1
|
Sun R, Ronxhi J, Yang X, Qian MG, Zhang X. Feasibility of a direct binding electrochemiluminescence assay to detect anti-drug antibodies against therapeutic peptides. J Pharm Biomed Anal 2025; 254:116582. [PMID: 39615123 DOI: 10.1016/j.jpba.2024.116582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/20/2024] [Accepted: 11/23/2024] [Indexed: 12/10/2024]
Abstract
The emergence of anti-drug antibodies (ADAs) poses significant impacts on the bioactivity and toxicity of biotherapeutics including proteins and peptides. Developing reliable assays to monitor the magnitudes of ADAs in blood samples is therefore considered a crucial task in animal and human studies throughout the development of biotherapeutics. Peptides represent a significant and fast-growing category of biotherapeutics for the management of a variety of indications. While peptides generally exhibit lower immunogenicity risks compared to biologics of larger sizes, drug developers are still required to conduct the risk-based immunogenicity assessment as mandated by the regulatory authorities. To address the need for efficient detection of ADAs against therapeutic peptides, we established a straightforward electrochemiluminescence immunoassay (ECLIA) based on direct binding strategy. Our assay demonstrates its applicability across various peptide therapeutics including marketed drugs and internal investigational compounds. Through stepwise tuning of the assay procedure, we identified several key factors such as buffer, detection reagent, plate type, and conjugation strategy that collectively contribute to the assay performance. Depending on the drug molecule and positive control antibody, the assay can achieve low single-digit to two-digit ng/ml sensitivity and ideal drug tolerance. In conclusion, this ECLIA platform presents a valuable and generic tool to expedite the development and validation of ADA assays for peptide-based therapeutics.
Collapse
Affiliation(s)
- Ruoxuan Sun
- Global Drug Metabolism, Pharmacokinetics & Modeling, Preclinical & Translational Sciences, Takeda Development Center Americas, Inc., Cambridge, MA 02139, USA.
| | - Janey Ronxhi
- Global Drug Metabolism, Pharmacokinetics & Modeling, Preclinical & Translational Sciences, Takeda Development Center Americas, Inc., Cambridge, MA 02139, USA
| | - Xuemei Yang
- Global Drug Metabolism, Pharmacokinetics & Modeling, Preclinical & Translational Sciences, Takeda Development Center Americas, Inc., Cambridge, MA 02139, USA
| | - Mark G Qian
- Global Drug Metabolism, Pharmacokinetics & Modeling, Preclinical & Translational Sciences, Takeda Development Center Americas, Inc., Cambridge, MA 02139, USA
| | - Xiaobin Zhang
- Global Drug Metabolism, Pharmacokinetics & Modeling, Preclinical & Translational Sciences, Takeda Development Center Americas, Inc., Cambridge, MA 02139, USA.
| |
Collapse
|
2
|
Zhang X, Zhang Y, Rong X, Tang C, Liu H, Yue L, Su R, Wang Y, Qi W. Alkylated RALA-Derived Peptides for Efficient Gene Delivery. Biomacromolecules 2024; 25:8046-8057. [PMID: 39535929 DOI: 10.1021/acs.biomac.4c01355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
RALA is an amphipathic cationic peptide demonstrated to be a low-toxicity and high-efficiency delivery platform for the systemic delivery of nucleic acid therapeutics. This work reports three RALA-derived peptides modified with N-terminal palmitic acid, engineered through amino acid substitutions and truncated sequences. All three peptides have good nucleic acid encapsulation, release and uptake, biocompatibility, and endolysosome escape. The siRNA transfection efficiency is about 90%, and the silencing rate of GA (C16-GLFWHHHARLARALARHLARALRA) exceeds that of lipofectamine 2000 (siRNA concentration = 50 nM). Truncating the peptide chain while retaining a certain amount of arginine ensures an effective particle size. Replacing glutamic acid with three histidines ensures an effective zeta potential and accelerates the endosome escape process through the proton sponge phenomenon. Introducing phenylalanine enhances the carrier-cell interaction. We believe that they are powerful carriers of siRNA therapy and may have good application prospects in treating various diseases.
Collapse
Affiliation(s)
- Xuelin Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yexi Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Xi Rong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Chuanmei Tang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Huiye Liu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Lei Yue
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
- Beyonpep Biotechnology Limited, Tianjin 300110, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| |
Collapse
|
3
|
Ding W, Gu J, Xu W, Wu J, Huang Y, Zhang S, Lin S. The Biosynthesis and Applications of Protein Lipidation. Chem Rev 2024; 124:12176-12212. [PMID: 39441663 DOI: 10.1021/acs.chemrev.4c00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Protein lipidation dramatically affects protein structure, localization, and trafficking via remodeling protein-membrane and protein-protein interactions through hydrophobic lipid moieties. Understanding the biosynthesis of lipidated proteins, whether natural ones or mimetics, is crucial for reconstructing, validating, and studying the molecular mechanisms and biological functions of protein lipidation. In this Perspective, we first provide an overview of the natural enzymatic biosynthetic pathways of protein lipidation in mammalian cells, focusing on the enzymatic machineries and their chemical linkages. We then discuss strategies to biosynthesize protein lipidation in mammalian cells by engineering modification machineries and substrates. Additionally, we explore site-specific protein lipidation biosynthesis in vitro via enzyme-mediated ligations and in vivo primarily through genetic code expansion strategies. We also discuss the use of small molecule tools to modulate the process of protein lipidation biosynthesis. Finally, we provide concluding remarks and discuss future directions for the biosynthesis and applications of protein lipidation.
Collapse
Affiliation(s)
- Wenlong Ding
- Life Sciences Institute, Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 310058, China
- Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
| | - Jiayu Gu
- Department of Medical Oncology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wenyuan Xu
- Life Sciences Institute, Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 310058, China
| | - Jing Wu
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Yiwen Huang
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuai Zhang
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Shixian Lin
- Life Sciences Institute, Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Shaoxing Institute, Zhejiang University, Shaoxing 321000, China
- Department of Medical Oncology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
4
|
Chen W, Xian S, Webber B, DeWolf EL, Schmidt CR, Kilmer R, Liu D, Power EM, Webber MJ. Engineering Supramolecular Nanofiber Depots from a Glucagon-Like Peptide-1 Therapeutic. ACS NANO 2024; 18:31274-31285. [PMID: 39471057 DOI: 10.1021/acsnano.4c10248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Diabetes and obesity have emerged as major global health concerns. Glucagon-like peptide-1 (GLP-1), a natural incretin hormone, stimulates insulin production and suppresses glucagon secretion to stabilize and reduce blood glucose levels and control appetite. The therapeutic use of GLP-1 receptor agonists (e.g., semaglutide) has transformed the standard of care in recent years for treating type 2 diabetes and reversing obesity. The native GLP-1 sequence has a very short half-life, and therapeutic advances have come from molecular engineering to alter the pharmacokinetic profile of synthetic GLP-1 receptor agonists to enable once-weekly administration, reduce the frequency of injection, and improve adherence. Efforts to further extend this profile would offer additional convenience or enable entirely different treatment modalities. Here, an injectable GLP-1 receptor agonist depot is engineered through integration of a prosthetic self-assembling peptide motif to enable supramolecular nanofiber formation and hydrogelation. This supramolecular GLP-1 receptor agonistic (PA-GLP1) offers sustained release in vitro for multiple weeks, supporting long-lasting therapy. Moreover, in a rat model of type 2 diabetes, a single injection of the supramolecular PA-GLP1 formulation achieved sustained serum concentrations for at least 40 days, with an overall reduction in blood glucose levels and reduced weight gain, comparing favorably to daily injections of semaglutide. The general and modular approach is also extensible to other next-generation peptide therapies. Accordingly, the formation of supramolecular nanofiber depots offers a more convenient and long-lasting therapeutic option to manage diabetes and treat metabolic disorders.
Collapse
Affiliation(s)
- Weike Chen
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Sijie Xian
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Bernice Webber
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Emily L DeWolf
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Connor R Schmidt
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Rory Kilmer
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Dongping Liu
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Elizabeth M Power
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Matthew J Webber
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
5
|
Wang Y, Shen L, Wang C, Dong Y, Hua H, Xu J, Zhang Y, Huang H, Huang Z, Zhao F, Xu Z, Qiu Y, Lu J, Ju D, Feng J. Lipidation-dimerization platform unlocks treatment potential of fibroblast growth factor 21 for non-alcoholic steatohepatitis. J Control Release 2024; 376:1130-1142. [PMID: 39510256 DOI: 10.1016/j.jconrel.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Optimizing the druggability of both native and AI-designed bioactive proteins is crucial for realizing their therapeutic potential. A key focus in designing protein-based therapeutics is improving their pharmacokinetic properties. However, a significant challenge is to preserve biological activity while implementing long-acting strategies. Fibroblast growth factor 21 (FGF21), an endogenous hormone with potential as a treatment for non-alcoholic steatohepatitis (NASH), exemplifies this challenge. In this study, we present a novel lipidation-dimerization (LiDi) platform that integrates lipidation with a dimeric form of FGF21 connected by a hydrophilic linker. The lipidation enhances albumin binding, enabling sustained release, while the dimeric structure boosts biological activity. In vivo evaluations of the LiDi FGF21 analogs demonstrated that they offer excellent pharmacokinetic properties and superior efficacy compared to other treatments for NASH. This platform effectively extends the therapeutic half-life of proteins without compromising their activity, substantially broadening the application range of proteins as therapeutics.
Collapse
Affiliation(s)
- Yapeng Wang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, 201203 Shanghai, China; National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., 201203 Shanghai, China
| | - Lei Shen
- Anhui University of Traditional Chinese Medicine School of Pharmacy, 230013 Hefei, China; Yangtze Delta Drug Advanced Research Institute, 226133 Nantong, China; Shanghai Innostar Bio-tech Nantong Co., Ltd., 226133 Nantong, China
| | - Chengcheng Wang
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., 201203 Shanghai, China; School of Pharmacy, Shanghai Jiao Tong University School of Medicine, 200240 Shanghai, China
| | - Yuanzhen Dong
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., 201203 Shanghai, China; Shanghai Duomirui Bio-tech Co., Ltd., 201203 Shanghai, China
| | - Haoju Hua
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., 201203 Shanghai, China; Shanghai Duomirui Bio-tech Co., Ltd., 201203 Shanghai, China
| | - Jun Xu
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., 201203 Shanghai, China; Shanghai Duomirui Bio-tech Co., Ltd., 201203 Shanghai, China
| | - Ying Zhang
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., 201203 Shanghai, China
| | - Hao Huang
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., 201203 Shanghai, China
| | - Zongqing Huang
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., 201203 Shanghai, China; School of Pharmacy, Shanghai Jiao Tong University School of Medicine, 200240 Shanghai, China
| | - Fei Zhao
- Shanghai Innostar Bio-tech Nantong Co., Ltd., 226133 Nantong, China
| | - Zhiru Xu
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., 201203 Shanghai, China; Center for Pharmacological Evaluation and Research, Shanghai Institute of Pharmaceutical Industry Co., Ltd, China State Institute of Pharmaceutical Industry Co., Ltd., 200083 Shanghai, China
| | - Yunliang Qiu
- Shanghai Innostar Bio-tech Nantong Co., Ltd., 226133 Nantong, China
| | - Jianguang Lu
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., 201203 Shanghai, China; Shanghai Duomirui Bio-tech Co., Ltd., 201203 Shanghai, China
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, 201203 Shanghai, China.
| | - Jun Feng
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., 201203 Shanghai, China; Shanghai Duomirui Bio-tech Co., Ltd., 201203 Shanghai, China.
| |
Collapse
|
6
|
Wang D, Huang Y, Yuan J, Wang S, Sheng J, Zhao Y, Zhang H, Wang X, Yu Y, Shi X, He Z, Liu T, Sun B, Sun J. Exploring the optimal chain length of modification module in disulfide bond bridged paclitaxel prodrug nanoassemblies for breast tumor treatment. J Control Release 2024; 375:47-59. [PMID: 39222794 DOI: 10.1016/j.jconrel.2024.08.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
In the prodrug-based self-assembled nanoassemblies, prodrugs usually consist of drug modules, response modules, and modification modules. Modification modules play a critical role in regulating the nano-assembly ability of the prodrugs. Herein, we carried out a "fatty alcoholization" strategy and chose various lengths of aliphatic alcohol chains (AC) as modification modules to construct disulfide bond bridged paclitaxel (PTX) prodrug nanoassemblies. The PTX-AC prodrugs would self-assemble into nanoassemblies (PTX-AC PNs) with higher drug loading, stability, and tumor selectivity than commercial preparations. After comprehensive exploration, we found the chain length (AC12, AC16, AC20, AC24) of modification modules affected the assembly of PTX-AC PNs, further leading to disparate in vivo fate and antitumor efficacy. With the increase of the chain length of the modification modules (from AC12 to AC20), the assembly ability of the nanoassemblies was improved, attributed to the appropriate enhancement of hydrophobic force. When the chain length was further increased to AC24, the excessive hydrophobic force will lead to the aggregation of prodrugs and weaken the assembly ability. Therefore, PTX-AC20 PNs with proper chain length may solve the paradox of efficacy and tolerance in 4 T1 breast tumor owing to their optimal nano-assembly stability and modest redox-sensitivity. In short, this work highlighted the importance of screening optimal modification modules in developing prodrug nanoassemblies.
Collapse
Affiliation(s)
- Danping Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuetong Huang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jun Yuan
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shuo Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingzhe Sheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yingjie Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hao Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiyan Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuanhao Yu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Tian Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Bingjun Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China.
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China.
| |
Collapse
|
7
|
Hoeg-Jensen T, Kruse T, Brand CL, Sturis J, Fledelius C, Nielsen PK, Nishimura E, Madsen AR, Lykke L, Halskov KS, Koščová S, Kotek V, Davis AP, Tromans RA, Tomsett M, Peñuelas-Haro G, Leonard DJ, Orchard MG, Chapman A, Invernizzi G, Johansson E, Granata D, Hansen BF, Pedersen TA, Kildegaard J, Pedersen KM, Refsgaard HHF, Alifrangis L, Fels JJ, Neutzsky-Wulff AV, Sauerberg P, Slaaby R. Glucose-sensitive insulin with attenuation of hypoglycaemia. Nature 2024; 634:944-951. [PMID: 39415004 PMCID: PMC11499270 DOI: 10.1038/s41586-024-08042-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/12/2024] [Indexed: 10/18/2024]
Abstract
The risk of inducing hypoglycaemia (low blood glucose) constitutes the main challenge associated with insulin therapy for diabetes1,2. Insulin doses must be adjusted to ensure that blood glucose values are within the normal range, but matching insulin doses to fluctuating glucose levels is difficult because even a slightly higher insulin dose than needed can lead to a hypoglycaemic incidence, which can be anything from uncomfortable to life-threatening. It has therefore been a long-standing goal to engineer a glucose-sensitive insulin that can auto-adjust its bioactivity in a reversible manner according to ambient glucose levels to ultimately achieve better glycaemic control while lowering the risk of hypoglycaemia3. Here we report the design and properties of NNC2215, an insulin conjugate with bioactivity that is reversibly responsive to a glucose range relevant for diabetes, as demonstrated in vitro and in vivo. NNC2215 was engineered by conjugating a glucose-binding macrocycle4 and a glucoside to insulin, thereby introducing a switch that can open and close in response to glucose and thereby equilibrate insulin between active and less-active conformations. The insulin receptor affinity for NNC2215 increased 3.2-fold when the glucose concentration was increased from 3 to 20 mM. In animal studies, the glucose-sensitive bioactivity of NNC2215 was demonstrated to lead to protection against hypoglycaemia while partially covering glucose excursions.
Collapse
Affiliation(s)
| | - Thomas Kruse
- Global Research Technologies, Novo Nordisk, Bagsværd, Denmark
| | | | - Jeppe Sturis
- Global Drug Discovery, Novo Nordisk, Bagsværd, Denmark
| | | | - Peter K Nielsen
- Global Research Technologies, Novo Nordisk, Bagsværd, Denmark
| | | | - Alice R Madsen
- Global Research Technologies, Novo Nordisk, Bagsværd, Denmark
| | - Lennart Lykke
- Global Research Technologies, Novo Nordisk, Bagsværd, Denmark
| | - Kim S Halskov
- Global Research Technologies, Novo Nordisk, Bagsværd, Denmark
| | | | | | | | | | | | | | | | | | | | | | - Eva Johansson
- Global Research Technologies, Novo Nordisk, Bagsværd, Denmark
| | - Daniele Granata
- Digital Science and Innovation, Novo Nordisk, Bagsværd, Denmark
| | - Bo F Hansen
- Global Drug Discovery, Novo Nordisk, Bagsværd, Denmark
| | | | | | | | | | | | - Johannes J Fels
- Global Research Technologies, Novo Nordisk, Bagsværd, Denmark
| | | | - Per Sauerberg
- Global Drug Discovery, Novo Nordisk, Bagsværd, Denmark
| | - Rita Slaaby
- Global Drug Discovery, Novo Nordisk, Bagsværd, Denmark.
| |
Collapse
|
8
|
Dimmito MP, Marinelli L, Cacciatore I, Toto EC, Albertini B, Fontana A, Pilato S, Reale M, Costantini E, Pesce C, Di Stefano A, Caliceti P. From self-Assembly to healing: Engineering ultra-Small peptides into supramolecular hydrogels for controlled drug release. Int J Pharm 2024; 663:124562. [PMID: 39111351 DOI: 10.1016/j.ijpharm.2024.124562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/31/2024] [Accepted: 08/04/2024] [Indexed: 09/02/2024]
Abstract
The aim of this study was the evaluation of suitability of novel mucoadhesive hydrogel platforms for the delivery of therapeutics useful for the management of disorders related to the gastrointestinal tract (GI). At this purpose, here we describe the preparation, the physicochemical characterization and drug delivery behaviour of novel hydrogels, based on self-assembling lipopeptides (MPD02-09), obtained by covalently conjugating lauric acid (LA) to SNA's peptide derivatives gotten by variously combining D- and L- amino acid residues. LA conjugation was aimed at improving the stability of the precursor peptides, obtaining amphiphilic structures, and triggering the hydrogels formation through the self-assembling. Budesonide (BUD), an anti-inflammatory drug, was selected as model because of its use in the treatment in GI disorders. Preliminary studies were performed to correlate the chemical structure of the conjugates with the key physicochemical properties of the materials for drug delivery. Two lipopeptides, MPD03 and MPD08, were found to form hydrogels (MPD03h and MPD08h, respectively) with characteristics suitable for drug delivery. These materials showed mucoadhesiveness of about 60 %. In vitro studies carried out with BUD loaded hydrogels showed about 70 % drug release within 6 h. Wound healing assessed in Caco-2 and HaCaT cells, showed reduction of cell-free area to values lower than 10 %. Taking together these results MPD03h and MPD08h have been shown to be excellent candidates for BUD delivery.
Collapse
Affiliation(s)
- Marilisa Pia Dimmito
- University "G. d'Annunzio" of Chieti-Pescara, Department of Pharmacy, Via dei Vestini 31, 66100, Chieti, Italy
| | - Lisa Marinelli
- University "G. d'Annunzio" of Chieti-Pescara, Department of Pharmacy, Via dei Vestini 31, 66100, Chieti, Italy.
| | - Ivana Cacciatore
- University "G. d'Annunzio" of Chieti-Pescara, Department of Pharmacy, Via dei Vestini 31, 66100, Chieti, Italy
| | - Eleonora Chiara Toto
- University "G. d'Annunzio" of Chieti-Pescara, Department of Pharmacy, Via dei Vestini 31, 66100, Chieti, Italy
| | - Barbara Albertini
- Dompè Pharmaceutici S.p.A., Via Campo di Pile, s.n.c. 67100 L'Aquila (AQ), Italy
| | - Antonella Fontana
- University "G. d'Annunzio" of Chieti-Pescara, Department of Pharmacy, Via dei Vestini 31, 66100, Chieti, Italy; UdA TechLab Center (UdATech), Via Dei Vestini 31, 66100 Chieti, Italy
| | - Serena Pilato
- University "G. d'Annunzio" of Chieti-Pescara, Department of Pharmacy, Via dei Vestini 31, 66100, Chieti, Italy
| | - Marcella Reale
- Department of Innovative Technologies in Medicine and Dentistry "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy
| | - Erica Costantini
- Department of Innovative Technologies in Medicine and Dentistry "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy
| | - Cristiano Pesce
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
| | - Antonio Di Stefano
- University "G. d'Annunzio" of Chieti-Pescara, Department of Pharmacy, Via dei Vestini 31, 66100, Chieti, Italy; UdA TechLab Center (UdATech), Via Dei Vestini 31, 66100 Chieti, Italy
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
9
|
Harms M, Haase A, Rodríguez-Alfonso A, Löffler J, Almeida-Hernández Y, Ruiz-Blanco YB, Albers D, Gilg A, von Bank F, Zech F, Groß R, Datta M, Jaikishan J, Draphoen B, Habib M, Ständker L, Wiese S, Lindén M, Winter G, Rasche V, Beer AJ, Jumaa H, Abadi AH, Kirchhoff F, Busch M, Dünker N, Sanchez-Garcia E, Münch J. Fatty acid conjugated EPI-X4 derivatives with increased activity and in vivo stability. J Control Release 2024; 373:583-598. [PMID: 39047872 DOI: 10.1016/j.jconrel.2024.07.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/09/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Dysregulation of the CXCL12/CXCR4 axis is implicated in autoimmune, inflammatory, and oncogenic diseases, positioning CXCR4 as a pivotal therapeutic target. We evaluated optimized variants of the specific endogenous CXCR4 antagonist, EPI-X4, addressing existing challenges in stability and potency. Our structure-activity relationship study investigates the conjugation of EPI-X4 derivatives with long-chain fatty acids, enhancing serum albumin interaction and receptor affinity. Molecular dynamic simulations revealed that the lipid moieties stabilize the peptide-receptor interaction through hydrophobic contacts at the receptor's N-terminus, anchoring the lipopeptide within the CXCR4 binding pocket and maintaining essential receptor interactions. Accordingly, lipidation resulted in increased receptor affinities and antagonistic activities. Additionally, by interacting with human serum albumin lipidated EPI-X4 derivatives displayed sustained stability in human plasma and extended circulation times in vivo. Selected candidates showed significant therapeutic potential in human retinoblastoma cells in vitro and in ovo, with our lead derivative exhibiting higher efficacies compared to its non-lipidated counterpart. This study not only elucidates the optimization trajectory for EPI-X4 derivatives but also underscores the intricate interplay between stability and efficacy, crucial for delineating their translational potential in clinical applications.
Collapse
Affiliation(s)
- Mirja Harms
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany.
| | - André Haase
- Institute for Anatomy II, Department of Neuroanatomy, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany
| | - Armando Rodríguez-Alfonso
- Core Facility Functional Peptidomics, Ulm University Medical Center, Ulm 89081, Germany; Core Unit Mass Spectrometry and Proteomics, Ulm University Medical Center, Ulm 89081, Germany
| | - Jessica Löffler
- Department of Nuclear Medicine, Ulm University Medical Center, Ulm 89081, Germany
| | - Yasser Almeida-Hernández
- Computational Bioengineering, Department of Biochemical and Chemical Engineering, 44227 Dortmund, Germany
| | - Yasser B Ruiz-Blanco
- Computational Bioengineering, Department of Biochemical and Chemical Engineering, 44227 Dortmund, Germany
| | - Dan Albers
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | - Andrea Gilg
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | - Franziska von Bank
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | - Fabian Zech
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | - Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | - Moumita Datta
- Institute of Immunology, Ulm University Medical Center, Ulm 89081, Germany
| | - Janeni Jaikishan
- Institute of Immunology, Ulm University Medical Center, Ulm 89081, Germany
| | | | - Monica Habib
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt; Pharmaceutical Chemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| | - Ludger Ständker
- Core Facility Functional Peptidomics, Ulm University Medical Center, Ulm 89081, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Ulm University Medical Center, Ulm 89081, Germany
| | - Mika Lindén
- Institute for Inorganic Chemistry II, 89081 Ulm, Germany
| | - Gordon Winter
- Department of Nuclear Medicine, Ulm University Medical Center, Ulm 89081, Germany
| | - Volker Rasche
- Experimental Cardiovascular Imaging (ExCaVI), Ulm University Medical Center, Ulm 89081, Germany
| | - Ambros J Beer
- Department of Nuclear Medicine, Ulm University Medical Center, Ulm 89081, Germany
| | - Hassan Jumaa
- Institute of Immunology, Ulm University Medical Center, Ulm 89081, Germany
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | - Maike Busch
- Institute for Anatomy II, Department of Neuroanatomy, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany
| | - Nicole Dünker
- Institute for Anatomy II, Department of Neuroanatomy, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany
| | - Elsa Sanchez-Garcia
- Computational Bioengineering, Department of Biochemical and Chemical Engineering, 44227 Dortmund, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| |
Collapse
|
10
|
Thomas N, Sanyal T, Greisen P, Deibler K. Structure-Based Computational Scanning of Chemical Modification Sites in Biologics. ACS OMEGA 2024; 9:36787-36794. [PMID: 39220547 PMCID: PMC11360052 DOI: 10.1021/acsomega.4c05857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
To address the challenges of short half-life, immunogenicity, and nonspecific distribution, chemical modifications of peptide and protein-based drugs have emerged as a versatile strategy for improving their therapeutic efficacy. One such modification involves the derivatization of peptides and proteins with fatty acids, which can protract their half-life, modify their biodistribution, and potentially enable targeted delivery to specific tissues or disease sites of interest. However, the present strategies for the synthesis of such synthetically modified biologics require numerous rounds of experimental testing and often yield unstable, inactive, or heterogeneous products. To address the inefficiencies in designing modified biologics, we developed a hybrid computational workflow that integrates RosettaMatch from the Rosetta suite of protein modeling tools with molecular dynamics (MD) simulations. This approach not only reduces the number of amino acid positions that need to be experimentally tested by targeting only the most promising candidates for modification but also expedites the design of chemically modified biologics with the desired properties, ensuring a rapid and cost-effective development cycle. Although we demonstrate the utility of our method on a peptide therapeutic, GLP-1, with different fatty acid derivatizations, this straightforward approach has the potential to streamline the design process of a diverse range of chemically modified therapeutics, enabling tailored enhancements to their pharmacokinetic properties.
Collapse
Affiliation(s)
| | | | | | - Kristine Deibler
- Digital Science and Innovation, Novo Nordisk Research Center Seattle Inc., Seattle, Washington 98101, United States
| |
Collapse
|
11
|
Bendtsen KM, Harder MWH, Glendorf T, Kjeldsen TB, Kristensen NR, Refsgaard HHF. Predicting human half-life for insulin analogs: An inter-drug approach. Eur J Pharm Biopharm 2024; 201:114375. [PMID: 38897553 DOI: 10.1016/j.ejpb.2024.114375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
An inter-drug approach, applying pharmacokinetic information for insulin analogs in different animal species, rat, dog and pig, performed better compared to allometric scaling for human translation of intra-venous half-life and only required data from a single animal species for reliable predictions. Average fold error (AFE) between 1.2-1.7 were determined for all species and for multispecies allometric scaling AFE was 1.9. A slightly larger prediction error for human half-life was determined from in vitro human insulin receptor affinity data (AFE on 2.3-2.6). The requirements for the inter-drug approach were shown to be a span of at least 2 orders of magnitude in half-life for the included drugs and a shared clearance mechanism. The insulin analogs in this study were the five fatty acid protracted analogs: Insulin degludec, insulin icodec, insulin 320, insulin 338 and insulin 362, as well as the non-acylated analog insulin aspart.
Collapse
Affiliation(s)
- Kristian M Bendtsen
- Digital Sciences & Innovation, Research & Early Development, Novo Nordisk, DK-2760 Måløv, Denmark
| | - Magnus W H Harder
- Global Drug Discovery, Research & Early Development, Novo Nordisk, DK-2760 Måløv, Denmark
| | - Tine Glendorf
- Global Research Technologies, Research & Early Development, Novo Nordisk, DK-2760 Måløv, Denmark
| | - Thomas B Kjeldsen
- Global Research Technologies, Research & Early Development, Novo Nordisk, DK-2760 Måløv, Denmark
| | | | - Hanne H F Refsgaard
- Global Drug Discovery, Research & Early Development, Novo Nordisk, DK-2760 Måløv, Denmark.
| |
Collapse
|
12
|
Zaykov AN, Gelfanov VM, Tagmose TM, Demozay D, Manfè V, Rohlfs R, Rivir M, Perez-Tilve D, Finan B, DiMarchi RD. Toward once-monthly insulin therapy via synergy in two pharmacokinetic protractors: Fc-conjugation and fatty acid acylation. RSC Chem Biol 2024; 5:763-775. [PMID: 39092439 PMCID: PMC11289878 DOI: 10.1039/d4cb00078a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/17/2024] [Indexed: 08/04/2024] Open
Abstract
Pharmacokinetic properties and duration of therapeutic action of a pharmaceutical agent can be significantly extended through the combination of two distinct strategies aimed at increasing plasma half-life: fatty acid acylation and Fc-conjugation. Using insulin as a case study, we demonstrate that a doubly protracted insulin analog produces a substantial prolongation of pharmacodynamic effect to lower blood glucose in STZ-treated mice when compared to the Fc-only counterparts. This enhancement is further corroborated by direct pharmacokinetic measurements in rat and dog models, demonstrating the potential for once-monthly insulin therapy. The results suggest that this approach might have broad application across a diverse spectrum of peptide- and protein-based therapeutics.
Collapse
Affiliation(s)
| | | | - Tina M Tagmose
- Novo Nordisk, Global Research Technologies DK-2760 Maaloev Denmark
| | - Damien Demozay
- Novo Nordisk, Global Research Technologies DK-2760 Maaloev Denmark
| | - Valentina Manfè
- Novo Nordisk, Global Research Technologies DK-2760 Maaloev Denmark
| | - Rebecca Rohlfs
- Novo Nordisk Research Center Indianapolis Indianapolis IN 46241 USA
| | - Marita Rivir
- Department of Pharmacology and Systems Physiology, University of Cincinnati-College of Medicine Cincinnati OH 45267 USA
| | - Diego Perez-Tilve
- Department of Pharmacology and Systems Physiology, University of Cincinnati-College of Medicine Cincinnati OH 45267 USA
| | - Brian Finan
- Novo Nordisk Research Center Indianapolis Indianapolis IN 46241 USA
| | - Richard D DiMarchi
- Novo Nordisk Research Center Indianapolis Indianapolis IN 46241 USA
- Department of Chemistry, Indiana University Bloomington IN 47405 USA
| |
Collapse
|
13
|
Sass-Ørum K, Tagmose TM, Olsen J, Sjölander A, Wahlund PO, Han D, Vegge A, Reedtz-Runge S, Wang Z, Gao X, Wieczorek B, Lamberth K, Lykkegaard K, Nielsen PK, Thøgersen H, Yu M, Wang J, Drustrup J, Zhang X, Garibay P, Hansen K, Hansen AMK, Andersen B. Development of Zalfermin, a Long-Acting Proteolytically Stabilized FGF21 Analog. J Med Chem 2024; 67:11769-11788. [PMID: 39013015 DOI: 10.1021/acs.jmedchem.4c00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Here, we describe the development of the FGF21 analog zalfermin (NNC0194-0499, 15), intended for once-weekly sc dosing. Protein engineering was needed to address inherent druggability issues of the natural FGF21 hormone. Thus, deamidation of Asp121 was solved by mutation to glutamine, and oxidation of Met168 was solved by mutation to leucine. N-terminal region degradation by dipeptidyl peptidase IV was prevented by alanine residue elongation. To prevent inactivating metabolism by fibroblast activation protein and carboxypeptidase-like activity in the C-terminal region, and to achieve t1/2 extension (53 h in cynomolgus monkeys), we introduced a C18 fatty diacid at the penultimate position 180. The fatty diacid binds albumin in a reversible manner, such that the free fraction of zalfermin potently activates the FGF-receptor complex and retains receptor selectivity compared with FGF21, providing strong efficacy on body weight loss in diet-induced obese mice. Zalfermin is currently being clinically evaluated for the treatment of metabolic dysfunction-associated steatohepatitis.
Collapse
Affiliation(s)
- Kristian Sass-Ørum
- Novo Nordisk A/S, Global Research Technologies, DK-2760 Maaloev, Denmark
| | | | - Jørgen Olsen
- Novo Nordisk A/S, Global Research Technologies, DK-2760 Maaloev, Denmark
| | - Annika Sjölander
- Novo Nordisk A/S, Global Research Technologies, DK-2760 Maaloev, Denmark
| | - Per-Olof Wahlund
- Novo Nordisk A/S, Global Research Technologies, DK-2760 Maaloev, Denmark
| | - Dan Han
- Novo Nordisk A/S, Novo Nordisk Research Center China, Beijing 102206, China
| | - Andreas Vegge
- Novo Nordisk A/S, Global Drug Discovery, DK-2760 Maaloev, Denmark
| | | | - Zhe Wang
- Novo Nordisk A/S, Novo Nordisk Research Center China, Beijing 102206, China
| | - Xiang Gao
- Novo Nordisk A/S, Novo Nordisk Research Center China, Beijing 102206, China
| | - Birgit Wieczorek
- Novo Nordisk A/S, Global Research Technologies, DK-2760 Maaloev, Denmark
| | - Kasper Lamberth
- Novo Nordisk A/S, Global Drug Discovery, DK-2760 Maaloev, Denmark
| | | | | | - Henning Thøgersen
- Novo Nordisk A/S, Global Research Technologies, DK-2760 Maaloev, Denmark
| | - Mingrui Yu
- Novo Nordisk A/S, Novo Nordisk Research Center China, Beijing 102206, China
| | - Jianhua Wang
- Novo Nordisk A/S, Novo Nordisk Research Center China, Beijing 102206, China
| | - Jørn Drustrup
- Novo Nordisk A/S, Global Research Technologies, DK-2760 Maaloev, Denmark
| | - Xujia Zhang
- Novo Nordisk A/S, Novo Nordisk Research Center China, Beijing 102206, China
| | - Patrick Garibay
- Novo Nordisk A/S, Global Research Technologies, DK-2760 Maaloev, Denmark
| | - Kristian Hansen
- Novo Nordisk A/S, Global Drug Discovery, DK-2760 Maaloev, Denmark
| | | | | |
Collapse
|
14
|
Nielsen JC, Hjo Rringgaard C, Nygaard MMR, Wester A, Elster L, Porsgaard T, Mikkelsen RB, Rasmussen S, Madsen AN, Schlein M, Vrang N, Rigbolt K, Dalbo Ge LS. Machine-Learning-Guided Peptide Drug Discovery: Development of GLP-1 Receptor Agonists with Improved Drug Properties. J Med Chem 2024; 67:11814-11826. [PMID: 38977267 DOI: 10.1021/acs.jmedchem.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Peptide-based drug discovery has surged with the development of peptide hormone-derived analogs for the treatment of diabetes and obesity. Machine learning (ML)-enabled quantitative structure-activity relationship (QSAR) approaches have shown great promise in small molecule drug discovery but have been less successful in peptide drug discovery due to limited data availability. We have developed a peptide drug discovery platform called streaMLine, enabling rigorous design, synthesis, screening, and ML-driven analysis of large peptide libraries. Using streaMLine, this study systematically explored secretin as a peptide backbone to generate potent, selective, and long-acting GLP-1R agonists with improved physicochemical properties. We synthesized and screened a total of 2688 peptides and applied ML-guided QSAR to identify multiple options for designing stable and potent GLP-1R agonists. One candidate, GUB021794, was profiled in vivo (S.C., 10 nmol/kg QD) and showed potent body weight loss in diet-induced obese mice and a half-life compatible with once-weekly dosing.
Collapse
Affiliation(s)
| | | | | | - Anita Wester
- Gubra, Ho̷rsholm Kongevej 11B, Ho̷rsholm 2970, Denmark
| | | | | | | | | | | | | | - Niels Vrang
- Gubra, Ho̷rsholm Kongevej 11B, Ho̷rsholm 2970, Denmark
| | | | | |
Collapse
|
15
|
Cai G, Bao Y, Li Q, Hsu PH, Xia J, Ngo JCK. Design of a covalent protein-protein interaction inhibitor of SRPKs to suppress angiogenesis and invasion of cancer cells. Commun Chem 2024; 7:144. [PMID: 38937565 PMCID: PMC11211491 DOI: 10.1038/s42004-024-01230-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024] Open
Abstract
Serine-arginine (SR) proteins are splicing factors that play essential roles in both constitutive and alternative pre-mRNA splicing. Phosphorylation of their C-terminal RS domains by SR protein kinases (SRPKs) regulates their localization and diverse cellular activities. Dysregulation of phosphorylation has been implicated in many human diseases, including cancers. Here, we report the development of a covalent protein-protein interaction inhibitor, C-DBS, that targets a lysine residue within the SRPK-specific docking groove to block the interaction and phosphorylation of the prototypic SR protein SRSF1. C-DBS exhibits high specificity and conjugation efficiency both in vitro and in cellulo. This self-cell-penetrating inhibitor attenuates the phosphorylation of endogenous SR proteins and subsequently inhibits the angiogenesis, migration, and invasion of cancer cells. These findings provide a new foundation for the development of covalent SRPK inhibitors for combatting diseases such as cancer and viral infections and overcoming the resistance encountered by ATP-competitive inhibitors.
Collapse
Affiliation(s)
- Gongli Cai
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Yishu Bao
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Qingyun Li
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Pang-Hung Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Jacky Chi Ki Ngo
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
- Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
- Center for Protein Science and Crystallography, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
| |
Collapse
|
16
|
Liu J, Zhou Y, Lyu Q, Yao X, Wang W. Targeted protein delivery based on stimuli-triggered nanomedicine. EXPLORATION (BEIJING, CHINA) 2024; 4:20230025. [PMID: 38939867 PMCID: PMC11189579 DOI: 10.1002/exp.20230025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/07/2023] [Indexed: 06/29/2024]
Abstract
Protein-based drugs have shown unique advantages to treat various diseases in recent years. However, most protein therapeutics in clinical use are limited to extracellular targets with low delivery efficiency. To realize targeted protein delivery, a series of stimuli-triggered nanoparticle formulations have been developed to improve delivery efficiency and reduce off-target release. These smart nanoparticles are designed to release cargo proteins in response to either internal or external stimuli at pathological tissues. In this way, varieties of protein-based drugs including antibodies, enzymes, and pro-apoptotic proteins can be effectively delivered to desired sites for the treatment of cancer, inflammation, metabolic diseases, and so on with minimal side effects. In this review, recent advances in the design of stimuli-triggered nanomedicine for targeted protein delivery in different biomedical applications will be discussed. A deeper understanding of these emerging strategies helps develop more efficient protein delivery systems for clinical use in the future.
Collapse
Affiliation(s)
- Jinzhao Liu
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Dr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongChina
| | - Yang Zhou
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Dr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongChina
| | - Qingyang Lyu
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Dr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongChina
| | - Xiaotong Yao
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- Department of ChemistryFaculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Weiping Wang
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Dr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongChina
| |
Collapse
|
17
|
Shangguan W, Li X, Wang Y, Huang Z, Dong Y, Feng M, Feng J. Design and Biological Evaluation of the Long-Acting C5-Inhibited Ornithodoros moubata Complement Inhibitor (OmCI) Modified with Fatty Acid. Bioconjug Chem 2024; 35:653-664. [PMID: 38593046 DOI: 10.1021/acs.bioconjchem.4c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Disorder of complement response is a significant pathogenic factor causing some autoimmune and inflammation diseases. The Ornithodoros moubata Complement Inhibitor (OmCI), a small 17 kDa natural protein, was initially extracted from soft tick salivary glands. The protein was found binding to complement C5 specifically, inhibiting the activation of the complement pathway, which is a successful therapeutic basis of complement-mediated diseases. However, a short half-life due to rapid renal clearance is a common limitation of small proteins for clinical application. In this study, we extended the half-life of OmCI by modifying it with fatty acid, which was a method used to improve the pharmacokinetics of native peptides and proteins. Five OmCI mutants were initially designed, and single-site cysteine mutation was introduced to each of them. After purification, four OmCI mutants were obtained that showed similar in vitro biological activities. Three mutants of them were subsequently coupled with different fatty acids by nucleophilic substitution. In total, 15 modified derivatives were screened and tested for anticomplement activity in vitro. The results showed that coupling with fatty acid would not significantly affect their complement-inhibitory activity (CH50 and AH50). OmCIT90C-CM02 and OmCIT90C-CM05 were validated as the applicable OmCI bioconjugates for further pharmacokinetic assessments, and both showed improved plasma half-life in mice compared with unmodified OmCI (15.86, 17.96 vs 2.57 h). In summary, our data demonstrated that OmCI conjugated with fatty acid could be developed as the potential long-acting C5 complement inhibitor in the clinic.
Collapse
Affiliation(s)
- Wenwen Shangguan
- School of Pharmacy, Fudan University, 201203 Shanghai, China
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 201203 Shanghai, China
| | - Xiaowan Li
- School of Pharmacy, Fudan University, 201203 Shanghai, China
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 201203 Shanghai, China
| | - Yandan Wang
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 201203 Shanghai, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Zongqing Huang
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 201203 Shanghai, China
- Shanghai Duomirui Biotechnology Co Ltd, 201203 Shanghai, China
| | - Yuanzhen Dong
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 201203 Shanghai, China
- Shanghai Duomirui Biotechnology Co Ltd, 201203 Shanghai, China
| | - Meiqing Feng
- School of Pharmacy, Fudan University, 201203 Shanghai, China
| | - Jun Feng
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 201203 Shanghai, China
| |
Collapse
|
18
|
Li X, Shangguan W, Yang X, Hu X, Li Y, Zhao W, Feng M, Feng J. Influence of Lipopolysaccharide-Interacting Peptides Fusion with Endolysin LysECD7 and Fatty Acid Derivatization on the Efficacy against Acinetobacter baumannii Infection In Vitro and In Vivo. Viruses 2024; 16:760. [PMID: 38793641 PMCID: PMC11125741 DOI: 10.3390/v16050760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Acinetobacter baumannii has developed multiple drug resistances, posing a significant threat to antibiotic efficacy. LysECD7, an endolysin derived from phages, could be a promising therapeutic agent against multi-drug resistance A. baumannii. In this study, in order to further enhance the antibacterial efficiency of the engineered LysECD7, a few lipopolysaccharide-interacting peptides (Li5, MSI594 and Li5-MSI) were genetically fused with LysECD7. Based on in vitro antibacterial activity, the fusion protein Lys-Li5-MSI was selected for further modifications aimed at extending its half-life. A cysteine residue was introduced into Lys-Li5-MSI through mutation (Lys-Li5-MSIV12C), followed by conjugation with a C16 fatty acid chain via a protonation substitution reaction(V12C-C16). The pharmacokinetic profile of V12C-C16 exhibited a more favorable characteristic in comparison to Lys-Li5-MSI, thereby resulting in enhanced therapeutic efficacy against lethal A. baumannii infection in mice. The study provides valuable insights for the development of novel endolysin therapeutics and proposes an alternative therapeutic strategy for combating A. baumannii infections.
Collapse
Affiliation(s)
- Xiaowan Li
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | | | - Xiaoqian Yang
- Chia Tai Tianqing Pharmaceutical Group Co., Ltd., Nanjing 210046, China
| | - Xiaoyue Hu
- China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Yanan Li
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wenjie Zhao
- China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Meiqing Feng
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jun Feng
- China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| |
Collapse
|
19
|
Zhang C, Yang X, Wu L, Liu F, Dong K, Guo C, Gong L, Dong G, Shi Y, Gu Z, Liu X, Liu S, Wu J, Su F. Site-Specifically Modified Peptide Inhibitors of Protein Tyrosine Phosphatase 1B and T-Cell Protein Tyrosine Phosphatase with Enhanced Stability and Improved In Vivo Long-Acting Activity. ACS Pharmacol Transl Sci 2024; 7:1426-1437. [PMID: 38751623 PMCID: PMC11091969 DOI: 10.1021/acsptsci.4c00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 05/18/2024]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) and TC-PTP can function in a coordinated manner to regulate diverse biological processes including insulin and leptin signaling, T-cell activation, and tumor antigen presentation, which makes them potential targets for several therapeutic applications. We have previously demonstrated that the lipidated BimBH3 peptide analogues were a new class of promising PTP1B inhibitors with once-weekly antidiabetic potency. Herein, we chemically synthesized two series of BimBH3 analogues via site-specific modification and studied their structure-activity relationship. The screened analogues S2, S6, A2-14, A2-17, A2-20, and A2-21 exhibited an improved PTP1B/TC-PTP dual inhibitory activity and achieved good stability in the plasma of mice and dogs, which indicated long-acting potential. In mouse models of type 2 diabetes mellitus (T2DM), the selected analogues S6, S7, A2-20, and A2-21 with an excellent target activity and plasma stability generated once-weekly therapeutic potency for T2DM at lower dosage (0.5 μmol/kg). In addition, evidence was provided to confirm the cell permeability and targeted enrichment of the BimBH3 analogues. In summary, we report here that site-specific modification and long fatty acid conjugation afforded cell-permeable peptidomimetic analogues of BimBH3 with enhanced stability, in vivo activity, and long-acting pharmacokinetic profile. Our findings could guide the further optimization of BimBH3 analogues and provide a proof-of-concept for PTP1B/TC-PTP targeting as a new therapeutic approach for T2DM, which may facilitate the discovery and development of alternative once-weekly anti-T2DM drug candidates.
Collapse
Affiliation(s)
- Chuanliang Zhang
- State
Key Laboratory Base of Eco-chemical Engineering, College of Chemical
Engineering, Qingdao University of Science
and Technology, Qingdao 266042, China
- School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, China
- Marine
Biomedical Research Institute, Ocean University
of China, Qingdao 266003, China
| | - Xianmin Yang
- State
Key Laboratory Base of Eco-chemical Engineering, College of Chemical
Engineering, Qingdao University of Science
and Technology, Qingdao 266042, China
| | - Lijuan Wu
- School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, China
- Marine
Biomedical Research Institute, Ocean University
of China, Qingdao 266003, China
| | - Fei Liu
- Joincare
Pharmaceutical Group Industry Co., Ltd, Shenzhen 518000, China
| | - Kehong Dong
- State
Key Laboratory Base of Eco-chemical Engineering, College of Chemical
Engineering, Qingdao University of Science
and Technology, Qingdao 266042, China
| | - Chuanlong Guo
- State
Key Laboratory Base of Eco-chemical Engineering, College of Chemical
Engineering, Qingdao University of Science
and Technology, Qingdao 266042, China
| | - Liyan Gong
- State
Key Laboratory Base of Eco-chemical Engineering, College of Chemical
Engineering, Qingdao University of Science
and Technology, Qingdao 266042, China
| | - Guozhen Dong
- State
Key Laboratory Base of Eco-chemical Engineering, College of Chemical
Engineering, Qingdao University of Science
and Technology, Qingdao 266042, China
| | - Yiying Shi
- State
Key Laboratory Base of Eco-chemical Engineering, College of Chemical
Engineering, Qingdao University of Science
and Technology, Qingdao 266042, China
| | - Zongwen Gu
- State
Key Laboratory Base of Eco-chemical Engineering, College of Chemical
Engineering, Qingdao University of Science
and Technology, Qingdao 266042, China
| | - Xiaochun Liu
- School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, China
- Marine
Biomedical Research Institute, Ocean University
of China, Qingdao 266003, China
| | - Shan Liu
- Marine
Biomedical Research Institute, Ocean University
of China, Qingdao 266003, China
| | - Juan Wu
- Marine
Biomedical Research Institute, Ocean University
of China, Qingdao 266003, China
| | - Feng Su
- State
Key Laboratory Base of Eco-chemical Engineering, College of Chemical
Engineering, Qingdao University of Science
and Technology, Qingdao 266042, China
| |
Collapse
|
20
|
Abdallah M, Lin L, Styles IK, Mörsdorf A, Grace JL, Gracia G, Landersdorfer CB, Nowell CJ, Quinn JF, Whittaker MR, Trevaskis NL. Impact of conjugation to different lipids on the lymphatic uptake and biodistribution of brush PEG polymers. J Control Release 2024; 369:146-162. [PMID: 38513730 DOI: 10.1016/j.jconrel.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/28/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
Delivery to peripheral lymphatics can be achieved following interstitial administration of nano-sized delivery systems (nanoparticles, liposomes, dendrimers etc) or molecules that hitchhike on endogenous nano-sized carriers (such as albumin). The published work concerning the hitchhiking approach has mostly focussed on the lymphatic uptake of vaccines conjugated directly to albumin binding moieties (ABMs such as lipids, Evans blue dye derivatives or peptides) and their subsequent trafficking into draining lymph nodes. The mechanisms underpinning access and transport of these constructs into lymph fluid, including potential interaction with other endogenous nanocarriers such as lipoproteins, have largely been ignored. Recently, we described a series of brush polyethylene glycol (PEG) polymers containing end terminal short-chain or medium-chain hydrocarbon tails (1C2 or 1C12, respectively), cholesterol moiety (Cho), or medium-chain or long-chain diacylglycerols (2C12 or 2C18, respectively). We evaluated the association of these materials with albumin and lipoprotein in rat plasma, and their intravenous (IV) and subcutaneous (SC) pharmacokinetic profiles. Here we fully detail the association of this suite of polymers with albumin and lipoproteins in rat lymph, which is expected to facilitate lymph transport of the materials from the SC injection site. Additionally, we characterise the thoracic lymph uptake, tissue and lymph node biodistribution of the lipidated brush PEG polymers following SC administration to thoracic lymph cannulated rats. All polymers had moderate lymphatic uptake in rats following SC dosing with the lymph uptake higher for 1C2-PEG, 2C12-PEG and 2C18-PEG (5.8%, 5.9% and 6.7% dose in lymph, respectively) compared with 1C12-PEG and Cho-PEG (both 1.5% dose in lymph). The enhanced lymph uptake of 1C2-PEG, 2C12-PEG and 2C18-PEG appeared related to their association profile with different lipoproteins. The five polymers displayed different biodistribution patterns in major organs and tissues in mice. All polymers reached immune cells deep within the inguinal lymph nodes of mice following SC dosing. The ability to access these immune cells suggests the potential of the polymers as platforms for the delivery of vaccines and immunotherapies. Future studies will focus on evaluating the lymphatic targeting and therapeutic potential of drug or vaccine-loaded polymers in pre-clinical disease models.
Collapse
Affiliation(s)
- Mohammad Abdallah
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Lihuan Lin
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Ian K Styles
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Alexander Mörsdorf
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - James L Grace
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Gracia Gracia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Cornelia B Landersdorfer
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Cameron J Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - John F Quinn
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia; Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton, VIC, Australia
| | - Michael R Whittaker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia; Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
| |
Collapse
|
21
|
Ding B, Zhu Z, Guo C, Li J, Gan Y, Yu M. Oral peptide therapeutics for diabetes treatment: State-of-the-art and future perspectives. Acta Pharm Sin B 2024; 14:2006-2025. [PMID: 38799624 PMCID: PMC11120284 DOI: 10.1016/j.apsb.2024.02.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/04/2023] [Accepted: 12/26/2023] [Indexed: 05/29/2024] Open
Abstract
Diabetes, characterized by hyperglycemia, is a major cause of death and disability worldwide. Peptides, such as insulin and glucagon-like peptide-1 (GLP-1) analogs, have shown promise as treatments for diabetes due to their ability to mimic or enhance insulin's actions in the body. Compared to subcutaneous injection, oral administration of anti-diabetic peptides is a preferred approach. However, biological barriers significantly reduce the efficacy of oral peptide therapeutics. Recent advancements in drug delivery systems and formulation techniques have greatly improved the oral delivery of peptide therapeutics and their efficacy in treating diabetes. This review will highlight (1) the benefits of oral anti-diabetic peptide therapeutics; (2) the biological barriers for oral peptide delivery, including pH and enzyme degradation, intestinal mucosa barrier, and biodistribution barrier; (3) the delivery platforms to overcome these biological barriers. Additionally, the review will discuss the prospects in this field. The information provided in this review will serve as a valuable guide for future developments in oral anti-diabetic peptide therapeutics.
Collapse
Affiliation(s)
- Bingwen Ding
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhu Zhu
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Cong Guo
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaxin Li
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Gan
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Miaorong Yu
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Bjørn-Yoshimoto WE, Ramiro IBL, Koch TL, Engholm E, Yeung HY, Sørensen KK, Goddard CM, Jensen KL, Smith NA, Martin LF, Smith BJ, Madsen KL, Jensen KJ, Patwardhan A, Safavi-Hemami H. Venom-inspired somatostatin receptor 4 (SSTR4) agonists as new drug leads for peripheral pain conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591104. [PMID: 38746149 PMCID: PMC11092515 DOI: 10.1101/2024.04.29.591104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Persistent pain affects one in five people worldwide, often with severely debilitating consequences. Current treatment options, which can be effective for mild or acute pain, are ill-suited for moderate-to-severe persistent pain, resulting in an urgent need for new therapeutics. In recent years, the somatostatin receptor 4 (SSTR 4 ), which is expressed in sensory neurons of the peripheral nervous system, has emerged as a promising target for pain relief. However, the presence of several closely related receptors with similar ligand-binding surfaces complicates the design of receptor-specific agonists. In this study, we report the discovery of a potent and selective SSTR 4 peptide, consomatin Fj1, derived from extensive venom gene datasets from marine cone snails. Consomatin Fj1 is a mimetic of the endogenous hormone somatostatin and contains a minimized binding motif that provides stability and drives peptide selectivity. Peripheral administration of synthetic consomatin Fj1 provided analgesia in mouse models of postoperative and neuropathic pain. Using structure-activity studies, we designed and functionally evaluated several Fj1 analogs, resulting in compounds with improved potency and selectivity. Our findings present a novel avenue for addressing persistent pain through the design of venom-inspired SSTR 4 -selective pain therapeutics. One Sentence Summary Venom peptides from predatory marine mollusks provide new leads for treating peripheral pain conditions through a non-opioid target.
Collapse
|
23
|
Kjeldsen T, Andersen AS, Hubálek F, Johansson E, Kreiner FF, Schluckebier G, Kurtzhals P. Molecular engineering of insulin for recombinant expression in yeast. Trends Biotechnol 2024; 42:464-478. [PMID: 37880066 DOI: 10.1016/j.tibtech.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023]
Abstract
Since the first administration of insulin to a person with diabetes in 1922, scientific contributions from academia and industry have improved insulin therapy and access. The pharmaceutical need for insulin is now more than 40 tons annually, half of which is produced by recombinant secretory expression in Saccharomyces cerevisiae. We discuss how, in this yeast species, adaptation of insulin precursors by removable structural elements is pivotal for efficient secretory expression. The technologies reviewed have been implemented at industrial scale and are seminal for the supply of human insulin and insulin analogues to people with diabetes now and in the future. Engineering of a target protein with removable structural elements may provide a general approach to yield optimisation.
Collapse
|
24
|
Dong Y, Zhang J, Xu H, Shen H, Lu Q, Feng J, Cai Z. Design of a novel long-acting dual GLP-1/GIP receptor agonist. Bioorg Med Chem 2024; 100:117630. [PMID: 38330849 DOI: 10.1016/j.bmc.2024.117630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/21/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Tirzepatide, the first approved dual GLP-1/GIP receptor agonist (RA), has achieved better clinical outcomes than other GLP-1RAs. However, it is an imbalanced dual GIP/GLP-1 RA, and it remains unclear whether the degree of imbalance is optimal. Here, we present a novel long-acting dual GLP-1/GIP RA that exhibits better activity than tirzepatide toward GLP-1R. A candidate conjugate, D314, identified via peptide design, synthesis, conjugation, and experimentation, was evaluated using chronic studies in db/db and diet induced obese (DIO) mice. D314 achieved favorable blood glucose and body weight-lowering effects, equal to those of tirzepatide. Its half-life in dogs (T1/2: 78.3 ± 14.01 h) reveals its suitability for once-weekly administration in humans. This preclinical study suggests the potential role of D314 as an effective agent for treating T2DM and obesity.
Collapse
Affiliation(s)
- Yuanzhen Dong
- China State Institute of Pharmaceutical Industry, 201203 Shanghai, China; Shanghai Duomirui Biotechnology Ltd, 201203 Shanghai, China
| | - Jinhua Zhang
- China State Institute of Pharmaceutical Industry, 201203 Shanghai, China
| | - Hongjiang Xu
- Nanjing Chia Tai Tianqing Pharmaceutical Co., Ltd, Nanjing, China
| | - Hengqiao Shen
- Nanjing Chia Tai Tianqing Pharmaceutical Co., Ltd, Nanjing, China
| | - Qin Lu
- Nanjing Chia Tai Tianqing Pharmaceutical Co., Ltd, Nanjing, China
| | - Jun Feng
- China State Institute of Pharmaceutical Industry, 201203 Shanghai, China; Shanghai Duomirui Biotechnology Ltd, 201203 Shanghai, China.
| | - Zhengyan Cai
- China State Institute of Pharmaceutical Industry, 201203 Shanghai, China.
| |
Collapse
|
25
|
Elter JK, Liščáková V, Moravec O, Vragović M, Filipová M, Štěpánek P, Šácha P, Hrubý M. Solid-Phase Synthesis as a Tool to Create Exactly Defined, Branched Polymer Vectors for Cell Membrane Targeting. Macromolecules 2024; 57:1050-1071. [PMID: 38370914 PMCID: PMC10867888 DOI: 10.1021/acs.macromol.3c02600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/09/2024] [Indexed: 02/20/2024]
Abstract
Modern drug formulations often require, besides the active drug molecule, auxiliaries to enhance their pharmacological properties. Tailor-made, biocompatible polymers covalently connected to the drug molecule can fulfill this function by increasing its solubility, reducing its toxicity, and guiding it to a specific target. If targeting membrane-bound proteins, localization of the drug close to the cell membrane and its target is beneficial to increase drug efficiency and residence time. In this study, we present the synthesis of highly defined, branched polymeric structures with membrane-binding properties. One to three hydrophilic poly(ethylene oxide) or poly(2-ethyloxazoline) side chains were connected via a peptoid backbone using a two-step iterative protocol for solid-phase peptoid synthesis. Additional groups, e.g., a hydrophobic anchor for membrane attachment, were introduced. Due to the nature of solid-phase synthesis, the number and order of the side chains and additional units can be precisely defined. The method proved to be versatile for the generation of multifunctional, branched polymeric structures of molecular weights up to approximately 7000 g mol-1. The behavior of all compounds towards biological membranes and cells was investigated using liposomes as cell membrane models, HEK293 and U251-MG cell lines, and red blood cells, thereby demonstrating their potential value as drug auxiliaries with cell membrane affinity.
Collapse
Affiliation(s)
- Johanna K. Elter
- Institute
of Macromolecular Chemistry, CAS Heyrovského
nám. 2, 162 06, Praha 6, Czech Republic
| | - Veronika Liščáková
- Institute
of Organic Chemistry and Biochemistry, CAS Flemingovo nám. 2, 166 10, Praha 6, Czech Republic
- First
Faculty of Medicine, Charles University
Kateřinská, 1660/32, 121 08, Praha 2, Czech Republic
| | - Oliver Moravec
- Institute
of Macromolecular Chemistry, CAS Heyrovského
nám. 2, 162 06, Praha 6, Czech Republic
| | - Martina Vragović
- Institute
of Macromolecular Chemistry, CAS Heyrovského
nám. 2, 162 06, Praha 6, Czech Republic
| | - Marcela Filipová
- Institute
of Macromolecular Chemistry, CAS Heyrovského
nám. 2, 162 06, Praha 6, Czech Republic
| | - Petr Štěpánek
- Institute
of Macromolecular Chemistry, CAS Heyrovského
nám. 2, 162 06, Praha 6, Czech Republic
| | - Pavel Šácha
- Institute
of Organic Chemistry and Biochemistry, CAS Flemingovo nám. 2, 166 10, Praha 6, Czech Republic
| | - Martin Hrubý
- Institute
of Macromolecular Chemistry, CAS Heyrovského
nám. 2, 162 06, Praha 6, Czech Republic
| |
Collapse
|
26
|
Dean TT, Jelú-Reyes J, Allen AC, Moore TW. Peptide-Drug Conjugates: An Emerging Direction for the Next Generation of Peptide Therapeutics. J Med Chem 2024; 67:1641-1661. [PMID: 38277480 PMCID: PMC10922862 DOI: 10.1021/acs.jmedchem.3c01835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Building on recent advances in peptide science, medicinal chemists have developed a hybrid class of bioconjugates, called peptide-drug conjugates, that demonstrate improved efficacy compared to peptides and small molecules independently. In this Perspective, we discuss how the conjugation of synergistic peptides and small molecules can be used to overcome complex disease states and resistance mechanisms that have eluded contemporary therapies because of their multi-component activity. We highlight how peptide-drug conjugates display a multi-factor therapeutic mechanism similar to that of antibody-drug conjugates but also demonstrate improved therapeutic properties such as less-severe off-target effects and conjugation strategies with greater site-specificity. The many considerations that go into peptide-drug conjugate design and optimization, such as peptide/small-molecule pairing and chemo-selective chemistries, are discussed. We also examine several peptide-drug conjugate series that demonstrate notable activity toward complex disease states such as neurodegenerative disorders and inflammation, as well as viral and bacterial targets with established resistance mechanisms.
Collapse
|
27
|
Kruse T, Østergaard S. Redefining peptide therapeutics with semaglutide. Nat Chem 2024; 16:296. [PMID: 38321235 DOI: 10.1038/s41557-023-01434-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Affiliation(s)
- Thomas Kruse
- Research Chemistry, Novo Nordisk Park, Maaloev, Denmark.
| | | |
Collapse
|
28
|
Abdallah M, Lin L, Styles IK, Mörsdorf A, Grace JL, Gracia G, Nowell C, Quinn JF, Landersdorfer CB, Whittaker MR, Trevaskis NL. Functionalisation of brush polyethylene glycol polymers with specific lipids extends their elimination half-life through association with natural lipid trafficking pathways. Acta Biomater 2024; 174:191-205. [PMID: 38086497 DOI: 10.1016/j.actbio.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/08/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023]
Abstract
Polymeric prodrugs have been applied to control the delivery of various types of therapeutics. Similarly, conjugation of peptide therapeutics to lipids has been used to prolong systemic exposure. Here, we extend on these two approaches by conjugating brush polyethylene glycol (PEG) polymers with different lipid components including short-chain (1C2) or medium-chain (1C12) monoalkyl hydrocarbon tails, cholesterol (Cho), and diacylglycerols composed of two medium-chain (2C12) or long-chain (2C18) fatty acids. We uniquely evaluate the integration of these lipid-polymers into endogenous lipid trafficking pathways (albumin and lipoproteins) and the impact of lipid conjugation on plasma pharmacokinetics after intravenous (IV) and subcutaneous (SC) dosing to cannulated rats. The IV and SC elimination half-lives of Cho-PEG (13 and 22 h, respectively), 2C12-PEG (11 and 17 h, respectively) and 2C18-PEG (12 h for both) were prolonged compared to 1C2-PEG (3 h for both) and 1C12-PEG (4 h for both). Interestingly, 1C2-PEG and 1C12-PEG had higher SC bioavailability (40 % and 52 %, respectively) compared to Cho-PEG, 2C12-PEG and 2C18-PEG (25 %, 24 % and 23 %, respectively). These differences in pharmacokinetics may be explained by the different association patterns of the polymers with rat serum albumin (RSA), bovine serum albumin (BSA) and lipoproteins. For example, in pooled plasma (from IV pharmacokinetic studies), 2C18-PEG had the highest recovery in the high-density lipoprotein (HDL) fraction. In conclusion, the pharmacokinetics of brush PEG polymers can be tuned via conjugation with different lipids, which can be utilised to tune the elimination half-life, biodistribution and effect of therapeutics for a range of medical applications. STATEMENT OF SIGNIFICANCE: Lipidation of therapeutics such as peptides has been employed to extend their plasma half-life by promoting binding to serum albumin, providing protection against rapid clearance. Here we design and evaluate innovative biomaterials consisting of brush polyethylene glycol polymers conjugated with different lipids. Importantly, we show for the first time that lipidated polymeric materials associate with endogenous lipoprotein trafficking pathways and this, in addition to albumin binding, controls their plasma pharmacokinetics. We find that conjugation to dialkyl lipids and cholesterol leads to higher association with lipid trafficking pathways, and more sustained plasma exposure, compared to conjugation to short and monoalkyl lipids. Our lipidated polymers can thus be utilised as delivery platforms to tune the plasma half-life of various pharmaceuticals.
Collapse
Affiliation(s)
- Mohammad Abdallah
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Lihuan Lin
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Ian K Styles
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Alexander Mörsdorf
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - James L Grace
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Gracia Gracia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Cameron Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - John F Quinn
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia; Department of Chemical and Biological Engineering, Faculty of Engineering, Monash University, Clayton, VIC, Australia
| | - Cornelia B Landersdorfer
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Michael R Whittaker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
29
|
Kaminskas LM, Butcher NJ, Subasic CN, Kothapalli A, Haque S, Grace JL, Morsdorf A, Blanchfield JT, Whittaker AK, Quinn JF, Whittaker MR. Lipidated brush-PEG polymers as low molecular weight pulmonary drug delivery platforms. Expert Opin Drug Deliv 2024; 21:151-167. [PMID: 38248870 DOI: 10.1080/17425247.2024.2305116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
OBJECTIVES Nanomedicines are being actively developed as inhalable drug delivery systems. However, there is a distinct utility in developing smaller polymeric systems that can bind albumin in the lungs. We therefore examined the pulmonary pharmacokinetic behavior of a series of lipidated brush-PEG (5 kDa) polymers conjugated to 1C2, 1C12 lipid or 2C12 lipids. METHODS The pulmonary pharmacokinetics, patterns of lung clearance and safety of polymers were examined in rats. Permeability through monolayers of primary human alveolar epithelia, small airway epithelia and lung microvascular endothelium were also investigated, along with lung mucus penetration and cell uptake. RESULTS Polymers showed similar pulmonary pharmacokinetic behavior and patterns of lung clearance, irrespective of lipid molecular weight and albumin binding capacity, with up to 30% of the dose absorbed from the lungs over 24 h. 1C12-PEG showed the greatest safety in the lungs. Based on its larger size, 2C12-PEG also showed the lowest mucus and cell membrane permeability of the three polymers. While albumin had no significant effect on membrane transport, the cell uptake of C12-conjugated PEGs were increased in alveolar epithelial cells. CONCLUSION Lipidated brush-PEG polymers composed of 1C12 lipid may provide a useful and novel alternative to large nanomaterials as inhalable drug delivery systems.
Collapse
Affiliation(s)
- Lisa M Kaminskas
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia
| | - Neville J Butcher
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia
| | | | - Ashok Kothapalli
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia
| | - Shadabul Haque
- Drug Delivery Disposition Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - James L Grace
- Drug Delivery Disposition Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Alexander Morsdorf
- Drug Delivery Disposition Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Joanne T Blanchfield
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
| | - Andrew K Whittaker
- Australian Institute of Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
- Australian Research Council Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide, University of Queensland, St Lucia, QLD, Australia
| | - John F Quinn
- Drug Delivery Disposition Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton, VIC, Australia
| | - Michael R Whittaker
- Drug Delivery Disposition Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| |
Collapse
|
30
|
Hansen PR, Oddo A. Fmoc Solid-Phase Peptide Synthesis. Methods Mol Biol 2024; 2821:33-55. [PMID: 38997478 DOI: 10.1007/978-1-0716-3914-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Synthetic peptides are important as drugs and in research. Currently, the method of choice for producing these compounds is solid-phase peptide synthesis. Here, we describe the scope and limitations of Fmoc solid-phase peptide synthesis. Furthermore, we provide a detailed protocol for Fmoc peptide synthesis.
Collapse
Affiliation(s)
- Paul Robert Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Alberto Oddo
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- , Måløv, Denmark
| |
Collapse
|
31
|
Zhu H, Hua H, Dong Y, Zhang J, Xu H, Ge X, Lu Q, Feng J. Long-Term Strategies for Poorly Water-Soluble Peptides: Combining Fatty Acid Modification with PAS Fusion. Bioconjug Chem 2023; 34:2366-2374. [PMID: 38037956 DOI: 10.1021/acs.bioconjchem.3c00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Bulevirtide, an entry inhibitor for the hepatitis B virus (HBV) and hepatitis D virus (HDV), is currently available on the European market. However, its clinical application is constrained by its short half-life and poor water solubility, rendering it unsuitable for fatty acid modification, aimed at achieving long-term effects. To address this limitation, we integrated a polypeptide chain consisting of Pro, Ala, and Ser at the C-terminus, which increased its hydrophilicity. To obtain the fusion sequence of A1 and A2, encompassing amino acids 1-47 of Bulevirtide and PAS, we used Escherichia coli fermentation expression. Subsequently, the N-terminal myristoyl groups of A1 and A2 were modified to yield Myr-A1 and Myr-A2, respectively. Five fatty acid moieties with the same hydrophilic spacers and different fatty acids were conjugated to analogs, generating 10 bioconjugations. The bioconjugates were then evaluated for their anti-HBV activity. Among them, HB-10 was selected for pharmacokinetic analysis and demonstrated a significantly prolonged half-life, with 5.88- and 13.18-fold increases in beagle dogs and rats, respectively. Additionally, higher drug doses resulted in substantially elevated liver concentrations. In conclusion, via fatty acid incorporation and PASylation, we successfully developed a novel Bulevirtide bioconjugate, HB-10, that exhibits an extended action duration. This compound holds substantial promise as a prospective long-acting entry inhibitor, warranting further investigation.
Collapse
Affiliation(s)
- Hongxiang Zhu
- China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Haoju Hua
- China State Institute of Pharmaceutical Industry, Shanghai 201203, China
- Shanghai Duomirui Biotechnology Co. Ltd., Shanghai 201203, China
| | - Yanzhen Dong
- China State Institute of Pharmaceutical Industry, Shanghai 201203, China
- Shanghai Duomirui Biotechnology Co. Ltd., Shanghai 201203, China
| | - Jinhua Zhang
- China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Hongjiang Xu
- Chia tai Tianqing Pharmaceutical Group Co. Ltd., Nanjing 211100, China
| | - Xingfeng Ge
- Chia tai Tianqing Pharmaceutical Group Co. Ltd., Nanjing 211100, China
| | - Qin Lu
- Chia tai Tianqing Pharmaceutical Group Co. Ltd., Nanjing 211100, China
| | - Jun Feng
- China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| |
Collapse
|
32
|
Gomez-Soler M, Olson EJ, de la Torre ER, Zhao C, Lamberto I, Flood DT, Danho W, Lechtenberg BC, Riedl SJ, Dawson PE, Pasquale EB. Lipidation and PEGylation Strategies to Prolong the in Vivo Half-Life of a Nanomolar EphA4 Receptor Antagonist. Eur J Med Chem 2023; 262:115876. [PMID: 38523699 PMCID: PMC10959496 DOI: 10.1016/j.ejmech.2023.115876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 03/26/2024]
Abstract
The EphA4 receptor tyrosine kinase plays a role in neurodegenerative diseases, inhibition of nerve regeneration, cancer progression and other diseases. Therefore, EphA4 inhibition has potential therapeutic value. Selective EphA4 kinase inhibitors are not available, but we identified peptide antagonists that inhibit ephrin ligand binding to EphA4 with high specificity. One of these peptides is the cyclic APY-d3 (βAPYCVYRβASWSC-NH2), which inhibits ephrin-A5 ligand binding to EphA4 with low nanomolar binding affinity and is highly protease resistant. Here we describe modifications of APY-d3 that yield two different key derivatives with greatly increased half-lives in the mouse circulation, the lipidated APY-d3-laur8 and the PEGylated APY-d3-PEG4. These two derivatives inhibit ligand induced EphA4 activation in cells with sub-micromolar potency. Since they retain high potency and specificity for EphA4, lipidated and PEGylated APY-d3 derivatives represent new tools for discriminating EphA4 activities in vivo and for preclinical testing of EphA4 inhibition in animal disease models.
Collapse
Affiliation(s)
- Maricel Gomez-Soler
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Erika J. Olson
- Departments of Chemistry and Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Elena Rubio de la Torre
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Chunxia Zhao
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Ilaria Lamberto
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Dillon T. Flood
- Departments of Chemistry and Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Waleed Danho
- Del Mar, California 92014, United States
- Deceased
| | - Bernhard C. Lechtenberg
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Stefan J. Riedl
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Philip E. Dawson
- Departments of Chemistry and Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Elena B. Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| |
Collapse
|
33
|
Qi P, He Q, Zhang J, Lian Y, Xie T, Dong J, Zhangsun D, Wu Y, Luo S. Enhancing Stability and Albumin Binding Efficiency of α-Conotoxin GI through Fatty Acid Modification. Biochemistry 2023; 62:3373-3382. [PMID: 37967580 DOI: 10.1021/acs.biochem.3c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
α-Conotoxin GI is a competitive blocker of muscle-type acetylcholine receptors and holds the potential for being developed as a molecular probe or a lead compound for drug discovery. In this study, four fatty acid-modified α-conotoxin GI analogues of different lengths were synthesized by using a fatty acid modification strategy. Then, we performed a series of in vitro stability assays, albumin binding assays, and pharmacological activity assays to evaluate these modified mutants. The experimental results showed that the presence of fatty acids significantly enhanced the in vitro stability and albumin binding ability of α-conotoxin GI and that this effect was proportional to the length of the fatty acids used. Pharmacological activity tests showed that the modified mutants maintained a good acetylcholine receptor antagonistic activity. The present study shows that fatty acid modification can be an effective strategy to significantly improve conotoxin stability and albumin binding efficiency while maintaining the original targeting ion channel activity.
Collapse
Affiliation(s)
- Panpan Qi
- School of Medicine, Guangxi University, Guangxi Key Laboratory of Special Biomedicine, Nanning 530004, China
| | - Quankuo He
- School of Medicine, Guangxi University, Guangxi Key Laboratory of Special Biomedicine, Nanning 530004, China
| | - Junjie Zhang
- School of Medicine, Guangxi University, Guangxi Key Laboratory of Special Biomedicine, Nanning 530004, China
| | - Yuanyuan Lian
- School of Medicine, Guangxi University, Guangxi Key Laboratory of Special Biomedicine, Nanning 530004, China
| | - Ting Xie
- School of Medicine, Guangxi University, Guangxi Key Laboratory of Special Biomedicine, Nanning 530004, China
| | - Jianying Dong
- School of Medicine, Guangxi University, Guangxi Key Laboratory of Special Biomedicine, Nanning 530004, China
| | - Dongting Zhangsun
- School of Medicine, Guangxi University, Guangxi Key Laboratory of Special Biomedicine, Nanning 530004, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| | - Yong Wu
- School of Medicine, Guangxi University, Guangxi Key Laboratory of Special Biomedicine, Nanning 530004, China
| | - Sulan Luo
- School of Medicine, Guangxi University, Guangxi Key Laboratory of Special Biomedicine, Nanning 530004, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| |
Collapse
|
34
|
Mikhnovets IE, Holoubek J, Panina IS, Kotouček J, Gvozdev DA, Chumakov SP, Krasilnikov MS, Zhitlov MY, Gulyak EL, Chistov AA, Nikitin TD, Korshun VA, Efremov RG, Alferova VA, Růžek D, Eyer L, Ustinov AV. Alkyl Derivatives of Perylene Photosensitizing Antivirals: Towards Understanding the Influence of Lipophilicity. Int J Mol Sci 2023; 24:16483. [PMID: 38003673 PMCID: PMC10671050 DOI: 10.3390/ijms242216483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Amphipathic perylene derivatives are broad-spectrum antivirals against enveloped viruses that act as fusion inhibitors in a light-dependent manner. The compounds target the lipid bilayer of the viral envelope using the lipophilic perylene moiety and photogenerating singlet oxygen, thereby causing damage to unsaturated lipids. Previous studies show that variation of the polar part of the molecule is important for antiviral activity. Here, we report modification of the lipophilic part of the molecule, perylene, by the introduction of 4-, 8-, and 12-carbon alkyls into position 9(10) of the perylene residue. Using Friedel-Crafts acylation and Wolff-Kishner reduction, three 3-acetyl-9(10)-alkylperylenes were synthesized from perylene and used to prepare 9 nucleoside and 12 non-nucleoside amphipathic derivatives. These compounds were characterized as fluorophores and singlet oxygen generators, as well as tested as antivirals against herpes virus-1 (HSV-1) and vesicular stomatitis virus (VSV), both known for causing superficial skin/mucosa lesions and thus serving as suitable candidates for photodynamic therapy. The results suggest that derivatives with a short alkyl chain (butyl) have strong antiviral activity, whereas the introduction of longer alkyl substituents (n = 8 and 12) to the perylenyethynyl scaffold results in a dramatic reduction of antiviral activity. This phenomenon is likely attributable to the increased lipophilicity of the compounds and their ability to form insoluble aggregates. Moreover, molecular dynamic studies revealed that alkylated perylene derivatives are predominately located closer to the middle of the bilayer compared to non-alkylated derivatives. The predicted probability of superficial positioning correlated with antiviral activity, suggesting that singlet oxygen generation is achieved in the subsurface layer of the membrane, where the perylene group is more accessible to dissolved oxygen.
Collapse
Affiliation(s)
- Igor E. Mikhnovets
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (I.E.M.); (I.S.P.); (S.P.C.); (M.S.K.); (M.Y.Z.); (E.L.G.); (A.A.C.); (T.D.N.); (V.A.K.); (R.G.E.); (V.A.A.)
| | - Jiří Holoubek
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Hudcova 296/70, CZ-621 00 Brno, Czech Republic (D.R.); (L.E.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, CZ-370 05 České Budějovice, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Irina S. Panina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (I.E.M.); (I.S.P.); (S.P.C.); (M.S.K.); (M.Y.Z.); (E.L.G.); (A.A.C.); (T.D.N.); (V.A.K.); (R.G.E.); (V.A.A.)
| | - Jan Kotouček
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 296/70, CZ-621 00 Brno, Czech Republic;
| | - Daniil A. Gvozdev
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia;
| | - Stepan P. Chumakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (I.E.M.); (I.S.P.); (S.P.C.); (M.S.K.); (M.Y.Z.); (E.L.G.); (A.A.C.); (T.D.N.); (V.A.K.); (R.G.E.); (V.A.A.)
| | - Maxim S. Krasilnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (I.E.M.); (I.S.P.); (S.P.C.); (M.S.K.); (M.Y.Z.); (E.L.G.); (A.A.C.); (T.D.N.); (V.A.K.); (R.G.E.); (V.A.A.)
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Mikhail Y. Zhitlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (I.E.M.); (I.S.P.); (S.P.C.); (M.S.K.); (M.Y.Z.); (E.L.G.); (A.A.C.); (T.D.N.); (V.A.K.); (R.G.E.); (V.A.A.)
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Evgeny L. Gulyak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (I.E.M.); (I.S.P.); (S.P.C.); (M.S.K.); (M.Y.Z.); (E.L.G.); (A.A.C.); (T.D.N.); (V.A.K.); (R.G.E.); (V.A.A.)
| | - Alexey A. Chistov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (I.E.M.); (I.S.P.); (S.P.C.); (M.S.K.); (M.Y.Z.); (E.L.G.); (A.A.C.); (T.D.N.); (V.A.K.); (R.G.E.); (V.A.A.)
| | - Timofei D. Nikitin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (I.E.M.); (I.S.P.); (S.P.C.); (M.S.K.); (M.Y.Z.); (E.L.G.); (A.A.C.); (T.D.N.); (V.A.K.); (R.G.E.); (V.A.A.)
| | - Vladimir A. Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (I.E.M.); (I.S.P.); (S.P.C.); (M.S.K.); (M.Y.Z.); (E.L.G.); (A.A.C.); (T.D.N.); (V.A.K.); (R.G.E.); (V.A.A.)
| | - Roman G. Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (I.E.M.); (I.S.P.); (S.P.C.); (M.S.K.); (M.Y.Z.); (E.L.G.); (A.A.C.); (T.D.N.); (V.A.K.); (R.G.E.); (V.A.A.)
| | - Vera A. Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (I.E.M.); (I.S.P.); (S.P.C.); (M.S.K.); (M.Y.Z.); (E.L.G.); (A.A.C.); (T.D.N.); (V.A.K.); (R.G.E.); (V.A.A.)
| | - Daniel Růžek
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Hudcova 296/70, CZ-621 00 Brno, Czech Republic (D.R.); (L.E.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, CZ-370 05 České Budějovice, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Luděk Eyer
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Hudcova 296/70, CZ-621 00 Brno, Czech Republic (D.R.); (L.E.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, CZ-370 05 České Budějovice, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Alexey V. Ustinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (I.E.M.); (I.S.P.); (S.P.C.); (M.S.K.); (M.Y.Z.); (E.L.G.); (A.A.C.); (T.D.N.); (V.A.K.); (R.G.E.); (V.A.A.)
| |
Collapse
|
35
|
Miller BS, Blair JC, Rasmussen MH, Maniatis A, Mori J, Böttcher V, Kim HS, Bang RB, Polak M, Horikawa R. Effective GH Replacement With Somapacitan in Children With GHD: REAL4 2-year Results and After Switch From Daily GH. J Clin Endocrinol Metab 2023; 108:3090-3099. [PMID: 37406251 PMCID: PMC10655534 DOI: 10.1210/clinem/dgad394] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
CONTEXT Somapacitan is a long-acting GH derivative for treatment of GH deficiency (GHD). OBJECTIVE Evaluate the efficacy and tolerability of somapacitan in children with GHD after 2 years of treatment and after the switch from daily GH. DESIGN A randomized, multinational, open-labelled, controlled parallel group phase 3 trial, comprising a 52-week main phase and 3-year safety extension (NCT03811535). SETTING Eighty-five sites across 20 countries. PATIENTS A total of 200 treatment-naïve prepubertal patients were randomized and exposed; 194 completed the 2-year period. INTERVENTIONS Patients were randomized 2:1 to somapacitan (0.16 mg/kg/wk) or daily GH (0.034 mg/kg/d) during the first year, after which all patients received somapacitan 0.16 mg/kg/wk. MAIN OUTCOME MEASURES Height velocity (HV; cm/year) at week 104. Additional assessments included HV SD score (SDS), height SDS, IGF-I SDS, and observer-reported outcomes. RESULTS HV was sustained in both groups between 52 and 104 weeks. At week 104, mean (SD) for HV between weeks 52 and 104 was 8.4 (1.5) cm/year after continuous somapacitan treatment and 8.7 (1.8) cm/year after 1 year of somapacitan treatment following switch from daily GH. Secondary height-related endpoints also supported sustained growth. Mean IGF-I SDS during year 2 was similar between groups and within normal range (-2 to +2). Somapacitan was well tolerated, with no safety or tolerability issues identified. GH patient preference questionnaire results show that most patients and their caregivers (90%) who switched treatment at year 2 preferred once-weekly somapacitan over daily GH treatment. CONCLUSIONS Somapacitan in children with GHD showed sustained efficacy and tolerability for 2 years, and after switching from daily GH. Patients/caregivers switching from daily GH expressed a preference for somapacitan. CLINICAL TRIAL REGISTRATION NCT03811535.
Collapse
Affiliation(s)
- Bradley S Miller
- Division of Pediatric Endocrinology, University of Minnesota Medical School, MHealth Fairview Masonic Children's Hospital, Minneapolis, MN 55454, USA
| | - Joanne C Blair
- Department of Endocrinology, Alder Hey Children's NHS Foundation Trust, Liverpool, L14 5AB, UK
| | | | | | - Jun Mori
- Division of Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital, Osaka 534-0021, Japan
| | - Volker Böttcher
- Division of Pediatric Endocrinology and Metabolism, MVZ Endokrinologikum Frankfurt am Main, Frankfurt 60596, Germany
| | - Ho-Seong Kim
- Department of Pediatrics, Severance Children's Hospital, Institute of Endocrinology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Rikke Beck Bang
- Biostatistics Rare Disease and Advanced Therapies, Novo Nordisk A/S, Aalborg 9220, Denmark
| | - Michel Polak
- Service d’Endocrinologie, Gynécologie et Diabétologie Pédiatriques, Hôpital Universitaire Necker Enfants Malades Paris, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
| | - Reiko Horikawa
- Division of Endocrinology and Metabolism, National Center for Child Health and Development, Tokyo 157-0074, Japan
| |
Collapse
|
36
|
Ding W, Zhao H, Chen Y, Lin S. New Strategies for Probing the Biological Functions of Protein Post-translational Modifications in Mammalian Cells with Genetic Code Expansion. Acc Chem Res 2023; 56:2827-2837. [PMID: 37793174 DOI: 10.1021/acs.accounts.3c00460] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Protein post-translational modification (PTM) is a major mechanism for functional diversification of the human genome and plays a crucial role in almost every aspect of cellular processes, and the dysregulation of the protein PTM network has been associated with a variety of human diseases. Using high-resolution mass spectrometry, protein PTMs can be efficiently discovered and profiled under various biological and physiological conditions. However, it is often challenging to address the biological function of PTMs with biochemical and mutagenesis-based approaches. Specifically, this field lacks methods that allow gain-of-function studies of protein PTMs to understand their functional consequences in living cells. In this context, the genetic code expansion (GCE) strategy has made tremendous progress in the direct installation of PTMs and their analogs in the form of noncanonical amino acids (ncAAs) for gain-of-function investigations.In addition to studying the biological functions of known protein PTMs, the discovery of new protein PTMs is even more challenging due to the lack of chemical information for designing specific enrichment methods. Genetically encoded ncAAs in the proteome can be used as specific baits to enrich and subsequently identify new PTMs by mass spectrometry.In this Account, we discuss recent developments in the investigation of the biological functions of protein PTMs and the discovery of protein PTMs using new GCE strategies. First, we leveraged a chimeric design to construct several broadly orthogonal translation systems (OTSs). These broad OTSs can be engineered to efficiently incorporate different ncAAs in both E. coli and mammalian cells. With these broad OTSs, we accomplish the following: (1) We develop a computer-aided strategy for the design and genetic incorporation of length-tunable lipidation mimics. These lipidation mimics can fully recapitulate the biochemical properties of natural lipidation in membrane association for probing its biological functions on signaling proteins and in albumin binding for designing long-acting protein drugs. (2) We demonstrate that the binding affinity between histone methylations and their corresponding readers can be substantially increased with genetically encoded electron-rich Trp derivatives. These engineered affinity-enhanced readers can be applied to enrich, image, and profile the interactome of chromatin methylations. (3) We report the identification and verification of a novel type of protein PTM, aminoacylated lysine ubiquitination, using genetically encoded PTM ncAAs as chemical probes. This approach provides a general strategy for the identification of unknown PTMs by increasing the abundance of PTM bait probes.
Collapse
Affiliation(s)
- Wenlong Ding
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Hongxia Zhao
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yulin Chen
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Shaoxing Institute, Zhejiang University, Shaoxing 321000, China
| | - Shixian Lin
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Shaoxing Institute, Zhejiang University, Shaoxing 321000, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
37
|
Kildemoes RJ, Backeljauw PF, Højby M, Blair JC, Miller BS, Mori J, Lyauk YK. Model-Based Analysis of IGF-I Response, Dosing, and Monitoring for Once-Weekly Somapacitan in Children With GH Deficiency. J Endocr Soc 2023; 7:bvad115. [PMID: 37818403 PMCID: PMC10561011 DOI: 10.1210/jendso/bvad115] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Indexed: 10/12/2023] Open
Abstract
Context Growth hormone (GH) replacement therapy improves longitudinal growth and adult height in children with GH deficiency (GHD). GH stimulates insulin-like growth factor (IGF)-I release, the biomarker used for monitoring GH activity during treatment. Objective This study aims to provide model-based insights into the dose-IGF-I responses of once-weekly somapacitan, a novel long-acting GH, compared with daily GH in children with GHD. Methods Analyses included dosing information and 1473 pharmacokinetic samples from 210 somapacitan-treated pediatric patients with GHD across 3 trials, including phase 1 (NCT01973244), phase 2 (NCT02616562; REAL 3), and phase 3 (NCT03811535; REAL 4), as well as 1381 IGF-I samples from 186 patients with GHD treated with somapacitan in REAL 3 and REAL 4. Pharmacokinetic/pharmacodynamic modeling to characterize somapacitan dose-IGF-I response and predict the response to dosing day changes. Results Relationships were established between somapacitan dose, exposure, change from baseline IGF-I SD score (SDS), and height velocity (HV). A linear model permitted the development of a tool to calculate estimated average weekly IGF-I exposure from a single IGF-I sample obtained at any time within the somapacitan dosing interval at steady state. In practice, the use of this tool requires knowledge of somapacitan injection timing relative to IGF-I sample collection timing. IGF-I SDS simulations support flexible dosing day changes while maintaining at least 4 days between doses. Conclusion We characterized the dose-IGF-I response of somapacitan in children with GHD. To support physicians in IGF-I monitoring, we present a practical guide about expected weekly average IGF-I concentrations in these patients and provide insights on dosing day flexibility.
Collapse
Affiliation(s)
| | - Philippe F Backeljauw
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Michael Højby
- Clinical Drug Development, Novo Nordisk A/S, Søborg 2860, Denmark
| | - Joanne C Blair
- Department of Endocrinology, Alder Hey Children's NHS Foundation Trust, Liverpool L14 5AB, UK
| | - Bradley S Miller
- Division of Pediatric Endocrinology, University of Minnesota Medical School, MHealth Fairview Masonic Children’s Hospital, Minneapolis, MN 55454, USA
| | - Jun Mori
- Division of Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital, Osaka, 534-0021, Japan
| | - Yassine K Lyauk
- Clinical Drug Development, Novo Nordisk A/S, Søborg 2860, Denmark
| |
Collapse
|
38
|
Einarson K, Bendtsen KM, Li K, Thomsen M, Kristensen NR, Winther O, Fulle S, Clemmensen L, Refsgaard HH. Molecular Representations in Machine-Learning-Based Prediction of PK Parameters for Insulin Analogs. ACS OMEGA 2023; 8:23566-23578. [PMID: 37426277 PMCID: PMC10324072 DOI: 10.1021/acsomega.3c01218] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023]
Abstract
Therapeutic peptides and proteins derived from either endogenous hormones, such as insulin, or de novo design via display technologies occupy a distinct pharmaceutical space in between small molecules and large proteins such as antibodies. Optimizing the pharmacokinetic (PK) profile of drug candidates is of high importance when it comes to prioritizing lead candidates, and machine-learning models can provide a relevant tool to accelerate the drug design process. Predicting PK parameters of proteins remains difficult due to the complex factors that influence PK properties; furthermore, the data sets are small compared to the variety of compounds in the protein space. This study describes a novel combination of molecular descriptors for proteins such as insulin analogs, where many contained chemical modifications, e.g., attached small molecules for protraction of the half-life. The underlying data set consisted of 640 structural diverse insulin analogs, of which around half had attached small molecules. Other analogs were conjugated to peptides, amino acid extensions, or fragment crystallizable regions. The PK parameters clearance (CL), half-life (T1/2), and mean residence time (MRT) could be predicted by using classical machine-learning models such as Random Forest (RF) and Artificial Neural Networks (ANN) with root-mean-square errors of CL of 0.60 and 0.68 (log units) and average fold errors of 2.5 and 2.9 for RF and ANN, respectively. Both random and temporal data splittings were employed to evaluate ideal and prospective model performance with the best models, regardless of data splitting, achieving a minimum of 70% of predictions within a twofold error. The tested molecular representations include (1) global physiochemical descriptors combined with descriptors encoding the amino acid composition of the insulin analogs, (2) physiochemical descriptors of the attached small molecule, (3) protein language model (evolutionary scale modeling) embedding of the amino acid sequence of the molecules, and (4) a natural language processing inspired embedding (mol2vec) of the attached small molecule. Encoding the attached small molecule via (2) or (4) significantly improved the predictions, while the benefit of using the protein language model-based encoding (3) depended on the used machine-learning model. The most important molecular descriptors were identified as descriptors related to the molecular size of both the protein and protraction part using Shapley additive explanations values. Overall, the results show that combining representations of proteins and small molecules was key for PK predictions of insulin analogs.
Collapse
Affiliation(s)
- Kasper
A. Einarson
- Danish
Technical University (DTU), Applied Mathematics
and Computer Science, Kongens Lyngby 2800, Denmark
- Novo
Nordisk A/S, Global Drug Discovery, Research
& Early Development (R&ED), Måløv 2760, Denmark
| | | | - Kang Li
- Novo
Nordisk A/S, Digital Science & Innovation, R&ED, Måløv 2760, Denmark
| | - Maria Thomsen
- Novo
Nordisk A/S, Digital Science & Innovation, R&ED, Måløv 2760, Denmark
| | | | - Ole Winther
- Danish
Technical University (DTU), Applied Mathematics
and Computer Science, Kongens Lyngby 2800, Denmark
- Center
for Genomic Medicine, Rigshospitalet (Copenhagen
University Hospital), Copenhagen 2100, Denmark
- Department
of Biology, Bioinformatics Centre, University
of Copenhagen, Copenhagen 2200, Denmark
| | - Simone Fulle
- Novo
Nordisk A/S, Digital Science & Innovation, R&ED, Måløv 2760, Denmark
| | - Line Clemmensen
- Danish
Technical University (DTU), Applied Mathematics
and Computer Science, Kongens Lyngby 2800, Denmark
| | - Hanne H.F. Refsgaard
- Novo
Nordisk A/S, Global Drug Discovery, Research
& Early Development (R&ED), Måløv 2760, Denmark
| |
Collapse
|
39
|
Chen Y, Pal S, Hu Q. Cell-based Relay Delivery Strategy in Biomedical Applications. Adv Drug Deliv Rev 2023; 198:114871. [PMID: 37196699 DOI: 10.1016/j.addr.2023.114871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/14/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023]
Abstract
The relay delivery strategy is a two-step targeting approach based on two distinct modules in which the first step with an initiator is to artificially create a target/environment which can be targeted by the follow-up effector. This relay delivery concept creates opportunities to amplify existing or create new targeted signals through deploying initiators to enhance the accumulation efficiency of the following effector at the disease site. As the "live" medicines, cell-based therapeutics possess inherent tissue/cell homing abilities and favorable feasibility of biological and chemical modifications, endowing them the great potential in specifically interacting with diverse biological environments. All these unique capabilities make cellular products great candidates that can serve as either initiators or effectors for relay delivery strategies. In this review, we survey recent advances in relay delivery strategies with a specific focus on the roles of various cells in developing relay delivery systems.
Collapse
Affiliation(s)
- Yu Chen
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States; Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States; Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Samira Pal
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States; Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States; Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States.
| |
Collapse
|