1
|
Pla-Díaz M, Akgül G, Molak M, du Plessis L, Panagiotopoulou H, Doan K, Bogdanowicz W, Dąbrowski P, Oziembłowski M, Kwiatkowska B, Szczurowski J, Grzelak J, Arora N, Majander K, González-Candelas F, Schuenemann VJ. Insights into Treponema pallidum genomics from modern and ancient genomes using a novel mapping strategy. BMC Biol 2025; 23:7. [PMID: 39780098 PMCID: PMC11716147 DOI: 10.1186/s12915-024-02108-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Treponemal diseases are a significant global health risk, presenting challenges to public health and severe consequences to individuals if left untreated. Despite numerous genomic studies on Treponema pallidum and the known possible biases introduced by the choice of the reference genome used for mapping, few investigations have addressed how these biases affect phylogenetic and evolutionary analysis of these bacteria. In this study, we ascertain the importance of selecting an appropriate genomic reference on phylogenetic and evolutionary analyses of T. pallidum. RESULTS We designed a multiple-reference-based (MRB) mapping strategy using four different reference genomes and compared it to traditional single-reference mapping. To conduct this comparison, we created a genomic dataset comprising 77 modern and ancient genomes from the three subspecies of T. pallidum, including a newly sequenced seventeenth century genome (35X mean coverage) of a syphilis-causing strain (designated as W86). Our findings show that recombination detection was consistent across different references, but the choice of reference significantly affected ancient genome reconstruction and phylogenetic inferences. The high-coverage W86 genome introduced in this study also provided a new calibration point for Bayesian molecular clock dating, improving the reconstruction of the evolutionary history of treponemal diseases. Additionally, we identified novel recombination events, positive selection targets, and refined dating estimates for key events in the species' history. CONCLUSIONS This study highlights the importance of considering methodological implications and reference genome bias in high-throughput sequencing-based whole-genome analysis of T. pallidum, especially of ancient or low-coverage samples, contributing to a deeper understanding of the treponemal pathogen and its subspecies.
Collapse
Affiliation(s)
- Marta Pla-Díaz
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Unidad Mixta Infección y Salud Pública FISABIO, Universidad de Valencia-I2SysBio, Valencia, Spain
- CIBER in Epidemiology and Public Health, Valencia, Spain
| | - Gülfirde Akgül
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Martyna Molak
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| | - Louis du Plessis
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Karolina Doan
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| | | | - Paweł Dąbrowski
- Department of Anatomy, Wrocław Medical University, Wrocław, Poland
| | - Maciej Oziembłowski
- Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Barbara Kwiatkowska
- Department of Anthropology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Jacek Szczurowski
- Department of Anthropology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Joanna Grzelak
- Department of Anatomy, Wrocław Medical University, Wrocław, Poland
| | - Natasha Arora
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Kerttu Majander
- Department of Environmental Sciences, University of Basel, Basel, Switzerland.
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland.
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria.
| | - Fernando González-Candelas
- Unidad Mixta Infección y Salud Pública FISABIO, Universidad de Valencia-I2SysBio, Valencia, Spain.
- CIBER in Epidemiology and Public Health, Valencia, Spain.
| | - Verena J Schuenemann
- Department of Environmental Sciences, University of Basel, Basel, Switzerland.
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland.
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Donegan MA, Kahn AK, Becker N, Castillo Siri A, Campos PE, Boyer K, Colwell A, Briand M, Almeida RPP, Rieux A. Century-old herbarium specimen provides insights into Pierce's disease of grapevines emergence in the Americas. Curr Biol 2025; 35:145-153.e4. [PMID: 39689706 DOI: 10.1016/j.cub.2024.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/01/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024]
Abstract
Fossils and other preserved specimens are integral for informing timing and evolutionary history in every biological system. By isolating a plant pathogen genome from herbarium-preserved diseased grapevine material from 1906 (Herb_1906), we were able to answer questions about an enigmatic system. The emergence of Pierce's disease (PD) of grapevine has shaped viticultural production in North America; yet, there are uncertainties about the geographic origin of the pathogen (Xylella fastidiosa subsp. fastidiosa, Xff) and the timing and route of its introduction. We produced a high-quality, de novo genome assembly of this historical plant pathogen and confirmed degradation patterns unique to ancient DNA. Due to the inclusion of the Herb_1906 sample, we were able to generate a significant temporal signal in the genomic data. This allowed us to build a time-calibrated phylogeny, where we estimate the introduction of Xff into the US between 1734 and 1741 CE, an earlier time frame than previously inferred. In a large collection of >300 Xff genomes, the Herb_1906 sample was genetically most similar to a small population from Northern California but not basal to the entire Xff California clade. Based on phylogenetic placement and a phylogeographic reconstruction, our data support a single introduction of Xff into the Southeastern US from Central America, with multiple subsequent introductions into California.
Collapse
Affiliation(s)
- Monica A Donegan
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Alexandra K Kahn
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nathalie Becker
- Institut de Systématique, Évolution, Biodiversité (ISyEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005 Paris, France
| | - Andreina Castillo Siri
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Paola E Campos
- Institut de Systématique, Évolution, Biodiversité (ISyEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005 Paris, France; CIRAD, UMR PVBMT, La Réunion, 97410 Saint-Pierre, La Réunion, France
| | - Karine Boyer
- CIRAD, UMR PVBMT, La Réunion, 97410 Saint-Pierre, La Réunion, France
| | - Alison Colwell
- Department of Plant Sciences, University of California, Davis, Davis, CA 95818, USA
| | - Martial Briand
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Rodrigo P P Almeida
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Adrien Rieux
- CIRAD, UMR PVBMT, La Réunion, 97410 Saint-Pierre, La Réunion, France.
| |
Collapse
|
3
|
Llanos-Lizcano A, Hämmerle M, Sperduti A, Sawyer S, Zagorc B, Özdoğan KT, Guellil M, Cheronet O, Kuhlwilm M, Pinhasi R, Gelabert P. Intra-individual variability in ancient plasmodium DNA recovery highlights need for enhanced sampling. Sci Rep 2025; 15:757. [PMID: 39755798 DOI: 10.1038/s41598-024-85038-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025] Open
Abstract
Malaria has been a leading cause of death in human populations for centuries and remains a major public health challenge in African countries, especially affecting children. Among the five Plasmodium species infecting humans, Plasmodium falciparum is the most lethal. Ancient DNA research has provided key insights into the origins, evolution, and virulence of pathogens that affect humans. However, extensive screening of ancient skeletal remains for Plasmodium DNA has shown that such genomic material is rare, with no studies so far addressing potential intra-individual variability. Consequently, the pool of ancient mitochondrial DNA (mtDNA) or genomic sequences for P. falciparum is extremely limited, with fewer than 20 ancient sequences available for genetic analysis, and no complete P. falciparum mtDNA from Classical antiquity published to date. To investigate intra-individual diversity and genetic origins of P. falciparum from the Roman period, we generated 39 sequencing libraries from multiple teeth and two from the femur of a Roman malaria-infected individual. The results revealed considerable variability in P. falciparum recovery across different dental samples within the individual, while the femur samples showed no preservation of Plasmodium DNA. The reconstructed 43-fold P. falciparum mtDNA genome supports the hypothesis of an Indian origin for European P. falciparum and suggests mtDNA continuity in Europe over the past 2000 years.
Collapse
Affiliation(s)
- Alejandro Llanos-Lizcano
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Facultad de Química y Farmacia, Universidad del Atlántico, Barranquilla, Colombia
| | - Michelle Hämmerle
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Alessandra Sperduti
- Museo delle Civiltà, Roma, Italy
- Dipartimento di Archeologia, Asia, Africa e Mediterraneo, Università L'Orientale, Napoli, Italy
| | - Susanna Sawyer
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Brina Zagorc
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | | | - Meriam Guellil
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Martin Kuhlwilm
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria.
| | - Pere Gelabert
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Stantis C, Schaefer BJ, Correia MA, Alaica AK, Huffer D, Plomp E, Di Giusto M, Chidimuro B, Rose AK, Nayak A, Kendall EJ. Ethics and applications of isotope analysis in archaeology. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2025; 186:e24992. [PMID: 38949078 PMCID: PMC11775430 DOI: 10.1002/ajpa.24992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/03/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024]
Abstract
This synthesis explores specific ethical questions that commonly arise in isotopic analysis. For more than four decades, isotope analysis has been employed in archeological studies to explore past human and animal dietary habits, mobility patterns, and the environment in which a human or animal inhabited during life. These analyses require consideration of ethical issues. While theoretical concepts are discussed, we focus on practical aspects: working with descendant communities and other rights holders, choosing methods, creating and sharing data, and working mindfully within academia. These layers of respect and care should surround our science. This paper is relevant for specialists in isotope analysis as well as those incorporating these methods into larger projects. By covering the whole of the research process, from design to output management, we appeal broadly to archaeology and provide actionable solutions that build on the discussions in the general field.
Collapse
Affiliation(s)
- Chris Stantis
- Department of Geology and GeophysicsUniversity of UtahSalt Lake CityUtahUSA
| | - Benjamin J. Schaefer
- Department of Anthropology, Gender and Women's Studies, and Latin American and Latino StudiesUniversity of Illinois at ChicagoChicagoIllinoisUSA
- The Center for the Recovery and Identification of the MissingUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Division of AnthropologyThe Field Museum of Natural HistoryChicagoIllinoisUSA
| | - Maria Ana Correia
- Interdisciplinary Center for Archaeology and the Evolution of Human Behaviour (ICArEHB)Universidade do AlgarveAlgarvePortugal
- Laboratório de Arqueologia e Antropologia Ambiental e EvolutivaUniversidade de São PauloSao PauloBrazil
| | - Aleksa K. Alaica
- Department of AnthropologyThe University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Damien Huffer
- Department of HistoryCarleton UniversityOttawaOntarioCanada
- School of Social SciencesUniversity of QueenslandSaint LuciaQueenslandAustralia
- The Alliance to Counter Crime OnlineWashingtonDCUSA
| | - Esther Plomp
- Faculty of Applied SciencesDelft University of TechnologyDelftThe Netherlands
| | - Marina Di Giusto
- Museu de Arqueologia e Etnologia, Universidade de São PauloSao PauloBrazil
| | - Blessing Chidimuro
- Department of Geography and Environmental ScienceUniversity of ReadingReadingUK
| | | | - Ayushi Nayak
- Department of ArchaeologyMax Planck Institute of GeoanthropologyJenaGermany
| | | |
Collapse
|
5
|
Bergström A, Fellows Yates JA, Warinner C. Ancient DNA data hold insights into past organisms and ecosystems - handle them with more care. Nature 2024; 636:296-298. [PMID: 39658639 DOI: 10.1038/d41586-024-03993-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
|
6
|
Stieglitz J. Contemporary small-scale subsistence populations offer unique insights into human musculoskeletal health and aging. SCIENCE ADVANCES 2024; 10:eadq1039. [PMID: 39514654 DOI: 10.1126/sciadv.adq1039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Human foragers avoid noncommunicable diseases that are leading causes of mortality, partly because physically active lifestyles promote healthy aging. High activity levels also promote tissue damage accumulation from wear-and-tear, increase risk of injury and disability which compromise productivity, and reduce energetic investments in somatic maintenance given constrained energy expenditure. Constraints intensify when nutrient supply is limited and surplus energy is directed toward pathogen defense and reproduction, as occurred throughout hominin evolution. This paper reviews evidence linking exposomes to musculoskeletal health in subsistence populations, focusing on effects of physical activity, pathogens, diet, and reproduction. Chronic musculoskeletal conditions are common for humans and possibly prehistoric hominins but rarer in quadrupedal apes. We propose that transition to bipedalism ~6 to 8 million years ago constituted an early "mismatch scenario," increasing hominin susceptibility to musculoskeletal conditions vis-à-vis quadrupedal apes due to changes in mechanical loading environments. Mismatched musculoskeletal traits were not targets of selection because of trade-offs favoring bipedal extractive foraging and higher fertility.
Collapse
Affiliation(s)
- Jonathan Stieglitz
- Department of Social and Behavioral Sciences, Toulouse School of Economics, Institute for Advanced Study in Toulouse, Université Toulouse Capitole, Toulouse, France
| |
Collapse
|
7
|
Tay JH, Kocher A, Duchene S. Assessing the effect of model specification and prior sensitivity on Bayesian tests of temporal signal. PLoS Comput Biol 2024; 20:e1012371. [PMID: 39504312 PMCID: PMC11573219 DOI: 10.1371/journal.pcbi.1012371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/18/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
Our understanding of the evolution of many microbes has been revolutionised by the molecular clock, a statistical tool to infer evolutionary rates and timescales from analyses of biomolecular sequences. In all molecular clock models, evolutionary rates and times are jointly unidentifiable and 'calibration' information must therefore be used. For many organisms, sequences sampled at different time points can be employed for such calibration. Before attempting to do so, it is recommended to verify that the data carry sufficient information for molecular dating, a practice referred to as evaluation of temporal signal. Recently, a fully Bayesian approach, BETS (Bayesian Evaluation of Temporal Signal), was proposed to overcome known limitations of other commonly used techniques such as root-to-tip regression or date randomisation tests. BETS requires the specification of a full Bayesian phylogenetic model, posing several considerations for untangling the impact of model choice on the detection of temporal signal. Here, we aimed to (i) explore the effect of molecular clock model and tree prior specification on the results of BETS and (ii) provide guidelines for improving our confidence in molecular clock estimates. Using microbial molecular sequence data sets and simulation experiments, we assess the impact of the tree prior and its hyperparameters on the accuracy of temporal signal detection. In particular, highly informative priors that are inconsistent with the data can result in the incorrect detection of temporal signal. In consequence, we recommend: (i) using prior predictive simulations to determine whether the prior generates a reasonable expectation of parameters of interest, such as the evolutionary rate and age of the root node, (ii) conducting prior sensitivity analyses to assess the robustness of the posterior to the choice of prior, and (iii) selecting a molecular clock model that reasonably describes the evolutionary process.
Collapse
Affiliation(s)
- John H. Tay
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Arthur Kocher
- Transmission, Infection, Diversification and Evolution Group, Max Planck Institute of Geoanthropology, Jena, Germany
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Sebastian Duchene
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
- DEMI unit, Department of Computational Biology, Institut Pasteur, Paris, France
| |
Collapse
|
8
|
Bozzi D, Neuenschwander S, Cruz Dávalos DI, Sousa da Mota B, Schroeder H, Moreno-Mayar JV, Allentoft ME, Malaspinas AS. Towards predicting the geographical origin of ancient samples with metagenomic data. Sci Rep 2024; 14:21794. [PMID: 39294129 PMCID: PMC11411106 DOI: 10.1038/s41598-023-40246-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/07/2023] [Indexed: 09/20/2024] Open
Abstract
Reconstructing the history-such as the place of birth and death-of an individual sample is a fundamental goal in ancient DNA (aDNA) studies. However, knowing the place of death can be particularly challenging when samples come from museum collections with incomplete or erroneous archives. While analyses of human DNA and isotope data can inform us about the ancestry of an individual and provide clues about where the person lived, they cannot specifically trace the place of death. Moreover, while ancient human DNA can be retrieved, a large fraction of the sequenced molecules in ancient DNA studies derive from exogenous DNA. This DNA-which is usually discarded in aDNA analyses-is constituted mostly by microbial DNA from soil-dwelling microorganisms that have colonized the buried remains post-mortem. In this study, we hypothesize that remains of individuals buried in the same or close geographic areas, exposed to similar microbial communities, could harbor more similar metagenomes. We propose to use metagenomic data from ancient samples' shotgun sequencing to locate the place of death of a given individual which can also help to solve cases of sample mislabeling. We used a k-mer-based approach to compute similarity scores between metagenomic samples from different locations and propose a method based on dimensionality reduction and logistic regression to assign a geographical origin to target samples. We apply our method to several public datasets and observe that individual samples from closer geographic locations tend to show higher similarities in their metagenomes compared to those of different origin, allowing good geographical predictions of test samples. Moreover, we observe that the genus Streptomyces commonly infiltrates ancient remains and represents a valuable biomarker to trace the samples' geographic origin. Our results provide a proof of concept and show how metagenomic data can also be used to shed light on the place of origin of ancient samples.
Collapse
Affiliation(s)
- Davide Bozzi
- Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland.
| | - Samuel Neuenschwander
- Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland
- Vital-IT, SIB Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Diana Ivette Cruz Dávalos
- Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Bárbara Sousa da Mota
- Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Hannes Schroeder
- Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - J Víctor Moreno-Mayar
- Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Morten E Allentoft
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Anna-Sapfo Malaspinas
- Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland.
| |
Collapse
|
9
|
Williams MP, Flegontov P, Maier R, Huber CD. Testing times: disentangling admixture histories in recent and complex demographies using ancient DNA. Genetics 2024; 228:iyae110. [PMID: 39013011 PMCID: PMC11373510 DOI: 10.1093/genetics/iyae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/08/2024] [Accepted: 06/11/2024] [Indexed: 07/18/2024] Open
Abstract
Our knowledge of human evolutionary history has been greatly advanced by paleogenomics. Since the 2020s, the study of ancient DNA has increasingly focused on reconstructing the recent past. However, the accuracy of paleogenomic methods in resolving questions of historical and archaeological importance amidst the increased demographic complexity and decreased genetic differentiation remains an open question. We evaluated the performance and behavior of two commonly used methods, qpAdm and the f3-statistic, on admixture inference under a diversity of demographic models and data conditions. We performed two complementary simulation approaches-firstly exploring a wide demographic parameter space under four simple demographic models of varying complexities and configurations using branch-length data from two chromosomes-and secondly, we analyzed a model of Eurasian history composed of 59 populations using whole-genome data modified with ancient DNA conditions such as SNP ascertainment, data missingness, and pseudohaploidization. We observe that population differentiation is the primary factor driving qpAdm performance. Notably, while complex gene flow histories influence which models are classified as plausible, they do not reduce overall performance. Under conditions reflective of the historical period, qpAdm most frequently identifies the true model as plausible among a small candidate set of closely related populations. To increase the utility for resolving fine-scaled hypotheses, we provide a heuristic for further distinguishing between candidate models that incorporates qpAdm model P-values and f3-statistics. Finally, we demonstrate a significant performance increase for qpAdm using whole-genome branch-length f2-statistics, highlighting the potential for improved demographic inference that could be achieved with future advancements in f-statistic estimations.
Collapse
Affiliation(s)
- Matthew P Williams
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Pavel Flegontov
- Department of Biology and Ecology, University of Ostrava, Ostrava 701 03, Czechia
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Robert Maier
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Christian D Huber
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
10
|
Coppola Bove L, Kirkpatrick CL, Vigil-Escalera Guirado A, Botella López MC, Bos KI. A morphological and molecular approach to investigating infectious disease in early medieval Iberia: The necropolis of La Olmeda (Palencia, Spain). AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 185:e24994. [PMID: 38963678 DOI: 10.1002/ajpa.24994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 04/30/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024]
Abstract
OBJECTIVE Here we investigate infectious diseases that potentially contribute to osteological lesions in individuals from the early medieval necropolis of La Olmeda (6th-11th c. CE) in North Iberia. MATERIALS AND METHODS We studied a minimum number of 268 individuals (33 adult females; 38 adult males, 77 unknown/indeterminate sex; and 120 non-adults), including articulated and commingled remains. Individuals with differential diagnoses suggesting chronic systemic infectious diseases were sampled and bioinformatically screened for ancient pathogen DNA. RESULTS Five non-adults (and no adults) presented skeletal evidence of chronic systemic infectious disease (1.87% of the population; 4.67% of non-adults). The preferred diagnoses for these individuals included tuberculosis, brucellosis, and malaria. Ancient DNA fragments assigned to the malaria-causing pathogen, Plasmodium spp., were identified in three of the five individuals. Observed pathology includes lesions generally consistent with malaria; however, additional lesions in two of the individuals may represent hitherto unknown variation in the skeletal manifestation of this disease or co-infection with tuberculosis or brucellosis. Additionally, spondylolysis was observed in one individual with skeletal lesions suggestive of infectious disease. CONCLUSIONS This study sheds light on the pathological landscape in Iberia during a time of great social, demographic, and environmental change. Genetic evidence challenges the hypothesis that malaria was absent from early medieval Iberia and demonstrates the value of combining osteological and archaeogenetic methods. Additionally, all of the preferred infectious diagnoses for the individuals included in this study (malaria, tuberculosis, and brucellosis) could have contributed to the febrile cases described in historical sources from this time.
Collapse
Affiliation(s)
- L Coppola Bove
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Legal Medicine, Toxicology and Physical Anthropology, Faculty of Medicine, University of Granada, Granada, Spain
| | - C L Kirkpatrick
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Anthropology, University of Western Ontario, London, Canada
| | - A Vigil-Escalera Guirado
- Department of Humanities: History, Geography and Art, University Carlos III de Madrid, Madrid, Spain
| | - M C Botella López
- Department of Legal Medicine, Toxicology and Physical Anthropology, Faculty of Medicine, University of Granada, Granada, Spain
| | - K I Bos
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
11
|
Susat J, Haller-Caskie M, Bonczarowska JH, da Silva NA, Schierhold K, Rind MM, Schmölcke U, Kirleis W, Sondermann H, Rinne C, Müller J, Nebel A, Krause-Kyora B. Neolithic Yersinia pestis infections in humans and a dog. Commun Biol 2024; 7:1013. [PMID: 39155318 PMCID: PMC11330967 DOI: 10.1038/s42003-024-06676-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/02/2024] [Indexed: 08/20/2024] Open
Abstract
Yersinia pestis has been infecting humans since the Late Neolithic (LN). Whether those early infections were isolated zoonoses or initiators of a pandemic remains unclear. We report Y. pestis infections in two individuals (of 133) from the LN necropolis at Warburg (Germany, 5300-4900 cal BP). Our analyses show that the two genomes belong to distinct strains and reflect independent infection events. All LN genomes known today (n = 4) are basal in the phylogeny and represent separate lineages that probably originated in different animal hosts. In the LN, an opening of the landscape resulted in the introduction of new rodent species, which may have acted as Y. pestis reservoirs. Coincidentally, the number of dogs increased, possibly leading to Y. pestis infections in canines. Indeed, we detect Y. pestis in an LN dog. Collectively, our data suggest that Y. pestis frequently entered human settlements at the time without causing significant outbreaks.
Collapse
Affiliation(s)
- Julian Susat
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | | | - Joanna H Bonczarowska
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | | | | | - Ulrich Schmölcke
- Centre for Baltic and Scandinavian Archaeology (ZBSA), Schloss Gottorf, Schleswig, Germany
| | - Wiebke Kirleis
- Institute of Pre- and Protohistoric Archaeology, Kiel University, Kiel, Germany
| | - Holger Sondermann
- Centre for Structural Systems Biology (CSSB), Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Kiel University, Kiel, Germany
| | - Christoph Rinne
- Institute of Pre- and Protohistoric Archaeology, Kiel University, Kiel, Germany
| | - Johannes Müller
- Institute of Pre- and Protohistoric Archaeology, Kiel University, Kiel, Germany
| | - Almut Nebel
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Ben Krause-Kyora
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany.
| |
Collapse
|
12
|
Koch L. Charting the evolutionary history of malaria. Nat Rev Genet 2024; 25:530. [PMID: 38926534 DOI: 10.1038/s41576-024-00756-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
|
13
|
Duran-Nebreda S, Bentley RA, Vidiella B, Spiridonov A, Eldredge N, O'Brien MJ, Valverde S. On the multiscale dynamics of punctuated evolution. Trends Ecol Evol 2024; 39:734-744. [PMID: 38821781 DOI: 10.1016/j.tree.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 06/02/2024]
Abstract
For five decades, paleontologists, paleobiologists, and ecologists have investigated patterns of punctuated equilibria in biology. Here, we step outside those fields and summarize recent advances in the theory of and evidence for punctuated equilibria, gathered from contemporary observations in geology, molecular biology, genetics, anthropology, and sociotechnology. Taken in the aggregate, these observations lead to a more general theory that we refer to as punctuated evolution. The quality of recent datasets is beginning to illustrate the mechanics of punctuated evolution in a way that can be modeled across a vast range of phenomena, from mass extinctions hundreds of millions of years ago to the possible future ahead in the Anthropocene. We expect the study of punctuated evolution to be applicable beyond biological scenarios.
Collapse
Affiliation(s)
- Salva Duran-Nebreda
- Evolution of Networks Lab, Institut de Biologia Evolutiva, Passeig Marítim de la Barceloneta 37 49, Barcelona 08003, Spain
| | - R Alexander Bentley
- Department of Anthropology, University of Tennessee, Knoxville, TN 37996, USA
| | - Blai Vidiella
- Evolution of Networks Lab, Institut de Biologia Evolutiva, Passeig Marítim de la Barceloneta 37 49, Barcelona 08003, Spain
| | - Andrej Spiridonov
- Department of Geology and Mineralogy, Vilnius University, Vilnius, Lithuania
| | - Niles Eldredge
- The American Museum of Natural History, New York, NY 10024, USA
| | - Michael J O'Brien
- Department of History, Philosophy, and Geography and Department of Life Sciences, Texas A&M University-San Antonio, San Antonio, TX 78224, USA; Department of Anthropology, University of Missouri, Columbia, MO 65205, USA.
| | - Sergi Valverde
- Evolution of Networks Lab, Institut de Biologia Evolutiva, Passeig Marítim de la Barceloneta 37 49, Barcelona 08003, Spain; European Centre for Living Technology, Ca' Bottacin, Dorsoduro 3911, 30123 Venice, Italy.
| |
Collapse
|
14
|
Bergström A. Improving data archiving practices in ancient genomics. Sci Data 2024; 11:754. [PMID: 38987254 PMCID: PMC11236975 DOI: 10.1038/s41597-024-03563-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/21/2024] [Indexed: 07/12/2024] Open
Abstract
Ancient DNA is producing a rich record of past genetic diversity in humans and other species. However, unless the primary data is appropriately archived, its long-term value will not be fully realised. I surveyed publicly archived data from 42 recent ancient genomics studies. Half of the studies archived incomplete datasets, preventing accurate replication and representing a loss of data of potential future use. No studies met all criteria that could be considered best practice. Based on these results, I make six recommendations for data producers: (1) archive all sequencing reads, not just those that aligned to a reference genome, (2) archive read alignments too, but as secondary analysis files, (3) provide correct experiment metadata on samples, libraries and sequencing runs, (4) provide informative sample metadata, (5) archive data from low-coverage and negative experiments, and (6) document archiving choices in papers, and peer review these. Given the reliance on destructive sampling of finite material, ancient genomics studies have a particularly strong responsibility to ensure the longevity and reusability of generated data.
Collapse
Affiliation(s)
- Anders Bergström
- School of Biological Sciences, University of East Anglia, Norwich, UK.
| |
Collapse
|
15
|
Wang M, Chen H, Luo L, Huang Y, Duan S, Yuan H, Tang R, Liu C, He G. Forensic investigative genetic genealogy: expanding pedigree tracing and genetic inquiry in the genomic era. J Genet Genomics 2024:S1673-8527(24)00158-9. [PMID: 38969261 DOI: 10.1016/j.jgg.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/07/2024]
Abstract
Genetic genealogy provides crucial insights into the complex biological relationships within contemporary and ancient human populations by analyzing shared alleles and chromosomal segments that are identical by descent to understand kinship, migration patterns, and population dynamics. Within forensic science, forensic investigative genetic genealogy (FIGG) has gained prominence by leveraging next-generation sequencing technologies and population-specific genomic resources, opening new investigative avenues. In this review, we synthesize current knowledge, underscore recent advancements, and discuss the growing role of FIGG in forensic genomics. FIGG has been pivotal in revitalizing dormant inquiries and offering new genetic leads in numerous cold cases. Its effectiveness relies on the extensive single-nucleotide polymorphism profiles contributed by individuals from diverse populations to specialized genomic databases. Advances in computational genomics and the growth of human genomic databases have spurred a profound shift in the application of genetic genealogy across forensics, anthropology, and ancient DNA studies. As the field progresses, FIGG is evolving from a nascent practice into a more sophisticated and specialized discipline, shaping the future of forensic investigations.
Collapse
Affiliation(s)
- Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610041, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610041, China; Anti-Drug Technology Center of Guangdong Province, Guangzhou, Guangdong 510000, China.
| | - Hongyu Chen
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610041, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610041, China; Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Lintao Luo
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610041, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610041, China; Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yuguo Huang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610041, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shuhan Duan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610041, China
| | - Huijun Yuan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610041, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Renkuan Tang
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Chao Liu
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, Guangdong 510000, China.
| | - Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610041, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610041, China; Anti-Drug Technology Center of Guangdong Province, Guangzhou, Guangdong 510000, China.
| |
Collapse
|
16
|
Michel M, Skourtanioti E, Pierini F, Guevara EK, Mötsch A, Kocher A, Barquera R, Bianco RA, Carlhoff S, Coppola Bove L, Freilich S, Giffin K, Hermes T, Hiß A, Knolle F, Nelson EA, Neumann GU, Papac L, Penske S, Rohrlach AB, Salem N, Semerau L, Villalba-Mouco V, Abadie I, Aldenderfer M, Beckett JF, Brown M, Campus FGR, Chenghwa T, Cruz Berrocal M, Damašek L, Duffett Carlson KS, Durand R, Ernée M, Fântăneanu C, Frenzel H, García Atiénzar G, Guillén S, Hsieh E, Karwowski M, Kelvin D, Kelvin N, Khokhlov A, Kinaston RL, Korolev A, Krettek KL, Küßner M, Lai L, Look C, Majander K, Mandl K, Mazzarello V, McCormick M, de Miguel Ibáñez P, Murphy R, Németh RE, Nordqvist K, Novotny F, Obenaus M, Olmo-Enciso L, Onkamo P, Orschiedt J, Patrushev V, Peltola S, Romero A, Rubino S, Sajantila A, Salazar-García DC, Serrano E, Shaydullaev S, Sias E, Šlaus M, Stančo L, Swanston T, Teschler-Nicola M, Valentin F, Van de Vijver K, Varney TL, Vigil-Escalera Guirado A, Waters CK, Weiss-Krejci E, Winter E, Lamnidis TC, Prüfer K, Nägele K, Spyrou M, Schiffels S, Stockhammer PW, Haak W, Posth C, Warinner C, Bos KI, Herbig A, Krause J. Ancient Plasmodium genomes shed light on the history of human malaria. Nature 2024; 631:125-133. [PMID: 38867050 PMCID: PMC11222158 DOI: 10.1038/s41586-024-07546-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 05/09/2024] [Indexed: 06/14/2024]
Abstract
Malaria-causing protozoa of the genus Plasmodium have exerted one of the strongest selective pressures on the human genome, and resistance alleles provide biomolecular footprints that outline the historical reach of these species1. Nevertheless, debate persists over when and how malaria parasites emerged as human pathogens and spread around the globe1,2. To address these questions, we generated high-coverage ancient mitochondrial and nuclear genome-wide data from P. falciparum, P. vivax and P. malariae from 16 countries spanning around 5,500 years of human history. We identified P. vivax and P. falciparum across geographically disparate regions of Eurasia from as early as the fourth and first millennia BCE, respectively; for P. vivax, this evidence pre-dates textual references by several millennia3. Genomic analysis supports distinct disease histories for P. falciparum and P. vivax in the Americas: similarities between now-eliminated European and peri-contact South American strains indicate that European colonizers were the source of American P. vivax, whereas the trans-Atlantic slave trade probably introduced P. falciparum into the Americas. Our data underscore the role of cross-cultural contacts in the dissemination of malaria, laying the biomolecular foundation for future palaeo-epidemiological research into the impact of Plasmodium parasites on human history. Finally, our unexpected discovery of P. falciparum in the high-altitude Himalayas provides a rare case study in which individual mobility can be inferred from infection status, adding to our knowledge of cross-cultural connectivity in the region nearly three millennia ago.
Collapse
MESH Headings
- Female
- Humans
- Male
- Altitude
- Americas/epidemiology
- Asia/epidemiology
- Biological Evolution
- Disease Resistance/genetics
- DNA, Ancient/analysis
- Europe/epidemiology
- Genome, Mitochondrial/genetics
- Genome, Protozoan/genetics
- History, Ancient
- Malaria/parasitology
- Malaria/history
- Malaria/transmission
- Malaria/epidemiology
- Malaria, Falciparum/epidemiology
- Malaria, Falciparum/history
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/transmission
- Malaria, Vivax/epidemiology
- Malaria, Vivax/history
- Malaria, Vivax/parasitology
- Malaria, Vivax/transmission
- Plasmodium/genetics
- Plasmodium/classification
- Plasmodium falciparum/genetics
- Plasmodium falciparum/isolation & purification
- Plasmodium malariae/genetics
- Plasmodium malariae/isolation & purification
- Plasmodium vivax/genetics
- Plasmodium vivax/isolation & purification
Collapse
Affiliation(s)
- Megan Michel
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean, .
| | - Eirini Skourtanioti
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean
| | - Federica Pierini
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Evelyn K Guevara
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Forensic Medicine, University of Helsinki, Helsinki, Finland
| | - Angela Mötsch
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean
| | - Arthur Kocher
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Transmission, Infection, Diversification and Evolution Group, Max Planck Institute of Geoanthropology, Jena, Germany
| | - Rodrigo Barquera
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Raffaela A Bianco
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean
| | - Selina Carlhoff
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Lorenza Coppola Bove
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean
- Department of Legal Medicine, Toxicology and Physical Anthropology, University of Granada, Granada, Spain
| | - Suzanne Freilich
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Karen Giffin
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Taylor Hermes
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Anthropology, University of Arkansas, Fayetteville, AR, USA
| | - Alina Hiß
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Florian Knolle
- Department of Medical Engineering and Biotechnology, University of Applied Sciences Jena, Jena, Germany
| | - Elizabeth A Nelson
- Microbial Palaeogenomics Unit, Department of Genomes and Genetics, Institut Pasteur, Paris, France
| | - Gunnar U Neumann
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean
| | - Luka Papac
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Sandra Penske
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Adam B Rohrlach
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- School of Computer and Mathematical Sciences, University of Adelaide, Adelaide, Australia
- Adelaide Data Science Centre, University of Adelaide, Adelaide, Australia
| | - Nada Salem
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean
| | - Lena Semerau
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Vanessa Villalba-Mouco
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón, IUCA-Aragosaurus, Universitity of Zaragoza, Zaragoza, Spain
| | - Isabelle Abadie
- Inrap - Institut national de recherches archéologiques préventives, Paris, France
- Centre Michel de Boüard, Centre de recherches archéologiques et historiques anciennes et médiévales, Université de Caen Normandie, Caen, France
| | - Mark Aldenderfer
- Department of Anthropology and Heritage Studies, University of California, Merced, Merced, CA, USA
| | | | - Matthew Brown
- Sociology and Anthropology Department, Farmingdale State College, Farmingdale, NY, USA
| | - Franco G R Campus
- Department of History, Human Sciences, and Education, University of Sassari, Sassari, Italy
| | - Tsang Chenghwa
- Institute of Anthropology, National Tsing Hua University, Hsinchu, Taiwan
| | - María Cruz Berrocal
- Institute of Heritage Sciences (INCIPIT), Spanish National Research Council (CSIC), Santiago de Compostela, Spain
| | - Ladislav Damašek
- Institute of Classical Archaeology, Faculty of Arts, Charles University, Prague, Czech Republic
| | | | - Raphaël Durand
- Service d'archéologie préventive Bourges plus, Bourges, France
- UMR 5199 PACEA, Université de Bordeaux, Pessac Cedex, France
| | - Michal Ernée
- Department of Prehistoric Archaeology, Institute of Archaeology of the Czech Academy of Sciences, Prague, Czech Republic
| | | | - Hannah Frenzel
- Anatomy Institute, University of Leipzig, Leipzig, Germany
| | - Gabriel García Atiénzar
- Instituto Universitario de Investigación en Arqueología y Patrimonio Histórico, Universidad de Alicante, San Vicente del Raspeig (Alicante), Spain
| | | | - Ellen Hsieh
- Institute of Anthropology, National Tsing Hua University, Hsinchu, Taiwan
| | - Maciej Karwowski
- Institut für Urgeschichte und Historische Archäologie, University of Vienna, Vienna, Austria
| | - David Kelvin
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Nikki Kelvin
- Division of Ancient Pathogens, BioForge Canada Limited, Halifax, Nove Scotia, Canada
| | - Alexander Khokhlov
- Samara State University of Social Sciences and Education, Samara, Russia
| | - Rebecca L Kinaston
- BioArch South, Waitati, New Zealand
- Griffith Centre for Social and Cultural Studies, Griffith University, Nathan, Queensland, Australia
| | - Arkadii Korolev
- Samara State University of Social Sciences and Education, Samara, Russia
| | - Kim-Louise Krettek
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany
| | - Mario Küßner
- Thuringian State Office for Heritage Management and Archaeology, Weimar, Germany
| | - Luca Lai
- Department of Anthropology, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Cory Look
- Sociology and Anthropology Department, Farmingdale State College, Farmingdale, NY, USA
| | - Kerttu Majander
- Department of Environmental Science, Integrative Prehistory and Archaeological Science, University of Basel, Basel, Switzerland
| | - Kirsten Mandl
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | | | - Michael McCormick
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean
- Initiative for the Science of the Human Past at Harvard, Department of History, Harvard University, Cambridge, MA, USA
| | - Patxuka de Miguel Ibáñez
- Instituto Universitario de Investigación en Arqueología y Patrimonio Histórico, Universidad de Alicante, San Vicente del Raspeig (Alicante), Spain
- Servicio de Obstetricia, Hospital Virgen de los Lirios-Fisabio, Alcoi, Spain
- Sección de Antropología, Sociedad de Ciencias Aranzadi, Donostia - San Sebastián, Spain
| | - Reg Murphy
- University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Kerkko Nordqvist
- Helsinki Collegium for Advanced Studies, University of Helsinki, Helsinki, Finland
| | - Friederike Novotny
- Department of Anthropology, Natural History Museum Vienna, Vienna, Austria
| | - Martin Obenaus
- Silva Nortica Archäologische Dienstleistungen, Thunau am Kamp, Austria
| | - Lauro Olmo-Enciso
- Department of History, University of Alcalá, Alcalá de Henares, Spain
| | - Päivi Onkamo
- Department of Biology, University of Turku, Turku, Finland
| | - Jörg Orschiedt
- Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt, Halle, Germany
- Institut für Prähistorische Archäologie, Freie Universität Berlin, Berlin, Germany
| | - Valerii Patrushev
- Centre of Archaeological and Ethnographical Investigation, Mari State University, Yoshkar-Ola, Russia
| | - Sanni Peltola
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Alejandro Romero
- Instituto Universitario de Investigación en Arqueología y Patrimonio Histórico, Universidad de Alicante, San Vicente del Raspeig (Alicante), Spain
- Departamento de Biotecnología, Universidad de Alicante, San Vicente del Raspeig, Spain
| | - Salvatore Rubino
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Antti Sajantila
- Department of Forensic Medicine, University of Helsinki, Helsinki, Finland
- Forensic Medicine Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Domingo C Salazar-García
- Departament de Prehistòria, Arqueologia i Història Antiga, Universitat de València, Valencia, Spain
- Department of Geological Sciences, University of Cape Town, Cape Town, South Africa
| | - Elena Serrano
- Instituto Internacional de Investigaciones Prehistóricas, Universidad de Cantabria, Santander, Spain
- TAR Arqueología, Madrid, Spain
| | | | - Emanuela Sias
- Centro Studi sulla Civiltà del Mare, Stintino, Italy
| | - Mario Šlaus
- Anthropological Center, Croatian Academy of Sciences and Arts, Zagreb, Croatia
| | - Ladislav Stančo
- Institute of Classical Archaeology, Faculty of Arts, Charles University, Prague, Czech Republic
| | - Treena Swanston
- Department of Anthropology, Economics and Political Science, MacEwan University, Edmonton, Alberta, Canada
| | - Maria Teschler-Nicola
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Department of Anthropology, Natural History Museum Vienna, Vienna, Austria
| | | | - Katrien Van de Vijver
- Royal Belgian Institute of Natural Sciences, Brussels, Belgium
- Center for Archaeological Sciences, University of Leuven, Leuven, Belgium
- Dienst Archeologie - Stad Mechelen, Mechelen, Belgium
| | - Tamara L Varney
- Department of Anthropology, Lakehead University, Thunder Bay, Ontario, Canada
| | | | - Christopher K Waters
- Heritage Department, National Parks of Antigua and Barbuda, St. Paul's Parish, Antigua and Barbuda
| | - Estella Weiss-Krejci
- Austrian Archaeological Institute, Austrian Academy of Sciences, Vienna, Austria
- Institut für Ur- und Frühgeschichte, Heidelberg University, Heidelberg, Germany
- Department of Social and Cultural Anthropology, University of Vienna, Vienna, Austria
| | - Eduard Winter
- Department of Anthropology, Natural History Museum Vienna, Vienna, Austria
| | - Thiseas C Lamnidis
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Kay Prüfer
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Kathrin Nägele
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Maria Spyrou
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Archaeo- and Palaeogenetics, Institute for Archaeological Sciences, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Stephan Schiffels
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Philipp W Stockhammer
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean
- Institute for Pre- and Protohistoric Archaeology and Archaeology of the Roman Provinces, Ludwig Maximilian University, Munich, Germany
| | - Wolfgang Haak
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Cosimo Posth
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany
- Archaeo- and Palaeogenetics, Institute for Archaeological Sciences, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Christina Warinner
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean
- Department of Anthropology, Harvard University, Cambridge, MA, USA
| | - Kirsten I Bos
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Alexander Herbig
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean, .
| |
Collapse
|
17
|
Barber MF, Fitzgerald JR. Mechanisms of host adaptation by bacterial pathogens. FEMS Microbiol Rev 2024; 48:fuae019. [PMID: 39003250 PMCID: PMC11308195 DOI: 10.1093/femsre/fuae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 07/15/2024] Open
Abstract
The emergence of new infectious diseases poses a major threat to humans, animals, and broader ecosystems. Defining factors that govern the ability of pathogens to adapt to new host species is therefore a crucial research imperative. Pathogenic bacteria are of particular concern, given dwindling treatment options amid the continued expansion of antimicrobial resistance. In this review, we summarize recent advancements in the understanding of bacterial host species adaptation, with an emphasis on pathogens of humans and related mammals. We focus particularly on molecular mechanisms underlying key steps of bacterial host adaptation including colonization, nutrient acquisition, and immune evasion, as well as suggest key areas for future investigation. By developing a greater understanding of the mechanisms of host adaptation in pathogenic bacteria, we may uncover new strategies to target these microbes for the treatment and prevention of infectious diseases in humans, animals, and the broader environment.
Collapse
Affiliation(s)
- Matthew F Barber
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, United States
- Department of Biology, University of Oregon, Eugene, OR 97403, United States
| | - J Ross Fitzgerald
- The Roslin Institute, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
| |
Collapse
|
18
|
Ferreira RC, Alves GV, Ramon M, Antoneli F, Briones MRS. Reconstructing Prehistoric Viral Genomes from Neanderthal Sequencing Data. Viruses 2024; 16:856. [PMID: 38932149 PMCID: PMC11209150 DOI: 10.3390/v16060856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
DNA viruses that produce persistent infections have been proposed as potential causes for the extinction of Neanderthals, and, therefore, the identification of viral genome remnants in Neanderthal sequence reads is an initial step to address this hypothesis. Here, as proof of concept, we searched for viral remnants in sequence reads of Neanderthal genome data by mapping to adenovirus, herpesvirus and papillomavirus, which are double-stranded DNA viruses that may establish lifelong latency and can produce persistent infections. The reconstructed ancient viral genomes of adenovirus, herpesvirus and papillomavirus revealed conserved segments, with nucleotide identity to extant viral genomes and variable regions in coding regions with substantial divergence to extant close relatives. Sequence reads mapped to extant viral genomes showed deamination patterns of ancient DNA, and these ancient viral genomes showed divergence consistent with the age of these samples (≈50,000 years) and viral evolutionary rates (10-5 to 10-8 substitutions/site/year). Analysis of random effects showed that the Neanderthal mapping to genomes of extant persistent viruses is above what is expected by random similarities of short reads. Also, negative control with a nonpersistent DNA virus does not yield statistically significant assemblies. This work demonstrates the feasibility of identifying viral genome remnants in archaeological samples with signal-to-noise assessment.
Collapse
Affiliation(s)
- Renata C. Ferreira
- Center for Medical Bioinformatics, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, SP 04039-032, Brazil (F.A.)
- Epigene LLC, São Paulo, SP 04537-080, Brazil
| | - Gustavo V. Alves
- Center for Medical Bioinformatics, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, SP 04039-032, Brazil (F.A.)
| | | | - Fernando Antoneli
- Center for Medical Bioinformatics, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, SP 04039-032, Brazil (F.A.)
| | - Marcelo R. S. Briones
- Center for Medical Bioinformatics, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, SP 04039-032, Brazil (F.A.)
| |
Collapse
|
19
|
Nodari R, Arghittu M, Bailo P, Cattaneo C, Creti R, D’Aleo F, Saegeman V, Franceschetti L, Novati S, Fernández-Rodríguez A, Verzeletti A, Farina C, Bandi C. Forensic Microbiology: When, Where and How. Microorganisms 2024; 12:988. [PMID: 38792818 PMCID: PMC11123702 DOI: 10.3390/microorganisms12050988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Forensic microbiology is a relatively new discipline, born in part thanks to the development of advanced methodologies for the detection, identification and characterization of microorganisms, and also in relation to the growing impact of infectious diseases of iatrogenic origin. Indeed, the increased application of medical practices, such as transplants, which require immunosuppressive treatments, and the growing demand for prosthetic installations, associated with an increasing threat of antimicrobial resistance, have led to a rise in the number of infections of iatrogenic origin, which entails important medico-legal issues. On the other hand, the possibility of detecting minimal amounts of microorganisms, even in the form of residual traces (e.g., their nucleic acids), and of obtaining gene and genomic sequences at contained costs, has made it possible to ask new questions of whether cases of death or illness might have a microbiological origin, with the possibility of also tracing the origin of the microorganisms involved and reconstructing the chain of contagion. In addition to the more obvious applications, such as those mentioned above related to the origin of iatrogenic infections, or to possible cases of infections not properly diagnosed and treated, a less obvious application of forensic microbiology concerns its use in cases of violence or violent death, where the characterization of the microorganisms can contribute to the reconstruction of the case. Finally, paleomicrobiology, e.g., the reconstruction and characterization of microorganisms in historical or even archaeological remnants, can be considered as a sister discipline of forensic microbiology. In this article, we will review these different aspects and applications of forensic microbiology.
Collapse
Affiliation(s)
- Riccardo Nodari
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, 20133 Milan, Italy
| | - Milena Arghittu
- Analysis Laboratory, ASST Melegnano e Martesana, 20077 Vizzolo Predabissi, Italy
| | - Paolo Bailo
- Section of Legal Medicine, School of Law, University of Camerino, 62032 Camerino, Italy
| | - Cristina Cattaneo
- LABANOF, Laboratory of Forensic Anthropology and Odontology, Section of Forensic Medicine, Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Roberta Creti
- Antibiotic Resistance and Special Pathogens Unit, Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Francesco D’Aleo
- Microbiology and Virology Laboratory, GOM—Grande Ospedale Metropolitano, 89124 Reggio Calabria, Italy
| | - Veroniek Saegeman
- Microbiology and Infection Control, Vitaz Hospital, 9100 Sint-Niklaas, Belgium
| | - Lorenzo Franceschetti
- LABANOF, Laboratory of Forensic Anthropology and Odontology, Section of Forensic Medicine, Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Stefano Novati
- Department of Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy
| | - Amparo Fernández-Rodríguez
- Microbiology Department, Biology Service, Instituto Nacional de Toxicología y Ciencias Forenses, 41009 Madrid, Spain
| | - Andrea Verzeletti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health University of Brescia, 25123 Brescia, Italy
| | - Claudio Farina
- Microbiology and Virology Laboratory, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Claudio Bandi
- Romeo ed Enrica Invernizzi Paediatric Research Centre, Department of Biosciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
20
|
Martin-Roy R, Thyrring J, Mata X, Bangsgaard P, Bennike O, Christiansen G, Funder S, Gotfredsen AB, Gregersen KM, Hansen CH, Ilsøe PC, Klassen L, Kristensen IK, Ravnholt GB, Marin F, Der Sarkissian C. Advancing responsible genomic analyses of ancient mollusc shells. PLoS One 2024; 19:e0302646. [PMID: 38709766 PMCID: PMC11073703 DOI: 10.1371/journal.pone.0302646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/09/2024] [Indexed: 05/08/2024] Open
Abstract
The analysis of the DNA entrapped in ancient shells of molluscs has the potential to shed light on the evolution and ecology of this very diverse phylum. Ancient genomics could help reconstruct the responses of molluscs to past climate change, pollution, and human subsistence practices at unprecedented temporal resolutions. Applications are however still in their infancy, partly due to our limited knowledge of DNA preservation in calcium carbonate shells and the need for optimized methods for responsible genomic data generation. To improve ancient shell genomic analyses, we applied high-throughput DNA sequencing to 27 Mytilus mussel shells dated to ~111-6500 years Before Present, and investigated the impact, on DNA recovery, of shell imaging, DNA extraction protocols and shell sub-sampling strategies. First, we detected no quantitative or qualitative deleterious effect of micro-computed tomography for recording shell 3D morphological information prior to sub-sampling. Then, we showed that double-digestion and bleach treatment of shell powder prior to silica-based DNA extraction improves shell DNA recovery, also suggesting that DNA is protected in preservation niches within ancient shells. Finally, all layers that compose Mytilus shells, i.e., the nacreous (aragonite) and prismatic (calcite) carbonate layers, with or without the outer organic layer (periostracum) proved to be valuable DNA reservoirs, with aragonite appearing as the best substrate for genomic analyses. Our work contributes to the understanding of long-term molecular preservation in biominerals and we anticipate that resulting recommendations will be helpful for future efficient and responsible genomic analyses of ancient mollusc shells.
Collapse
Affiliation(s)
- Raphaël Martin-Roy
- Centre for Anthropobiology and Genomics of Toulouse, UMR5288, CNRS, University Paul Sabatier, Toulouse, France
| | - Jakob Thyrring
- Department of Ecoscience, Aarhus University, Aarhus, Denmark
- Arctic Research Centre, Aarhus University, Aarhus, Denmark
| | - Xavier Mata
- Centre for Anthropobiology and Genomics of Toulouse, UMR5288, CNRS, University Paul Sabatier, Toulouse, France
| | - Pernille Bangsgaard
- Globe Institute, Section for GeoGenetics, University of Copenhagen, Copenhagen, Denmark
| | - Ole Bennike
- Geological Survey of Denmark and Greenland, Copenhagen, Denmark
| | | | - Svend Funder
- Globe Institute, Section for GeoGenetics, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Peter Carsten Ilsøe
- Globe Institute, Section for GeoGenetics, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Frédéric Marin
- Biogéosciences, UMR6282, CNRS-EPHE-uB, University of Burgundy, EPHE, Dijon, France
| | - Clio Der Sarkissian
- Centre for Anthropobiology and Genomics of Toulouse, UMR5288, CNRS, University Paul Sabatier, Toulouse, France
| |
Collapse
|
21
|
Meiri M, Bar-Oz G. Unraveling the diversity and cultural heritage of fruit crops through paleogenomics. Trends Genet 2024; 40:398-409. [PMID: 38423916 PMCID: PMC11079635 DOI: 10.1016/j.tig.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Abundant and plentiful fruit crops are threatened by the loss of diverse legacy cultivars which are being replaced by a limited set of high-yielding ones. This article delves into the potential of paleogenomics that utilizes ancient DNA analysis to revive lost diversity. By focusing on grapevines, date palms, and tomatoes, recent studies showcase the effectiveness of paleogenomic techniques in identifying and understanding genetic traits crucial for crop resilience, disease resistance, and nutritional value. The approach not only tracks landrace dispersal and introgression but also sheds light on domestication events. In the face of major future environmental challenges, integrating paleogenomics with modern breeding strategies emerges as a promising avenue to significantly bolster fruit crop sustainability.
Collapse
Affiliation(s)
- Meirav Meiri
- The Steinhardt Museum of Natural History and Israel National Center for Biodiversity Studies, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Guy Bar-Oz
- School of Archaeology and Maritime Cultures, University of Haifa, Haifa, 3498837 Mount Carmel, Israel
| |
Collapse
|
22
|
Sundararaman B, Shapiro K, Packham A, Camp LE, Meyer RS, Shapiro B, Green RE. Whole genome enrichment approach for genomic surveillance of Toxoplasma gondii. Food Microbiol 2024; 118:104403. [PMID: 38049278 DOI: 10.1016/j.fm.2023.104403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/26/2023] [Accepted: 10/15/2023] [Indexed: 12/06/2023]
Abstract
Pathogenic bacteria, viruses, fungi, and protozoa can cause food and waterborne diseases. Surveillance methods must therefore screen for these pathogens at various stages of water distribution and of food from production to consumption. Detection using nucleic acid amplification methods offer rapid identification, but such methods have limited utility for characterizing populations, variant types or virulence traits of pathogens. Whole genome sequencing (WGS) can be used to determine this information. However, pathogens must be isolated and cultured to yield sufficient DNA for WGS, which is laborious or not feasible for certain stages of parasites like oocysts of Toxoplasma gondii. We previously developed the Circular Nucleic acid Enrichment Reagent (CNER) method to make whole genome enrichment (WGE) baits for difficult-to-grow bacterial pathogens. WGE using CNERs facilitates direct sequencing of pathogens from samples without the need to isolate and grow them. Here, we made WGE-CNERs for T. gondii to demonstrate the use of the CNER method to make baits to enrich the large genomes of water and foodborne protozoan pathogens. By sequencing, we detected as few as 50 parasites spiked in an oyster hemolymph matrix. We discuss the use of WGE-CNERs for genomic surveillance of food and waterborne pathogens.
Collapse
Affiliation(s)
| | - Karen Shapiro
- One Health Institute, UC Davis, USA; Department of Pathology, Microbiology, and Immunology, UC Davis, USA.
| | | | - Lauren E Camp
- Department of Pathology, Microbiology, and Immunology, UC Davis, USA
| | - Rachel S Meyer
- Department of Ecology and Evolutionary Biology, UC Santa Cruz, USA
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, UC Santa Cruz, USA; Howard Hughes Medical Institute, UC Santa Cruz, USA
| | | |
Collapse
|
23
|
Quek ZBR, Ng SH. Hybrid-Capture Target Enrichment in Human Pathogens: Identification, Evolution, Biosurveillance, and Genomic Epidemiology. Pathogens 2024; 13:275. [PMID: 38668230 PMCID: PMC11054155 DOI: 10.3390/pathogens13040275] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 04/29/2024] Open
Abstract
High-throughput sequencing (HTS) has revolutionised the field of pathogen genomics, enabling the direct recovery of pathogen genomes from clinical and environmental samples. However, pathogen nucleic acids are often overwhelmed by those of the host, requiring deep metagenomic sequencing to recover sufficient sequences for downstream analyses (e.g., identification and genome characterisation). To circumvent this, hybrid-capture target enrichment (HC) is able to enrich pathogen nucleic acids across multiple scales of divergences and taxa, depending on the panel used. In this review, we outline the applications of HC in human pathogens-bacteria, fungi, parasites and viruses-including identification, genomic epidemiology, antimicrobial resistance genotyping, and evolution. Importantly, we explored the applicability of HC to clinical metagenomics, which ultimately requires more work before it is a reliable and accurate tool for clinical diagnosis. Relatedly, the utility of HC was exemplified by COVID-19, which was used as a case study to illustrate the maturity of HC for recovering pathogen sequences. As we unravel the origins of COVID-19, zoonoses remain more relevant than ever. Therefore, the role of HC in biosurveillance studies is also highlighted in this review, which is critical in preparing us for the next pandemic. We also found that while HC is a popular tool to study viruses, it remains underutilised in parasites and fungi and, to a lesser extent, bacteria. Finally, weevaluated the future of HC with respect to bait design in the eukaryotic groups and the prospect of combining HC with long-read HTS.
Collapse
Affiliation(s)
- Z. B. Randolph Quek
- Defence Medical & Environmental Research Institute, DSO National Laboratories, Singapore 117510, Singapore
| | | |
Collapse
|
24
|
Garrido Marques A, Rubinacci S, Malaspinas AS, Delaneau O, Sousa da Mota B. Assessing the impact of post-mortem damage and contamination on imputation performance in ancient DNA. Sci Rep 2024; 14:6227. [PMID: 38486065 PMCID: PMC10940295 DOI: 10.1038/s41598-024-56584-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/08/2024] [Indexed: 03/18/2024] Open
Abstract
Low-coverage imputation is becoming ever more present in ancient DNA (aDNA) studies. Imputation pipelines commonly used for present-day genomes have been shown to yield accurate results when applied to ancient genomes. However, post-mortem damage (PMD), in the form of C-to-T substitutions at the reads termini, and contamination with DNA from closely related species can potentially affect imputation performance in aDNA. In this study, we evaluated imputation performance (i) when using a genotype caller designed for aDNA, ATLAS, compared to bcftools, and (ii) when contamination is present. We evaluated imputation performance with principal component analyses and by calculating imputation error rates. With a particular focus on differently imputed sites, we found that using ATLAS prior to imputation substantially improved imputed genotypes for a very damaged ancient genome (42% PMD). Trimming the ends of the sequencing reads led to similar improvements in imputation accuracy. For the remaining genomes, ATLAS brought limited gains. Finally, to examine the effect of contamination on imputation, we added various amounts of reads from two present-day genomes to a previously downsampled high-coverage ancient genome. We observed that imputation accuracy drastically decreased for contamination rates above 5%. In conclusion, we recommend (i) accounting for PMD by either trimming sequencing reads or using a genotype caller such as ATLAS before imputing highly damaged genomes and (ii) only imputing genomes containing up to 5% of contamination.
Collapse
Affiliation(s)
| | - Simone Rubinacci
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anna-Sapfo Malaspinas
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | | | - Bárbara Sousa da Mota
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
25
|
Baranzini SE, Graves JS. What doesn't kill you makes you stronger . . . or does it? Mult Scler 2024; 30:292-294. [PMID: 38366936 DOI: 10.1177/13524585241231664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Affiliation(s)
- Sergio E Baranzini
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Jennifer S Graves
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
26
|
Forshaw R. Windows into the past: recent scientific techniques in dental analysis. Br Dent J 2024; 236:205-211. [PMID: 38332093 PMCID: PMC10853062 DOI: 10.1038/s41415-024-7053-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/07/2023] [Accepted: 06/21/2023] [Indexed: 02/10/2024]
Abstract
Teeth are the hardest and most chemically stable tissues in the body, are well-preserved in archaeological remains and, being resistant to decomposition in the soil, survive long after their supporting structures have deteriorated. It has long been recognised that visual and radiographic examination of teeth can provide considerable information relating to the lifestyle of an individual. This paper examines the latest scientific approaches that have become available to investigate recent and ancient teeth. These techniques include DNA analysis, which can be used to determine the sex of an individual, indicate familial relationships, study population movements, provide phylogenetic information and identify the presence of disease pathogens. A stable isotopic approach can shed light on aspects of diet and mobility and even research climate change. Proteomic analysis of ancient dental calculus can reveal specific information about individual diets. Synchrotron microcomputed tomography is a non-invasive technique which can be used to visualise physiological impactful events, such as parturition, menopause and diseases in cementum microstructure - these being displayed as aberrant growth lines.
Collapse
Affiliation(s)
- Roger Forshaw
- KNH Centre for Biomedical Egyptology, Faculty of Biology, Medicine and Health, Stopford Building, Oxford Road, University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
27
|
Rozwalak P, Barylski J, Wijesekara Y, Dutilh BE, Zielezinski A. Ultraconserved bacteriophage genome sequence identified in 1300-year-old human palaeofaeces. Nat Commun 2024; 15:495. [PMID: 38263397 PMCID: PMC10805732 DOI: 10.1038/s41467-023-44370-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/11/2023] [Indexed: 01/25/2024] Open
Abstract
Bacteriophages are widely recognised as rapidly evolving biological entities. However, knowledge about ancient bacteriophages is limited. Here, we analyse DNA sequence datasets previously generated from ancient palaeofaeces and human gut-content samples, and identify an ancient phage genome nearly identical to present-day Mushuvirus mushu, a virus that infects gut commensal bacteria. The DNA damage patterns of the genome are consistent with its ancient origin and, despite 1300 years of evolution, the ancient Mushuvirus genome shares 97.7% nucleotide identity with its modern counterpart, indicating a long-term relationship between the prophage and its host. In addition, we reconstruct and authenticate 297 other phage genomes from the last 5300 years, including those belonging to unknown families. Our findings demonstrate the feasibility of reconstructing ancient phage genome sequences, thus expanding the known virosphere and offering insights into phage-bacteria interactions spanning several millennia.
Collapse
Affiliation(s)
- Piotr Rozwalak
- Department of Computational Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, 61-614, Poland
| | - Jakub Barylski
- Department of Molecular Virology, Faculty of Biology, Adam Mickiewicz University, Poznan, 61-614, Poland
| | - Yasas Wijesekara
- Institute of Bioinformatics, University Medicine Greifswald, Felix-Hausdorff-Str. 8, 17475, Greifswald, Germany
| | - Bas E Dutilh
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743, Jena, Germany.
- Theoretical Biology and Bioinformatics, Science4Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands.
| | - Andrzej Zielezinski
- Department of Computational Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, 61-614, Poland.
| |
Collapse
|
28
|
Hui R, Scheib CL, D’Atanasio E, Inskip SA, Cessford C, Biagini SA, Wohns AW, Ali MQ, Griffith SJ, Solnik A, Niinemäe H, Ge XJ, Rose AK, Beneker O, O’Connell TC, Robb JE, Kivisild T. Genetic history of Cambridgeshire before and after the Black Death. SCIENCE ADVANCES 2024; 10:eadi5903. [PMID: 38232165 PMCID: PMC10793959 DOI: 10.1126/sciadv.adi5903] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 12/14/2023] [Indexed: 01/19/2024]
Abstract
The extent of the devastation of the Black Death pandemic (1346-1353) on European populations is known from documentary sources and its bacterial source illuminated by studies of ancient pathogen DNA. What has remained less understood is the effect of the pandemic on human mobility and genetic diversity at the local scale. Here, we report 275 ancient genomes, including 109 with coverage >0.1×, from later medieval and postmedieval Cambridgeshire of individuals buried before and after the Black Death. Consistent with the function of the institutions, we found a lack of close relatives among the friars and the inmates of the hospital in contrast to their abundance in general urban and rural parish communities. While we detect long-term shifts in local genetic ancestry in Cambridgeshire, we find no evidence of major changes in genetic ancestry nor higher differentiation of immune loci between cohorts living before and after the Black Death.
Collapse
Affiliation(s)
- Ruoyun Hui
- Alan Turing Institute, London, UK
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
| | - Christiana L. Scheib
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
- St John’s College, University of Cambridge, Cambridge, UK
| | | | - Sarah A. Inskip
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
- School of Archaeology and Ancient History, University of Leicester, Leicester, UK
| | - Craig Cessford
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
- Cambridge Archaeological Unit, Department of Archaeology, University of Cambridge, Cambridge, UK
| | | | - Anthony W. Wohns
- School of Medicine, Stanford University, Stanford, CA, USA
- Department of Genetics and Biology, Stanford University, Stanford, CA, USA
| | | | - Samuel J. Griffith
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Anu Solnik
- Core Facility, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Helja Niinemäe
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Xiangyu Jack Ge
- Wellcome Genome Campus, Wellcome Sanger Institute, Hinxton, UK
| | - Alice K. Rose
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
- Department of Archaeology, University of Durham, Durham, UK
| | - Owyn Beneker
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Tamsin C. O’Connell
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
| | - John E. Robb
- Department of Archaeology, University of Cambridge, Cambridge, UK
| | - Toomas Kivisild
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
29
|
Lebrasseur O, More KD, Orlando L. Equine herpesvirus 4 infected domestic horses associated with Sintashta spoke-wheeled chariots around 4,000 years ago. Virus Evol 2024; 10:vead087. [PMID: 38465241 PMCID: PMC10924538 DOI: 10.1093/ve/vead087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/27/2023] [Accepted: 01/11/2024] [Indexed: 03/12/2024] Open
Abstract
Equine viral outbreaks have disrupted the socio-economic life of past human societies up until the late 19th century and continue to be of major concern to the horse industry today. With a seroprevalence of 60-80 per cent, equine herpesvirus 4 (EHV-4) is the most common horse pathogen on the planet. Yet, its evolutionary history remains understudied. Here, we screen the sequenced data of 264 archaeological horse remains to detect the presence of EHV-4. We recover the first ancient EHV-4 genome with 4.2× average depth-of-coverage from a specimen excavated in the Southeastern Urals and dated to the Early Bronze Age period, approximately 3,900 years ago. The recovery of an EHV-4 virus outside the upper respiratory tract not only points to an animal particularly infected but also highlights the importance of post-cranial bones in pathogen characterisation. Bayesian phylogenetic reconstruction provides a minimal time estimate for EHV-4 diversification to around 4,000 years ago, a time when modern domestic horses spread across the Central Asian steppes together with spoke-wheeled Sintashta chariots, or earlier. The analyses also considerably revise the diversification time of the two EHV-4 subclades from the 16th century based solely on modern data to nearly a thousand years ago. Our study paves the way for a robust reconstruction of the history of non-human pathogens and their impact on animal health.
Collapse
Affiliation(s)
- Ophélie Lebrasseur
- Centre for Anthropobiology and Genomics of Toulouse (CAGT), CNRS/Université Paul Sabatier, 37 Allées Jules Guesde, 31000, Toulouse, France
- Instituto Nacional de Antropología y Pensamiento Latinoamericano, 3 de Febrero 1370 (1426), Ciudad Autónoma de Buenos Aires, Argentina
| | - Kuldeep Dilip More
- Centre for Anthropobiology and Genomics of Toulouse (CAGT), CNRS/Université Paul Sabatier, 37 Allées Jules Guesde, 31000, Toulouse, France
| | - Ludovic Orlando
- Centre for Anthropobiology and Genomics of Toulouse (CAGT), CNRS/Université Paul Sabatier, 37 Allées Jules Guesde, 31000, Toulouse, France
| |
Collapse
|
30
|
Duchene S. Tracing the origin of virulence. Science 2023; 382:1245-1246. [PMID: 38096277 DOI: 10.1126/science.adl6094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Microbial genomes from ancient chickens uncover the drivers of pathogenicity.
Collapse
Affiliation(s)
- Sebastian Duchene
- Department of Computational Biology, Institut Pasteur, Paris, France
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| |
Collapse
|
31
|
Mays SA. The palaeopathology of industry, a perspective from Britain. INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2023; 43:85-92. [PMID: 37890438 DOI: 10.1016/j.ijpp.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/19/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
OBJECTIVES This article considers the position of palaeopathology of ca. 1750AD onward within the subdiscipline of Industrial Archaeology, and reflects upon the relationship between skeletal palaeopathology and textual sources on disease prevalences. METHODS It draws upon the author's experience in engaging with threat-led archaeology. It synthesises key elements of palaeopathological literature, emphasising contributions to the IJPP VSI 'Changes in Health with the Rise of Industry', and also the broader literature regarding Industrial Archaeology. RESULTS Industrial Archaeology has seen a recent refocus to include not only a concentration upon technological aspects of industry but also increased emphasis the social context of industrialisation. This movement toward a placement of people as well as machines centre stage has resulted in an environment conducive for paleopathology to make a greater impact upon studies of the period. CONCLUSIONS Palaeopathologists need to ensure that their biocultural work is orientated toward research goals of broader relevance if the impact of their work is to be maximised. We cannot directly align prevalence data generated from skeletal and and written sources; roles played by these two sources of evidence will depend, inter alia, upon the problems being investigated. SIGNIFICANCE The success of 'Industrial Palaeopathology' will be measured by the extent to which human remains studies move toward centre stage within the broader discipline of Industrial Archaeology. LIMITATIONS Multiple perspectives on disciplinary development are possible. Academic traditions, relationships between university- and threat led-sectors, and the opportunities and challenges engendered by working with human remains, differ in different countries.
Collapse
Affiliation(s)
- S A Mays
- Investigative Science, Historic England, UK; Department of Archaeology, University of Southampton, UK; School of History, Classics and Archaeology, University of Edinburgh, UK.
| |
Collapse
|
32
|
Frachetti M, Di Cosmo N, Esper J, Khalidi L, Mauelshagen F, Oppenheimer C, Rohland E, Büntgen U. The dahliagram: An interdisciplinary tool for investigation, visualization, and communication of past human-environmental interaction. SCIENCE ADVANCES 2023; 9:eadj3142. [PMID: 37992177 PMCID: PMC10664986 DOI: 10.1126/sciadv.adj3142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/20/2023] [Indexed: 11/24/2023]
Abstract
Investigation into the nexus of human-environmental behavior has seen increasing collaboration of archaeologists, historians, and paleo-scientists. However, many studies still lack interdisciplinarity and overlook incompatibilities in spatiotemporal scaling of environmental and societal data and their uncertainties. Here, we argue for a strengthened commitment to collaborative work and introduce the "dahliagram" as a tool to analyze and visualize quantitative and qualitative knowledge from diverse disciplinary sources and epistemological backgrounds. On the basis of regional cases of past human mobility in eastern Africa, Inner Eurasia, and the North Atlantic, we develop three dahliagrams that illustrate pull and push factors underlying key phases of population movement across different geographical scales and over contrasting periods of time since the end of the last Ice Age. Agnostic to analytical units, dahliagrams offer an effective tool for interdisciplinary investigation, visualization, and communication of complex human-environmental interactions at a diversity of spatiotemporal scales.
Collapse
Affiliation(s)
- Michael Frachetti
- Department of Anthropology, Washington University in St. Louis, 1 Brookings Drive, CB 1114, St. Louis, MO 63130, USA
- School of Cultural Heritage, Northwest University, Xi’an, China
| | - Nicola Di Cosmo
- Institute for Advanced Study, Princeton University, Princeton, NJ 08544, USA
| | - Jan Esper
- Department of Geography, Johannes Gutenberg University, Becherweg 21, 55099 Mainz, Germany
- Global Change Research Institute (CzechGlobe), Czech Academy of Sciences, 603 00 Brno, Czech Republic
| | - Lamya Khalidi
- Université Côte d’Azur, CNRS, CEPAM, 24 avenue des Diables Bleus, 06300 Nice, France
| | - Franz Mauelshagen
- Department of Social Anthropology, University of Bielefeld, 33615 Bielefeld, Germany
| | - Clive Oppenheimer
- Department of Geography, University of Cambridge, Cambridge CB2 3EN, UK
| | - Eleonora Rohland
- Department of History, University of Bielefeld, 33615 Bielefeld, Germany
| | - Ulf Büntgen
- Global Change Research Institute (CzechGlobe), Czech Academy of Sciences, 603 00 Brno, Czech Republic
- Department of Geography, University of Cambridge, Cambridge CB2 3EN, UK
- Swiss Federal Research Institute (WSL), 8903 Birmensdorf, Switzerland
- Department of Geography, Faculty of Science, Masaryk University, 613 00 Brno, Czech Republic
| |
Collapse
|
33
|
Williams MP, Flegontov P, Maier R, Huber CD. Testing Times: Challenges in Disentangling Admixture Histories in Recent and Complex Demographies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566841. [PMID: 38014190 PMCID: PMC10680674 DOI: 10.1101/2023.11.13.566841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Paleogenomics has expanded our knowledge of human evolutionary history. Since the 2020s, the study of ancient DNA has increased its focus on reconstructing the recent past. However, the accuracy of paleogenomic methods in answering questions of historical and archaeological importance amidst the increased demographic complexity and decreased genetic differentiation within the historical period remains an open question. We used two simulation approaches to evaluate the limitations and behavior of commonly used methods, qpAdm and the f3-statistic, on admixture inference. The first is based on branch-length data simulated from four simple demographic models of varying complexities and configurations. The second, an analysis of Eurasian history composed of 59 populations using whole-genome data modified with ancient DNA conditions such as SNP ascertainment, data missingness, and pseudo-haploidization. We show that under conditions resembling historical populations, qpAdm can identify a small candidate set of true sources and populations closely related to them. However, in typical ancient DNA conditions, qpAdm is unable to further distinguish between them, limiting its utility for resolving fine-scaled hypotheses. Notably, we find that complex gene-flow histories generally lead to improvements in the performance of qpAdm and observe no bias in the estimation of admixture weights. We offer a heuristic for admixture inference that incorporates admixture weight estimate and P-values of qpAdm models, and f3-statistics to enhance the power to distinguish between multiple plausible candidates. Finally, we highlight the future potential of qpAdm through whole-genome branch-length f2-statistics, demonstrating the improved demographic inference that could be achieved with advancements in f-statistic estimations.
Collapse
Affiliation(s)
- Matthew P. Williams
- Pennsylvania State University, Department of Biology, University Park, PA 16802, USA
| | - Pavel Flegontov
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Robert Maier
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Christian D. Huber
- Pennsylvania State University, Department of Biology, University Park, PA 16802, USA
| |
Collapse
|
34
|
Ávila-Arcos MC, Raghavan M, Schlebusch C. Going local with ancient DNA: A review of human histories from regional perspectives. Science 2023; 382:53-58. [PMID: 37797024 DOI: 10.1126/science.adh8140] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/05/2023] [Indexed: 10/07/2023]
Abstract
Ancient DNA (aDNA) has added a wealth of information about our species' history, including insights on genetic origins, migrations and gene flow, genetic admixture, and health and disease. Much early work has focused on continental-level questions, leaving many regional questions, especially those relevant to the Global South, comparatively underexplored. A few success stories of aDNA studies from smaller laboratories involve more local aspects of human histories and health in the Americas, Africa, Asia, and Oceania. In this Review, we cover some of these contributions by synthesizing finer-scale questions of importance to the archaeogenetics field, as well as to Indigenous and Descendant communities. We further highlight the potential of aDNA to uncover past histories in regions where colonialism has neglected the oral histories of oppressed peoples.
Collapse
Affiliation(s)
- María C Ávila-Arcos
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Maanasa Raghavan
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Carina Schlebusch
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- Palaeo-Research Institute, University of Johannesburg, Johannesburg, South Africa
- SciLifeLab, Uppsala, Sweden
| |
Collapse
|
35
|
Tretmanis JM, Jay F, Avila-Árcos MC, Huerta-Sanchez E. Simulation-based Benchmarking of Ancient Haplotype Inference for Detecting Population Structure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.560049. [PMID: 37808674 PMCID: PMC10557694 DOI: 10.1101/2023.09.28.560049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Paleogenomic data has informed us about the movements, growth, and relationships of ancient populations. It has also given us context for medically relevant adaptations that appear in present-day humans due to introgression from other hominids, and it continues to help us characterize the evolutionary history of humans. However, ancient DNA (aDNA) presents several practical challenges as various factors such as deamination, high fragmentation, environmental contamination of aDNA, and low amounts of recoverable endogenous DNA, make aDNA recovery and analysis more difficult than modern DNA. Most studies with aDNA leverage only SNP data, and only a few studies have made inferences on human demographic history based on haplotype data, possibly because haplotype estimation (or phasing) has not yet been systematically evaluated in the context of aDNA. Here, we evaluate how the unique challenges of aDNA can impact phasing quality. We also develop a software tool that simulates aDNA taking into account the features of aDNA as well as the evolutionary history of the population. We measured phasing error as a function of aDNA quality and demographic history, and found that low phasing error is achievable even for very ancient individuals (~ 400 generations in the past) as long as contamination and read depth are adequate. Our results show that population splits or bottleneck events occurring between the reference and phased populations affect phasing quality, with bottlenecks resulting in the highest average error rates. Finally, we found that using estimated haplotypes, even if not completely accurate, is superior to using the simulated genotype data when reconstructing changes in population structure after population splits between present-day and ancient populations.
Collapse
Affiliation(s)
| | - Flora Jay
- Interdisciplinary Laboratory of Numerical Sciences, Université Paris-Saclay
| | | | | |
Collapse
|
36
|
Pusadkar V, Azad RK. Benchmarking Metagenomic Classifiers on Simulated Ancient and Modern Metagenomic Data. Microorganisms 2023; 11:2478. [PMID: 37894136 PMCID: PMC10609333 DOI: 10.3390/microorganisms11102478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Taxonomic profiling of ancient metagenomic samples is challenging due to the accumulation of specific damage patterns on DNA over time. Although a number of methods for metagenome profiling have been developed, most of them have been assessed on modern metagenomes or simulated metagenomes mimicking modern metagenomes. Further, a comparative assessment of metagenome profilers on simulated metagenomes representing a spectrum of degradation depth, from the extremity of ancient (most degraded) to current or modern (not degraded) metagenomes, has not yet been performed. To understand the strengths and weaknesses of different metagenome profilers, we performed their comprehensive evaluation on simulated metagenomes representing human dental calculus microbiome, with the level of DNA damage successively raised to mimic modern to ancient metagenomes. All classes of profilers, namely, DNA-to-DNA, DNA-to-protein, and DNA-to-marker comparison-based profilers were evaluated on metagenomes with varying levels of damage simulating deamination, fragmentation, and contamination. Our results revealed that, compared to deamination and fragmentation, human and environmental contamination of ancient DNA (with modern DNA) has the most pronounced effect on the performance of each profiler. Further, the DNA-to-DNA (e.g., Kraken2, Bracken) and DNA-to-marker (e.g., MetaPhlAn4) based profiling approaches showed complementary strengths, which can be leveraged to elevate the state-of-the-art of ancient metagenome profiling.
Collapse
Affiliation(s)
- Vaidehi Pusadkar
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA;
- BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA
| | - Rajeev K. Azad
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA;
- BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA
- Department of Mathematics, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
37
|
Guzmán-Solís AA, Navarro MA, Ávila-Arcos MC, Blanco-Melo D. A Glimpse into the Past: What Ancient Viral Genomes Reveal About Human History. Annu Rev Virol 2023; 10:49-75. [PMID: 37268008 DOI: 10.1146/annurev-virology-111821-123859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Humans have battled viruses for millennia. However, directly linking the symptomatology of disease outbreaks to specific viral pathogens was not possible until the twentieth century. With the advent of the genomic era and the development of advanced protocols for isolation, sequencing, and analysis of ancient nucleic acids from diverse human remains, the identification and characterization of ancient viruses became feasible. Recent studies have provided invaluable information about past epidemics and made it possible to examine assumptions and inferences on the origin and evolution of certain viral families. In parallel, the study of ancient viruses also uncovered their importance in the evolution of the human lineage and their key roles in shaping major events in human history. In this review, we describe the strategies used for the study of ancient viruses, along with their limitations, and provide a detailed account of what past viral infections have revealed about human history.
Collapse
Affiliation(s)
- Axel A Guzmán-Solís
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miguel Alejandro Navarro
- Licenciatura en Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México, Querétaro, México;
| | - María C Ávila-Arcos
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México, Querétaro, México;
| | - Daniel Blanco-Melo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA;
| |
Collapse
|
38
|
Qin J, Wu Y, Shi L, Zuo X, Zhang X, Qian X, Fan H, Guo Y, Cui M, Zhang H, Yang F, Kong J, Song Y, Yang R, Wang P, Cui Y. Genomic diversity of Yersinia pestis from Yunnan Province, China, implies a potential common ancestor as the source of two plague epidemics. Commun Biol 2023; 6:847. [PMID: 37582843 PMCID: PMC10427647 DOI: 10.1038/s42003-023-05186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023] Open
Abstract
Plague, caused by Yersinia pestis, is a zoonotic disease that can reemerge and cause outbreaks following decades of latency in natural plague foci. However, the genetic diversity and spread pattern of Y. pestis during these epidemic-silent cycles remain unclear. In this study, we analyze 356 Y. pestis genomes isolated between 1952 and 2016 in the Yunnan Rattus tanezumi plague focus, China, covering two epidemic-silent cycles. Through high-resolution genomic epidemiological analysis, we find that 96% of Y. pestis genomes belong to phylogroup 1.ORI2 and are subdivided into two sister clades (Sublineage1 and Sublineage2) characterized by different temporal-spatial distributions and genetic diversity. Most of the Sublineage1 strains are isolated from the first epidemic-silent cycle, while Sublineage2 strains are predominantly from the second cycle and revealing a west to east spread. The two sister clades evolved in parallel from a common ancestor and independently lead to two separate epidemics, confirming that the pathogen responsible for the second epidemic following the silent interval is not a descendant of the causative strain of the first epidemic. Our results provide a mechanism for defining epidemic-silent cycles in natural plague foci, which is valuable in the prevention and control of future plague outbreaks.
Collapse
Affiliation(s)
- Jingliang Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Liyuan Shi
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Xiujuan Zuo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xianglilan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiuwei Qian
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hang Fan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yan Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Mengnan Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Haipeng Zhang
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Fengyi Yang
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Jinjiao Kong
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| | - Peng Wang
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China.
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| |
Collapse
|
39
|
Qin J, Shi L, Wu Y, Kong J, Qian X, Zhang X, Zuo X, Fan H, Guo Y, Cui M, Dong S, Tan H, Zhong Y, Song Y, Yang R, Wang P, Cui Y. Genomic epidemiological analysis of county-scale Yersinia pestis spread pattern over 50 years in a Southwest Chinese prefecture. PLoS Negl Trop Dis 2023; 17:e0011527. [PMID: 37549110 PMCID: PMC10406180 DOI: 10.1371/journal.pntd.0011527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/11/2023] [Indexed: 08/09/2023] Open
Abstract
Plague, one of the most devastating infectious diseases in human history, is caused by the bacterium Yersinia pestis. Since the 1950s, the Dehong Dai-Jingpo Autonomous Prefecture (DH) in Yunnan Province, China, has recorded plague outbreaks that have resulted in 1,153 human cases and 379 deaths. The genetic diversity and transmission characteristics of Y. pestis strains in this region remain unknown. Here, we performed high-resolution genomic epidemiological analysis of 175 Y. pestis strains isolated from five counties and 19 towns in DH between 1953 and 2007. Phylogenetic analysis revealed that most DH strains were located in lineage 1.ORI2, which could be further subdivided into seven sub-phylogroups (SPG1-SPG7). The dominant sub-phylogroups of Y. pestis in DH varied during different periods and presented a population shift. Genomic evidence showed that plague might have emerged from the southwest of DH (e.g., Longchuan or Ruili counties) or its bordering countries, and subsequently spread to the northeast in multiple waves between 1982 and 2007. Our study infers a fine-scale phylogeny and spread pattern of the DH Y. pestis population, which extends our knowledge regarding its genetic diversity and provides clues for the future prevention and control of plague in this region.
Collapse
Affiliation(s)
- Jingliang Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Liyuan Shi
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jinjiao Kong
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Xiuwei Qian
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xianglilan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiujuan Zuo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hang Fan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yan Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Mengnan Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shanshan Dong
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Hongli Tan
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Youhong Zhong
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Peng Wang
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
40
|
Biswas A, Datta S. Editorial: Origin and evolution of hepatitis viruses, volume II. Front Microbiol 2023; 14:1241705. [PMID: 37497537 PMCID: PMC10367345 DOI: 10.3389/fmicb.2023.1241705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Affiliation(s)
- Avik Biswas
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Sibnarayan Datta
- Molecular Virology Laboratory, Entomology & Biothreat Management Division, Defence Research Laboratory, Defence R&D Organization (DRDO), Tezpur, Assam, India
| |
Collapse
|
41
|
Swali P, Schulting R, Gilardet A, Kelly M, Anastasiadou K, Glocke I, McCabe J, Williams M, Audsley T, Loe L, Fernández-Crespo T, Ordoño J, Walker D, Clare T, Cook G, Hodkinson I, Simpson M, Read S, Davy T, Silva M, Hajdinjak M, Bergström A, Booth T, Skoglund P. Yersinia pestis genomes reveal plague in Britain 4000 years ago. Nat Commun 2023; 14:2930. [PMID: 37253742 DOI: 10.1038/s41467-023-38393-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
Extinct lineages of Yersinia pestis, the causative agent of the plague, have been identified in several individuals from Eurasia between 5000 and 2500 years before present (BP). One of these, termed the 'LNBA lineage' (Late Neolithic and Bronze Age), has been suggested to have spread into Europe with human groups expanding from the Eurasian steppe. Here, we show that the LNBA plague was spread to Europe's northwestern periphery by sequencing three Yersinia pestis genomes from Britain, all dating to ~4000 cal BP. Two individuals were from an unusual mass burial context in Charterhouse Warren, Somerset, and one individual was from a single burial under a ring cairn monument in Levens, Cumbria. To our knowledge, this represents the earliest evidence of LNBA plague in Britain documented to date. All three British Yersinia pestis genomes belong to a sublineage previously observed in Bronze Age individuals from Central Europe that had lost the putative virulence factor yapC. This sublineage is later found in Eastern Asia ~3200 cal BP. While the severity of the disease is currently unclear, the wide geographic distribution within a few centuries suggests substantial transmissibility.
Collapse
Affiliation(s)
- Pooja Swali
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK.
| | | | | | - Monica Kelly
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK
| | | | - Isabelle Glocke
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK
| | - Jesse McCabe
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK
| | - Mia Williams
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK
| | | | - Louise Loe
- Oxford Archaeology, Osney Mead, Oxford, UK
| | - Teresa Fernández-Crespo
- School of Archaeology, University of Oxford, Oxford, UK
- Laboratoire Méditerranéen de Préhistoire Europe Afrique-UMR 7269, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
- Departamento de Prehistoria, Arqueología, Antropología Social y Ciencias y Técnicas Historiográficas, Universidad de Valladolid, Valladolid, Spain
| | - Javier Ordoño
- Department of Archaeology and New Technologies, Arkikus, Spain
| | | | - Tom Clare
- Levens Local History Group, Levens, Cumbria, UK
| | - Geoff Cook
- Levens Local History Group, Levens, Cumbria, UK
| | - Ian Hodkinson
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | | | | | - Tom Davy
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK
| | - Marina Silva
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK
| | - Mateja Hajdinjak
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK
- Department of Evolutionary Genetics and Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Anders Bergström
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Thomas Booth
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK.
| | - Pontus Skoglund
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK.
| |
Collapse
|
42
|
Clavel P, Louis L, Sarkissian CD, Thèves C, Gillet C, Chauvey L, Tressières G, Schiavinato S, Calvière-Tonasso L, Telmon N, Clavel B, Jonvel R, Tzortzis S, Bouniol L, Fémolant JM, Klunk J, Poinar H, Signoli M, Costedoat C, Spyrou MA, Seguin-Orlando A, Orlando L. Improving the extraction of ancient Yersinia pestis genomes from the dental pulp. iScience 2023; 26:106787. [PMID: 37250315 PMCID: PMC10214834 DOI: 10.1016/j.isci.2023.106787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/11/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
Ancient DNA preserved in the dental pulp offers the opportunity to characterize the genome of some of the deadliest pathogens in human history. However, while DNA capture technologies help, focus sequencing efforts, and therefore, reduce experimental costs, the recovery of ancient pathogen DNA remains challenging. Here, we tracked the kinetics of ancient Yersinia pestis DNA release in solution during a pre-digestion of the dental pulp. We found that most of the ancient Y. pestis DNA is released within 60 min at 37°C in our experimental conditions. We recommend a simple pre-digestion as an economical procedure to obtain extracts enriched in ancient pathogen DNA, as longer digestion times release other types of templates, including host DNA. Combining this procedure with DNA capture, we characterized the genome sequences of 12 ancient Y. pestis bacteria from France dating to the second pandemic outbreaks of the 17th and 18th centuries Common Era.
Collapse
Affiliation(s)
- Pierre Clavel
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR5288, Université Paul Sabatier, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Lexane Louis
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR5288, Université Paul Sabatier, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Clio Der Sarkissian
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR5288, Université Paul Sabatier, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Catherine Thèves
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR5288, Université Paul Sabatier, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Claudia Gillet
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR5288, Université Paul Sabatier, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Lorelei Chauvey
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR5288, Université Paul Sabatier, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Gaétan Tressières
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR5288, Université Paul Sabatier, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Stéphanie Schiavinato
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR5288, Université Paul Sabatier, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Laure Calvière-Tonasso
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR5288, Université Paul Sabatier, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Norbert Telmon
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR5288, Université Paul Sabatier, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Benoît Clavel
- Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements (AASPE), CNRS-UMR7209, Muséum national d’histoire naturelle, 55 Rue Buffon, 75005 Paris, France
| | - Richard Jonvel
- Amiens Métropole Service Archéologie Préventive, 2 rue Colbert, 80000 Amiens, France
| | - Stéfan Tzortzis
- Service Régional de l’Archéologie, 21 allée Claude Forbin, 13100 Aix-en-Provence, France
| | - Laetitia Bouniol
- Service archéologique de la ville de Beauvais, 1 rue Desgroux, 60021 Beauvais, France
| | - Jean-Marc Fémolant
- Service archéologique de la ville de Beauvais, 1 rue Desgroux, 60021 Beauvais, France
| | | | - Hendrik Poinar
- McMaster Ancient DNA Centre, Departments of Anthropology, Biology and Biochemistry, McMaster University, Hamilton, ON L8S 4L9, Canada
- Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S, 4L9, Canada
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ON, Canada
| | - Michel Signoli
- Aix-Marseille Université, CNRS, EFS, ADES, 13005 Marseille, France
| | | | - Maria A. Spyrou
- Institute for Archaeological Sciences, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Andaine Seguin-Orlando
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR5288, Université Paul Sabatier, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Ludovic Orlando
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR5288, Université Paul Sabatier, 37 allées Jules Guesde, 31000 Toulouse, France
| |
Collapse
|
43
|
Klapper M, Hübner A, Ibrahim A, Wasmuth I, Borry M, Haensch VG, Zhang S, Al-Jammal WK, Suma H, Fellows Yates JA, Frangenberg J, Velsko IM, Chowdhury S, Herbst R, Bratovanov EV, Dahse HM, Horch T, Hertweck C, González Morales MR, Straus LG, Vilotijevic I, Warinner C, Stallforth P. Natural products from reconstructed bacterial genomes of the Middle and Upper Paleolithic. Science 2023; 380:619-624. [PMID: 37141315 DOI: 10.1126/science.adf5300] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Major advances over the past decade in the field of ancient DNA are providing access to past paleogenomic diversity, but the diverse functions and biosynthetic capabilities of this growing paleome remain largely elusive. Here, we investigated the dental calculus of 12 Neanderthals and 52 anatomically modern humans spanning 100 kya to the present and reconstructed 459 bacterial metagenome-assembled genomes (MAGs). We identified a biosynthetic gene cluster (BGC) shared by seven Middle and Upper Paleolithic individuals that allows for the heterologous production of a class of previously unknown metabolites we name paleofurans. This paleobiotechnological approach demonstrates that viable biosynthetic machinery can be produced from the preserved genetic material of ancient organisms, allowing access to natural products from the Pleistocene and providing a promising area for natural product exploration.
Collapse
Affiliation(s)
- Martin Klapper
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - Alexander Hübner
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Associated Research Group of Archaeogenetics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - Anan Ibrahim
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - Ina Wasmuth
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - Maxime Borry
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Veit G Haensch
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - Shuaibing Zhang
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - Walid K Al-Jammal
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Harikumar Suma
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - James A Fellows Yates
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Associated Research Group of Archaeogenetics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - Jasmin Frangenberg
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - Irina M Velsko
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Somak Chowdhury
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - Rosa Herbst
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - Evgeni V Bratovanov
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - Hans-Martin Dahse
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - Therese Horch
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
- Faculty of Biological Sciences, Institute of Microbiology, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Manuel Ramon González Morales
- Instituto Internacional de Investigaciones Prehistóricas de Cantabria, Universidad de Cantabria, 39071 Santander, Spain
| | - Lawrence Guy Straus
- Department of Anthropology, University of New Mexico, Albuquerque, NM 87131, USA
- Grupo I+D+i EvoAdapta, Departmento de Ciencias Históricas, Universidad de Cantabria, 39005 Santander, Spain
| | - Ivan Vilotijevic
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Christina Warinner
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Associated Research Group of Archaeogenetics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
- Faculty of Biological Sciences, Institute of Microbiology, Friedrich Schiller University Jena, 07743 Jena, Germany
- Department of Anthropology, Harvard University, Cambridge, MA 02138, USA
| | - Pierre Stallforth
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
44
|
Badillo-Sanchez DA, Jones DJL, Inskip SA, Scheib CL. Human Archaeological Dentin as Source of Polar and Less Polar Metabolites for Untargeted Metabolomic Research: The Case of Yersinia pestis. Metabolites 2023; 13:588. [PMID: 37233629 PMCID: PMC10223108 DOI: 10.3390/metabo13050588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/05/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023] Open
Abstract
Metabolomic approaches, such as in clinical applications of living individuals, have shown potential use for solving questions regarding the past when applied to archaeological material. Here, we study for the first time the potential of this Omic approach as applied to metabolites extracted from archaeological human dentin. Dentin obtained from micro sampling the dental pulp of teeth of victims and non-victims of Yersinia pestis (plague) from a 6th century Cambridgeshire site are used to evaluate the potential use of such unique material for untargeted metabolomic studies on disease state through liquid chromatography hyphenated to high-resolution mass spectrometry (LC-HRMS). Results show that small molecules of both likely endogenous and exogenous sources are preserved for a range of polar and less polar/apolar metabolites in archaeological dentin; however, untargeted metabolomic profiles show no clear differentiation between healthy and infected individuals in the small sample analysed (n = 20). This study discusses the potential of dentin as a source of small molecules for metabolomic assays and highlights: (1) the need for follow up research to optimise sampling protocols, (2) the requirements of studies with larger sample numbers and (3) the necessity of more databases to amplify the positive results achievable with this Omic technique in the archaeological sciences.
Collapse
Affiliation(s)
| | - Donald J L Jones
- Leicester Cancer Research Centre, RKCSB, University of Leicester, Leicester LE1 7RH, UK
- The Leicester van Geest MultiOmics Facility, University of Leicester, Leicester LE1 7RH, UK
| | - Sarah A Inskip
- School of Archaeology and Ancient History, University of Leicester, Leicester LE1 7RH, UK
| | - Christiana L Scheib
- Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge CB2 3ER, UK
- St. John's College, University of Cambridge, Cambridge CB2 1TP, UK
| |
Collapse
|
45
|
Liu M, Zhao Y, Shi Z, Zink JI, Yu Q. Virus-like Magnetic Mesoporous Silica Particles as a Universal Vaccination Platform against Pathogenic Infections. ACS NANO 2023; 17:6899-6911. [PMID: 36961475 DOI: 10.1021/acsnano.3c00644] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Vaccination is the most important way of population protection from life-threatening pathogenic infections. However, its efficiency is frequently compromised by a failure of strong antigen presentation and immune activation. Herein, we developed virus-like magnetic mesoporous silica nanoparticles as a universal vaccination platform (termed MagParV) for preventing pathogenic infections. This platform was constructed by integrating synthetic biology-based endoplasmic reticulum-targeting vesicles with magnetic mesoporous silica particles. This platform exhibited high antigen-loading capacity, strongly targeting the endoplasmic reticulum and promoting antigen presentation in dendritic cells. After prime-boost vaccination, the antigen-loading MagParV with AMF drastically elicited specific antibody production against corresponding antigens of fungal, bacterial, and viral pathogens. A systemic infection model further revealed that the platform effectively protected the mice from severe fungal systemic infections. This study realized synthetic biology-facilitated green manufacturing of vaccines, which is promising for magnetism-activated vaccination against different kinds of pathogenic infections.
Collapse
Affiliation(s)
- Mingyang Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, People's Republic of China
| | - Yan Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Zhishang Shi
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Jeffrey I Zink
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- California Nano Systems Institute (CNSI), University of California, Los Angeles, California 90095, United States
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
46
|
Gulia K, Hassan AHE, Lenhard JR, Farahat AA. Escaping ESKAPE resistance: in vitro and in silico studies of multifunctional carbamimidoyl-tethered indoles against antibiotic-resistant bacteria. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230020. [PMID: 37090961 PMCID: PMC10113819 DOI: 10.1098/rsos.230020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Combining the hybridization and repurposing strategies, six compounds from our in-house library and having a designed hybrid structure of MBX-1162, pentamidine and MMV688271 were repurposed as potential antibacterial agents. Among, compounds 1a and 1d elicited potential sub-µg ml-1 activity against the high-priority antibiotic-resistant Gram-positive members of ESKAPE bacteria as well as antibiotic-susceptible Gram-positive bacteria. Furthermore, they showed potential low µg ml-1 activity against the explored critical-priority antibiotic-resistant Gram-negative members of ESKAPE bacteria. In time-kill assay, compound 1a has effective 0.5 and 0.25 µg ml-1 antibacterial lethal concentrations against MRSA in exponential growth phase. In silico investigations predicted compounds 1a and 1d as inhibitors of the open conformation of undecaprenyl diphosphate synthase involved in bacterial isoprenoid synthesis. In addition, compounds 1a and 1d were predicted as inhibitors of NADPH-free but not NADPH-bound form of ketol-acid reductoisomerase and may also serve as potential B-DNA minor groove binders with possible differences in the molecular sequence recognition. Overall, compounds 1a and 1d are presented as multifunctional potential antibacterial agents for further development against high- and critical-priority Gram-positive and Gram-negative antibiotic-resistant ESKAPE bacterial pathogens as well as antibiotic-susceptible Gram-positive bacterial pathogens.
Collapse
Affiliation(s)
- Kanika Gulia
- Master of Pharmaceutical Sciences Program, California Northstate University, 9700 W Taron Dr., Elk Grove, CA 95757, USA
- College of Medicine, California Northstate University, 9700 W Taron Dr., Elk Grove, CA 95757, USA
| | - Ahmed H. E. Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Justin R. Lenhard
- Department of Clinical and Administrative Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA
| | - Abdelbasset A. Farahat
- Master of Pharmaceutical Sciences Program, California Northstate University, 9700 W Taron Dr., Elk Grove, CA 95757, USA
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
47
|
Searching pathogenic bacteria in the rare biosphere of the ocean. Curr Opin Biotechnol 2023; 80:102894. [PMID: 36680847 DOI: 10.1016/j.copbio.2023.102894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/07/2022] [Accepted: 12/20/2022] [Indexed: 01/21/2023]
Abstract
Harmful marine bacteria, such as Vibrio or Aeromonas species, typically exist at low abundance in ocean environments but represent a reservoir from which epidemics can arise. Particularly, Vibrio strains and their associated infections are on the rise globally due to increasing sea surface temperature representing an emergent threat for human and animal health also being responsible for large economic losses in the aquaculture industry worldwide. New technological approaches are needed to improve strategies targeting these pathogens. This review discusses new approaches based on improved sampling strategies and novel analytical methods offering increased accuracy, high throughput, and informativeness to study and detect microbial pathogens in the marine environment. Detecting and characterizing ultra-low-abundance pathogenic strains can serve as a critical tool in risk management and outbreak prevention of diseases caused by emerging marine pathogens.
Collapse
|
48
|
Bass D, Christison KW, Stentiford GD, Cook LSJ, Hartikainen H. Environmental DNA/RNA for pathogen and parasite detection, surveillance, and ecology. Trends Parasitol 2023; 39:285-304. [PMID: 36759269 DOI: 10.1016/j.pt.2022.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 02/11/2023]
Abstract
Detection of pathogens, parasites, and other symbionts in environmental samples via eDNA/eRNA (collectively eNA) is an increasingly important source of information about their occurrence and activity. There is great potential for using such detections as a proxy for infection of host organisms in connected habitats, for pathogen monitoring and surveillance, and for early warning systems for disease. However, many factors require consideration, and appropriate methods developed and verified, in order that eNA detections can be reliably interpreted and adopted for surveillance and assessment of disease risk, and potentially inclusion in international standards, such as the World Organisation for Animal Health guidelines. Disease manifestation results from host-symbiont-environment interactions between hosts, demanding a multifactorial approach to interpretation of eNA signals.
Collapse
Affiliation(s)
- David Bass
- International Centre of Excellence for Aquatic Animal Health, The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK; Sustainable Aquaculture Futures, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, UK.
| | - Kevin W Christison
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa; Department of Forestry, Fisheries and the Environment, Private Bag X2, Vlaeberg, 8012, South Africa
| | - Grant D Stentiford
- International Centre of Excellence for Aquatic Animal Health, The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK; Sustainable Aquaculture Futures, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, UK
| | - Lauren S J Cook
- International Centre of Excellence for Aquatic Animal Health, The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK; Royal Holloway, University of London, Egham Hill, Egham TW20 0EX, UK
| | - Hanna Hartikainen
- University of Nottingham, School of Life Sciences, University Park, NG7 2RD, Nottingham, UK
| |
Collapse
|
49
|
Affiliation(s)
- Gaspard Kerner
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique (CNRS) UMR, 2000, Paris, France
| | - Jeremy Choin
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique (CNRS) UMR, 2000, Paris, France. .,Chair of Human Genomics and Evolution, Collège de France, Paris, France.
| |
Collapse
|
50
|
de-Dios T, Scheib CL, Houldcroft CJ. An Adagio for Viruses, Played Out on Ancient DNA. Genome Biol Evol 2023; 15:evad047. [PMID: 36930529 PMCID: PMC10063219 DOI: 10.1093/gbe/evad047] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/16/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Studies of ancient DNA have transformed our understanding of human evolution. Paleogenomics can also reveal historic and prehistoric agents of disease, including endemic, epidemic, and pandemic pathogens. Viruses-and in particular those with single- or double-stranded DNA genomes-are an important part of the paleogenomic revolution, preserving within some remains or environmental samples for tens of thousands of years. The results of these studies capture the public imagination, as well as giving scientists a unique perspective on some of the more slowly evolving viruses which cause disease. In this review, we revisit the first studies of historical virus genetic material in the 1990s, through to the genomic revolution of recent years. We look at how paleogenomics works for viral pathogens, such as the need for careful precautions against modern contamination and robust computational pipelines to identify and analyze authenticated viral sequences. We discuss the insights into virus evolution which have been gained through paleogenomics, concentrating on three DNA viruses in particular: parvovirus B19, herpes simplex virus 1, and smallpox. As we consider recent worldwide transmission of monkeypox and synthetic biology tools that allow the potential reconstruction of extinct viruses, we show that studying historical and ancient virus evolution has never been more topical.
Collapse
Affiliation(s)
- Toni de-Dios
- Institute of Genomics, University of Tartu, Estonia
| | - Christiana L Scheib
- Institute of Genomics, University of Tartu, Estonia
- St. John's College, University of Cambridge, United Kingdom
| | | |
Collapse
|