1
|
Custódio Dias Duarte B, Ribeiro Queiroz F, Percínio Costa Á, Borges de Melo Neto A, Pereira de Souza Melo C, de Oliveira Salles PG, de Jesus Jeremias W, Lima Bertarini PL, Rodrigues do Amaral L, da Conceição Braga L, de Souza Gomes M, Lopes da Silva Filho A. Upregulation of long non-coding RNA ENSG00000267838 is related to the high risk of progression and non-response to chemoradiotherapy treatment for cervical cancer. Noncoding RNA Res 2025; 11:104-114. [PMID: 39736855 PMCID: PMC11683307 DOI: 10.1016/j.ncrna.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 01/01/2025] Open
Abstract
Cervical cancer (CC) is a global public health concern, primarily caused by persistent infection with oncogenic types of human papillomavirus (HPV). The World Health Organization (WHO) has established a plan to eliminate CC as a public health issue by the year 2100. However, the implementation of the HPV vaccine is impeded by vaccine restrictions and misinformation despite its demonstrated effectiveness. The CC treatment is influenced by the disease stage, with an unfavorable prognosis for those in advanced stages. This study aimed to investigate the potential of long non-coding RNAs (lncRNAs) in CC by identifying and characterizing related lncRNAs, elucidating their regulatory mechanisms and molecular interactions, and analyzing their expression patterns in patients with diverse responses to chemoradiotherapy. Non-stem cells from CC were isolated using flow cytometry sorting and used for total RNA extraction. The RNA was used to build libraries that were subsequently sequenced using the Illumina Nextseq 550.417 lncRNAs that showed differentially expressed between CC patients who responded or not to treatment. Further analysis demonstrated that these lncRNAs significantly interact with several molecules, which play crucial roles in CC progression and therapeutic resistance. Statistical analysis correlated the expression profile of these lncRNAs with treatment efficacy. Three lncRNAs, ENSG00000267838, ENSG00000266340, and FRMD6-AS1, were identified with positive expression related to non-response to chemoradiotherapy and worse progression-free survival in CC patients. Specifically, lncRNA ENSG00000267838 has its up-regulation related to non-response and down-regulation to response to chemoradiotherapy treatment.
Collapse
Affiliation(s)
- Bruna Custódio Dias Duarte
- Laboratório de Bioinformática e Análises Moleculares, Universidade Federal de Uberlândia, 38702-178, Patos de Minas, MG, Brazil
| | - Fábio Ribeiro Queiroz
- Laboratório de Pesquisa Translacional Em Oncologia, Instituto Mário Penna, 30380-490, Belo Horizonte, MG, Brazil
| | - Álvaro Percínio Costa
- Programa de Pós-graduação Em Ciências Aplicadas à Cirurgia e à Oftalmologia, Faculdade de Medicina, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brazil
| | - Angelo Borges de Melo Neto
- Laboratório de Bioinformática e Análises Moleculares, Universidade Federal de Uberlândia, 38702-178, Patos de Minas, MG, Brazil
| | | | | | - Wander de Jesus Jeremias
- Laboratório de Farmacologia Experimental, Escola de Farmácia, Universidade Federal de Ouro Preto, 35402-163, Ouro Preto, MG, Brazil
| | - Pedro Luiz Lima Bertarini
- Laboratório de Bioinformática e Análises Moleculares, Universidade Federal de Uberlândia, 38702-178, Patos de Minas, MG, Brazil
| | - Laurence Rodrigues do Amaral
- Laboratório de Bioinformática e Análises Moleculares, Universidade Federal de Uberlândia, 38702-178, Patos de Minas, MG, Brazil
| | - Letícia da Conceição Braga
- Laboratório de Pesquisa Translacional Em Oncologia, Instituto Mário Penna, 30380-490, Belo Horizonte, MG, Brazil
| | - Matheus de Souza Gomes
- Laboratório de Bioinformática e Análises Moleculares, Universidade Federal de Uberlândia, 38702-178, Patos de Minas, MG, Brazil
| | - Agnaldo Lopes da Silva Filho
- Programa de Pós-graduação Em Ciências Aplicadas à Cirurgia e à Oftalmologia, Faculdade de Medicina, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
2
|
Ranjan G, Scaria V, Sivasubbu S. Syntenic lncRNA locus exhibits DNA regulatory functions with sequence evolution. Gene 2025; 933:148988. [PMID: 39378975 DOI: 10.1016/j.gene.2024.148988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/12/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Syntenic long non-coding RNAs (lncRNAs) often show limited sequence conservation across species, prompting concern in the field. This study delves into functional signatures of syntenic lncRNAs between humans and zebrafish. Syntenic lncRNAs are highly expressed in zebrafish, with ∼90 % located near protein-coding genes, either in sense or antisense orientation. During early zebrafish development and in human embryonic stem cells (H1-hESC), syntenic lncRNA loci are enriched with cis-regulatory repressor signatures, influencing the expression of development-associated genes. In later zebrafish developmental stages and specific human cell lines, these syntenic lncRNA loci function as enhancers or transcription start sites (TSS) for protein-coding genes. Analysis of transposable elements (TEs) in syntenic lncRNA sequences revealed intriguing patterns: human lncRNAs are enriched in simple repeat elements, while their zebrafish counterparts show enrichment in LTR elements. This sequence evolution likely arises from post-rearrangement mutations that enhance DNA elements or cis-regulatory functions. It may also contribute to vertebrate innovation by creating novel transcription factor binding sites within the locus. This study highlights the conserved functionality of syntenic lncRNA loci through DNA elements, emphasizing their conserved roles across species despite sequence divergence.
Collapse
Affiliation(s)
- Gyan Ranjan
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110024, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vinod Scaria
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110024, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Vishwanath Cancer Care Foundation, Mumbai, India.; Dr. D. Y Patil Medical College, Hospital and Research Centre, Pune, India.
| | - Sridhar Sivasubbu
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110024, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Vishwanath Cancer Care Foundation, Mumbai, India.; Dr. D. Y Patil Medical College, Hospital and Research Centre, Pune, India.
| |
Collapse
|
3
|
Poloni JF, Oliveira FHS, Feltes BC. Localization is the key to action: regulatory peculiarities of lncRNAs. Front Genet 2024; 15:1478352. [PMID: 39737005 PMCID: PMC11683014 DOI: 10.3389/fgene.2024.1478352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
To understand the transcriptomic profile of an individual cell in a multicellular organism, we must comprehend its surrounding environment and the cellular space where distinct molecular stimuli responses are located. Contradicting the initial perception that RNAs were nonfunctional and that only a few could act in chromatin remodeling, over the last few decades, research has revealed that they are multifaceted, versatile regulators of most cellular processes. Among the various RNAs, long non-coding RNAs (LncRNAs) regulate multiple biological processes and can even impact cell fate. In this sense, the subcellular localization of lncRNAs is the primary determinant of their functions. It affects their behavior by limiting their potential molecular partner and which process it can affect. The fine-tuned activity of lncRNAs is also tissue-specific and modulated by their cis and trans regulation. Hence, the spatial context of lncRNAs is crucial for understanding the regulatory networks by which they influence and are influenced. Therefore, predicting a lncRNA's correct location is not just a technical challenge but a critical step in understanding the biological meaning of its activity. Hence, examining these peculiarities is crucial to researching and discussing lncRNAs. In this review, we debate the spatial regulation of lncRNAs and their tissue-specific roles and regulatory mechanisms. We also briefly highlight how bioinformatic tools can aid research in the area.
Collapse
Affiliation(s)
| | | | - Bruno César Feltes
- Department of Biophysics, Laboratory of DNA Repair and Aging, Institute of Biosciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
4
|
Wu Z, Yu M, Zeng Y, Huang Y, Zheng W. LRP11-AS1 mediates enterotoxigenic Bacteroides fragilis-related carcinogenesis in colorectal Cancer via the miR-149-3p/CDK4 pathway. Cancer Gene Ther 2024:10.1038/s41417-024-00862-9. [PMID: 39672916 DOI: 10.1038/s41417-024-00862-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/19/2024] [Accepted: 11/29/2024] [Indexed: 12/15/2024]
Abstract
Long noncoding RNAs (lncRNAs) are critical in tumorigenesis and show potential for tumor diagnosis and therapy. Enterotoxigenic Bacteroides fragilis (ETBF), known for producing enterotoxins, is implicated in human gut tumorigenesis, yet the underlying mechanisms are not fully elucidated. This study aims to clarify the molecular mechanisms by which lncRNAs contribute to ETBF-induced tumorigenesis, with a focus on LRP11-AS1's role in modulating ETBF's colorectal carcinogenesis. We found a marked increase in LRP11-AS1 expression in colorectal cancer (CRC) tissues compared to adjacent non-tumorous tissues. In vitro, CRC cells exposed to ETBF showed elevated LRP11-AS1 levels. Mechanistically, LRP11-AS1 was shown to enhance CDK4 expression by competitively binding to miR-149-3p. These results indicate that LRP11-AS1 may facilitate ETBF-related carcinogenesis in CRC and could serve as a therapeutic target and diagnostic biomarker for ETBF-associated CRC.
Collapse
Affiliation(s)
- Zhongguang Wu
- Department of Laboratory Medicine, Shenzhen University General Hospital, Shenzhen, China
| | - Mengqiu Yu
- Department of Laboratory Medicine, Shenzhen University General Hospital, Shenzhen, China
| | - Yu Zeng
- Department of Laboratory Medicine, Shenzhen University General Hospital, Shenzhen, China
| | - Yingfeng Huang
- Department of Laboratory Medicine, Shenzhen University General Hospital, Shenzhen, China
| | - Weidong Zheng
- Department of Laboratory Medicine, Shenzhen University General Hospital, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, Shenzhen, China.
| |
Collapse
|
5
|
Dikmen F, Dabak T, Özgişi BD, Özenirler Ç, Kuralay SC, Çay SB, Çınar YU, Obut O, Balcı MA, Akbaba P, Aksel EG, Zararsız G, Solares E, Eldem V. Transcriptome-wide analysis uncovers regulatory elements of the antennal transcriptome repertoire of bumblebee at different life stages. INSECT MOLECULAR BIOLOGY 2024; 33:571-588. [PMID: 38676460 DOI: 10.1111/imb.12914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024]
Abstract
Bumblebees are crucial pollinators, providing essential ecosystem services and global food production. The success of pollination services relies on the interaction between sensory organs and the environment. The antenna functions as a versatile multi-sensory organ, pivotal in mediating chemosensory/olfactory information, and governs adaptive responses to environmental changes. Despite an increasing number of RNA-sequencing studies on insect antenna, comprehensive antennal transcriptome studies at the different life stages were not elucidated systematically. Here, we quantified the expression profile and dynamics of coding/microRNA genes of larval head and antennal tissues from early- and late-stage pupa to the adult of Bombus terrestris as suitable model organism among pollinators. We further performed Pearson correlation analyses on the gene expression profiles of the antennal transcriptome from larval head tissue to adult stages, exploring both positive and negative expression trends. The positively correlated coding genes were primarily enriched in sensory perception of chemical stimuli, ion transport, transmembrane transport processes and olfactory receptor activity. Negatively correlated genes were mainly enriched in organic substance biosynthesis and regulatory mechanisms underlying larval body patterning and the formation of juvenile antennal structures. As post-transcriptional regulators, miR-1000-5p, miR-13b-3p, miR-263-5p and miR-252-5p showed positive correlations, whereas miR-315-5p, miR-92b-3p, miR-137-3p, miR-11-3p and miR-10-3p exhibited negative correlations in antennal tissue. Notably, based on the inverse expression relationship, positively and negatively correlated microRNA (miRNA)-mRNA target pairs revealed that differentially expressed miRNAs predictively targeted genes involved in antennal development, shaping antennal structures and regulating antenna-specific functions. Our data serve as a foundation for understanding stage-specific antennal transcriptomes and large-scale comparative analysis of transcriptomes in different insects.
Collapse
Affiliation(s)
- Fatih Dikmen
- Department of Biology, Istanbul University, İstanbul, Turkey
| | - Tunç Dabak
- Department of Biology, The Pennsylvania State University, State College, Pennsylvania, USA
| | | | | | | | | | | | - Onur Obut
- Department of Biology, Istanbul University, İstanbul, Turkey
| | | | - Pınar Akbaba
- Department of Biology, Istanbul University, İstanbul, Turkey
| | - Esma Gamze Aksel
- Faculty of Veterinary Medicine, Department of Genetics, Erciyes University, Kayseri, Turkey
| | - Gökmen Zararsız
- Department of Biostatistics, Erciyes University, Kayseri, Turkey
- Drug Application and Research Center (ERFARMA), Erciyes University, Kayseri, Turkey
| | - Edwin Solares
- Computer Science & Engineering Department, University of California, San Diego, California, USA
| | - Vahap Eldem
- Department of Biology, Istanbul University, İstanbul, Turkey
| |
Collapse
|
6
|
Diao L, Xie S, Xu W, Zhang H, Hou Y, Hu Y, Liang X, Liang J, Zhang Q, Xiao Z. CRISPR/Cas13 sgRNA-Mediated RNA-RNA Interaction Mapping in Live Cells with APOBEC RNA Editing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2409004. [PMID: 39392366 PMCID: PMC11615753 DOI: 10.1002/advs.202409004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/18/2024] [Indexed: 10/12/2024]
Abstract
Current research on long non-coding RNA (lncRNA) has predominantly focused on identifying their protein partners and genomic binding sites, leaving their RNA partners largely unknown. To address this gap, the study has developed a method called sarID (sgRNA scaffold assisted RNA-RNA interaction detection), which integrates Cas13-based RNA targeting, sgRNA engineering, and proximity RNA editing to investigate lncRNA-RNA interactomes. By applying sarID to the lncRNA NEAT1, over one thousand previously unidentified binding transcripts are discovered. sarID is further expanded to investigate binders of XIST, MALAT1, NBR2, and DANCR, demonstrating its broad applicability in identifying lncRNA-RNA interactions. The findings suggest that lncRNAs may regulate gene expression by interacting with mRNAs, expanding their roles beyond known functions as protein scaffolds, miRNA sponges, or guides for epigenetic modulators. sarID has the potential to be adapted for studying other specific RNAs, providing a novel immunoprecipitation-free method for uncovering RNA partners and facilitating the exploration of the RNA-RNA interactome.
Collapse
Affiliation(s)
- Li‐Ting Diao
- Biotherapy Center, The Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630P. R. China
| | - Shu‐Juan Xie
- Institute of VaccineThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630P. R. China
| | - Wan‐Yi Xu
- Biotherapy Center, The Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630P. R. China
| | | | - Ya‐Rui Hou
- Biotherapy Center, The Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630P. R. China
| | - Yan‐Xia Hu
- Biotherapy Center, The Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630P. R. China
| | | | | | - Qi Zhang
- Biotherapy Center, The Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630P. R. China
- Institute of VaccineThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630P. R. China
| | - Zhen‐Dong Xiao
- Biotherapy Center, The Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630P. R. China
- Guangdong Provincial Key Laboratory of Liver Disease ResearchThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630P. R. China
| |
Collapse
|
7
|
Zhang K, Wu D, Huang C. Crosstalk between non-coding RNA and apoptotic signaling in diabetic nephropathy. Biochem Pharmacol 2024; 230:116621. [PMID: 39542182 DOI: 10.1016/j.bcp.2024.116621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/18/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Diabetic nephropathy (DN) is a leading cause of end-stage renal disease in diabetes mellitus. It is also a significant contributor to cardiovascular morbidity and mortality in diabetic patients Thereby, Innovative therapeutic approaches are needed to retard the initiation and advancement of DN. Hyperglycemia can induce apoptosis, a regulated form of cell death, in multiple renal cell types, such as podocytes, mesangial cells, and proximal tubule epithelial cells, ultimately contributing to the pathogenesis of DN. Recent genome-wide investigations have revealed the widespread transcription of the human genome, resulting in the production of numerous regulatory non-protein-coding RNAs (ncRNAs), including microRNAs (miRNAs) and diverse categories of long non-coding RNAs (lncRNAs). They play a critical role in preserving physiological homeostasis, while their dysregulation has been implicated in a broad spectrum of disorders, including DN. Considering the established association between apoptotic processes and the expression of ncRNAs in DN, a thorough understanding of their intricate interplay is essential. Therefore, the current work thoroughly analyzes the intricate interplay among miRNAs, lncRNAs, and circular RNAs in the context of apoptosis within the pathogenesis of DN. Additionally, in the final section, we demonstrated that ncRNA-mediated modulation of apoptosis can be achieved through stem cell-derived exosomes and herbal medicines, presenting potential avenues for the treatment of DN.
Collapse
Affiliation(s)
- Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| |
Collapse
|
8
|
Chen L, He J, Wang X, Zhang S, Pan J, Peng J, Mo B, Liu L. miR827 orchestrates the regulation of SPX-MFS1 and SPX-MFS5 with the assistance of lncRNA767 to enhance phosphate starvation tolerance and maize development. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3489-3504. [PMID: 39284226 PMCID: PMC11606416 DOI: 10.1111/pbi.14469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/05/2024] [Accepted: 08/23/2024] [Indexed: 11/27/2024]
Abstract
MicroRNA827 (miR827) is functionally conserved among different plant species and displays species-specific characteristics, but the mechanisms by which miR827 regulates phosphate (Pi) starvation tolerance and maize development remain elusive. We found that miR827 selectively targets the Pi transporter genes SPX-MFS1 and SPX-MFS5. miR827 overexpression improved the Pi starvation tolerance, plant architecture and grain yield and quality, whereas miR827 suppression yielded a contrasting phenotype. In addition, we identified a specific long noncoding RNA (lncRNA767) that serves as a direct target and a facilitator of miR827 and can stabilize the SPX-MFS1 and SPX-MFS5 transcripts, leading to their translation inhibition. The orchestrated regulation of SPX-MFS1 and SPX-MFS5 modulates PHR1; 1 and PHR1; 2, which are critical transcription factors in Pi signalling, and thereby affects the expression of downstream Pi starvation-induced genes. Together, these findings demonstrate that miR827, assisted by lncRNA767, enhances SPX-MFS1 and SPX-MFS5 suppression and thus exerts a significant impact on Pi homeostasis and several essential agronomic traits of maize.
Collapse
Affiliation(s)
- Lei Chen
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and OceanographyShenzhen UniversityShenzhenChina
- Key Laboratory of Optoelectronic Devices and Systems of the Ministry of Education and Guangdong Province, College of Optoelectronic EngineeringShenzhen UniversityShenzhenChina
| | - Juan He
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and OceanographyShenzhen UniversityShenzhenChina
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Xufeng Wang
- School of Life Sciences, Peking‐Tsinghua Joint Center for Life SciencesPeking UniversityBeijingChina
| | - Shiru Zhang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and OceanographyShenzhen UniversityShenzhenChina
| | - Jinkang Pan
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and OceanographyShenzhen UniversityShenzhenChina
| | | | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and OceanographyShenzhen UniversityShenzhenChina
| | - Lin Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and OceanographyShenzhen UniversityShenzhenChina
| |
Collapse
|
9
|
Eftekhari Kenzerki M, Mohajeri Khorasani A, Zare I, Amirmahani F, Ghasemi Y, Hamblin MR, Mousavi P. Deciphering the role of LOC124905135-related non-coding RNA cluster in human cancers: A comprehensive review. Heliyon 2024; 10:e39931. [PMID: 39641053 PMCID: PMC11617737 DOI: 10.1016/j.heliyon.2024.e39931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
Non-coding RNAs (ncRNAs), especially microRNAs (miRNAs) and long ncRNAs (lncRNAs), are essential regulators of processes, such as the cell cycle and apoptosis. In addition to interacting with intracellular complexes and participating in diverse molecular pathways, ncRNAs can be used as clinical diagnostic biomarkers and therapeutic targets for fighting cancer. Studying ncRNA gene clusters is crucial for understanding their role in cancer and developing new treatments. LOC124905135 is a protein-coding gene encoding a collagen alpha-1(III) chain-like protein, and also acts as a gene for several ncRNAs, including miR-3619, PRR34 antisense RNA 1 (PRR34-AS1), PRR34, long intergenic ncRNA 2939 (LINC02939), LOC112268288, and MIRLET7BHG. It also serves as a host gene for three miRNAs (hsa-let7-A3, hsa-miR-4763, and hsa-let-7b). Notably, the ncRNAs derived from this particular genomic region significantly affect various cell functions, including the cell cycle and apoptosis. This cluster of ncRNAs is dysregulated in several types of cancer, exhibiting mutations, alterations in copy number, and being subject to DNA methylation and histone modification. In summary, the ncRNAs derived from the LOC124905135 cluster could be used as targets for diagnosis, therapy monitoring, and drug discovery in human cancers.
Collapse
Affiliation(s)
- Maryam Eftekhari Kenzerki
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Mohajeri Khorasani
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co., Ltd., Shiraz, 7178795844, Iran
| | - Farzane Amirmahani
- Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
10
|
Chen X, Han W, Yang R, Zhu X, Li S, Wang Y, Sun X, Li Y, Bao L, Zhang L, Wang S, Wang J. Transcriptome Analysis Reveals the lncRNA-mRNA Co-expression Network Regulating the Aestivation of Sea Cucumber. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 27:15. [PMID: 39611876 DOI: 10.1007/s10126-024-10388-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/03/2024] [Indexed: 11/30/2024]
Abstract
LncRNAs are long non-coding RNAs that are widely recognized as crucial regulators of gene expression and metabolic control, involved in numerous dormancy-related processes. Aestivation is a common hypometabolism strategy of sea cucumber (Apostichopus japonicus) in response to high-temperature conditions and is typically characterized by the degradation of the intestine and respiratory tree. Although the aestivation process has been extensively studied in sea cucumbers, the role of lncRNAs in the context of aestivation states remains a conspicuous knowledge gap. Here, we identified and characterized 14,711 lncRNAs in A. japonicus and analyzed their differential expression patterns during the aestivation process in the intestine and respiratory tree. The results revealed the physiological differences, especially the metabolic processes, between the intestine and respiratory tree during the aestivation. The co-expression network of lncRNA-mRNA suggested the dominant role of lncRNA in regulating the differential response of the intestine and respiratory trees. Differentially co-expressed factors were significantly enriched in the deep-aestivation stage-specific modules. Conserved co-expressed factors included several transcription factors known to be involved in rhythm regulation, such as Klf2 and Egr1. Furthermore, a specific trans-acting lncRNA (lncrna.1393.1) was identified as a potential regulator of Klf2 and Egr1. Overall, the systematic identification, characterization, and expression analysis of lncRNAs in A. japonicus enhanced our knowledge of long non-coding regulation of aestivation in sea cucumber and provided new clues for understanding the common "toolkit" of dormancy regulatory mechanisms.
Collapse
Affiliation(s)
- Xiaomei Chen
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Wentao Han
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Rui Yang
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Xuan Zhu
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Shengwen Li
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yangfan Wang
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Xue Sun
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Yuli Li
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Lisui Bao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Lingling Zhang
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Shi Wang
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China
| | - Jing Wang
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
11
|
Wang S, Zhang Y. Construction of an immunogenic cell death-related LncRNA signature to predict the prognosis of patients with lung adenocarcinoma. BMC Med Genomics 2024; 17:277. [PMID: 39604972 PMCID: PMC11600735 DOI: 10.1186/s12920-024-02042-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is one of the most common malignant diseases worldwide. This study aimed to construct an immunogenic cell death (ICD)-related long non-coding RNA (lncRNA) signature to effectively predict the prognosis of LUAD. METHODS The RNA-sequencing and clinical data of LUAD were downloaded from The Cancer Genome Atlas (TCGA). Least absolute shrinkage and selection operator (LASSO) and stepwise multivariate Cox proportional hazard regression analysis were utilized to construct lncRNA signature. Then, the reliability of the signature was evaluated in the training, validation and whole cohorts. The differences in the immune landscape and drug sensitivity between the low- and high-risk groups were analyzed. Finally, the expression level of the selected ICD-related lncRNAs in LUAD cell lines via reverse transcription quantitative PCR (RT-qPCR). CCK-8 and transwell assays were performed to study biological function of AC245014.3. RESULTS A signature consisting of 5 ICD-related lncRNAs was constructed. Kaplan Meier (K-M) survival analysis showed shorter overall survival (OS) in high-risk group. The receiver operating characteristic (ROC) curves and Multivariate Cox regression analysis showed the signature was good predictive and independent prognostic factor in LUAD. Moreover, the high-risk group had a lower level of antitumor immunity and was less sensitive to some chemotherapeutics and targeted drugs. Finally, the expression level of selected ICD-related lncRNAs was validated in LUAD cell lines by RT-qPCR. Knockdown of AC245014.3 significantly suppressed LUAD proliferation, migration and invasion. CONCLUSIONS In this study, an ICD-related lncRNA signature was constructed, which could accurately predict the prognosis of LUAD patients and guide clinical treatment.
Collapse
Affiliation(s)
- Shuaishuai Wang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Yi Zhang
- Department of Orthopedic, Jinan Third People's Hospital, Jinan, Shandong, China
| |
Collapse
|
12
|
Wang K, Hu Y, Li S, Chen M, Li Z. LncLSTA: a versatile predictor unveiling subcellular localization of lncRNAs through long-short term attention. BIOINFORMATICS ADVANCES 2024; 5:vbae173. [PMID: 39758831 PMCID: PMC11700581 DOI: 10.1093/bioadv/vbae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/20/2024] [Accepted: 11/07/2024] [Indexed: 01/07/2025]
Abstract
Motivation Much evidence suggests that the subcellular localization of long-stranded noncoding RNAs (LncRNAs) provides key insights for the study of their biological function. Results This study proposes a novel deep learning framework, LncLSTA, designed for predicting the subcellular localization of LncRNAs. It firstly exploits LncRNA sequence, electron-ion interaction pseudopotentials, and nucleotide chemical property as feature inputs. Departing from conventional k-mer approaches, this model uses a set of 1D convolutional and maxpooling operations for dynamical feature aggregation. Furthermore, LncLSTA integrates a long-short term attention module with a bidirectional long and short term memory network to comprehensively extract sequence information. In addition, it incorporates a TextCNN module to enhance accuracy and robustness in subcellular localization tasks. Experimental results demonstrate the efficacy of LncLSTA, showcasing its superior performance compared to other state-of-the-art methods. Notably, LncLSTA exhibits the transfer learning capability, extending its utility to predict the subcellular localization prediction of mRNAs, while maintaining consistently satisfactory prediction results. This research contributes valuable insights into understanding the biological functions of LncRNAs through subcellular localization, emphasizing the potential of deep learning approaches in advancing RNA-related studies. Availability and implementation The source code is publicly available at https://bis.zju.edu.cn/LncLSTA.
Collapse
Affiliation(s)
- Kai Wang
- School of Information Engineering, Huzhou University, Huzhou, Zhejiang 313000, China
- School of Science, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Yueming Hu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Sida Li
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Ming Chen
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Zhong Li
- School of Information Engineering, Huzhou University, Huzhou, Zhejiang 313000, China
- School of Science, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
13
|
Zhang X, Yan W, Jin H, Yu B, Zhang H, Ding B, Chen X, Zhang Y, Xia Q, Meng D, Hu J, Liu H, Nie Y, Liu F, Zheng Y, Lu Y, Wang J, Du M, Wang M, Yu EYW, Li X, Wang S. Transcriptional and post-transcriptional regulation of CARMN and its anti-tumor function in cervical cancer through autophagic flux blockade and MAPK cascade inhibition. J Exp Clin Cancer Res 2024; 43:305. [PMID: 39558374 PMCID: PMC11575122 DOI: 10.1186/s13046-024-03229-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND LncRNAs play essential roles in multiple tumors. However, research on genome-wide lncRNA alterations and their functions in cervical cancer (CC) is limited. This study aims to explore key lncRNAs in CC progression and uncover the molecular mechanisms involved in the development of CC. METHODS In this study, we analyzed 30 tissues from CC, cervical intraepithelial neoplasia (CIN), and normal (NOR) using transcriptome sequencing and weighted gene co-expression network analysis to establish gene modules related to the NOR-CIN-CC transition. Machine learning diagnostic models were employed to investigate the role of lncRNAs in this transition. Molecular biological experiments were conducted to elucidate the potential mechanisms of CARMN in CC, with a particular focus on its transcriptional and post-transcriptional regulation of abnormal expression in CC. RESULTS CARMN was identified as a hub gene in two modules significantly associated with the NOR-CIN-CC transition. Analysis using ten machine learning models confirmed its critical role in this progression. The results of RNA-seq, qPCR and RNAScope performed in another cohort of 83 cervical tissues all showed that CARMN was significantly downregulated in CC. CARMN significantly enhanced the interaction between Keap1 and Nrf2, leading to increased ROS levels. The elevated ROS levels suppressed the Akt/mTOR signaling pathway, leading to autophagy arrest via autophagic flux blockade. Additionally, CARMN interacted with TFAP2α to repress MAPK13 transcription, further inhibiting the MAPK cascade. A promoter SNP (rs12517403) was found to increase CC risk (OR = 1.34, 95% CI = 1.11-1.61) and reduce CARMN expression by decreasing SP1 binding. Furthermore, the RNA binding proteins that could modulate CARMN RNA stability were also determined using RNA-pulldown assay. The results demonstrated that YBX1, a component of the coding region instability determinant (CRD)-mediated mRNA stabilization complex, promoted CARMN RNA stability. DHX9, another component of complex, acted as a scaffold to bridge YBX1 and CARMN. CONCLUSIONS CARMN exerts an anti-cancer effect in CC progression by inhibiting the Akt-mTOR and MAPK signaling pathways. rs12517403 and the YBX1/DHX9 complex are key mechanisms influencing its transcription and stability in CC cells. CARMN represents a promising biomarker for CC diagnosis and therapeutic target.
Collapse
Affiliation(s)
- Xing Zhang
- Key Laboratory of Environmental Medicine Engineering, School of Public Health, Ministry of Education, Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, China
| | - Wenjing Yan
- Key Laboratory of Environmental Medicine Engineering, School of Public Health, Ministry of Education, Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, China
| | - Hua Jin
- Clinical Laboratory, Affiliated Tumor Hospital of Nantong University (Nantong Tumor Hospital), Nantong, China
| | - Bingjia Yu
- School of Health Management and Basic Science, Jiangsu Health Vocational College, Nanjing, China
| | - Hao Zhang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China
| | - Bo Ding
- Department of Gynecology and Obstetrics, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Xue Chen
- Key Laboratory of Environmental Medicine Engineering, School of Public Health, Ministry of Education, Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, China
| | - Yan Zhang
- Key Laboratory of Environmental Medicine Engineering, School of Public Health, Ministry of Education, Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, China
- School of Medicine, Shihezi University, Xinjiang, China
| | - Qianqian Xia
- Key Laboratory of Environmental Medicine Engineering, School of Public Health, Ministry of Education, Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, China
| | - Dan Meng
- Key Laboratory of Environmental Medicine Engineering, School of Public Health, Ministry of Education, Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, China
| | - Jing Hu
- Key Laboratory of Environmental Medicine Engineering, School of Public Health, Ministry of Education, Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, China
| | - Haohan Liu
- Key Laboratory of Environmental Medicine Engineering, School of Public Health, Ministry of Education, Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, China
| | - Yamei Nie
- Key Laboratory of Environmental Medicine Engineering, School of Public Health, Ministry of Education, Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, China
| | - Fengying Liu
- Key Laboratory of Environmental Medicine Engineering, School of Public Health, Ministry of Education, Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, China
| | - Yun Zheng
- Key Laboratory of Environmental Medicine Engineering, School of Public Health, Ministry of Education, Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, China
| | - Yiran Lu
- Key Laboratory of Environmental Medicine Engineering, School of Public Health, Ministry of Education, Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, China
| | - Juan Wang
- Clinical Laboratory, Affiliated Tumor Hospital of Nantong University (Nantong Tumor Hospital), Nantong, China
| | - Mulong Du
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Evan Yi-Wen Yu
- Key Laboratory of Environmental Medicine Engineering, School of Public Health, Ministry of Education, Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, China.
| | - Xiuting Li
- School of Health Management and Basic Science, Jiangsu Health Vocational College, Nanjing, China.
| | - Shizhi Wang
- Key Laboratory of Environmental Medicine Engineering, School of Public Health, Ministry of Education, Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, China.
| |
Collapse
|
14
|
Leprêtre F, Meneboo JP, Villenet C, Delestré L, Quesnel B, Shelley CS, Figeac M, Galiègue-Zouitina S. Full-length RNA-Seq of the RHOH gene in human B cells reveals new exons and splicing patterns. Sci Rep 2024; 14:28297. [PMID: 39550462 PMCID: PMC11569159 DOI: 10.1038/s41598-024-79307-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024] Open
Abstract
The RhoH protein is a member of the Ras superfamily of guanosine triphosphate-binding proteins. RhoH is an atypical Rho family member that is always GTP-bound and thus always activated. It is restrictively expressed in normal hematopoietic cells, where it is a negative regulator of cell growth and survival. We previously analyzed the RHOH gene structure and demonstrated that this gene is composed of 7 exons, one single encoding exon located at the 3' extremity of the gene, preceded by 6 noncoding exons. To further understand the transcription events associated with this gene, we performed full-length RNA-Seq on 12 B-cell lines. We identified new exons, new splice events and new splice sites, leading to the discovery of 38 RHOH mRNA molecules, 27 of which have never been described before. Here, we also describe new fusion transcripts. Moreover, our method allowed quantitative measurements of the different mRNA species relative to each other in relation to B-cell differentiation.
Collapse
Affiliation(s)
- Frédéric Leprêtre
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41-UAR 2014-PLBS, 59000, Lille, France.
| | - Jean-Pascal Meneboo
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41-UAR 2014-PLBS, 59000, Lille, France
| | - Céline Villenet
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41-UAR 2014-PLBS, 59000, Lille, France
| | | | - Bruno Quesnel
- CHU Lille, UMR-S 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Université de Lille, 59000, Lille, France
| | | | - Martin Figeac
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41-UAR 2014-PLBS, 59000, Lille, France
| | | |
Collapse
|
15
|
Vanagas L, Cristaldi C, La Bella G, Ganuza A, Angel SO, Alonso AM. A bioinformatic approach for the prediction and functional classification of Toxoplasma gondii long non-coding RNAs. Sci Rep 2024; 14:27687. [PMID: 39533086 PMCID: PMC11557611 DOI: 10.1038/s41598-024-79204-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as significant players in diverse cellular processes, including cell differentiation. Advancements in computational methodologies have facilitated the prediction of lncRNA functions, enabling insights even in non-model organisms like pathogenic parasites, in roles such as parasite development, antigenic variation, and epigenetics. In this work, we focus on the apicomplexan Toxoplasma gondii differentiation process, where the infective stage, tachyzoite, can develop into the cysted stage, bradyzoite, under stress conditions. Using a publicly available transcriptome dataset, we predicted putative lncRNA sequences associated with this differentiation process. Notably, a substantial proportion of these putative lncRNAs exhibited stage-specific expression, particularly at the bradyzoite stage. Furthermore, co-expression patterns between coding transcripts and putative TglncRNAs suggest their involvement in shared processes, such as bradyzoite development. Putative TglncRNA loci analysis revealed their potential influence on the expression of nearby coding genes, including subtelomeric genes unique to the T. gondii genome. Finally we propose a k-mer analysis approach to predict putative functional relationships between characterized lncRNAs from model organisms like Homo sapiens and the putative T. gondii lncRNAs. Our perspective led to predict putative T. gondii lncRNA that potentially could act mediating DNA damage repair pathways, opening a new study field to validate this kind of adaptive mechanisms of T. gondii in response to stress conditions.
Collapse
Affiliation(s)
- Laura Vanagas
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Provincia de Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), San Martín, Argentina
| | - Constanza Cristaldi
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Provincia de Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), San Martín, Argentina
| | - Gino La Bella
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Provincia de Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), San Martín, Argentina
| | - Agustina Ganuza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Provincia de Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), San Martín, Argentina
| | - Sergio O Angel
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Provincia de Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), San Martín, Argentina
| | - Andrés M Alonso
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Provincia de Buenos Aires, Argentina.
- Escuela de Bio y Nanotecnologías (UNSAM), San Martín, Argentina.
| |
Collapse
|
16
|
Shelash SI, Shabeeb IA, Ahmad I, Saleem HM, Bansal P, Kumar A, Deorari M, Kareem AH, Al-Ani AM, Abosaoda MK. lncRNAs'p potential roles in the pathogenesis of cancer via interacting with signaling pathways; special focus on lncRNA-mediated signaling dysregulation in lung cancer. Med Oncol 2024; 41:310. [PMID: 39516331 DOI: 10.1007/s12032-024-02536-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Lung cancer ranks among the most lethal types of cancer globally, with a high occurrence and fatality rate. The spread of cancer to other parts of the body, known as metastasis, is the primary cause of treatment failure and death in lung cancer cases. Current approaches for treating advanced lung cancer typically involve a combination of chemotherapy and targeted therapy. However, the majority of patients ultimately develop resistance to these treatments, leading to a worsened prognosis. In recent years, cancer biology research has predominantly focused on the role of protein-encoding genes in cancer development. Long non-coding RNAs (lncRNAs) are transcripts over 200 nucleotides in length that do not encode proteins but are crucial RNA molecules involved in numerous biological functions. While many functions of lncRNAs remain unknown, some have been linked to human diseases, including cancer. Studies have demonstrated that lncRNAs interact with other large molecules in the cell, such as proteins, DNA, and RNA, influencing various critical aspects of cancer. LncRNAs play a significant role in regulating gene expression and have a crucial function in the transcriptional regulation of cancer cells. They mediate various biological and clinical processes such as invasion, metastasis, apoptosis, and cell proliferation. Dysregulation of lncRNAs has been found to impact the process of carcinogenesis through advanced technologies like RNA sequencing and microarrays. Collectively, these long non-coding RNAs hold promise as potential biomarkers and therapeutic targets for human cancers. In this segment, we provide a comprehensive summary of the literature on the characteristics and formation of lncRNAs, along with an overview of their current known roles in lung cancer.
Collapse
Affiliation(s)
- Sulieman Ibrahim Shelash
- Electronic Marketing and Social Media, Economic and Administrative Sciences Zarqa University, Zarqa, Jordan
- Research Follower, INTI International University, Negeri Sembilan, 71800, Nilai, Malaysia
| | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Hiba Muwafaq Saleem
- Department of Biology, College of Science, University Of Anbar, Ramadi, Iraq.
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-Be) University, Bengaluru, 560069, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia Boris Yeltsin, Ekaterinburg, 620002, Russia
- Department of Technical Sciences, Western Caspian University, Baku, Azerbaijan
- Department of Mechanical Engineering, Karpagam Academy of Higher Education, Coimbatore, 641021, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | | | - Munther Kadhim Abosaoda
- College of Pharmacy, The Islamic University, Najaf, Iraq
- College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, The Islamic University of Babylon, Al Diwaniyah, Iraq
| |
Collapse
|
17
|
Ranjan G, Sehgal P, Scaria V, Sivasubbu S. SCAR-6 elncRNA locus epigenetically regulates PROZ and modulates coagulation and vascular function. EMBO Rep 2024; 25:4950-4978. [PMID: 39358551 PMCID: PMC11549340 DOI: 10.1038/s44319-024-00272-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/03/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
In this study, we characterize a novel lncRNA-producing gene locus that we name Syntenic Cardiovascular Conserved Region-Associated lncRNA-6 (scar-6) and functionally validate its role in coagulation and cardiovascular function. A 12-bp deletion of the scar-6 locus in zebrafish (scar-6gib007Δ12/Δ12) results in cranial hemorrhage and vascular permeability. Overexpression, knockdown and rescue with the scar-6 lncRNA modulates hemostasis in zebrafish. Molecular investigation reveals that the scar-6 lncRNA acts as an enhancer lncRNA (elncRNA), and controls the expression of prozb, an inhibitor of factor Xa, through an enhancer element in the scar-6 locus. The scar-6 locus suppresses loop formation between prozb and scar-6 sequences, which might be facilitated by the methylation of CpG islands via the prdm14-PRC2 complex whose binding to the locus might be stabilized by the scar-6 elncRNA transcript. Binding of prdm14 to the scar-6 locus is impaired in scar-6gib007Δ12/Δ12 zebrafish. Finally, activation of the PAR2 receptor in scar-6gib007Δ12/Δ12 zebrafish triggers NF-κB-mediated endothelial cell activation, leading to vascular dysfunction and hemorrhage. We present evidence that the scar-6 locus plays a role in regulating the expression of the coagulation cascade gene prozb and maintains vascular homeostasis.
Collapse
Affiliation(s)
- Gyan Ranjan
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi, 110024, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Paras Sehgal
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi, 110024, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vinod Scaria
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi, 110024, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Vishwanath Cancer Care Foundation, Mumbai, India.
- Dr. D. Y Patil Medical College, Hospital and Research Centre, Pune, India.
| | - Sridhar Sivasubbu
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi, 110024, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Vishwanath Cancer Care Foundation, Mumbai, India.
- Dr. D. Y Patil Medical College, Hospital and Research Centre, Pune, India.
| |
Collapse
|
18
|
Park YB, Lim C, Lim B, Kim JM. Long noncoding RNA network for lncRNA-mRNA interactions throughout swine estrous cycle reveals developmental and hormonal regulations in reproductive tissues. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:1109-1126. [PMID: 39691614 PMCID: PMC11647408 DOI: 10.5187/jast.2023.e137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2024]
Abstract
The mechanism of estrous cycles of pigs should be explored because their reproductive traits are useful for manipulating productivity and solving problems such as infertility. These estrous cycles should be elucidated to understand the complex interactions between various reproductive tissues (including the ovary, oviduct, and endometrium) and the complex range of hormone secretions during estrous cycles. Long non-coding RNAs (lncRNAs) regulate target genes at transcriptional, post-transcriptional, and post-translational regulation levels in various species. However, unlike mRNAs, lncRNAs in pigs have not been sufficiently annotated, and understanding the protein level of coding genes has limitations in determining the mechanism of the reproductive traits of porcine. In this study, the lncRNAs of the porcine ovary, oviduct, and endometrium were investigated on days 0, 3, 6, 9, 12, 15, and 18 of the estrous cycle. In addition, the characteristics and functions of the identified lncRNAs were explored. 19,021 novel lncRNA transcripts were selected, and the comparison of the characteristics of the newly identified lncRNA and mRNA showed that similar to those of previous studies. Four lncRNA networks were chosen through network analysis. The cis-acting genes of lncRNAs included in each network were identified, and expression patterns were compared. The main lncRNAs (XLOC_021792, XLOC_017111, ENSSSCG00000050977, XLOC_000342, ENSSSCG00000050380, ENSSSCG00000045111, XLOC_008338, XLOC_004128, and ENSSSCG00000040267) were determined from the network by considering the cis-acting genes. Specific novel lncRNAs were discovered in the reproductive tissues during the swine estrous cycle, and their time-serial expression dynamics were confirmed. As the main lncRNAs are involved in the development of each reproductive tissue and hormone action, they can be utilized as potential biomarkers to help improve and develop the reproductive traits of pigs.
Collapse
Affiliation(s)
- Yoon-Been Park
- Functional Genomics &
Bioinformatics Laboratory, Department of Animal Science and Technology,
Chung-Ang University, Anseong 17546, Korea
| | - Chiwoong Lim
- Functional Genomics &
Bioinformatics Laboratory, Department of Animal Science and Technology,
Chung-Ang University, Anseong 17546, Korea
| | - Byeonghwi Lim
- Functional Genomics &
Bioinformatics Laboratory, Department of Animal Science and Technology,
Chung-Ang University, Anseong 17546, Korea
| | - Jun-Mo Kim
- Functional Genomics &
Bioinformatics Laboratory, Department of Animal Science and Technology,
Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
19
|
Brinkmeier ML, George AS, Cheung LYM, Mills RE, Melamed P, Camper SA. Long Noncoding RNAs Expressed in Mouse Pituitary Development and Mature Hormone-Producing Cells. Endocrinology 2024; 165:bqae147. [PMID: 39487735 PMCID: PMC11565238 DOI: 10.1210/endocr/bqae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/09/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
Mammalian genomes contain thousands of genes for long noncoding RNA (lncRNAs), some of which have been shown to affect protein coding gene expression through diverse mechanisms. The lncRNA transcripts are longer than 200 nucleotides and are often capped, spliced, and polyadenylated, but not translated into protein. Nuclear lncRNAs can modify chromatin structure and transcription in trans or cis by interacting with the DNA, forming R-loops, and recruiting regulatory proteins. Not much is known about the role of lncRNA in pituitary gland differentiation and function. We mined transcriptome data from mouse pituitary glands collected at embryonic days 12.5 and 14.5 and identified over 200 different lncRNA transcripts. To develop a research resource for the study of lncRNA, we used pituitary cre transgenes to tag pituitary cell types in adult mice with fluorescent markers, and enriched for thyrotropes, gonadotropes, and somatotropes using fluorescence-activated cell sorting. We determined the transcriptome of each cell population using RNA sequencing and mined the data for lncRNA. We detected hundreds of lncRNAs in adult pituitary cells; a few were located immediately nearby genes that encode pituitary hormones or lineage-specific transcription factors. The location of these lncRNAs suggests the possibility of a cis-acting regulatory role in pituitary development or function, and we observe coordinated expression of 2 of them with their putative target genes in transgenic mice. This research resource sets the foundation for examining the actions of lncRNAs on their putative target genes and determining whether they have roles during development and in response to physiological demand.
Collapse
Affiliation(s)
| | - Akima Semone George
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 41809-5618, USA
- Graduate Program in Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Leonard Yan Ming Cheung
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 41809-5618, USA
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794-8661, USA
| | - Ryan Edward Mills
- Graduate Program in Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Philippa Melamed
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Sally Ann Camper
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 41809-5618, USA
| |
Collapse
|
20
|
Ganesh VS, Riquin K, Chatron N, Yoon E, Lamar KM, Aziz MC, Monin P, O'Leary MC, Goodrich JK, Garimella KV, England E, Weisburd B, Aguet F, Bacino CA, Murdock DR, Dai H, Rosenfeld JA, Emrick LT, Ketkar S, Sarusi Y, Sanlaville D, Kayani S, Broadbent B, Pengam A, Isidor B, Bezieau S, Cogné B, MacArthur DG, Ulitsky I, Carvill GL, O'Donnell-Luria A. Neurodevelopmental Disorder Caused by Deletion of CHASERR, a lncRNA Gene. N Engl J Med 2024; 391:1511-1518. [PMID: 39442041 DOI: 10.1056/nejmoa2400718] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
CHASERR encodes a human long noncoding RNA (lncRNA) adjacent to CHD2, a coding gene in which de novo loss-of-function variants cause developmental and epileptic encephalopathy. Here, we report our findings in three unrelated children with a syndromic, early-onset neurodevelopmental disorder, each of whom had a de novo deletion in the CHASERR locus. The children had severe encephalopathy, shared facial dysmorphisms, cortical atrophy, and cerebral hypomyelination - a phenotype that is distinct from the phenotypes of patients with CHD2 haploinsufficiency. We found that the CHASERR deletion results in increased CHD2 protein abundance in patient-derived cell lines and increased expression of the CHD2 transcript in cis. These findings indicate that CHD2 has bidirectional dosage sensitivity in human disease, and we recommend that other lncRNA-encoding genes be evaluated, particularly those upstream of genes associated with mendelian disorders. (Funded by the National Human Genome Research Institute and others.).
Collapse
Affiliation(s)
- Vijay S Ganesh
- From the Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (V.S.G., M.C.O., J.K.G., K.V.G., E.E., B.W., F.A., D.G.M., A.O.-L.), and the Department of Neurology, Brigham and Women's Hospital (V.S.G.), the Division of Genetics and Genomics, Boston Children's Hospital (V.S.G., A.O.-L.), and Harvard Medical School (V.S.G., A.O.-L.), Boston - all in Massachusetts; L'institut du Thorax (K.R., B.I., S.B., B.C.), Service de Radiopediatrie (A.P.), and Service de Génétique Médicale (B.I., S.B., B.C.), Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, Centre National de la Recherche Scientifique (CNRS), INSERM, Nantes, and Institut Neuromyogène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, CNRS, INSERM (N.C., D.S.), and Service de Génétique, Hospices Civils de Lyon (N.C., P.M., D.S.), Lyon - all in France; the Departments of Neurology (E.Y., K.-M.L., M.C.A., G.L.C.) and Pharmacology (G.L.C.), Northwestern University Feinberg School of Medicine, Chicago; the Undiagnosed Diseases Network and the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston (C.A.B., D.R.M., H.D., J.A.R., L.T.E., S. Ketkar), and the Department of Pediatrics, University of Texas Southwestern Medical Center (S. Kayani), and Coalition to Cure CHD2 (B.B.), Dallas; the Departments of Immunology and Regenerative Biology and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel (Y.S., I.U.); and the Centre for Population Genomics, Garvan Institute of Medical Research and University of New South Wales Sydney, Sydney (D.G.M.), and the Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC (D.G.M.) - both in Australia
| | - Kevin Riquin
- From the Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (V.S.G., M.C.O., J.K.G., K.V.G., E.E., B.W., F.A., D.G.M., A.O.-L.), and the Department of Neurology, Brigham and Women's Hospital (V.S.G.), the Division of Genetics and Genomics, Boston Children's Hospital (V.S.G., A.O.-L.), and Harvard Medical School (V.S.G., A.O.-L.), Boston - all in Massachusetts; L'institut du Thorax (K.R., B.I., S.B., B.C.), Service de Radiopediatrie (A.P.), and Service de Génétique Médicale (B.I., S.B., B.C.), Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, Centre National de la Recherche Scientifique (CNRS), INSERM, Nantes, and Institut Neuromyogène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, CNRS, INSERM (N.C., D.S.), and Service de Génétique, Hospices Civils de Lyon (N.C., P.M., D.S.), Lyon - all in France; the Departments of Neurology (E.Y., K.-M.L., M.C.A., G.L.C.) and Pharmacology (G.L.C.), Northwestern University Feinberg School of Medicine, Chicago; the Undiagnosed Diseases Network and the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston (C.A.B., D.R.M., H.D., J.A.R., L.T.E., S. Ketkar), and the Department of Pediatrics, University of Texas Southwestern Medical Center (S. Kayani), and Coalition to Cure CHD2 (B.B.), Dallas; the Departments of Immunology and Regenerative Biology and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel (Y.S., I.U.); and the Centre for Population Genomics, Garvan Institute of Medical Research and University of New South Wales Sydney, Sydney (D.G.M.), and the Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC (D.G.M.) - both in Australia
| | - Nicolas Chatron
- From the Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (V.S.G., M.C.O., J.K.G., K.V.G., E.E., B.W., F.A., D.G.M., A.O.-L.), and the Department of Neurology, Brigham and Women's Hospital (V.S.G.), the Division of Genetics and Genomics, Boston Children's Hospital (V.S.G., A.O.-L.), and Harvard Medical School (V.S.G., A.O.-L.), Boston - all in Massachusetts; L'institut du Thorax (K.R., B.I., S.B., B.C.), Service de Radiopediatrie (A.P.), and Service de Génétique Médicale (B.I., S.B., B.C.), Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, Centre National de la Recherche Scientifique (CNRS), INSERM, Nantes, and Institut Neuromyogène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, CNRS, INSERM (N.C., D.S.), and Service de Génétique, Hospices Civils de Lyon (N.C., P.M., D.S.), Lyon - all in France; the Departments of Neurology (E.Y., K.-M.L., M.C.A., G.L.C.) and Pharmacology (G.L.C.), Northwestern University Feinberg School of Medicine, Chicago; the Undiagnosed Diseases Network and the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston (C.A.B., D.R.M., H.D., J.A.R., L.T.E., S. Ketkar), and the Department of Pediatrics, University of Texas Southwestern Medical Center (S. Kayani), and Coalition to Cure CHD2 (B.B.), Dallas; the Departments of Immunology and Regenerative Biology and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel (Y.S., I.U.); and the Centre for Population Genomics, Garvan Institute of Medical Research and University of New South Wales Sydney, Sydney (D.G.M.), and the Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC (D.G.M.) - both in Australia
| | - Esther Yoon
- From the Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (V.S.G., M.C.O., J.K.G., K.V.G., E.E., B.W., F.A., D.G.M., A.O.-L.), and the Department of Neurology, Brigham and Women's Hospital (V.S.G.), the Division of Genetics and Genomics, Boston Children's Hospital (V.S.G., A.O.-L.), and Harvard Medical School (V.S.G., A.O.-L.), Boston - all in Massachusetts; L'institut du Thorax (K.R., B.I., S.B., B.C.), Service de Radiopediatrie (A.P.), and Service de Génétique Médicale (B.I., S.B., B.C.), Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, Centre National de la Recherche Scientifique (CNRS), INSERM, Nantes, and Institut Neuromyogène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, CNRS, INSERM (N.C., D.S.), and Service de Génétique, Hospices Civils de Lyon (N.C., P.M., D.S.), Lyon - all in France; the Departments of Neurology (E.Y., K.-M.L., M.C.A., G.L.C.) and Pharmacology (G.L.C.), Northwestern University Feinberg School of Medicine, Chicago; the Undiagnosed Diseases Network and the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston (C.A.B., D.R.M., H.D., J.A.R., L.T.E., S. Ketkar), and the Department of Pediatrics, University of Texas Southwestern Medical Center (S. Kayani), and Coalition to Cure CHD2 (B.B.), Dallas; the Departments of Immunology and Regenerative Biology and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel (Y.S., I.U.); and the Centre for Population Genomics, Garvan Institute of Medical Research and University of New South Wales Sydney, Sydney (D.G.M.), and the Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC (D.G.M.) - both in Australia
| | - Kay-Marie Lamar
- From the Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (V.S.G., M.C.O., J.K.G., K.V.G., E.E., B.W., F.A., D.G.M., A.O.-L.), and the Department of Neurology, Brigham and Women's Hospital (V.S.G.), the Division of Genetics and Genomics, Boston Children's Hospital (V.S.G., A.O.-L.), and Harvard Medical School (V.S.G., A.O.-L.), Boston - all in Massachusetts; L'institut du Thorax (K.R., B.I., S.B., B.C.), Service de Radiopediatrie (A.P.), and Service de Génétique Médicale (B.I., S.B., B.C.), Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, Centre National de la Recherche Scientifique (CNRS), INSERM, Nantes, and Institut Neuromyogène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, CNRS, INSERM (N.C., D.S.), and Service de Génétique, Hospices Civils de Lyon (N.C., P.M., D.S.), Lyon - all in France; the Departments of Neurology (E.Y., K.-M.L., M.C.A., G.L.C.) and Pharmacology (G.L.C.), Northwestern University Feinberg School of Medicine, Chicago; the Undiagnosed Diseases Network and the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston (C.A.B., D.R.M., H.D., J.A.R., L.T.E., S. Ketkar), and the Department of Pediatrics, University of Texas Southwestern Medical Center (S. Kayani), and Coalition to Cure CHD2 (B.B.), Dallas; the Departments of Immunology and Regenerative Biology and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel (Y.S., I.U.); and the Centre for Population Genomics, Garvan Institute of Medical Research and University of New South Wales Sydney, Sydney (D.G.M.), and the Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC (D.G.M.) - both in Australia
| | - Miriam C Aziz
- From the Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (V.S.G., M.C.O., J.K.G., K.V.G., E.E., B.W., F.A., D.G.M., A.O.-L.), and the Department of Neurology, Brigham and Women's Hospital (V.S.G.), the Division of Genetics and Genomics, Boston Children's Hospital (V.S.G., A.O.-L.), and Harvard Medical School (V.S.G., A.O.-L.), Boston - all in Massachusetts; L'institut du Thorax (K.R., B.I., S.B., B.C.), Service de Radiopediatrie (A.P.), and Service de Génétique Médicale (B.I., S.B., B.C.), Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, Centre National de la Recherche Scientifique (CNRS), INSERM, Nantes, and Institut Neuromyogène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, CNRS, INSERM (N.C., D.S.), and Service de Génétique, Hospices Civils de Lyon (N.C., P.M., D.S.), Lyon - all in France; the Departments of Neurology (E.Y., K.-M.L., M.C.A., G.L.C.) and Pharmacology (G.L.C.), Northwestern University Feinberg School of Medicine, Chicago; the Undiagnosed Diseases Network and the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston (C.A.B., D.R.M., H.D., J.A.R., L.T.E., S. Ketkar), and the Department of Pediatrics, University of Texas Southwestern Medical Center (S. Kayani), and Coalition to Cure CHD2 (B.B.), Dallas; the Departments of Immunology and Regenerative Biology and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel (Y.S., I.U.); and the Centre for Population Genomics, Garvan Institute of Medical Research and University of New South Wales Sydney, Sydney (D.G.M.), and the Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC (D.G.M.) - both in Australia
| | - Pauline Monin
- From the Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (V.S.G., M.C.O., J.K.G., K.V.G., E.E., B.W., F.A., D.G.M., A.O.-L.), and the Department of Neurology, Brigham and Women's Hospital (V.S.G.), the Division of Genetics and Genomics, Boston Children's Hospital (V.S.G., A.O.-L.), and Harvard Medical School (V.S.G., A.O.-L.), Boston - all in Massachusetts; L'institut du Thorax (K.R., B.I., S.B., B.C.), Service de Radiopediatrie (A.P.), and Service de Génétique Médicale (B.I., S.B., B.C.), Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, Centre National de la Recherche Scientifique (CNRS), INSERM, Nantes, and Institut Neuromyogène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, CNRS, INSERM (N.C., D.S.), and Service de Génétique, Hospices Civils de Lyon (N.C., P.M., D.S.), Lyon - all in France; the Departments of Neurology (E.Y., K.-M.L., M.C.A., G.L.C.) and Pharmacology (G.L.C.), Northwestern University Feinberg School of Medicine, Chicago; the Undiagnosed Diseases Network and the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston (C.A.B., D.R.M., H.D., J.A.R., L.T.E., S. Ketkar), and the Department of Pediatrics, University of Texas Southwestern Medical Center (S. Kayani), and Coalition to Cure CHD2 (B.B.), Dallas; the Departments of Immunology and Regenerative Biology and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel (Y.S., I.U.); and the Centre for Population Genomics, Garvan Institute of Medical Research and University of New South Wales Sydney, Sydney (D.G.M.), and the Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC (D.G.M.) - both in Australia
| | - Melanie C O'Leary
- From the Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (V.S.G., M.C.O., J.K.G., K.V.G., E.E., B.W., F.A., D.G.M., A.O.-L.), and the Department of Neurology, Brigham and Women's Hospital (V.S.G.), the Division of Genetics and Genomics, Boston Children's Hospital (V.S.G., A.O.-L.), and Harvard Medical School (V.S.G., A.O.-L.), Boston - all in Massachusetts; L'institut du Thorax (K.R., B.I., S.B., B.C.), Service de Radiopediatrie (A.P.), and Service de Génétique Médicale (B.I., S.B., B.C.), Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, Centre National de la Recherche Scientifique (CNRS), INSERM, Nantes, and Institut Neuromyogène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, CNRS, INSERM (N.C., D.S.), and Service de Génétique, Hospices Civils de Lyon (N.C., P.M., D.S.), Lyon - all in France; the Departments of Neurology (E.Y., K.-M.L., M.C.A., G.L.C.) and Pharmacology (G.L.C.), Northwestern University Feinberg School of Medicine, Chicago; the Undiagnosed Diseases Network and the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston (C.A.B., D.R.M., H.D., J.A.R., L.T.E., S. Ketkar), and the Department of Pediatrics, University of Texas Southwestern Medical Center (S. Kayani), and Coalition to Cure CHD2 (B.B.), Dallas; the Departments of Immunology and Regenerative Biology and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel (Y.S., I.U.); and the Centre for Population Genomics, Garvan Institute of Medical Research and University of New South Wales Sydney, Sydney (D.G.M.), and the Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC (D.G.M.) - both in Australia
| | - Julia K Goodrich
- From the Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (V.S.G., M.C.O., J.K.G., K.V.G., E.E., B.W., F.A., D.G.M., A.O.-L.), and the Department of Neurology, Brigham and Women's Hospital (V.S.G.), the Division of Genetics and Genomics, Boston Children's Hospital (V.S.G., A.O.-L.), and Harvard Medical School (V.S.G., A.O.-L.), Boston - all in Massachusetts; L'institut du Thorax (K.R., B.I., S.B., B.C.), Service de Radiopediatrie (A.P.), and Service de Génétique Médicale (B.I., S.B., B.C.), Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, Centre National de la Recherche Scientifique (CNRS), INSERM, Nantes, and Institut Neuromyogène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, CNRS, INSERM (N.C., D.S.), and Service de Génétique, Hospices Civils de Lyon (N.C., P.M., D.S.), Lyon - all in France; the Departments of Neurology (E.Y., K.-M.L., M.C.A., G.L.C.) and Pharmacology (G.L.C.), Northwestern University Feinberg School of Medicine, Chicago; the Undiagnosed Diseases Network and the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston (C.A.B., D.R.M., H.D., J.A.R., L.T.E., S. Ketkar), and the Department of Pediatrics, University of Texas Southwestern Medical Center (S. Kayani), and Coalition to Cure CHD2 (B.B.), Dallas; the Departments of Immunology and Regenerative Biology and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel (Y.S., I.U.); and the Centre for Population Genomics, Garvan Institute of Medical Research and University of New South Wales Sydney, Sydney (D.G.M.), and the Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC (D.G.M.) - both in Australia
| | - Kiran V Garimella
- From the Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (V.S.G., M.C.O., J.K.G., K.V.G., E.E., B.W., F.A., D.G.M., A.O.-L.), and the Department of Neurology, Brigham and Women's Hospital (V.S.G.), the Division of Genetics and Genomics, Boston Children's Hospital (V.S.G., A.O.-L.), and Harvard Medical School (V.S.G., A.O.-L.), Boston - all in Massachusetts; L'institut du Thorax (K.R., B.I., S.B., B.C.), Service de Radiopediatrie (A.P.), and Service de Génétique Médicale (B.I., S.B., B.C.), Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, Centre National de la Recherche Scientifique (CNRS), INSERM, Nantes, and Institut Neuromyogène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, CNRS, INSERM (N.C., D.S.), and Service de Génétique, Hospices Civils de Lyon (N.C., P.M., D.S.), Lyon - all in France; the Departments of Neurology (E.Y., K.-M.L., M.C.A., G.L.C.) and Pharmacology (G.L.C.), Northwestern University Feinberg School of Medicine, Chicago; the Undiagnosed Diseases Network and the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston (C.A.B., D.R.M., H.D., J.A.R., L.T.E., S. Ketkar), and the Department of Pediatrics, University of Texas Southwestern Medical Center (S. Kayani), and Coalition to Cure CHD2 (B.B.), Dallas; the Departments of Immunology and Regenerative Biology and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel (Y.S., I.U.); and the Centre for Population Genomics, Garvan Institute of Medical Research and University of New South Wales Sydney, Sydney (D.G.M.), and the Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC (D.G.M.) - both in Australia
| | - Eleina England
- From the Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (V.S.G., M.C.O., J.K.G., K.V.G., E.E., B.W., F.A., D.G.M., A.O.-L.), and the Department of Neurology, Brigham and Women's Hospital (V.S.G.), the Division of Genetics and Genomics, Boston Children's Hospital (V.S.G., A.O.-L.), and Harvard Medical School (V.S.G., A.O.-L.), Boston - all in Massachusetts; L'institut du Thorax (K.R., B.I., S.B., B.C.), Service de Radiopediatrie (A.P.), and Service de Génétique Médicale (B.I., S.B., B.C.), Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, Centre National de la Recherche Scientifique (CNRS), INSERM, Nantes, and Institut Neuromyogène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, CNRS, INSERM (N.C., D.S.), and Service de Génétique, Hospices Civils de Lyon (N.C., P.M., D.S.), Lyon - all in France; the Departments of Neurology (E.Y., K.-M.L., M.C.A., G.L.C.) and Pharmacology (G.L.C.), Northwestern University Feinberg School of Medicine, Chicago; the Undiagnosed Diseases Network and the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston (C.A.B., D.R.M., H.D., J.A.R., L.T.E., S. Ketkar), and the Department of Pediatrics, University of Texas Southwestern Medical Center (S. Kayani), and Coalition to Cure CHD2 (B.B.), Dallas; the Departments of Immunology and Regenerative Biology and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel (Y.S., I.U.); and the Centre for Population Genomics, Garvan Institute of Medical Research and University of New South Wales Sydney, Sydney (D.G.M.), and the Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC (D.G.M.) - both in Australia
| | - Ben Weisburd
- From the Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (V.S.G., M.C.O., J.K.G., K.V.G., E.E., B.W., F.A., D.G.M., A.O.-L.), and the Department of Neurology, Brigham and Women's Hospital (V.S.G.), the Division of Genetics and Genomics, Boston Children's Hospital (V.S.G., A.O.-L.), and Harvard Medical School (V.S.G., A.O.-L.), Boston - all in Massachusetts; L'institut du Thorax (K.R., B.I., S.B., B.C.), Service de Radiopediatrie (A.P.), and Service de Génétique Médicale (B.I., S.B., B.C.), Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, Centre National de la Recherche Scientifique (CNRS), INSERM, Nantes, and Institut Neuromyogène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, CNRS, INSERM (N.C., D.S.), and Service de Génétique, Hospices Civils de Lyon (N.C., P.M., D.S.), Lyon - all in France; the Departments of Neurology (E.Y., K.-M.L., M.C.A., G.L.C.) and Pharmacology (G.L.C.), Northwestern University Feinberg School of Medicine, Chicago; the Undiagnosed Diseases Network and the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston (C.A.B., D.R.M., H.D., J.A.R., L.T.E., S. Ketkar), and the Department of Pediatrics, University of Texas Southwestern Medical Center (S. Kayani), and Coalition to Cure CHD2 (B.B.), Dallas; the Departments of Immunology and Regenerative Biology and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel (Y.S., I.U.); and the Centre for Population Genomics, Garvan Institute of Medical Research and University of New South Wales Sydney, Sydney (D.G.M.), and the Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC (D.G.M.) - both in Australia
| | - François Aguet
- From the Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (V.S.G., M.C.O., J.K.G., K.V.G., E.E., B.W., F.A., D.G.M., A.O.-L.), and the Department of Neurology, Brigham and Women's Hospital (V.S.G.), the Division of Genetics and Genomics, Boston Children's Hospital (V.S.G., A.O.-L.), and Harvard Medical School (V.S.G., A.O.-L.), Boston - all in Massachusetts; L'institut du Thorax (K.R., B.I., S.B., B.C.), Service de Radiopediatrie (A.P.), and Service de Génétique Médicale (B.I., S.B., B.C.), Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, Centre National de la Recherche Scientifique (CNRS), INSERM, Nantes, and Institut Neuromyogène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, CNRS, INSERM (N.C., D.S.), and Service de Génétique, Hospices Civils de Lyon (N.C., P.M., D.S.), Lyon - all in France; the Departments of Neurology (E.Y., K.-M.L., M.C.A., G.L.C.) and Pharmacology (G.L.C.), Northwestern University Feinberg School of Medicine, Chicago; the Undiagnosed Diseases Network and the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston (C.A.B., D.R.M., H.D., J.A.R., L.T.E., S. Ketkar), and the Department of Pediatrics, University of Texas Southwestern Medical Center (S. Kayani), and Coalition to Cure CHD2 (B.B.), Dallas; the Departments of Immunology and Regenerative Biology and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel (Y.S., I.U.); and the Centre for Population Genomics, Garvan Institute of Medical Research and University of New South Wales Sydney, Sydney (D.G.M.), and the Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC (D.G.M.) - both in Australia
| | - Carlos A Bacino
- From the Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (V.S.G., M.C.O., J.K.G., K.V.G., E.E., B.W., F.A., D.G.M., A.O.-L.), and the Department of Neurology, Brigham and Women's Hospital (V.S.G.), the Division of Genetics and Genomics, Boston Children's Hospital (V.S.G., A.O.-L.), and Harvard Medical School (V.S.G., A.O.-L.), Boston - all in Massachusetts; L'institut du Thorax (K.R., B.I., S.B., B.C.), Service de Radiopediatrie (A.P.), and Service de Génétique Médicale (B.I., S.B., B.C.), Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, Centre National de la Recherche Scientifique (CNRS), INSERM, Nantes, and Institut Neuromyogène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, CNRS, INSERM (N.C., D.S.), and Service de Génétique, Hospices Civils de Lyon (N.C., P.M., D.S.), Lyon - all in France; the Departments of Neurology (E.Y., K.-M.L., M.C.A., G.L.C.) and Pharmacology (G.L.C.), Northwestern University Feinberg School of Medicine, Chicago; the Undiagnosed Diseases Network and the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston (C.A.B., D.R.M., H.D., J.A.R., L.T.E., S. Ketkar), and the Department of Pediatrics, University of Texas Southwestern Medical Center (S. Kayani), and Coalition to Cure CHD2 (B.B.), Dallas; the Departments of Immunology and Regenerative Biology and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel (Y.S., I.U.); and the Centre for Population Genomics, Garvan Institute of Medical Research and University of New South Wales Sydney, Sydney (D.G.M.), and the Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC (D.G.M.) - both in Australia
| | - David R Murdock
- From the Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (V.S.G., M.C.O., J.K.G., K.V.G., E.E., B.W., F.A., D.G.M., A.O.-L.), and the Department of Neurology, Brigham and Women's Hospital (V.S.G.), the Division of Genetics and Genomics, Boston Children's Hospital (V.S.G., A.O.-L.), and Harvard Medical School (V.S.G., A.O.-L.), Boston - all in Massachusetts; L'institut du Thorax (K.R., B.I., S.B., B.C.), Service de Radiopediatrie (A.P.), and Service de Génétique Médicale (B.I., S.B., B.C.), Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, Centre National de la Recherche Scientifique (CNRS), INSERM, Nantes, and Institut Neuromyogène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, CNRS, INSERM (N.C., D.S.), and Service de Génétique, Hospices Civils de Lyon (N.C., P.M., D.S.), Lyon - all in France; the Departments of Neurology (E.Y., K.-M.L., M.C.A., G.L.C.) and Pharmacology (G.L.C.), Northwestern University Feinberg School of Medicine, Chicago; the Undiagnosed Diseases Network and the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston (C.A.B., D.R.M., H.D., J.A.R., L.T.E., S. Ketkar), and the Department of Pediatrics, University of Texas Southwestern Medical Center (S. Kayani), and Coalition to Cure CHD2 (B.B.), Dallas; the Departments of Immunology and Regenerative Biology and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel (Y.S., I.U.); and the Centre for Population Genomics, Garvan Institute of Medical Research and University of New South Wales Sydney, Sydney (D.G.M.), and the Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC (D.G.M.) - both in Australia
| | - Hongzheng Dai
- From the Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (V.S.G., M.C.O., J.K.G., K.V.G., E.E., B.W., F.A., D.G.M., A.O.-L.), and the Department of Neurology, Brigham and Women's Hospital (V.S.G.), the Division of Genetics and Genomics, Boston Children's Hospital (V.S.G., A.O.-L.), and Harvard Medical School (V.S.G., A.O.-L.), Boston - all in Massachusetts; L'institut du Thorax (K.R., B.I., S.B., B.C.), Service de Radiopediatrie (A.P.), and Service de Génétique Médicale (B.I., S.B., B.C.), Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, Centre National de la Recherche Scientifique (CNRS), INSERM, Nantes, and Institut Neuromyogène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, CNRS, INSERM (N.C., D.S.), and Service de Génétique, Hospices Civils de Lyon (N.C., P.M., D.S.), Lyon - all in France; the Departments of Neurology (E.Y., K.-M.L., M.C.A., G.L.C.) and Pharmacology (G.L.C.), Northwestern University Feinberg School of Medicine, Chicago; the Undiagnosed Diseases Network and the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston (C.A.B., D.R.M., H.D., J.A.R., L.T.E., S. Ketkar), and the Department of Pediatrics, University of Texas Southwestern Medical Center (S. Kayani), and Coalition to Cure CHD2 (B.B.), Dallas; the Departments of Immunology and Regenerative Biology and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel (Y.S., I.U.); and the Centre for Population Genomics, Garvan Institute of Medical Research and University of New South Wales Sydney, Sydney (D.G.M.), and the Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC (D.G.M.) - both in Australia
| | - Jill A Rosenfeld
- From the Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (V.S.G., M.C.O., J.K.G., K.V.G., E.E., B.W., F.A., D.G.M., A.O.-L.), and the Department of Neurology, Brigham and Women's Hospital (V.S.G.), the Division of Genetics and Genomics, Boston Children's Hospital (V.S.G., A.O.-L.), and Harvard Medical School (V.S.G., A.O.-L.), Boston - all in Massachusetts; L'institut du Thorax (K.R., B.I., S.B., B.C.), Service de Radiopediatrie (A.P.), and Service de Génétique Médicale (B.I., S.B., B.C.), Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, Centre National de la Recherche Scientifique (CNRS), INSERM, Nantes, and Institut Neuromyogène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, CNRS, INSERM (N.C., D.S.), and Service de Génétique, Hospices Civils de Lyon (N.C., P.M., D.S.), Lyon - all in France; the Departments of Neurology (E.Y., K.-M.L., M.C.A., G.L.C.) and Pharmacology (G.L.C.), Northwestern University Feinberg School of Medicine, Chicago; the Undiagnosed Diseases Network and the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston (C.A.B., D.R.M., H.D., J.A.R., L.T.E., S. Ketkar), and the Department of Pediatrics, University of Texas Southwestern Medical Center (S. Kayani), and Coalition to Cure CHD2 (B.B.), Dallas; the Departments of Immunology and Regenerative Biology and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel (Y.S., I.U.); and the Centre for Population Genomics, Garvan Institute of Medical Research and University of New South Wales Sydney, Sydney (D.G.M.), and the Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC (D.G.M.) - both in Australia
| | - Lisa T Emrick
- From the Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (V.S.G., M.C.O., J.K.G., K.V.G., E.E., B.W., F.A., D.G.M., A.O.-L.), and the Department of Neurology, Brigham and Women's Hospital (V.S.G.), the Division of Genetics and Genomics, Boston Children's Hospital (V.S.G., A.O.-L.), and Harvard Medical School (V.S.G., A.O.-L.), Boston - all in Massachusetts; L'institut du Thorax (K.R., B.I., S.B., B.C.), Service de Radiopediatrie (A.P.), and Service de Génétique Médicale (B.I., S.B., B.C.), Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, Centre National de la Recherche Scientifique (CNRS), INSERM, Nantes, and Institut Neuromyogène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, CNRS, INSERM (N.C., D.S.), and Service de Génétique, Hospices Civils de Lyon (N.C., P.M., D.S.), Lyon - all in France; the Departments of Neurology (E.Y., K.-M.L., M.C.A., G.L.C.) and Pharmacology (G.L.C.), Northwestern University Feinberg School of Medicine, Chicago; the Undiagnosed Diseases Network and the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston (C.A.B., D.R.M., H.D., J.A.R., L.T.E., S. Ketkar), and the Department of Pediatrics, University of Texas Southwestern Medical Center (S. Kayani), and Coalition to Cure CHD2 (B.B.), Dallas; the Departments of Immunology and Regenerative Biology and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel (Y.S., I.U.); and the Centre for Population Genomics, Garvan Institute of Medical Research and University of New South Wales Sydney, Sydney (D.G.M.), and the Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC (D.G.M.) - both in Australia
| | - Shamika Ketkar
- From the Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (V.S.G., M.C.O., J.K.G., K.V.G., E.E., B.W., F.A., D.G.M., A.O.-L.), and the Department of Neurology, Brigham and Women's Hospital (V.S.G.), the Division of Genetics and Genomics, Boston Children's Hospital (V.S.G., A.O.-L.), and Harvard Medical School (V.S.G., A.O.-L.), Boston - all in Massachusetts; L'institut du Thorax (K.R., B.I., S.B., B.C.), Service de Radiopediatrie (A.P.), and Service de Génétique Médicale (B.I., S.B., B.C.), Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, Centre National de la Recherche Scientifique (CNRS), INSERM, Nantes, and Institut Neuromyogène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, CNRS, INSERM (N.C., D.S.), and Service de Génétique, Hospices Civils de Lyon (N.C., P.M., D.S.), Lyon - all in France; the Departments of Neurology (E.Y., K.-M.L., M.C.A., G.L.C.) and Pharmacology (G.L.C.), Northwestern University Feinberg School of Medicine, Chicago; the Undiagnosed Diseases Network and the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston (C.A.B., D.R.M., H.D., J.A.R., L.T.E., S. Ketkar), and the Department of Pediatrics, University of Texas Southwestern Medical Center (S. Kayani), and Coalition to Cure CHD2 (B.B.), Dallas; the Departments of Immunology and Regenerative Biology and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel (Y.S., I.U.); and the Centre for Population Genomics, Garvan Institute of Medical Research and University of New South Wales Sydney, Sydney (D.G.M.), and the Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC (D.G.M.) - both in Australia
| | - Yael Sarusi
- From the Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (V.S.G., M.C.O., J.K.G., K.V.G., E.E., B.W., F.A., D.G.M., A.O.-L.), and the Department of Neurology, Brigham and Women's Hospital (V.S.G.), the Division of Genetics and Genomics, Boston Children's Hospital (V.S.G., A.O.-L.), and Harvard Medical School (V.S.G., A.O.-L.), Boston - all in Massachusetts; L'institut du Thorax (K.R., B.I., S.B., B.C.), Service de Radiopediatrie (A.P.), and Service de Génétique Médicale (B.I., S.B., B.C.), Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, Centre National de la Recherche Scientifique (CNRS), INSERM, Nantes, and Institut Neuromyogène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, CNRS, INSERM (N.C., D.S.), and Service de Génétique, Hospices Civils de Lyon (N.C., P.M., D.S.), Lyon - all in France; the Departments of Neurology (E.Y., K.-M.L., M.C.A., G.L.C.) and Pharmacology (G.L.C.), Northwestern University Feinberg School of Medicine, Chicago; the Undiagnosed Diseases Network and the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston (C.A.B., D.R.M., H.D., J.A.R., L.T.E., S. Ketkar), and the Department of Pediatrics, University of Texas Southwestern Medical Center (S. Kayani), and Coalition to Cure CHD2 (B.B.), Dallas; the Departments of Immunology and Regenerative Biology and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel (Y.S., I.U.); and the Centre for Population Genomics, Garvan Institute of Medical Research and University of New South Wales Sydney, Sydney (D.G.M.), and the Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC (D.G.M.) - both in Australia
| | - Damien Sanlaville
- From the Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (V.S.G., M.C.O., J.K.G., K.V.G., E.E., B.W., F.A., D.G.M., A.O.-L.), and the Department of Neurology, Brigham and Women's Hospital (V.S.G.), the Division of Genetics and Genomics, Boston Children's Hospital (V.S.G., A.O.-L.), and Harvard Medical School (V.S.G., A.O.-L.), Boston - all in Massachusetts; L'institut du Thorax (K.R., B.I., S.B., B.C.), Service de Radiopediatrie (A.P.), and Service de Génétique Médicale (B.I., S.B., B.C.), Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, Centre National de la Recherche Scientifique (CNRS), INSERM, Nantes, and Institut Neuromyogène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, CNRS, INSERM (N.C., D.S.), and Service de Génétique, Hospices Civils de Lyon (N.C., P.M., D.S.), Lyon - all in France; the Departments of Neurology (E.Y., K.-M.L., M.C.A., G.L.C.) and Pharmacology (G.L.C.), Northwestern University Feinberg School of Medicine, Chicago; the Undiagnosed Diseases Network and the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston (C.A.B., D.R.M., H.D., J.A.R., L.T.E., S. Ketkar), and the Department of Pediatrics, University of Texas Southwestern Medical Center (S. Kayani), and Coalition to Cure CHD2 (B.B.), Dallas; the Departments of Immunology and Regenerative Biology and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel (Y.S., I.U.); and the Centre for Population Genomics, Garvan Institute of Medical Research and University of New South Wales Sydney, Sydney (D.G.M.), and the Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC (D.G.M.) - both in Australia
| | - Saima Kayani
- From the Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (V.S.G., M.C.O., J.K.G., K.V.G., E.E., B.W., F.A., D.G.M., A.O.-L.), and the Department of Neurology, Brigham and Women's Hospital (V.S.G.), the Division of Genetics and Genomics, Boston Children's Hospital (V.S.G., A.O.-L.), and Harvard Medical School (V.S.G., A.O.-L.), Boston - all in Massachusetts; L'institut du Thorax (K.R., B.I., S.B., B.C.), Service de Radiopediatrie (A.P.), and Service de Génétique Médicale (B.I., S.B., B.C.), Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, Centre National de la Recherche Scientifique (CNRS), INSERM, Nantes, and Institut Neuromyogène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, CNRS, INSERM (N.C., D.S.), and Service de Génétique, Hospices Civils de Lyon (N.C., P.M., D.S.), Lyon - all in France; the Departments of Neurology (E.Y., K.-M.L., M.C.A., G.L.C.) and Pharmacology (G.L.C.), Northwestern University Feinberg School of Medicine, Chicago; the Undiagnosed Diseases Network and the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston (C.A.B., D.R.M., H.D., J.A.R., L.T.E., S. Ketkar), and the Department of Pediatrics, University of Texas Southwestern Medical Center (S. Kayani), and Coalition to Cure CHD2 (B.B.), Dallas; the Departments of Immunology and Regenerative Biology and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel (Y.S., I.U.); and the Centre for Population Genomics, Garvan Institute of Medical Research and University of New South Wales Sydney, Sydney (D.G.M.), and the Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC (D.G.M.) - both in Australia
| | - Brian Broadbent
- From the Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (V.S.G., M.C.O., J.K.G., K.V.G., E.E., B.W., F.A., D.G.M., A.O.-L.), and the Department of Neurology, Brigham and Women's Hospital (V.S.G.), the Division of Genetics and Genomics, Boston Children's Hospital (V.S.G., A.O.-L.), and Harvard Medical School (V.S.G., A.O.-L.), Boston - all in Massachusetts; L'institut du Thorax (K.R., B.I., S.B., B.C.), Service de Radiopediatrie (A.P.), and Service de Génétique Médicale (B.I., S.B., B.C.), Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, Centre National de la Recherche Scientifique (CNRS), INSERM, Nantes, and Institut Neuromyogène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, CNRS, INSERM (N.C., D.S.), and Service de Génétique, Hospices Civils de Lyon (N.C., P.M., D.S.), Lyon - all in France; the Departments of Neurology (E.Y., K.-M.L., M.C.A., G.L.C.) and Pharmacology (G.L.C.), Northwestern University Feinberg School of Medicine, Chicago; the Undiagnosed Diseases Network and the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston (C.A.B., D.R.M., H.D., J.A.R., L.T.E., S. Ketkar), and the Department of Pediatrics, University of Texas Southwestern Medical Center (S. Kayani), and Coalition to Cure CHD2 (B.B.), Dallas; the Departments of Immunology and Regenerative Biology and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel (Y.S., I.U.); and the Centre for Population Genomics, Garvan Institute of Medical Research and University of New South Wales Sydney, Sydney (D.G.M.), and the Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC (D.G.M.) - both in Australia
| | - Alisée Pengam
- From the Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (V.S.G., M.C.O., J.K.G., K.V.G., E.E., B.W., F.A., D.G.M., A.O.-L.), and the Department of Neurology, Brigham and Women's Hospital (V.S.G.), the Division of Genetics and Genomics, Boston Children's Hospital (V.S.G., A.O.-L.), and Harvard Medical School (V.S.G., A.O.-L.), Boston - all in Massachusetts; L'institut du Thorax (K.R., B.I., S.B., B.C.), Service de Radiopediatrie (A.P.), and Service de Génétique Médicale (B.I., S.B., B.C.), Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, Centre National de la Recherche Scientifique (CNRS), INSERM, Nantes, and Institut Neuromyogène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, CNRS, INSERM (N.C., D.S.), and Service de Génétique, Hospices Civils de Lyon (N.C., P.M., D.S.), Lyon - all in France; the Departments of Neurology (E.Y., K.-M.L., M.C.A., G.L.C.) and Pharmacology (G.L.C.), Northwestern University Feinberg School of Medicine, Chicago; the Undiagnosed Diseases Network and the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston (C.A.B., D.R.M., H.D., J.A.R., L.T.E., S. Ketkar), and the Department of Pediatrics, University of Texas Southwestern Medical Center (S. Kayani), and Coalition to Cure CHD2 (B.B.), Dallas; the Departments of Immunology and Regenerative Biology and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel (Y.S., I.U.); and the Centre for Population Genomics, Garvan Institute of Medical Research and University of New South Wales Sydney, Sydney (D.G.M.), and the Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC (D.G.M.) - both in Australia
| | - Bertrand Isidor
- From the Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (V.S.G., M.C.O., J.K.G., K.V.G., E.E., B.W., F.A., D.G.M., A.O.-L.), and the Department of Neurology, Brigham and Women's Hospital (V.S.G.), the Division of Genetics and Genomics, Boston Children's Hospital (V.S.G., A.O.-L.), and Harvard Medical School (V.S.G., A.O.-L.), Boston - all in Massachusetts; L'institut du Thorax (K.R., B.I., S.B., B.C.), Service de Radiopediatrie (A.P.), and Service de Génétique Médicale (B.I., S.B., B.C.), Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, Centre National de la Recherche Scientifique (CNRS), INSERM, Nantes, and Institut Neuromyogène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, CNRS, INSERM (N.C., D.S.), and Service de Génétique, Hospices Civils de Lyon (N.C., P.M., D.S.), Lyon - all in France; the Departments of Neurology (E.Y., K.-M.L., M.C.A., G.L.C.) and Pharmacology (G.L.C.), Northwestern University Feinberg School of Medicine, Chicago; the Undiagnosed Diseases Network and the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston (C.A.B., D.R.M., H.D., J.A.R., L.T.E., S. Ketkar), and the Department of Pediatrics, University of Texas Southwestern Medical Center (S. Kayani), and Coalition to Cure CHD2 (B.B.), Dallas; the Departments of Immunology and Regenerative Biology and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel (Y.S., I.U.); and the Centre for Population Genomics, Garvan Institute of Medical Research and University of New South Wales Sydney, Sydney (D.G.M.), and the Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC (D.G.M.) - both in Australia
| | - Stéphane Bezieau
- From the Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (V.S.G., M.C.O., J.K.G., K.V.G., E.E., B.W., F.A., D.G.M., A.O.-L.), and the Department of Neurology, Brigham and Women's Hospital (V.S.G.), the Division of Genetics and Genomics, Boston Children's Hospital (V.S.G., A.O.-L.), and Harvard Medical School (V.S.G., A.O.-L.), Boston - all in Massachusetts; L'institut du Thorax (K.R., B.I., S.B., B.C.), Service de Radiopediatrie (A.P.), and Service de Génétique Médicale (B.I., S.B., B.C.), Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, Centre National de la Recherche Scientifique (CNRS), INSERM, Nantes, and Institut Neuromyogène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, CNRS, INSERM (N.C., D.S.), and Service de Génétique, Hospices Civils de Lyon (N.C., P.M., D.S.), Lyon - all in France; the Departments of Neurology (E.Y., K.-M.L., M.C.A., G.L.C.) and Pharmacology (G.L.C.), Northwestern University Feinberg School of Medicine, Chicago; the Undiagnosed Diseases Network and the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston (C.A.B., D.R.M., H.D., J.A.R., L.T.E., S. Ketkar), and the Department of Pediatrics, University of Texas Southwestern Medical Center (S. Kayani), and Coalition to Cure CHD2 (B.B.), Dallas; the Departments of Immunology and Regenerative Biology and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel (Y.S., I.U.); and the Centre for Population Genomics, Garvan Institute of Medical Research and University of New South Wales Sydney, Sydney (D.G.M.), and the Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC (D.G.M.) - both in Australia
| | - Benjamin Cogné
- From the Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (V.S.G., M.C.O., J.K.G., K.V.G., E.E., B.W., F.A., D.G.M., A.O.-L.), and the Department of Neurology, Brigham and Women's Hospital (V.S.G.), the Division of Genetics and Genomics, Boston Children's Hospital (V.S.G., A.O.-L.), and Harvard Medical School (V.S.G., A.O.-L.), Boston - all in Massachusetts; L'institut du Thorax (K.R., B.I., S.B., B.C.), Service de Radiopediatrie (A.P.), and Service de Génétique Médicale (B.I., S.B., B.C.), Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, Centre National de la Recherche Scientifique (CNRS), INSERM, Nantes, and Institut Neuromyogène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, CNRS, INSERM (N.C., D.S.), and Service de Génétique, Hospices Civils de Lyon (N.C., P.M., D.S.), Lyon - all in France; the Departments of Neurology (E.Y., K.-M.L., M.C.A., G.L.C.) and Pharmacology (G.L.C.), Northwestern University Feinberg School of Medicine, Chicago; the Undiagnosed Diseases Network and the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston (C.A.B., D.R.M., H.D., J.A.R., L.T.E., S. Ketkar), and the Department of Pediatrics, University of Texas Southwestern Medical Center (S. Kayani), and Coalition to Cure CHD2 (B.B.), Dallas; the Departments of Immunology and Regenerative Biology and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel (Y.S., I.U.); and the Centre for Population Genomics, Garvan Institute of Medical Research and University of New South Wales Sydney, Sydney (D.G.M.), and the Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC (D.G.M.) - both in Australia
| | - Daniel G MacArthur
- From the Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (V.S.G., M.C.O., J.K.G., K.V.G., E.E., B.W., F.A., D.G.M., A.O.-L.), and the Department of Neurology, Brigham and Women's Hospital (V.S.G.), the Division of Genetics and Genomics, Boston Children's Hospital (V.S.G., A.O.-L.), and Harvard Medical School (V.S.G., A.O.-L.), Boston - all in Massachusetts; L'institut du Thorax (K.R., B.I., S.B., B.C.), Service de Radiopediatrie (A.P.), and Service de Génétique Médicale (B.I., S.B., B.C.), Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, Centre National de la Recherche Scientifique (CNRS), INSERM, Nantes, and Institut Neuromyogène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, CNRS, INSERM (N.C., D.S.), and Service de Génétique, Hospices Civils de Lyon (N.C., P.M., D.S.), Lyon - all in France; the Departments of Neurology (E.Y., K.-M.L., M.C.A., G.L.C.) and Pharmacology (G.L.C.), Northwestern University Feinberg School of Medicine, Chicago; the Undiagnosed Diseases Network and the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston (C.A.B., D.R.M., H.D., J.A.R., L.T.E., S. Ketkar), and the Department of Pediatrics, University of Texas Southwestern Medical Center (S. Kayani), and Coalition to Cure CHD2 (B.B.), Dallas; the Departments of Immunology and Regenerative Biology and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel (Y.S., I.U.); and the Centre for Population Genomics, Garvan Institute of Medical Research and University of New South Wales Sydney, Sydney (D.G.M.), and the Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC (D.G.M.) - both in Australia
| | - Igor Ulitsky
- From the Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (V.S.G., M.C.O., J.K.G., K.V.G., E.E., B.W., F.A., D.G.M., A.O.-L.), and the Department of Neurology, Brigham and Women's Hospital (V.S.G.), the Division of Genetics and Genomics, Boston Children's Hospital (V.S.G., A.O.-L.), and Harvard Medical School (V.S.G., A.O.-L.), Boston - all in Massachusetts; L'institut du Thorax (K.R., B.I., S.B., B.C.), Service de Radiopediatrie (A.P.), and Service de Génétique Médicale (B.I., S.B., B.C.), Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, Centre National de la Recherche Scientifique (CNRS), INSERM, Nantes, and Institut Neuromyogène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, CNRS, INSERM (N.C., D.S.), and Service de Génétique, Hospices Civils de Lyon (N.C., P.M., D.S.), Lyon - all in France; the Departments of Neurology (E.Y., K.-M.L., M.C.A., G.L.C.) and Pharmacology (G.L.C.), Northwestern University Feinberg School of Medicine, Chicago; the Undiagnosed Diseases Network and the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston (C.A.B., D.R.M., H.D., J.A.R., L.T.E., S. Ketkar), and the Department of Pediatrics, University of Texas Southwestern Medical Center (S. Kayani), and Coalition to Cure CHD2 (B.B.), Dallas; the Departments of Immunology and Regenerative Biology and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel (Y.S., I.U.); and the Centre for Population Genomics, Garvan Institute of Medical Research and University of New South Wales Sydney, Sydney (D.G.M.), and the Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC (D.G.M.) - both in Australia
| | - Gemma L Carvill
- From the Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (V.S.G., M.C.O., J.K.G., K.V.G., E.E., B.W., F.A., D.G.M., A.O.-L.), and the Department of Neurology, Brigham and Women's Hospital (V.S.G.), the Division of Genetics and Genomics, Boston Children's Hospital (V.S.G., A.O.-L.), and Harvard Medical School (V.S.G., A.O.-L.), Boston - all in Massachusetts; L'institut du Thorax (K.R., B.I., S.B., B.C.), Service de Radiopediatrie (A.P.), and Service de Génétique Médicale (B.I., S.B., B.C.), Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, Centre National de la Recherche Scientifique (CNRS), INSERM, Nantes, and Institut Neuromyogène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, CNRS, INSERM (N.C., D.S.), and Service de Génétique, Hospices Civils de Lyon (N.C., P.M., D.S.), Lyon - all in France; the Departments of Neurology (E.Y., K.-M.L., M.C.A., G.L.C.) and Pharmacology (G.L.C.), Northwestern University Feinberg School of Medicine, Chicago; the Undiagnosed Diseases Network and the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston (C.A.B., D.R.M., H.D., J.A.R., L.T.E., S. Ketkar), and the Department of Pediatrics, University of Texas Southwestern Medical Center (S. Kayani), and Coalition to Cure CHD2 (B.B.), Dallas; the Departments of Immunology and Regenerative Biology and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel (Y.S., I.U.); and the Centre for Population Genomics, Garvan Institute of Medical Research and University of New South Wales Sydney, Sydney (D.G.M.), and the Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC (D.G.M.) - both in Australia
| | - Anne O'Donnell-Luria
- From the Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (V.S.G., M.C.O., J.K.G., K.V.G., E.E., B.W., F.A., D.G.M., A.O.-L.), and the Department of Neurology, Brigham and Women's Hospital (V.S.G.), the Division of Genetics and Genomics, Boston Children's Hospital (V.S.G., A.O.-L.), and Harvard Medical School (V.S.G., A.O.-L.), Boston - all in Massachusetts; L'institut du Thorax (K.R., B.I., S.B., B.C.), Service de Radiopediatrie (A.P.), and Service de Génétique Médicale (B.I., S.B., B.C.), Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, Centre National de la Recherche Scientifique (CNRS), INSERM, Nantes, and Institut Neuromyogène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, CNRS, INSERM (N.C., D.S.), and Service de Génétique, Hospices Civils de Lyon (N.C., P.M., D.S.), Lyon - all in France; the Departments of Neurology (E.Y., K.-M.L., M.C.A., G.L.C.) and Pharmacology (G.L.C.), Northwestern University Feinberg School of Medicine, Chicago; the Undiagnosed Diseases Network and the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston (C.A.B., D.R.M., H.D., J.A.R., L.T.E., S. Ketkar), and the Department of Pediatrics, University of Texas Southwestern Medical Center (S. Kayani), and Coalition to Cure CHD2 (B.B.), Dallas; the Departments of Immunology and Regenerative Biology and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel (Y.S., I.U.); and the Centre for Population Genomics, Garvan Institute of Medical Research and University of New South Wales Sydney, Sydney (D.G.M.), and the Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC (D.G.M.) - both in Australia
| |
Collapse
|
21
|
Henninger JE, Young RA. An RNA-centric view of transcription and genome organization. Mol Cell 2024; 84:3627-3643. [PMID: 39366351 PMCID: PMC11495847 DOI: 10.1016/j.molcel.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 10/06/2024]
Abstract
Foundational models of transcriptional regulation involve the assembly of protein complexes at DNA elements associated with specific genes. These assemblies, which can include transcription factors, cofactors, RNA polymerase, and various chromatin regulators, form dynamic spatial compartments that contribute to both gene regulation and local genome architecture. This DNA-protein-centric view has been modified with recent evidence that RNA molecules have important roles to play in gene regulation and genome structure. Here, we discuss evidence that gene regulation by RNA occurs at multiple levels that include assembly of transcriptional complexes and genome compartments, feedback regulation of active genes, silencing of genes, and control of protein kinases. We thus provide an RNA-centric view of transcriptional regulation that must reside alongside the more traditional DNA-protein-centric perspectives on gene regulation and genome architecture.
Collapse
Affiliation(s)
- Jonathan E Henninger
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
22
|
Luo H, Chong H, Wang Y, Gao Y, Xie W, Wang D. Screening lncRNAs essential for cardiomyocyte proliferation by integrative profiling of lncRNAs and mRNAs associated with heart development. Exp Cell Res 2024; 442:114277. [PMID: 39383929 DOI: 10.1016/j.yexcr.2024.114277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/28/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND The proliferation potential of mammalian cardiomyocytes declines markedly shortly after birth. Both long non-coding RNAs (lncRNAs) and mRNAs demonstrate altered expression patterns during cardiac development. However, the role of lncRNAs in the cell cycle arrest of cardiomyocytes remains inadequately understood. METHOD The expression pattern of lncRNAs and mRNAs was analyzed in mouse hearts exhibiting varying regenerative potentials on postnatal days (P) 1, 7, and 28. Weighted correlation network analysis (WGCNA) was employed to elucidate the co-expression relationship between lncRNAs and mRNAs. Protein-protein interaction (PPI) network was built using the STRING database, and hub lncRNAs were identified by CytoHubba. Molecular Complex Detection (MCODE) was used to screen core modules of the PPI network in Cytoscape. Upstream lncRNAs and miRNAs which may regulate mRNAs were predicted using miRTarBase and AnnoLnc2, respectively. Myocardial infarction (MI) was induced by ligation of the left anterior descending coronary artery. RESULTS Compared with the P1 heart, 618 mRNAs and 414 lncRNAs displayed. transcriptional changes in the P7 heart, while 2358 mRNAs and 1290 lncRNAs showed from P7 to P28. Gene Ontology (GO) analysis revealed that module 1 in the both comparisons was enriched in the mitotic cell cycle process. 2810408I11Rik and 2010110K18Rik were identified as hub lncRNAs and their effects on the proliferation of cardiomyocytes were verified in vitro. Additionally, four lncRNA-miRNA-mRNA regulatory axes were predicted to explain the mechanism by which 2810408I11Rik and 2010110K18Rik regulate cardiomyocyte proliferation. Notably, the overexpression of 2810408I11Rik enhances cardiomyocyte proliferation and heart regeneration in the adult heart following MI. CONCLUSION This study systematically analyzed the landscape of lncRNAs and mRNAs at P1, P7, and P28. These findings may enhance our understanding of the framework for heart development and could have significant implications for heart regeneration.
Collapse
Affiliation(s)
- Hanqing Luo
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hoshun Chong
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yapeng Wang
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Chinese Academy of Medical Science & Peking Union Medical College, China
| | - Yaxuan Gao
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wei Xie
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Dongjin Wang
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
23
|
Pourmehran Y, Sadri F, Hosseini SF, Mohammadi Y, Rezaei Z. Exploring the influence of non-coding RNAs on NF-κB signaling pathway regulation in ulcerative colitis. Biomed Pharmacother 2024; 179:117390. [PMID: 39243424 DOI: 10.1016/j.biopha.2024.117390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
The gastrointestinal tract is chronically inflamed in ulcerative colitis (UC), which has a complicated etiology involving immunological, environmental, and genetic factors. The inflammatory response that is typical of UC is significantly regulated via the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway. Latest research has displayed that NF-κB signaling is controlled by three main types of non-coding RNAs (ncRNAs): circular RNAs (circRNAs), long non-coding RNAs (lncRNAs), and microRNAs (miRNAs). These ncRNAs can change the expression of key genes within the NF-κB pathway by acting as molecular sponges, transcriptional regulators, and epigenetic modifiers. This review synthesizes current knowledge on the functions by which ncRNAs modulate NF-κB signaling in UC, discusses their potential as biomarkers for disease prognosis and diagnosis, and explores their therapeutic potential. Understanding the intricate interactions between ncRNAs and NF-κB signaling may provide novel insights into UC pathogenesis and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Yasaman Pourmehran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Farzad Sadri
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Seyede Fatemeh Hosseini
- Faculty member, Tabas School of Nursing, Birjand University of medical sciences, Birjand, Iran
| | - Yaser Mohammadi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zohreh Rezaei
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran; Department of Biology, University of Sistan and Baluchestan, ZahedanIran.
| |
Collapse
|
24
|
Li Q, Wu J, Mao X. The roles of different gene expression regulators in acoustic variation in the intermediate horseshoe bat revealed by long-read and short-read RNA sequencing data. Curr Zool 2024; 70:575-588. [PMID: 39463690 PMCID: PMC11502156 DOI: 10.1093/cz/zoad045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2024] Open
Abstract
Gene expression changes contribute greatly to phenotypic variations in nature. Studying patterns of regulators of gene expression is important to fully understand the molecular mechanism underlying phenotypic variations. In horseshoe bats, the cochleae are finely tuned to echoes of call frequency. Here, using 2 recently diverged subspecies of the intermediate horseshoe bat (Rhinolophus affinis hainanus and R. a. himalayanus) with great acoustic variations as the system, we aim to explore relative roles of different regulators of gene expression (differential gene expression, alternative splicing (AS) and long non-coding RNAs (lncRNAs)) in phenotypic variation with a combination of Illumina short-read and Nanopore long-read RNA-seq data from the cochlea. Compared to R. a. hainanus, R. a. himalayanus exhibited much more upregulated differentially expressed genes (DEGs) and multiple of them may play important roles in the maintenance and damage repair of auditory hair cells. We identified 411 differentially expressed lncRNAs and their target DEGs upregulated in R. a. himalayanus were also mainly involved in a protective mechanism for auditory hair cells. Using 3 different methods of AS analysis, we identified several candidate alternatively spliced genes (ASGs) that expressed different isoforms which may be associated with acoustic divergence of the 2 subspecies. We observed significantly less overlap than expected between DEGs and ASGs, supporting complementary roles of differential gene expression and AS in generating phenotypic variations. Overall, our study highlights the importance of a combination of short-read and long-read RNA-seq data in examining the regulation of gene expression changes responsible for phenotypic variations.
Collapse
Affiliation(s)
- Qianqian Li
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200062, China
| | - Jianyu Wu
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200062, China
| | - Xiuguang Mao
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200062, China
| |
Collapse
|
25
|
Lin Y, Zhao W, Pu R, Lv Z, Xie H, Li Y, Zhang Z. Long non‑coding RNAs as diagnostic and prognostic biomarkers for colorectal cancer (Review). Oncol Lett 2024; 28:486. [PMID: 39185489 PMCID: PMC11342420 DOI: 10.3892/ol.2024.14619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
Colorectal cancer (CRC) ranks as the 3rd most common cancer globally and is the 2nd leading cause of cancer-related death. Owing to the lack of specific early symptoms and the limitations of existing early diagnostic methods, most patients with CRC are diagnosed at advanced stages. To overcome these challenges, researchers have increasingly focused on molecular biomarkers, with particular interest in long non-coding RNAs (lncRNAs). These non-protein-coding RNAs, which exceed 200 nucleotides in length, play critical roles in the development and progression of CRC. The stability and detectability of lncRNAs in the circulatory system make them promising candidate biomarkers. The analysis of circulating lncRNAs in peripheral blood represents a potential option for minimally invasive diagnostic tests based on liquid biopsy samples. The present review aimed to evaluate the efficacy of lncRNAs with altered expression levels in peripheral blood as diagnostic markers for CRC. Additionally, the clinical significance of lncRNAs as prognostic markers for this disease were summarized.
Collapse
Affiliation(s)
- Yuning Lin
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| | - Wenzhen Zhao
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| | - Ruonan Pu
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| | - Zhenyi Lv
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| | - Hongyan Xie
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| | - Ying Li
- Department of Ultrasonography, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Zhongying Zhang
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| |
Collapse
|
26
|
Suri C, Swarnkar S, Bhaskar LVKS, Verma HK. Non-Coding RNA as a Biomarker in Lung Cancer. Noncoding RNA 2024; 10:50. [PMID: 39452836 PMCID: PMC11514784 DOI: 10.3390/ncrna10050050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
INTRODUCTION Lung cancer remains one of the most prevalent and deadly cancers globally, with high mortality rates largely due to late-stage diagnosis, aggressive progression, and frequent recurrence. Despite advancements in diagnostic techniques and therapeutic interventions, the overall prognosis for lung cancer patients continues to be dismal. METHOD Emerging research has identified non-coding RNAs (ncRNAs), including microRNAs, long non-coding RNAs, and circular RNAs, as critical regulators of gene expression, significantly influencing cancer biology. These ncRNAs play pivotal roles in various aspects of lung cancer pathogenesis, including tumor initiation, progression, metastasis, and resistance to therapy. RESULTS We provide a comprehensive analysis of the current understanding of ncRNAs in lung cancer, emphasizing their potential as biomarkers for early diagnosis, prognostication, and the prediction of the therapeutic response. We explore the biological functions of ncRNAs, their involvement in key oncogenic pathways, and the molecular mechanisms by which they modulate gene expression and cellular processes in lung cancer. Furthermore, this review highlights recent advances in ncRNA-based diagnostic tools and therapeutic strategies, such as miRNA mimics and inhibitors, lncRNA-targeted therapies, and circRNA-modulating approaches, offering promising avenues for personalized medicine. CONCLUSION Finally, we discuss the challenges and future directions in ncRNA research, including the need for large-scale validation studies and the development of efficient delivery systems for ncRNA-based therapies. This review underscores the potential of ncRNAs to revolutionize lung cancer management by providing novel diagnostic and therapeutic options that could improve patient outcomes.
Collapse
Affiliation(s)
- Chahat Suri
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada;
| | - Shashikant Swarnkar
- Department of Biochemistry, C.C.M. Medical College, Bhilai 490020, Chhattisgarh, India;
| | - LVKS Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur 495009, Chhattisgarh, India;
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of lungs Health and Immunity, Comprehensive Pnemology Center, Helmholtz Zentrum, Neuherberg, 85764 Munich, Germany
- Lung Health and Immunity, Comprehensive Pneumology Center, Helmholtz Zentrum, Neuherberg, 85764 Munich, Germany
| |
Collapse
|
27
|
Niazi F, Parker KA, Mason SJ, Singh S, Schiemann WP, Valadkhan S. Induction of Invasive Basal Phenotype in Triple-Negative Breast Cancers by Long Noncoding RNA BORG. Cancers (Basel) 2024; 16:3241. [PMID: 39335212 PMCID: PMC11430157 DOI: 10.3390/cancers16183241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/30/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES Long noncoding RNAs (lncRNAs) are known to play key roles in breast cancers; however, detailed mechanistic studies of lncRNA function have not been conducted in large cohorts of breast cancer tumors, nor has inter-donor and inter-subtype variability been taken into consideration for these analyses. Here we provide the first identification and annotation of the human BORG lncRNA gene. METHODS/RESULTS Using multiple tumor cohorts of human breast cancers, we show that while BORG expression is strongly induced in breast tumors as compared to normal breast tissues, the extent of BORG induction varies widely between breast cancer subtypes and even between different tumors within the same subtype. Elevated levels of BORG in breast tumors are associated with the acquisition of core cancer aggression pathways, including those associated with basal tumor and pluripotency phenotypes and with epithelial-mesenchymal transition (EMT) programs. While a subset of BORG-associated pathways was present in high BORG-expressing tumors across all breast cancer subtypes, many were specific to tumors categorized as triple-negative breast cancers. Finally, we show that genes induced by heterologous expression of BORG in murine models of TNBC both in vitro and in vivo strongly overlap with those associated with high BORG expression levels in human TNBC tumors. CONCLUSION Our findings implicate human BORG as a novel driver of the highly aggressive basal TNBC tumor phenotype.
Collapse
Affiliation(s)
- Farshad Niazi
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA; (F.N.); (S.J.M.)
| | - Kimberly A. Parker
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA;
| | - Sara J. Mason
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA; (F.N.); (S.J.M.)
| | - Salendra Singh
- Center for Immunotherapy and Precision Immuno-Oncology (CITI), Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - William P. Schiemann
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA;
| | - Saba Valadkhan
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA; (F.N.); (S.J.M.)
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA;
| |
Collapse
|
28
|
Yan Z, Chu W, Sheng Y, Tang K, Wang S, Liu Y, Wong WF. Integrating Deep Learning and Synthetic Biology: A Co-Design Approach for Enhancing Gene Expression via N-Terminal Coding Sequences. ACS Synth Biol 2024; 13:2960-2968. [PMID: 39229974 DOI: 10.1021/acssynbio.4c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
N-terminal coding sequence (NCS) influences gene expression by impacting the translation initiation rate. The NCS optimization problem is to find an NCS that maximizes gene expression. The problem is important in genetic engineering. However, current methods for NCS optimization such as rational design and statistics-guided approaches are labor-intensive yield only relatively small improvements. This paper introduces a deep learning/synthetic biology codesigned few-shot training workflow for NCS optimization. Our method utilizes k-nearest encoding followed by word2vec to encode the NCS, then performs feature extraction using attention mechanisms, before constructing a time-series network for predicting gene expression intensity, and finally a direct search algorithm identifies the optimal NCS with limited training data. We took green fluorescent protein (GFP) expressed by Bacillus subtilis as a reporting protein of NCSs, and employed the fluorescence enhancement factor as the metric of NCS optimization. Within just six iterative experiments, our model generated an NCS (MLD62) that increased average GFP expression by 5.41-fold, outperforming the state-of-the-art NCS designs. Extending our findings beyond GFP, we showed that our engineered NCS (MLD62) can effectively boost the production of N-acetylneuraminic acid by enhancing the expression of the crucial rate-limiting GNA1 gene, demonstrating its practical utility. We have open-sourced our NCS expression database and experimental procedures for public use.
Collapse
Affiliation(s)
- Zhanglu Yan
- School of Computing, National University of Singapore, Singapore 117417, Singapore
| | - Weiran Chu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, PR China
| | - Yuhua Sheng
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, PR China
| | - Kaiwen Tang
- School of Computing, National University of Singapore, Singapore 117417, Singapore
| | - Shida Wang
- Department of Mathematics, National University of Singapore, Singapore 119077, Singapore
| | - Yanfeng Liu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, PR China
| | - Weng-Fai Wong
- School of Computing, National University of Singapore, Singapore 117417, Singapore
| |
Collapse
|
29
|
Zhao X, Zhao F, Yan L, Wu J, Fang Y, Wang C, Xin Z, Yang X. Long non-coding ribonucleic acid SNHG18 induced human granulosa cell apoptosis via disruption of glycolysis in ovarian aging. J Ovarian Res 2024; 17:185. [PMID: 39272131 PMCID: PMC11395969 DOI: 10.1186/s13048-024-01510-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND In-depth understanding of dynamic expression profiles of human granulosa cells (GCs) during follicular development will contribute to the diagnostic and targeted interventions for female infertility. However, genome-scale analysis of long non-coding ribonucleic acid (lncRNA) in GCs across diverse developmental stages is challenging. Meanwhile, further research is needed to determine how aberrant lncRNA expression participates in ovarian diseases. METHODS Granulosa cell-related lncRNAs data spanning five follicular development stages were retrieved and filtered from the NCBI dataset (GSE107746). Stage-specific lncRNA expression patterns and mRNA-lncRNA co-expression networks were identified with bioinformatic approaches. Subsequently, the expression pattern of SNHG18 was detected in GCs during ovarian aging. And SNHG18 siRNA or overexpression plasmids were transfected to SVOG cells in examining the regulatory roles of SNHG18 in GC proliferation and apoptosis. Moreover, whether PKCɛ/SNHG18 signaling take part in GC glycolysis via ENO1 were verified in SVOG cells. RESULTS We demonstrated that GC-related lncRNAs were specifically expressed across different developmental stages, and coordinated crucial biological functions like mitotic cell cycle and metabolic processes in the folliculogenesis. Thereafter, we noticed a strong correlation of PRKCE and SNHG18 expression in our analysis. With downregulated SNHG18 of GCs identified in the context of ovarian aging, SNHG18 knockdown could further induce cell apoptosis, retard cell proliferation and exacerbate DNA damage in SVOG cell. Moreover, downregulated PKCɛ/SNHG18 pathway interrupted the SVOG cell glycolysis by lowering the ENO1 expression. CONCLUSIONS Altogether, our results revealed that folliculogenesis-related lncRNA SNHG18 participated in the pathogenesis of ovarian aging, which may provide novel biomarkers for ovarian function and new insights for the infertility treatment.
Collapse
Affiliation(s)
- Xuehan Zhao
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, China
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Feiyan Zhao
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Long Yan
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Jiaqi Wu
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, China
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Fang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, China
| | - Cong Wang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, China
| | - Zhimin Xin
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, China.
| | - Xiaokui Yang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, China.
| |
Collapse
|
30
|
Díaz CR, Hernández-Huerta MT, Mayoral LPC, Villegas MEA, Zenteno E, Cruz MM, Mayoral EPC, Del Socorro Pina Canseco M, Andrade GM, Castellanos MÁ, Matías Salvador JM, Cruz Parada E, Martínez Barras A, Cruz Fernández JN, Scott-Algara D, Pérez-Campos E. Non-Coding RNAs and Innate Immune Responses in Cancer. Biomedicines 2024; 12:2072. [PMID: 39335585 PMCID: PMC11429077 DOI: 10.3390/biomedicines12092072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/27/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Non-coding RNAs (ncRNAs) and the innate immune system are closely related, acting as defense mechanisms and regulating gene expression and innate immunity. Both are modulators in the initiation, development and progression of cancer. We aimed to review the major types of ncRNAs, including small interfering RNAs (siRNAs), microRNAs (miRNAs), piwi-interacting RNAs (piRNAs), and long non-coding RNAs (lncRNAs), with a focus on cancer, innate immunity, and inflammation. We found that ncRNAs are closely related to innate immunity, epigenetics, chronic inflammation, and cancer and share properties such as inducibility, specificity, memory, and transfer. These similarities and interrelationships suggest that ncRNAs and modulators of trained immunity, together with the control of chronic inflammation, can be combined to develop novel therapeutic approaches for personalized cancer treatment. In conclusion, the close relationship between ncRNAs, the innate immune system, and inflammation highlights their importance in cancer pathways and their potential as targets for novel therapeutic strategies.
Collapse
Affiliation(s)
| | - María Teresa Hernández-Huerta
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCyT), Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca (UABJO), Oaxaca 68020, Mexico
| | - Laura Pérez-Campos Mayoral
- Centro de Investigación, Facultad de Medicina UNAM-UABJO, Universidad Autónoma "Benito Juárez" de Oaxaca (UABJO), Oaxaca 68020, Mexico
| | | | - Edgar Zenteno
- Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Ciudad de México 04510, Mexico
| | | | - Eduardo Pérez-Campos Mayoral
- Centro de Investigación, Facultad de Medicina UNAM-UABJO, Universidad Autónoma "Benito Juárez" de Oaxaca (UABJO), Oaxaca 68020, Mexico
| | - María Del Socorro Pina Canseco
- Centro de Investigación, Facultad de Medicina UNAM-UABJO, Universidad Autónoma "Benito Juárez" de Oaxaca (UABJO), Oaxaca 68020, Mexico
| | - Gabriel Mayoral Andrade
- Centro de Investigación, Facultad de Medicina UNAM-UABJO, Universidad Autónoma "Benito Juárez" de Oaxaca (UABJO), Oaxaca 68020, Mexico
| | | | | | - Eli Cruz Parada
- Tecnológico Nacional de México/IT Oaxaca, Oaxaca 68030, Mexico
| | | | - Jaydi Nora Cruz Fernández
- Centro de Investigación, Facultad de Medicina UNAM-UABJO, Universidad Autónoma "Benito Juárez" de Oaxaca (UABJO), Oaxaca 68020, Mexico
| | - Daniel Scott-Algara
- Unité de Biologie Cellulaire des Lymphocytes and Direction of International Affairs, Institut Pasteur, 75015 Paris, France
| | - Eduardo Pérez-Campos
- Tecnológico Nacional de México/IT Oaxaca, Oaxaca 68030, Mexico
- Laboratorio de Patología Clínica "Dr. Eduardo Pérez Ortega", Oaxaca 68000, Mexico
| |
Collapse
|
31
|
Desideri F, Grazzi A, Lisi M, Setti A, Santini T, Colantoni A, Proietti G, Carvelli A, Tartaglia GG, Ballarino M, Bozzoni I. CyCoNP lncRNA establishes cis and trans RNA-RNA interactions to supervise neuron physiology. Nucleic Acids Res 2024; 52:9936-9952. [PMID: 38989616 PMCID: PMC11381359 DOI: 10.1093/nar/gkae590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/30/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024] Open
Abstract
The combination of morphogenetic and transcription factors together with the synergic aid of noncoding RNAs and their cognate RNA binding proteins contribute to shape motor neurons (MN) identity. Here, we extend the noncoding perspective of human MN, by detailing the molecular and biological activity of CyCoNP (as Cytoplasmic Coordinator of Neural Progenitors) a highly expressed and MN-enriched human lncRNA. Through in silico prediction, in vivo RNA purification and loss of function experiments followed by RNA-sequencing, we found that CyCoNP sustains a specific neuron differentiation program, required for the physiology of both neuroblastoma cells and hiPSC-derived MN, which mainly involves miR-4492 and NCAM1 mRNA. We propose a novel lncRNA-mediated 'dual mode' of action, in which CyCoNP acts in trans as a classical RNA sponge by sequestering miR-4492 from its pro-neuronal targets, including NCAM1 mRNA, and at the same time it plays an additional role in cis by interacting with NCAM1 mRNA and regulating the availability and localization of the miR-4492 in its proximity. These data highlight novel insights into the noncoding RNA-mediated control of human neuron physiology and point out the importance of lncRNA-mediated interactions for the spatial distribution of regulatory molecules.
Collapse
Affiliation(s)
- Fabio Desideri
- Center for Life Nano- & Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Alessandro Grazzi
- Center for Life Nano- & Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Michela Lisi
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Adriano Setti
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Tiziana Santini
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Alessio Colantoni
- Center for Life Nano- & Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Gabriele Proietti
- Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
| | - Andrea Carvelli
- Department of Neuroscience, The Scripps Research institute, La Jolla, CA 92037, USA
| | - Gian Gaetano Tartaglia
- Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
| | - Monica Ballarino
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Irene Bozzoni
- Center for Life Nano- & Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
32
|
Bedre R, Kavuri NR, Ramasamy M, Irigoyen S, Nelson A, Rajkumar MS, Mandadi K. Long intergenic non-coding RNAs modulate proximal protein-coding gene expression and tolerance to Candidatus Liberibacter spp. in potatoes. Commun Biol 2024; 7:1095. [PMID: 39242868 PMCID: PMC11379938 DOI: 10.1038/s42003-024-06763-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 08/21/2024] [Indexed: 09/09/2024] Open
Abstract
Long intergenic non-coding RNAs (lincRNAs) are emerging as regulators of protein-coding genes (PCGs) in many plant and animal developmental processes and stress responses. In this study, we characterize the genome-wide lincRNAs in potatoes responsive to a vascular bacterial disease presumably caused by Candidatus Liberibacter solanacearum (CLso). Approximately 4397 lincRNAs were detected in healthy and infected potato plants at various stages of zebra chip (ZC) disease progression. Of them, ~65% (2844) were novel lincRNAs, and less than 1% (9) were orthologs of Arabidopsis and rice based on reciprocal BLAST analysis, suggesting species-specific expansion. Among the proximal lincRNAs within 50 kbp from a PCG, ~49% were transcribed from the same strand, while ~39% and ~15% followed convergent (head-to-head) and divergent (tail-to-tail) orientations, respectively. Approximately 30% (1308) were differentially expressed following CLso infection, with substantial changes occurring 21 days after infection (DAI). Weighted Gene Co-expression Network Analysis (WGCNA) of lincRNAs and PCGs identified 46 highly correlated lincRNA-PCG pairs exhibiting co-up or co-downregulation. Furthermore, overexpression of selected lincRNAs in transgenic potato hairy roots resulted in perturbation of neighboring PCG expression and conferred tolerance to CLso infection. Our results provide novel insights into potato lincRNAs' identity, expression dynamics, and functional relevance to CLso infection.
Collapse
Affiliation(s)
- Renesh Bedre
- Texas A&M AgriLife Research & Extension Center, Texas A&M University System, Weslaco, TX, USA
| | - Naga Rajitha Kavuri
- Texas A&M AgriLife Research & Extension Center, Texas A&M University System, Weslaco, TX, USA
- Department of Plant Pathology and Microbiology, Texas A&M University System, College Station, TX, USA
| | - Manikandan Ramasamy
- Texas A&M AgriLife Research & Extension Center, Texas A&M University System, Weslaco, TX, USA
| | - Sonia Irigoyen
- Texas A&M AgriLife Research & Extension Center, Texas A&M University System, Weslaco, TX, USA
| | - Andrew Nelson
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
| | - Mohan Singh Rajkumar
- Texas A&M AgriLife Research & Extension Center, Texas A&M University System, Weslaco, TX, USA
| | - Kranthi Mandadi
- Texas A&M AgriLife Research & Extension Center, Texas A&M University System, Weslaco, TX, USA.
- Department of Plant Pathology and Microbiology, Texas A&M University System, College Station, TX, USA.
- Institute for Advancing Health Through Agriculture, Texas A&M AgriLife, College Station, TX, USA.
| |
Collapse
|
33
|
Yoon JH, Byun HJ, Kim SY, Jung DH, Lee SK. Exosomal LINC00853 promotes progression of gastric cancer via the MAP17/PDZK1/AKT signaling pathway. Noncoding RNA Res 2024; 9:876-886. [PMID: 38586313 PMCID: PMC10997811 DOI: 10.1016/j.ncrna.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024] Open
Abstract
Although rare, there is ongoing research into biomarkers that predict the onset and recurrence of gastric cancer, particularly focusing on substances found in exosomes. Long non-coding RNAs (lncRNAs) have garnered attention for their potential in diagnosing gastric cancer. This study investigates the role of lncRNAs in gastric cancer, focusing on their presence in exosomes as potential biomarkers for the disease's onset and recurrence. We utilized the ArrayStar Human LncRNA array 2.0 to analyze lncRNA expression in tissues from early-stage gastric cancer patients. Our analysis highlighted LINC00853, which was significantly upregulated in cancer tissues and implicated in promoting epithelial-mesenchymal transition via the MAP17/PDZK1/AKT pathway. Functional studies on AGS and MKN74 gastric cancer cell lines demonstrated that LINC00853 facilitates cell proliferation, invasion, and migration. Additionally, RNA immunoprecipitation and electrophoretic mobility shift assays confirmed LINC00853 interaction with MAP17. Importantly, LINC00853 was also detected in exosomes from both patient samples and cell lines, and its downregulation led to decreased tumorigenicity in AGS cells. These findings suggest that both cellular and exosomal LINC00853 contribute to gastric cancer pathogenesis and may serve as valuable biomarkers for the disease.
Collapse
Affiliation(s)
| | | | - Seo Yeon Kim
- Department of Internal Medicine, Yonsei Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
| | - Da Hyun Jung
- Department of Internal Medicine, Yonsei Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang Kil Lee
- Department of Internal Medicine, Yonsei Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
34
|
Camilleri-Robles C, Amador R, Tiebe M, Teleman A, Serras F, Guigó R, Corominas M. Long non-coding RNAs involved in Drosophila development and regeneration. NAR Genom Bioinform 2024; 6:lqae091. [PMID: 39157585 PMCID: PMC11327875 DOI: 10.1093/nargab/lqae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024] Open
Abstract
The discovery of functional long non-coding RNAs (lncRNAs) changed their initial concept as transcriptional noise. LncRNAs have been identified as regulators of multiple biological processes, including chromatin structure, gene expression, splicing, mRNA degradation, and translation. However, functional studies of lncRNAs are hindered by the usual lack of phenotypes upon deletion or inhibition. Here, we used Drosophila imaginal discs as a model system to identify lncRNAs involved in development and regeneration. We examined a subset of lncRNAs expressed in the wing, leg, and eye disc development. Additionally, we analyzed transcriptomic data from regenerating wing discs to profile the expression pattern of lncRNAs during tissue repair. We focused on the lncRNA CR40469, which is upregulated during regeneration. We generated CR40469 mutant flies that developed normally but showed impaired wing regeneration upon cell death induction. The ability of these mutants to regenerate was restored by the ectopic expression of CR40469. Furthermore, we found that the lncRNA CR34335 has a high degree of sequence similarity with CR40469 and can partially compensate for its function during regeneration in the absence of CR40469. Our findings point to a potential role of the lncRNA CR40469 in trans during the response to damage in the wing imaginal disc.
Collapse
Affiliation(s)
- Carlos Camilleri-Robles
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Raziel Amador
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Marcel Tiebe
- German Cancer Research Center (DKFZ) Heidelberg, Division B140, 69120 Heidelberg, Germany
| | - Aurelio A Teleman
- German Cancer Research Center (DKFZ) Heidelberg, Division B140, 69120 Heidelberg, Germany
| | - Florenci Serras
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain
| | - Montserrat Corominas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
35
|
Wu Z, Zou J, Xie H, Wang J, Huang Y, Liu F, Xing C. LncRNA ALMS1-IT1 modulates ferroptosis and immune evasion in colorectal cancer through activating STAT3. J Cell Mol Med 2024; 28:e70103. [PMID: 39334527 PMCID: PMC11436373 DOI: 10.1111/jcmm.70103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/31/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant malignancy within the digestive system, characterized by high incidence and mortality rates. In recent years, molecular targeted therapy has been introduced as a supplementary strategy in CRC management, complementing traditional modalities such as surgery, radiation and chemotherapy. The identification of novel therapeutic targets for CRC remains critically important. Ferroptosis, a unique form of programmed cell death distinct from apoptosis and necrosis, is characterized by cellular damage resulting from iron-induced lipid peroxidation, leading to cell death. This study utilizes a combination of bioinformatics analysis and clinical specimen validation to demonstrate that the long non-coding RNA (lncRNA) ALMS1-IT1 is significantly upregulated in CRC tissues and strongly associated with ferroptosis. Through a series of experimental investigations, we have determined that ALMS1-IT1 negatively regulates ferroptosis in CRC cells, thereby promoting cancer growth and metastasis, acting as an oncogenic factor. Furthermore, we explored the molecular interactions of ALMS1-IT1, revealing its role in activating STAT3 protein phosphorylation. This activation enhances the immune evasion capabilities of CRC cells. Rescue experiments indicated that STAT3 activation is essential for ALMS1-IT1's suppression of ferroptosis, immune evasion and oncogenic behaviour in CRC. Our findings underscore the critical biological role of ALMS1-IT1 in the progression of CRC and suggest its potential as a target for drug development.
Collapse
Affiliation(s)
- Zhaoying Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Junwei Zou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Hao Xie
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Jie Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Yong Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Fei Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chungen Xing
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
36
|
Stasevich EM, Simonova AV, Bogomolova EA, Murashko MM, Uvarova AN, Zheremyan EA, Korneev KV, Schwartz AM, Kuprash DV, Demin DE. Cut from the same cloth: RNAs transcribed from regulatory elements. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195049. [PMID: 38964653 DOI: 10.1016/j.bbagrm.2024.195049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
A certain degree of chromatin openness is necessary for the activity of transcription-regulating regions within the genome, facilitating accessibility to RNA polymerases and subsequent synthesis of regulatory element RNAs (regRNAs) from these regions. The rapidly increasing number of studies underscores the significance of regRNAs across diverse cellular processes and diseases, challenging the paradigm that these transcripts are non-functional transcriptional noise. This review explores the multifaceted roles of regRNAs in human cells, encompassing rather well-studied entities such as promoter RNAs and enhancer RNAs (eRNAs), while also providing insights into overshadowed silencer RNAs and insulator RNAs. Furthermore, we assess notable examples of shorter regRNAs, like miRNAs, snRNAs, and snoRNAs, playing important roles. Expanding our discourse, we deliberate on the potential usage of regRNAs as biomarkers and novel targets for cancer and other human diseases.
Collapse
Affiliation(s)
- E M Stasevich
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - A V Simonova
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - E A Bogomolova
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Moscow Center for Advanced Studies, Moscow, Russia
| | - M M Murashko
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Moscow Center for Advanced Studies, Moscow, Russia
| | - A N Uvarova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - E A Zheremyan
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - K V Korneev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - A M Schwartz
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - D V Kuprash
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - D E Demin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
37
|
Wen Y, Lei W, Zhang J, Liu Q, Li Z. Advances in understanding the role of lncRNA in ferroptosis. PeerJ 2024; 12:e17933. [PMID: 39210921 PMCID: PMC11361268 DOI: 10.7717/peerj.17933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
LncRNA is a type of transcript with a length exceeding 200 nucleotides, which was once considered junk transcript with no biological function during the transcription process. In recent years, lncRNA has been shown to act as an important regulatory factor at multiple levels of gene expression, affecting various programmed cell death modes including ferroptosis. Ferroptosis, as a new form of programmed cell death, is characterized by a deficiency of cysteine or inactivation of glutathione peroxidase, leading to depletion of glutathione, aggregation of iron ions, and lipid peroxidation. These processes are influenced by many physiological processes, such as the Nrf2 pathway, autophagy, p53 pathway and so on. An increasing number of studies have shown that lncRNA can block the expression of specific molecules through decoy effect, guide specific proteins to function, or promote interactions between molecules as scaffolds. These modes of action regulate the expression of key factors in iron metabolism, lipid metabolism, and antioxidant metabolism through epigenetic or genetic regulation, thereby regulating the process of ferroptosis. In this review, we snapshotted the regulatory mechanism of ferroptosis as an example, emphasizing the regulation of lncRNA on these pathways, thereby helping to fully understand the evolution of ferroptosis in cell fate.
Collapse
Affiliation(s)
- Yating Wen
- Pathogenic Biology Institute, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Wenbo Lei
- Pathogenic Biology Institute, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Jie Zhang
- Pathogenic Biology Institute, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Qiong Liu
- Pathogenic Biology Institute, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Zhongyu Li
- Pathogenic Biology Institute, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| |
Collapse
|
38
|
Refael T, Sudman M, Golan G, Pnueli L, Naik S, Preger-Ben Noon E, Henn A, Kaplan A, Melamed P. An i-motif-regulated enhancer, eRNA and adjacent lncRNA affect Lhb expression through distinct mechanisms in a sex-specific context. Cell Mol Life Sci 2024; 81:361. [PMID: 39158745 PMCID: PMC11335282 DOI: 10.1007/s00018-024-05398-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/21/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Genome-wide studies have demonstrated regulatory roles for diverse non-coding elements, but their precise and interrelated functions have often remained enigmatic. Addressing the need for mechanistic insight, we studied their roles in expression of Lhb which encodes the pituitary gonadotropic hormone that controls reproduction. We identified a bi-directional enhancer in gonadotrope-specific open chromatin, whose functional eRNA (eRNA2) supports permissive chromatin at the Lhb locus. The central untranscribed region of the enhancer contains an iMotif (iM), and is bound by Hmgb2 which stabilizes the iM and directs transcription specifically towards the functional eRNA2. A distinct downstream lncRNA, associated with an inducible G-quadruplex (G4) and iM, also facilitates Lhb expression, following its splicing in situ. GnRH activates Lhb transcription and increased levels of all three RNAs, eRNA2 showing the highest response, while estradiol, which inhibits Lhb, repressed levels of eRNA2 and the lncRNA. The levels of these regulatory RNAs and Lhb mRNA correlate highly in female mice, though strikingly not in males, suggesting a female-specific function. Our findings, which shed new light on the workings of non-coding elements and non-canonical DNA structures, reveal novel mechanisms regulating transcription which have implications not only in the central control of reproduction but also for other inducible genes.
Collapse
Affiliation(s)
- Tal Refael
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Maya Sudman
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Gil Golan
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Lilach Pnueli
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Sujay Naik
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, 3109601, Israel
| | - Ella Preger-Ben Noon
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, 3109601, Israel
| | - Arnon Henn
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ariel Kaplan
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Philippa Melamed
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
39
|
Maqbool M, Hussain MS, Shaikh NK, Sultana A, Bisht AS, Agrawal M. Noncoding RNAs in the COVID-19 Saga: An Untold Story. Viral Immunol 2024; 37:269-286. [PMID: 38968365 DOI: 10.1089/vim.2024.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024] Open
Affiliation(s)
- Mudasir Maqbool
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, India
| | - Md Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Nusrat K Shaikh
- Department of Quality Assurance, Smt. N. M. Padalia Pharmacy College, Ahmedabad, India
| | - Ayesha Sultana
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya University, Mangalore, India
| | - Ajay Singh Bisht
- Shri Guru Ram Rai University School of Pharmaceutical Sciences, Dehradun, India
| | - Mohit Agrawal
- Department of Pharmacology, School of Medical & Allied Sciences, K. R. Mangalam University, Gurugram, India
| |
Collapse
|
40
|
Ma X, Mei S, Wuyun Q, Zhou L, Cai Z, Ding H, Yan J. Super-enhancer-driven LncRNA PPARα-seRNA exacerbates glucolipid metabolism and diabetic cardiomyopathy via recruiting KDM4B. Mol Metab 2024; 86:101978. [PMID: 38950776 PMCID: PMC11277359 DOI: 10.1016/j.molmet.2024.101978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024] Open
Abstract
OBJECTIVE Aberrant glucolipid metabolism in the heart is a characteristic factor in diabetic cardiomyopathy (DbCM). Super-enhancers-driven noncoding RNAs (seRNAs) are emerging as powerful regulators in the progression of cardiac diseases. However, the functions of seRNAs in DbCM have not been fully elucidated. METHODS Super enhancers and their associated seRNAs were screened and identified by H3K27ac ChIP-seq data in the Encyclopedia of DNA Elements (ENCODE) dataset. A dual-luciferase reporter assay was performed to analyze the function of super-enhancers on the transcription of peroxisome proliferator-activated receptor α-related seRNA (PPARα-seRNA). A DbCM mouse model was established using db/db leptin receptor-deficient mice. Adeno-associated virus serotype 9-seRNA (AAV9-seRNA) was injected via the tail vein to evaluate the role of seRNA in DbCM. The underlying mechanism was explored through RNA pull-down, RNA and chromatin immunoprecipitation, and chromatin isolation by RNA purification. RESULTS PPARα-seRNA was regulated by super-enhancers and its levels were increased in response to high glucose and palmitic acid stimulation in cardiomyocytes. Functionally, PPARα-seRNA overexpression aggravated lipid deposition, reduced glucose uptake, and repressed energy production. In contrast, PPARα-seRNA knockdown ameliorated metabolic disorder in vitro. In vivo, overexpression of PPARα-seRNA exacerbated cardiac metabolic disorder and deteriorated cardiac dysfunction, myocardial fibrosis, and hypertrophy in DbCM. Mechanistically, PPARα-seRNA bound to the histone demethylase KDM4B (Lysine-specific demethylase 4B) and decreased H3K9me3 levels in the promoter region of PPARα, ultimately enhancing its transcription. CONCLUSIONS Our study revealed the pivotal function of a super-enhancer-driven long noncoding RNA (lncRNA), PPARα-seRNA, in the deterioration of cardiac function and the exacerbation of metabolic abnormalities in diabetic cardiomyopathy, which recruited KDM4B to the promoter region of PPARα and repression of its transcription. This suggests a promising therapeutic strategy for the treatment of DbCM.
Collapse
Affiliation(s)
- Xiaozhu Ma
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Shuai Mei
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Qidamugai Wuyun
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Li Zhou
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Ziyang Cai
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Hu Ding
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Jiangtao Yan
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China.
| |
Collapse
|
41
|
Rajabi D, Khanmohammadi S, Rezaei N. The role of long noncoding RNAs in amyotrophic lateral sclerosis. Rev Neurosci 2024; 35:533-547. [PMID: 38452377 DOI: 10.1515/revneuro-2023-0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/18/2024] [Indexed: 03/09/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease with a poor prognosis leading to death. The diagnosis and treatment of ALS are inherently challenging due to its complex pathomechanism. Long noncoding RNAs (lncRNAs) are transcripts longer than 200 nucleotides involved in different cellular processes, incisively gene expression. In recent years, more studies have been conducted on lncRNA classes and interference in different disease pathologies, showing their promising contribution to diagnosing and treating neurodegenerative diseases. In this review, we discussed the role of lncRNAs like NEAT1 and C9orf72-as in ALS pathogenesis mechanisms caused by mutations in different genes, including TAR DNA-binding protein-43 (TDP-43), fused in sarcoma (FUS), superoxide dismutase type 1 (SOD1). NEAT1 is a well-established lncRNA in ALS pathogenesis; hence, we elaborate on its involvement in forming paraspeckles, stress response, inflammatory response, and apoptosis. Furthermore, antisense lncRNAs (as-lncRNAs), a key group of transcripts from the opposite strand of genes, including ZEB1-AS1 and ATXN2-AS, are discussed as newly identified components in the pathology of ALS. Ultimately, we review the current standing of using lncRNAs as biomarkers and therapeutic agents and the future vision of further studies on lncRNA applications.
Collapse
Affiliation(s)
- Darya Rajabi
- School of Medicine, Tehran University of Medical Sciences, Felestin St., Keshavarz Blvd., Tehran, 1416634793, Iran
| | - Shaghayegh Khanmohammadi
- School of Medicine, Tehran University of Medical Sciences, Felestin St., Keshavarz Blvd., Tehran, 1416634793, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, No 63, Gharib Ave, Keshavarz Blv, Tehran, 1419733151, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children's Medical Center, No 63, Gharib Ave, Keshavarz Blv, Tehran, 1419733151, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, No 63, Gharib Ave, Keshavarz Blv, Tehran, 1419733151, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children's Medical Center, No 63, Gharib Ave, Keshavarz Blv, Tehran, 1419733151, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Felestin St., Keshavarz Blvd., Tehran, 1416634793, Iran
| |
Collapse
|
42
|
Petroulia S, Hockemeyer K, Tiwari S, Berico P, Shamloo S, Banijamali SE, Vega-Saenz de Miera E, Gong Y, Thandapani P, Wang E, Schulz M, Tsirigos A, Osman I, Aifantis I, Imig J. CRISPR-inhibition screen for lncRNAs linked to melanoma growth and metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604899. [PMID: 39211068 PMCID: PMC11361079 DOI: 10.1101/2024.07.24.604899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Melanoma being one of the most common and deadliest skin cancers, has been rising since the past decade. Patients at advanced stages of the disease have very poor prognoses, as opposed to at the earlier stages. Nowadays the standard-of-care of advanced melanoma is resection followed by immune checkpoint inhibition based immunotherapy. However, a substantial proportion of patients either do not respond or develop resistances. This underscores a need for novel approaches and therapeutic targets as well as a better understanding of the mechanisms of melanoma pathogenesis. Long non-coding RNAs (lncRNAs) comprise a poorly characterized class of functional players and promising targets in promoting malignancy. Certain lncRNAs have been identified to play integral roles in melanoma progression and drug resistances, however systematic screens to uncover novel functional lncRNAs are scarce. Here, we profile differentially expressed lncRNAs in patient derived short-term metastatic cultures and BRAF-MEK-inhibition resistant cells. We conduct a focused growth-related CRISPR-inhibition screen of overexpressed lncRNAs, validate and functionally characterize lncRNA hits with respect to cellular growth, invasive capacities and apoptosis in vitro as well as the transcriptomic impact of our lead candidate the novel lncRNA XLOC_030781. In sum, we extend the current knowledge of ncRNAs and their potential relevance on melanoma. Significance Previously considered as transcriptional noise, lncRNAs have emerged as novel players in regulating many cellular aspects in health and disease including melanoma. However, the number and as well as the extent of functional significance of most lncRNAs remains elusive. We provide a comprehensive strategy to identify functionally relevant lncRNAs in melanoma by combining expression profiling with CRISPR-inhibition growths screens lowering the experimental effort. We also provide a larger resource of differentially expressed lncRNAs with potential implications in melanoma growth and invasion. Our results broaden the characterized of lncRNAs as potential targets for future therapeutic applications.
Collapse
|
43
|
Kim J, Diaz LF, Miller MJ, Leadem B, Krivega I, Dean A. An enhancer RNA recruits KMT2A to regulate transcription of Myb. Cell Rep 2024; 43:114378. [PMID: 38889007 PMCID: PMC11369905 DOI: 10.1016/j.celrep.2024.114378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/24/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
The Myb proto-oncogene encodes the transcription factor c-MYB, which is critical for hematopoiesis. Distant enhancers of Myb form a hub of interactions with the Myb promoter. We identified a long non-coding RNA (Myrlin) originating from the -81-kb murine Myb enhancer. Myrlin and Myb are coordinately regulated during erythroid differentiation. Myrlin TSS deletion using CRISPR-Cas9 reduced Myrlin and Myb expression and LDB1 complex occupancy at the Myb enhancers, compromising enhancer contacts and reducing RNA Pol II occupancy in the locus. In contrast, CRISPRi silencing of Myrlin left LDB1 and the Myb enhancer hub unperturbed, although Myrlin and Myb expressions were downregulated, decoupling transcription and chromatin looping. Myrlin interacts with the KMT2A/MLL1 complex. Myrlin CRISPRi compromised KMT2A occupancy in the Myb locus, decreasing CDK9 and RNA Pol II binding and resulting in Pol II pausing in the Myb first exon/intron. Thus, Myrlin directly participates in activating Myb transcription by recruiting KMT2A.
Collapse
Affiliation(s)
- Juhyun Kim
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Luis F Diaz
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Oregon Health and Sciences University, Portland, OR 97239, USA
| | - Matthew J Miller
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; University of Iowa Medical School, Iowa City, IA 52242, USA
| | - Benjamin Leadem
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; GeneDx, Gaithersburg, MD 20877, USA
| | - Ivan Krivega
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Sonothera, South San Francisco, CA 94080, USA
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
44
|
Liu Y, Lv H, Liu X, Xu L, Li T, Zhou H, Zhu H, Hao C, Lin C, Zhang Y. The RP11-417E7.1/THBS2 signaling pathway promotes colorectal cancer metastasis by activating the Wnt/β-catenin pathway and facilitating exosome-mediated M2 macrophage polarization. J Exp Clin Cancer Res 2024; 43:195. [PMID: 39020380 PMCID: PMC11253389 DOI: 10.1186/s13046-024-03107-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/22/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Metastasis is the major cause of colorectal cancer (CRC) mortality. Emerging evidence suggests that long noncoding RNAs (lncRNAs) drive cancer metastasis and that their regulatory pathways could be targeted for preventing metastasis. However, the underlying mechanisms of lncRNAs in CRC metastasis remain poorly understood. METHODS Microarray analysis was used to screen for differentially expressed lncRNAs. Transwell assays, fibronectin cell adhesion assays, and mouse metastasis models were utilized to evaluate the metastatic capacities of CRC in vitro and in vivo. Chromatin isolation by RNA purification, chromatin immunoprecipitation and chromosome conformation capture were applied to investigate the underlying mechanism involved. qRT‒PCR and transmission electron microscopy were performed to confirm macrophage polarization and the presence of cancer-derived exosomes. RESULTS The lncRNA RP11-417E7.1 was screened and identified as a novel metastasis-associated lncRNA that was correlated with a poor prognosis. RP11-417E7.1 enhances the metastatic capacity of CRC cells in vivo and in vitro. Mechanistically, RP11-417E7.1 binding with High mobility group A1 (HMGA1) promotes neighboring thrombospondin 2 (THBS2) transcription via chromatin loop formation between its promoter and enhancer, which activates the Wnt/β-catenin signaling pathway and facilitates CRC metastasis. Furthermore, exosomes derived from CRC cells transport THBS2 into macrophages, thereby inducing the M2 polarization of macrophages to sustain the prometastatic microenvironment. Notably, netropsin, a DNA-binding drug, suppresses chromatin loop formation mediated by RP11-417E7.1 at the THBS2 locus and significantly inhibits CRC metastasis in vitro and in vivo. CONCLUSIONS This study revealed the novel prometastatic function and mechanism of the lncRNA RP11-417E7.1, which provides a potential prognostic indicator and therapeutic target in CRC.
Collapse
Affiliation(s)
- Yunze Liu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, 221000, China
| | - Heng Lv
- Department of Gastrointestinal Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Xin Liu
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, 77204, USA
| | - Lei Xu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Tiankang Li
- Department of Gastrointestinal Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Hui Zhou
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Hongmei Zhu
- Department of Traditional Chinese Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Chuanchuan Hao
- Department of Traditional Chinese Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Changwei Lin
- Department of Gastrointestinal Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China.
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan, 410013, China.
| | - Yi Zhang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China.
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, 221000, China.
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
45
|
Fahad M, Tariq L, Muhammad S, Wu L. Underground communication: Long non-coding RNA signaling in the plant rhizosphere. PLANT COMMUNICATIONS 2024; 5:100927. [PMID: 38679911 PMCID: PMC11287177 DOI: 10.1016/j.xplc.2024.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as integral gene-expression regulators underlying plant growth, development, and adaptation. To adapt to the heterogeneous and dynamic rhizosphere, plants use interconnected regulatory mechanisms to optimally fine-tune gene-expression-governing interactions with soil biota, as well as nutrient acquisition and heavy metal tolerance. Recently, high-throughput sequencing has enabled the identification of plant lncRNAs responsive to rhizosphere biotic and abiotic cues. Here, we examine lncRNA biogenesis, classification, and mode of action, highlighting the functions of lncRNAs in mediating plant adaptation to diverse rhizosphere factors. We then discuss studies that reveal the significance and target genes of lncRNAs during developmental plasticity and stress responses at the rhizobium interface. A comprehensive understanding of specific lncRNAs, their regulatory targets, and the intricacies of their functional interaction networks will provide crucial insights into how these transcriptomic switches fine-tune responses to shifting rhizosphere signals. Looking ahead, we foresee that single-cell dissection of cell-type-specific lncRNA regulatory dynamics will enhance our understanding of the precise developmental modulation mechanisms that enable plant rhizosphere adaptation. Overcoming future challenges through multi-omics and genetic approaches will more fully reveal the integral roles of lncRNAs in governing plant adaptation to the belowground environment.
Collapse
Affiliation(s)
- Muhammad Fahad
- Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China; Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Leeza Tariq
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Sajid Muhammad
- Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China; Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Liang Wu
- Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China; Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
46
|
Peng Y, Zhu M, Gong Y, Wang C. Identification and functional prediction of lncRNAs associated with intramuscular lipid deposition in Guangling donkeys. Front Vet Sci 2024; 11:1410109. [PMID: 39036793 PMCID: PMC11258529 DOI: 10.3389/fvets.2024.1410109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/30/2024] [Indexed: 07/23/2024] Open
Abstract
Many studies have shown that long non-coding RNAs (lncRNAs) play key regulatory roles in various biological processes. However, the importance and molecular regulatory mechanisms of lncRNAs in donkey intramuscular fat deposition remain to be further investigated. In this study, we used published transcriptomic data from the longissimus dorsi muscle of Guangling donkeys to identify lncRNAs and obtained 196 novel lncRNAs. Compared with the coding genes, the novel lncRNAs and the known lncRNAs exhibited some typical features, such as shorter transcript length and smaller exons. A total of 272 coding genes and 52 lncRNAs were differentially expressed between the longissimus dorsi muscles of the low-fat and high-fat groups. The differentially expressed genes were found to be involved in various biological processes related to lipid metabolism. The potential target genes of differentially expressed lncRNAs were predicted by cis and trans. Functional analysis of lncRNA targets showed that some lncRNAs may act on potential target genes involved in lipid metabolism processes and regulate lipid deposition in the longissimus dorsi muscle. This study provides valuable information for further investigation of the molecular mechanisms of lipid deposition traits in donkeys, which may improve meat traits and facilitate the selection process of donkeys in future breeding.
Collapse
Affiliation(s)
- Yongdong Peng
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
| | | | | | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
| |
Collapse
|
47
|
Lin Y, Zhao W, Lv Z, Xie H, Li Y, Zhang Z. The functions and mechanisms of long non-coding RNA in colorectal cancer. Front Oncol 2024; 14:1419972. [PMID: 39026978 PMCID: PMC11254705 DOI: 10.3389/fonc.2024.1419972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
CRC poses a significant challenge in the global health domain, with a high number of deaths attributed to this disease annually. If CRC is detected only in its advanced stages, the difficulty of treatment increases significantly. Therefore, biomarkers for the early detection of CRC play a crucial role in improving patient outcomes and increasing survival rates. The development of a reliable biomarker for early detection of CRC is particularly important for timely diagnosis and treatment. However, current methods for CRC detection, such as endoscopic examination, blood, and stool tests, have certain limitations and often only detect cases in the late stages. To overcome these constraints, researchers have turned their attention to molecular biomarkers, which are considered a promising approach to improving CRC detection. Non-invasive methods using biomarkers such as mRNA, circulating cell-free DNA, microRNA, LncRNA, and proteins can provide more reliable diagnostic information. These biomarkers can be found in blood, tissue, stool, and volatile organic compounds. Identifying molecular biomarkers with high sensitivity and specificity for the early and safe, economic, and easily measurable detection of CRC remains a significant challenge for researchers.
Collapse
Affiliation(s)
- Yuning Lin
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Wenzhen Zhao
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Zhenyi Lv
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Hongyan Xie
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Ying Li
- Ultrasonography Department, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Zhongying Zhang
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| |
Collapse
|
48
|
Andersen RE, Alkuraya IF, Ajeesh A, Sakamoto T, Mena EL, Amr SS, Romi H, Kenna MA, Robson CD, Wilch ES, Nalbandian K, Piña-Aguilar R, Walsh CA, Morton CC. Chromosomal structural rearrangements implicate long non-coding RNAs in rare germline disorders. Hum Genet 2024; 143:921-938. [PMID: 39060644 PMCID: PMC11294402 DOI: 10.1007/s00439-024-02693-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
In recent years, there has been increased focus on exploring the role the non-protein-coding genome plays in Mendelian disorders. One class of particular interest is long non-coding RNAs (lncRNAs), which has recently been implicated in the regulation of diverse molecular processes. However, because lncRNAs do not encode protein, there is uncertainty regarding what constitutes a pathogenic lncRNA variant, and thus annotating such elements is challenging. The Developmental Genome Anatomy Project (DGAP) and similar projects recruit individuals with apparently balanced chromosomal abnormalities (BCAs) that disrupt or dysregulate genes in order to annotate the human genome. We hypothesized that rearrangements disrupting lncRNAs could be the underlying genetic etiology for the phenotypes of a subset of these individuals. Thus, we assessed 279 cases with BCAs and selected 191 cases with simple BCAs (breakpoints at only two genomic locations) for further analysis of lncRNA disruptions. From these, we identified 66 cases in which the chromosomal rearrangements directly disrupt lncRNAs. In 30 cases, no genes of any other class aside from lncRNAs are directly disrupted, consistent with the hypothesis that lncRNA disruptions could underly the phenotypes of these individuals. Strikingly, the lncRNAs MEF2C-AS1 and ENSG00000257522 are each disrupted in two unrelated cases. Furthermore, we experimentally tested the lncRNAs TBX2-AS1 and MEF2C-AS1 and found that knockdown of these lncRNAs resulted in decreased expression of the neighboring transcription factors TBX2 and MEF2C, respectively. To showcase the power of this genomic approach for annotating lncRNAs, here we focus on clinical reports and genetic analysis of seven individuals with likely developmental etiologies due to lncRNA disruptions.
Collapse
Affiliation(s)
- Rebecca E Andersen
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ibrahim F Alkuraya
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, MA, USA
- Harvard College, Cambridge, MA, USA
| | - Abna Ajeesh
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, MA, USA
| | - Tyler Sakamoto
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children's Hospital, Boston, MA, USA
- Harvard College, Cambridge, MA, USA
| | - Elijah L Mena
- Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Genetics, Brigham and Women's Hospital, Boston, MA, USA
| | - Sami S Amr
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Hila Romi
- Harvard Medical School, Boston, MA, USA
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, MA, USA
| | - Margaret A Kenna
- Harvard Medical School, Boston, MA, USA
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA, USA
| | - Caroline D Robson
- Harvard Medical School, Boston, MA, USA
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA, USA
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA
| | - Ellen S Wilch
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, MA, USA
| | - Katarena Nalbandian
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, MA, USA
| | - Raul Piña-Aguilar
- Harvard Medical School, Boston, MA, USA
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, MA, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Cynthia C Morton
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
- University of Manchester, Manchester Center for Audiology and Deafness, Manchester, UK.
| |
Collapse
|
49
|
Bohrer C, Varon E, Peretz E, Reinitz G, Kinor N, Halle D, Nissan A, Shav-Tal Y. CCAT1 lncRNA is chromatin-retained and post-transcriptionally spliced. Histochem Cell Biol 2024; 162:91-107. [PMID: 38763947 PMCID: PMC11227459 DOI: 10.1007/s00418-024-02294-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
Super-enhancers are unique gene expression regulators widely involved in cancer development. Spread over large DNA segments, they tend to be found next to oncogenes. The super-enhancer c-MYC locus forms long-range chromatin looping with nearby genes, which brings the enhancer and the genes into proximity, to promote gene activation. The colon cancer-associated transcript 1 (CCAT1) gene, which is part of the MYC locus, transcribes a lncRNA that is overexpressed in colon cancer cells through activation by MYC. Comparing different types of cancer cell lines using RNA fluorescence in situ hybridization (RNA FISH), we detected very prominent CCAT1 expression in HeLa cells, observed as several large CCAT1 nuclear foci. We found that dozens of CCAT1 transcripts accumulate on the gene locus, in addition to active transcription occurring from the gene. The accumulating transcripts are released from the chromatin during cell division. Examination of CCAT1 lncRNA expression patterns on the single-RNA level showed that unspliced CCAT1 transcripts are released from the gene into the nucleoplasm. Most of these unspliced transcripts were observed in proximity to the active gene but were not associated with nuclear speckles in which unspliced RNAs usually accumulate. At larger distances from the gene, the CCAT1 transcripts appeared spliced, implying that most CCAT1 transcripts undergo post-transcriptional splicing in the zone of the active gene. Finally, we show that unspliced CCAT1 transcripts can be detected in the cytoplasm during splicing inhibition, which suggests that there are several CCAT1 variants, spliced and unspliced, that the cell can recognize as suitable for export.
Collapse
Affiliation(s)
- Chaya Bohrer
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Eli Varon
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Eldar Peretz
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Gita Reinitz
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Noa Kinor
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - David Halle
- Biochemistry Laboratory, Samson Assuta Ashdod University Hospital, Ashdod, Israel
| | - Aviram Nissan
- Ziv Medical Center, Safed, Israel
- Surgical Innovation Laboratory, The Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Yaron Shav-Tal
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|
50
|
Das S, Zea Rojas MP, Tran EJ. Novel insights on the positive correlation between sense and antisense pairs on gene expression. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1864. [PMID: 39087253 PMCID: PMC11626863 DOI: 10.1002/wrna.1864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 08/02/2024]
Abstract
A considerable proportion of the eukaryotic genome undergoes transcription, leading to the generation of noncoding RNA molecules that lack protein-coding information and are not subjected to translation. These noncoding RNAs (ncRNAs) are well recognized to have essential roles in several biological processes. Long noncoding RNAs (lncRNAs) represent the most extensive category of ncRNAs found in the human genome. Much research has focused on investigating the roles of cis-acting lncRNAs in the regulation of specific target gene expression. In the majority of instances, the regulation of sense gene expression by its corresponding antisense pair occurs in a negative (discordant) manner, resulting in the suppression of the target genes. The notion that a negative correlation exists between sense and antisense pairings is, however, not universally valid. In fact, several recent studies have reported a positive relationship between corresponding cis antisense pairs within plants, budding yeast, and mammalian cancer cells. The positive (concordant) correlation between anti-sense and sense transcripts leads to an increase in the level of the sense transcript within the same genomic loci. In addition, mechanisms such as altering chromatin structure, the formation of R loops, and the recruitment of transcription factors can either enhance transcription or stabilize sense transcripts through their antisense pairs. The primary objective of this work is to provide a comprehensive understanding of both aspects of antisense regulation, specifically focusing on the positive correlation between sense and antisense transcripts in the context of eukaryotic gene expression, including its implications towards cancer progression. This article is categorized under: RNA Processing > 3' End Processing Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Subhadeep Das
- Department of BiochemistryPurdue UniversityWest LafayetteIndianaUSA
- Purdue University Institute for Cancer Research, Purdue UniversityWest LafayetteIndianaUSA
| | | | - Elizabeth J. Tran
- Department of BiochemistryPurdue UniversityWest LafayetteIndianaUSA
- Purdue University Institute for Cancer Research, Purdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|