1
|
You Q, Yu J, Pan R, Feng J, Guo H, Liu B. Decoding the regulatory roles of circular RNAs in cardiac fibrosis. Noncoding RNA Res 2025; 11:115-130. [PMID: 39759175 PMCID: PMC11697406 DOI: 10.1016/j.ncrna.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/04/2024] [Accepted: 11/28/2024] [Indexed: 01/07/2025] Open
Abstract
Cardiovascular diseases (CVDs) are the primary cause of death globally. The evolution of nearly all types of CVDs is characterized by a common theme: the emergence of cardiac fibrosis. The precise mechanisms that trigger cardiac fibrosis are still not completely understood. In recent years, a type of non-coding regulatory RNA molecule known as circular RNAs (circRNAs) has been reported. These molecules are produced during back splicing and possess significant biological capabilities, such as regulating microRNA activity, serving as protein scaffolds and recruiters, competing with mRNA, forming circR-loop structures to modulate transcription, and translating polypeptides. Furthermore, circRNAs exhibit a substantial abundance, notable stability, and specificity of tissues, cells, and time, endowing them with the potential as biomarkers, therapeutic targets, and therapeutic agents. CircRNAs have garnered growing interest in the field of CVDs. Recent investigations into the involvement of circRNAs in cardiac fibrosis have yielded encouraging findings. This study aims to provide a concise overview of the existing knowledge about the regulatory roles of circRNAs in cardiac fibrosis.
Collapse
Affiliation(s)
| | | | - Runfang Pan
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jiaming Feng
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Haidong Guo
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Baonian Liu
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
2
|
Yang S, Penna V, Lavine KJ. Functional diversity of cardiac macrophages in health and disease. Nat Rev Cardiol 2025:10.1038/s41569-024-01109-8. [PMID: 39743564 DOI: 10.1038/s41569-024-01109-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 01/04/2025]
Abstract
Macrophages make up a substantial portion of the stromal compartment of the heart in health and disease. In the past decade, the origins of these cardiac macrophages have been established as two broad populations derived from either embryonic or definitive haematopoiesis and that can be distinguished by the expression of CC-motif chemokine receptor 2 (CCR2). These cardiac macrophage populations are transcriptionally distinct and have differing cell surface markers and divergent roles in cardiac homeostasis and disease. Embryonic-derived CCR2- macrophages are a tissue-resident population that participates in tissue development, repair and maintenance, whereas CCR2+ macrophages are derived from definitive haematopoiesis and contribute to inflammation and tissue damage. Studies from the past 5 years have leveraged single-cell RNA sequencing technologies to expand our understanding of cardiac macrophage diversity, particularly of the monocyte-derived macrophage populations that reside in the injured and diseased heart. Emerging technologies in spatial transcriptomics have enabled the identification of distinct disease-associated cellular neighbourhoods consisting of macrophages, other immune cells and fibroblasts, highlighting the involvement of macrophages in cell-cell communication. Together, these discoveries lend new insights into the role of specific macrophage populations in the pathogenesis of cardiac disease, which can pave the way for the identification of new therapeutic targets and the development of diagnostic tools. In this Review, we discuss the developmental origin of cardiac macrophages and describe newly identified cell states and associated cellular neighbourhoods in the steady state and injury settings. We also discuss various contributions and effector functions of cardiac macrophages in homeostasis and disease.
Collapse
Affiliation(s)
- Steven Yang
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Vinay Penna
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Kory J Lavine
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
3
|
Heusch G, Kleinbongard P. The spleen in ischaemic heart disease. Nat Rev Cardiol 2025:10.1038/s41569-024-01114-x. [PMID: 39743566 DOI: 10.1038/s41569-024-01114-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2024] [Indexed: 01/04/2025]
Abstract
Ischaemic heart disease is a consequence of coronary atherosclerosis, and atherosclerosis is a systemic inflammatory disease. The spleen releases various immune cells in temporally distinct patterns. Neutrophils, monocytes, macrophages, B cells and T cells execute innate and adaptive immune processes in the coronary atherosclerotic plaque and in the ischaemic myocardium. Prolonged inflammation contributes to ischaemic heart failure. The spleen is also a target of neuromodulation through vagal, sympathetic and sensory nerve activation. Efferent vagal activation and subsequent activation of the noradrenergic splenic nerve activate β2-adrenergic receptors on splenic T cells, which release acetylcholine that ultimately results in attenuation of cytokine secretion from splenic macrophages. Coeliac vagal nerve activation increases splenic sympathetic nerve activity and drives the release of T cells, a process that depends on placental growth factor. Activation of the vagosplenic axis protects acutely from ischaemia-reperfusion injury during auricular tragus vagal stimulation and remote ischaemic conditioning. Splenectomy abrogates all these deleterious and beneficial actions on the cardiovascular system. The aggregate effect of splenectomy in humans is a long-term increase in mortality from ischaemic heart disease. The spleen has been appreciated as an important immune organ for inflammatory processes in atherosclerosis, myocardial infarction and heart failure, whereas its complex interaction with circulating blood factors and with the autonomic and somatic nervous systems, as well as its role in cardioprotection, have emerged only in the past decade. In this Review, we describe this newly identified cardioprotective function of the spleen and highlight the potential for translating the findings to patients with ischaemic heart disease.
Collapse
Affiliation(s)
- Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany.
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
4
|
Li C, Ma Z, Wei X, Wang Y, Wu J, Li X, Sun X, Ding Z, Yang C, Zou Y. Bufalin Ameliorates Myocardial Ischemia/Reperfusion Injury by Suppressing Macrophage Pyroptosis via P62 Pathway. J Cardiovasc Transl Res 2024:10.1007/s12265-024-10577-9. [PMID: 39733202 DOI: 10.1007/s12265-024-10577-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/29/2024] [Indexed: 12/30/2024]
Abstract
Bufalin, which is isolated from toad venom, exerts positive effects on hearts under pathological circumstance. We aimed to investigate the effects and mechanisms of bufalin on myocardial I/R injury. In vivo, bufalin ameliorated myocardial I/R injury, which characteristics with better ejection function, decreased infarct size and less apoptosis. The levels of pyroptotic proteins were increased in I/R-treated macrophages and inflammatory cytokines expressed more in I/R-induced mouse, which could be attenuated by bufalin. Bufalin also reduced H/R-treated macrophage pyroptosis in vitro. Autophagic flux blockage and ROS accumulation were reduced by bufalin in impaired macrophages. Overexpression of p62 abrogated the anti-proptosis and anti-oxidative effects of bufalin. The levels of apoptosis related proteins were changed and TUNEL-positive ratio was raised in cardiomyocytes that received conditioned medium treatment with H/R-treated macrophages, while bufalin pretreatment could reduce apoptosis. These findings indicate that bufalin may attenuate myocardial I/R injury by suppressing macrophage pyroptosis via P62 pathway.
Collapse
Affiliation(s)
- Chang Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Zhen Ma
- Institutes of Biomedical Sciences, Fudan University, 131 Dong'an Road, Shanghai, 200032, China
| | - Xiang Wei
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai, 200032, China
| | - Ying Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Xuan Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Xiaolei Sun
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Zhiwen Ding
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- Institutes of Biomedical Sciences, Fudan University, 131 Dong'an Road, Shanghai, 200032, China.
| | - Cheng Yang
- Department of Cardiac Surgery, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- Institutes of Biomedical Sciences, Fudan University, 131 Dong'an Road, Shanghai, 200032, China.
- State Key Laboratory of Genetic Engineering, Fudan University, 138 Yixueyuan Road, Shanghai, 200438, China.
| |
Collapse
|
5
|
Hu C, Francisco J, Del Re DP, Sadoshima J. Decoding the Impact of the Hippo Pathway on Different Cell Types in Heart Failure. Circ J 2024; 89:6-15. [PMID: 38644191 DOI: 10.1253/circj.cj-24-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The evolutionarily conserved Hippo pathway plays a pivotal role in governing a variety of biological processes. Heart failure (HF) is a major global health problem with a significant risk of mortality. This review provides a contemporary understanding of the Hippo pathway in regulating different cell types during HF. Through a systematic analysis of each component's regulatory mechanisms within the Hippo pathway, we elucidate their specific effects on cardiomyocytes, fibroblasts, endothelial cells, and macrophages in response to various cardiac injuries. Insights gleaned from both in vitro and in vivo studies highlight the therapeutic promise of targeting the Hippo pathway to address cardiovascular diseases, particularly HF.
Collapse
Affiliation(s)
- Chengchen Hu
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School
| | - Jamie Francisco
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School
| | - Dominic P Del Re
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School
| |
Collapse
|
6
|
Savko C, Esquer C, Molinaro C, Rokaw S, Shain AG, Jaafar F, Wright MK, Phillips JA, Hopkins T, Mikhail S, Rieder A, Mardani A, Bailey B, Sussman MA. Myocardial Infarction Injury Is Exacerbated by Nicotine in Vape Aerosol Exposure. J Am Heart Assoc 2024:e038012. [PMID: 39704237 DOI: 10.1161/jaha.124.038012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/12/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Vaping is touted as a safer alternative to traditional cigarette smoking, but the full spectrum of harm reduction versus comparable risk remains unresolved. Elevated bioavailability of nicotine in vape aerosol together with known risks of nicotine exposure may result in previously uncharacterized cardiovascular consequences of vaping. The objective of this study is to assess the impact of nicotine exposure via vape aerosol inhalation upon myocardial response to infarction injury. METHODS AND RESULTS Flavored vape juice containing nicotine (5 mg/mL) or vehicle alone (0 mg) was delivered using identical 4-week treatment protocols. Mice were subjected to acute myocardial infarction injury and evaluated for outcomes of cardiac structure and function. Findings reveal that nicotine exposure leads to worse outcomes with respect to contractile performance regardless of sex. Nonmyocyte interstitial cell accumulation following infarction significantly increased with exposure to vape aerosol alone, but a comparable increase was not present when nicotine was included. CONCLUSIONS Myocardial function after infarction is significantly decreased after exposure to nicotine vape aerosol irrespective of sex. Comparable loss of contractile function was not observed in mice exposed to vape aerosol alone, highlighting the essential role of nicotine in loss of contractile function. Increased vimentin immunoreactivity was observed in the vape alone group compared with control and vape nicotine. The correlation between vaping, interstitial cell responses, and cardiac remodeling leading to impaired contractility warrants further investigation. Public health experts seeking to reduce vaping-related health risks should consider messaging that highlights the increased cardiovascular risk especially with nicotine-containing aerosols.
Collapse
Affiliation(s)
- Clarissa Savko
- SDSU Integrated Regenerative Research Institute and Biology Department San Diego State University San Diego CA
| | - Carolina Esquer
- SDSU Integrated Regenerative Research Institute and Biology Department San Diego State University San Diego CA
| | - Claudia Molinaro
- SDSU Integrated Regenerative Research Institute and Biology Department San Diego State University San Diego CA
| | - Sophie Rokaw
- SDSU Integrated Regenerative Research Institute and Biology Department San Diego State University San Diego CA
| | - Abraham G Shain
- SDSU Integrated Regenerative Research Institute and Biology Department San Diego State University San Diego CA
| | - Faid Jaafar
- SDSU Integrated Regenerative Research Institute and Biology Department San Diego State University San Diego CA
| | - Morgan K Wright
- SDSU Integrated Regenerative Research Institute and Biology Department San Diego State University San Diego CA
| | - Joy A Phillips
- SDSU Integrated Regenerative Research Institute and Biology Department San Diego State University San Diego CA
| | - Tyler Hopkins
- SDSU Integrated Regenerative Research Institute and Biology Department San Diego State University San Diego CA
| | - Sama Mikhail
- SDSU Integrated Regenerative Research Institute and Biology Department San Diego State University San Diego CA
| | - Abigail Rieder
- SDSU Integrated Regenerative Research Institute and Biology Department San Diego State University San Diego CA
| | - Ariana Mardani
- SDSU Integrated Regenerative Research Institute and Biology Department San Diego State University San Diego CA
| | - Barbara Bailey
- SDSU Department of Mathematics San Diego State University San Diego CA
| | - Mark A Sussman
- SDSU Integrated Regenerative Research Institute and Biology Department San Diego State University San Diego CA
| |
Collapse
|
7
|
Rao J, Wang X, Wang Z. Integration of Microarray Data and Single-Cell Sequencing Analysis to Explore Key Genes Associated with Macrophage Infiltration in Heart Failure. J Inflamm Res 2024; 17:11257-11274. [PMID: 39717663 PMCID: PMC11665153 DOI: 10.2147/jir.s475633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 12/14/2024] [Indexed: 12/25/2024] Open
Abstract
Background Cardiac macrophages are a heterogeneous population with high plasticity and adaptability, and their mechanisms in heart failure (HF) remain poorly elucidated. Methods We used single-cell and bulk RNA sequencing data to reveal the heterogeneity of non-cardiomyocytes and assess the immunoreactivity of each subpopulation. Additionally, we employed four integrated machine learning algorithms to identify macrophage-related genes with diagnostic value, and in vivo validation was performed. To assess the immune infiltration characteristics in HF, we utilized the CIBERSORT and single sample gene set enrichment analysis (ssGSEA). An unsupervised consensus clustering algorithm was applied to identify the macrophage-related HF subtypes. Furthermore, the scMetabolism was employed to explore the specific metabolic patterns of the macrophage subtypes. Finally, CellChat was used to investigate cell-cell interactions among the identified subtypes. Results The immunoreactivity score of macrophages in the HF was higher than that in the other cell types. GSEA of macrophage clusters indicated a significant enrichment of leukocyte-mediated immune processes, antigen processing, and presentation. The intersection of the results from machine learning revealed that SERPINA3, GPAT3, ANPEP, and FCER1G can serve as feature genes and form a diagnostic model with a good predictive capability. Unsupervised consensus clustering algorithms reveal the immune and metabolic subtypes of macrophages. The metabolic heterogeneity of macrophage subpopulations can lead to macrophage polarization into different types, which may be related to the metabolic reprogramming between glycolysis and mitochondrial oxidative phosphorylation. Cellular communication revealed that macrophages form a network of interactions with neutrophils to support each other's functions and maintenance. The complex efferent and afferent signals are closely associated with myocardial fibrosis. Conclusion SERPINA3, GPAT3, ANPEP, and FCER1G can potentially serve as immune therapeutic targets and central biomarkers. The immunological and metabolic heterogeneity of macrophages may offer a more precise direction to explore the mechanisms underlying HF and novel immunotherapies.
Collapse
Affiliation(s)
- Jin Rao
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Xuefu Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People’s Republic of China
| | - Zhinong Wang
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
8
|
Pei J, Feng L, Mu Q, Wang Q, Wu Z, Wang Z, Liu Y. Exploring an novel diagnostic gene of trastuzumab-induced cardiotoxicity based on bioinformatics and machine learning. Sci Rep 2024; 14:30067. [PMID: 39627317 PMCID: PMC11615351 DOI: 10.1038/s41598-024-81335-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
Trastuzumab (Tra)-induced cardiotoxicity (TIC) is a serious side effect of cancer chemotherapy, which can seriously harm the health of cancer patients. However, there is currently a lack of effective and reliable biomarkers for the early diagnosis of TIC in clinical practice. Therefore, we screened the TIC candidate diagnostic gene solute carrier family 6 member 6 (SLC6A6) by combining multi-machine learning algorithm based on bioinformatics. In addition, cross-validation showed that SLC6A6 had a consistent expression trend in multi-data-sets. To further explore the diagnostic capability of SLC6A6 in TIC, we constructed a nomogram diagnostic model based on SLC6A6 expression level, and receiver operating characteristic (ROC) curve, calibration curve and decision curve analysis proved that SLC6A6 had good diagnostic capability. In order to further verify the TIC expression of SLC6A6 in the real world, we have constructed cell and animal models. Animal experiments showed that left ventricular ejection fraction (LVEF) was significantly decreased (from 65.01 ± 3.30% and 351.32 ± 3.51%, p < 0.0001) after Tra injection, and severe cardiac function was impaired. Similarly, RT-QPCR demonstrated that SLC6A6 was significantly downregulated in Tra-treated cardiomyocytes in vitro and in vivo. Our study suggests that the differential expression of SLC6A6 in vitro and in vivo models is associated with TIC, which may be a candidate diagnostic gene for the early occurrence and development of TIC and a potential therapeutic target.
Collapse
Affiliation(s)
- Jixiang Pei
- Department of Cardiology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Luxin Feng
- Department of Cardiology, Qingdao Huangdao Central Hospital, Qingdao, Shandong, China
| | - Qiang Mu
- Department of Breast Surgery, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Qitang Wang
- Department of Breast Surgery, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Ziying Wu
- Interventional Catheterization Lab, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Zhimei Wang
- Department of Gynecological Oncology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Yukun Liu
- Department of Breast Surgery, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China.
| |
Collapse
|
9
|
Chen H, Liu L, Wang Y, Hong L, Pan J, Yu X, Dai H. Managing Cardiovascular Risk in Patients with Autoimmune Diseases: Insights from a Nutritional Perspective. Curr Nutr Rep 2024; 13:718-728. [PMID: 39078574 DOI: 10.1007/s13668-024-00563-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 07/31/2024]
Abstract
PURPOSE OF REVIEW Autoimmune diseases manifest as an immune system response directed against endogenous antigens, exerting a significant influence on a substantial portion of the population. Notably, a leading contributor to morbidity and mortality in this context is cardiovascular disease (CVD). Intriguingly, individuals with autoimmune disorders exhibit a heightened prevalence of CVD compared to the general population. The meticulous management of CV risk factors assumes paramount importance, given the current absence of a standardized solution to this perplexity. This review endeavors to address this challenge from a nutritional perspective. RECENT FINDINGS Emerging evidence suggests that inflammation, a common thread in autoimmune diseases, also plays a pivotal role in the pathogenesis of CVD. Nutritional interventions aimed at reducing inflammation have shown promise in mitigating cardiovascular risk. The integration of nutritional strategies into the management plans for patients with autoimmune diseases offers a holistic approach to reducing cardiovascular risk. While conventional pharmacological treatments remain foundational, the addition of targeted dietary interventions can provide a complementary pathway to improve cardiovascular outcomes.
Collapse
Affiliation(s)
- Huimin Chen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Lu Liu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Yi Wang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Liqiong Hong
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Jiahui Pan
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Xiongkai Yu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Haijiang Dai
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China.
| |
Collapse
|
10
|
Potere N, Bonaventura A, Abbate A. Novel Therapeutics and Upcoming Clinical Trials Targeting Inflammation in Cardiovascular Diseases. Arterioscler Thromb Vasc Biol 2024; 44:2371-2395. [PMID: 39387118 PMCID: PMC11602387 DOI: 10.1161/atvbaha.124.319980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Cardiovascular disease (CVD) remains a major health burden despite significant therapeutic advances accomplished over the last decades. It is widely and increasingly recognized that systemic inflammation not only represents a major cardiovascular risk and prognostic factor but also plays key pathogenic roles in CVD development and progression. Despite compelling preclinical evidence suggesting large potential of anti-inflammatory pharmacological interventions across numerous CVDs, clinical translation remains incomplete, mainly due to (1) yet undefined molecular signaling; (2) challenges of safety and efficacy profile of anti-inflammatory drugs; and (3) difficulties in identifying optimal patient candidates and responders to anti-inflammatory therapeutics, as well as optimal therapeutic windows. Randomized controlled trials demonstrated the safety/efficacy of canakinumab and colchicine in secondary cardiovascular prevention, providing confirmation for the involvement of a specific inflammatory pathway (NLRP3 [NACHT, LRR, and PYD domain-containing protein 3] inflammasome/IL [interleukin]-1β) in atherosclerotic CVD. Colchicine was recently approved by the US Food and Drug Administration for this indication. Diverse anti-inflammatory drugs targeting distinct inflammatory pathways are widely used for the management of other CVDs including myocarditis and pericarditis. Ongoing research efforts are directed to implementing anti-inflammatory therapeutic strategies across a growing number of CVDs, through repurposing of available anti-inflammatory drugs and development of novel anti-inflammatory compounds, which are herein concisely discussed. This review also summarizes the main characteristics and findings of completed and upcoming randomized controlled trials directly targeting inflammation in CVDs, and discusses major challenges and future perspectives in the exciting and constantly expanding landscape of cardioimmunology.
Collapse
Affiliation(s)
- Nicola Potere
- Department of Medicine and Ageing Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Aldo Bonaventura
- Medical Center, S.C. Medicina Generale 1, Ospedale di Circolo and Fondazione Macchi, Department of Internal Medicine, ASST Sette Laghi Varese, Italy
| | - Antonio Abbate
- Berne Cardiovascular Research Center and Division of Cardiology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
11
|
Liu G, Liao W, Lv X, Huang L, He M, Li L. A potential coagulation-related diagnostic model associated with immune infiltration for acute myocardial infarction. Genes Immun 2024; 25:471-482. [PMID: 39379556 DOI: 10.1038/s41435-024-00298-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024]
Abstract
The production of pro-coagulation factors can affect the development and prognosis of acute myocardial infarction (AMI). The clinical value of coagulation-related genes (CRGs) was investigated to discover new targets for diagnosing and treating AMI. We screened 335 differentially expressed genes (DEGs) between AMI and healthy individuals based on the GSE66360 dataset. We took the intersection of the obtained DEGs with 139 CRGs. Finally, 10 differentially expressed CEGs were screened out. The random forest algorithm was constructed to identify 6 signature CRGs (THBS1, SERPINA1, THBD, MMP9, MAFF, and PLAU). Subsequently, the established predictive model was found to have good diagnostic accuracy (AUC = 0.9694 in the training cohort [GSE66360 dataset] and 0.9076 in the external validation cohort [GSE48060 dataset]). Consensus clustering identified the CRG clusters, and the accuracy of the grouping was verified. We found that AMI patients can be divided into two distinct subgroups based on the differentially expressed CRGs. Immune cell infiltration level was consistent with the expression levels of CRGs based on single sample gene set enrichment analysis. These findings reveal the potential role of CRGs in AMI. Characterizing the coagulation features of AMI patients can help in the risk stratification of patients and provide personalized treatment strategies.
Collapse
Affiliation(s)
- Guoqing Liu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wang Liao
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiangwen Lv
- Department of Cardiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Lifeng Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Min He
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Lang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
12
|
Seuthe K, Picard FSR, Winkels H, Pfister R. Cancer Development and Progression in Patients with Heart Failure. Curr Heart Fail Rep 2024; 21:515-529. [PMID: 39340596 PMCID: PMC11511767 DOI: 10.1007/s11897-024-00680-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/30/2024]
Abstract
PURPOSE OF REVIEW The co-occurrence of heart failure (HF) and cancer represents a complex and multifaceted medical challenge. Patients with prevalent cardiovascular disease (CVD), particularly HF, exhibit an increased risk of cancer development, raising questions about the intricate interplay between these two prevalent conditions. This review aims to explore the evolving landscape of cancer development in patients with HF, shedding light on potential mechanisms, risk factors, and clinical implications. RECENT FINDINGS Epidemiological data suggests higher cancer incidences and higher cancer mortality in HF patients, which are potentially more common in patients with HF with preserved ejection fraction due to related comorbidities. Moreover, recent preclinical data identified novel pathways and mediators including the protein SerpinA3 as potential drivers of cancer progression in HF patients, suggesting HF as an individual risk factor for cancer development. The review emphasizes preliminary evidence supporting cancer development in patients with HF, which offers several important clinical interventions such as cancer screening in HF patients, prevention addressing both HF and cancer, and molecular targets to treat cancer. However, there is need for more detailed understanding of molecular and cellular cross-talk between cancer and HF which can be derived from prospective assessments of cancer-related outcomes in CV trials and preclinical research of molecular mechanisms.
Collapse
Affiliation(s)
- Katharina Seuthe
- Department of Cardiology, Clinic III for Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Strasse 62, 50937, Cologne, Germany.
| | - Felix Simon Ruben Picard
- Department of Cardiology, Clinic III for Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Strasse 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Holger Winkels
- Department of Cardiology, Clinic III for Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Strasse 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Roman Pfister
- Department of Cardiology, Clinic III for Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Strasse 62, 50937, Cologne, Germany
| |
Collapse
|
13
|
Xiong Y, Zhang Z, Liu S, Shen L, Zheng L, Ding L, Liu L, Wu L, Hu Z, Li L, Hu Z, Zhang Z, Zhou L, Xu M, Yao Y. T Lymphocyte-Macrophage Hybrid Membrane-Coated Biomimetic Nanoparticles Alleviate Myocarditis via Suppressing Pyroptosis by Targeting Gene Silencing. Int J Nanomedicine 2024; 19:12817-12833. [PMID: 39629104 PMCID: PMC11614587 DOI: 10.2147/ijn.s487598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024] Open
Abstract
Introduction Nanomedicine coated with cell membranes has attracted increasing attention for its enhanced targeting capability and biocompatibility. Based on previous research, we identified interferon regulatory factor 1 (IRF1)-mediated macrophage pyroptosis as a potential therapeutic target for myocarditis. Herein, we fabricated an innovative immune cell membrane-coated zeolitic imidazolate framework-8 (ZIF-8) nano-delivery platform and explored its effects on myocarditis. Methods ZIF-8 nanoparticles loaded with siRNA targeting IRF1 (siIRF1) were coated with a T lymphocyte-macrophage hybrid membrane (siIRF1@ZIF@HM NPs) via sonication and extrusion. The morphological and biological characteristics of the nanoparticles were evaluated using transmission electron microscopy (TEM) and dynamic light scattering (DLS). Cellular cytotoxicity was assessed by a cell counting kit-8 assay. Cellular uptake and endo-lysosomal escape in M1-differentiated macrophages were visualized via fluorescence microscopy. The targeting specificity and anti-myocarditis effects were evaluated in an experimental autoimmune myocarditis (EAM) mouse model. The anti-pyroptosis effects were assessed by Western blot analysis both in vivo and in vitro. Results Transcriptional sequencing identified T lymphocytes and macrophages as suitable membrane sources. The ZIF-8 nanoparticles exhibited high siRNA loading capacity and pH responsiveness, enabling an efficient release of siIRF1 from endo-lysosomes to the cytoplasm in macrophages. The hybrid membrane coating enabled specific targeting of M1 macrophages both in vivo and in vitro. Furthermore, delivery of siIRF1 effectively suppressed IRF1 expression and inhibited pyroptosis in IFN-γ-stimulated macrophages. Intravenous injection of siIRF1@ZIF@HM NPs significantly alleviated myocarditis progression without evident side effects. Conclusion The siIRF1 nanotherapeutic approach shows potential for attenuating myocardial inflammation and mitigating myocarditis progression. Our study highlights the promise of this customized biomimetic nano-delivery system for treating inflammatory diseases.
Collapse
Affiliation(s)
- Yulong Xiong
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Zhenhao Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Shangyu Liu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Lishui Shen
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Lihui Zheng
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Ligang Ding
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Limin Liu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Lingmin Wu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Zhicheng Hu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Le Li
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Zhao Hu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Zhuxin Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Likun Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Mengtong Xu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yan Yao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
14
|
Zhang Z, Du H, Gao W, Zhang D. Engineered macrophages: an "Intelligent Repair" cellular machine for heart injury. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:25. [PMID: 39592532 PMCID: PMC11599506 DOI: 10.1186/s13619-024-00209-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/22/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024]
Abstract
Macrophages are crucial in the heart's development, function, and injury. As part of the innate immune system, they act as the first line of defense during cardiac injury and repair. After events such as myocardial infarction or myocarditis, numerous macrophages are recruited to the affected areas of the heart to clear dead cells and facilitate tissue repair. This review summarizes the roles of resident and recruited macrophages in developing cardiovascular diseases. We also describe how macrophage phenotypes dynamically change within the cardiovascular disease microenvironment, exhibiting distinct pro-inflammatory and anti-inflammatory functions. Recent studies reveal the values of targeting macrophages in cardiovascular diseases treatment and the novel bioengineering technologies facilitate engineered macrophages as a promising therapeutic strategy. Engineered macrophages have strong natural tropism and infiltration for cardiovascular diseases aiming to reduce inflammatory response, inhibit excessive fibrosis, restore heart function and promote heart regeneration. We also discuss recent studies highlighting therapeutic strategies and new approaches targeting engineered macrophages, which can aid in heart injury recovery.
Collapse
Affiliation(s)
- Zhuo Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Stem Cells and Tissue Engineering Manufacture Center, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Hetian Du
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Stem Cells and Tissue Engineering Manufacture Center, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Weijie Gao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
- Stem Cells and Tissue Engineering Manufacture Center, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
- Stem Cells and Tissue Engineering Manufacture Center, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
15
|
Lim J, Hubbard AK, Blechter B, Shi J, Zhou W, Loftfield E, Machiela MJ, Wong JYY. Associations Between Mosaic Loss of Sex Chromosomes and Incident Hospitalization for Atrial Fibrillation in the United Kingdom. J Am Heart Assoc 2024; 13:e036984. [PMID: 39508149 DOI: 10.1161/jaha.124.036984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Mosaic loss of chromosome Y (mLOY) in leukocytes of men reflects genomic instability from aging, smoking, and environmental exposures. A similar mosaic loss of chromosome X (mLOX) occurs among women. However, the associations between mLOY, mLOX, and risk of incident heart diseases are unclear. METHODS AND RESULTS We estimated associations between mLOY, mLOX, and risk of incident heart diseases requiring hospitalization, including atrial fibrillation, myocardial infarction, ischemic heart disease, cardiomyopathy, and heart failure. We analyzed 190 613 men and 224 853 women with genotyping data from the UK Biobank. Among these participants, there were 37 037 men with mLOY and 13 978 women with mLOX detected using the Mosaic Chromosomal Alterations caller. Multivariable Cox regression was used to estimate hazard ratios (HRs) and 95% CIs of each incident heart disease in relation to mLOY in men and mLOX in women. Additionally, Mendelian randomization was conducted to estimate causal associations. Among men, detectable mLOY was associated with elevated risk of atrial fibrillation (HR, 1.06 [95% CI, 1.03-1.11]). The associations were apparent in both never smokers (HR, 1.07 [95% CI, 1.01-1.14]) and ever smokers (HR, 1.05 [95% CI, 1.01-1.11]) as well as men aged >60 and ≤60 years. Mendelian randomization analyses supported causal associations between mLOY and atrial fibrillation (HRMR-PRESSO, 1.15 [95% CI, 1.13-1.18]). Among postmenopausal women, we found a suggestive inverse association between detectable mLOX and atrial fibrillation risk (HR, 0.90 [95% CI, 0.83-0.98]). However, associations with mLOY and mLOX were not found for other heart diseases. CONCLUSIONS Our findings suggest that mLOY and mLOX reflect sex-specific biological processes or exposure profiles related to incident atrial fibrillation requiring hospitalization.
Collapse
Affiliation(s)
- Jungeun Lim
- Epidemiology and Community Health Branch, National Heart, Lung, and Blood Institute Bethesda MD
| | - Aubrey K Hubbard
- Division of Cancer Epidemiology and Genetics National Cancer Institute Rockville MD
| | - Batel Blechter
- Division of Cancer Epidemiology and Genetics National Cancer Institute Rockville MD
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics National Cancer Institute Rockville MD
| | - Weiyin Zhou
- Division of Cancer Epidemiology and Genetics National Cancer Institute Rockville MD
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research Leidos Biomedical Research, Inc Frederick MD
| | - Erikka Loftfield
- Division of Cancer Epidemiology and Genetics National Cancer Institute Rockville MD
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics National Cancer Institute Rockville MD
| | - Jason Y Y Wong
- Epidemiology and Community Health Branch, National Heart, Lung, and Blood Institute Bethesda MD
| |
Collapse
|
16
|
Chen X, Zhong X, Huang GN. Heart regeneration from the whole-organism perspective to single-cell resolution. NPJ Regen Med 2024; 9:34. [PMID: 39548113 PMCID: PMC11568173 DOI: 10.1038/s41536-024-00378-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Cardiac regenerative potential in the animal kingdom displays striking divergence across ontogeny and phylogeny. Here we discuss several fundamental questions in heart regeneration and provide both a holistic view of heart regeneration in the organism as a whole, as well as a single-cell perspective on intercellular communication among diverse cardiac cell populations. We hope to provide valuable insights that advance our understanding of organ regeneration and future therapeutic strategies.
Collapse
Affiliation(s)
- Xiaoxin Chen
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Xiaochen Zhong
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Guo N Huang
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA, USA.
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
- Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
17
|
Rubinstein G, Ilhan H, Bartenstein P, Lehner S, Hacker M, Todica A, Zacherl MJ, Fischer M. Peptide Receptor Radionuclide Therapy Using 90Y- and 177Lu-DOTATATE Modulating Atherosclerotic Plaque Inflammation: Longitudinal Monitoring by 68Ga-DOTATATE Positron Emissions Tomography/Computer Tomography. Diagnostics (Basel) 2024; 14:2486. [PMID: 39594152 PMCID: PMC11593158 DOI: 10.3390/diagnostics14222486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Atherosclerosis and its sequels, such as coronary artery disease and cerebrovascular stroke, still represent global health burdens. The pathogenesis of atherosclerosis consists of growing calcified plaques in the arterial wall and is accompanied by inflammatory processes, which are not entirely understood. This study aims to evaluate the effect of peptide receptor radionuclide therapy (PRRT) using 90Y- and 177Lu-DOTATATE on atherosclerotic plaque inflammation. Methods: Atherosclerotic plaques in 57 cancer patients receiving PRRT using 90Y- and 177Lu-DOTATATE were longitudinally monitored by 68Ga-DOTATATE PET/CT. The target-to-background ratio (TBR) and overall vessel uptake (OVU) were measured in eight distinct arterial regions (ascending aorta, aortic arch, descending aorta, abdominal aorta, both iliac arteries, and both carotid arteries) to monitor calcified plaques. Results: PET/CT analysis shows a positive correlation between calcified plaque scores and the 68Ga-DOTATATE overall vessel uptake (OVU) in cancer patients. After PRRT, an initially high OVU was observed to decrease in the therapy group compared to the control group. An excellent correlation could be shown for each target-to-background ratio (TBR) to the OVU, especially the ascending aorta. Conclusions: The ascending aorta could present a future reference for estimating generalized atherosclerotic inflammatory processes. PRRT might represent a therapeutic approach to modulating atherosclerotic plaques.
Collapse
Affiliation(s)
- German Rubinstein
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany (M.J.Z.)
- Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Harun Ilhan
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany (M.J.Z.)
- DIE RADIOLOGIE, 80331 Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany (M.J.Z.)
| | - Sebastian Lehner
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany (M.J.Z.)
| | - Marcus Hacker
- Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Andrei Todica
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany (M.J.Z.)
- DIE RADIOLOGIE, 80331 Munich, Germany
| | - Mathias Johannes Zacherl
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany (M.J.Z.)
| | - Maximilian Fischer
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany
| |
Collapse
|
18
|
Zheng C, Chen F, Yang F, Li Z, Yi W, Chen G, Li T, Yu X, Chen X. Myocardial cell mitochondria-targeted mesoporous polydopamine nanoparticles eliminate inflammatory damage in cardiovascular disease. Int J Biol Macromol 2024; 282:137141. [PMID: 39510474 DOI: 10.1016/j.ijbiomac.2024.137141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
Excess reactive oxide species (ROS) is a direct factor in myocardial injury death, thus anti-oxidant therapy is a necessary measure to prevent rapid death of cardiomyocyte cell. Cysteine (Cys) is a potent antioxidant but easily become instability because of the hyperactivity. Therefore, in order to protect the the stability of Cys, we according to the mitochondria are the main sites of ROS production, utilized the loading and ROS scavenging capacity of mesoporous polydopamine (mPDA) constructed a nanosystem targeting mitochondria with effectively ROS elimination capability by loading cysteine (Cys-mPDA@TPP). The mesoporous structure of mPDA effectively inhibited the advance reaction and hyperactivity of Cys, thus effectively improving its stability that reached the double-collaborative treatment excess ROS. In particular, Cys-mPDA@TPP achieved directly reacting with ROS in mitochondria under the targeting of triphenylphosphine (TPP), not only enhancing the elimination efficiency of ROS, but also preventing mitochondrial dysfunction of monocyte-macrophage. Furthermore, with double-collaborative ROS elimination, Cys-mPDA@TPP effectively prevent the damage of cardiomyocyte cell through inhibiting macrophage inflammatory response. Therefore, this study provides a new therapeutic strategy for myocardial inflammatory injury.
Collapse
Affiliation(s)
- Chuping Zheng
- Guangdong Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease Pharmacology Group, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Fajiang Chen
- Guangdong Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease Pharmacology Group, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Fangwen Yang
- Guangdong Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease Pharmacology Group, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Zhan Li
- Guangdong Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease Pharmacology Group, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Wei Yi
- Guangdong Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease Pharmacology Group, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Gengjia Chen
- Department of Radiology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, PR China.
| | - Tianwang Li
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou 510317, PR China; Department of Rheumatology and Immunology, Zhaoqing Central People's Hospital, Zhaoqing 526000, PR China.
| | - Xiyong Yu
- Guangdong Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease Pharmacology Group, Guangzhou Medical University, Guangzhou 511436, PR China.
| | - Xu Chen
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou 510317, PR China.
| |
Collapse
|
19
|
Ao-Di F, Han-Qing L, Xi-Zheng W, Ke Y, Hong-Xin G, Hai-Xia Z, Guan-Wei F, Li-Lan. Advances in macrophage metabolic reprogramming in myocardial ischemia-reperfusion. Cell Signal 2024; 123:111370. [PMID: 39216681 DOI: 10.1016/j.cellsig.2024.111370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Acute myocardial infarction (AMI) is the leading cause of death worldwide, and reperfusion therapy is a critical therapeutic approach to reduce myocardial ischemic injury and minimize infarct size. However, ischemia/reperfusion (I/R) itself also causes myocardial injury, and inflammation is an essential mechanism by which it leads to myocardial injury, with macrophages as crucial immune cells in this process. Macrophages are innate immune cells that maintain tissue homeostasis, host defence during pathogen infection, and repair during tissue injury. During the acute phase of I/R, M1-type macrophages generate a pro-inflammatory milieu, clear necrotic myocardial tissue, and further recruit mononuclear (CCR2+) macrophages. Over time, the reparative (M2 type) macrophages gradually became dominant. In recent years, metabolic studies have shown a clear correlation between the metabolic profile of macrophages and their phenotype and function. M1-type macrophages are mainly characterized by glycolytic energy supply, and their tricarboxylic acid (TCA) cycle and mitochondrial oxidative phosphorylation (OXPHOS) processes are impaired. In contrast, M2 macrophages rely primarily on OXPHOS for energy. Changing the metabolic profile of macrophages can alter the macrophage phenotype. Altered energy pathways are also present in macrophages during I/R, and intervention in this process contributes to earlier and greater M2 macrophage infiltration, which may be a potential target for the treatment of myocardial I/R injury. Therefore, this paper mainly reviews the characteristics of macrophage energy metabolism alteration and phenotypic transition during I/R and its mechanism of mediating myocardial injury to provide a basis for further research in this field.
Collapse
Affiliation(s)
- Fan Ao-Di
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, State Key Laboratory of Component-based Chinese Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Han-Qing
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, State Key Laboratory of Component-based Chinese Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wang Xi-Zheng
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, State Key Laboratory of Component-based Chinese Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yang Ke
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, State Key Laboratory of Component-based Chinese Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guo Hong-Xin
- Heart center, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Zhang Hai-Xia
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, State Key Laboratory of Component-based Chinese Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fan Guan-Wei
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, State Key Laboratory of Component-based Chinese Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Li-Lan
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, State Key Laboratory of Component-based Chinese Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
20
|
Kadyrov FF, Koenig AL, Amrute JM, Dun H, Li W, Weinheimer CJ, Nigro JM, Kovacs A, Bredemeyer AL, Yang S, Das S, Penna VR, Parvathaneni A, Lai L, Hartmann N, Kopecky BJ, Kreisel D, Lavine KJ. Hypoxia sensing in resident cardiac macrophages regulates monocyte fate specification following ischemic heart injury. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1337-1355. [PMID: 39433910 DOI: 10.1038/s44161-024-00553-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 09/20/2024] [Indexed: 10/23/2024]
Abstract
Myocardial infarction initiates cardiac remodeling and is central to heart failure pathogenesis. Following myocardial ischemia-reperfusion injury, monocytes enter the heart and differentiate into diverse subpopulations of macrophages. Here we show that deletion of Hif1α, a hypoxia response transcription factor, in resident cardiac macrophages led to increased remodeling and overrepresentation of macrophages expressing arginase 1 (Arg1). Arg1+ macrophages displayed an inflammatory gene signature and may represent an intermediate state of monocyte differentiation. Lineage tracing of Arg1+ macrophages revealed a monocyte differentiation trajectory consisting of multiple transcriptionally distinct states. We further showed that deletion of Hif1α in resident cardiac macrophages resulted in arrested progression through this trajectory and accumulation of an inflammatory intermediate state marked by persistent Arg1 expression. Depletion of the Arg1+ trajectory accelerated cardiac remodeling following ischemic injury. Our findings unveil distinct trajectories of monocyte differentiation and identify hypoxia sensing as an important determinant of monocyte differentiation following myocardial infarction.
Collapse
Affiliation(s)
- Farid F Kadyrov
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Andrew L Koenig
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Junedh M Amrute
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Hao Dun
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Wenjun Li
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Carla J Weinheimer
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jessica M Nigro
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Attila Kovacs
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Andrea L Bredemeyer
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Steven Yang
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Shibali Das
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Vinay R Penna
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Alekhya Parvathaneni
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Lulu Lai
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Niklas Hartmann
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany
- Department of Cardiology, Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
| | - Benjamin J Kopecky
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Daniel Kreisel
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Kory J Lavine
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
21
|
Nayak TK, Parasania D, Tilley DG. Adrenergic orchestration of immune cell dynamics in response to cardiac stress. J Mol Cell Cardiol 2024; 196:115-124. [PMID: 39303854 DOI: 10.1016/j.yjmcc.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Immune cells contribute approximately 5-10 % of the heart's total cell population, including several myeloid cell and lymphocyte cell subsets, which, despite their relatively small percentages, play important roles in cardiac homeostasis and remodeling responses to various forms of injury and long-term stress. Pathological cardiac stress activates the sympathetic nervous system (SNS), resulting in the release of the catecholamines epinephrine and norepinephrine either systemically or from sympathetic nerve terminals within various lymphoid organs. Acting at α- or β-adrenergic receptors (αAR, βAR), catecholamines regulate immune cell hematopoiesis, egress and migration in response to stress. Classically, αAR stimulation tends to promote inflammatory responses while βAR stimulation has typically been shown to be immunosuppressive, though the effects can be nuanced depending on the immune cells subtype, the site of regulation and pathophysiological context. Herein, we will discuss several facets of SNS-mediated regulation of immune cells and their response to cardiac stress, including: catecholamine response to cardiovascular stress and action at their receptors, adrenergic regulation of hematopoiesis, immune cell retention and release from the bone marrow, adrenergic regulation of splenic immune cells and their retention, as well as adrenergic regulation of immune cell recruitment to the injured heart, including neutrophils, monocytes and macrophages. A particular focus will be given to βAR-mediated effects on myeloid cells in response to acute or chronic cardiac stress.
Collapse
Affiliation(s)
- Tapas K Nayak
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Dev Parasania
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Douglas G Tilley
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
22
|
Kong Y, Zhang Q, Wang S, Li R, Fu C, Wei Q. Mitochondrial metabolism regulated macrophage phenotype in myocardial infarction. Biomed Pharmacother 2024; 180:117494. [PMID: 39321509 DOI: 10.1016/j.biopha.2024.117494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/09/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide, with myocardial infarction (MI) being the primary contributor to mortality and disability associated with CVD. Reperfusion therapies are widely recognized as effective strategies for treating MI. However, while intended to restore blood flow, the reperfusion processes paradoxically initiate a series of pathophysiological events that worsen myocardial injury, resulting in ischemia-reperfusion (I/R) injury. Therefore, there is a pressing need for new treatment strategies to reduce the size of MI and enhance cardiac function post-infarction. Macrophages are crucial for maintaining homeostasis and mitigating undesirable remodeling following MI. Extensive research has established a strong link between cellular metabolism and macrophage function. In the context of MI, macrophages undergo adaptive metabolic reprogramming to mount an immune response. Moreover, mitochondrial metabolism in macrophages is evident, leading to significant changes in their metabolism. Therefore, we need to delve deeper into summarizing and understanding the relationship and role between mitochondrial metabolism and macrophage phenotype, and summarize existing treatment methods. In this review, we explore the role of mitochondria in shaping the macrophage phenotype and function. Additionally, we summarize current therapeutic strategies aimed at modulating mitochondrial metabolism of macrophages, which may offer new insights treating of MI.
Collapse
Affiliation(s)
- Youli Kong
- Department of Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, PR China
| | - Qing Zhang
- Department of Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, PR China
| | - Shiqi Wang
- Department of Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, PR China
| | - Ran Li
- Department of Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, PR China
| | - Chenying Fu
- State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Aging and Geriatric Mechanism Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Quan Wei
- Department of Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, PR China.
| |
Collapse
|
23
|
Zhang Z, Wang Y, Chen X, Wu C, Zhou J, Chen Y, Liu X, Tang X. The aging heart in focus: The advanced understanding of heart failure with preserved ejection fraction. Ageing Res Rev 2024; 101:102542. [PMID: 39396676 DOI: 10.1016/j.arr.2024.102542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 10/15/2024]
Abstract
Heart failure with preserved ejection fraction (HFpEF) accounts for 50 % of heart failure (HF) cases, making it the most common type of HF, and its prevalence continues to increase in the aging society. HFpEF is a systemic syndrome resulting from many risk factors, such as aging, metabolic syndrome, and hypertension, and its clinical features are highly heterogeneous in different populations. HFpEF syndrome involves the dysfunction of multiple organs, including the heart, lung, muscle, and vascular system. The heart shows dysfunction of various cells, including cardiomyocytes, endothelial cells, fibroblasts, adipocytes, and immune cells. The complex etiology and pathobiology limit experimental research on HFpEF in animal models, delaying a comprehensive understanding of the mechanisms and making treatment difficult. Recently, many scientists and cardiologists have attempted to improve the clinical outcomes of HFpEF. Recent advances in clinically related animal models and systemic pathology studies have improved our understanding of HFpEF, and clinical trials involving sodium-glucose cotransporter 2 inhibitors have significantly enhanced our confidence in treating HFpEF. This review provides an updated comprehensive discussion of the etiology and pathobiology, molecular and cellular mechanisms, preclinical animal models, and therapeutic trials in animals and patients to enhance our understanding of HFpEF and improve clinical outcomes.
Collapse
Affiliation(s)
- Zhewei Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, National Health Commission Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Children's Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.2222 Xinchuan Road, Chengdu 610041, China; Department of Cardiology and Laboratory of Cardiovascular Diseases, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, China; West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yu Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, National Health Commission Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Children's Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.2222 Xinchuan Road, Chengdu 610041, China; West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiangqi Chen
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chuan Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, National Health Commission Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Children's Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.2222 Xinchuan Road, Chengdu 610041, China
| | - Jingyue Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, National Health Commission Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Children's Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.2222 Xinchuan Road, Chengdu 610041, China
| | - Yan Chen
- Department of Cardiology and Laboratory of Cardiovascular Diseases, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Xiaojing Liu
- Department of Cardiology and Laboratory of Cardiovascular Diseases, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, National Health Commission Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Children's Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.2222 Xinchuan Road, Chengdu 610041, China.
| |
Collapse
|
24
|
Achilli F, Maggiolini S, Madotto F, Bassetti B, Gentile F, Maggioni AP, Colombo GI, Pompilio G. Granulocyte colony-stimulating factor for stem cell mobilisation in acute myocardial infarction: a randomised controlled trial. Heart 2024; 110:1316-1326. [PMID: 39401872 DOI: 10.1136/heartjnl-2024-323926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 09/02/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND To determine whether granulocyte colony-stimulating factor (G-CSF) improves clinical outcomes after large ST-elevation myocardial infarction (STEMI) when administered early in patients with left ventricular (LV) dysfunction after successful percutaneous coronary intervention (PCI). METHODS STEM-AMI OUTCOME was designed as a prospective, multicentre, nationwide, randomised, open-label, phase III trial (ClinicalTrials.gov ID: NCT01969890) to demonstrate the efficacy and safety of early G-CSF administration in reducing 2-year cardiac mortality and morbidity in patients with STEMI with LV ejection fraction ≤45% after PCI. The primary outcome was a composite of all-cause death, recurrence of myocardial infarction and hospitalisation for heart failure. Due to low recruitment and event rates, the study was discontinued and did not achieve adequate statistical power to verify the hypothesis. RESULTS Patients were randomly allocated to G-CSF (n=260) or standard of care (SOC; n=261). No difference was found in the composite primary outcome between study groups (HR 1.20; 95% CI 0.63 to 2.28). The 2-year mortality was 2.31% in the G-CSF and 2.68% in the control group (HR 0.88; 95% CI 0.29 to 2.60). Adverse events did not differ between the G-CSF (n=65) and SOC groups (n=58; OR 1.17; 95% CI 0.78 to 1.75). In post hoc analyses on the intervention group, we observed a trend towards fewer composite primary outcomes in patients with low bone marrow (BM) cell mobilisation (n=108) versus those with high mobilisation (n=152, with peak leucocyte count >50×109/L; HR 2.86; 95% CI 0.96 to 8.56). Primary outcomes were lower in patients with severe LV systolic dysfunction at discharge treated with G-CSF than in controls (interaction β±SE, -0.08±0.04; p=0.034). CONCLUSIONS Although inconclusive, this is the largest trial in the field of cell-based cardiac repair after STEMI providing evidence of the tolerability and long-term safety of G-CSF treatment. The results prompt further studies to understand which patient can benefit most from BM cell mobilisation. TRIAL REGISTRATION NUMBER NCT01969890.
Collapse
Affiliation(s)
| | | | - Fabiana Madotto
- Dipartimento Area Emergenza-Urgenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Beatrice Bassetti
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy
| | - Francesco Gentile
- Department of Cardiology, Hospital Bassini, Cinisello Balsamo, Italy
| | | | - Gualtiero I Colombo
- Unit of Immunology and Functional Genomics, Centro Cardiologico Monzino Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
25
|
Swirski FK, Binder CJ. Lower your cholesterol early, and stick with it! Nat Rev Cardiol 2024:10.1038/s41569-024-01095-x. [PMID: 39424909 DOI: 10.1038/s41569-024-01095-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Affiliation(s)
- Filip K Swirski
- Cardiovascular Research Institute, Friedman Brain Institute, Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
26
|
Kalinoski H, Daoud A, Rusinkevich V, Jurčová I, Talor MV, Welsh RA, Hughes D, Zemanová K, Stříž I, Hooper JE, Kautzner J, Peichl P, Melenovský V, Won T, Čiháková D. Injury-induced myosin-specific tissue-resident memory T cells drive immune checkpoint inhibitor myocarditis. Proc Natl Acad Sci U S A 2024; 121:e2323052121. [PMID: 39378095 PMCID: PMC11494310 DOI: 10.1073/pnas.2323052121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024] Open
Abstract
Cardiac myosin-specific (MyHC) T cells drive the disease pathogenesis of immune checkpoint inhibitor-associated myocarditis (ICI-myocarditis). To determine whether MyHC T cells are tissue-resident memory T (TRM) cells, we characterized cardiac TRM cells in naive mice and established that they have a distinct phenotypic and transcriptional profile that can be defined by their upregulation of CD69, PD-1, and CXCR6. We then investigated the effects of cardiac injury through a modified experimental autoimmune myocarditis mouse model and an ischemia-reperfusion injury mouse model and determined that cardiac inflammation induces the recruitment of autoreactive MyHC TRM cells, which coexpress PD-1 and CD69. To investigate whether the recruited MyHC TRM cells could increase susceptibility to ICI-myocarditis, we developed a two-hit ICI-myocarditis mouse model where cardiac injury was induced, mice were allowed to recover, and then were treated with anti-PD-1 antibodies. We determined that mice who recover from cardiac injury are more susceptible to ICI-myocarditis development. We found that murine and human TRM cells share a similar location in the heart and aggregate along the perimyocardium. We phenotyped cells obtained from pericardial fluid from patients diagnosed with dilated cardiomyopathy and ischemic cardiomyopathy and established that pericardial T cells are predominantly CD69+ TRM cells that up-regulate PD-1. Finally, we determined that human pericardial macrophages produce IL-15, which supports and maintains pericardial TRM cells.
Collapse
Affiliation(s)
- Hannah Kalinoski
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21205
| | - Abdel Daoud
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21205
| | - Vitali Rusinkevich
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD21205
| | - Ivana Jurčová
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague140 21, Czech Republic
| | - Monica V. Talor
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD21205
| | - Robin A. Welsh
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD21205
| | - David Hughes
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD21205
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD21205
| | - Kateřina Zemanová
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague140 21, Czech Republic
| | - Ilja Stříž
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague140 21, Czech Republic
| | - Jody E. Hooper
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD21205
| | - Josef Kautzner
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague140 21, Czech Republic
| | - Petr Peichl
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague140 21, Czech Republic
| | - Vojtěch Melenovský
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague140 21, Czech Republic
| | - Taejoon Won
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD21205
| | - Daniela Čiháková
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21205
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD21205
| |
Collapse
|
27
|
Russo MA, Puccetti M, Costantini C, Giovagnoli S, Ricci M, Garaci E, Romani L. Human and gut microbiota synergy in a metabolically active superorganism: a cardiovascular perspective. Front Cardiovasc Med 2024; 11:1411306. [PMID: 39465131 PMCID: PMC11502352 DOI: 10.3389/fcvm.2024.1411306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/26/2024] [Indexed: 10/29/2024] Open
Abstract
Despite significant advances in diagnosis and treatment over recent decades, cardiovascular disease (CVD) remains one of the leading causes of morbidity and mortality in Western countries. This persistent burden is partly due to the incomplete understanding of fundamental pathogenic mechanisms, which limits the effectiveness of current therapeutic interventions. In this context, recent evidence highlights the pivotal role of immuno-inflammatory activation by the gut microbiome in influencing cardiovascular disorders, potentially opening new therapeutic avenues. Indeed, while atherosclerosis has been established as a chronic inflammatory disease of the arterial wall, accumulating data suggest that immune system regulation and anti-inflammatory pathways mediated by gut microbiota metabolites play a crucial role in a range of CVDs, including heart failure, pericardial disease, arrhythmias, and cardiomyopathies. Of particular interest is the emerging understanding of how tryptophan metabolism-by both host and microbiota-converges on the Aryl hydrocarbon Receptor (AhR), a key regulator of immune homeostasis. This review seeks to enhance our understanding of the role of the immune system and inflammation in CVD, with a focus on how gut microbiome-derived tryptophan metabolites, such as indoles and their derivatives, contribute to cardioimmunopathology. By exploring these mechanisms, we aim to facilitate the development of novel, microbiome-centered strategies for combating CVD.
Collapse
Affiliation(s)
| | - Matteo Puccetti
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Claudio Costantini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Maurizio Ricci
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Enrico Garaci
- San Raffaele Research Center, Sulmona, L’Aquila, Italy
| | - Luigina Romani
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- San Raffaele Research Center, Sulmona, L’Aquila, Italy
| |
Collapse
|
28
|
Gigli M, Stolfo D, Merlo M, Sinagra G, Taylor MRG, Mestroni L. Pathophysiology of dilated cardiomyopathy: from mechanisms to precision medicine. Nat Rev Cardiol 2024:10.1038/s41569-024-01074-2. [PMID: 39394525 DOI: 10.1038/s41569-024-01074-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 10/13/2024]
Abstract
Dilated cardiomyopathy (DCM) is a complex disease with multiple causes and various pathogenic mechanisms. Despite improvements in the prognosis of patients with DCM in the past decade, this condition remains a leading cause of heart failure and premature death. Conventional treatment for DCM is based on the foundational therapies for heart failure with reduced ejection fraction. However, increasingly, attention is being directed towards individualized treatments and precision medicine. The ability to confirm genetic causality is gradually being complemented by an increased understanding of genotype-phenotype correlations. Non-genetic factors also influence the onset of DCM, and growing evidence links genetic background with concomitant non-genetic triggers or precipitating factors, increasing the extreme complexity of the pathophysiology of DCM. This Review covers the spectrum of pathophysiological mechanisms in DCM, from monogenic causes to the coexistence of genetic abnormalities and triggering environmental factors (the 'two-hit' hypothesis). The roles of common genetic variants in the general population and of gene modifiers in disease onset and progression are also discussed. Finally, areas for future research are highlighted, particularly novel therapies, such as small molecules, RNA and gene therapy, and measures for the prevention of arrhythmic death.
Collapse
Affiliation(s)
- Marta Gigli
- Cardiothoracovascular Department, Centre for Diagnosis and Treatment of Cardiomyopathies, European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI) and University of Trieste, Trieste, Italy
| | - Davide Stolfo
- Cardiothoracovascular Department, Centre for Diagnosis and Treatment of Cardiomyopathies, European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI) and University of Trieste, Trieste, Italy
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marco Merlo
- Cardiothoracovascular Department, Centre for Diagnosis and Treatment of Cardiomyopathies, European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI) and University of Trieste, Trieste, Italy
| | - Gianfranco Sinagra
- Cardiothoracovascular Department, Centre for Diagnosis and Treatment of Cardiomyopathies, European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI) and University of Trieste, Trieste, Italy
| | - Matthew R G Taylor
- Adult Medical Genetics Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Luisa Mestroni
- Molecular Genetics Program, Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
29
|
Li T, Liu Y, Fu J, Huang L, Liu Z. Plasma metabolome mediates the causal relationship between immune cells and heart failure: a two-step bidirectional Mendelian randomization study. Front Cardiovasc Med 2024; 11:1430477. [PMID: 39444553 PMCID: PMC11496177 DOI: 10.3389/fcvm.2024.1430477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024] Open
Abstract
Background Prior research has established a correlation between immune cell activity and heart failure (HF), but the causal nature of this relationship remains unclear. Furthermore, the potential influence of metabolite levels on this interaction has not been comprehensively explored. To address these gaps, we employed a bidirectional Mendelian randomization (MR) approach in two stages to examine whether metabolite levels can mediate the causal relationship between immune cells and HF. Methods Genetic information was extracted from summary data of genome-wide association studies. By applying a two-sample, two-step MR approach, we investigated the causal relationships among immune cells, metabolite levels, and HF, with a specific focus on the mediating effects of metabolites. Sensitivity analysis techniques were implemented to ensure the robustness of our findings. Results MR analysis revealed significant causal associations between HF and eight specific immune cells and five metabolites. Mediation analysis further identified three mediated relationships. Particularly, hexadecenedioate (C16:1-DC) mediated the influence of both the CD28- CD127- CD25++ CD8br%CD8br (mediation proportion: 19.2%) and CD28+ CD45RA + CD8br%T cells (mediation proportion: 11.9%) on HF. Additionally, the relationship between IgD + CD38br AC cells and HF appeared to be mediated by the phosphate to alanine ratio (mediation proportion: 16.3%). Sensitivity analyses validated that the used instrumental variables were free from pleiotropy and heterogeneity. Conclusion This study provides evidence that certain immune cell levels are associated with the risk of HF and that metabolite levels may mediate these relationships. However, to strengthen these findings, further validation using MR analyses with larger sample sizes is essential.
Collapse
Affiliation(s)
- Tan Li
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Yanwei Liu
- Department of Cardiology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Juncong Fu
- Department of Traditional Chinese Medicine, Shangrao Municipal Hospital, Shangrao, Jiangxi, China
| | - Langlang Huang
- Department of Cardiology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- National Pharmaceutical Engineering Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Zhongyong Liu
- Department of Cardiology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
30
|
Buch MH, Mallat Z, Dweck MR, Tarkin JM, O'Regan DP, Ferreira V, Youngstein T, Plein S. Current understanding and management of cardiovascular involvement in rheumatic immune-mediated inflammatory diseases. Nat Rev Rheumatol 2024; 20:614-634. [PMID: 39232242 DOI: 10.1038/s41584-024-01149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 09/06/2024]
Abstract
Immune-mediated inflammatory diseases (IMIDs) are a spectrum of disorders of overlapping immunopathogenesis, with a prevalence of up to 10% in Western populations and increasing incidence in developing countries. Although targeted treatments have revolutionized the management of rheumatic IMIDs, cardiovascular involvement confers an increased risk of mortality and remains clinically under-recognized. Cardiovascular pathology is diverse across rheumatic IMIDs, ranging from premature atherosclerotic cardiovascular disease (ASCVD) to inflammatory cardiomyopathy, which comprises myocardial microvascular dysfunction, vasculitis, myocarditis and pericarditis, and heart failure. Epidemiological and clinical data imply that rheumatic IMIDs and associated cardiovascular disease share common inflammatory mechanisms. This concept is strengthened by emergent trials that indicate improved cardiovascular outcomes with immune modulators in the general population with ASCVD. However, not all disease-modifying therapies that reduce inflammation in IMIDs such as rheumatoid arthritis demonstrate equally beneficial cardiovascular effects, and the evidence base for treatment of inflammatory cardiomyopathy in patients with rheumatic IMIDs is lacking. Specific diagnostic protocols for the early detection and monitoring of cardiovascular involvement in patients with IMIDs are emerging but are in need of ongoing development. This Review summarizes current concepts on the potentially targetable inflammatory mechanisms of cardiovascular pathology in rheumatic IMIDs and discusses how these concepts can be considered for the diagnosis and management of cardiovascular involvement across rheumatic IMIDs, with an emphasis on the potential of cardiovascular imaging for risk stratification, early detection and prognostication.
Collapse
Affiliation(s)
- Maya H Buch
- Centre for Musculoskeletal Research, Division of Musculoskeletal & Dermatological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK.
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| | - Ziad Mallat
- Section of Cardiorespiratory Medicine, Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Marc R Dweck
- Centre for Cardiovascular Science, Chancellors Building, Little France Crescent, University of Edinburgh, Edinburgh, UK
| | - Jason M Tarkin
- Section of Cardiorespiratory Medicine, Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Declan P O'Regan
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK
| | - Vanessa Ferreira
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Taryn Youngstein
- National Heart & Lung Institute, Imperial College London, London, UK
- Department of Rheumatology, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Sven Plein
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, UK
| |
Collapse
|
31
|
Kneuer JM, Grajek IA, Winkler M, Erbe S, Meinecke T, Weiss R, Garfias-Veitl T, Sheikh BN, König AC, Möbius-Winkler MN, Kogel A, Kresoja KP, Rosch S, Kokot KE, Filipova V, Gaul S, Thiele H, Lurz P, von Haehling S, Speer T, Laufs U, Boeckel JN. Novel Long Noncoding RNA HEAT4 Affects Monocyte Subtypes, Reducing Inflammation and Promoting Vascular Healing. Circulation 2024; 150:1101-1120. [PMID: 39005211 PMCID: PMC11444369 DOI: 10.1161/circulationaha.124.069315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/11/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Activation of the immune system contributes to cardiovascular diseases. The role of human-specific long noncoding RNAs in cardioimmunology is poorly understood. METHODS Single-cell sequencing in peripheral blood mononuclear cells revealed a novel human-specific long noncoding RNA called HEAT4 (heart failure-associated transcript 4). HEAT4 expression was assessed in several in vitro and ex vivo models of immune cell activation, as well as in the blood of patients with heart failure (HF), acute myocardial infarction, or cardiogenic shock. The transcriptional regulation of HEAT4 was verified through cytokine treatment and single-cell sequencing. Loss-of-function and gain-of-function studies and multiple RNA-protein interaction assays uncovered a mechanistic role of HEAT4 in the monocyte anti-inflammatory gene program. HEAT4 expression and function was characterized in a vascular injury model in NOD.CB17-Prkdc scid/Rj mice. RESULTS HEAT4 expression was increased in the blood of patients with HF, acute myocardial infarction, or cardiogenic shock. HEAT4 levels distinguished patients with HF from people without HF and predicted all-cause mortality in a cohort of patients with HF over 7 years of follow-up. Monocytes, particularly anti-inflammatory CD16+ monocytes, which are increased in patients with HF, are the primary source of HEAT4 expression in the blood. HEAT4 is transcriptionally activated by treatment with anti-inflammatory interleukin-10. HEAT4 activates anti-inflammatory and inhibits proinflammatory gene expression. Increased HEAT4 levels result in a shift toward more CD16+ monocytes. HEAT4 binds to S100A9, causing a monocyte subtype switch, thereby reducing inflammation. As a result, HEAT4 improves endothelial barrier integrity during inflammation and promotes vascular healing after injury in mice. CONCLUSIONS These results characterize a novel endogenous anti-inflammatory pathway that involves the conversion of monocyte subtypes into anti-inflammatory CD16+ monocytes. The data identify a novel function for the class of long noncoding RNAs by preventing protein secretion and suggest long noncoding RNAs as potential targets for interventions in the field of cardioimmunology.
Collapse
Affiliation(s)
- Jasmin M. Kneuer
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Germany (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., U.L., J.-N.B.)
- Central German Heart Alliance (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., H.T., U.L., J.-N.B.)
| | - Ignacy A. Grajek
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Germany (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., U.L., J.-N.B.)
- Central German Heart Alliance (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., H.T., U.L., J.-N.B.)
| | - Melanie Winkler
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Germany (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., U.L., J.-N.B.)
- Central German Heart Alliance (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., H.T., U.L., J.-N.B.)
| | - Stephan Erbe
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Germany (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., U.L., J.-N.B.)
- Central German Heart Alliance (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., H.T., U.L., J.-N.B.)
| | - Tim Meinecke
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Germany (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., U.L., J.-N.B.)
- Central German Heart Alliance (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., H.T., U.L., J.-N.B.)
| | - Ronald Weiss
- Institute of Clinical Immunology, University of Leipzig, Germany (R.W.)
| | - Tania Garfias-Veitl
- Department of Cardiology and Pneumology, University Medical Center of Göttingen (UMG), Germany (T.G.-V., S.v.H.)
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany (T.G.-V., S.v.H.)
| | - Bilal N. Sheikh
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Germany (B.N.S.)
| | - Ann-Christine König
- German Research Center for Environmental Health (GmbH), Metabolomics and Proteomics Core, Helmholtz Zentrum München, Germany (A.-C.K.)
| | - Maximilian N. Möbius-Winkler
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Germany (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., U.L., J.-N.B.)
- Central German Heart Alliance (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., H.T., U.L., J.-N.B.)
| | - Alexander Kogel
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Germany (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., U.L., J.-N.B.)
- Central German Heart Alliance (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., H.T., U.L., J.-N.B.)
| | - Karl-Patrik Kresoja
- Department of Cardiology, Heart Center at University of Leipzig, Germany (K.-P.K., S.R., H.T., P.L.)
- Department of Cardiology, Universitätsmedizin Johannes Gutenberg-University, Mainz, Germany (K.-P.K., S.R., P.L.)
| | - Sebastian Rosch
- Department of Cardiology, Heart Center at University of Leipzig, Germany (K.-P.K., S.R., H.T., P.L.)
- Department of Cardiology, Universitätsmedizin Johannes Gutenberg-University, Mainz, Germany (K.-P.K., S.R., P.L.)
| | - Karoline E. Kokot
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Germany (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., U.L., J.-N.B.)
- Central German Heart Alliance (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., H.T., U.L., J.-N.B.)
| | - Vanina Filipova
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Germany (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., U.L., J.-N.B.)
- Central German Heart Alliance (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., H.T., U.L., J.-N.B.)
| | - Susanne Gaul
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Germany (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., U.L., J.-N.B.)
- Central German Heart Alliance (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., H.T., U.L., J.-N.B.)
| | - Holger Thiele
- Central German Heart Alliance (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., H.T., U.L., J.-N.B.)
- Department of Cardiology, Heart Center at University of Leipzig, Germany (K.-P.K., S.R., H.T., P.L.)
| | - Philipp Lurz
- Department of Cardiology, Heart Center at University of Leipzig, Germany (K.-P.K., S.R., H.T., P.L.)
- Department of Cardiology, Universitätsmedizin Johannes Gutenberg-University, Mainz, Germany (K.-P.K., S.R., P.L.)
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, University Medical Center of Göttingen (UMG), Germany (T.G.-V., S.v.H.)
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany (T.G.-V., S.v.H.)
| | - Thimoteus Speer
- Medizinische Klinik 4: Nephrologie, Universitätsklinikum Frankfurt, Frankfurt am Main, Germany (T.S.)
- Else Kroener-Fresenius Center for Nephrological Research, Goethe University, Frankfurt, Germany (T.S.)
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Germany (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., U.L., J.-N.B.)
- Central German Heart Alliance (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., H.T., U.L., J.-N.B.)
| | - Jes-Niels Boeckel
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Germany (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., U.L., J.-N.B.)
- Central German Heart Alliance (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., H.T., U.L., J.-N.B.)
| |
Collapse
|
32
|
Vinícius de Paula da Silva M, Vieira Alves I, Rodrigues Pereira Alves A, Soares Lemos V, Assis Lopes do Carmo G, Morato de Castilho F, Léo Gelape C. Crosstalk between cytokines, inflammation and pulmonary arterial hypertension in heart transplant patients. Cytokine 2024; 182:156709. [PMID: 39079217 DOI: 10.1016/j.cyto.2024.156709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/25/2024]
Abstract
BACKGROUND Heart transplant (HT) is a therapeutic option for patients with advanced heart failure (HF) refractory to optimized treatment. Patients with advanced HF often develop pulmonary arterial hypertension (PAH). PAH is defined as a condition in which the mean pulmonary artery pressure is greater than 20 mmHg. Inflammation is an important aspect of PAH development. In this context, the objective of this work was to evaluate the relationship between the inflammatory process and the development of HAP in patients undergoing HT. METHODS The levels of interleukins IL-6, IL-1β and TNF-α were obtained by ELISA and associated with CD68+ and CD66b neutrophil counts using the immunofluorescence technique in fragments of the pulmonary arteries of donors and patients with or without chagasic cardiomyopathy subjected to HT. RESULTS The results showed a positive, statistically significant correlation (p < 0.05) between right atrium pressure levels and IL-6. Furthermore, negative, moderate, and statistically significant correlations (p < 0.05) were observed between the variables cardiac index and TNF-α, and between the levels of transpulmonary pressure grandient and TNF-α. The study also revealed the presence of a statistically significant difference (p < 0.05) between patients who died within 30 days and the highest number of CD68 cells per square micrometer in the vessel of the donor and recipient patient. CONCLUSION Suggesting the presence of a pro-inflammatory profile in HT patients, independent of measured pulmonary artery pressure levels.
Collapse
Affiliation(s)
- Marcus Vinícius de Paula da Silva
- Department of Cardiovascular Surgery, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Ildernandes Vieira Alves
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais
| | | | - Virginia Soares Lemos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais
| | - Gabriel Assis Lopes do Carmo
- Department of Cardiovascular Surgery, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fábio Morato de Castilho
- Department of Cardiovascular Surgery, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Cláudio Léo Gelape
- Department of Cardiovascular Surgery, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
33
|
Garlapati V, Luo Q, Posma J, Aluia M, Nguyen TS, Grunz K, Molitor M, Finger S, Harms G, Bopp T, Ruf W, Wenzel P. Macrophage-Expressed Coagulation Factor VII Promotes Adverse Cardiac Remodeling. Circ Res 2024; 135:841-855. [PMID: 39234697 DOI: 10.1161/circresaha.123.324114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Excess fibrotic remodeling causes cardiac dysfunction in ischemic heart disease, driven by MAP (mitogen-activated protein) kinase-dependent TGF-ß1 (transforming growth factor-ß1) activation by coagulation signaling of myeloid cells. How coagulation-inflammatory circuits can be specifically targeted to achieve beneficial macrophage reprogramming after myocardial infarction (MI) is not completely understood. METHODS Mice with permanent ligation of the left anterior descending artery were used to model nonreperfused MI and analyzed by single-cell RNA sequencing, protein expression changes, confocal microscopy, and longitudinal monitoring of recovery. We probed the role of the tissue factor (TF)-FVIIa (activated factor VII)-integrin ß1-PAR2 (protease-activated receptor 2) signaling complex by utilizing genetic mouse models and pharmacological intervention. RESULTS Cleavage-insensitive PAR2R38E and myeloid cell integrin ß1-deficient mice had improved cardiac function after MI compared with controls. Proximity ligation assays of monocytic cells demonstrated that colocalization of FVIIa with integrin ß1 was diminished in monocyte/macrophage FVII-deficient mice after MI. Compared with controls, F7fl/fl CX3CR1 (CX3C motif chemokine receptor 1)Cre mice showed reduced TGF-ß1 and MAP kinase activation, as well as cardiac dysfunction after MI, despite unaltered overall recruitment of myeloid cells. Single-cell mRNA sequencing of CD45 (cluster of differentiation 45)+ cells 3 and 7 days after MI uncovered a trajectory from recruited monocytes to inflammatory TF+/TREM (triggered receptor expressed on myeloid cells) 1+ macrophages requiring F7. As early as 7 days after MI, macrophage F7 deletion led to an expansion of reparative Olfml 3 (olfactomedin-like protein 3)+ macrophages and, conversely, to a reduction of TF+/TREM1+ macrophages, which were also reduced in PAR2R38E mice. Short-term treatment from days 1 to 5 after nonreperfused MI with a monoclonal antibody inhibiting the macrophage TF-FVIIa-PAR2 signaling complex without anticoagulant activity improved cardiac dysfunction, decreased excess fibrosis, attenuated vascular endothelial dysfunction, and increased survival 28 days after MI. CONCLUSIONS Extravascular TF-FVIIa-PAR2 complex signaling drives inflammatory macrophage polarization in ischemic heart disease. Targeting this signaling complex for specific therapeutic macrophage reprogramming following MI attenuates cardiac fibrosis and improves cardiovascular function.
Collapse
Affiliation(s)
- Venkata Garlapati
- Center for Thrombosis and Hemostasis (V.G., Q.L., J.P., M.A., T.S.N., K.G., M.M., S.F., W.R., P.W.), University Medical Center Mainz, Germany
- Department of Cardiology (V.G., Q.L., M.A., M.M., S.F., P.W.), University Medical Center Mainz, Germany
- German Center for Cardiovascular Research-Partner site Rhine-Main (V.G., Q.L., M.A., M.M., W.R., P.W.), University Medical Center Mainz, Germany
| | - Qi Luo
- Center for Thrombosis and Hemostasis (V.G., Q.L., J.P., M.A., T.S.N., K.G., M.M., S.F., W.R., P.W.), University Medical Center Mainz, Germany
- Department of Cardiology (V.G., Q.L., M.A., M.M., S.F., P.W.), University Medical Center Mainz, Germany
- German Center for Cardiovascular Research-Partner site Rhine-Main (V.G., Q.L., M.A., M.M., W.R., P.W.), University Medical Center Mainz, Germany
- Department of Biochemistry, Cardiovascular Research Maastricht University, the Netherlands (Q.L.)
| | - Jens Posma
- Center for Thrombosis and Hemostasis (V.G., Q.L., J.P., M.A., T.S.N., K.G., M.M., S.F., W.R., P.W.), University Medical Center Mainz, Germany
| | - Melania Aluia
- Center for Thrombosis and Hemostasis (V.G., Q.L., J.P., M.A., T.S.N., K.G., M.M., S.F., W.R., P.W.), University Medical Center Mainz, Germany
- Department of Cardiology (V.G., Q.L., M.A., M.M., S.F., P.W.), University Medical Center Mainz, Germany
- German Center for Cardiovascular Research-Partner site Rhine-Main (V.G., Q.L., M.A., M.M., W.R., P.W.), University Medical Center Mainz, Germany
| | - Than Son Nguyen
- Center for Thrombosis and Hemostasis (V.G., Q.L., J.P., M.A., T.S.N., K.G., M.M., S.F., W.R., P.W.), University Medical Center Mainz, Germany
| | - Kristin Grunz
- Center for Thrombosis and Hemostasis (V.G., Q.L., J.P., M.A., T.S.N., K.G., M.M., S.F., W.R., P.W.), University Medical Center Mainz, Germany
| | - Michael Molitor
- Center for Thrombosis and Hemostasis (V.G., Q.L., J.P., M.A., T.S.N., K.G., M.M., S.F., W.R., P.W.), University Medical Center Mainz, Germany
- Department of Cardiology (V.G., Q.L., M.A., M.M., S.F., P.W.), University Medical Center Mainz, Germany
- German Center for Cardiovascular Research-Partner site Rhine-Main (V.G., Q.L., M.A., M.M., W.R., P.W.), University Medical Center Mainz, Germany
| | - Stefanie Finger
- Center for Thrombosis and Hemostasis (V.G., Q.L., J.P., M.A., T.S.N., K.G., M.M., S.F., W.R., P.W.), University Medical Center Mainz, Germany
- Department of Cardiology (V.G., Q.L., M.A., M.M., S.F., P.W.), University Medical Center Mainz, Germany
| | - Gregory Harms
- Institute of Immunology and Research Center for Immunotherapy (G.H., T.B.), University Medical Center Mainz, Germany
- Cell Biology Unit (G.H.), University Medical Center Mainz, Germany
- Department of Biology, Wilkes University, Wilkes-Barre, PA (G.H.)
| | - Tobias Bopp
- Institute of Immunology and Research Center for Immunotherapy (G.H., T.B.), University Medical Center Mainz, Germany
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis (V.G., Q.L., J.P., M.A., T.S.N., K.G., M.M., S.F., W.R., P.W.), University Medical Center Mainz, Germany
- German Center for Cardiovascular Research-Partner site Rhine-Main (V.G., Q.L., M.A., M.M., W.R., P.W.), University Medical Center Mainz, Germany
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA (W.R.)
| | - Philip Wenzel
- Center for Thrombosis and Hemostasis (V.G., Q.L., J.P., M.A., T.S.N., K.G., M.M., S.F., W.R., P.W.), University Medical Center Mainz, Germany
- Department of Cardiology (V.G., Q.L., M.A., M.M., S.F., P.W.), University Medical Center Mainz, Germany
- German Center for Cardiovascular Research-Partner site Rhine-Main (V.G., Q.L., M.A., M.M., W.R., P.W.), University Medical Center Mainz, Germany
| |
Collapse
|
34
|
Ng M, Gao AS, Phu TA, Vu NK, Raffai RL. M2 Macrophage Exosomes Reverse Cardiac Functional Decline in Mice with Diet-Induced Myocardial Infarction by Suppressing Type 1 Interferon Signaling in Myeloid Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612924. [PMID: 39345592 PMCID: PMC11429744 DOI: 10.1101/2024.09.13.612924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Effective treatment strategies to alleviate heart failure that develops as a consequence of myocardial infarction (MI) remain an unmet need in cardiovascular medicine. In this study, we uncovered that exosomes produced by human THP-1 macrophages cultured with the cytokine IL-4 (THP1-IL4-exo), reverse cardiac functional decline in mice that develop MI as a consequence of diet-induced occlusive coronary atherosclerosis. Therapeutic benefits of THP1-IL4-exo stem from their ability to reprogram circulating Ly-6Chi monocytes into an M2-like phenotype and suppress Type 1 Interferon signaling in myeloid cells within the bone marrow, the circulation, and cardiac tissue. Collectively, these benefits suppress myelopoiesis, myeloid cell recruitment to cardiac tissue, and preserve populations of resident cardiac macrophages that together mitigate cardiac inflammation, adverse ventricular remodeling, and heart failure. Our findings introduce THP1-IL4-exo, one form of M2-macrophage exosomes, as novel therapeutics to preserve cardiac function subsequent to MI.
Collapse
Affiliation(s)
- Martin Ng
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, CA 94121, USA
- Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Alex S Gao
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, CA 94121, USA
- Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Tuan Anh Phu
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, CA 94121, USA
- Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Ngan K Vu
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, CA 94121, USA
- Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Robert L Raffai
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, CA 94121, USA
- Northern California Institute for Research and Education, San Francisco, CA 94121, USA
- Department of Surgery, Division of Vascular and Endovascular Surgery, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
35
|
Wang YG, Wang DH, Wei WH, Xiong X, Wu JJ, Han ZY, Cheng LX. Myeloid-derived suppressor cells alleviate adverse ventricular remodeling after acute myocardial infarction. Mol Cell Biochem 2024:10.1007/s11010-024-05112-y. [PMID: 39264395 DOI: 10.1007/s11010-024-05112-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024]
Abstract
The fundamental pathophysiological mechanism in the progression of chronic heart failure following acute myocardial infarction (AMI) is ventricular remodeling, in which innate and adaptive immunity both play critical roles. Myeloid-derived suppressor cells (MDSCs) have been demonstrated to function in a range of pathological conditions, such as infections, inflammation, autoimmune diseases, and tumors. However, it is unclear how MDSCs contribute to cardiac remodeling following AMI. This study aimed to identify the function and underlying mechanism of MDSCs in controlling cardiac remodeling following AMI. Following AMI in mice, MDSCs frequencies changed dynamically, considerably increased on day 7 in blood, spleens, lymph nodes and hearts, and decreased afterwards. Consistently, mice with AMI displayed enhanced cardiac function on day 14 post-AMI, reduced infract size and higher survival rates on day 28 post-AMI following the adoptive transfer of MDSCs. Furthermore, MDSCs inhibited the inflammatory response by decreasing pro-inflammatory cytokine (TNF-α, IL-17, Cxcl-1, and Cxcl-2) expression, up-regulating anti-inflammatory cytokine (TGF-β1, IL-10, IL-4, and IL-13) expression, reducing CD3+ T cell infiltration in the infarcted heart and enhancing M2 macrophage polarization. Mechanistically, MDSCs improved the release of anti-inflammatory factors (TGF-β1 and IL-10) and decreased the injury of LPS-induced cardiomyocytes in vitro in a manner dependent on cell-cell contact. Importantly, blockade of IL-10 partially abolished the cardioprotective role of MDSCs. This study found that MDSCs contributed to the restoration of cardiac function and alleviation of adverse cardiac remodeling after AMI possibly by inhibiting inflammation.
Collapse
Affiliation(s)
- Yan-Ge Wang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Dong Road, Zhengzhou, China.
| | - Ding-Hang Wang
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Jie-Fang Avenue 1277#, Wuhan, China
- Department of Emergency, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen-Hui Wei
- Department of Critical Care Medicine, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Xin Xiong
- Department of Pediatrics, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Jing-Jing Wu
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Jie-Fang Avenue 1277#, Wuhan, China
| | - Zhan-Ying Han
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Dong Road, Zhengzhou, China
| | - Long-Xian Cheng
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Jie-Fang Avenue 1277#, Wuhan, China.
| |
Collapse
|
36
|
Gillan JL, Jaeschke L, Kuebler WM, Grune J. Immune mediators in heart-lung communication. Pflugers Arch 2024:10.1007/s00424-024-03013-z. [PMID: 39256247 DOI: 10.1007/s00424-024-03013-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/12/2024]
Abstract
It is often the case that serious, end-stage manifestations of disease result from secondary complications in organs distinct from the initial site of injury or infection. This is particularly true of diseases of the heart-lung axis, given the tight anatomical connections of the two organs within a common cavity in which they collectively orchestrate the two major, intertwined circulatory pathways. Immune cells and the soluble mediators they secrete serve as effective, and targetable, messengers of signals between different regions of the body but can also contribute to the spread of pathology. In this review, we discuss the immunological basis of interorgan communication between the heart and lung in various common diseases, and in the context of organ crosstalk more generally. Gaining a greater understanding of how the heart and lung communicate in health and disease, and viewing disease progression generally from a more holistic, whole-body viewpoint have the potential to inform new diagnostic approaches and strategies for better prevention and treatment of comorbidities.
Collapse
Affiliation(s)
- Jonathan L Gillan
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum Der Charité (DHZC), Virchowweg 6, 10117, Berlin, Germany
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Lara Jaeschke
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum Der Charité (DHZC), Virchowweg 6, 10117, Berlin, Germany
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Wolfgang M Kuebler
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum Der Charité (DHZC), Virchowweg 6, 10117, Berlin, Germany
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Jana Grune
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum Der Charité (DHZC), Virchowweg 6, 10117, Berlin, Germany.
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
| |
Collapse
|
37
|
Xu D, Bi S, Li J, Ma S, Yu ZA, Wang Y, Chen H, Zhan J, Song X, Cai Y. Legumain-Guided Ferulate-Peptide Self-Assembly Enhances Macrophage-Endotheliocyte Partnership to Promote Therapeutic Angiogenesis After Myocardial Infarction. Adv Healthc Mater 2024:e2402056. [PMID: 39252665 DOI: 10.1002/adhm.202402056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/31/2024] [Indexed: 09/11/2024]
Abstract
Promoting angiogenesis and modulating the inflammatory microenvironment are promising strategies for treating acute myocardial infarction (MI). Macrophages are crucial in regulating inflammation and influencing angiogenesis through interactions with endothelial cells. However, current therapies lack a comprehensive assessment of pathological and physiological subtleties, resulting in limited myocardial recovery. In this study, legumain-guided ferulate-peptide nanofibers (LFPN) are developed to facilitate the interaction between macrophages and endothelial cells in the MI lesion and modulate their functions. LFPN exhibits enhanced ferulic acid (FA) aggregation and release, promoting angiogenesis and alleviating inflammation. The multifunctional role of LFPN is validated in cells and an MI mouse model, where it modulated macrophage polarization, attenuated inflammatory responses, and induces endothelial cell neovascularization compare to FA alone. LFPN supports the preservation of border zone cardiomyocytes by regulating inflammatory infiltration in the ischemic core, leading to significant functional recovery of the left ventricle. These findings suggest that synergistic therapy exploiting multicellular interaction and enzyme guidance may enhance the clinical translation potential of smart-responsive drug delivery systems to treat MI. This work emphasizes macrophage-endothelial cell partnerships as a novel paradigm to enhance cell interactions, control inflammation, and promote therapeutic angiogenesis.
Collapse
Affiliation(s)
- Delong Xu
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Shenghui Bi
- Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jiejing Li
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Shaodan Ma
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Ze-An Yu
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yenan Wang
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Huiming Chen
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jie Zhan
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xudong Song
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yanbin Cai
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| |
Collapse
|
38
|
Jang E, Ho TWW, Brumell JH, Lefebvre F, Wang C, Lee WL. IL-1β Induces LDL Transcytosis by a Novel Pathway Involving LDLR and Rab27a. Arterioscler Thromb Vasc Biol 2024; 44:2053-2068. [PMID: 38989581 DOI: 10.1161/atvbaha.124.320940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND In early atherosclerosis, circulating LDLs (low-density lipoproteins) traverse individual endothelial cells by an active process termed transcytosis. The CANTOS trial (Canakinumab Antiinflammatory Thrombosis Outcome Study) treated advanced atherosclerosis using a blocking antibody for IL-1β (interleukin-1β); this significantly reduced cardiovascular events. However, whether IL-1β regulates early disease, particularly LDL transcytosis, remains unknown. METHODS We used total internal reflection fluorescence microscopy to quantify transcytosis by human coronary artery endothelial cells exposed to IL-1β. To investigate transcytosis in vivo, we injected wild-type and knockout mice with IL-1β and LDL to visualize acute LDL deposition in the aortic arch. RESULTS Exposure to picomolar concentrations of IL-1β induced transcytosis of LDL but not of albumin by human coronary artery endothelial cells. Surprisingly, expression of the 2 known receptors for LDL transcytosis, ALK-1 (activin receptor-like kinase-1) and SR-BI (scavenger receptor BI), was unchanged or decreased. Instead, IL-1β increased the expression of the LDLR (LDL receptor); this was unexpected because LDLR is not required for LDL transcytosis. Overexpression of LDLR had no effect on basal LDL transcytosis. However, knockdown of LDLR abrogated the effect of IL-1β on transcytosis rates while the depletion of Cav-1 (caveolin-1) did not. Since LDLR was necessary but overexpression had no effect, we reasoned that another player must be involved. Using public RNA sequencing data to curate a list of Rab (Ras-associated binding) GTPases affected by IL-1β, we identified Rab27a. Overexpression of Rab27a alone had no effect on basal transcytosis, but its knockdown prevented induction by IL-1β. This was phenocopied by depletion of the Rab27a effector JFC1 (synaptotagmin-like protein 1). In vivo, IL-1β increased LDL transcytosis in the aortic arch of wild-type but not Ldlr-/- or Rab27a-deficient mice. The JFC1 inhibitor nexinhib20 also blocked IL-1β-induced LDL accumulation in the aorta. CONCLUSIONS IL-1β induces LDL transcytosis by a distinct pathway requiring LDLR and Rab27a; this route differs from basal transcytosis. We speculate that induction of transcytosis by IL-1β may contribute to the acceleration of early disease.
Collapse
Affiliation(s)
- Erika Jang
- Keenan Centre for Biomedical Research, St. Michael's Hospital, Toronto, ON, Canada (E.J., T.W.W.H., C.W., W.L.L.)
- Department of Laboratory Medicine and Pathobiology (E.J., T.W.W.H., W.L.L.), University of Toronto, ON, Canada
| | - Tse Wing Winnie Ho
- Keenan Centre for Biomedical Research, St. Michael's Hospital, Toronto, ON, Canada (E.J., T.W.W.H., C.W., W.L.L.)
- Department of Laboratory Medicine and Pathobiology (E.J., T.W.W.H., W.L.L.), University of Toronto, ON, Canada
| | - John H Brumell
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada (J.H.B.)
| | - François Lefebvre
- Canadian Centre for Computational Genomics, McGill University, Montreal, QC, Canada (F.L.)
| | - Changsen Wang
- Keenan Centre for Biomedical Research, St. Michael's Hospital, Toronto, ON, Canada (E.J., T.W.W.H., C.W., W.L.L.)
| | - Warren L Lee
- Keenan Centre for Biomedical Research, St. Michael's Hospital, Toronto, ON, Canada (E.J., T.W.W.H., C.W., W.L.L.)
- Department of Laboratory Medicine and Pathobiology (E.J., T.W.W.H., W.L.L.), University of Toronto, ON, Canada
- Department of Biochemistry (W.L.L.), University of Toronto, ON, Canada
- Department of Medicine and the Interdepartmental Division of Critical Care Medicine (W.L.L.), University of Toronto, ON, Canada
| |
Collapse
|
39
|
Popovic AM, Lei MHC, Shakeri A, Khosravi R, Radisic M. Lab-on-a-chip models of cardiac inflammation. BIOMICROFLUIDICS 2024; 18:051507. [PMID: 39483204 PMCID: PMC11524635 DOI: 10.1063/5.0231735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/08/2024] [Indexed: 11/03/2024]
Abstract
Cardiovascular diseases are the leading cause of morbidity and mortality worldwide with numerous inflammatory cell etiologies associated with impaired cardiac function and heart failure. Inflammatory cardiomyopathy, also known as myocarditis, is an acquired cardiomyopathy characterized by inflammatory cell infiltration into the myocardium with a high risk of progression to deteriorated cardiac function. Recently, amidst the ongoing COVID-19 pandemic, the emergence of acute myocarditis as a complication of SARS-CoV-2 has garnered significant concern. Given its mechanisms remain elusive in conjunction with the recent withdrawal of previously FDA-approved antiviral therapeutics and prophylactics due to unexpected cardiotoxicity, there is a pressing need for human-mimetic platforms to investigate disease pathogenesis, model dysfunctional features, and support pre-clinical drug screening. Traditional in vitro models for studying cardiovascular diseases have inherent limitations in recapitulating the complexity of the in vivo microenvironment. Heart-on-a-chip technologies, combining microfabrication, microfluidics, and tissue engineering techniques, have emerged as a promising approach for modeling inflammatory cardiac diseases like myocarditis. This review outlines the established and emerging conditions of inflamed myocardium, identifying key features essential for recapitulating inflamed myocardial structure and functions in heart-on-a-chip models, highlighting recent advancements, including the integration of anisotropic contractile geometry, cardiomyocyte maturity, electromechanical functions, vascularization, circulating immunity, and patient/sex specificity. Finally, we discuss the limitations and future perspectives necessary for the clinical translation of these advanced technologies.
Collapse
Affiliation(s)
- Anna Maria Popovic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Matthew Ho Cheong Lei
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Amid Shakeri
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | | | | |
Collapse
|
40
|
Shen R, Ding Y, Dong Q, Wang Y, Yu J, Pan C, Cai Y, Li Z, Zhang J, Yu K, Zeng Q. IL-4-Induced Gene 1: A Potential Player in Myocardial Infarction. Rev Cardiovasc Med 2024; 25:337. [PMID: 39355609 PMCID: PMC11440439 DOI: 10.31083/j.rcm2509337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/18/2024] [Accepted: 05/06/2024] [Indexed: 10/03/2024] Open
Abstract
Myocardial infarction (MI), a severe outcome of cardiovascular disease, poses a serious threat to human health. Uncontrolled inflammation and excessive cardiomyocyte death, following an infarction event, significantly contribute to both the mortality rate and complications associated with MI. The protein IL-4-induced gene 1 (IL4I1 or FIG1) serves as a natural inhibitor of innate and adaptive immunity, playing a crucial role in CD4+ T cell differentiation, macrophage polarization, and ferroptosis inhibition. Previous studies have linked IL4I1 to acute MI. This review summarizes evidence from both basic and clinical research, highlighting IL4I1 as a critical immunoregulatory enzyme that not only regulates inflammatory responses, but also potentially mitigates MI-induced damage.
Collapse
Affiliation(s)
- Rui Shen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Yan Ding
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Qian Dong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Yue Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Jian Yu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Chengliang Pan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Yifan Cai
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Zhiyang Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Jiangmei Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Kunwu Yu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Qiutang Zeng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| |
Collapse
|
41
|
Zhang X, Wang Y, Li H, Wang DW, Chen C. Insights into the post-translational modifications in heart failure. Ageing Res Rev 2024; 100:102467. [PMID: 39187021 DOI: 10.1016/j.arr.2024.102467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
Heart failure (HF), as the terminal manifestation of multiple cardiovascular diseases, causes a huge socioeconomic burden worldwide. Despite the advances in drugs and medical-assisted devices, the prognosis of HF remains poor. HF is well-accepted as a myriad of subcellular dys-synchrony related to detrimental structural and functional remodelling of cardiac components, including cardiomyocytes, fibroblasts, endothelial cells and macrophages. Through the covalent chemical process, post-translational modifications (PTMs) can coordinate protein functions, such as re-localizing cellular proteins, marking proteins for degradation, inducing interactions with other proteins and tuning enzyme activities, to participate in the progress of HF. Phosphorylation, acetylation, and ubiquitination predominate in the currently reported PTMs. In addition, advanced HF is commonly accompanied by metabolic remodelling including enhanced glycolysis. Thus, glycosylation induced by disturbed energy supply is also important. In this review, firstly, we addressed the main types of HF. Then, considering that PTMs are associated with subcellular locations, we summarized the leading regulation mechanisms in organelles of distinctive cell types of different types of HF, respectively. Subsequently, we outlined the aforementioned four PTMs of key proteins and signaling sites in HF. Finally, we discussed the perspectives of PTMs for potential therapeutic targets in HF.
Collapse
Affiliation(s)
- Xudong Zhang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Yan Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Huaping Li
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Dao Wen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| |
Collapse
|
42
|
Favere K, Van Hecke M, Eens S, Bosman M, Stobbelaar K, Hotterbeekx A, Kumar-Singh S, L Delputte P, Fransen E, De Sutter J, Guns PJ, Roskams T, Heidbuchel H. The natural history of CVB3 myocarditis in C57BL/6J mice: an extended in-depth characterization. Cardiovasc Pathol 2024; 72:107652. [PMID: 38750778 DOI: 10.1016/j.carpath.2024.107652] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND AND AIMS Viral infections are the leading cause of myocarditis. Besides acute cardiac complications, late-stage sequelae such as myocardial fibrosis may develop, importantly impacting the prognosis. Coxsackievirus B3 (CVB)-induced myocarditis in mice is the most commonly used translational model to study viral myocarditis and has provided the majority of our current understanding of the disease pathophysiology. Nevertheless, the late stages of disease, encompassing fibrogenesis and arrhythmogenesis, have been underappreciated in viral myocarditis research to date. The present study investigated the natural history of CVB-induced myocarditis in C57BL/6J mice, expanding the focus beyond the acute phase of disease. In addition, we studied the impact of sex and inoculation dose on the disease course. METHODS AND RESULTS C57BL/6J mice (12 weeks old; n=154) received a single intraperitoneal injection with CVB to induce viral myocarditis, or vehicle (PBS) as control. Male mice (n=92) were injected with 5 × 105 (regular dose) (RD) or 5 × 106 (high dose) (HD) plaque-forming units of CVB, whereas female mice received the RD only. Animals were sacrificed 1, 2, 4, 8, and 11 weeks after CVB or PBS injection. Virally inoculated mice developed viral disease with a temporary decline in general condition and weight loss, which was less pronounced in female animals (P<.001). In male CVB mice, premature mortality occurred between days 8 and 23 after inoculation (RD: 21%, HD: 20%), whereas all female animals survived. Over the course of disease, cardiac inflammation progressively subsided, with faster resolution in female mice. There were no substantial group differences in the composition of the inflammatory cell infiltrates: predominance of cytotoxic T cells at day 7 and 14, and a switch from arginase1-reactive macrophages to iNOS-reactive macrophages from day 7 to 14 were the main findings. There was concomitant development and maturation of different patterns of myocardial fibrosis, with enhanced fibrogenesis in male mice. Virus was almost completely cleared from the heart by day 14. Serum biomarkers of cardiac damage and cardiac expression of remodeling genes were temporarily elevated during the acute phase of disease. Cardiac CTGF gene upregulation was less prolonged in female CVB animals. In vivo electrophysiology studies at weeks 8 and 11 demonstrated that under baseline conditions (i.e. in the absence of proarrhythmogenic drugs), ventricular arrhythmias could only be induced in CVB animals. The cumulative arrhythmia burden throughout the entire stimulation protocol was not significantly different between CVB and control groups. CONCLUSION CVB inoculation in C57BL/6J mice represents a model of acute self-limiting viral myocarditis, with progression to different patterns of myocardial fibrosis. Sex, but not inoculation dose, seems to modulate the course of disease.
Collapse
Affiliation(s)
- Kasper Favere
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, 2610 Antwerp, Belgium; Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, 2610 Antwerp, Belgium; Department of Cardiology, Antwerp University Hospital, 2650 Antwerp, Belgium; Department of Internal Medicine, Ghent University, 9000 Ghent, Belgium.
| | - Manon Van Hecke
- Translational Cell & Tissue Research, Department of Imaging & Pathology, University of Leuven, 3000 Leuven, Belgium
| | - Sander Eens
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, 2610 Antwerp, Belgium; Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, 2610 Antwerp, Belgium
| | - Matthias Bosman
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, 2610 Antwerp, Belgium
| | - Kim Stobbelaar
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, 2610 Antwerp, Belgium
| | - An Hotterbeekx
- Molecular Pathology Group, FGGW-Laboratory of Cell Biology and Histology, University of Antwerp, 2610 Antwerp, Belgium
| | - Samir Kumar-Singh
- Molecular Pathology Group, FGGW-Laboratory of Cell Biology and Histology, University of Antwerp, 2610 Antwerp, Belgium
| | - Peter L Delputte
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, 2610 Antwerp, Belgium
| | - Erik Fransen
- Centre for Medical Genetics, University of Antwerp, 2610 Antwerp, Belgium
| | - Johan De Sutter
- Department of Internal Medicine, Ghent University, 9000 Ghent, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, 2610 Antwerp, Belgium
| | - Tania Roskams
- Translational Cell & Tissue Research, Department of Imaging & Pathology, University of Leuven, 3000 Leuven, Belgium
| | - Hein Heidbuchel
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, 2610 Antwerp, Belgium; Department of Cardiology, Antwerp University Hospital, 2650 Antwerp, Belgium
| |
Collapse
|
43
|
Guo Q, Wang J, Ni C, Pan J, Zou J, Shi Y, Sun J, Zhang X, Wang D, Luan F. Research progress on the natural products in the intervention of myocardial infarction. Front Pharmacol 2024; 15:1445349. [PMID: 39239656 PMCID: PMC11374734 DOI: 10.3389/fphar.2024.1445349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Coronary heart disease is a prevalent cardiovascular ailment globally, with myocardial infarction (MI) being one of its most severe manifestations. The morbidity and mortality of MI are escalating, showing an increasing trend among younger, highly educated individuals, thereby posing a serious threat to public health. Currently, thrombolysis, percutaneous coronary intervention, and coronary artery bypass grafting are the primary clinical treatments for MI. Although these methods significantly reduce patient mortality, complications often result in poor prognoses. Due to limitations in chemical synthetic drug research, the focus has shifted towards developing herbs based on natural substances. Natural medicines represent a novel approach for safer and more effective MI management and treatment. They can control multiple pathogenic variables by targeting various pathways and systems. This paper investigates the molecular mechanisms of MI and evaluates the application of natural products and medicinal plants in MI treatment over the past 5 years, demonstrating their specific good therapeutic potential and superior tolerance. These natural therapies have been shown to mitigate myocardial cell damage caused by MI through mechanisms such as oxidative stress, inflammation, apoptosis, angiogenesis, myocardial fibrosis, autophagy, endoplasmic reticulum stress, mitophagy, and pyroptosis. This review offers the latest insights into the application of natural products and medicinal plants in MI treatment, elucidating their mechanisms of action and serving as an important reference for MI prevention.
Collapse
Affiliation(s)
- Qiuting Guo
- College of Pharmacy, Xianyang Polytechnic Institute, Xianyang, China
| | - Jinhui Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Caixia Ni
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Jiaojiao Pan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Deng Wang
- Department of Pharmacy, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
44
|
Huang CK, Chen Z, Zhou Z, Chen S, Chen L, Li L, Li T, Yan X, Chai D. RNF149 Destabilizes IFNGR1 in Macrophages to Favor Postinfarction Cardiac Repair. Circ Res 2024; 135:518-536. [PMID: 38989590 DOI: 10.1161/circresaha.123.324023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Macrophage-driven inflammation critically involves in cardiac injury and repair following myocardial infarction (MI). However, the intrinsic mechanisms that halt the immune response of macrophages, which is critical to preserve homeostasis and effective infarct repair, remain to be fully defined. Here, we aimed to determine the ubiquitination-mediated regulatory effects on averting exaggerated inflammatory responses in cardiac macrophages. METHODS We used transcriptome analysis of mouse cardiac macrophages and bone marrow-derived macrophages to identify the E3 ubiquitin ligase RNF149 (ring finger protein 149) as a modulator of macrophage response to MI. Employing loss-of-function methodologies, bone marrow transplantation approaches, and adenovirus-mediated RNF149 overexpression in macrophages, we elucidated the functional role of RNF149 in MI. We explored the underlying mechanisms through flow cytometry, transcriptome analysis, immunoprecipitation/mass spectrometry analysis, and functional experiments. RNF149 expression was measured in the cardiac tissues of patients with acute MI and healthy controls. RESULTS RNF149 was highly expressed in murine and human cardiac macrophages at the early phase of MI. Knockout of RNF149, transplantation of Rnf149-/- bone marrow, and bone marrow macrophage-specific RNF149-knockdown markedly exacerbated cardiac dysfunction in murine MI models. Conversely, overexpression of RNF149 in macrophages attenuated the ischemia-induced decline in cardiac contractile function. RNF149 deletion increased infiltration of proinflammatory monocytes/macrophages, accompanied by a hastened decline in reparative subsets, leading to aggravation of myocardial apoptosis and impairment of infarct healing. Our data revealed that RNF149 in infiltrated macrophages restricted inflammation by promoting ubiquitylation-dependent proteasomal degradation of IFNGR1 (interferon gamma receptor 1). Loss of IFNGR1 rescued deleterious effects of RNF149 deficiency on MI. We further demonstrated that STAT1 (signal transducer and activator of transcription 1) activation induced Rnf149 transcription, which, in turn, destabilized the IFNGR1 protein to counteract type-II IFN (interferon) signaling, creating a feedback control mechanism to fine-tune macrophage-driven inflammation. CONCLUSIONS These findings highlight the significance of RNF149 as a molecular brake on macrophage response to MI and uncover a macrophage-intrinsic posttranslational mechanism essential for maintaining immune homeostasis and facilitating cardiac repair following MI.
Collapse
Affiliation(s)
- Chun-Kai Huang
- Cardiovascular Department, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China (C.-K.H., Z.Z., S.C., L.C., D.C.)
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (C.-K.H., Z.C., X.Y.)
| | - Zhiyong Chen
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (C.-K.H., Z.C., X.Y.)
| | - Zhongxing Zhou
- Cardiovascular Department, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China (C.-K.H., Z.Z., S.C., L.C., D.C.)
| | - Shuaijie Chen
- Cardiovascular Department, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China (C.-K.H., Z.Z., S.C., L.C., D.C.)
| | - Longqing Chen
- Cardiovascular Department, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China (C.-K.H., Z.Z., S.C., L.C., D.C.)
| | - Liliang Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China (L.L.)
| | - Tao Li
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China (T.L.)
| | - Xiaoxiang Yan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (C.-K.H., Z.C., X.Y.)
| | - Dajun Chai
- Cardiovascular Department, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China (C.-K.H., Z.Z., S.C., L.C., D.C.)
| |
Collapse
|
45
|
Logotheti S, Pavlopoulou A, Rudsari HK, Galow AM, Kafalı Y, Kyrodimos E, Giotakis AI, Marquardt S, Velalopoulou A, Verginadis II, Koumenis C, Stiewe T, Zoidakis J, Balasingham I, David R, Georgakilas AG. Intercellular pathways of cancer treatment-related cardiotoxicity and their therapeutic implications: the paradigm of radiotherapy. Pharmacol Ther 2024; 260:108670. [PMID: 38823489 DOI: 10.1016/j.pharmthera.2024.108670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 05/16/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
Advances in cancer therapeutics have improved patient survival rates. However, cancer survivors may suffer from adverse events either at the time of therapy or later in life. Cardiovascular diseases (CVD) represent a clinically important, but mechanistically understudied complication, which interfere with the continuation of best-possible care, induce life-threatening risks, and/or lead to long-term morbidity. These concerns are exacerbated by the fact that targeted therapies and immunotherapies are frequently combined with radiotherapy, which induces durable inflammatory and immunogenic responses, thereby providing a fertile ground for the development of CVDs. Stressed and dying irradiated cells produce 'danger' signals including, but not limited to, major histocompatibility complexes, cell-adhesion molecules, proinflammatory cytokines, and damage-associated molecular patterns. These factors activate intercellular signaling pathways which have potentially detrimental effects on the heart tissue homeostasis. Herein, we present the clinical crosstalk between cancer and heart diseases, describe how it is potentiated by cancer therapies, and highlight the multifactorial nature of the underlying mechanisms. We particularly focus on radiotherapy, as a case known to often induce cardiovascular complications even decades after treatment. We provide evidence that the secretome of irradiated tumors entails factors that exert systemic, remote effects on the cardiac tissue, potentially predisposing it to CVDs. We suggest how diverse disciplines can utilize pertinent state-of-the-art methods in feasible experimental workflows, to shed light on the molecular mechanisms of radiotherapy-related cardiotoxicity at the organismal level and untangle the desirable immunogenic properties of cancer therapies from their detrimental effects on heart tissue. Results of such highly collaborative efforts hold promise to be translated to next-generation regimens that maximize tumor control, minimize cardiovascular complications, and support quality of life in cancer survivors.
Collapse
Affiliation(s)
- Stella Logotheti
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780, Athens, Greece; Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center, Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | | | - Anne-Marie Galow
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Yağmur Kafalı
- Izmir Biomedicine and Genome Center, Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Efthymios Kyrodimos
- First Department of Otorhinolaryngology, Head and Neck Surgery, Hippocrateion General Hospital Athens, National and Kapodistrian University of Athens, Athens, Greece
| | - Aris I Giotakis
- First Department of Otorhinolaryngology, Head and Neck Surgery, Hippocrateion General Hospital Athens, National and Kapodistrian University of Athens, Athens, Greece
| | - Stephan Marquardt
- Institute of Translational Medicine for Health Care Systems, Medical School Berlin, Hochschule Für Gesundheit Und Medizin, 14197 Berlin, Germany
| | - Anastasia Velalopoulou
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ioannis I Verginadis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Philipps-University, 35043 Marburg, Germany; German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), 35043 Marburg, Germany; Genomics Core Facility, Philipps-University, 35043 Marburg, Germany; Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
| | - Jerome Zoidakis
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, Athens, Greece; Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Robert David
- Department of Cardiac Surgery, Rostock University Medical Center, 18057 Rostock, Germany; Department of Life, Light & Matter, Interdisciplinary Faculty, Rostock University, 18059 Rostock, Germany
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780, Athens, Greece.
| |
Collapse
|
46
|
Liu G, Huang L, Lv X, Guan Y, Li L. Thrombomodulin as a potential diagnostic marker of acute myocardial infarction and correlation with immune infiltration: Comprehensive analysis based on multiple machine learning. Transpl Immunol 2024; 85:102070. [PMID: 38839020 DOI: 10.1016/j.trim.2024.102070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 06/02/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Acute myocardial infarction (AMI) is a global health problem with high mortality. Early diagnosis can prevent the development of AMI and provide valuable information for subsequent treatment. Angiogenesis has been shown to be a critical factor in the development of infarction and targeting this process may be a potential protective strategy for preventing myocardial injury and improving the prognosis of AMI patients. This study aimed to screen and verify diagnostic markers related to angiogenesis in AMI and to investigate the molecular mechanisms of action associated with AMI in terms of immune cell infiltration. METHODS The GSE66360 and the GSE60993 datasets were both downloaded from the GEO database and were used as the training cohort and the external validation cohort, respectively. Angiogenesis-related genes (ARGs) were downloaded from the MSigDB database. The hub ARGs were identified via LASSO, RF, and SVM-RFE algorithms. ROC curves were used to assess the accuracy of the hub ARGs. The potential mechanisms of the hub ARGs were analyzed by GSEA. The ssGSEA algorithm was used to determine differences in immune cell infiltration and immune function. The CIBERSORT algorithm was used for immune cell infiltration analysis. In addition, we constructed a ceRNA network map of differentially expressed ARGs. RESULTS We identified the thrombomodulin (THBD) gene from ARGs as a potential diagnostic marker for AMI based on the LASSO, SVM-RFE, and RF algorithms. THBD was differentially expressed and had a potential diagnostic value (area under the curve [AUC] = 0.931 and 0.765 in the training and testing datasets, respectively). GSEA showed that the MAPK signaling pathway was more enriched in the high-expression group of THBD (P < 0.05). Immune cell infiltration analysis demonstrated that THBD was mainly positively correlated with monocytes (R = 0.48, P = 0.00055) and neutrophils (R = 0.36, P = 0.013). Finally, in the ceRNA regulatory network, THBD was closely associated with 9 miRNAs and 42 lncRNAs involved in AMI. CONCLUSION THBD can be used as a potential diagnostic marker for AMI. This study provides new insights for future AMI diagnosis and molecular mechanism research. Moreover, immune cell infiltration plays an essential role in the occurrence and development of AMI.
Collapse
Affiliation(s)
- Guoqing Liu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Cardiovascular Institute, Nanning, Guangxi, China
| | - Lixia Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Cardiovascular Institute, Nanning, Guangxi, China
| | - Xiangwen Lv
- Department of Cardiology, The Second Affiliated Hospital Guangxi Medical University, Nanning, Guangxi, China
| | - Yuting Guan
- Guangxi Medical University, Nanning, Guangxi, China
| | - Lang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Cardiovascular Institute, Nanning, Guangxi, China.
| |
Collapse
|
47
|
Chen PH, Hsiao CY, Chiang SJ, Chung KH, Tsai SY. Association of lipids and inflammatory markers with left ventricular wall thickness in patients with bipolar disorder. J Affect Disord 2024; 358:12-18. [PMID: 38705523 DOI: 10.1016/j.jad.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/04/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Individuals with bipolar disorder (BD) face a high risk of heart failure and left ventricular (LV) dysfunction. Despite strong evidence that high LV relative wall thickness (RWT) is a risk marker for heart failure, few studies have evaluated LV RWT and aggravating factors in individuals with BD. METHODS We recruited 104 participants (52 patients with BD and 52 age- and sex-matched mentally healthy controls) to undergo echocardiographic imaging and biochemistry, high-sensitivity C-reactive protein (hs-CRP), and blood cell count measurements. LV RWT was estimated using the following equation: (2 × LV posterior wall end-diastolic thickness)/LV end-diastolic diameter. Clinical data were obtained through interviews and chart reviews. RESULTS The BD group exhibited a significantly greater LV RWT (Cohen's d = 0.53, p = 0.003) and a less favorable mitral valve E/A ratio (Cohen's d = 0.54, p = 0.023) and LV global longitudinal strain (Cohen's d = 0.57, p = 0.047) than did the control group. Multiple linear regression revealed that in the BD group, serum triglyceride levels (β = 0.466, p = 0.001), platelet-to-lymphocyte ratios (β = 0.324, p = 0.022), and hs-CRP levels (β = 0.289, p = 0.043) were all significantly and positively associated with LV RWT. LIMITATIONS This study applied a cross-sectional design, meaning that the direction of causation could not be inferred. CONCLUSIONS Patients with BD are at a risk of heart failure, as indicated by their relatively high LV RWT. Lipid levels and systemic inflammation may explain this unfavorable association.
Collapse
Affiliation(s)
- Pao-Huan Chen
- Department of Psychiatry, Taipei Medical University Hospital, Taipei, Taiwan; Psychiatric Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Yi Hsiao
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan; Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan; Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shuo-Ju Chiang
- Division of Cardiology, Department of Internal Medicine, Taipei City Hospital Yangming Branch, Taipei, Taiwan; School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Hsuan Chung
- Department of Psychiatry, Taipei Medical University Hospital, Taipei, Taiwan; Psychiatric Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shang-Ying Tsai
- Department of Psychiatry, Taipei Medical University Hospital, Taipei, Taiwan; Psychiatric Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
48
|
Roguin A, Kobo OM. Editorial: Bridging the gap: Autoimmune diseases and cardiovascular health. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2024; 65:44-45. [PMID: 38570235 DOI: 10.1016/j.carrev.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Affiliation(s)
- Ariel Roguin
- Division of Cardiovascular Medicine, Hillel Yaffe Medical Center, The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| | - Ofer M Kobo
- Division of Cardiovascular Medicine, Hillel Yaffe Medical Center, The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
49
|
Gregolin CS, do Nascimento M, de Souza SLB, Mota GAF, Luvizotto RDAM, Sugizaki MM, Bazan SGZ, de Campos DHS, Camacho CRC, Cicogna AC, do Nascimento AF. Cardiac dysfunction in sucrose-fed rats is associated with alterations of phospholamban phosphorylation and TNF-α levels. Mol Cell Endocrinol 2024; 589:112236. [PMID: 38608803 DOI: 10.1016/j.mce.2024.112236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
INTRODUCTION High sucrose intake is linked to cardiovascular disease, a major global cause of mortality worldwide. Calcium mishandling and inflammation play crucial roles in cardiac disease pathophysiology. OBJECTIVE Evaluate if sucrose-induced obesity is related to deterioration of myocardial function due to alterations in the calcium-handling proteins in association with proinflammatory cytokines. METHODS Wistar rats were divided into control and sucrose groups. Over eight weeks, Sucrose group received 30% sucrose water. Cardiac function was determined in vivo using echocardiography and in vitro using papillary muscle assay. Western blotting was used to detect calcium handling protein; ELISA assay was used to assess TNF-α and IL-6 levels. RESULTS Sucrose led to cardiac dysfunction. RYR2, SERCA2, NCX, pPBL Ser16 and L-type calcium channels were unchanged. However, pPBL-Thr17, and TNF-α levels were elevated in the S group. CONCLUSION Sucrose induced cardiac dysfunction and decreased myocardial contractility in association with altered pPBL-Thr17 and elevated cardiac pro-inflammatory TNF-α.
Collapse
Affiliation(s)
- Cristina Schmitt Gregolin
- Department of Pathology, Medical School (FMB) of São Paulo State University (Unesp), Botucatu Campus, São Paulo, Brazil
| | - Milena do Nascimento
- Institute of Health Sciences, Federal University of Mato Grosso (UFMT), Sinop, Mato Grosso, Brazil
| | | | - Gustavo Augusto Ferreira Mota
- Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | | - Mário Mateus Sugizaki
- Institute of Health Sciences, Federal University of Mato Grosso (UFMT), Sinop, Mato Grosso, Brazil
| | - Silméia Garcia Zanati Bazan
- Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Dijon Henrique Salomé de Campos
- Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Camila Renata Corrêa Camacho
- Department of Pathology, Medical School (FMB) of São Paulo State University (Unesp), Botucatu Campus, São Paulo, Brazil
| | - Antonio Carlos Cicogna
- Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | |
Collapse
|
50
|
Zhang Z, Liu Y, Cheng Q, Zhang J, Gao C. Development of a nomogram to predict 30-day mortality in patients with post-infarction ventricular septal rupture. Sci Rep 2024; 14:17690. [PMID: 39085556 PMCID: PMC11292003 DOI: 10.1038/s41598-024-68792-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024] Open
Abstract
Ventricular septal rupture (VSR) is a mechanical complication of acute myocardial infarction (AMI), and its mortality has not decreased significantly in recent decades. However, no clinical model has been developed to predict short-term mortality in patients with post-infarction VSR (PIVSR). This study aimed to develop a nomogram to predict the 30-day mortality by using the clinical characteristics of hospitalized patients with PIVSR. The least absolute shrinkage and selection operator (LASSO) and multivariate logistic regression analysis was used to construct a nomogram by R. The model was evaluated by the area under the curve (AUC), calibration curve and decision curve analysis (DCA). The bootstrap method was used to validate the model internally. As a result, a nomogram was constructed by using six variables, including CRRT, mechanical ventilation, PPCI, WBC, PASP and methods of treatment. The AUC of the prediction model was 0.96 (0.93, 0.98). The prediction model was well calibrated. The DCA showed that if the threshold probability was between 15% and 95%, the nomogram model would provide a net benefit. The well-constructed and evaluated nomogram can be beneficial to clinicians to predict the risk of death within 30 days in patients with PIVSR.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Cardiology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Yahui Liu
- Department of Cardiology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Qianqian Cheng
- Henan Provincial Key Lab for Control of Coronary Heart Disease, Zhengzhou University Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Jing Zhang
- Coronary Care Unit, Department of Cardiology, Zhengzhou University Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Chuanyu Gao
- Department of Cardiology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China.
| |
Collapse
|