimic the condition of MS. The signal propagation pattern is observed after inducing changes in conduction parameters at certain nodes in the network and compared against a control model pattern obtained before the changes are applied to the network. The signal propagation pattern varies as expected by adapting to the input conditions. Similarly, when the model is applied to a connectome, the pattern changes could give an insight into disease progression. This approach has opened up a new path to explore the progression of the disease in MS. The work is in its preliminary state, but with a future vision to apply this method in a connectome, providing a better clinical tool.
Collapse
Affiliation(s)
- Vishnu Prathapan
- Medical School Hamburg University of Applied Sciences and Medical University, Am Kaiserkai 1, 20457, Hamburg, Germany.
| | - Peter Eipert
- Medical School Hamburg University of Applied Sciences and Medical University, Am Kaiserkai 1, 20457, Hamburg, Germany.
| | - Nicole Wigger
- Department of Anatomy, University of Rostock Gertrudenstr 9, 18057, Rostock, Germany.
| | - Markus Kipp
- Department of Anatomy, University of Rostock Gertrudenstr 9, 18057, Rostock, Germany.
| | - Revathi Appali
- Institute of General Electrical Engineering, University of Rostock, Albert-Einstein-Straße 2, 18059, Rostock, Germany; Department of Aging of Individuals and Society, Interdisciplinary Faculty, University of Rostock, Universitätsplatz 1, 18055, Rostock, Germany.
| | - Oliver Schmitt
- Medical School Hamburg University of Applied Sciences and Medical University, Am Kaiserkai 1, 20457, Hamburg, Germany; Department of Anatomy, University of Rostock Gertrudenstr 9, 18057, Rostock, Germany.
| |
Collapse
|
16
|
Knudsen MH, Vestergaard MB, Lindberg U, Simonsen HJ, Frederiksen JL, Cramer SP, Larsson HBW. Age-related decline in cerebral oxygen consumption in multiple sclerosis. J Cereb Blood Flow Metab 2024; 44:1039-1052. [PMID: 38190981 PMCID: PMC11318400 DOI: 10.1177/0271678x231224502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/23/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024]
Abstract
Cerebral oxygen metabolism is altered in relapsing-remitting multiple sclerosis (RRMS), possibly a result of disease related cerebral atrophy with subsequent decreased oxygen demand. However, MS inflammation can also inhibit brain metabolism. Therefore, we measured cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) using MRI phase contrast mapping and susceptibility-based oximetry in 44 patients with early RRMS and 36 healthy controls. Cerebral atrophy and white matter lesion load were assessed from high-resolution structural MRI. Expanded Disability Status Scale (EDSS) scores were collected from medical records. The CMRO2 was significantly lower in patients (-15%, p = 0.002) and decreased significantly with age in patients relative to the controls (-1.35 µmol/100 g/min/year, p = 0.036). The lower CMRO2 in RRMS was primarily driven by a higher venous oxygen saturation in the sagittal sinus (p = 0.007) and not a reduction in CBF (p = 0.69). There was no difference in cerebral atrophy between the groups, and no correlation between CMRO2 and MS lesion volume or EDSS score. Therefore, the progressive CMRO2 decline observed before the occurrence of significant cerebral atrophy and despite adequate CBF supports emerging evidence of dysfunctional cellular respiration as a potential pathogenic mechanism and therapeutic target in RRMS.
Collapse
Affiliation(s)
- Maria H Knudsen
- Functional Imaging Unit, Dept. of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
- Dept. of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen N, Denmark
| | - Mark B Vestergaard
- Functional Imaging Unit, Dept. of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Ulrich Lindberg
- Functional Imaging Unit, Dept. of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Helle J Simonsen
- Functional Imaging Unit, Dept. of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Jette L Frederiksen
- Dept. of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen N, Denmark
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Stig P Cramer
- Functional Imaging Unit, Dept. of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Henrik BW Larsson
- Functional Imaging Unit, Dept. of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
- Dept. of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
17
|
Parker W, Jirků K, Patel E, Williamson L, Anderson L, Laman JD. Reevaluating Biota Alteration: Reframing Environmental Influences on Chronic Immune Disorders and Exploring Novel Therapeutic Opportunities. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2024; 97:253-263. [PMID: 38947109 PMCID: PMC11202117 DOI: 10.59249/vunf1315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Environmental mismatches are defined as changes in the environment that induce public health crises. Well known mismatches leading to chronic disease include the availability of technologies that facilitate unhealthy diets and sedentary lifestyles, both factors that adversely affect cardiovascular health. This commentary puts these mismatches in context with biota alteration, an environmental mismatch involving hygiene-related technologies necessary for avoidance of infectious disease. Implementation of hygiene-related technologies causes a loss of symbiotic helminths and protists, profoundly affecting immune function and facilitating a variety of chronic conditions, including allergic disorders, autoimmune diseases, and several inflammation-associated neuropsychiatric conditions. Unfortunately, despite an established understanding of the biology underpinning this and other environmental mismatches, public health agencies have failed to stem the resulting tide of increased chronic disease burden. Both biomedical research and clinical practice continue to focus on an ineffective and reactive pharmaceutical-based paradigm. It is argued that the healthcare of the future could take into account the biology of today, effectively and proactively dealing with environmental mismatch and the resulting chronic disease burden.
Collapse
Affiliation(s)
- William Parker
- Department of Psychology and Neuroscience, University
of North Carolina, Chapel Hill, NC, USA
- WPLab, Inc., Durham, NC, USA
| | - Kateřina Jirků
- Institute of Parasitology, Biology Centre, Czech
Academy of Sciences, České Budějovice, Czech Republic
| | | | - Lauren Williamson
- Department of Biological Sciences, Northern Kentucky
University, Highland Heights, KY, USA
| | | | - Jon D. Laman
- Department of Pathology & Medical Biology,
University Groningen, University Medical Center Groningen, Groningen, The
Netherlands
| |
Collapse
|
18
|
Nistri R, Ianniello A, Pozzilli V, Giannì C, Pozzilli C. Advanced MRI Techniques: Diagnosis and Follow-Up of Multiple Sclerosis. Diagnostics (Basel) 2024; 14:1120. [PMID: 38893646 PMCID: PMC11171945 DOI: 10.3390/diagnostics14111120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Brain and spinal cord imaging plays a pivotal role in aiding clinicians with the diagnosis and monitoring of multiple sclerosis. Nevertheless, the significance of magnetic resonance imaging in MS extends beyond its clinical utility. Advanced imaging modalities have facilitated the in vivo detection of various components of MS pathogenesis, and, in recent years, MRI biomarkers have been utilized to assess the response of patients with relapsing-remitting MS to the available treatments. Similarly, MRI indicators of neurodegeneration demonstrate potential as primary and secondary endpoints in clinical trials targeting progressive phenotypes. This review aims to provide an overview of the latest advancements in brain and spinal cord neuroimaging in MS.
Collapse
Affiliation(s)
- Riccardo Nistri
- Department of Human Neuroscience, Sapienza University, 00185 Rome, Italy; (A.I.); (C.G.); (C.P.)
| | - Antonio Ianniello
- Department of Human Neuroscience, Sapienza University, 00185 Rome, Italy; (A.I.); (C.G.); (C.P.)
| | - Valeria Pozzilli
- Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
- Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Costanza Giannì
- Department of Human Neuroscience, Sapienza University, 00185 Rome, Italy; (A.I.); (C.G.); (C.P.)
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Carlo Pozzilli
- Department of Human Neuroscience, Sapienza University, 00185 Rome, Italy; (A.I.); (C.G.); (C.P.)
- MS Center Sant’Andrea Hospital, 00189 Rome, Italy
| |
Collapse
|
19
|
Cotter M, Quinn SM, Fearon U, Ansboro S, Rakovic T, Southern JM, Kelly VP, Connon SJ. A new class of 7-deazaguanine agents targeting autoimmune diseases: dramatic reduction of synovial fibroblast IL-6 production from human rheumatoid arthritis patients and improved performance against murine experimental autoimmune encephalomyelitis. RSC Med Chem 2024; 15:1556-1564. [PMID: 38784475 PMCID: PMC11110761 DOI: 10.1039/d4md00028e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/17/2024] [Indexed: 05/25/2024] Open
Abstract
A simple in vitro assay involving the measurement of IL-6 production in human synovial fibroblasts from rheumatoid arthritis patients has been utilised to select candidates from a targeted library of queuine tRNA ribosyltransferase (QTRT) substrates for subsequent in vivo screening in murine experimental autoimmune encephalomyelitis (EAE - a model of multiple sclerosis). The in vitro activity assay discriminated between poor and excellent 7-deazaguanine QTRT substrates and allowed the identification of several structures which subsequently outperformed the previous lead in EAE. Two molecules were of significant promise: one rigidified analogue of the lead, and another considerably simpler structure incorporating an oxime motif which differs structurally from the lead to a considerable extent. These studies provide data from human cells for the first time and have expanded both the chemical space and current understanding of the structure-activity relationship underpinning the remarkable potential of 7-deazguanines in a Multiple Sclerosis disease model.
Collapse
Affiliation(s)
- Michelle Cotter
- School of Chemistry, Trinity College, Trinity Biomedical Sciences Institute 152-160 Pearse Street Dublin Ireland
| | - Shauna M Quinn
- School of Biochemistry & Immunology, Trinity College, Trinity Biomedical Sciences Institute 152-160 Pearse Street Dublin Ireland
| | - Ursula Fearon
- School of Medicine, Trinity College, Trinity Biomedical Sciences Institute 152-160 Pearse Street Dublin Ireland
| | - Sharon Ansboro
- School of Medicine, Trinity College, Trinity Biomedical Sciences Institute 152-160 Pearse Street Dublin Ireland
| | - Tatsiana Rakovic
- School of Medicine, Trinity College, Trinity Biomedical Sciences Institute 152-160 Pearse Street Dublin Ireland
| | - John M Southern
- School of Chemistry, Trinity College, Trinity Biomedical Sciences Institute 152-160 Pearse Street Dublin Ireland
| | - Vincent P Kelly
- School of Biochemistry & Immunology, Trinity College, Trinity Biomedical Sciences Institute 152-160 Pearse Street Dublin Ireland
| | - Stephen J Connon
- School of Chemistry, Trinity College, Trinity Biomedical Sciences Institute 152-160 Pearse Street Dublin Ireland
| |
Collapse
|
20
|
Al-Hawary SIS, Jasim SA, Hjazi A, Ullah H, Bansal P, Deorari M, Sapaev IB, Ami AA, Mohmmed KH, Abosaoda MK. A new perspective on therapies involving B-cell depletion in autoimmune diseases. Mol Biol Rep 2024; 51:629. [PMID: 38717637 DOI: 10.1007/s11033-024-09575-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/22/2024] [Indexed: 06/30/2024]
Abstract
It has been rediscovered in the last fifteen years that B-cells play an active role in autoimmune etiology rather than just being spectators. The clinical success of B-cell depletion therapies (BCDTs) has contributed to this. BCDTs, including those that target CD20, CD19, and BAFF, were first developed to eradicate malignant B-cells. These days, they treat autoimmune conditions like multiple sclerosis and systemic lupus erythematosus. Particular surprises have resulted from the use of BCDTs in autoimmune diseases. For example, even in cases where BCDT is used to treat the condition, its effects on antibody-secreting plasma cells and antibody levels are restricted, even though these cells are regarded to play a detrimental pathogenic role in autoimmune diseases. In this Review, we provide an update on our knowledge of the biology of B-cells, examine the outcomes of clinical studies employing BCDT for autoimmune reasons, talk about potential explanations for the drug's mode of action, and make predictions about future approaches to targeting B-cells other than depletion.
Collapse
Affiliation(s)
| | | | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Himayat Ullah
- College of Medicine, Shaqra University, 15526, Shaqra, Saudi Arabia.
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-Be) University, Bengaluru, Karnataka, 560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - I B Sapaev
- Tashkent Institute of Irrigation and Agricultural Mechanization Engineers National Research University, Tashkent, Uzbekistan
- Scientific Researcher, Western Caspian University, Baku, Azerbaijan
| | - Ahmed Ali Ami
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq
| | | | - Munther Kadhim Abosaoda
- College of Pharmacy, The Islamic University, Najaf, Iraq
- College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, The Islamic University of Babylon, Hillah, Iraq
| |
Collapse
|
21
|
Muñoz-Jurado A, Escribano BM, Túnez I. Animal model of multiple sclerosis: Experimental autoimmune encephalomyelitis. Methods Cell Biol 2024; 188:35-60. [PMID: 38880527 DOI: 10.1016/bs.mcb.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Multiple sclerosis (MS) is a very complex and heterogeneous disease, with an unknown etiology and which, currently, remains incurable. For this reason, animal models are crucial to investigate this disease, which has increased in prevalence in recent years, affecting 2.8 million people worldwide, and is the leading cause of non-traumatic disability in young adults between the ages of 20-30years. Of all the models developed to replicate MS, experimental autoimmune encephalomyelitis (EAE) best reflects the autoimmune pathogenesis of MS. There are different methods to induce it, which will give rise to different types of EAE, which will vary in clinical presentation and severity. Of the EAE models, the most widespread and used is the one induced in rodents due to its advantages over other species. Likewise, EAE has become a widely used model in the development of therapies for the treatment of MS. Likewise, it is very useful to define the cellular and molecular mechanisms involved in the pathogenesis of MS and to establish therapeutic targets for this disease. For all these reasons, the EAE model plays a key role in improving the understanding of MS.
Collapse
Affiliation(s)
- Ana Muñoz-Jurado
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Cordoba, Spain; Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain.
| | - Begoña M Escribano
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Cordoba, Spain; Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain
| | - Isaac Túnez
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain; Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain.
| |
Collapse
|
22
|
Spelman T, Eichau S, Alroughani R, Ozakbas S, Khoury SJ, Patti F, Kubala Havrdova E, Boz C, Terzi M, Kuhle J, Grammond P, Lechner-Scott J, Gray O, Amato MP, Laureys G, Shaygannejad V, Hyde R, Wang H, Bozin I, Belviso N, Quan C, Zeng F, van der Walt A, Butzkueven H. Comparative effectiveness of dimethyl fumarate versus non-specific immunosuppressants: Real-world evidence from MSBase. Mult Scler J Exp Transl Clin 2024; 10:20552173241247182. [PMID: 38800132 PMCID: PMC11128181 DOI: 10.1177/20552173241247182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/27/2024] [Indexed: 05/29/2024] Open
Abstract
Background The use of non-specific immunosuppressants (NSIS) to treat multiple sclerosis (MS) remains prevalent in certain geographies despite safety concerns, likely due to resource limitations. Objective To use MSBase registry data to compare real-world outcomes in adults with relapsing-remitting MS (RRMS) treated with dimethyl fumarate (DMF) or NSIS (azathioprine, cyclosporine, cyclophosphamide, methotrexate, mitoxantrone or mycophenolate mofetil) between January 1, 2014 and April 1, 2022. Methods Treatment outcomes were compared using inverse probability of treatment weighting (IPTW) Cox regression. Outcomes were annualized relapse rates (ARRs), time to discontinuation, time to first relapse (TTFR) and time to 24-week confirmed disability progression (CDP) or 24-week confirmed disability improvement (CDI; in patients with baseline Expanded Disability Status Scale [EDSS] score ≥2). Results After IPTW, ARR was similar for DMF (0.13) and NSIS (0.16; p = 0.29). There was no difference in TTFR between cohorts (hazard ratio [HR]: 0.98; p = 0.84). The DMF cohort experienced longer times to discontinuation (HR: 0.75; p = 0.001) and CDP (HR: 0.53; p = 0.001), and shorter time to CDI (HR: 1.99; p < 0.008), versus the NSIS cohort. Conclusion This analysis supports the use of DMF to treat patients with relapsing forms of MS, and may have implications for MS practices in countries where NSIS are commonly used to treat RRMS.
Collapse
Affiliation(s)
- Tim Spelman
- MSBase Foundation, Melbourne, Australia
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Sara Eichau
- Hospital Universitario Virgen Macarena, Sevilla, Spain
| | | | | | - Samia J Khoury
- American University of Beirut Medical Center, Beirut, Lebanon
| | - Francesco Patti
- Department of Medical and Surgical Sciences and Advanced Technologies, GF Ingrassia, Catania, Italy
| | - Eva Kubala Havrdova
- Department of Neurology, First Medical Faculty, Charles University in Prague and General University Hospital, Prague, Czech Republic
| | - Cavit Boz
- KTU Medical Faculty Farabi Hospital, Trabzon, Turkey
| | | | - Jens Kuhle
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
| | | | | | - Orla Gray
- South Eastern HSC Trust, Belfast, UK
| | | | | | | | | | | | | | | | - Chao Quan
- Department of Neurology, Huashan Hospital, National Center for Neurological Disorders, Fudan University, Shanghai, China
| | | | | | | |
Collapse
|
23
|
Sadek MA, Rabie MA, El Sayed NS, Sayed HM, Kandil EA. Neuroprotective effect of curcumin against experimental autoimmune encephalomyelitis-induced cognitive and physical impairments in mice: an insight into the role of the AMPK/SIRT1 pathway. Inflammopharmacology 2024; 32:1499-1518. [PMID: 38112964 PMCID: PMC11006778 DOI: 10.1007/s10787-023-01399-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/18/2023] [Indexed: 12/21/2023]
Abstract
Multiple sclerosis (MS) is an incurable chronic neurodegenerative disease where autoimmunity, oxidative stress, and neuroinflammation collaboration predispose myelin sheath destruction. Interestingly, curcumin, a natural polyphenol, showed a neuroprotective effect in numerous neurodegenerative diseases, including MS. Nevertheless, the influence of curcumin against MS-induced cognitive impairment is still vague. Hence, we induced experimental autoimmune encephalomyelitis (EAE) in mice using spinal cord homogenate (SCH) and complete Freund's adjuvant, which eventually mimic MS. This study aimed not only to evaluate curcumin efficacy against EAE-induced cognitive and motor dysfunction, but also to explore a novel mechanism of action, by which curcumin exerts its beneficial effects in MS. Curcumin (200 mg/kg/day) efficacy was evaluated by behavioral tests, histopathological examination, and biochemical tests. Concisely, curcumin amended EAE-induced cognitive and motor impairments, as demonstrated by the behavioral tests and histopathological examination of the hippocampus. Interestingly, curcumin activated the adenosine monophosphate (AMP)-activated protein kinase/silent mating type information regulation 2 homolog 1 (AMPK/SIRT1) axis, which triggered cyclic AMP response element-binding protein/brain-derived neurotrophic factor/myelin basic protein (CREB/BDNF/MBP) pathway, hindering demyelination of the corpus callosum. Furthermore, AMPK/SIRT1 activation augmented nuclear factor erythroid 2-related factor 2 (Nrf2), a powerful antioxidant, amending EAE-induced oxidative stress. Additionally, curcumin abolished EAE-induced neuroinflammation by inhibiting Janus kinase 2 /signal transducers and activators of transcription 3 (JAK2/STAT3) axis, by various pathways, including AMPK/SIRT1 activation. JAK2/STAT3 inhibition halts inflammatory cytokines synthesis. In conclusion, curcumin's neuroprotective effect in EAE is controlled, at least in part, by AMPK/SIRT1 activation, which ultimately minimizes EAE-induced neuronal demyelination, oxidative stress, and neuroinflammation.
Collapse
Affiliation(s)
- Mohamed A Sadek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Mostafa A Rabie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Helmy M Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Esraa A Kandil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
24
|
Hou B, Yin J, Liu S, Guo J, Zhang B, Zhang Z, Yang L, Tan X, Long Y, Feng S, Zhou J, Wu Y, Wang X, Han S, Wang Z, He X. Inhibiting the NLRP3 Inflammasome with MCC950 Alleviates Neurological Impairment in the Brain of EAE Mice. Mol Neurobiol 2024; 61:1318-1330. [PMID: 37702910 PMCID: PMC10896958 DOI: 10.1007/s12035-023-03618-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/27/2023] [Indexed: 09/14/2023]
Abstract
Multiple sclerosis (MS) is a chronic disease that is characterized by demyelination and neuronal damage. Experimental autoimmune encephalomyelitis (EAE) mice are used to model the disease progression of MS and mirror MS-like pathology. Previous researches have confirmed that inhibition of NLRP3 inflammasome significantly alleviated the severity of EAE mice and the demyelination of spinal cord, but its effect on neuronal damage and oligodendrocyte loss in the brain remains unclear. In this study, female C57BL/6 mice were immunized with MOG35-55 and PTX to establish experimental autoimmune encephalomyelitis (EAE) model. MCC950, a selective NLRP3 inflammasome inhibitor, was used to investigate the effect of NLRP3 inflammasome on the pathological changes and glial cell activation in the brain of EAE mice by immunohistochemistry. Our results demonstrated that MCC950 ameliorated the neuronal damage, demyelination, and oligodendrocyte loss in the brain of EAE mice. This protective effect of MCC950 may be attributed to its ability to suppress the activation of glial cells and prevents microglia polarization to M1 phenotype. Our work indicates that inhibition of NLRP3 inflammasome has the therapeutic effects of neuroprotection through immunomodulation and is a promising therapeutic strategy for MS.
Collapse
Affiliation(s)
- Baohua Hou
- College of Medicine, Henan Polytechnic University, Jiaozuo, 454000, China
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430000, China
- Central Laboratory, The First Affiliated Hospital of Henan Polytechnic University (Jiaozuo Second People's Hospital), Jiaozuo, China
| | - Jun Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430000, China
| | - Shuyan Liu
- Department of Endocrinology, The First Affiliated Hospital of Henan Polytechnic University (Jiaozuo Second People's Hospital), Jiaozuo, 454000, China
| | - Jincheng Guo
- Department of Thoracic Surgery, The First Affiliated Hospital of Henan Polytechnic University (Jiaozuo Second People's Hospital), Jiaozuo, 454000, China
| | - Baobao Zhang
- College of Medicine, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Zhenzhen Zhang
- College of Medicine, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Lanping Yang
- College of Medicine, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Xiying Tan
- College of Medicine, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Yijiao Long
- College of Medicine, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Sijie Feng
- College of Medicine, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Jingchun Zhou
- Beijing Bencaoyuan Pharmaceutical Co, Ltd, Beijing, 102629, China
| | - Yifan Wu
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430000, China
| | - Xueyang Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430000, China
| | - Song Han
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430000, China
| | - Zhenhui Wang
- College of Medicine, Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Xiaohua He
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430000, China.
| |
Collapse
|
25
|
Loh JS, Mak WQ, Tan LKS, Ng CX, Chan HH, Yeow SH, Foo JB, Ong YS, How CW, Khaw KY. Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct Target Ther 2024; 9:37. [PMID: 38360862 PMCID: PMC10869798 DOI: 10.1038/s41392-024-01743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/02/2024] [Accepted: 01/14/2024] [Indexed: 02/17/2024] Open
Abstract
The human gastrointestinal tract is populated with a diverse microbial community. The vast genetic and metabolic potential of the gut microbiome underpins its ubiquity in nearly every aspect of human biology, including health maintenance, development, aging, and disease. The advent of new sequencing technologies and culture-independent methods has allowed researchers to move beyond correlative studies toward mechanistic explorations to shed light on microbiome-host interactions. Evidence has unveiled the bidirectional communication between the gut microbiome and the central nervous system, referred to as the "microbiota-gut-brain axis". The microbiota-gut-brain axis represents an important regulator of glial functions, making it an actionable target to ameliorate the development and progression of neurodegenerative diseases. In this review, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases. As the gut microbiome provides essential cues to microglia, astrocytes, and oligodendrocytes, we examine the communications between gut microbiota and these glial cells during healthy states and neurodegenerative diseases. Subsequently, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases using a metabolite-centric approach, while also examining the role of gut microbiota-related neurotransmitters and gut hormones. Next, we examine the potential of targeting the intestinal barrier, blood-brain barrier, meninges, and peripheral immune system to counteract glial dysfunction in neurodegeneration. Finally, we conclude by assessing the pre-clinical and clinical evidence of probiotics, prebiotics, and fecal microbiota transplantation in neurodegenerative diseases. A thorough comprehension of the microbiota-gut-brain axis will foster the development of effective therapeutic interventions for the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jian Sheng Loh
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Wen Qi Mak
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Li Kar Stella Tan
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Chu Xin Ng
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Hong Hao Chan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Shiau Hueh Yeow
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Yong Sze Ong
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| | - Kooi Yeong Khaw
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
26
|
Wang PF, Jiang F, Zeng QM, Yin WF, Hu YZ, Li Q, Hu ZL. Mitochondrial and metabolic dysfunction of peripheral immune cells in multiple sclerosis. J Neuroinflammation 2024; 21:28. [PMID: 38243312 PMCID: PMC10799425 DOI: 10.1186/s12974-024-03016-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder characterized by the infiltration of inflammatory cells and demyelination of nerves. Mitochondrial dysfunction has been implicated in the pathogenesis of MS, as studies have shown abnormalities in mitochondrial activities, metabolism, mitochondrial DNA (mtDNA) levels, and mitochondrial morphology in immune cells of individuals with MS. The presence of mitochondrial dysfunctions in immune cells contributes to immunological dysregulation and neurodegeneration in MS. This review provided a comprehensive overview of mitochondrial dysfunction in immune cells associated with MS, focusing on the potential consequences of mitochondrial metabolic reprogramming on immune function. Current challenges and future directions in the field of immune-metabolic MS and its potential as a therapeutic target were also discussed.
Collapse
Affiliation(s)
- Peng-Fei Wang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, 139 Ren-Min Central Road, Changsha City, 410011, Hunan, China
| | - Fei Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha City, 410011, Hunan, China
| | - Qiu-Ming Zeng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha City, 410011, Hunan, China
| | - Wei-Fan Yin
- Department of Neurology, The Second Xiangya Hospital, Central South University, 139 Ren-Min Central Road, Changsha City, 410011, Hunan, China
| | - Yue-Zi Hu
- Clinical Laboratory, The Second Hospital of Hunan University of Chinese Medicine, 233 Cai' e North Road, Changsha City, 410005, Hunan, China
| | - Qiao Li
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, 139 Ren-Min Central Road, Changsha City, 410011, Hunan, China
| | - Zhao-Lan Hu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, 139 Ren-Min Central Road, Changsha City, 410011, Hunan, China.
| |
Collapse
|
27
|
Wang X, Liu Z, Wang D, Zhang Y, Zhang H, Xue F, Wang X, Tang Z, Han X. Immunoswitch Nanomodulators Enable Active Targeting and Selective Proliferation of Regulatory T Cells for Multiple Sclerosis Therapy. ACS NANO 2024; 18:770-782. [PMID: 38113242 DOI: 10.1021/acsnano.3c09225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Interleukin-2 (IL-2) used in multiple sclerosis (MS) therapy modulates the balance between regulatory T (Treg) cells and effector T (Teff) cells. However, the off-target activation of Teff cells by IL-2 limits its clinical application. Therefore, a rapidly prepared immunoswitch nanomodulator termed aT-IL2C NPs was developed, which specifically recognized Treg cells with high TIGIT expression thanks to the presence of an anti-TIGIT and an IL-2/JES6-1 complex (IL2C) being delivered to Treg cells but not to Teff cells with low TIGIT expression. Then, IL2C released IL-2 due to the specific expression of the high-affinity IL-2 receptor on Treg cells, thus enabling the active targeting and selective proliferation of Treg cells. Moreover, the anti-TIGIT of aT-IL2C NPs selectively inhibited the proliferation of Teff cells while leaving the proliferation of Treg cells unaffected. In addition, since the IL-2 receptor on Teff cells had medium-affinity, the IL2C hardly released IL-2 to Teff cells, thus enabling the inhibition of Teff cell proliferation. The treatment of experimental autoimmune encephalomyelitis (EAE) mice with aT-IL2C NPs ameliorated the severity of the EAE and restored white matter integrity. Collectively, this work described a potential promising agent for effective MS therapy.
Collapse
Affiliation(s)
- Xiaoshuang Wang
- No. 1 Department of Neurology, China-Japan Union Hospital of Jilin University, 126 Xiantai Road, Changchun 130033, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Road, Changchun 130022, China
| | - Zhilin Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Road, Changchun 130022, China
| | - Di Wang
- No. 1 Department of Neurology, China-Japan Union Hospital of Jilin University, 126 Xiantai Road, Changchun 130033, China
| | - Yingyu Zhang
- No. 1 Department of Neurology, China-Japan Union Hospital of Jilin University, 126 Xiantai Road, Changchun 130033, China
| | - Honglei Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Road, Changchun 130022, China
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education and Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Xiangtan University, Xiangtan 411105, China
| | - Fuxin Xue
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Road, Changchun 130022, China
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, Jilin 130024, China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Road, Changchun 130022, China
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Road, Changchun 130022, China
| | - Xuemei Han
- No. 1 Department of Neurology, China-Japan Union Hospital of Jilin University, 126 Xiantai Road, Changchun 130033, China
| |
Collapse
|
28
|
Dejbakht M, Akhzari M, Jalili S, Faraji F, Barazesh M. Multiple Sclerosis: New Insights into Molecular Pathogenesis and Novel Platforms for Disease Treatment. Curr Drug Res Rev 2024; 16:175-197. [PMID: 37724675 DOI: 10.2174/2589977516666230915103730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Multiple sclerosis (MS), a chronic inflammatory disorder, affects the central nervous system via myelin degradation. The cause of MS is not fully known, but during recent years, our knowledge has deepened significantly regarding the different aspects of MS, including etiology, molecular pathophysiology, diagnosis and therapeutic options. Myelin basic protein (MBP) is the main myelin protein that accounts for maintaining the stability of the myelin sheath. Recent evidence has revealed that MBP citrullination or deamination, which is catalyzed by Ca2+ dependent peptidyl arginine deiminase (PAD) enzyme leads to the reduction of positive charge, and subsequently proteolytic cleavage of MBP. The overexpression of PAD2 in the brains of MS patients plays an essential role in new epitope formation and progression of the autoimmune disorder. Some drugs have recently entered phase III clinical trials with promising efficacy and will probably obtain approval in the near future. As different therapeutic platforms develop, finding an optimal treatment for each individual patient will be more challenging. AIMS This review provides a comprehensive insight into MS with a focus on its pathogenesis and recent advances in diagnostic methods and its present and upcoming treatment modalities. CONCLUSION MS therapy alters quickly as research findings and therapeutic options surrounding MS expand. McDonald's guidelines have created different criteria for MS diagnosis. In recent years, ever-growing interest in the development of PAD inhibitors has led to the generation of many reversible and irreversible PAD inhibitors against the disease with satisfactory therapeutic outcomes.
Collapse
Affiliation(s)
- Majid Dejbakht
- Department of Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Morteza Akhzari
- School of Nursing, Larestan University of Medical Sciences, Larestan, Iran
| | - Sajad Jalili
- Department of Orthopedics, School of Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Fouziyeh Faraji
- Department of Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Mahdi Barazesh
- Department of Biotechnology, Cellular and Molecular Research Center, School of Paramedical, Gerash University of Medical Sciences, Gerash, Iran
| |
Collapse
|
29
|
Holtman IR, Glass CK, Nott A. Interpretation of Neurodegenerative GWAS Risk Alleles in Microglia and their Interplay with Other Cell Types. ADVANCES IN NEUROBIOLOGY 2024; 37:531-544. [PMID: 39207711 DOI: 10.1007/978-3-031-55529-9_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglia have been implicated in numerous neurodegenerative and neuroinflammatory disorders; however, the causal contribution of this immune cell type is frequently debated. Genetic studies offer a unique vantage point in that they infer causality over a secondary consequence. Genome-wide association studies (GWASs) have identified hundreds of loci in the genome that are associated with susceptibility to neurodegenerative disorders. GWAS studies implicate microglia in the pathogenesis of Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), and to a lesser degree suggest a role for microglia in vascular dementia (VaD), frontotemporal dementia (FTD), and amyotrophic lateral sclerosis (ALS), and other neurodegenerative and neuropsychiatric disorders. The contribution and function of GWAS risk loci on disease progression is an ongoing field of study, in which large genomic datasets, and an extensive framework of computational tools, have proven to be crucial. Several GWAS risk loci are shared between disorders, pointing towards common pleiotropic mechanisms. In this chapter, we introduce key concepts in GWAS and post-GWAS interpretation of neurodegenerative disorders, with a focus on GWAS risk genes implicated in microglia, their interplay with other cell types and shared convergence of GWAS risk loci on microglia.
Collapse
Affiliation(s)
- Inge R Holtman
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, School of Medicine, UC San Diego, La Jolla, CA, USA.
- Department of Medicine, School of Medicine, UC San Diego, La Jolla, CA, USA.
| | - Alexi Nott
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
| |
Collapse
|
30
|
Zhong G, Wang X, Li J, Xie Z, Wu Q, Chen J, Wang Y, Chen Z, Cao X, Li T, Liu J, Wang Q. Insights Into the Role of Copper in Neurodegenerative Diseases and the Therapeutic Potential of Natural Compounds. Curr Neuropharmacol 2024; 22:1650-1671. [PMID: 38037913 PMCID: PMC11284712 DOI: 10.2174/1570159x22666231103085859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 12/02/2023] Open
Abstract
Neurodegenerative diseases encompass a collection of neurological disorders originating from the progressive degeneration of neurons, resulting in the dysfunction of neurons. Unfortunately, effective therapeutic interventions for these diseases are presently lacking. Copper (Cu), a crucial trace element within the human body, assumes a pivotal role in various biological metabolic processes, including energy metabolism, antioxidant defense, and neurotransmission. These processes are vital for the sustenance, growth, and development of organisms. Mounting evidence suggests that disrupted copper homeostasis contributes to numerous age-related neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), Wilson's disease (WD), Menkes disease (MD), prion diseases, and multiple sclerosis (MS). This comprehensive review investigates the connection between the imbalance of copper homeostasis and neurodegenerative diseases, summarizing pertinent drugs and therapies that ameliorate neuropathological changes, motor deficits, and cognitive impairments in these conditions through the modulation of copper metabolism. These interventions include Metal-Protein Attenuating Compounds (MPACs), copper chelators, copper supplements, and zinc salts. Moreover, this review highlights the potential of active compounds derived from natural plant medicines to enhance neurodegenerative disease outcomes by regulating copper homeostasis. Among these compounds, polyphenols are particularly abundant. Consequently, this review holds significant implications for the future development of innovative drugs targeting the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Guangcheng Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyue Wang
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiaqi Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhouyuan Xie
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiqing Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaxin Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yiyun Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziying Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyue Cao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tianyao Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinman Liu
- Affiliated Jiangmen TCM Hospital of Ji'nan University, Jiangmen, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
31
|
Vinnenberg L, Rychlik N, Oniani T, Williams B, White JA, Kovac S, Meuth SG, Budde T, Hundehege P. Assessing neuroprotective effects of diroximel fumarate and siponimod via modulation of pacemaker channels in an experimental model of remyelination. Exp Neurol 2024; 371:114572. [PMID: 37852467 DOI: 10.1016/j.expneurol.2023.114572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/04/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
Cuprizone (CPZ)-induced alterations in axonal myelination are associated with a period of neuronal hyperexcitability and increased activity of hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels in the thalamocortical (TC) system. Substances used for the treatment of multiple sclerosis (MS) have been shown to normalize neuronal excitability in CPZ-treated mice. Therefore, we aimed to examine the effects of diroximel fumarate (DRF) and the sphingosine 1-phospate receptor (S1PR) modulator siponimod on action potential firing and the inward current (Ih) carried by HCN ion channels in naive conditions and during different stages of de- and remyelination. Here, DRF application reduced Ih current density in ex vivo patch clamp recordings from TC neurons of the ventrobasal thalamic complex (VB), thereby counteracting the increase of Ih during early remyelination. Siponimod reduced Ih in VB neurons under control conditions but had no effect in neurons of the auditory cortex (AU). Furthermore, siponimod increased and decreased AP firing properties of neurons in VB and AU, respectively. Computational modeling revealed that both DRF and siponimod influenced thalamic bursting during early remyelination by delaying the onset and decreasing the interburst frequency. Thus, substances used in MS treatment normalize excitability in the TC system by influencing AP firing and Ih.
Collapse
Affiliation(s)
- Laura Vinnenberg
- Department of Neurology with Institute of Translational Neurology, Münster University, Albert-Schweitzer-Campus 1, D-48149 Münster, Germany
| | - Nicole Rychlik
- Institute of Physiology I, Münster University, Robert-Koch-Str. 27a, D-48149 Münster, Germany.
| | - Tengiz Oniani
- Institute of Physiology I, Münster University, Robert-Koch-Str. 27a, D-48149 Münster, Germany
| | - Brandon Williams
- Department of Biomedical Engineering, Center for Systems Neuroscience, Neurophotonics Center, Boston University, 610 Commonwealth Ave, Boston MA-02215, USA
| | - John A White
- Department of Biomedical Engineering, Center for Systems Neuroscience, Neurophotonics Center, Boston University, 610 Commonwealth Ave, Boston MA-02215, USA
| | - Stjepana Kovac
- Department of Neurology with Institute of Translational Neurology, Münster University, Albert-Schweitzer-Campus 1, D-48149 Münster, Germany
| | - Sven G Meuth
- Neurology Clinic, Medical Faculty, University Clinic Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - Thomas Budde
- Institute of Physiology I, Münster University, Robert-Koch-Str. 27a, D-48149 Münster, Germany
| | - Petra Hundehege
- Department of Neurology with Institute of Translational Neurology, Münster University, Albert-Schweitzer-Campus 1, D-48149 Münster, Germany
| |
Collapse
|
32
|
Benítez‐Fernández R, Josa‐Prado F, Sánchez E, Lao Y, García‐Rubia A, Cumella J, Martínez A, Palomo V, de Castro F. Efficacy of a benzothiazole-based LRRK2 inhibitor in oligodendrocyte precursor cells and in a murine model of multiple sclerosis. CNS Neurosci Ther 2024; 30:e14552. [PMID: 38287523 PMCID: PMC10808848 DOI: 10.1111/cns.14552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 01/31/2024] Open
Abstract
AIMS Multiple sclerosis (MS) is a chronic neurological disease that currently lacks effective curative treatments. There is a need to find effective therapies, especially to reverse the progressive demyelination and neuronal damage. Oligodendrocytes form the myelin sheath around axons in the central nervous system (CNS) and oligodendrocyte precursor cells (OPCs) undergo mechanisms that enable spontaneously the partial repair of damaged lesions. The aim of this study was to discover small molecules with potential effects in demyelinating diseases, including (re)myelinating properties. METHODS Recently, it has been shown how LRRK2 inhibition promotes oligodendrogliogenesis and therefore an efficient repair or myelin damaged lesions. Here we explored small molecules inhibiting LRRK2 as potential enhancers of primary OPCs proliferation and differentiation, and their potential impact on the clinical score of experimental autoimmune encephalomyelitys (EAE) mice, a validated model of the most frequent clinical form of MS, relapsing-remitting MS. RESULTS One of the LRRK2 inhibitors presented in this study promoted the proliferation and differentiation of OPC primary cultures. When tested in the EAE murine model of MS, it exerted a statistically significant reduction of the clinical burden of the animals, and histological evidence revealed how the treated animals presented a reduced lesion area in the spinal cord. CONCLUSIONS For the first time, a small molecule with LRRK2 inhibition properties presented (re)myelinating properties in primary OPCs cultures and potentially in the in vivo murine model. This study provides an in vivo proof of concept for a LRRK2 inhibitor, confirming its potential for the treatment of MS.
Collapse
Affiliation(s)
- Rocío Benítez‐Fernández
- Centro de Investigaciones Biológicas Margarita Salas‐CSICMadridSpain
- Instituto Cajal‐CSICMadridSpain
| | | | | | | | | | - José Cumella
- Instituto de Química Médica, IQM‐CSICMadridSpain
| | - Ana Martínez
- Centro de Investigaciones Biológicas Margarita Salas‐CSICMadridSpain
- Centro de Investigaciones Biomédicas en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos IIIMadridSpain
| | - Valle Palomo
- Centro de Investigaciones Biomédicas en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos IIIMadridSpain
- Instituto Madrileño de Estudios AvanzadosIMDEA NanocienciaMadridSpain
- Unidad de Nanobiotecnología Asociada al Centro Nacional de Biotecnología (CNB‐CSIC)MadridSpain
| | | |
Collapse
|
33
|
Mwema A, Muccioli GG, des Rieux A. Innovative drug delivery strategies to the CNS for the treatment of multiple sclerosis. J Control Release 2023; 364:435-457. [PMID: 37926243 DOI: 10.1016/j.jconrel.2023.10.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/05/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Disorders of the central nervous system (CNS), such as multiple sclerosis (MS) represent a great emotional, financial and social burden. Despite intense efforts, great unmet medical needs remain in that field. MS is an autoimmune, chronic inflammatory demyelinating disease with no curative treatment up to date. The current therapies mostly act in the periphery and seek to modulate aberrant immune responses as well as slow down the progression of the disease. Some of these therapies are associated with adverse effects related partly to their administration route and show some limitations due to their rapid clearance and inability to reach the CNS. The scientific community have recently focused their research on developing MS therapies targeting different processes within the CNS. However, delivery of therapeutics to the CNS is mainly limited by the presence of the blood-brain barrier (BBB). Therefore, there is a pressing need to develop new drug delivery strategies that ensure CNS availability to capitalize on identified therapeutic targets. Several approaches have been developed to overcome or bypass the BBB and increase delivery of therapeutics to the CNS. Among these strategies, the use of alternative routes of administration, such as the nose-to-brain (N2B) pathway, offers a promising non-invasive option in the scope of MS, as it would allow a direct transport of the drugs from the nasal cavity to the brain. Moreover, the combination of bioactive molecules within nanocarriers bring forth new opportunities for MS therapies, allowing and/or increasing their transport to the CNS. Here we will review and discuss these alternative administration routes as well as the nanocarrier approaches useful to deliver drugs for MS.
Collapse
Affiliation(s)
- Ariane Mwema
- Université catholique de Louvain, UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue E. Mounier 73, 1200 Brussels, Belgium; Université catholique de Louvain, UCLouvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, Avenue E. Mounier 72, 1200 Brussels, Belgium
| | - Giulio G Muccioli
- Université catholique de Louvain, UCLouvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, Avenue E. Mounier 72, 1200 Brussels, Belgium.
| | - Anne des Rieux
- Université catholique de Louvain, UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue E. Mounier 73, 1200 Brussels, Belgium.
| |
Collapse
|
34
|
Hartung HP, Cree BA, Barnett M, Meuth SG, Bar-Or A, Steinman L. Bioavailable central nervous system disease-modifying therapies for multiple sclerosis. Front Immunol 2023; 14:1290666. [PMID: 38162670 PMCID: PMC10755740 DOI: 10.3389/fimmu.2023.1290666] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/09/2023] [Indexed: 01/03/2024] Open
Abstract
Disease-modifying therapies for relapsing multiple sclerosis reduce relapse rates by suppressing peripheral immune cells but have limited efficacy in progressive forms of the disease where cells in the central nervous system play a critical role. To our knowledge, alemtuzumab, fumarates (dimethyl, diroximel, and monomethyl), glatiramer acetates, interferons, mitoxantrone, natalizumab, ocrelizumab, ofatumumab, and teriflunomide are either limited to the periphery or insufficiently studied to confirm direct central nervous system effects in participants with multiple sclerosis. In contrast, cladribine and sphingosine 1-phosphate receptor modulators (fingolimod, ozanimod, ponesimod, and siponimod) are central nervous system-penetrant and could have beneficial direct central nervous system properties.
Collapse
Affiliation(s)
- Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Department of Neurology, Palacký University Olomouc, Olomouc, Czechia
| | - Bruce A.C. Cree
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Michael Barnett
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Sven G. Meuth
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences, Beckman Center for Molecular Medicine, Stanford University Medical Center, Stanford, CA, United States
| |
Collapse
|
35
|
Wu D, Jin Y, Xing Y, Abate MD, Abbasian M, Abbasi-Kangevari M, Abbasi-Kangevari Z, Abd-Allah F, Abdelmasseh M, Abdollahifar MA, Abdulah DM, Abedi A, Abedi V, Abidi H, Aboagye RG, Abolhassani H, Abuabara K, Abyadeh M, Addo IY, Adeniji KN, Adepoju AV, Adesina MA, Sakilah Adnani QE, Afarideh M, Aghamiri S, Agodi A, Agrawal A, Aguilera Arriagada CE, Ahmad A, Ahmad D, Ahmad S, Ahmad S, Ahmadi A, Ahmed A, Ahmed A, Aithala JP, Ajadi AA, Ajami M, Akbarzadeh-Khiavi M, Alahdab F, AlBataineh MT, Alemi S, Saeed Al-Gheethi AA, Ali L, Alif SM, Almazan JU, Almustanyir S, Alqahtani JS, Alqasmi I, Khan Altaf IU, Alvis-Guzman N, Alvis-Zakzuk NJ, Al-Worafi YM, Aly H, Amani R, Amu H, Amusa GA, Andrei CL, Ansar A, Ansariniya H, Anyasodor AE, Arabloo J, Arefnezhad R, Arulappan J, Asghari-Jafarabadi M, Ashraf T, Atata JA, Athari SS, Atlaw D, Wahbi Atout MM, Aujayeb A, Awan AT, Ayatollahi H, Azadnajafabad S, Azzam AY, Badawi A, Badiye AD, Bagherieh S, Baig AA, Bantie BB, Barchitta M, Bardhan M, Barker-Collo SL, Barone-Adesi F, Batra K, Bayileyegn NS, Behnoush AH, Belgaumi UI, Bemanalizadeh M, Bensenor IM, Beyene KA, Bhagavathula AS, Bhardwaj P, Bhaskar S, Bhat AN, Bitaraf S, Bitra VR, Boloor A, Bora K, Botelho JS, Buchbinder R, Calina D, Cámera LA, Carvalho AF, Kai Chan JS, Chattu VK, Abebe EC, Chichagi F, Choi S, Chou TC, Chu DT, Coberly K, Costa VM, Couto RA, Cruz-Martins N, Dadras O, Dai X, Damiani G, Dascalu AM, Dashti M, Debela SA, Dellavalle RP, Demetriades AK, Demlash AA, Deng X, Desai HD, Desai R, Rahman Dewan SM, Dey S, Dharmaratne SD, Diaz D, Dibas M, Dinis-Oliveira RJ, Diress M, Do TC, Doan DK, Dodangeh M, Dodangeh M, Dongarwar D, Dube J, Dziedzic AM, Ed-Dra A, Edinur HA, Eissazade N, Ekholuenetale M, Ekundayo TC, Elemam NM, Elhadi M, Elmehrath AO, Abdou Elmeligy OA, Emamverdi M, Emeto TI, Esayas HL, Eshetu HB, Etaee F, Fagbamigbe AF, Faghani S, Fakhradiyev IR, Fatehizadeh A, Fathi M, Feizkhah A, Fekadu G, Fereidouni M, Fereshtehnejad SM, Fernandes JC, Ferrara P, Fetensa G, Filip I, Fischer F, Foroutan B, Foroutan M, Fukumoto T, Ganesan B, Belete Gemeda BN, Ghamari SH, Ghasemi M, Gholamalizadeh M, Gill TK, Gillum RF, Goldust M, Golechha M, Goleij P, Golinelli D, Goudarzi H, Guan SY, Guo Y, Gupta B, Gupta VB, Gupta VK, Haddadi R, Hadi NR, Halwani R, Haque S, Hasan I, Hashempour R, Hassan A, Hassan TS, Hassanzadeh S, Hassen MB, Haubold J, Hayat K, Heidari G, Heidari M, Heidari-Soureshjani R, Herteliu C, Hessami K, Hezam K, Hiraike Y, Holla R, Hosseini MS, Huynh HH, Hwang BF, Ibitoye SE, Ilic IM, Ilic MD, Iranmehr A, Iravanpour F, Ismail NE, Iwagami M, Iwu CC, Jacob L, Jafarinia M, Jafarzadeh A, Jahankhani K, Jahrami H, Jakovljevic M, Jamshidi E, Jani CT, Janodia MD, Jayapal SK, Jayaram S, Jeganathan J, Jonas JB, Joseph A, Joseph N, Joshua CE, Vaishali K, Kaambwa B, Kabir A, Kabir Z, Kadashetti V, Kaliyadan F, Kalroozi F, Kamal VK, Kandel A, Kandel H, Kanungo S, Karami J, Karaye IM, Karimi H, Kasraei H, Kazemian S, Kebede SA, Keikavoosi-Arani L, Keykhaei M, Khader YS, Khajuria H, Khamesipour F, Khan EA, Khan IA, Khan M, Khan MJ, Khan MA, Khan MA, Khatatbeh H, Khatatbeh MM, Khateri S, Khayat Kashani HR, Kim MS, Kisa A, Kisa S, Koh HY, Kolkhir P, Korzh O, Kotnis AL, Koul PA, Koyanagi A, Krishan K, Kuddus M, Kulkarni VV, Kumar N, Kundu S, Kurmi OP, La Vecchia C, Lahariya C, Laksono T, Lám J, Latief K, Lauriola P, Lawal BK, Thu Le TT, Bich Le TT, Lee M, Lee SW, Lee WC, Lee YH, Lenzi J, Levi M, Li W, Ligade VS, Lim SS, Liu G, Liu X, Llanaj E, Lo CH, Machado VS, Maghazachi AA, Mahmoud MA, Mai TA, Majeed A, Sanaye PM, Makram OM, Rad EM, Malhotra K, Malik AA, Malik I, Mallhi TH, Malta DC, Mansournia MA, Mantovani LG, Martorell M, Masoudi S, Masoumi SZ, Mathangasinghe Y, Mathews E, Mathioudakis AG, Maugeri A, Mayeli M, Carabeo Medina JR, Meles GG, Mendes JJ, Menezes RG, Mestrovic T, Michalek IM, Micheletti Gomide Nogueira de Sá AC, Mihretie ET, Nhat Minh LH, Mirfakhraie R, Mirrakhimov EM, Misganaw A, Mohamadkhani A, Mohamed NS, Mohammadi F, Mohammadi S, Mohammed S, Mohammed S, Mohan S, Mohseni A, Mokdad AH, Momtazmanesh S, Monasta L, Moni MA, Moniruzzaman M, Moradi Y, Morovatdar N, Mostafavi E, Mousavi P, Mukoro GD, Mulita A, Mulu GB, Murillo-Zamora E, Musaigwa F, Mustafa G, Muthu S, Nainu F, Nangia V, Swamy SN, Natto ZS, Navaraj P, Nayak BP, Nazri-Panjaki A, Negash H, Nematollahi MH, Nguyen DH, Hien Nguyen HT, Nguyen HQ, Nguyen PT, Nguyen VT, Niazi RK, Nikolouzakis TK, Nnyanzi LA, Noreen M, Nzoputam CI, Nzoputam OJ, Oancea B, Oh IH, Okati-Aliabad H, Okonji OC, Okwute PG, Olagunju AT, Olatubi MI, Olufadewa II, Ordak M, Otstavnov N, Owolabi MO, Mahesh P, Padubidri JR, Pak A, Pakzad R, Palladino R, Pana A, Pantazopoulos I, Papadopoulou P, Pardhan S, Parthasarathi A, Pashaei A, Patel J, Pathan AR, Patil S, Paudel U, Pawar S, Pedersini P, Pensato U, Pereira DM, Pereira J, Pereira MO, Pereira RB, Peres MF, Perianayagam A, Perna S, Petcu IR, Pezeshki PS, Pham HT, Philip AK, Piradov MA, Podder I, Podder V, Poddighe D, Sady Prates EJ, Qattea I, Radfar A, Raee P, Rafiei A, Raggi A, Rahim F, Rahimi M, Rahimifard M, Rahimi-Movaghar V, Rahman MO, Ur Rahman MH, Rahman M, Rahman MA, Rahmani AM, Rahmani M, Rahmani S, Rahmanian V, Ramasubramani P, Rancic N, Rao IR, Rashedi S, Rashid AM, Ravikumar N, Rawaf S, Mohamed Redwan EM, Rezaei N, Rezaei N, Rezaei N, Rezaeian M, Ribeiro D, Rodrigues M, Buendia Rodriguez JA, Roever L, Romero-Rodríguez E, Saad AM, Saddik B, Sadeghian S, Saeed U, Safary A, Safdarian M, Safi SZ, Saghazadeh A, Sagoe D, Sharif-Askari FS, Sharif-Askari NS, Sahebkar A, Sahoo H, Sahraian MA, Sajid MR, Sakhamuri S, Sakshaug JW, Saleh MA, Salehi L, Salehi S, Farrokhi AS, Samadzadeh S, Samargandy S, Samieefar N, Samy AM, Sanadgol N, Sanjeev RK, Sawhney M, Saya GK, Schuermans A, Senthilkumaran S, Sepanlou SG, Sethi Y, Shafie M, Shah H, Shahid I, Shahid S, Shaikh MA, Sharfaei S, Sharma M, Shayan M, Shehata HS, Sheikh A, Shetty JK, Shin JI, Shirkoohi R, Shitaye NA, Shivakumar K, Shivarov V, Shobeiri P, Siabani S, Sibhat MM, Siddig EE, Simpson CR, Sinaei E, Singh H, Singh I, Singh JA, Singh P, Singh S, Siraj MS, Al Mamun Sohag A, Solanki R, Solikhah S, Solomon Y, Soltani-Zangbar MS, Sun J, Szeto MD, Tabarés-Seisdedos R, Tabatabaei SM, Tabish M, Taheri E, Tahvildari A, Talaat IM, Lukenze Tamuzi JJ, Tan KK, Tat NY, Oliaee RT, Tavasol A, Temsah MH, Thangaraju P, Tharwat S, Tibebu NS, Vera Ticoalu JH, Tillawi T, Tiruye TY, Tiyuri A, Tovani-Palone MR, Tripathi M, Tsegay GM, Tualeka AR, Ty SS, Ubah CS, Ullah S, Ullah S, Umair M, Umakanthan S, Upadhyay E, Vahabi SM, Vaithinathan AG, Tahbaz SV, Valizadeh R, Varthya SB, Vasankari TJ, Venketasubramanian N, Verras GI, Villafañe JH, Vlassov V, Vo DC, Waheed Y, Waris A, Welegebrial BG, Westerman R, Wickramasinghe DP, Wickramasinghe ND, Willekens B, Woldegeorgis BZ, Woldemariam M, Xiao H, Yada DY, Yahya G, Yang L, Yazdanpanah F, Yon DK, Yonemoto N, You Y, Zahir M, Zaidi SS, Zangiabadian M, Zare I, Zeineddine MA, Zemedikun DT, Zeru NG, Zhang C, Zhao H, Zhong C, Zielińska M, Zoladl M, Zumla A, Guo C, Tam LS. Global, regional, and national incidence of six major immune-mediated inflammatory diseases: findings from the global burden of disease study 2019. EClinicalMedicine 2023; 64:102193. [PMID: 37731935 PMCID: PMC10507198 DOI: 10.1016/j.eclinm.2023.102193] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 09/22/2023] Open
Abstract
Background The causes for immune-mediated inflammatory diseases (IMIDs) are diverse and the incidence trends of IMIDs from specific causes are rarely studied. The study aims to investigate the pattern and trend of IMIDs from 1990 to 2019. Methods We collected detailed information on six major causes of IMIDs, including asthma, inflammatory bowel disease, multiple sclerosis, rheumatoid arthritis, psoriasis, and atopic dermatitis, between 1990 and 2019, derived from the Global Burden of Disease study in 2019. The average annual percent change (AAPC) in number of incidents and age standardized incidence rate (ASR) on IMIDs, by sex, age, region, and causes, were calculated to quantify the temporal trends. Findings In 2019, rheumatoid arthritis, atopic dermatitis, asthma, multiple sclerosis, psoriasis, inflammatory bowel disease accounted 1.59%, 36.17%, 54.71%, 0.09%, 6.84%, 0.60% of overall new IMIDs cases, respectively. The ASR of IMIDs showed substantial regional and global variation with the highest in High SDI region, High-income North America, and United States of America. Throughout human lifespan, the age distribution of incident cases from six IMIDs was quite different. Globally, incident cases of IMIDs increased with an AAPC of 0.68 and the ASR decreased with an AAPC of -0.34 from 1990 to 2019. The incident cases increased across six IMIDs, the ASR of rheumatoid arthritis increased (0.21, 95% CI 0.18, 0.25), while the ASR of asthma (AAPC = -0.41), inflammatory bowel disease (AAPC = -0.72), multiple sclerosis (AAPC = -0.26), psoriasis (AAPC = -0.77), and atopic dermatitis (AAPC = -0.15) decreased. The ASR of overall and six individual IMID increased with SDI at regional and global level. Countries with higher ASR in 1990 experienced a more rapid decrease in ASR. Interpretation The incidence patterns of IMIDs varied considerably across the world. Innovative prevention and integrative management strategy are urgently needed to mitigate the increasing ASR of rheumatoid arthritis and upsurging new cases of other five IMIDs, respectively. Funding The Global Burden of Disease Study is funded by the Bill and Melinda Gates Foundation. The project funded by Scientific Research Fund of Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital (2022QN38).
Collapse
|
36
|
Torres Iglesias G, Fernández-Fournier M, Botella L, Piniella D, Laso-García F, Carmen Gómez-de Frutos M, Chamorro B, Puertas I, Tallón Barranco A, Fuentes B, Alonso de Leciñana M, Alonso-López E, Bravo SB, Eugenia Miranda-Carús M, Montero-Calle A, Barderas R, Díez-Tejedor E, Gutiérrez-Fernández M, Otero-Ortega L. Brain and immune system-derived extracellular vesicles mediate regulation of complement system, extracellular matrix remodeling, brain repair and antigen tolerance in Multiple sclerosis. Brain Behav Immun 2023; 113:44-55. [PMID: 37406976 DOI: 10.1016/j.bbi.2023.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/24/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is an immune-mediated central nervous system disease whose course is unpredictable. Finding biomarkers that help to better comprehend the disease's pathogenesis is crucial for supporting clinical decision-making. Blood extracellular vesicles (EVs) are membrane-bound particles secreted by all cell types that contain information on the disease's pathological processes. PURPOSE To identify the immune and nervous system-derived EV profile from blood that could have a specific role as biomarker in MS and assess its possible correlation with disease state. RESULTS Higher levels of T cell-derived EVs and smaller size of neuron-derived EVs were associated with clinical relapse. The smaller size of the oligodendrocyte-derived EVs was related with motor and cognitive impairment. The proteomic analysis identified mannose-binding lectin serine protease 1 and complement factor H from immune system cell-derived EVs as autoimmune disease-associated proteins. We observed hepatocyte growth factor-like protein in EVs from T cells and inter-alpha-trypsin inhibitor heavy chain 2 from neurons as white matter injury-related proteins. In patients with MS, a specific protein profile was found in the EVs, higher levels of alpha-1-microglobulin and fibrinogen β chain, lower levels of C1S and gelsolin in the immune system-released vesicles, and Talin-1 overexpression in oligodendrocyte EVs. These specific MS-associated proteins, as well as myelin basic protein in oligodendrocyte EVs, correlated with disease activity in the patients with MS. CONCLUSION Neural-derived and immune-derived EVs found in blood appear to be good specific biomarkers in MS for reflecting the disease state.
Collapse
Affiliation(s)
- Gabriel Torres Iglesias
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research - IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
| | - Mireya Fernández-Fournier
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research - IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
| | - Lucía Botella
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research - IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
| | - Dolores Piniella
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research - IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
| | - Fernando Laso-García
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research - IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
| | - Mari Carmen Gómez-de Frutos
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research - IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
| | - Beatriz Chamorro
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research - IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
| | - Inmaculada Puertas
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research - IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
| | - Antonio Tallón Barranco
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research - IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
| | - Blanca Fuentes
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research - IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
| | - María Alonso de Leciñana
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research - IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
| | - Elisa Alonso-López
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research - IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
| | - Susana B Bravo
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - María Eugenia Miranda-Carús
- Immuno-rheumatology Research Laboratory, Rheumatology Department, Research - IdiPAZ (La Paz University Hospital - Universidad Autónoma de Madrid), Madrid, Spain
| | - Ana Montero-Calle
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Exuperio Díez-Tejedor
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research - IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
| | - María Gutiérrez-Fernández
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research - IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain.
| | - Laura Otero-Ortega
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research - IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain.
| |
Collapse
|
37
|
Carlberg C, Mycko MP. Linking Mechanisms of Vitamin D Signaling with Multiple Sclerosis. Cells 2023; 12:2391. [PMID: 37830605 PMCID: PMC10571821 DOI: 10.3390/cells12192391] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023] Open
Abstract
Environmental triggers often work via signal transduction cascades that modulate the epigenome and transcriptome of cell types involved in the disease process. Multiple sclerosis (MS) is an autoimmune disease affecting the central nervous system being characterized by a combination of recurring inflammation, demyelination and progressive loss of axons. The mechanisms of MS onset are not fully understood and genetic variants may explain only some 20% of the disease susceptibility. From the environmental factors being involved in disease development low vitamin D levels have been shown to significantly contribute to MS susceptibility. The pro-hormone vitamin D3 acts via its metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) as a high affinity ligand to the transcription factor VDR (vitamin D receptor) and is a potent modulator of the epigenome at thousands of genomic regions and the transcriptome of hundreds of genes. A major target tissue of the effects of 1,25(OH)2D3 and VDR are cells of innate and adaptive immunity, such as monocytes, dendritic cells as well as B and T cells. Vitamin D induces immunological tolerance in T cells and reduces inflammatory reactions of various types of immune cells, all of which are implicated in MS pathogenesis. The immunomodulatory effects of 1,25(OH)2D3 contribute to the prevention of MS. However, the strength of the responses to vitamin D3 supplementation is highly variegated between individuals. This review will relate mechanisms of individual's vitamin D responsiveness to MS susceptibility and discuss the prospect of vitamin D3 supplementation as a way to extinguish the autoimmunity in MS.
Collapse
Affiliation(s)
- Carsten Carlberg
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Marcin P. Mycko
- Department of Neurology, Laboratory of Neuroimmunology, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland;
| |
Collapse
|
38
|
Zong B, Yu F, Zhang X, Zhao W, Li S, Li L. Mechanisms underlying the beneficial effects of physical exercise on multiple sclerosis: focus on immune cells. Front Immunol 2023; 14:1260663. [PMID: 37841264 PMCID: PMC10570846 DOI: 10.3389/fimmu.2023.1260663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
Multiple sclerosis (MS) is a prevalent neuroimmunological illness that leads to neurological disability in young adults. Although the etiology of MS is heterogeneous, it is well established that aberrant activity of adaptive and innate immune cells plays a crucial role in its pathogenesis. Several immune cell abnormalities have been described in MS and its animal models, including T lymphocytes, B lymphocytes, dendritic cells, neutrophils, microglia/macrophages, and astrocytes, among others. Physical exercise offers a valuable alternative or adjunctive disease-modifying therapy for MS. A growing body of evidence indicates that exercise may reduce the autoimmune responses triggered by immune cells in MS. This is partially accomplished by restricting the infiltration of peripheral immune cells into the central nervous system (CNS) parenchyma, curbing hyperactivation of immune cells, and facilitating a transition in the balance of immune cells from a pro-inflammatory to an anti-inflammatory state. This review provides a succinct overview of the correlation between physical exercise, immune cells, and MS pathology, and highlights the potential benefits of exercise as a strategy for the prevention and treatment of MS.
Collapse
Affiliation(s)
- Boyi Zong
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Fengzhi Yu
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
| | - Xiaoyou Zhang
- School of Physical Education, Hubei University, Wuhan, China
| | - Wenrui Zhao
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Shichang Li
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Lin Li
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| |
Collapse
|
39
|
Cotter M, Varghese S, Chevot F, Fergus C, Kelly VP, Connon SJ, Southern JM. Queuine Analogues Incorporating the 7-Aminomethyl-7-deazaguanine Core: Structure-Activity Relationships in the Treatment of Experimental Autoimmune Encephalomyelitis. ChemMedChem 2023; 18:e202300207. [PMID: 37350546 DOI: 10.1002/cmdc.202300207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 06/24/2023]
Abstract
A library of queuine analogues targeting the modification of tRNA isoacceptors for Asp, Asn, His and Tyr catalysed by queuine tRNA ribosyltransferase (QTRT, also known as TGT) was evaluated in the treatment of a chronic multiple sclerosis model: murine experimental autoimmune encephalomyelitis. Several active 7-deazaguanines emerged, together with a structure-activity relationship involving the necessity for a flexible alkyl chain of fixed length.
Collapse
Affiliation(s)
- Michelle Cotter
- School of Chemistry, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College, Dublin, Ireland
| | - Sreeja Varghese
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College, Dublin, Ireland
| | - Franciane Chevot
- School of Chemistry, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College, Dublin, Ireland
| | - Claire Fergus
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College, Dublin, Ireland
| | - Vincent P Kelly
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College, Dublin, Ireland
| | - Stephen J Connon
- School of Chemistry, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College, Dublin, Ireland
| | - J Mike Southern
- School of Chemistry, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College, Dublin, Ireland
| |
Collapse
|
40
|
Si W, Ni Y, Jiang Q, Tan L, Sparagano O, Li R, Yang G. Nanopore sequencing identifies differentially methylated genes in the central nervous system in experimental autoimmune encephalomyelitis. J Neuroimmunol 2023; 381:578134. [PMID: 37364516 DOI: 10.1016/j.jneuroim.2023.578134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/31/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023]
Abstract
Multiple Sclerosis (MS) is a chronic autoimmune-mediated demyelinating disease of the central nervous system (CNS) that might be triggered by aberrant epigenetic changes in the genome. DNA methylation is the most studied epigenetic mechanism that participates in MS pathogenesis. However, the overall methylation level in the CNS of MS patients remains elusive. We used direct long-read nanopore DNA sequencing and characterized the differentially methylated genes in the brain from mice with experimental autoimmune encephalomyelitis (EAE), an animal model of MS. We identified 163 hypomethylated promoters and 327 hypermethylated promoters. These genomic alterations were linked to various biological processes including metabolism, immune responses, neural activities, and mitochondrial dynamics, all of which are vital for EAE development. Our results indicate a great potential of nanopore sequencing in identifying genomic DNA methylation in EAE and provide important guidance for future studies investigating the MS/EAE pathology.
Collapse
Affiliation(s)
- Wen Si
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
| | - Ying Ni
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
| | - Qianling Jiang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
| | - Lu Tan
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
| | - Olivier Sparagano
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
| | - Runsheng Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China.
| | - Guan Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China.
| |
Collapse
|
41
|
Torres Iglesias G, Fernández-Fournier M, López-Molina M, Piniella D, Laso-García F, Gómez-de Frutos MC, Alonso-López E, Botella L, Chamorro B, Sánchez-Velasco S, Puertas I, Tallón Barranco A, Nozal P, Díez-Tejedor E, Gutiérrez-Fernández M, Otero-Ortega L. Dual role of peripheral B cells in multiple sclerosis: emerging remote players in demyelination and novel diagnostic biomarkers. Front Immunol 2023; 14:1224217. [PMID: 37638059 PMCID: PMC10449256 DOI: 10.3389/fimmu.2023.1224217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/10/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Multiple sclerosis is an inflammatory and demyelinating disease caused by a pathogenic immune response against the myelin sheath surfaces of oligodendrocytes. The demyelination has been classically associated with pathogenic B cells residing in the central nervous system that release autoreactive antibodies against myelin. The aim of the present study was to investigate whether extracellular vesicles (EVs) mediate delivery of myelin autoreactive antibodies from peripheral B cells against oligodendrocytes in multiple sclerosis (MS) and to analyze whether these EVs could mediate demyelination in vitro. We also studied the role of these EV-derived myelin antibodies as a diagnostic biomarker in MS. Methods This is a prospective, observational, and single-center study that includes patients with MS and two control groups: patients with non-immune white matter lesions and healthy controls. We isolated B-cell-derived EVs from the blood and cerebrospinal fluid (CSF) and analyzed their myelin antibody content. We also studied whether antibody-loaded EVs reach oligodendrocytes in patients with MS and the effect on demyelination of B-cell-derived EVs containing antibodies in vitro. Results This study enrolled 136 MS patients, 23 white matter lesions controls, and 39 healthy controls. We found autoreactive myelin antibodies in EVs that were released by peripheral B cells, but not by populations of B cells resident in CSF. We also identified a cut-off of 3.95 ng/mL of myelin basic protein autoantibodies in EVs from peripheral B cells, with 95.2% sensitivity and 88.2% specificity, which allows us to differentiate MS patients from healthy controls. EV-derived myelin antibodies were also detected in the oligodendrocytes of MS patients. Myelin antibody-loaded EVs from B cells induced myelin markers decrease of oligodendrocytes in vitro. Discussion Peripheral reactive immune cells could contribute remotely to MS pathogenesis by delivering myelin antibodies to oligodendrocytes. EV-derived myelin antibodies could play a role as diagnostic biomarker in MS.
Collapse
Affiliation(s)
- Gabriel Torres Iglesias
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area La Paz Hospital Institute for Health Research-IdiPAZ (La Paz University Hospital-Universidad Autónoma de Madrid), Madrid, Spain
| | - Mireya Fernández-Fournier
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area La Paz Hospital Institute for Health Research-IdiPAZ (La Paz University Hospital-Universidad Autónoma de Madrid), Madrid, Spain
| | - MariPaz López-Molina
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area La Paz Hospital Institute for Health Research-IdiPAZ (La Paz University Hospital-Universidad Autónoma de Madrid), Madrid, Spain
| | - Dolores Piniella
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area La Paz Hospital Institute for Health Research-IdiPAZ (La Paz University Hospital-Universidad Autónoma de Madrid), Madrid, Spain
| | - Fernando Laso-García
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area La Paz Hospital Institute for Health Research-IdiPAZ (La Paz University Hospital-Universidad Autónoma de Madrid), Madrid, Spain
| | - Mari Carmen Gómez-de Frutos
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area La Paz Hospital Institute for Health Research-IdiPAZ (La Paz University Hospital-Universidad Autónoma de Madrid), Madrid, Spain
| | - Elisa Alonso-López
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area La Paz Hospital Institute for Health Research-IdiPAZ (La Paz University Hospital-Universidad Autónoma de Madrid), Madrid, Spain
| | - Lucía Botella
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area La Paz Hospital Institute for Health Research-IdiPAZ (La Paz University Hospital-Universidad Autónoma de Madrid), Madrid, Spain
| | - Beatriz Chamorro
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area La Paz Hospital Institute for Health Research-IdiPAZ (La Paz University Hospital-Universidad Autónoma de Madrid), Madrid, Spain
| | - Sara Sánchez-Velasco
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area La Paz Hospital Institute for Health Research-IdiPAZ (La Paz University Hospital-Universidad Autónoma de Madrid), Madrid, Spain
| | - Inmaculada Puertas
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area La Paz Hospital Institute for Health Research-IdiPAZ (La Paz University Hospital-Universidad Autónoma de Madrid), Madrid, Spain
| | - Antonio Tallón Barranco
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area La Paz Hospital Institute for Health Research-IdiPAZ (La Paz University Hospital-Universidad Autónoma de Madrid), Madrid, Spain
| | - Pilar Nozal
- Immunology Department, La Paz University Hospital, IdiPAZ Health Research Institute, Madrid, Spain
| | - Exuperio Díez-Tejedor
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area La Paz Hospital Institute for Health Research-IdiPAZ (La Paz University Hospital-Universidad Autónoma de Madrid), Madrid, Spain
| | - María Gutiérrez-Fernández
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area La Paz Hospital Institute for Health Research-IdiPAZ (La Paz University Hospital-Universidad Autónoma de Madrid), Madrid, Spain
| | - Laura Otero-Ortega
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area La Paz Hospital Institute for Health Research-IdiPAZ (La Paz University Hospital-Universidad Autónoma de Madrid), Madrid, Spain
| |
Collapse
|
42
|
Chunder R, Heider T, Kuerten S. The prevalence of IgG antibodies against milk and milk antigens in patients with multiple sclerosis. Front Immunol 2023; 14:1202006. [PMID: 37492579 PMCID: PMC10364054 DOI: 10.3389/fimmu.2023.1202006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/21/2023] [Indexed: 07/27/2023] Open
Abstract
Introduction Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system (CNS). The pathophysiology of MS is complex and is said to be influenced by multiple environmental determinants, including diet. We and others have previously demonstrated how consumption of bovine milk can aggravate disease severity in MS patients, which can be explained by molecular mimicry between milk antigens and those expressed within the CNS. In this study we set out to identify alternatives to drinking cow milk which might be less detrimental to MS patients who have a genetic predisposition towards developing antibody titers against bovine milk antigens that cross-react with CNS antigens. Methods To this end, we screened 35 patients with MS and 20 healthy controls for their IgG reactivity against an array of animal-sourced milk, plant-based alternatives as well as individual antigens from bovine milk. Results We demonstrate that MS patients have a significantly higher IgG response to animal-sourced milk, especially cow milk, in comparison to healthy donors. We also show that the reactivity to cow milk in MS patients can be attributed to reactivity against different bovine milk antigens. Finally, our correlation data indicate the co-existence of antibodies to individual bovine milk antigens and their corresponding cross-reactive CNS antigens. Discussion Taken together, we suggest screening of blood from MS patients for antibodies against different types of milk and milk antigens in order to establish a personalized diet regimen.
Collapse
Affiliation(s)
- Rittika Chunder
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, Bonn, Germany
| | - Thorsten Heider
- Clinic for Neurology, Klinikum St. Marien Amberg, Amberg, Germany
| | - Stefanie Kuerten
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
43
|
Mandato C, Colucci A, Lanzillo R, Staiano A, Scarpato E, Schiavo L, Operto FF, Serra MR, Di Monaco C, Napoli JS, Massa G, Vajro P. Multiple Sclerosis-Related Dietary and Nutritional Issues: An Updated Scoping Review with a Focus on Pediatrics. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1022. [PMID: 37371254 PMCID: PMC10297186 DOI: 10.3390/children10061022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
PURPOSE Lifestyle/dietetic habits play an important role in the development and progression of multiple sclerosis (MS) disease. Here, we examine the basic pathomechanisms underlying intestinal and brain barrier modifications in MS and consider diets and dietary supplementations proposed over time to complement pharmacological therapies for improving disease outcome both in adults and in children. METHODS Scoping literature search about evidence-based findings in MS-related gut-brain axis (GBA) pathophysiology and nutritional issues at all ages. FINDINGS Data show that (1) no universal best diet exists, (2) healthy/balanced diets are, however, necessary to safeguard the adequate intake of all essential nutrients, (3) diets with high intakes of fruits, vegetables, whole grains, and lean proteins that limit processed foods, sugar, and saturated fat appear beneficial for their antioxidant and anti-inflammatory properties and their ability to shape a gut microbiota that respects the gut and brain barriers, (4) obesity may trigger MS onset and/or its less favorable course, especially in pediatric-onset MS. Vitamin D and polyunsaturated fatty acids are the most studied supplements for reducing MS-associated inflammation. CONCLUSIONS Pending results from other and/or newer approaches targeting the GBA (e.g., pre- and probiotics, engineered probiotics, fecal-microbiota transplantation), accurate counseling in choosing adequate diet and maintaining physical activity remains recommended for MS prevention and management both in adults and children.
Collapse
Affiliation(s)
- Claudia Mandato
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Pediatrics Section, University of Salerno, 84081 Baronissi, Salerno, Italy (P.V.)
| | - Angelo Colucci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Pediatrics Section, University of Salerno, 84081 Baronissi, Salerno, Italy (P.V.)
| | - Roberta Lanzillo
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neuroscience, Reproductive Science and Odontostomatology, University of Naples Federico II, 80138 Naples, Naples, Italy
| | - Annamaria Staiano
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, 80138 Naples, Naples, Italy
| | - Elena Scarpato
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, 80138 Naples, Naples, Italy
| | - Luigi Schiavo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Nutrition Section, University of Salerno, 84081 Baronissi, Salerno, Italy
| | - Francesca Felicia Operto
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Pediatric Psychiatry Section, University of Salerno, 84081 Baronissi, Salerno, Italy
| | - Maria Rosaria Serra
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, 80138 Naples, Naples, Italy
| | - Cristina Di Monaco
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neuroscience, Reproductive Science and Odontostomatology, University of Naples Federico II, 80138 Naples, Naples, Italy
| | - Julia Sara Napoli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Pediatrics Section, University of Salerno, 84081 Baronissi, Salerno, Italy (P.V.)
| | - Grazia Massa
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Pediatrics Section, University of Salerno, 84081 Baronissi, Salerno, Italy (P.V.)
| | - Pietro Vajro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Pediatrics Section, University of Salerno, 84081 Baronissi, Salerno, Italy (P.V.)
| |
Collapse
|
44
|
Rocha DN, Carvalho ED, Pires LR, Gardin C, Zanolla I, Szewczyk PK, Machado C, Fernandes R, Stachewicz U, Zavan B, Relvas JB, Pêgo AP. It takes two to remyelinate: A bioengineered platform to study astrocyte-oligodendrocyte crosstalk and potential therapeutic targets in remyelination. BIOMATERIALS ADVANCES 2023; 151:213429. [PMID: 37148597 DOI: 10.1016/j.bioadv.2023.213429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 03/21/2023] [Accepted: 04/12/2023] [Indexed: 05/08/2023]
Abstract
The loss of the myelin sheath insulating axons is the hallmark of demyelinating diseases. These pathologies often lead to irreversible neurological impairment and patient disability. No effective therapies are currently available to promote remyelination. Several elements contribute to the inadequacy of remyelination, thus understanding the intricacies of the cellular and signaling microenvironment of the remyelination niche might help us to devise better strategies to enhance remyelination. Here, using a new in vitro rapid myelinating artificial axon system based on engineered microfibres, we investigated how reactive astrocytes influence oligodendrocyte (OL) differentiation and myelination ability. This artificial axon culture system enables the effective uncoupling of molecular cues from the biophysical properties of the axons, allowing the detailed study of the astrocyte-OL crosstalk. Oligodendrocyte precursor cells (OPCs) were cultured on poly(trimethylene carbonate-co-ε-caprolactone) copolymer electrospun microfibres that served as surrogate axons. This platform was then combined with a previously established tissue engineered glial scar model of astrocytes embedded in 1 % (w/v) alginate matrices, in which astrocyte reactive phenotype was acquired using meningeal fibroblast conditioned medium. OPCs were shown to adhere to uncoated engineered microfibres and differentiate into myelinating OL. Reactive astrocytes were found to significantly impair OL differentiation ability, after six and eight days in a co-culture system. Differentiation impairment was seen to be correlated with astrocytic miRNA release through exosomes. We found significantly reduction on the expression of pro-myelinating miRNAs (miR-219 and miR-338) and an increase in anti-myelinating miRNA (miR-125a-3p) content between reactive and quiescent astrocytes. Additionally, we show that OPC differentiation inhibition could be reverted by rescuing the activated astrocytic phenotype with ibuprofen, a chemical inhibitor of the small rhoGTPase RhoA. Overall, these findings show that modulating astrocytic function might be an interesting therapeutic avenue for demyelinating diseases. The use of these engineered microfibres as an artificial axon culture system will enable the screening for potential therapeutic agents that promote OL differentiation and myelination while providing valuable insight on the myelination/remyelination processes.
Collapse
Affiliation(s)
- Daniela N Rocha
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal; Faculdade de Engenharia da Universidade do Porto (FEUP), 4200-465 Porto, Portugal
| | - Eva D Carvalho
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal; Faculdade de Engenharia da Universidade do Porto (FEUP), 4200-465 Porto, Portugal
| | - Liliana R Pires
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal; Faculdade de Engenharia da Universidade do Porto (FEUP), 4200-465 Porto, Portugal
| | - Chiara Gardin
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy
| | - Ilaria Zanolla
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Piotr K Szewczyk
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, 30-059 Krakow, Poland
| | - Cláudia Machado
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Rui Fernandes
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Urszula Stachewicz
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, 30-059 Krakow, Poland
| | - Barbara Zavan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - João B Relvas
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Department of Biomedicine, Faculty of Medicine, Universidade do Porto, 4200-319 Porto, Portugal
| | - Ana P Pêgo
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-343 Porto, Portugal.
| |
Collapse
|
45
|
Rychlik N, Hundehege P, Budde T. Influence of inflammatory processes on thalamocortical activity. Biol Chem 2023; 404:303-310. [PMID: 36453998 DOI: 10.1515/hsz-2022-0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/12/2022] [Indexed: 12/03/2022]
Abstract
It is known that the thalamus plays an important role in pathological brain conditions involved in demyelinating, inflammatory and neurodegenerative diseases such as Multiple Sclerosis (MS). Beside immune cells and cytokines, ion channels were found to be key players in neuroinflammation. MS is a prototypical example of an autoimmune disease of the central nervous system that is classified as a channelopathy where abnormal ion channel function leads to symptoms and clinical signs. Here we review the influence of the cytokine-ion channel interaction in the thalamocortical system in demyelination and inflammation.
Collapse
Affiliation(s)
- Nicole Rychlik
- Institute of Physiology I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149 Münster, Germany
| | - Petra Hundehege
- Department of Neurology with Institute of Translational Neurology, D-48149 Münster, Germany
| | - Thomas Budde
- Institute of Physiology I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149 Münster, Germany
| |
Collapse
|
46
|
Duarte-Silva E, Meuth SG, Peixoto CA. The role of iron metabolism in the pathogenesis and treatment of multiple sclerosis. Front Immunol 2023; 14:1137635. [PMID: 37006264 PMCID: PMC10064139 DOI: 10.3389/fimmu.2023.1137635] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/21/2023] [Indexed: 03/19/2023] Open
Abstract
Multiple sclerosis is a severe demyelinating disease mediated by cells of the innate and adaptive immune system, especially pathogenic T lymphocytes that produce the pro-inflammatory cytokine granulocyte-macrophage colony stimulating factor (GM-CSF). Although the factors and molecules that drive the genesis of these cells are not completely known, some were discovered and shown to promote the development of such cells, such as dietary factors. In this regard, iron, the most abundant chemical element on Earth, has been implicated in the development of pathogenic T lymphocytes and in MS development via its effects on neurons and glia. Therefore, the aim of this paper is to revise the state-of-art regarding the role of iron metabolism in cells of key importance to MS pathophysiology, such as pathogenic CD4+ T cells and CNS resident cells. Harnessing the knowledge of iron metabolism may aid in the discovery of new molecular targets and in the development of new drugs that tackle MS and other diseases that share similar pathophysiology.
Collapse
Affiliation(s)
- Eduardo Duarte-Silva
- Center for Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, Department of Pharmacology, University of São Paulo, Ribeirão Preto, SP, Brazil
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Ribeirão Preto, SP, Brazil
- *Correspondence: Christina Alves Peixoto, ; Eduardo Duarte-Silva,
| | - Sven G. Meuth
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, PE, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- *Correspondence: Christina Alves Peixoto, ; Eduardo Duarte-Silva,
| |
Collapse
|
47
|
Furman MJ, Meuth SG, Albrecht P, Dietrich M, Blum H, Mares J, Milo R, Hartung HP. B cell targeted therapies in inflammatory autoimmune disease of the central nervous system. Front Immunol 2023; 14:1129906. [PMID: 36969208 PMCID: PMC10034856 DOI: 10.3389/fimmu.2023.1129906] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
Cumulative evidence along several lines indicates that B cells play an important role in the pathological course of multiple sclerosis (MS), neuromyelitisoptica spectrum disorders (NMOSD) and related CNS diseases. This has prompted extensive research in exploring the utility of targeting B cells to contain disease activity in these disorders. In this review, we first recapitulate the development of B cells from their origin in the bone marrow to their migration to the periphery, including the expression of therapy-relevant surface immunoglobulin isotypes. Not only the ability of B cells to produce cytokines and immunoglobulins seems to be essential in driving neuroinflammation, but also their regulatory functions strongly impact pathobiology. We then critically assess studies of B cell depleting therapies, including CD20 and CD19 targeting monoclonal antibodies, as well as the new class of B cell modulating substances, Bruton´s tyrosinekinase (BTK) inhibitors, in MS, NMOSD and MOGAD.
Collapse
Affiliation(s)
- Moritz J. Furman
- Department of Neurology, Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Sven G. Meuth
- Department of Neurology, Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Philipp Albrecht
- Department of Neurology, Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
- Department of Neurology, Maria Hilf Clinic, Moenchengladbach, Germany
| | - Michael Dietrich
- Department of Neurology, Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Heike Blum
- Department of Neurology, Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Jan Mares
- Department of Neurology, Palacky University in Olomouc, Olomouc, Czechia
| | - Ron Milo
- Department of Neurology, Barzilai Medical Center, Ashkelon, Israel
| | - Hans-Peter Hartung
- Department of Neurology, Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
- Department of Neurology, Palacky University in Olomouc, Olomouc, Czechia
- Brain and Mind Center, Medical Faculty, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
48
|
Sun Y, Yu H, Guan Y. Glia Connect Inflammation and Neurodegeneration in Multiple Sclerosis. Neurosci Bull 2023; 39:466-478. [PMID: 36853544 PMCID: PMC10043151 DOI: 10.1007/s12264-023-01034-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/27/2023] [Indexed: 03/01/2023] Open
Abstract
Multiple sclerosis (MS) is regarded as a chronic inflammatory disease that leads to demyelination and eventually to neurodegeneration. Activation of innate immune cells and other inflammatory cells in the brain and spinal cord of people with MS has been well described. However, with the innovation of technology in glial cell research, we have a deep understanding of the mechanisms of glial cells connecting inflammation and neurodegeneration in MS. In this review, we focus on the role of glial cells, including microglia, astrocytes, and oligodendrocytes, in the pathogenesis of MS. We mainly focus on the connection between glial cells and immune cells in the process of axonal damage and demyelinating neuron loss.
Collapse
Affiliation(s)
- Ye Sun
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Haojun Yu
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yangtai Guan
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
49
|
Abstract
Multiple sclerosis (MS) is regarded as a chronic inflammatory disease that leads to demyelination and eventually to neurodegeneration. Activation of innate immune cells and other inflammatory cells in the brain and spinal cord of people with MS has been well described. However, with the innovation of technology in glial cell research, we have a deep understanding of the mechanisms of glial cells connecting inflammation and neurodegeneration in MS. In this review, we focus on the role of glial cells, including microglia, astrocytes, and oligodendrocytes, in the pathogenesis of MS. We mainly focus on the connection between glial cells and immune cells in the process of axonal damage and demyelinating neuron loss.
Collapse
|
50
|
Masanneck L, Räuber S, Schroeter CB, Lehnerer S, Ziemssen T, Ruck T, Meuth SG, Pawlitzki M. Driving time-based identification of gaps in specialised care coverage: An example of neuroinflammatory diseases in Germany. Digit Health 2023; 9:20552076231152989. [PMID: 36762020 PMCID: PMC9903011 DOI: 10.1177/20552076231152989] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 01/03/2023] [Indexed: 01/28/2023] Open
Abstract
Objective Due to the growing complexity in monitoring and treatment of many disorders, disease-specific care and research networks offer patients certified healthcare. However, the networks' ability to provide health services close to patients' homes usually remains vague. Digital Health Technologies (DHTs) help to provide better care, especially if implemented in a targeted manner in regions undersupplied by specialised networks. Therefore, we used a car travel time-based isochrone approach to identify care gaps using the example of the neuroinflammation-focused German healthcare and research networks for multiple sclerosis (MS), myasthenia gravis (MG), myositis and immune-mediated neuropathy. Methods Excellence centres were mapped, and isochrones for 30, 60, 90 and 120 minutes were calculated. The resulting geometric figures were aggregated and used to mask the global human settlement population grid 2019 to estimate German inhabitants that can reach centres within the given periods. Results While 96.48% of Germans can drive to an MS-focused centre within one hour, coverage is lower for the rare disease networks for MG (48.3%), myositis (43.1%) and immune-mediated neuropathy (56.7%). Within 120 minutes, more than 80% of Germans can reach a centre of any network. Besides the generally worse covered rural regions such as North-Eastern Germany, the rare disease networks also show network-specific regional underrepresentation. Conclusion An isochrone-based approach helps identify regions where specialised care is hard to reach, which might be especially troublesome in the case of an often disabled patient collective. Patient care could be improved by focusing deployments of disease-specific DHTs on these areas.
Collapse
Affiliation(s)
- Lars Masanneck
- Department of Neurology, Medical Faculty University Hospital Düsseldorf, Düsseldorf, Germany,Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
| | - Saskia Räuber
- Department of Neurology, Medical Faculty University Hospital Düsseldorf, Düsseldorf, Germany
| | - Christina B Schroeter
- Department of Neurology, Medical Faculty University Hospital Düsseldorf, Düsseldorf, Germany
| | - Sophie Lehnerer
- Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, NeuroCure Clinical Research Center, Berlin, Germany,Centre for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany,Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Digital Health Center, Berlin, Germany
| | - Tjalf Ziemssen
- Department of Neurology, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty University Hospital Düsseldorf, Düsseldorf, Germany
| | - Sven G. Meuth
- Department of Neurology, Medical Faculty University Hospital Düsseldorf, Düsseldorf, Germany
| | - Marc Pawlitzki
- Department of Neurology, Medical Faculty University Hospital Düsseldorf, Düsseldorf, Germany,Marc Pawlitzki, Department of Neurology, Heinrich-Heine University Duesseldorf, Moorenstraße 5, D-40225 Duesseldorf, Germany.
| |
Collapse
|