1
|
Zhang K, Duan J, Li C, Song C, Chen Z. How Do DNA Molecular Springs Modulate Protein-Protein Interactions: Experimental and Theoretical Results. Biochemistry 2024; 63:3369-3380. [PMID: 39626116 DOI: 10.1021/acs.biochem.4c00280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Deoxyribonucleic acid (DNA) nanomachines have been widely exploited in enzyme activity regulation, protein crystallization, protein assembly, and control of the protein-protein interaction (PPI). Yet, the fundamental biophysical framework of DNA nanomachines in the case of regulating protein-protein interactions remains elusive. Here, we established a DNA nanospring-mCherry model with mCherry homodimers of different Kd. Using size exclusion chromatography and fluorescence polarization, we profiled the DNA nanospring-mediated manipulation of PPI as an entropy-reducing process. The energy transfer efficiency was a function of the length of the complementary sequence and the geometry of the DNA nanospring construction. With basic force analysis and physical chemistry calculation, we proposed a unified model of the correlation between the dissociation constant, local concentration, construction of DNA nanospring, and kinetics of protein dimerization. Overall, we demonstrated that the DNA nanospring-mCherry conjugate was a simple and practical model to analyze DNA-controlled protein-protein interaction.
Collapse
Affiliation(s)
- Kecheng Zhang
- College of Future Technology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jingze Duan
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Cong Li
- College of Future Technology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Chen Song
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Zhixing Chen
- College of Future Technology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- National Biomedical Imaging Center, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Qu HT, Partanen I, Chang KH, Lin YD, Koshevoy IO, Belyaev A, Chou PT. Insights into the photoinduced anion translocation of donor-π-acceptor + (ion) - molecules. Chem Sci 2024; 15:20045-20055. [PMID: 39568931 PMCID: PMC11575608 DOI: 10.1039/d4sc04738a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
By strategic design and synthesis of a new series of phosphonium salts (compounds 1-7[OTf]), where [OTf]- stands for the trifluoromethanesulfonate anion, we performed comprehensive spectroscopic and dynamic studies on the photoinduced anion migration in toluene. Our aim is to probe if the anion migration is associated with an intrinsic barrier or is barrier-free. After the occurrence of excited-state intramolecular charge transfer (ESICT) in 1-7, the charge redistribution of the cation triggers the translocation of the counter anion [OTf]-, resulting in emission spectral temporal evolution. As a result, we describe the photoinduced anion migration by introducing spectral response function C(t), a concept adopted from the solvent diffusional relaxation. The experimental results indicate that the anion migration lacks an intrinsic barrier, i.e., the relaxation dynamics can be described by a biased Brownian motion along the charge transfer direction. The experimental findings are also qualitatively supported by theoretical calculations including restrained electrostatic potential (RESP) and hole-electron distribution analyses.
Collapse
Affiliation(s)
- Hao-Ting Qu
- Department of Chemistry, National Taiwan University Taipei 10617 Taiwan Republic of China
| | - Iida Partanen
- Department of Chemistry, University of Eastern Finland Yliopistokatu 7 80101 Joensuu Finland
| | - Kai-Hsin Chang
- Department of Chemistry, National Taiwan University Taipei 10617 Taiwan Republic of China
| | - Yan-Ding Lin
- Department of Chemistry, National Taiwan University Taipei 10617 Taiwan Republic of China
| | - Igor O Koshevoy
- Department of Chemistry, University of Eastern Finland Yliopistokatu 7 80101 Joensuu Finland
| | - Andrey Belyaev
- Department of Chemistry, University of Eastern Finland Yliopistokatu 7 80101 Joensuu Finland
- Department of Chemistry/Nanoscience Center, University of Jyväskylä Survontie 9C 40014 Jyväskylä Finland
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University Taipei 10617 Taiwan Republic of China
| |
Collapse
|
3
|
Albada B. Functionalized DNA secondary structures and nanostructures for specific protein modifications. Trends Biochem Sci 2024; 49:1124-1135. [PMID: 39443210 DOI: 10.1016/j.tibs.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024]
Abstract
The development of non-biological applications of DNA has not only resulted in delicately shaped DNA-based nano-objects with complex functions but also spawned their use for novel catalytic applications. From the multitude of applications of DNAzymes that operate on a relatively simple substrate, we have witnessed the emergence of multifunctional catalytically active DNA-based nanostructures for one of the most challenging tasks known to a chemist: the controlled and precise modification of a wild-type protein in its natural environment. By incorporating various elements associated with post-translational modification (PTM) writer enzymes into complex nanostructures, it is now possible to chemically modify a specific protein in cell lysates under the influence of an externally added trigger, clearly illustrating the promising future for this approach.
Collapse
Affiliation(s)
- Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, 6708, WE, Wageningen, The Netherlands.
| |
Collapse
|
4
|
Mo F, Li C, Sun J, Lin X, Yu S, Wang F, Liu X, Li J. Programming Fast DNA Amplifier Circuits with Versatile Toehold Exchange Pathway. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402914. [PMID: 39225421 DOI: 10.1002/smll.202402914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/14/2024] [Indexed: 09/04/2024]
Abstract
DNA amplifier circuits establish powerful tools to dynamically control molecular assembly for computation, sensing, and biological applications. However, the slow reaction speed remains a major barrier to their practical utility. Here, diverse fast DNA amplifier circuits termed toehold exchange polymerization (TEP) and toehold exchange catalysis (TEC) using toehold exchange-mediated assembly as a fundamental mechanism are built. Both TEP and TEC with a duplex and a hairpin can respond within minutes to diverse nucleic acid inputs with high fidelity. In addition, the circuits can amplify live-cell signals for fluorescence imaging target RNA dynamics and discriminating different cell lines. Compared with existing DNA circuits that involve time scales of hours for transducing small signals, TEP and TEC exhibit much faster dynamics, simpler design, and comparable sensitivity. These features make TEP and TEC promising platforms to develop programmable nucleic acid tools and devices and to create fast sensing and processing systems, amenable to wide practical applications.
Collapse
Affiliation(s)
- Fengye Mo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Chenbiao Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Junlin Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Xue Lin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Shuyi Yu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
- Beijing Life Science Academy, Beijing, 102209, China
| | - Jinghong Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
- Beijing Life Science Academy, Beijing, 102209, China
- New Cornerstone Science Laboratory, Shenzhen, 518054, China
- Center for Bioanalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
5
|
Ameixa J, Sala L, Kocišek J, Bald I. Radiation and DNA Origami Nanotechnology: Probing Structural Integrity at the Nanoscale. Chemphyschem 2024:e202400863. [PMID: 39473163 DOI: 10.1002/cphc.202400863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/24/2024] [Indexed: 11/21/2024]
Abstract
DNA nanotechnology has emerged as a groundbreaking field, using DNA as a scaffold to create nanostructures with customizable properties. These DNA nanostructures hold potential across various domains, from biomedicine to studying ionizing radiation-matter interactions at the nanoscale. This review explores how the various types of radiation, covering a spectrum from electrons and photons at sub-excitation energies to ion beams with high-linear energy transfer influence the structural integrity of DNA origami nanostructures. We discuss both direct effects and those mediated by secondary species like low-energy electrons (LEEs) and reactive oxygen species (ROS). Further we discuss the possibilities for applying radiation in modulating and controlling structural changes. Based on experimental insights, we identify current challenges in characterizing the responses of DNA nanostructures to radiation and outline further areas for investigation. This review not only clarifies the complex dynamics between ionizing radiation and DNA origami but also suggests new strategies for designing DNA nanostructures optimized for applications exposed to various qualities of ionizing radiation and their resulting byproducts.
Collapse
Affiliation(s)
- João Ameixa
- Hybrid Nanostructures, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, Potsdam, 14476, Germany
- Centre of Physics and Technological Research (CEFITEC), Department of Physics, NOVA School of Science and Technology, University NOVA of Lisbon, Campus de Caparica, 2829-516, Portugal
| | - Leo Sala
- Dynamics of Molecules and Clusters Department, J. Heyrovský Institute of Physical Chemistry of the CAS, Dolejškova 3, Prague, 182, 23, Czech Republic
| | - Jaroslav Kocišek
- Dynamics of Molecules and Clusters Department, J. Heyrovský Institute of Physical Chemistry of the CAS, Dolejškova 3, Prague, 182, 23, Czech Republic
| | - Ilko Bald
- Hybrid Nanostructures, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, Potsdam, 14476, Germany
- Dynamics of Molecules and Clusters Department, J. Heyrovský Institute of Physical Chemistry of the CAS, Dolejškova 3, Prague, 182, 23, Czech Republic
| |
Collapse
|
6
|
Li W, Wang S, Zong H, Li J, Zhou Y, Wang Z. Enzyme-Powered, Label-Free DNA Walker for Uracil-DNA Glycosylase Detection at Single-Cell Level. Chem Asian J 2024; 19:e202400608. [PMID: 38949517 DOI: 10.1002/asia.202400608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/02/2024]
Abstract
Uracil-DNA glycosylase (UDG) plays a crucial role in the removal of damaged uracil bases, thereby upholding genetic stability and integrity. An enzyme-powered, label-free DNA walker was devised for UDG activity detection. Initially, a label-free DNA track, incorporating a gold nanoparticle (AuNP), multiple hairpin structures, and various swing arms, was engineered for walking mechanism. The hairpin structure was meticulously crafted to include a G-quadruplex sequence, enabling the generation of a label-free fluorescence signal. The swing arm remained inert in the absence of UDG, but became activated upon the introduction of UDG, thereby initiating the enzyme-powered walking process and generating significant dissociative G-quadruplex sequences. By integrating a selective fluorescent dye into the design, an enhanced label-free fluorescence response was achieved. The proposed DNA walker presented a direct and label-free approach for UDG detection, demonstrating exceptional sensitivity with a detection limit of 0.00004 U/mL. Using the uracil glycosylase inhibitor (UGI) as an inhibitory model, inhibitor assay was conducted with satisfactory precision. Furthermore, successful analysis of cellular UDG at the single-cell level was accomplished. Consequently, the developed DNA walker serves as a label-free, selective, and sensitive tool for UDG activity assessment, showing great potential for applications in disease diagnosis, inhibitor screening, and biomedical investigations.
Collapse
Affiliation(s)
- Wei Li
- Institute of Rural Revitalization, Institute of Medicine and Health Care, Dezhou University, 253023, Dezhou, China
| | - Shuaijing Wang
- College of Pharmaceutical Science, Hebei University, 071002, Baoding, China
| | - Haotian Zong
- College of Pharmaceutical Science, Hebei University, 071002, Baoding, China
| | - Jiayue Li
- College of Pharmaceutical Science, Hebei University, 071002, Baoding, China
| | - Yi Zhou
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, China
| | - Zhenguang Wang
- College of Chemistry and Environmental Science, Hebei University, 071002, Baoding, China
| |
Collapse
|
7
|
Solé R, Kempes CP, Corominas-Murtra B, De Domenico M, Kolchinsky A, Lachmann M, Libby E, Saavedra S, Smith E, Wolpert D. Fundamental constraints to the logic of living systems. Interface Focus 2024; 14:20240010. [PMID: 39464646 PMCID: PMC11503024 DOI: 10.1098/rsfs.2024.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/12/2024] [Accepted: 08/21/2024] [Indexed: 10/29/2024] Open
Abstract
It has been argued that the historical nature of evolution makes it a highly path-dependent process. Under this view, the outcome of evolutionary dynamics could have resulted in organisms with different forms and functions. At the same time, there is ample evidence that convergence and constraints strongly limit the domain of the potential design principles that evolution can achieve. Are these limitations relevant in shaping the fabric of the possible? Here, we argue that fundamental constraints are associated with the logic of living matter. We illustrate this idea by considering the thermodynamic properties of living systems, the linear nature of molecular information, the cellular nature of the building blocks of life, multicellularity and development, the threshold nature of computations in cognitive systems and the discrete nature of the architecture of ecosystems. In all these examples, we present available evidence and suggest potential avenues towards a well-defined theoretical formulation.
Collapse
Affiliation(s)
- Ricard Solé
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr Aiguader 88, Barcelona08003, Spain
- Institut de Biologia Evolutiva, CSIC-UPF, Pg Maritim de la Barceloneta 37, Barcelona08003, Spain
- European Centre for Living Technology, Sestiere Dorsoduro, 3911, Venezia VE30123, Italy
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM87501, USA
| | | | | | - Manlio De Domenico
- Complex Multilayer Networks Lab, Department of Physics and Astronomy ‘Galileo Galilei’, University of Padua, Via Marzolo 8, Padova35131, Italy
- Padua Center for Network Medicine, University of Padua, Via Marzolo 8, Padova35131, Italy
| | - Artemy Kolchinsky
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr Aiguader 88, Barcelona08003, Spain
- Universal Biology Institute, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| | | | - Eric Libby
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM87501, USA
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå90187, Sweden
| | - Serguei Saavedra
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM87501, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eric Smith
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM87501, USA
- Department of Biology, Georgia Institute of Technology, Atlanta, GA30332, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo152-8550, Japan
| | - David Wolpert
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM87501, USA
| |
Collapse
|
8
|
Chen ZP, Zeng WJ, Lei YM, Liang WB, Yang X, Yuan R, Yang C, Zhuo Y. Engineering of a Multi-Modular DNA Nanodevice for Spatioselective Imaging and Evaluation of NK Cell-Mediated Cancer Immunotherapy. Angew Chem Int Ed Engl 2024:e202414064. [PMID: 39375853 DOI: 10.1002/anie.202414064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/09/2024]
Abstract
Granzyme A (GzmA) secreted by natural killer (NK) cells has garnered considerable interest as a biomarker to evaluate the efficacy of cancer immunotherapy. However, current methodologies to selectively monitor the spatial distribution of GzmA in cancer cells during NK cell-targeted therapy are extremely challenging, primarily due to the existence of diverse cell populations, the low levels of GzmA expression, and the limited availability of GzmA probes. Herein we develop a multi-modular, structurally-ordered DNA nanodevice for evaluating NK cell-mediated cancer immunotherapy (MODERN), that permits spatioselective imaging of GzmA in cancer cells through GzmA-induced apurinic/apyrimidinic endonuclease 1 (APE1) inactivation. The MODERN incorporates multiple functional modules, including an APE1-gated recognition module, a photo-activated amplification module, an aptamer-mediated tumor-target module, and a polycatenane DNA module, enabling improved sensitivity and specificity towards intracellular GzmA. The MODERN was activated (on) in cancer cells due to the overexpression of APE1, whereas it remained silent (off) in the NK-treated cancer cells owing to the GzmA-induced APE1 inactivation. Furthermore, we demonstrated that GzmA-induced APE1 inactivation blocks the cellular repair of target cells, resulting in efficient cell death. This MODERN that relies on the specific inactivation of APE1 by GzmA should be beneficial for evaluating the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Zhao-Peng Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Wei-Jia Zeng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yan-Mei Lei
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing, 400715, China
| | - Wen-Bin Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Xia Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ying Zhuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| |
Collapse
|
9
|
Lin P, Zhang S, Komatsubara F, Konishi H, Nakata E, Morii T. Artificial Compartments Encapsulating Enzymatic Reactions: Towards the Construction of Artificial Organelles. Chempluschem 2024:e202400483. [PMID: 39351818 DOI: 10.1002/cplu.202400483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/30/2024] [Indexed: 11/08/2024]
Abstract
Cells have used compartmentalization to implement complex biological processes involving thousands of enzyme cascade reactions. Enzymes are spatially organized into the cellular compartments to carry out specific and efficient reactions in a spatiotemporally controlled manner. These compartments are divided into membrane-bound and membraneless organelles. Mimicking such cellular compartment systems has been a challenge for years. A variety of artificial scaffolds, including liposomes, polymersomes, proteins, nucleic acids, or hybrid materials have been used to construct artificial membrane-bound or membraneless compartments. These artificial compartments may have great potential for applications in biosynthesis, drug delivery, diagnosis and therapeutics, among others. This review first summarizes the typical examples of cellular compartments. In particular, the recent studies on cellular membraneless organelles (biomolecular condensates) are reviewed. We then summarize the recent advances in the construction of artificial compartments using engineered platforms. Finally, we provide our insights into the construction of biomimetic systems and the applications of these systems. This review article provides a timely summary of the relevant perspectives for the future development of artificial compartments, the building blocks for the construction of artificial organelles or cells.
Collapse
Affiliation(s)
- Peng Lin
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
| | - Shiwei Zhang
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
| | - Futa Komatsubara
- Graduate School of Energy Science, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiroaki Konishi
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
| | - Eiji Nakata
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
| | - Takashi Morii
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
- Department of Health and Nutrition, Kyoto Koka Women's University, Ukyo-ku, Kyoto, 615-0882, Japan
| |
Collapse
|
10
|
Li C, Xie Y, Cheng X, Xu L, Yao G, Li Q, Shen J, Fan C, Li M. Single-Molecule Assessment of DNA Hybridization Kinetics on Dye-Loaded DNA Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402870. [PMID: 38844986 DOI: 10.1002/smll.202402870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/18/2024] [Indexed: 10/04/2024]
Abstract
DNA nanostructures offer a versatile platform for precise dye assembly, making them promising templates for creating photonic complexes with applications in photonics and bioimaging. However, despite these advancements, the effect of dye loading on the hybridization kinetics of single-stranded DNA protruding from DNA nanostructures remains unexplored. In this study, the DNA points accumulation for imaging in the nanoscale topography (DNA-PAINT) technique is employed to investigate the accessibility of functional binding sites on DNA-templated excitonic wires. The results indicate that positively charged dyes on DNA frameworks can accelerate the hybridization kinetics of protruded ssDNA through long-range electrostatic interactions. Furthermore, the impacts of various charged dyes and binding sites are explored on diverse DNA frameworks with varying cross-sizes. The research underscores the crucial role of electrostatic interactions in DNA hybridization kinetics within DNA-dye complexes, offering valuable insights for the functionalization and assembly of biomimetic photonic systems.
Collapse
Affiliation(s)
- Cong Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yao Xie
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinyi Cheng
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lifeng Xu
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guangbao Yao
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mingqiang Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
11
|
Chang X, Yang Q, Lee JY, Perumal D, Zhang F. Reconfigurable DNA Nanocage for Protein Encapsulation and Regulation. J Am Chem Soc 2024; 146:26131-26138. [PMID: 39276081 DOI: 10.1021/jacs.4c06871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
Creating nanomachines capable of precisely capturing, organizing, and regulating the activity of target biomolecules holds profound significance for advancing nanotechnology and therapeutics. Here, we develop a multistage reconfigurable DNA nanocage that can enclose and modulate proteins through multivalent interactions, activated by specific molecular signals. By strategically designing and manipulating the strut architecture of the DNA nanocages, we can achieve precise control over their reconfiguration among pyramid, square, and linear branch shapes. Additionally, we demonstrated its ability to capture thrombin and effectively inhibit its coagulation activity by incorporating two thrombin-targeting aptamers into the designed arms of the DNA nanocage. The activity of thrombin can be recovered by rearranging the conformation of the DNA nanocage and exposing the protein, thereby activating the coagulation process. This approach enriches the design toolbox for dynamic nanomachines and inspires a new strategy for protein encapsulation and regulation with potential future therapeutic applications.
Collapse
Affiliation(s)
- Xu Chang
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
| | - Qi Yang
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
| | - Jung Yeon Lee
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
| | - Devanathan Perumal
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
| | - Fei Zhang
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
| |
Collapse
|
12
|
Anusha, Zhang Z, Li J, Zuo H, Mao C. AlphaFold 3 - Aided Design of DNA Motifs To Assemble into Triangles. J Am Chem Soc 2024; 146:25422-25425. [PMID: 39235269 DOI: 10.1021/jacs.4c08387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Self-assembly of biomolecules provides a powerful tool for a wide range of applications in nanomedicine, biosensing and imaging, vaccines, computation, nanophotonics, etc. The key is to rationally design building blocks and the intermolecule interactions. Along this line, structural DNA nanotechnology has rapidly developed by limiting DNA secondary structures to primarily well-established, B-form DNA duplexes, which can be readily and reliably predicted. As the field evolves, more sophisticated structural elements must be introduced. While increasing the structural complexity, they bring challenges to predicting DNA nanostructures. In the past, a brutal and tedious error-and-trial approach has often been used to solve this problem. Here, we report a case study of applying AlphaFold 3 to model the structural elements to facilitate DNA nanostructure design. This protocol is expected to be generally applicable and greatly facilitates the further development of structural DNA nanotechnology.
Collapse
Affiliation(s)
- Anusha
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zhe Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jinyue Li
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hua Zuo
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Chengde Mao
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
13
|
Takezawa Y, Shionoya M. Enzymatic synthesis of ligand-bearing oligonucleotides for the development of metal-responsive DNA materials. Org Biomol Chem 2024; 22:7259-7270. [PMID: 38967487 DOI: 10.1039/d4ob00947a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Metal-mediated artificial base pairs are some of the most promising building blocks for constructing DNA-based supramolecules and functional materials. These base pairs are formed by coordination bonds between ligand-type nucleobases and a bridging metal ion and have been exploited to develop metal-responsive DNA materials and DNA-templated metal arrays. In this review, we provide an overview of methods for the enzymatic synthesis of DNA strands containing ligand-type artificial nucleotides that form metal-mediated base pairs. Conventionally, ligand-bearing DNA oligomers have been synthesized via solid-phase synthesis using a DNA synthesizer. In recent years, there has been growing interest in enzymatic methods as an alternative approach to synthesize ligand-bearing DNA oligomers, because enzymatic reactions proceed under mild conditions and do not require protecting groups. DNA polymerases are used to incorporate ligand-bearing unnatural nucleotides into DNA, and DNA ligases are used to connect artificial DNA oligomers to natural DNA fragments. Template-independent polymerases are also utilized to post-synthetically append ligand-bearing nucleotides to DNA oligomers. In addition, enzymatic replication of DNA duplexes containing metal-mediated base pairs has been intensively studied. Enzymatic methods facilitate the synthesis of DNA strands containing ligand-bearing nucleotides at both internal and terminal positions. Enzymatically synthesized ligand-bearing DNAs have been applied to metal-dependent self-assembly of DNA structures and the allosteric control of DNAzyme activity through metal-mediated base pairing. Therefore, the enzymatic synthesis of ligand-bearing oligonucleotides holds great potential in advancing the development of various metal-responsive DNA materials, such as molecular sensors and machines, providing a versatile tool for DNA supramolecular chemistry and nanotechnology.
Collapse
Affiliation(s)
- Yusuke Takezawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan.
| |
Collapse
|
14
|
Yu L, Chen L, Satyabola D, Prasad A, Yan H. NucleoCraft: The Art of Stimuli-Responsive Precision in DNA and RNA Bioengineering. BME FRONTIERS 2024; 5:0050. [PMID: 39290204 PMCID: PMC11407293 DOI: 10.34133/bmef.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/24/2024] [Indexed: 09/19/2024] Open
Abstract
Recent advancements in DNA and RNA bioengineering have paved the way for developing stimuli-responsive nanostructures with remarkable potential across various applications. These nanostructures, crafted through sophisticated bioengineering techniques, can dynamically and precisely respond to both physiological and physical stimuli, including nucleic acids (DNA/RNA), adenosine triphosphate, proteins, ions, small molecules, pH, light, and temperature. They offer high sensitivity and specificity, making them ideal for applications such as biomarker detection, gene therapy, and controlled targeted drug delivery. In this review, we summarize the bioengineering methods used to assemble versatile stimuli-responsive DNA/RNA nanostructures and discuss their emerging applications in structural biology and biomedicine, including biosensing, targeted drug delivery, and therapeutics. Finally, we highlight the challenges and opportunities in the rational design of these intelligent bioengineered nanostructures.
Collapse
Affiliation(s)
- Lu Yu
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Liangxiao Chen
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Deeksha Satyabola
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Abhay Prasad
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Hao Yan
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
15
|
Ji W, Xiong X, Cao M, Zhu Y, Li L, Wang F, Fan C, Pei H. Encoding signal propagation on topology-programmed DNA origami. Nat Chem 2024; 16:1408-1417. [PMID: 38886615 DOI: 10.1038/s41557-024-01565-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/24/2024] [Indexed: 06/20/2024]
Abstract
Biological systems often rely on topological transformation to reconfigure connectivity between nodes to guide the flux of molecular information. Here we develop a topology-programmed DNA origami system that encodes signal propagation at the nanoscale, analogous to topologically efficient information processing in cellular systems. We present a systematic molecular implementation of topological operations involving 'glue-cut' processes that can prompt global conformational change of DNA origami structures, with demonstrated major topological properties including genus, number of boundary components and orientability. By spatially arranging reactive DNA hairpins, we demonstrate signal propagation across transmission paths of varying lengths and orientations, and curvatures on the curved surfaces of three-dimensional origamis. These DNA origamis can also form dynamic scaffolds for regulating the spatial and temporal signal propagations whereby topological transformations spontaneously alter the location of nodes and boundary of signal propagation network. We anticipate that our strategy for topological operations will provide a general route to manufacture dynamic DNA origami nanostructures capable of performing global structural transformations under programmable control.
Collapse
Affiliation(s)
- Wei Ji
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; Shanghai Center of Brain-inspired Intelligent Materials and Devices; Shanghai Frontiers Science Center of Molecule Intelligent Syntheses; School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Xiewei Xiong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; Shanghai Center of Brain-inspired Intelligent Materials and Devices; Shanghai Frontiers Science Center of Molecule Intelligent Syntheses; School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Mengyao Cao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; Shanghai Center of Brain-inspired Intelligent Materials and Devices; Shanghai Frontiers Science Center of Molecule Intelligent Syntheses; School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Yun Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; Shanghai Center of Brain-inspired Intelligent Materials and Devices; Shanghai Frontiers Science Center of Molecule Intelligent Syntheses; School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; Shanghai Center of Brain-inspired Intelligent Materials and Devices; Shanghai Frontiers Science Center of Molecule Intelligent Syntheses; School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Fei Wang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; Shanghai Center of Brain-inspired Intelligent Materials and Devices; Shanghai Frontiers Science Center of Molecule Intelligent Syntheses; School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
| |
Collapse
|
16
|
Zhan P, Yang J, Ding L, Jing X, Hipp K, Nussberger S, Yan H, Liu N. 3D DNA origami pincers that multitask on giant unilamellar vesicles. SCIENCE ADVANCES 2024; 10:eadn8903. [PMID: 39151012 PMCID: PMC11328896 DOI: 10.1126/sciadv.adn8903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/10/2024] [Indexed: 08/18/2024]
Abstract
Proteins self-assemble to function in living cells. They may execute essential tasks in the form of monomers, complexes, or supramolecular cages via oligomerization, achieving a sophisticated balance between structural topology and functional dynamics. The modularity and programmability make DNA origami unique in mimicking these key features. Here, we demonstrate three-dimensional reconfigurable DNA origami pincers (DOPs) that multitask on giant unilamellar vesicles (GUVs). By programmably adjusting their pinching angle, the DOPs can dynamically control the degree of GUV remodeling. When oligomerized on the GUV to form origami cages, the DOP units interact with one another and undergo reorganization, resulting in the capture, compartmentalization, and detachment of lipid fragments. This oligomerization process is accompanied with membrane disruptions, enabling the passage of cargo across the membrane. We envisage that interfacing synthetic cells with engineered, multifunctional DNA nanostructures may help to confer customized cellular properties, unleashing the potential of both fields.
Collapse
Affiliation(s)
- Pengfei Zhan
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, 310022 Hangzhou, Zhejiang, China
- 2nd Physics Institute, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Juanjuan Yang
- 2nd Physics Institute, University of Stuttgart, D-70569 Stuttgart, Germany
- Max Planck Institute for Solid State Research, D-70569 Stuttgart, Germany
| | - Longjiang Ding
- 2nd Physics Institute, University of Stuttgart, D-70569 Stuttgart, Germany
- Max Planck Institute for Solid State Research, D-70569 Stuttgart, Germany
| | - Xinxin Jing
- 2nd Physics Institute, University of Stuttgart, D-70569 Stuttgart, Germany
- Max Planck Institute for Solid State Research, D-70569 Stuttgart, Germany
| | - Katharina Hipp
- Electron Microscopy, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Stephan Nussberger
- Department of Biophysics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Hao Yan
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ 85287, USA
| | - Na Liu
- 2nd Physics Institute, University of Stuttgart, D-70569 Stuttgart, Germany
- Max Planck Institute for Solid State Research, D-70569 Stuttgart, Germany
| |
Collapse
|
17
|
Le QV, Shim G. Biorobotic Drug Delivery for Biomedical Applications. Molecules 2024; 29:3663. [PMID: 39125066 PMCID: PMC11314275 DOI: 10.3390/molecules29153663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 08/12/2024] Open
Abstract
Despite extensive efforts, current drug-delivery systems face biological barriers and difficulties in bench-to-clinical use. Biomedical robotic systems have emerged as a new strategy for drug delivery because of their innovative diminutive engines. These motors enable the biorobots to move independently rather than relying on body fluids. The main components of biorobots are engines controlled by external stimuli, chemical reactions, and biological responses. Many biorobot designs are inspired by blood cells or microorganisms that possess innate swimming abilities and can incorporate living materials into their structures. This review explores the mechanisms of biorobot locomotion, achievements in robotic drug delivery, obstacles, and the perspectives of translational research.
Collapse
Affiliation(s)
- Quoc-Viet Le
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
| | - Gayong Shim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea
- Integrative Institute of Basic Sciences, Soongsil University, Seoul 06978, Republic of Korea
| |
Collapse
|
18
|
Zhu D, Zhao D, Hu Y, Wei T, Su T, Su S, Chao J, Wang L. Programmably engineered stochastic RNA nanowalker for ultrasensitive miRNA detection. Chem Commun (Camb) 2024; 60:6142-6145. [PMID: 38804211 DOI: 10.1039/d4cc01656d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
A programmably engineered stochastic RNA nanowalker powered by duplex-specific nuclease (DSN) is developed. By utilizing poly-adenine-based spherical nucleic acids (polyA-SNA) to accurately regulate the densities of DNA tracks, the nanowalker showcases its capability to identify miRNA-21, miRNA-486, and miRNA-155 with quick kinetics and attomolar sensitivity, positioning it as a promising option for cancer clinical surveillance.
Collapse
Affiliation(s)
- Dan Zhu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Dongxia Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Yang Hu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Tianhui Wei
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Tong Su
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Shao Su
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Jie Chao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
19
|
Kou B, Wang Z, Mousavi S, Wang P, Ke Y. Dynamic Gold Nanostructures Based on DNA Self Assembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308862. [PMID: 38143287 DOI: 10.1002/smll.202308862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/10/2023] [Indexed: 12/26/2023]
Abstract
The combination of DNA nanotechnology and Nano Gold (NG) plasmon has opened exciting possibilities for a new generation of functional plasmonic systems that exhibit tailored optical properties and find utility in various applications. In this review, the booming development of dynamic gold nanostructures are summarized, which are formed by DNA self-assembly using DNA-modified NG, DNA frameworks, and various driving forces. The utilization of bottom-up strategies enables precise control over the assembly of reversible and dynamic aggregations, nano-switcher structures, and robotic nanomachines capable of undergoing on-demand, reversible structural changes that profoundly impact their properties. Benefiting from the vast design possibilities, complete addressability, and sub-10 nm resolution, DNA duplexes, tiles, single-stranded tiles and origami structures serve as excellent platforms for constructing diverse 3D reconfigurable plasmonic nanostructures with tailored optical properties. Leveraging the responsive nature of DNA interactions, the fabrication of dynamic assemblies of NG becomes readily achievable, and environmental stimulation can be harnessed as a driving force for the nanomotors. It is envisioned that intelligent DNA-assembled NG nanodevices will assume increasingly important roles in the realms of biological, biomedical, and nanomechanical studies, opening a new avenue toward exploration and innovation.
Collapse
Affiliation(s)
- Bo Kou
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Zhichao Wang
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Shikufa Mousavi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30322, USA
| | - Pengfei Wang
- Institute of Molecular Medicine, Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30322, USA
| |
Collapse
|
20
|
Wei W, Wang Z, Wang B, He X, Wang Y, Bai Y, Yang Q, Pang W, Duan X. Acoustofluidic manipulation for submicron to nanoparticles. Electrophoresis 2024. [PMID: 38794970 DOI: 10.1002/elps.202400062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/27/2024]
Abstract
Particles, ranging from submicron to nanometer scale, can be broadly categorized into biological and non-biological types. Submicron-to-nanoscale bioparticles include various bacteria, viruses, liposomes, and exosomes. Non-biological particles cover various inorganic, metallic, and carbon-based particles. The effective manipulation of these submicron to nanoparticles, including their separation, sorting, enrichment, assembly, trapping, and transport, is a fundamental requirement for different applications. Acoustofluidics, owing to their distinct advantages, have emerged as a potent tool for nanoparticle manipulation over the past decade. Although recent literature reviews have encapsulated the evolution of acoustofluidic technology, there is a paucity of reports specifically addressing the acoustical manipulation of submicron to nanoparticles. This article endeavors to provide a comprehensive study of this topic, delving into the principles, apparatus, and merits of acoustofluidic manipulation of submicron to nanoparticles, and discussing the state-of-the-art developments in this technology. The discourse commences with an introduction to the fundamental theory of acoustofluidic control and the forces involved in nanoparticle manipulation. Subsequently, the working mechanism of acoustofluidic manipulation of submicron to nanoparticles is dissected into two parts, dominated by the acoustic wave field and the acoustic streaming field. A critical analysis of the advantages and limitations of different acoustofluidic platforms in nanoparticles control is presented. The article concludes with a summary of the challenges acoustofluidics face in the realm of nanoparticle manipulation and analysis, and a forecast of future development prospects.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, P. R. China
| | - Zhaoxun Wang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, P. R. China
| | - Bingnan Wang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, P. R. China
| | - Xinyuan He
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, P. R. China
| | - Yaping Wang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, P. R. China
| | - Yang Bai
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, P. R. China
| | - Qingrui Yang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, P. R. China
| | - Wei Pang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, P. R. China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, P. R. China
| |
Collapse
|
21
|
Willner E, Kolbe F, Momburg F, Protzer U, Dietz H. Hepatitis B Virus Neutralization with DNA Origami Nanoshells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25836-25842. [PMID: 38728653 PMCID: PMC11129107 DOI: 10.1021/acsami.4c03700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
We demonstrate the use of DNA origami to create virus-trapping nanoshells that efficiently neutralize hepatitis B virus (HBV) in cell culture. By modification of the shells with a synthetic monoclonal antibody that binds to the HBV envelope, the effective neutralization potency per antibody is increased by approximately 100 times compared to using free antibodies. The improvements in neutralizing the virus are attributed to two factors: first, the shells act as a physical barrier that blocks the virus from interacting with host cells; second, the multivalent binding of the antibodies inside the shells lead to stronger attachment to the trapped virus, a phenomenon known as avidity. Pre-incubation of shells with HBV and simultaneous addition of both components separately to cells lead to comparable levels of neutralization, indicating rapid trapping of the virions by the shells. Our study highlights the potential of the DNA shell system to rationally create antivirals using components that, when used individually, show little to no antiviral effectiveness.
Collapse
Affiliation(s)
- Elena
M. Willner
- Department
of Biosciences, School of Natural Sciences and Munich Institute of
Biomedical Engineering, Technical University
of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| | - Fenna Kolbe
- Institute
of Virology, School of Medicine & Health, Technical University of Munich and Helmholtz Munich, Trogerstraße 30, 81675 Munich, Germany
| | - Frank Momburg
- Translational
Immunity Unit, German Cancer Research Center
(DKFZ), Im Neuenheimer Feld, 69120 Heidelberg, Germany
| | - Ulrike Protzer
- Institute
of Virology, School of Medicine & Health, Technical University of Munich and Helmholtz Munich, Trogerstraße 30, 81675 Munich, Germany
- German
Center for Infection Research (DZIF),
Munich Partner Site, 81675 Munich, Germany
| | - Hendrik Dietz
- Department
of Biosciences, School of Natural Sciences and Munich Institute of
Biomedical Engineering, Technical University
of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| |
Collapse
|
22
|
Kalra S, Donnelly A, Singh N, Matthews D, Del Villar-Guerra R, Bemmer V, Dominguez C, Allcock N, Cherny D, Revyakin A, Rusling DA. Functionalizing DNA Origami by Triplex-Directed Site-Specific Photo-Cross-Linking. J Am Chem Soc 2024; 146:13617-13628. [PMID: 38695163 PMCID: PMC11100008 DOI: 10.1021/jacs.4c03413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024]
Abstract
Here, we present a cross-linking approach to covalently functionalize and stabilize DNA origami structures in a one-pot reaction. Our strategy involves adding nucleotide sequences to adjacent staple strands, so that, upon assembly of the origami structure, the extensions form short hairpin duplexes targetable by psoralen-labeled triplex-forming oligonucleotides bearing other functional groups (pso-TFOs). Subsequent irradiation with UVA light generates psoralen adducts with one or both hairpin staples leading to site-specific attachment of the pso-TFO (and attached group) to the origami with ca. 80% efficiency. Bis-adduct formation between strands in proximal hairpins further tethers the TFO to the structure and generates "superstaples" that improve the structural integrity of the functionalized complex. We show that directing cross-linking to regions outside of the origami core dramatically reduces sensitivity of the structures to thermal denaturation and disassembly by T7 RNA polymerase. We also show that the underlying duplex regions of the origami core are digested by DNase I and thus remain accessible to read-out by DNA-binding proteins. Our strategy is scalable and cost-effective, as it works with existing DNA origami structures, does not require scaffold redesign, and can be achieved with just one psoralen-modified oligonucleotide.
Collapse
Affiliation(s)
- Shantam Kalra
- Department
of Molecular and Cell Biology, and Leicester Institute of Chemical
Biology, University of Leicester, Leicester LE1 7RH, U.K.
| | - Amber Donnelly
- Department
of Molecular and Cell Biology, and Leicester Institute of Chemical
Biology, University of Leicester, Leicester LE1 7RH, U.K.
| | - Nishtha Singh
- Department
of Molecular and Cell Biology, and Leicester Institute of Chemical
Biology, University of Leicester, Leicester LE1 7RH, U.K.
| | - Daniel Matthews
- Department
of Molecular and Cell Biology, and Leicester Institute of Chemical
Biology, University of Leicester, Leicester LE1 7RH, U.K.
| | - Rafael Del Villar-Guerra
- Department
of Molecular and Cell Biology, and Leicester Institute of Chemical
Biology, University of Leicester, Leicester LE1 7RH, U.K.
| | - Victoria Bemmer
- Centre
for Enzyme Innovation, School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire PO1 2DY, U.K.
| | - Cyril Dominguez
- Department
of Molecular and Cell Biology, and Leicester Institute of Chemical
Biology, University of Leicester, Leicester LE1 7RH, U.K.
| | - Natalie Allcock
- Core
Biotechnology Services Electron Microscopy Facility, University of Leicester, Leicester LE1 7RH, U.K.
| | - Dmitry Cherny
- Department
of Molecular and Cell Biology, and Leicester Institute of Chemical
Biology, University of Leicester, Leicester LE1 7RH, U.K.
| | - Andrey Revyakin
- Department
of Molecular and Cell Biology, and Leicester Institute of Chemical
Biology, University of Leicester, Leicester LE1 7RH, U.K.
| | - David A. Rusling
- School
of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, U.K.
| |
Collapse
|
23
|
Patiño Padial T, Del Grosso E, Gentile S, Baranda Pellejero L, Mestre R, Paffen LJMM, Sánchez S, Ricci F. Synthetic DNA-based Swimmers Driven by Enzyme Catalysis. J Am Chem Soc 2024; 146:12664-12671. [PMID: 38587543 DOI: 10.1021/jacs.4c02094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Here, we report DNA-based synthetic nanostructures decorated with enzymes (hereafter referred to as DNA-enzyme swimmers) that self-propel by converting the enzymatic substrate to the product in solution. The DNA-enzyme swimmers are obtained from tubular DNA structures that self-assemble spontaneously by the hybridization of DNA tiles. We functionalize these DNA structures with two different enzymes, urease and catalase, and show that they exhibit concentration-dependent movement and enhanced diffusion upon addition of the enzymatic substrate (i.e., urea and H2O2). To demonstrate the programmability of such DNA-based swimmers, we also engineer DNA strands that displace the enzyme from the DNA scaffold, thus acting as molecular "brakes" on the DNA swimmers. These results serve as a first proof of principle for the development of synthetic DNA-based enzyme-powered swimmers that can self-propel in fluids.
Collapse
Affiliation(s)
- Tania Patiño Padial
- Department of Chemical Sciences and Technologies, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
- Biomedical Engineering Department, Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Het Kranenveld 14, 5612 AZ Eindhoven, The Netherlands
| | - Erica Del Grosso
- Department of Chemical Sciences and Technologies, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Serena Gentile
- Department of Chemical Sciences and Technologies, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Lorena Baranda Pellejero
- Department of Chemical Sciences and Technologies, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Rafael Mestre
- School of Electronics and Computer Science (ECS), University of Southampton, University Road, Southampton SO17 1BJ, U.K
| | - Lars J M M Paffen
- Biomedical Engineering Department, Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Het Kranenveld 14, 5612 AZ Eindhoven, The Netherlands
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, Barcelona 08010, Spain
| | - Francesco Ricci
- Department of Chemical Sciences and Technologies, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| |
Collapse
|
24
|
Kang H, Yang Y, Wei B. Synthetic molecular switches driven by DNA-modifying enzymes. Nat Commun 2024; 15:3781. [PMID: 38710688 DOI: 10.1038/s41467-024-47742-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 04/10/2024] [Indexed: 05/08/2024] Open
Abstract
Taking inspiration from natural systems, in which molecular switches are ubiquitous in the biochemistry regulatory network, we aim to design and construct synthetic molecular switches driven by DNA-modifying enzymes, such as DNA polymerase and nicking endonuclease. The enzymatic treatments on our synthetic DNA constructs controllably switch ON or OFF the sticky end cohesion and in turn cascade to the structural association or disassociation. Here we showcase the concept in multiple DNA nanostructure systems with robust assembly/disassembly performance. The switch mechanisms are first illustrated in minimalist systems with a few DNA strands. Then the ON/OFF switches are realized in complex DNA lattice and origami systems with designated morphological changes responsive to the specific enzymatic treatments.
Collapse
Affiliation(s)
- Hong Kang
- School of Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, 100084, Beijing, China
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yuexuan Yang
- School of Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, 100084, Beijing, China
| | - Bryan Wei
- School of Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
25
|
Li H, Wang Y, Wan Y, Li M, Xu J, Wang Q, Wu D. Stimuli-responsive incremental DNA machine auto-catalyzed CRISPR-Cas12a feedback amplification permits ultrasensitive molecular diagnosis of esophageal cancer-related microRNA. Talanta 2024; 271:125675. [PMID: 38245957 DOI: 10.1016/j.talanta.2024.125675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/07/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Development of new diagnostic methods is essential for disease diagnosis and treatment. In this work, we present a stimuli-responsive incremental DNA machine auto-catalyzed CRISPR-Cas12a (SRI-DNA machine/CRISPR-Cas12a) feedback amplification for ultrasensitive molecular detection of miRNA-21, which is an important biomarker related closely to the initiation and development of cancers, such as esophageal cancer. Strategically, the powerful SRI-DNA machine and efficient trans-cleavage activity of the CRISPR-Cas12a system are ingeniously integrated via a rationally designed probe termed as stem-elongated functional hairpin probe (SEF-HP). The SRI-DNA machine begins with the target miRNA, the trigger of the reaction, binding complementarily to the SEF-HP, followed by autonomously performed mechanical strand replication, cleavage, and displacement circuit at multiple sites. This conversion process led to the amplified generation of numerous DNA activators that are complementary with CRISPR RNA (CrRNA). Once formed the DNA activator/CrRNA heteroduplex, the trans-cleavage activity of the CRISPR-Cas12a was activated to nonspecific cleavage of single-stranded areas of a reporter probe for fluorescence emission. Under optimal conditions, the target miRNA can be detected with a wide linear range and an excellent specificity. As a proof-of-concept, this SRI-DNA machine/CRISPR-Cas12a feedback amplification system is adaptable and scalable to higher-order artificial amplification circuits for biomarkers detection, highlighting its promising potential in early diagnosis and disease treatment.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Oncology, Hefei First People's Hospital, Third Affiliated Hospital of Anhui Medical University, Hefei, 230032, PR China
| | - Yi Wang
- Department of Oncology, Hefei First People's Hospital, Third Affiliated Hospital of Anhui Medical University, Hefei, 230032, PR China
| | - Yu Wan
- Department of Oncology, Hefei First People's Hospital, Third Affiliated Hospital of Anhui Medical University, Hefei, 230032, PR China
| | - Meimei Li
- Department of Oncology, Hefei First People's Hospital, Third Affiliated Hospital of Anhui Medical University, Hefei, 230032, PR China
| | - Jianguo Xu
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Zhejiang, Jiaxing, 314001, PR China; Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological, Hefei University of Technology, Hefei, 230009, PR China.
| | - Qi Wang
- Key Laboratory of Embryo Development and Reproductive Regulation, Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, 236037, PR China.
| | - Donglei Wu
- Department of Oncology, Hefei First People's Hospital, Third Affiliated Hospital of Anhui Medical University, Hefei, 230032, PR China.
| |
Collapse
|
26
|
Zhang X, Liu X, Zhang X, Cui S, Yao Y, Wang B, Zhang Q. Arbitrary Digital DNA Computing: A Programmable Molecular Perceptron Driven by Lambda Exonuclease for Lighting up Concatenated Circuits. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38688864 DOI: 10.1021/acsami.4c03486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
DNA circuits, as a type of biochemical system, have the capability to synchronize the perception of molecular information with a chemical reaction response and directly process the molecular characteristic information in biological activities, making them a crucial area in molecular digital computing and smart bioanalytical applications. Instead of cascading logic gates, the traditional research approach achieves multiple logic operations which limits the scalability of DNA circuits and increases the development costs. Based on the interface reaction mechanism of Lambda exonuclease, the molecular perceptron proposed in this study, with the need for only adjusting weight and bias parameters to alter the corresponding logic expressions, enhances the versatility of the molecular circuits. We also establish a mathematical model and an improved heuristic algorithm for solving weights and bias parameters for arbitrary logic operations. The simulation and FRET experiment results of a series of logic operations demonstrate the universality of molecular perceptron. We hope the proposed molecular perceptron can introduce a new design paradigm for molecular circuits, fostering innovation and development in biomedical research related to biosensing, targeted therapy, and nanomachines.
Collapse
Affiliation(s)
- Xun Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xin Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiaokang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shuang Cui
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yao Yao
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Bin Wang
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Dalian 116622, China
| | - Qiang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
27
|
Khoshouei A, Kempf G, Mykhailiuk V, Griessing JM, Honemann MN, Kater L, Cavadini S, Dietz H. Designing Rigid DNA Origami Templates for Molecular Visualization Using Cryo-EM. NANO LETTERS 2024; 24. [PMID: 38602296 PMCID: PMC11057029 DOI: 10.1021/acs.nanolett.4c00915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/12/2024]
Abstract
DNA origami, a method for constructing nanostructures from DNA, offers potential for diverse scientific and technological applications due to its ability to integrate various molecular functionalities in a programmable manner. In this study, we examined the impact of internal crossover distribution and the compositional uniformity of staple strands on the structure of multilayer DNA origami using cryogenic electron microscopy (cryo-EM) single-particle analysis. A refined DNA object was utilized as an alignment framework in a host-guest model, where we successfully resolved an 8 kDa thrombin binding aptamer (TBA) linked to the host object. Our results broaden the spectrum of DNA in structural applications.
Collapse
Affiliation(s)
- Ali Khoshouei
- Laboratory
for Biomolecular Nanotechnology, Department of Biosciences, School
of Natural Sciences, Technical University
of Munich, Am Coulombwall 4a, 85748 Garching, Germany
- Munich
Institute of Biomedical Engineering, Technical
University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| | - Georg Kempf
- Friedrich
Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Volodymyr Mykhailiuk
- Laboratory
for Biomolecular Nanotechnology, Department of Biosciences, School
of Natural Sciences, Technical University
of Munich, Am Coulombwall 4a, 85748 Garching, Germany
- Munich
Institute of Biomedical Engineering, Technical
University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| | - Johanna Mariko Griessing
- Laboratory
for Biomolecular Nanotechnology, Department of Biosciences, School
of Natural Sciences, Technical University
of Munich, Am Coulombwall 4a, 85748 Garching, Germany
- Munich
Institute of Biomedical Engineering, Technical
University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| | - Maximilian Nicolas Honemann
- Laboratory
for Biomolecular Nanotechnology, Department of Biosciences, School
of Natural Sciences, Technical University
of Munich, Am Coulombwall 4a, 85748 Garching, Germany
- Munich
Institute of Biomedical Engineering, Technical
University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| | - Lukas Kater
- Friedrich
Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Simone Cavadini
- Friedrich
Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Hendrik Dietz
- Laboratory
for Biomolecular Nanotechnology, Department of Biosciences, School
of Natural Sciences, Technical University
of Munich, Am Coulombwall 4a, 85748 Garching, Germany
- Munich
Institute of Biomedical Engineering, Technical
University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| |
Collapse
|
28
|
Sundaray K, Baral B, Subudhi U. DNA polyhedrons cube, prism, and square pyramid protect the catalytic activity of catalase: A thermodynamics and kinetics study. Int J Biol Macromol 2024; 264:130557. [PMID: 38431020 DOI: 10.1016/j.ijbiomac.2024.130557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
DNA is widely used as building block material for the construction of polyhedral nanostructures. DNA polyhedrons (DNA prism, cube, and square pyramid) are small 3D wireframed nanostructures with tunable shapes and sizes. Despite substantial progress in synthesis, the study regarding cellular responses to DNA polyhedrons is limited. Herein, the molecular interaction between DNA polyhedrons and the antioxidant enzyme, catalase has been explored. The enzymatic activity of bovine liver catalase (BLC) remains unaltered in the presence of DNA polyhedrons after 1 h of incubation. However, the activity of BLC was protected after 24 h of incubation in the presence of DNA polyhedrons as compared to the natural unfolding. The kinetics study confirmed the protective role of DNA polyhedrons on BLC with lower KM and higher catalytic efficiency. Furthermore, no profound conformational changes of BLC occur in the presence of DNA polyhedrons as observed in spectroscopic studies. From fluorescence quenching data we confirmed the binding between DNA polyhedrons and BLC. The thermodynamic parameters indicate that non-covalent bonds played a major role during the interaction of BLC with DNA polyhedrons. Moreover, the hepatic catalase activity remains unaltered in the presence of DNA polyhedrons. The cytotoxicity assay revealed that DNA polyhedrons were biocompatible in the cellular environment. The protective role of DNA polyhedrons on enzyme activity and the unaltered conformational change of protein ensures the biocompatibility of DNA polyhedrons in the cellular environment.
Collapse
Affiliation(s)
- Kajal Sundaray
- DNA Nanotechnology & Application Laboratory, Environment and Sustainability Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, Odisha, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bineeth Baral
- DNA Nanotechnology & Application Laboratory, Environment and Sustainability Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, Odisha, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Umakanta Subudhi
- DNA Nanotechnology & Application Laboratory, Environment and Sustainability Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, Odisha, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
29
|
de Haas RJ, Brunette N, Goodson A, Dauparas J, Yi SY, Yang EC, Dowling Q, Nguyen H, Kang A, Bera AK, Sankaran B, de Vries R, Baker D, King NP. Rapid and automated design of two-component protein nanomaterials using ProteinMPNN. Proc Natl Acad Sci U S A 2024; 121:e2314646121. [PMID: 38502697 PMCID: PMC10990136 DOI: 10.1073/pnas.2314646121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/20/2024] [Indexed: 03/21/2024] Open
Abstract
The design of protein-protein interfaces using physics-based design methods such as Rosetta requires substantial computational resources and manual refinement by expert structural biologists. Deep learning methods promise to simplify protein-protein interface design and enable its application to a wide variety of problems by researchers from various scientific disciplines. Here, we test the ability of a deep learning method for protein sequence design, ProteinMPNN, to design two-component tetrahedral protein nanomaterials and benchmark its performance against Rosetta. ProteinMPNN had a similar success rate to Rosetta, yielding 13 new experimentally confirmed assemblies, but required orders of magnitude less computation and no manual refinement. The interfaces designed by ProteinMPNN were substantially more polar than those designed by Rosetta, which facilitated in vitro assembly of the designed nanomaterials from independently purified components. Crystal structures of several of the assemblies confirmed the accuracy of the design method at high resolution. Our results showcase the potential of deep learning-based methods to unlock the widespread application of designed protein-protein interfaces and self-assembling protein nanomaterials in biotechnology.
Collapse
Affiliation(s)
- Robbert J. de Haas
- Department of Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen6078 WE, The Netherlands
| | - Natalie Brunette
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
| | - Alex Goodson
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
| | - Justas Dauparas
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
| | - Sue Y. Yi
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
| | - Erin C. Yang
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
| | - Quinton Dowling
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
| | - Hannah Nguyen
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
| | - Alex Kang
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
| | - Asim K. Bera
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Renko de Vries
- Department of Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen6078 WE, The Netherlands
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
- HHMI, Seattle, WA98195
| | - Neil P. King
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
| |
Collapse
|
30
|
Wang B, Lu Y. Collective Molecular Machines: Multidimensionality and Reconfigurability. NANO-MICRO LETTERS 2024; 16:155. [PMID: 38499833 PMCID: PMC10948734 DOI: 10.1007/s40820-024-01379-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/17/2024] [Indexed: 03/20/2024]
Abstract
Molecular machines are key to cellular activity where they are involved in converting chemical and light energy into efficient mechanical work. During the last 60 years, designing molecular structures capable of generating unidirectional mechanical motion at the nanoscale has been the topic of intense research. Effective progress has been made, attributed to advances in various fields such as supramolecular chemistry, biology and nanotechnology, and informatics. However, individual molecular machines are only capable of producing nanometer work and generally have only a single functionality. In order to address these problems, collective behaviors realized by integrating several or more of these individual mechanical units in space and time have become a new paradigm. In this review, we comprehensively discuss recent developments in the collective behaviors of molecular machines. In particular, collective behavior is divided into two paradigms. One is the appropriate integration of molecular machines to efficiently amplify molecular motions and deformations to construct novel functional materials. The other is the construction of swarming modes at the supramolecular level to perform nanoscale or microscale operations. We discuss design strategies for both modes and focus on the modulation of features and properties. Subsequently, in order to address existing challenges, the idea of transferring experience gained in the field of micro/nano robotics is presented, offering prospects for future developments in the collective behavior of molecular machines.
Collapse
Affiliation(s)
- Bin Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
31
|
Nerantzaki M, Husser C, Ryckelynck M, Lutz JF. Exchanging and Releasing Information in Synthetic Digital Polymers Using a Strand-Displacement Strategy. J Am Chem Soc 2024; 146:6456-6460. [PMID: 38286022 DOI: 10.1021/jacs.3c13953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Toehold-mediated strand displacement (TMSD) was tested as a tool to edit information in synthetic digital polymers. Uniform DNA-polymer biohybrid macromolecules were first synthesized by automated phosphoramidite chemistry and characterized by HPLC, mass spectrometry, and polyacrylamide gel electrophoresis (PAGE). These precursors were diblock structures containing a synthetic poly(phosphodiester) (PPDE) segment covalently attached to a single-stranded DNA sequence. Three types of biohybrids were prepared herein: a substrate containing an accessible toehold as well as input and output macromolecules. The substrate and the input macromolecules contained noncoded PPDE homopolymers, whereas the output macromolecule contained a digitally encoded segment. After hybridization of the substrate with the output, incubation in the presence of the input led to efficient TMSD and the release of the digital segment. TMSD can therefore be used to erase or rewrite information in self-assembled biohybrid superstructures. Furthermore, it was found in this work that the conjugation of DNA single strands to synthetic segments of chosen lengths greatly facilitates the characterization and PAGE visualization of the TMSD process.
Collapse
Affiliation(s)
- Maria Nerantzaki
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Claire Husser
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, 2 allée Konrad Roentgen, 67084 Strasbourg, France
| | - Michael Ryckelynck
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, 2 allée Konrad Roentgen, 67084 Strasbourg, France
| | - Jean-François Lutz
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
32
|
Nanoturbine driven by flow across a nanopore. NATURE NANOTECHNOLOGY 2024; 19:279-280. [PMID: 37903893 DOI: 10.1038/s41565-023-01532-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
|
33
|
Astumian RD. Kinetic Asymmetry and Directionality of Nonequilibrium Molecular Systems. Angew Chem Int Ed Engl 2024; 63:e202306569. [PMID: 38236163 DOI: 10.1002/anie.202306569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Indexed: 01/19/2024]
Abstract
Scientists have long been fascinated by the biomolecular machines in living systems that process energy and information to sustain life. The first synthetic molecular rotor capable of performing repeated 360° rotations due to a combination of photo- and thermally activated processes was reported in 1999. The progress in designing different molecular machines in the intervening years has been remarkable, with several outstanding examples appearing in the last few years. Despite the synthetic accomplishments, there remains confusion regarding the fundamental design principles by which the motions of molecules can be controlled, with significant intellectual tension between mechanical and chemical ways of thinking about and describing molecular machines. A thermodynamically consistent analysis of the kinetics of several molecular rotors and pumps shows that while light driven rotors operate by a power-stroke mechanism, kinetic asymmetry-the relative heights of energy barriers-is the sole determinant of the directionality of catalysis driven machines. Power-strokes-the relative depths of energy wells-play no role whatsoever in determining the sign of the directionality. These results, elaborated using trajectory thermodynamics and the nonequilibrium pump equality, show that kinetic asymmetry governs the response of many non-equilibrium chemical phenomena.
Collapse
Affiliation(s)
- Raymond Dean Astumian
- Department of Physics and Astronomy, The University of Maine, 5709 Bennett Hall, Orono, ME-04469, USA
| |
Collapse
|
34
|
Takezawa Y, Zhang H, Mori K, Hu L, Shionoya M. Ligase-mediated synthesis of Cu II-responsive allosteric DNAzyme with bifacial 5-carboxyuracil nucleobases. Chem Sci 2024; 15:2365-2370. [PMID: 38362437 PMCID: PMC10866359 DOI: 10.1039/d3sc05042d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/17/2024] [Indexed: 02/17/2024] Open
Abstract
A CuII-responsive allosteric DNAzyme has been developed by introducing bifacial 5-carboxyuracil (caU) nucleobases, which form both hydrogen-bonded caU-A and metal-mediated caU-CuII-caU base pairs. The base sequence was logically designed based on a known RNA-cleaving DNAzyme so that the caU-modified DNAzyme (caU-DNAzyme) can form a catalytically inactive structure containing three caU-A base pairs and an active form with three caU-CuII-caU pairs. The caU-DNAzyme was synthesized by joining short caU-containing fragments with a standard DNA ligase. The activity of caU-DNAzyme was suppressed without CuII, but enhanced 21-fold with the addition of CuII. Furthermore, the DNAzyme activity was turned on and off during the reaction by the addition and removal of CuII ions. Both ligase-mediated synthesis and CuII-dependent allosteric regulation were achieved by the bifacial base pairing properties of caU. This study provides a new strategy for designing stimuli-responsive DNA molecular systems.
Collapse
Affiliation(s)
- Yusuke Takezawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Hanci Zhang
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Keita Mori
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Lingyun Hu
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
35
|
Centola M, Poppleton E, Ray S, Centola M, Welty R, Valero J, Walter NG, Šulc P, Famulok M. A rhythmically pulsing leaf-spring DNA-origami nanoengine that drives a passive follower. NATURE NANOTECHNOLOGY 2024; 19:226-236. [PMID: 37857824 PMCID: PMC10873200 DOI: 10.1038/s41565-023-01516-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/31/2023] [Indexed: 10/21/2023]
Abstract
Molecular engineering seeks to create functional entities for modular use in the bottom-up design of nanoassemblies that can perform complex tasks. Such systems require fuel-consuming nanomotors that can actively drive downstream passive followers. Most artificial molecular motors are driven by Brownian motion, in which, with few exceptions, the generated forces are non-directed and insufficient for efficient transfer to passive second-level components. Consequently, efficient chemical-fuel-driven nanoscale driver-follower systems have not yet been realized. Here we present a DNA nanomachine (70 nm × 70 nm × 12 nm) driven by the chemical energy of DNA-templated RNA-transcription-consuming nucleoside triphosphates as fuel to generate a rhythmic pulsating motion of two rigid DNA-origami arms. Furthermore, we demonstrate actuation control and the simple coupling of the active nanomachine with a passive follower, to which it then transmits its motion, forming a true driver-follower pair.
Collapse
Affiliation(s)
- Mathias Centola
- LIMES Program Unit Chemical Biology & Medicinal Chemistry, c/o Kekulé Institut für Organische Chemie und Biochemie, Universität Bonn, Bonn, Germany
- Max-Planck Institute for Neurobiology of Behaviour, Bonn, Germany
| | - Erik Poppleton
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Max-Planck-Institute for Medical Research, Heidelberg, Germany
| | - Sujay Ray
- Single Molecule Analysis Group, Department of Chemistry, Ann Arbor, MI, USA
| | | | - Robb Welty
- Single Molecule Analysis Group, Department of Chemistry, Ann Arbor, MI, USA
| | - Julián Valero
- LIMES Program Unit Chemical Biology & Medicinal Chemistry, c/o Kekulé Institut für Organische Chemie und Biochemie, Universität Bonn, Bonn, Germany
- Max-Planck Institute for Neurobiology of Behaviour, Bonn, Germany
- Interdisciplinary Nanoscience Center - INANO-MBG, iNANO-huset, Århus, Denmark
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, Ann Arbor, MI, USA.
| | - Petr Šulc
- LIMES Program Unit Chemical Biology & Medicinal Chemistry, c/o Kekulé Institut für Organische Chemie und Biochemie, Universität Bonn, Bonn, Germany.
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| | - Michael Famulok
- LIMES Program Unit Chemical Biology & Medicinal Chemistry, c/o Kekulé Institut für Organische Chemie und Biochemie, Universität Bonn, Bonn, Germany.
- Max-Planck Institute for Neurobiology of Behaviour, Bonn, Germany.
| |
Collapse
|
36
|
Foguel MV, Zamora V, Ojeda J, Reed M, Bennett A, Calvo-Marzal P, Gerasimova YV, Kolpashchikov D, Chumbimuni-Torres KY. DNA nanotechnology for nucleic acid analysis: sensing of nucleic acids with DNA junction-probes. Analyst 2024; 149:968-974. [PMID: 38197474 PMCID: PMC11439508 DOI: 10.1039/d3an01707a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
DNA nanotechnology deals with the design of non-naturally occurring DNA nanostructures that can be used in biotechnology, medicine, and diagnostics. In this study, we introduced a nucleic acid five-way junction (5WJ) structure for direct electrochemical analysis of full-length biological RNAs. To the best of our knowledge, this is the first report on the interrogation of such long nucleic acid sequences by hybridization probes attached to a solid support. A hairpin-shaped electrode-bound oligonucleotide hybridizes with three adaptor strands, one of which is labeled with methylene blue (MB). The four strands are combined into a 5WJ structure only in the presence of specific DNA or RNA analytes. Upon interrogation of a full-size 16S rRNA in the total RNA sample, the electrode-bound MB-labeled 5WJ association produces a higher signal-to-noise ratio than electrochemical nucleic acid biosensors of alternative design. This advantage was attributed to the favorable geometry on the 5WJ nanostructure formed on the electrode's surface. The 5WJ biosensor is a cost-efficient alternative to the traditional electrochemical biosensors for the analysis of nucleic acids due to the universal nature of both the electrode-bound and MB-labeled DNA components.
Collapse
Affiliation(s)
- Marcos V Foguel
- Department of Chemistry. University of Central Florida, 4000 Central Florida Boulevard, Orlando, Fl 32816, USA.
| | - Victor Zamora
- Escuela Professional de Quimica, Facultad de Ciencias, Universidad Nacional Ingenieria, Av. Tupac 210, Lima, Peru
| | - Julio Ojeda
- Department of Chemistry. University of Central Florida, 4000 Central Florida Boulevard, Orlando, Fl 32816, USA.
| | - Mark Reed
- Department of Chemistry. University of Central Florida, 4000 Central Florida Boulevard, Orlando, Fl 32816, USA.
| | - Alexander Bennett
- Department of Chemistry. University of Central Florida, 4000 Central Florida Boulevard, Orlando, Fl 32816, USA.
| | - Percy Calvo-Marzal
- Department of Chemistry. University of Central Florida, 4000 Central Florida Boulevard, Orlando, Fl 32816, USA.
| | - Yulia V Gerasimova
- Department of Chemistry. University of Central Florida, 4000 Central Florida Boulevard, Orlando, Fl 32816, USA.
| | - Dmitry Kolpashchikov
- Department of Chemistry. University of Central Florida, 4000 Central Florida Boulevard, Orlando, Fl 32816, USA.
- Burnett School of Biomedical Science, university of Central Florida, 4000 Central Florida Boulevard, Orlando, Fl 32816, USA
| | - Karin Y Chumbimuni-Torres
- Department of Chemistry. University of Central Florida, 4000 Central Florida Boulevard, Orlando, Fl 32816, USA.
| |
Collapse
|
37
|
Yang F, Li S, Wu J, Liu S. 2-Aminopurine-based quencher-free DNA tweezers with fluorescence properties well tuned by surrounding bases. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:576-582. [PMID: 38189219 DOI: 10.1039/d3ay01973j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Reversible structural changes in DNA nanomachines have great potential in the field of bioanalysis. Here, we demonstrate an assembly strategy for quencher-free and tunable DNA tweezers based on 2-aminopurine (2-AP), avoiding the tedious fluorescence labelling step. The conformational state of the tweezers could be controlled by specific oligonucleotides (fuel or anti-fuel). Taking advantage of the local environmental sensitivity of 2-AP, the structural changes of the tweezers were easily tracked, and multiple cyclic switching of the tweezers between the open and closed states was achieved. In addition, the influence of oligonucleotide structure on the fluorescence properties of 2-AP was deeply explored. We figured out that the fluorescence of 2-AP was highly quenched by the base-stacking of natural bases in DNA oligonucleotides. Moreover, by comprehensively regulating the type of bases surrounding the inserted 2-AP site, a sensitive fluorescence response towards dynamic change can be obtained. This principle of quencher-free nanodevices based on 2-AP provides a convenient method for monitoring the structural changes of DNA nanomachines.
Collapse
Affiliation(s)
- Fangfang Yang
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China.
| | - Shuang Li
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China.
| | - Jialiang Wu
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China.
| | - Shufeng Liu
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China.
| |
Collapse
|
38
|
Li S, Zhao D, Yang F, Liu S. Dynamic monitoring of an enzymatically driven dissipative toehold-mediated strand displacement reaction. Chem Commun (Camb) 2024; 60:570-573. [PMID: 38093688 DOI: 10.1039/d3cc05061k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
A general strategy to program self-resettable and dissipative toehold-mediated strand displacement reactions was proposed, using DNA strands as the fuel and lambda exonuclease as the fuel-consuming unit. This non-equilibrium system is reversible and temporally controllable. Furthermore, it can be well integrated into a DNA network to temporally control its cascade reaction or dynamic behaviour.
Collapse
Affiliation(s)
- Shuang Li
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China.
| | - Disong Zhao
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China.
| | - Fangfang Yang
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China.
| | - Shufeng Liu
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China.
| |
Collapse
|
39
|
Borsley S, Gallagher JM, Leigh DA, Roberts BMW. Ratcheting synthesis. Nat Rev Chem 2024; 8:8-29. [PMID: 38102412 DOI: 10.1038/s41570-023-00558-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 12/17/2023]
Abstract
Synthetic chemistry has traditionally relied on reactions between reactants of high chemical potential and transformations that proceed energetically downhill to either a global or local minimum (thermodynamic or kinetic control). Catalysts can be used to manipulate kinetic control, lowering activation energies to influence reaction outcomes. However, such chemistry is still constrained by the shape of one-dimensional reaction coordinates. Coupling synthesis to an orthogonal energy input can allow ratcheting of chemical reaction outcomes, reminiscent of the ways that molecular machines ratchet random thermal motion to bias conformational dynamics. This fundamentally distinct approach to synthesis allows multi-dimensional potential energy surfaces to be navigated, enabling reaction outcomes that cannot be achieved under conventional kinetic or thermodynamic control. In this Review, we discuss how ratcheted synthesis is ubiquitous throughout biology and consider how chemists might harness ratchet mechanisms to accelerate catalysis, drive chemical reactions uphill and programme complex reaction sequences.
Collapse
Affiliation(s)
- Stefan Borsley
- Department of Chemistry, University of Manchester, Manchester, UK
| | | | - David A Leigh
- Department of Chemistry, University of Manchester, Manchester, UK.
| | | |
Collapse
|
40
|
Zerbetto M, Saint-Pierre C, Piserchia A, Torrengo S, Gambarelli S, Abergel D, Polimeno A, Gasparutto D, Sicoli G. Intrinsic Flexibility beyond the Highly Ordered DNA Tetrahedron: An Integrative Spectroscopic and Molecular Dynamics Approach. J Phys Chem Lett 2023; 14:10032-10038. [PMID: 37906734 DOI: 10.1021/acs.jpclett.3c02383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Since the introduction of DNA-based architectures, in the past decade, DNA tetrahedrons have aroused great interest. Applications of such nanostructures require structural control, especially in the perspective of their possible functionalities. In this work, an integrated approach for structural characterization of a tetrahedron structure is proposed with a focus on the fundamental biophysical aspects driving the assembly process. To address such an issue, spin-labeled DNA sequences are chemically synthesized, self-assembled, and then analyzed by Continuous-Wave (CW) and pulsed Electron Paramagnetic Resonance (EPR) spectroscopy. Interspin distance measurements based on PELDOR/DEER techniques combined with molecular dynamics (MD) thus revealed unexpected dynamic heterogeneity and flexibility of the assembled structures. The observation of flexibility in these ordered 3D structures demonstrates the sensitivity of this approach and its effectiveness in accessing the main dynamic and structural features with unprecedented resolution.
Collapse
Affiliation(s)
- Mirco Zerbetto
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, I-35131 Padova, Italy
| | - Christine Saint-Pierre
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 17 rue des Martyrs, F-38000 Grenoble, France
| | - Andrea Piserchia
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, I-35131 Padova, Italy
| | - Simona Torrengo
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 17 rue des Martyrs, F-38000 Grenoble, France
| | - Serge Gambarelli
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 17 rue des Martyrs, F-38000 Grenoble, France
| | - Daniel Abergel
- Laboratoire des biomolécules, LBM, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Antonino Polimeno
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, I-35131 Padova, Italy
| | - Didier Gasparutto
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 17 rue des Martyrs, F-38000 Grenoble, France
| | - Giuseppe Sicoli
- CNRS UMRS 8516, LASIRE, University of Lille, Avenue Paul Langevin - C4 building, F-59655 Villeneuve d'Ascq Cedex, France
| |
Collapse
|
41
|
Thiede J, Rothenbühler S, Iacovache I, Langenegger SM, Zuber B, Häner R. Supramolecular assembly of pyrene-DNA conjugates: influence of pyrene substitution pattern and implications for artificial LHCs. Org Biomol Chem 2023; 21:7908-7912. [PMID: 37750811 PMCID: PMC10566252 DOI: 10.1039/d3ob01375h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
The supramolecular self-assembly of pyrene-DNA conjugates into nanostructures is presented. DNA functionalized with different types of pyrene isomers at the 3'-end self-assemble into nano-objects. The shape of the nanostructures is influenced by the type of pyrene isomer appended to the DNA. Multilamellar vesicles are observed with the 1,6- and 1,8-isomers, whereas conjugates of the 2,7-isomer exclusively assemble into spherical nanoparticles. Self-assembled nano-spheres obtained with the 2,7-dialkynyl pyrene isomer were used for the construction of an artificial light-harvesting complex (LHC) in combination with Cy3 as the energy acceptor.
Collapse
Affiliation(s)
- Jan Thiede
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| | - Simon Rothenbühler
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| | - Ioan Iacovache
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH-3012 Bern, Switzerland
| | - Simon M Langenegger
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| | - Benoît Zuber
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH-3012 Bern, Switzerland
| | - Robert Häner
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| |
Collapse
|
42
|
Wang J, Zhang T, Li X, Wu W, Xu H, Xu XM, Zhang T. DNA Nanobarrel-Based Drug Delivery for Paclitaxel and Doxorubicin. Chembiochem 2023; 24:e202300424. [PMID: 37470220 DOI: 10.1002/cbic.202300424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/21/2023]
Abstract
Co-delivery of anticancer drugs and target agents by endogenous materials is an inevitable approach towards targeted and synergistic therapy. Employing DNA base pair complementarities, DNA nanotechnology exploits a unique nanostructuring method and has demonstrated its capacity for nanoscale positioning and templated assembly. Moreover, the water solubility, biocompatibility, and modifiability render DNA structure suitable candidate for drug delivery applications. We here report single-stranded DNA tail conjugated antitumor drug paclitaxel (PTX), and the co-delivery of PTX, doxorubicin and targeting agent mucin 1 (MUC-1) aptamer on a DNA nanobarrel carrier. We investigated the effect of tail lengths on drug release efficiencies and dual drug codelivery-enabled cytotoxicity. Owing to the rapidly developing field of structural DNA nanotechnology, functional DNA-based drug delivery is promising to achieve clinical therapeutic applications.
Collapse
Affiliation(s)
- Jiaoyang Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Tianyu Zhang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Xueqiao Li
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Wenna Wu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Hui Xu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Xin-Ming Xu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Tao Zhang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| |
Collapse
|
43
|
Meng R, Zhang X, Liu J, Zhou Y, Zhang P, Chai Y, Yuan R. Dual-layer 3D DNA nanostructure: The next generation of ultrafast DNA nanomachine for microRNA sensing and intracellular imaging. Biosens Bioelectron 2023; 237:115517. [PMID: 37459686 DOI: 10.1016/j.bios.2023.115517] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/20/2023] [Accepted: 07/04/2023] [Indexed: 08/13/2023]
Abstract
The working efficiency of traditional 3D DNA nanomachines is extremely restricted due to the complex DNA components modified on nanoparticles in the same spatial height. Herein, an ultrafast dual-layer 3D DNA nanomachine (UDDNM) based on catalytic hairpin assembly (CHA) was developed by assembling two different lengths of hairpin DNA on the surface of gold nanoparticles, the long hairpin 1 (H1), to capture the trigger, and the short hairpin 2 (H2), as the signal probe, to recycle the trigger. Compared to the traditional single-layer 3D DNA nanomachine, the dual-layer 3D DNA nanostructure greatly enhances the effective collision between trigger and targeted DNA probe, H1, since the H1 located in outer layer would react with the trigger, inhibiting the invalid collision between the trigger and residual DNA component, H2, and remarkably decreasing the steric hindrance associated with the nucleic acids layer around the nanoparticles. Especially, when the distance of two layers was fixed at 3 nm, the corresponding UDDNM could accomplish the overall reaction only in 3 min with a dramatically high initial rate of up to 5.93 × 10-7 M s-1, which was at least 5-fold beyond that of the typical single-layer 3D DNA nanomachines. As a proof of concept, the described UDDNM was successfully applied in ultrasensitive fluorescence detection and sensitive intracellular imaging of miRNA-21. Consequently, our strategy, based on the creation of dual-layer 3D DNA nanostructure, may create a new approach to designing the next generation of DNA nanomachine and has enormous potential for applications in bio-analysis, logic gate operations, and clinical diagnoses.
Collapse
Affiliation(s)
- Rui Meng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Xiaolong Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Jiali Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ying Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Pu Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| | - Yaqin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
44
|
Meng X, Cheng Y, Wang F, Sun Z, Chu H, Wang Y. Nano Self-Assembly for Apoptosis Induction and Early Therapeutic Efficacy Monitoring. Anal Chem 2023; 95:14421-14429. [PMID: 37695215 DOI: 10.1021/acs.analchem.3c02860] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Real-time monitoring of early antitumor efficacy is one of the key issues in realizing high-efficiency and more precise tumor treatment. As a highly specific event in the early stage of apoptosis, the release of cytochrome c may act as a key biomarker for monitoring cell apoptosis. However, achieving real-time monitoring of the cytochrome c release in vivo remains a challenge. Herein, we report a novel integrated nanosystem named DFeK nanoparticle (DFeK NP) to achieve a favorable collaboration of inducing tumor cell apoptosis and monitoring early therapeutic efficacy, which combined the cytochrome c-activated DNA nanoprobe cApt-App with pro-apoptotic peptide [KLAKLAK]2 and ferrous ions. [KLAKLAK]2 can target the mitochondria to disrupt the mitochondrial membrane together with reactive oxygen species produced by ferrous ions via the Fenton reaction to promote mitochondrial damage. Then, cytochrome c is released from damaged mitochondria to trigger apoptosis, further activating the cApt-App probe from the fluorescence "off" state to the "on" state. The cytochrome c-specific "off-to-on" transition was successfully applied in fluorescence imaging of cytochrome c in vivo and thus achieved real-time early therapeutic efficacy monitoring. Collectively, this work presents a valuable integrated tool for tumor inhibition and therapeutic efficacy evaluation to realize more precise and more effective tumor treatment.
Collapse
Affiliation(s)
- Xiaoyi Meng
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Yue Cheng
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Fang Wang
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Zhaogang Sun
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Hongqian Chu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Yong Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| |
Collapse
|
45
|
Takezawa Y, Kanemaru D, Kudo N, Shionoya M. Phenanthroline-modified DNA three-way junction structures stabilized by interstrand 3 : 1 metal complexation. Dalton Trans 2023; 52:11025-11029. [PMID: 37309206 DOI: 10.1039/d3dt01508d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Incorporation of interstrand metal complexes into DNA is a versatile strategy for metal-dependent stabilization and structural induction of DNA supramolecular structures. In this study, we have synthesized DNA three-way junction (3WJ) structures modified with phenanthroline (phen) ligands. The phen-modified 3WJ was found to be thermally stabilized (ΔTm = +16.9 °C) by the formation of an interstrand NiII(phen)3 complex. Furthermore, NiII-mediated structure induction of 3WJs was demonstrated with the phen-modified strands and their unmodified counterparts. This study suggests that ligand-modified 3WJs would be useful structural motifs for the construction of metal-responsive DNA molecular systems.
Collapse
Affiliation(s)
- Yusuke Takezawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Daisuke Kanemaru
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Naofumi Kudo
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
46
|
Li R, Madhvacharyula AS, Du Y, Adepu HK, Choi JH. Mechanics of dynamic and deformable DNA nanostructures. Chem Sci 2023; 14:8018-8046. [PMID: 37538812 PMCID: PMC10395309 DOI: 10.1039/d3sc01793a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
In DNA nanotechnology, DNA molecules are designed, engineered, and assembled into arbitrary-shaped architectures with predesigned functions. Static DNA assemblies often have delicate designs with structural rigidity to overcome thermal fluctuations. Dynamic structures reconfigure in response to external cues, which have been explored to create functional nanodevices for environmental sensing and other applications. However, the precise control of reconfiguration dynamics has been a challenge due partly to flexible single-stranded DNA connections between moving parts. Deformable structures are special dynamic constructs with deformation on double-stranded parts and single-stranded hinges during transformation. These structures often have better control in programmed deformation. However, related deformability and mechanics including transformation mechanisms are not well understood or documented. In this review, we summarize the development of dynamic and deformable DNA nanostructures from a mechanical perspective. We present deformation mechanisms such as single-stranded DNA hinges with lock-and-release pairs, jack edges, helicity modulation, and external loading. Theoretical and computational models are discussed for understanding their associated deformations and mechanics. We elucidate the pros and cons of each model and recommend design processes based on the models. The design guidelines should be useful for those who have limited knowledge in mechanics as well as expert DNA designers.
Collapse
Affiliation(s)
- Ruixin Li
- School of Mechanical Engineering, Purdue University 585 Purdue Mall West Lafayette Indiana 47907 USA
| | - Anirudh S Madhvacharyula
- School of Mechanical Engineering, Purdue University 585 Purdue Mall West Lafayette Indiana 47907 USA
| | - Yancheng Du
- School of Mechanical Engineering, Purdue University 585 Purdue Mall West Lafayette Indiana 47907 USA
| | - Harshith K Adepu
- School of Mechanical Engineering, Purdue University 585 Purdue Mall West Lafayette Indiana 47907 USA
| | - Jong Hyun Choi
- School of Mechanical Engineering, Purdue University 585 Purdue Mall West Lafayette Indiana 47907 USA
| |
Collapse
|
47
|
Alexander S, Moghadam MG, Rothenbroker M, Y T Chou L. Addressing the in vivo delivery of nucleic-acid nanostructure therapeutics. Adv Drug Deliv Rev 2023; 199:114898. [PMID: 37230305 DOI: 10.1016/j.addr.2023.114898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
DNA and RNA nanostructures are being investigated as therapeutics, vaccines, and drug delivery systems. These nanostructures can be functionalized with guests ranging from small molecules to proteins with precise spatial and stoichiometric control. This has enabled new strategies to manipulate drug activity and to engineer devices with novel therapeutic functionalities. Although existing studies have offered encouraging in vitro or pre-clinical proof-of-concepts, establishing mechanisms of in vivo delivery is the new frontier for nucleic-acid nanotechnologies. In this review, we first provide a summary of existing literature on the in vivo uses of DNA and RNA nanostructures. Based on their application areas, we discuss current models of nanoparticle delivery, and thereby highlight knowledge gaps on the in vivo interactions of nucleic-acid nanostructures. Finally, we describe techniques and strategies for investigating and engineering these interactions. Together, we propose a framework to establish in vivo design principles and advance the in vivo translation of nucleic-acid nanotechnologies.
Collapse
Affiliation(s)
- Shana Alexander
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | | | - Meghan Rothenbroker
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Leo Y T Chou
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada.
| |
Collapse
|
48
|
Kong H, Sun B, Yu F, Wang Q, Xia K, Jiang D. Exploring the Potential of Three-Dimensional DNA Crystals in Nanotechnology: Design, Optimization, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302021. [PMID: 37327311 PMCID: PMC10460852 DOI: 10.1002/advs.202302021] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/23/2023] [Indexed: 06/18/2023]
Abstract
DNA has been used as a robust material for the building of a variety of nanoscale structures and devices owing to its unique properties. Structural DNA nanotechnology has reported a wide range of applications including computing, photonics, synthetic biology, biosensing, bioimaging, and therapeutic delivery, among others. Nevertheless, the foundational goal of structural DNA nanotechnology is exploiting DNA molecules to build three-dimensional crystals as periodic molecular scaffolds to precisely align, obtain, or collect desired guest molecules. Over the past 30 years, a series of 3D DNA crystals have been rationally designed and developed. This review aims to showcase various 3D DNA crystals, their design, optimization, applications, and the crystallization conditions utilized. Additionally, the history of nucleic acid crystallography and potential future directions for 3D DNA crystals in the era of nanotechnology are discussed.
Collapse
Affiliation(s)
- Huating Kong
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201204China
| | - Bo Sun
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201204China
| | - Feng Yu
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201204China
| | - Qisheng Wang
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201204China
| | - Kai Xia
- Shanghai Frontier Innovation Research InstituteShanghai201108China
- Shanghai Stomatological HospitalFudan UniversityShanghai200031China
| | - Dawei Jiang
- Wuhan Union HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Molecular ImagingWuhan430022China
- Key Laboratory of Biological Targeted Therapythe Ministry of EducationWuhan430022China
| |
Collapse
|
49
|
Mizunuma M, Suzuki M, Kobayashi T, Hara Y, Kaneko A, Furukawa K, Chuman Y. Development of Mn 2+-Specific Biosensor Using G-Quadruplex-Based DNA. Int J Mol Sci 2023; 24:11556. [PMID: 37511324 PMCID: PMC10380348 DOI: 10.3390/ijms241411556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Metal ions are used in various situations in living organisms and as a part of functional materials. Since the excessive intake of metal ions can cause health hazards and environmental pollution, the development of new molecules that can monitor metal ion concentrations with high sensitivity and selectivity is strongly desired. DNA can form various structures, and these structures and their properties have been used in a wide range of fields, including materials, sensors, and drugs. Guanine-rich sequences respond to metal ions and form G-quadruplex structures and G-wires, which are the self-assembling macromolecules of G-quadruplex structures. Therefore, guanine-rich DNA can be applied to a metal ion-detection sensor and functional materials. In this study, the IRDAptamer library originally designed based on G-quadruplex structures was used to screen for Mn2+, which is known to induce neurodegenerative diseases. Circular dichroism and fluorescence analysis using Thioflavin T showed that the identified IRDAptamer sequence designated MnG4C1 forms a non-canonical G-quadruplex structure in response to low concentrations of Mn2+. A serum resistance and thermostability analysis revealed that MnG4C1 acquired stability in a Mn2+-dependent manner. A Förster resonance energy transfer (FRET) system using fluorescent molecules attached to the termini of MnG4C1 showed that FRET was effectively induced based on Mn2+-dependent conformational changes, and the limit of detection (LOD) was 0.76 µM for Mn2+. These results suggested that MnG4C1 can be used as a novel DNA-based Mn2+-detecting molecule.
Collapse
Affiliation(s)
- Masataka Mizunuma
- Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Mirai Suzuki
- Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Tamaki Kobayashi
- Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Yuki Hara
- Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Atsushi Kaneko
- Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Kazuhiro Furukawa
- Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Yoshiro Chuman
- Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| |
Collapse
|
50
|
Ricci F, Dietz H. The harmony of form and function in DNA nanotechnology. NATURE NANOTECHNOLOGY 2023; 18:541-542. [PMID: 36991158 DOI: 10.1038/s41565-023-01362-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Affiliation(s)
- Francesco Ricci
- Laboratory of Biosensors and Nanomachines, Department of Chemical Sciences and Technologies, University of Rome, Tor Vergata, Rome, Italy.
| | - Hendrik Dietz
- Department of Biosciences and Munich Institute of Biomedical Engineering, School of Natural Sciences, Technical University of Munich, Munich, Germany.
| |
Collapse
|