1
|
Wu S, Zhang H, Fang Z, Li Z, Yang N, Yang F. Genetic dissection of ear-related trait divergence between maize and teosinte. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39699908 DOI: 10.1111/tpj.17202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/27/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024]
Abstract
Maize has undergone remarkable domestication and shows striking differences in architecture and ear morphology compared to its wild progenitor, called teosinte. However, our understanding of the genetic mechanisms underlying the ear morphology differences between teosinte and cultivated maize is still limited. In this study, we explored the genetic basis of ear-related traits at both early and mature stages by analyzing a population derived from a cross between Mo17 and a teosinte line, mexicana. We identified 31 quantitative trait loci (QTLs) associated with four IM-related and four ear-related traits, with 27 QTLs subjected to selection during the domestication process. Several key genes related to ear development were found under selection, including KN1 and RA1. Analysis of gene expression in the IM of developing ears from the population revealed the prominent roles of cis-variants in gene regulation. We also identified a large number of trans-eQTLs responsible for gene expression variation, and enrichment analysis on a trans-eQTL hotspot revealed the possible involvement of the sulfur metabolic pathway in controlling ear traits. Integrating the expression and phenotypic mapping data, we pinpointed several candidate genes potentially influencing ear development. Our findings advance the understanding of the genetic basis driving ear trait variation during maize domestication.
Collapse
Affiliation(s)
- Shenshen Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Han Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhengfu Fang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zichao Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ning Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China
| | - Fang Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
2
|
Wohl C, Villamayor J, Galí M, Mahajan AS, Fernández RP, Cuevas CA, Bossolasco A, Li Q, Kettle AJ, Williams T, Sarda-Esteve R, Gros V, Simó R, Saiz-Lopez A. Marine emissions of methanethiol increase aerosol cooling in the Southern Ocean. SCIENCE ADVANCES 2024; 10:eadq2465. [PMID: 39602531 PMCID: PMC11601248 DOI: 10.1126/sciadv.adq2465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024]
Abstract
Ocean-emitted dimethyl sulfide (DMS) is a major source of climate-cooling aerosols. However, most of the marine biogenic sulfur cycling is not routed to DMS but to methanethiol (MeSH), another volatile whose reactivity has hitherto hampered measurements. Therefore, the global emissions and climate impact of MeSH remain unexplored. We compiled a database of seawater MeSH concentrations, identified their statistical predictors, and produced monthly fields of global marine MeSH emissions adding to DMS emissions. Implemented into a global chemistry-climate model, MeSH emissions increase the sulfate aerosol burden by 30 to 70% over the Southern Ocean and enhance the aerosol cooling effect while depleting atmospheric oxidants and increasing DMS lifetime and transport. Accounting for MeSH emissions reduces the radiative bias of current climate models in this climatically relevant region.
Collapse
Affiliation(s)
- Charel Wohl
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, CSIC, Barcelona, Catalonia, Spain
- Centre of Ocean and Atmospheric Sciences, University of East Anglia, Norwich, UK
| | - Julián Villamayor
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Blas Cabrera, CSIC, Madrid, Spain
| | - Martí Galí
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, CSIC, Barcelona, Catalonia, Spain
| | - Anoop S. Mahajan
- Centre for Climate Change Research, Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune, India
| | - Rafael P. Fernández
- Institute for Interdisciplinary Science (ICB), National Research Council (CONICET), FCEN-UNCuyo, Mendoza, Argentina
| | - Carlos A. Cuevas
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Blas Cabrera, CSIC, Madrid, Spain
| | - Adriana Bossolasco
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Blas Cabrera, CSIC, Madrid, Spain
- Physics Institute of Northwest Argentina (INFINOA), National Research Council (CONICET), Tucumán, Argentina
| | - Qinyi Li
- Environment Research Institute, Shandong University, Qingdao, China
| | | | | | - Roland Sarda-Esteve
- Laboratoire des Sciences du Climat et de l’Environnement (LSCE), CNRS-CEA-UVSQ, IPSL, Gif sur Yvette, France
- Climate and Atmosphere Research Center (CARE-C), the Cyprus Institute, Nicosia, 2121, Cyprus
| | - Valérie Gros
- Laboratoire des Sciences du Climat et de l’Environnement (LSCE), CNRS-CEA-UVSQ, IPSL, Gif sur Yvette, France
| | - Rafel Simó
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, CSIC, Barcelona, Catalonia, Spain
| | - Alfonso Saiz-Lopez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Blas Cabrera, CSIC, Madrid, Spain
| |
Collapse
|
3
|
Quan Q, Liu J, Li C, Ke Z, Tan Y. Insights into prokaryotic communities and their potential functions in biogeochemical cycles in cold seep. mSphere 2024; 9:e0054924. [PMID: 39269181 PMCID: PMC11524163 DOI: 10.1128/msphere.00549-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
Microorganisms are significant drivers of organic matter mineralization and are essential in marine biogeochemical cycles. However, the variations and influencing factors in prokaryotic communities from cold-seep sediments to the water column and the specific role of these microorganisms in biogeochemical cycles in the water column above cold seep remain unclear. Here, we investigated prokaryotic communities and their roles in nitrogen/sulfur cycling processes and conducted in situ dissolved organic matter (DOM) enrichment experiments to explore the effects of diverse sources of DOM on prokaryotic communities. Field investigations showed that the prokaryotic communities in the near-bottom water were more similar to those in the deep layer of the euphotic zone (44.60%) and at a depth of 400 m (50.89%) than those in the sediment (18.00%). DOM enrichment experiments revealed that adding dissolved organic nitrogen (DON) and phosphorus DOP caused a notable increase in the relative abundances of Rhodobacterales and Vibrionales, respectively. A remarkable increase was observed in the relative abundance of Alteromonadales and Pseudomonadales after the addition of dissolved organic sulfur (DOS). The metagenomic results revealed that Proteobacteria served as the keystone taxa in mediating the biogeochemical cycles of nitrogen, phosphorus, and sulfur in the Haima cold seep. This study highlights the responses of prokaryotes to DOM with different components and the microbially driven elemental cycles in cold seeps, providing a foundational reference for further studies on material energy metabolism and the coupled cycling of essential elements mediated by deep-sea microorganisms. IMPORTANCE Deep-sea cold seeps are among the most productive ecosystems, sustaining unique fauna and microbial communities through the release of methane and other hydrocarbons. Our study revealed that the influence of seepage fluid on the prokaryotic community in the water column is surprisingly limited, which challenges conventional views regarding the impact of seepage fluids. In addition, we identified that different DOM compositions play a crucial role in shaping the prokaryotic community composition, providing new insights into the factors driving microbial diversity in cold seeps. Furthermore, the study highlighted Proteobacteria as key and multifaceted drivers of biogeochemical cycles in cold seeps, emphasizing their significant contribution to complex interactions and processes. These findings offer a fresh perspective on the dynamics of cold-seep environments and their microbial communities, advancing our understanding of the biogeochemical functions in deep-sea environments.
Collapse
Affiliation(s)
- Qiumei Quan
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiaxing Liu
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Chaolun Li
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhixin Ke
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yehui Tan
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Chen Y, Chu R, Ma K, Jiang L, Yang Q, Li Z, Hu M, Guo Q, Lu F, Wei Y, Zhang Y, Tong Y. Study of sulfoglycolysis in Enterococcus gilvus reveals a widespread bifurcated pathway for dihydroxypropanesulfonate degradation. iScience 2024; 27:111010. [PMID: 39429772 PMCID: PMC11489063 DOI: 10.1016/j.isci.2024.111010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/30/2024] [Accepted: 09/18/2024] [Indexed: 10/22/2024] Open
Abstract
Sulfoquinovose (SQ), the polar head group of sulfolipids essential for photosynthesis, is naturally abundant. Anaerobic Firmicutes degrade SQ through a transaldolase-dependent (sulfo-TAL) pathway, producing dihydroxypropanesulfonate (DHPS). Some bacteria extend this pathway by the sequential action of HpfG and HpfD converting DHPS to 3-hydroxypropanesulfonate (3-HPS) via 3-sulfopropionaldehyde (3-SPA). Here, we report a variant sulfo-TAL pathway in Enterococcus gilvus, involving additional enzymes, a NAD+-dependent 3-SPA dehydrogenase HpfX, and a 3-sulfopropionyl-CoA synthetase HpfYZ, which oxidize 3-SPA to 3-sulfopropionate (3-SP) coupled with ATP formation. E. gilvus grown on SQ or DHPS produced a mixture of 3-HPS and 3-SP, indicating the bifurcated pathway. Similar genes are found in various Firmicutes, including gut bacteria. Importantly, 3-SP, but not 3-HPS, can serve as a respiratory terminal electron acceptor for Bilophila wadsworthia, a common intestinal pathobiont, resulting in the production of toxic H2S. This research expands our understanding of sulfonate metabolism and reveals cross-feeding in the anaerobic microbiome.
Collapse
Affiliation(s)
- Yiwei Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruoxing Chu
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Kailiang Ma
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Li Jiang
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Qiaoyu Yang
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Zhi Li
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Min Hu
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Qiuyi Guo
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yifeng Wei
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A∗STAR), Singapore 138669, Singapore
| | - Yan Zhang
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Carbon-Negative Synthetic Biology for Biomaterial Production from CO2 (CNSB), Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore
| | - Yang Tong
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
5
|
Zhou Z, Tran PQ, Cowley ES, Trembath-Reichert E, Anantharaman K. Diversity and ecology of microbial sulfur metabolism. Nat Rev Microbiol 2024:10.1038/s41579-024-01104-3. [PMID: 39420098 DOI: 10.1038/s41579-024-01104-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 10/19/2024]
Abstract
Sulfur plays a pivotal role in interactions within the atmosphere, lithosphere, pedosphere, hydrosphere and biosphere, and the functioning of living organisms. In the Earth's crust, mantle, and atmosphere, sulfur undergoes geochemical transformations due to natural and anthropogenic factors. In the biosphere, sulfur participates in the formation of amino acids, proteins, coenzymes and vitamins. Microorganisms in the biosphere are crucial for cycling sulfur compounds through oxidation, reduction and disproportionation reactions, facilitating their bioassimilation and energy generation. Microbial sulfur metabolism is abundant in both aerobic and anaerobic environments and is interconnected with biogeochemical cycles of important elements such as carbon, nitrogen and iron. Through metabolism, competition or cooperation, microorganisms metabolizing sulfur can drive the consumption of organic carbon, loss of fixed nitrogen and production of climate-active gases. Given the increasing significance of sulfur metabolism in environmental alteration and the intricate involvement of microorganisms in sulfur dynamics, a timely re-evaluation of the sulfur cycle is imperative. This Review explores our understanding of microbial sulfur metabolism, primarily focusing on the transformations of inorganic sulfur. We comprehensively overview the sulfur cycle in the face of rapidly changing ecosystems on Earth, highlighting the importance of microbially-mediated sulfur transformation reactions across different environments, ecosystems and microbiomes.
Collapse
Affiliation(s)
- Zhichao Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, China
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Patricia Q Tran
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Elise S Cowley
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Data Science and AI, Indian Institute of Technology Madras, Chennai, India.
| |
Collapse
|
6
|
Quan Q, Liu J, Xia X, Zhang S, Ke Z, Wang M, Tan Y. Cold seep nitrogen fixation and its potential relationship with sulfur cycling. Microbiol Spectr 2024; 12:e0053624. [PMID: 39171911 PMCID: PMC11448218 DOI: 10.1128/spectrum.00536-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/25/2024] [Indexed: 08/23/2024] Open
Abstract
Dinitrogen (N2) fixation is a crucial source of bioavailable nitrogen in carbon-dominated cold seep systems. Previous studies have shown that diazotrophy is not necessarily dependent on sulfate-dependent anaerobic oxidation of methane for energy, and diverse catabolism can fuel the high-energy-demanding process in sediments. However, it remains unclear whether diazotroph can obtain energy by sulfur oxidation in sulfur-rich cold seep water column. Here, field investigations and in situ experiments were conducted in Haima cold seep to examine the effects of diverse sources of dissolved organic matter (DOM) on N2 fixation, specifically containing sulfur, carbon, nitrogen, and phosphorus. We found that active N2 fixation occurred in the water column above the Haima cold seep, with the Dechloromonas genus dominating the diazotroph community as revealed by nifH gene using high-throughput sequencing. In situ experiments showed an increased rate of N2 fixation (1.15- to 12.70-fold compared to that in control group) and a greater relative abundance of the Dechloromonas genus following enrichment with sulfur-containing organic matter. Furthermore, metagenomic assembly and binning revealed that Dechloromonas sp. carried genes related to N2 fixation (nifDHK) and sulfur compound oxidation (fccAB and soxABCXYZ), implying that the genus potentially serves as a multifunctional mediator for N2 fixation and sulfur cycling. Our results provide new insights regarding potential coupling mechanism associated with sulfur-driven N2 fixation in methane- and sulfide-rich environments. IMPORTANCE N2 fixation is an important source of biologically available in carbon-dominated cold seep systems as little nitrogen is released by hydrocarbon seepage, thereby promoting biological productivity and the degradation of non-nitrogenous organic matter. Cold seeps are rich in diverse sources of dissolved organic matter (DOM) derived from the sinking of photosynthetic products in euphotic layer and the release of chemosynthesis products on the seafloor. However, it remains unclear whether N2 fixation is coupled to the metabolic processes of DOM, as determined by e.g., carbon, nitrogen, phosphorus, and sulfur content, for energy acquisition in sulfur-rich cold seeps. In this study, diazotroph community structure and its response to DOM compositions were revealed. Moreover, the metagenomics analysis suggested that Dechloromonas genus plays a dominant role in potential coupling N2 fixation and sulfur oxidation. Our study highlighted that sulfur oxidation in deep-sea cold seeps may serve as an energy source to drive N2 fixation.
Collapse
Affiliation(s)
- Qiumei Quan
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiaxing Liu
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaomin Xia
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Si Zhang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Zhixin Ke
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Minxiao Wang
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yehui Tan
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Morimoto Y, Uesaka K, Fujita Y, Yamamoto H. A nitrogenase-like enzyme is involved in the novel anaerobic assimilation pathway of a sulfonate, isethionate, in the photosynthetic bacterium Rhodobacter capsulatus. mSphere 2024; 9:e0049824. [PMID: 39191391 PMCID: PMC11423573 DOI: 10.1128/msphere.00498-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 08/29/2024] Open
Abstract
Prokaryotes contribute to the global sulfur cycle by using diverse sulfur compounds as sulfur sources or electron acceptors. In this study, we report that a nitrogenase-like enzyme (NFL) and a radical SAM enzyme (RSE) are involved in the novel anaerobic assimilation pathway of a sulfonate, isethionate, in the photosynthetic bacterium Rhodobacter capsulatus. The nflHDK genes for NFL are localized at a locus containing genes for known sulfonate metabolism in the genome. A gene nflB encoding an RSE is present just upstream of nflH, forming a small gene cluster nflBHDK. Mutants lacking any nflBHDK genes are incapable of growing with isethionate as the sole sulfur source under anaerobic photosynthetic conditions, indicating that all four NflBHDK proteins are essential for the isethionate assimilation pathway. Heterologous expression of the islAB genes encoding a known isethionate lyase that degrades isethionate to sulfite and acetaldehyde restored the isethionate-dependent growth of a mutant lacking nflDK, indicating that the enzyme encoding nflBHDK is involved in an isethionate assimilation reaction to release sulfite. Furthermore, the heterologous expression of nflBHDK and ssuCAB encoding an isethionate transporter in the closely related species R. sphaeroides, which does not have nflBHDK and cannot grow with isethionate as the sole sulfur source, conferred isethionate-dependent growth ability to this species. We propose to rename nflBHDK as isrBHDK (isethionate reductase). The isrBHDK genes are widely distributed among various prokaryote phyla. Discovery of the isethionate assimilation pathway by IsrBHDK provides a missing piece for the anaerobic sulfur cycle and for understanding the evolution of ancient sulfur metabolism.IMPORTANCENitrogenase is an important enzyme found in prokaryotes that reduces atmospheric nitrogen to ammonia and plays a fundamental role in the global nitrogen cycle. It has been noted that nitrogenase-like enzymes (NFLs), which share an evolutionary origin with nitrogenase, have evolved to catalyze diverse reactions such as chlorophyll biosynthesis (photosynthesis), coenzyme F430 biosynthesis (methanogenesis), and methionine biosynthesis. In this study, we discovered that an NFL with unknown function in the photosynthetic bacterium Rhodobacter capsulatus is a novel isethionate reductase (Isr), which catalyzes the assimilatory degradation of isethionate, a sulfonate, releasing sulfite used as the sulfur source under anaerobic conditions. Isr is widely distributed among various bacterial phyla, including intestinal bacteria, and is presumed to play an important role in sulfur metabolism in anaerobic environments such as animal guts and microbial mats. This finding provides a clue for understanding ancient metabolism that evolved under anaerobic environments at the dawn of life.
Collapse
Affiliation(s)
- Yoshiki Morimoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Kazuma Uesaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yuichi Fujita
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Haruki Yamamoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
8
|
Qian L, Yan B, Zhou J, Fan Y, Tao M, Zhu W, Wang C, Tu Q, Tian Y, He Q, Wu K, Niu M, Yan Q, Nikoloski Z, Liu G, Yu X, He Z. Comprehensive profiles of sulfur cycling microbial communities along a mangrove sediment depth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173961. [PMID: 38876338 DOI: 10.1016/j.scitotenv.2024.173961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
The sulfur (S) cycle is an important biogeochemical cycle with profound implications for both cellular- and ecosystem-level processes by diverse microorganisms. Mangrove sediments are a hotspot of biogeochemical cycling, especially for the S cycle with high concentrations of S compounds. Previous studies have mainly focused on some specific inorganic S cycling processes without paying specific attention to the overall S-cycling communities and processes as well as organic S metabolism. In this study, we comprehensively analyzed the distribution, ecological network and assembly mechanisms of S cycling microbial communities and their changes with sediment depths using metagenome sequencing data. The results showed that the abundance of gene families involved in sulfur oxidation, assimilatory sulfate reduction, and dimethylsulfoniopropionate (DMSP) cleavage and demethylation decreased with sediment depths, while those involved in S reduction and dimethyl sulfide (DMS) transformation showed an opposite trend. Specifically, glpE, responsible for converting S2O32- to SO32-, showed the highest abundance in the surface sediment and decreased with sediment depths; in contrast, high abundances of dmsA, responsible for converting dimethyl sulfoxide (DMSO) to DMS, were identified and increased with sediment depths. We identified Pseudomonas and Streptomyces as the main S-cycling microorganisms, while Thermococcus could play an import role in microbial network connections in the S-cycling microbial community. Our statistical analysis showed that both taxonomical and functional compositions were generally shaped by stochastic processes, while the functional composition of organic S metabolism showed a transition from stochastic to deterministic processes. This study provides a novel perspective of diversity distribution of S-cycling functions and taxa as well as their potential assembly mechanisms, which has important implications for maintaining mangrove ecosystem functions.
Collapse
Affiliation(s)
- Lu Qian
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou 510006, China
| | - Bozhi Yan
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jiayin Zhou
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Yijun Fan
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou 510006, China
| | - Mei Tao
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou 510006, China; College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Wengen Zhu
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou 510006, China
| | - Cheng Wang
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou 510006, China
| | - Qichao Tu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Yun Tian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Qiang He
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, TN 37996, USA
| | - Kun Wu
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou 510006, China
| | - Mingyang Niu
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou 510006, China
| | - Qingyun Yan
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zoran Nikoloski
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany; Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
| | - Guangli Liu
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Xiaoli Yu
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Zhili He
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
9
|
Cao J, Shao B, Lin J, Liu J, Cui Y, Wang J, Fang J. Genomic and physiological properties of Anoxybacterium hadale gen. nov. sp. nov. reveal the important role of dissolved organic sulfur in microbial metabolism in hadal ecosystems. Front Microbiol 2024; 15:1423245. [PMID: 39220043 PMCID: PMC11362086 DOI: 10.3389/fmicb.2024.1423245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Hadal zones account for the deepest 45% of the oceanic depth range and play an important role in ocean biogeochemical cycles. As the least-explored aquatic habitat on earth, hadal ecosystems contain a vast diversity of so far uncultured microorganisms that cannot be grown on conventional laboratory culture media. Therefore, it has been difficult to gain a true understanding of the detailed metabolic characteristics and ecological functions of those difficult-to-culture microorganisms in hadal environments. In this study, a novel anaerobic bacterial strain, MT110T, was isolated from a hadal sediment-water interface sample of the Mariana Trench at 10,890 m. The level of 16S rRNA gene sequence similarity and percentage of conserved proteins between strain MT110T and the closest relatives, Anaerovorax odorimutans DSM 5092T (94.9 and 46.6%) and Aminipila butyrica DSM 103574T (94.4 and 46.7%), indicated that strain MT110T exhibits sufficient molecular differences for genus-level delineation. Phylogenetic analyses based on both 16S rRNA gene and genome sequences showed that strain MT110T formed an independent monophyletic branch within the family Anaerovoracaceae. The combined evidence showed that strain MT110T represents a novel species of a novel genus, proposed as Anoxybacterium hadale gen. nov. sp. nov. (type strain MT110T = KCTC 15922T = MCCC 1K04061T), which represents a previously uncultured lineage of the class Clostridia. Physiologically, no tested organic matter could be used as sole carbon source by strain MT110T. Genomic analysis showed that MT110T had the potential capacity of utilizing various carbon sources, but the pathways of sulfur reduction were largely incomplete. Our experiments further revealed that cysteine is one of the essential nutrients for the survival of strain MT110T, and cannot be replaced by sulfite, leucine, or taurine. This result suggests that organic sulfur compounds might play an important role in metabolism and growth of the family Anaerovoracaceae and could be one of the key factors affecting the cultivation of the uncultured microbes. Our study brings a new perspective to the role of dissolved organic sulfur in hadal ecosystems and also provides valuable information for optimizing the conditions of isolating related microbial taxa from the hadal environment.
Collapse
Affiliation(s)
- Junwei Cao
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Baoying Shao
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Jing Lin
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Jie Liu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Yiran Cui
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Jiahua Wang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Jiasong Fang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
10
|
Garcia B, Becker CC, Weber L, Swarr GJ, Kido Soule MC, Apprill A, Kujawinski EB. Benzoyl Chloride Derivatization Advances the Quantification of Dissolved Polar Metabolites on Coral Reefs. J Proteome Res 2024; 23:2041-2053. [PMID: 38782401 PMCID: PMC11166142 DOI: 10.1021/acs.jproteome.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/23/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Extracellular chemical cues constitute much of the language of life among marine organisms, from microbes to mammals. Changes in this chemical pool serve as invisible signals of overall ecosystem health and disruption to this finely tuned equilibrium. In coral reefs, the scope and magnitude of the chemicals involved in maintaining reef equilibria are largely unknown. Processes involving small, polar molecules, which form the majority components of labile dissolved organic carbon, are often poorly captured using traditional techniques. We employed chemical derivatization with mass spectrometry-based targeted exometabolomics to quantify polar dissolved phase metabolites on five coral reefs in the U.S. Virgin Islands. We quantified 45 polar exometabolites, demonstrated their spatial variability, and contextualized these findings in terms of geographic and benthic cover differences. By comparing our results to previously published coral reef exometabolomes, we show the novel quantification of 23 metabolites, including central carbon metabolism compounds (e.g., glutamate) and novel metabolites such as homoserine betaine. We highlight the immense potential of chemical derivatization-based exometabolomics for quantifying labile chemical cues on coral reefs and measuring molecular level responses to environmental stressors. Overall, improving our understanding of the composition and dynamics of reef exometabolites is vital for effective ecosystem monitoring and management strategies.
Collapse
Affiliation(s)
- Brianna
M. Garcia
- Department of Marine Chemistry
and Geochemistry, Woods Hole Oceanographic
Institution, Woods
Hole, Massachusetts 02543, United States
| | | | - Laura Weber
- Department of Marine Chemistry
and Geochemistry, Woods Hole Oceanographic
Institution, Woods
Hole, Massachusetts 02543, United States
| | - Gretchen J. Swarr
- Department of Marine Chemistry
and Geochemistry, Woods Hole Oceanographic
Institution, Woods
Hole, Massachusetts 02543, United States
| | - Melissa C. Kido Soule
- Department of Marine Chemistry
and Geochemistry, Woods Hole Oceanographic
Institution, Woods
Hole, Massachusetts 02543, United States
| | - Amy Apprill
- Department of Marine Chemistry
and Geochemistry, Woods Hole Oceanographic
Institution, Woods
Hole, Massachusetts 02543, United States
| | - Elizabeth B. Kujawinski
- Department of Marine Chemistry
and Geochemistry, Woods Hole Oceanographic
Institution, Woods
Hole, Massachusetts 02543, United States
| |
Collapse
|
11
|
Miller IR, Bui H, Wood JB, Fields MW, Gerlach R. Understanding phycosomal dynamics to improve industrial microalgae cultivation. Trends Biotechnol 2024; 42:680-698. [PMID: 38184438 DOI: 10.1016/j.tibtech.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 01/08/2024]
Abstract
Algal-bacterial interactions are ubiquitous in both natural and industrial systems, and the characterization of these interactions has been reinvigorated by potential applications in biosystem productivity. Different growth conditions can be used for operational functions, such as the use of low-quality water or high pH/alkalinity, and the altered operating conditions likely constrain microbial community structure and function in unique ways. However, research is necessary to better understand whether consortia can be designed to improve the productivity, processing, and sustainability of industrial-scale cultivations through different controls that can constrain microbial interactions for maximal light-driven outputs. The review highlights current knowledge and gaps for relevant operating conditions, as well as suggestions for near-term and longer-term improvements for large-scale cultivation and polyculture engineering.
Collapse
Affiliation(s)
- Isaac R Miller
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA; Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Huyen Bui
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Jessica B Wood
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA; Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Matthew W Fields
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA; Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA; Department of Civil Engineering, Montana State University, Bozeman, MT, USA; Energy Research Institute, Montana State University, Bozeman, MT, USA.
| | - Robin Gerlach
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA; Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA; Energy Research Institute, Montana State University, Bozeman, MT, USA; Department of Biological and Chemical Engineering, Bozeman, MT, USA
| |
Collapse
|
12
|
Geng XM, Cai SN, Zhu HX, Tang ZG, Li CY, Fu HH, Zhang Y, Cao HY, Wang P, Sun ML. Genomic analysis of Cobetia sp. D5 reveals its role in marine sulfur cycling. Mar Genomics 2024; 75:101108. [PMID: 38735675 DOI: 10.1016/j.margen.2024.101108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 05/14/2024]
Abstract
Dimethylsulfoniopropionate (DMSP) is one of the most abundant sulfur-containing organic compounds on the earth, which is an important carbon and sulfur source and plays an important role in the global sulfur cycle. Marine microorganisms are an important group involved in DMSP metabolism. The strain Cobetia sp. D5 was isolated from seawater samples in the Yellow Sea area of Qingdao during an algal bloom. There is still limited knowledge on the capacity of DMSP utilization of Cobetia bacteria. The study reports the whole genome sequence of Cobetia sp. D5 to understand its DMSP metabolism pathway. The genome of Cobetia sp. D5 consists of a circular chromosome with a length of 4,233,985 bp and the GC content is 62.56%. Genomic analysis showed that Cobetia sp. D5 contains a set of genes to transport and metabolize DMSP, which can cleave DMSP to produce dimethyl sulphide (DMS) and 3-Hydroxypropionyl-Coenzyme A (3-HP-CoA). DMS diffuses into the environment to enter the global sulfur cycle, whereas 3-HP-CoA is catabolized to acetyl CoA to enter central carbon metabolism. Thus, this study provides genetic insights into the DMSP metabolic processes of Cobetia sp. D5 during a marine algal bloom, and contributes to the understanding of the important role played by marine bacteria in the global sulfur cycle.
Collapse
Affiliation(s)
- Xiao-Mei Geng
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| | - Shi-Ning Cai
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| | - Hai-Xia Zhu
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China
| | - Zhi-Gang Tang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China
| | - Chun-Yang Li
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| | - Hui-Hui Fu
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| | - Yi Zhang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| | - Hai-Yan Cao
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| | - Peng Wang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China.
| | - Mei-Ling Sun
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
13
|
Dong C, Chen Q, Chen J, Dong L, Chen Y, Jiao N, Tang K. Investigating organic sulfur in estuarine and offshore environments: A combined field and cultivation approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171599. [PMID: 38490410 DOI: 10.1016/j.scitotenv.2024.171599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Estuarine-offshore sediments accumulate substantial particulate organic matter, containing organic sulfur as a key component. However, the distribution and sources of organic sulfur in such environments remain poorly understood. This study investigated organic sulfur in the Yangtze River Estuary and adjacent East China Sea. Dissolved organic sulfur varied from 0.65 to 1.99 μmol/L (molar S:C 0.006-0.018), while particulate organic sulfur ranged from 0.42 to 2.69 μmol/L (molar S:C 0.007-0.082). Sedimentary organic sulfur exhibited a similar molar S:C ratio (0.014-0.071) to particulate organic sulfur in bottom water, implying that particulate matter deposition is a potential source. Furthermore, sediments exposed to frequent hypoxia harbored significantly higher organic sulfur and S:C values compared to non-hypoxic areas. Laboratory incubation experiments revealed the underlying mechanism: sustained activity of sulfate-reducing bacteria in hypoxic sediments led to a substantial increase in sedimentary organic sulfur (from 15 to 53 μmol/g) within 600 days. This microbially driven sulfurization rendered over 90 % of the organic sulfur resistant to acid hydrolysis. Therefore, this study demonstrates that, alongside particle deposition, microbial sulfurization significantly contributes to organic sulfur enrichment and likely promotes organic matter preservation in estuarine-offshore sediments, particularly under hypoxic conditions. This finding advances our understanding of organic sulfur sources in these vital ecosystems.
Collapse
Affiliation(s)
- Changjie Dong
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Quanrui Chen
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Junhui Chen
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Liang Dong
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaojin Chen
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China.
| | - Kai Tang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
14
|
Cai H, McLimans CJ, Jiang H, Chen F, Krumholz LR, Hambright KD. Aerobic anoxygenic phototrophs play important roles in nutrient cycling within cyanobacterial Microcystis bloom microbiomes. MICROBIOME 2024; 12:88. [PMID: 38741135 PMCID: PMC11089705 DOI: 10.1186/s40168-024-01801-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/25/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND During the bloom season, the colonial cyanobacterium Microcystis forms complex aggregates which include a diverse microbiome within an exopolymer matrix. Early research postulated a simple mutualism existing with bacteria benefitting from the rich source of fixed carbon and Microcystis receiving recycled nutrients. Researchers have since hypothesized that Microcystis aggregates represent a community of synergistic and interacting species, an interactome, each with unique metabolic capabilities that are critical to the growth, maintenance, and demise of Microcystis blooms. Research has also shown that aggregate-associated bacteria are taxonomically different from free-living bacteria in the surrounding water. Moreover, research has identified little overlap in functional potential between Microcystis and members of its microbiome, further supporting the interactome concept. However, we still lack verification of general interaction and know little about the taxa and metabolic pathways supporting nutrient and metabolite cycling within Microcystis aggregates. RESULTS During a 7-month study of bacterial communities comparing free-living and aggregate-associated bacteria in Lake Taihu, China, we found that aerobic anoxygenic phototrophic (AAP) bacteria were significantly more abundant within Microcystis aggregates than in free-living samples, suggesting a possible functional role for AAP bacteria in overall aggregate community function. We then analyzed gene composition in 102 high-quality metagenome-assembled genomes (MAGs) of bloom-microbiome bacteria from 10 lakes spanning four continents, compared with 12 complete Microcystis genomes which revealed that microbiome bacteria and Microcystis possessed complementary biochemical pathways that could serve in C, N, S, and P cycling. Mapping published transcripts from Microcystis blooms onto a comprehensive AAP and non-AAP bacteria MAG database (226 MAGs) indicated that observed high levels of expression of genes involved in nutrient cycling pathways were in AAP bacteria. CONCLUSIONS Our results provide strong corroboration of the hypothesized Microcystis interactome and the first evidence that AAP bacteria may play an important role in nutrient cycling within Microcystis aggregate microbiomes. Video Abstract.
Collapse
Affiliation(s)
- Haiyuan Cai
- School of Biological Sciences, University of Oklahoma, Norman, USA
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | | | - Helong Jiang
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, USA
| | - Lee R Krumholz
- School of Biological Sciences, University of Oklahoma, Norman, USA
| | | |
Collapse
|
15
|
Xu Y, Wang X, Ou Q, Zhou Z, van der Hoek JP, Liu G. Appearance of Recalcitrant Dissolved Black Carbon and Dissolved Organic Sulfur in River Waters Following Wildfire Events. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7165-7175. [PMID: 38597176 PMCID: PMC11044583 DOI: 10.1021/acs.est.4c00492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
Increasing wildfire frequency, a consequence of global climate change, releases incomplete combustion byproducts such as aquatic pyrogenic dissolved organic matter (DOM) and black carbon (DBC) into waters, posing a threat to water security. In August 2022, a series of severe wildfires occurred in Chongqing, China. Samples from seven locations along the Yangtze and Jialing Rivers revealed DBC, quantified by the benzene poly(carboxylic acid) (BPCA) method, comprising 9.5-19.2% of dissolved organic carbon (DOC). High concentrations of BPCA-DBC with significant polycondensation were detected near wildfire areas, likely due to atmospheric deposition driven by wind. Furthermore, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) revealed that wildfires were associated with an increase in condensed aromatics, proteins, and unsaturated hydrocarbons, along with a decrease in lignins. The condensed aromatics primarily consisted of dissolved black nitrogen (DBN), contributing to abundant high-nitrogen-containing compounds in locations highly affected by wildfires. Meanwhile, wildfires potentially induced the input of recalcitrant sulfur-containing protein-like compounds, characterized by high oxidation, aliphatic nature, saturation, and low aromaticity. Overall, this study revealed the appearance of recalcitrant DBC and dissolved organic sulfur in river waters following wildfire events, offering novel insights into the potential impacts of wildfires on water quality and environmental biogeochemistry.
Collapse
Affiliation(s)
- Yanghui Xu
- Key
Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
- Section
of Sanitary Engineering, Department of Water Management, Faculty of
Civil Engineering and Geosciences, Delft
University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| | - Xintu Wang
- Key
Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
- College
of Environmental Science and Engineering, Guilin University of Technology, Guangxi 541004, China
| | - Qin Ou
- Key
Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
- Section
of Sanitary Engineering, Department of Water Management, Faculty of
Civil Engineering and Geosciences, Delft
University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| | - Zhongbo Zhou
- College
of Resources and Environment, Southwest
University, Chongqing 400715, China
| | - Jan Peter van der Hoek
- Section
of Sanitary Engineering, Department of Water Management, Faculty of
Civil Engineering and Geosciences, Delft
University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
- Waternet,
Department Research & Innovation,
P.O. Box 94370, 1090 GJ Amsterdam, The Netherlands
| | - Gang Liu
- Key
Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
- Section
of Sanitary Engineering, Department of Water Management, Faculty of
Civil Engineering and Geosciences, Delft
University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
- University
of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
16
|
Messer LF, Bourne DG, Robbins SJ, Clay M, Bell SC, McIlroy SJ, Tyson GW. A genome-centric view of the role of the Acropora kenti microbiome in coral health and resilience. Nat Commun 2024; 15:2902. [PMID: 38575584 PMCID: PMC10995205 DOI: 10.1038/s41467-024-46905-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
Microbial diversity has been extensively explored in reef-building corals. However, the functional roles of coral-associated microorganisms remain poorly elucidated. Here, we recover 191 bacterial and 10 archaeal metagenome-assembled genomes (MAGs) from the coral Acropora kenti (formerly A. tenuis) and adjacent seawater, to identify microbial functions and metabolic interactions within the holobiont. We show that 82 MAGs were specific to the A. kenti holobiont, including members of the Pseudomonadota, Bacteroidota, and Desulfobacterota. A. kenti-specific MAGs displayed significant differences in their genomic features and functional potential relative to seawater-specific MAGs, with a higher prevalence of genes involved in host immune system evasion, nitrogen and carbon fixation, and synthesis of five essential B-vitamins. We find a diversity of A. kenti-specific MAGs encode the biosynthesis of essential amino acids, such as tryptophan, histidine, and lysine, which cannot be de novo synthesised by the host or Symbiodiniaceae. Across a water quality gradient spanning 2° of latitude, A. kenti microbial community composition is correlated to increased temperature and dissolved inorganic nitrogen, with corresponding enrichment in molecular chaperones, nitrate reductases, and a heat-shock protein. We reveal mechanisms of A. kenti-microbiome-symbiosis on the Great Barrier Reef, highlighting the interactions underpinning the health of this keystone holobiont.
Collapse
Affiliation(s)
- Lauren F Messer
- Centre for Microbiome Research, School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, 4102, Australia.
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK.
| | - David G Bourne
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
- Australian Institute of Marine Science, Townsville, QLD, 4810, Australia
| | - Steven J Robbins
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Megan Clay
- Centre for Microbiome Research, School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, 4102, Australia
| | - Sara C Bell
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
- Australian Institute of Marine Science, Townsville, QLD, 4810, Australia
| | - Simon J McIlroy
- Centre for Microbiome Research, School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, 4102, Australia
| | - Gene W Tyson
- Centre for Microbiome Research, School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, 4102, Australia.
| |
Collapse
|
17
|
Little RF, Trottmann F, Hashizume H, Preissler M, Unger S, Sawa R, Kries H, Pidot S, Igarashi M, Hertweck C. Analysis of the Valgamicin Biosynthetic Pathway Reveals a General Mechanism for Cyclopropanol Formation across Diverse Natural Product Scaffolds. ACS Chem Biol 2024; 19:660-668. [PMID: 38358369 DOI: 10.1021/acschembio.3c00648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Cyclopropanol rings are highly reactive and may function as molecular "warheads" that affect natural product bioactivity. Yet, knowledge on their biosynthesis is limited. Using gene cluster analyses, isotope labeling, and in vitro enzyme assays, we shed first light on the biosynthesis of the cyclopropanol-substituted amino acid cleonine, a residue in the antimicrobial depsipeptide valgamicin C and the cytotoxic glycopeptide cleomycin A2. We decipher the biosynthetic origin of valgamicin C and show that the cleonine cyclopropanol ring is derived from dimethylsulfoniopropionate (DMSP). Furthermore, we demonstrate that part of the biosynthesis is analogous to the formation of malleicyprol polyketides in pathogenic bacteria. By genome mining and metabolic profiling, we identify the potential to produce cyclopropanol rings in other bacterial species. Our results reveal a general mechanism for cyclopropyl alcohol biosynthesis across diverse natural products that may be harnessed for bioengineering and drug discovery.
Collapse
Affiliation(s)
- Rory F Little
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| | - Felix Trottmann
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| | - Hideki Hashizume
- Laboratory of Microbiology, Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Miriam Preissler
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| | - Sandra Unger
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| | - Ryuichi Sawa
- Laboratory of Molecular Structure Analysis, Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Hajo Kries
- Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| | - Sacha Pidot
- Department of Microbiology and Immunology, Doherty Institute, 792 Elizabeth Street, Melbourne 3000, Australia
| | - Masayuki Igarashi
- Laboratory of Microbiology, Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
18
|
Burgunter-Delamare B, Shetty P, Vuong T, Mittag M. Exchange or Eliminate: The Secrets of Algal-Bacterial Relationships. PLANTS (BASEL, SWITZERLAND) 2024; 13:829. [PMID: 38592793 PMCID: PMC10974524 DOI: 10.3390/plants13060829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
Algae and bacteria have co-occurred and coevolved in common habitats for hundreds of millions of years, fostering specific associations and interactions such as mutualism or antagonism. These interactions are shaped through exchanges of primary and secondary metabolites provided by one of the partners. Metabolites, such as N-sources or vitamins, can be beneficial to the partner and they may be assimilated through chemotaxis towards the partner producing these metabolites. Other metabolites, especially many natural products synthesized by bacteria, can act as toxins and damage or kill the partner. For instance, the green microalga Chlamydomonas reinhardtii establishes a mutualistic partnership with a Methylobacterium, in stark contrast to its antagonistic relationship with the toxin producing Pseudomonas protegens. In other cases, as with a coccolithophore haptophyte alga and a Phaeobacter bacterium, the same alga and bacterium can even be subject to both processes, depending on the secreted bacterial and algal metabolites. Some bacteria also influence algal morphology by producing specific metabolites and micronutrients, as is observed in some macroalgae. This review focuses on algal-bacterial interactions with micro- and macroalgal models from marine, freshwater, and terrestrial environments and summarizes the advances in the field. It also highlights the effects of temperature on these interactions as it is presently known.
Collapse
Affiliation(s)
- Bertille Burgunter-Delamare
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (P.S.); (T.V.)
| | - Prateek Shetty
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (P.S.); (T.V.)
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Trang Vuong
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (P.S.); (T.V.)
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (P.S.); (T.V.)
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
19
|
Liu S, Silvano E, Li M, Mausz M, Rihtman B, Guillonneau R, Geiger O, Scanlan DJ, Chen Y. Aminolipids in bacterial membranes and the natural environment. THE ISME JOURNAL 2024; 18:wrae229. [PMID: 39520271 PMCID: PMC11631085 DOI: 10.1093/ismejo/wrae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/01/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Our comprehension of membrane function has predominantly advanced through research on glycerophospholipids, also known as phosphoglycerides, which are glycerol phosphate-based lipids found across all three domains of life. However, in bacteria, a perplexing group of lipids distinct from glycerol phosphate-based ones also exists. These are amino acid-containing lipids that form an amide bond between an amino acid and a fatty acid. Subsequently, a second fatty acid becomes linked, often via the 3-hydroxy group on the first fatty acid. These amide-linked aminolipids have, as of now, been exclusively identified in bacteria. Several hydrophilic head groups have been discovered in these aminolipids including ornithine, glutamine, glycine, lysine, and more recently, a sulfur-containing non-proteinogenic amino acid cysteinolic acid. Here, we aim to review current advances in the genetics, biochemistry and function of these aminolipids as well as giving an ecological perspective. We provide evidence for their potential significance in the ecophysiology of all major microbiomes, i.e. gut, soil, and aquatic as well as highlighting their important roles in influencing biological interactions.
Collapse
Affiliation(s)
- Shengwei Liu
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Eleonora Silvano
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Mingyu Li
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Michaela Mausz
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Branko Rihtman
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Richard Guillonneau
- Faculty of Science and Technology, Nantes Université, CNRS, US2B, UMR 6286, Nantes F-44000, France
| | - Otto Geiger
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Colonia Chamilpa, Cuernavaca, Morelos 62210, México
| | - David J Scanlan
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Yin Chen
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
20
|
Liu L, Gao X, Dong C, Wang H, Chen X, Ma X, Liu S, Chen Q, Lin D, Jiao N, Tang K. Enantioselective transformation of phytoplankton-derived dihydroxypropanesulfonate by marine bacteria. THE ISME JOURNAL 2024; 18:wrae084. [PMID: 38709871 PMCID: PMC11131964 DOI: 10.1093/ismejo/wrae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/08/2024] [Accepted: 05/04/2024] [Indexed: 05/08/2024]
Abstract
Chirality, a fundamental property of matter, is often overlooked in the studies of marine organic matter cycles. Dihydroxypropanesulfonate (DHPS), a globally abundant organosulfur compound, serves as an ecologically important currency for nutrient and energy transfer from phytoplankton to bacteria in the ocean. However, the chirality of DHPS in nature and its transformation remain unclear. Here, we developed a novel approach using chiral phosphorus-reagent labeling to separate DHPS enantiomers. Our findings demonstrated that at least one enantiomer of DHPS is present in marine diatoms and coccolithophores, and that both enantiomers are widespread in marine environments. A novel chiral-selective DHPS catabolic pathway was identified in marine Roseobacteraceae strains, where HpsO and HpsP dehydrogenases at the gateway to DHPS catabolism act specifically on R-DHPS and S-DHPS, respectively. R-DHPS is also a substrate for the dehydrogenase HpsN. All three dehydrogenases generate stable hydrogen bonds between the chirality-center hydroxyls of DHPS and highly conserved residues, and HpsP also form coordinate-covalent bonds between the chirality-center hydroxyls and Zn2+, which determines the mechanistic basis of strict stereoselectivity. We further illustrated the role of enzymatic promiscuity in the evolution of DHPS metabolism in Roseobacteraceae and SAR11. This study provides the first evidence of chirality's involvement in phytoplankton-bacteria metabolic currencies, opening a new avenue for understanding the ocean organosulfur cycle.
Collapse
Affiliation(s)
- Le Liu
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen 361102, China
| | - Xiang Gao
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Changjie Dong
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen 361102, China
| | - Huanyu Wang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen 361102, China
| | - Xiaofeng Chen
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361001, China
| | - Xiaoyi Ma
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen 361102, China
| | - Shujing Liu
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen 361102, China
| | - Quanrui Chen
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen 361102, China
| | - Dan Lin
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen 361102, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen 361102, China
| | - Kai Tang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen 361102, China
| |
Collapse
|
21
|
Mena C, Deulofeu-Capo O, Forn I, Dordal-Soriano J, Mantilla-Arias YA, Samos IP, Sebastián M, Cardelús C, Massana R, Romera-Castillo C, Mallenco-Fornies R, Gasol JM, Ruiz-González C. High amino acid osmotrophic incorporation by marine eukaryotic phytoplankton revealed by click chemistry. ISME COMMUNICATIONS 2024; 4:ycae004. [PMID: 38425478 PMCID: PMC10902890 DOI: 10.1093/ismeco/ycae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 03/02/2024]
Abstract
The osmotrophic uptake of dissolved organic compounds in the ocean is considered to be dominated by heterotrophic prokaryotes, whereas the role of planktonic eukaryotes is still unclear. We explored the capacity of natural eukaryotic plankton communities to incorporate the synthetic amino acid L-homopropargylglycine (HPG, analogue of methionine) using biorthogonal noncanonical amino acid tagging (BONCAT), and we compared it with prokaryotic HPG use throughout a 9-day survey in the NW Mediterranean. BONCAT allows to fluorescently identify translationally active cells, but it has never been applied to natural eukaryotic communities. We found a large diversity of photosynthetic and heterotrophic eukaryotes incorporating HPG into proteins, with dinoflagellates and diatoms showing the highest percentages of BONCAT-labelled cells (49 ± 25% and 52 ± 15%, respectively). Among them, pennate diatoms exhibited higher HPG incorporation in the afternoon than in the morning, whereas small (≤5 μm) photosynthetic eukaryotes and heterotrophic nanoeukaryotes showed the opposite pattern. Centric diatoms (e.g. Chaetoceros, Thalassiosira, and Lauderia spp.) dominated the eukaryotic HPG incorporation due to their high abundances and large sizes, accounting for up to 86% of the eukaryotic BONCAT signal and strongly correlating with bulk 3H-leucine uptake rates. When including prokaryotes, eukaryotes were estimated to account for 19-31% of the bulk BONCAT signal. Our results evidence a large complexity in the osmotrophic uptake of HPG, which varies over time within and across eukaryotic groups and highlights the potential of BONCAT to quantify osmotrophy and protein synthesis in complex eukaryotic communities.
Collapse
Affiliation(s)
- Catalina Mena
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona 08003, Spain
| | - Ona Deulofeu-Capo
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona 08003, Spain
| | - Irene Forn
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona 08003, Spain
| | - Júlia Dordal-Soriano
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona 08003, Spain
| | - Yulieth A Mantilla-Arias
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona 08003, Spain
| | - Iván P Samos
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona 08003, Spain
| | - Marta Sebastián
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona 08003, Spain
| | - Clara Cardelús
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona 08003, Spain
| | - Ramon Massana
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona 08003, Spain
| | - Cristina Romera-Castillo
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona 08003, Spain
| | - Rebeca Mallenco-Fornies
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona 08003, Spain
| | - Josep M Gasol
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona 08003, Spain
| | - Clara Ruiz-González
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona 08003, Spain
| |
Collapse
|
22
|
Clerc EE, Raina JB, Keegstra JM, Landry Z, Pontrelli S, Alcolombri U, Lambert BS, Anelli V, Vincent F, Masdeu-Navarro M, Sichert A, De Schaetzen F, Sauer U, Simó R, Hehemann JH, Vardi A, Seymour JR, Stocker R. Strong chemotaxis by marine bacteria towards polysaccharides is enhanced by the abundant organosulfur compound DMSP. Nat Commun 2023; 14:8080. [PMID: 38057294 DOI: 10.1038/s41467-023-43143-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 11/01/2023] [Indexed: 12/08/2023] Open
Abstract
The ability of marine bacteria to direct their movement in response to chemical gradients influences inter-species interactions, nutrient turnover, and ecosystem productivity. While many bacteria are chemotactic towards small metabolites, marine organic matter is predominantly composed of large molecules and polymers. Yet, the signalling role of these large molecules is largely unknown. Using in situ and laboratory-based chemotaxis assays, we show that marine bacteria are strongly attracted to the abundant algal polysaccharides laminarin and alginate. Unexpectedly, these polysaccharides elicited stronger chemoattraction than their oligo- and monosaccharide constituents. Furthermore, chemotaxis towards laminarin was strongly enhanced by dimethylsulfoniopropionate (DMSP), another ubiquitous algal-derived metabolite. Our results indicate that DMSP acts as a methyl donor for marine bacteria, increasing their gradient detection capacity and facilitating their access to polysaccharide patches. We demonstrate that marine bacteria are capable of strong chemotaxis towards large soluble polysaccharides and uncover a new ecological role for DMSP in enhancing this attraction. These navigation behaviours may contribute to the rapid turnover of polymers in the ocean, with important consequences for marine carbon cycling.
Collapse
Affiliation(s)
- Estelle E Clerc
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | | | - Johannes M Keegstra
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Zachary Landry
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Sammy Pontrelli
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Uria Alcolombri
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
- Institute for Life Sciences, Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bennett S Lambert
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Valerio Anelli
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Flora Vincent
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Developmental Biology Unit, European Molecular Biological Laboratory, Heidelberg, 69117, Germany
| | | | - Andreas Sichert
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Frédéric De Schaetzen
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Rafel Simó
- Institut de Ciències del Mar, CSIC, Barcelona, Catalonia, Spain
| | | | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, Ultimo, Australia
| | - Roman Stocker
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
23
|
Liu Y, Brinkhoff T, Berger M, Poehlein A, Voget S, Paoli L, Sunagawa S, Amann R, Simon M. Metagenome-assembled genomes reveal greatly expanded taxonomic and functional diversification of the abundant marine Roseobacter RCA cluster. MICROBIOME 2023; 11:265. [PMID: 38007474 PMCID: PMC10675870 DOI: 10.1186/s40168-023-01644-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/07/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND The RCA (Roseobacter clade affiliated) cluster belongs to the family Roseobacteracea and represents a major Roseobacter lineage in temperate to polar oceans. Despite its prevalence and abundance, only a few genomes and one described species, Planktomarina temperata, exist. To gain more insights into our limited understanding of this cluster and its taxonomic and functional diversity and biogeography, we screened metagenomic datasets from the global oceans and reconstructed metagenome-assembled genomes (MAG) affiliated to this cluster. RESULTS The total of 82 MAGs, plus five genomes of isolates, reveal an unexpected diversity and novel insights into the genomic features, the functional diversity, and greatly refined biogeographic patterns of the RCA cluster. This cluster is subdivided into three genera: Planktomarina, Pseudoplanktomarina, and the most deeply branching Candidatus Paraplanktomarina. Six of the eight Planktomarina species have larger genome sizes (2.44-3.12 Mbp) and higher G + C contents (46.36-53.70%) than the four Pseudoplanktomarina species (2.26-2.72 Mbp, 42.22-43.72 G + C%). Cand. Paraplanktomarina is represented only by one species with a genome size of 2.40 Mbp and a G + C content of 45.85%. Three novel species of the genera Planktomarina and Pseudoplanktomarina are validly described according to the SeqCode nomenclature for prokaryotic genomes. Aerobic anoxygenic photosynthesis (AAP) is encoded in three Planktomarina species. Unexpectedly, proteorhodopsin (PR) is encoded in the other Planktomarina and all Pseudoplanktomarina species, suggesting that this light-driven proton pump is the most important mode of acquiring complementary energy of the RCA cluster. The Pseudoplanktomarina species exhibit differences in functional traits compared to Planktomarina species and adaptations to more resource-limited conditions. An assessment of the global biogeography of the different species greatly expands the range of occurrence and shows that the different species exhibit distinct biogeographic patterns. They partially reflect the genomic features of the species. CONCLUSIONS Our detailed MAG-based analyses shed new light on the diversification, environmental adaptation, and global biogeography of a major lineage of pelagic bacteria. The taxonomic delineation and validation by the SeqCode nomenclature of prominent genera and species of the RCA cluster may be a promising way for a refined taxonomic identification of major prokaryotic lineages and sublineages in marine and other prokaryotic communities assessed by metagenomics approaches. Video Abstract.
Collapse
Affiliation(s)
- Yanting Liu
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl Von Ossietzky Str. 9-11, 26129, Oldenburg, Germany.
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, People's Republic of China.
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl Von Ossietzky Str. 9-11, 26129, Oldenburg, Germany.
| | - Martine Berger
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl Von Ossietzky Str. 9-11, 26129, Oldenburg, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University Göttingen, Grisebachstr. 8, 37077, Göttingen, Germany
| | - Sonja Voget
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University Göttingen, Grisebachstr. 8, 37077, Göttingen, Germany
| | - Lucas Paoli
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zurich, Switzerland
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zurich, Switzerland
| | - Rudolf Amann
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl Von Ossietzky Str. 9-11, 26129, Oldenburg, Germany.
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heerstr. 231, 26129, Oldenburg, Germany.
| |
Collapse
|
24
|
Priest T, von Appen WJ, Oldenburg E, Popa O, Torres-Valdés S, Bienhold C, Metfies K, Boulton W, Mock T, Fuchs BM, Amann R, Boetius A, Wietz M. Atlantic water influx and sea-ice cover drive taxonomic and functional shifts in Arctic marine bacterial communities. THE ISME JOURNAL 2023; 17:1612-1625. [PMID: 37422598 PMCID: PMC10504371 DOI: 10.1038/s41396-023-01461-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 07/10/2023]
Abstract
The Arctic Ocean is experiencing unprecedented changes because of climate warming, necessitating detailed analyses on the ecology and dynamics of biological communities to understand current and future ecosystem shifts. Here, we generated a four-year, high-resolution amplicon dataset along with one annual cycle of PacBio HiFi read metagenomes from the East Greenland Current (EGC), and combined this with datasets spanning different spatiotemporal scales (Tara Arctic and MOSAiC) to assess the impact of Atlantic water influx and sea-ice cover on bacterial communities in the Arctic Ocean. Densely ice-covered polar waters harboured a temporally stable, resident microbiome. Atlantic water influx and reduced sea-ice cover resulted in the dominance of seasonally fluctuating populations, resembling a process of "replacement" through advection, mixing and environmental sorting. We identified bacterial signature populations of distinct environmental regimes, including polar night and high-ice cover, and assessed their ecological roles. Dynamics of signature populations were consistent across the wider Arctic; e.g. those associated with dense ice cover and winter in the EGC were abundant in the central Arctic Ocean in winter. Population- and community-level analyses revealed metabolic distinctions between bacteria affiliated with Arctic and Atlantic conditions; the former with increased potential to use bacterial- and terrestrial-derived substrates or inorganic compounds. Our evidence on bacterial dynamics over spatiotemporal scales provides novel insights into Arctic ecology and indicates a progressing Biological Atlantification of the warming Arctic Ocean, with consequences for food webs and biogeochemical cycles.
Collapse
Affiliation(s)
- Taylor Priest
- Max Planck Institute for Marine Microbiology, Bremen, 28359, Germany.
| | - Wilken-Jon von Appen
- Physical Oceanography of the Polar Seas, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, 27570, Germany
| | - Ellen Oldenburg
- Institute for Quantitative and Theoretical Biology, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | - Ovidiu Popa
- Institute for Quantitative and Theoretical Biology, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | - Sinhué Torres-Valdés
- Physical Oceanography of the Polar Seas, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, 27570, Germany
| | - Christina Bienhold
- Max Planck Institute for Marine Microbiology, Bremen, 28359, Germany
- Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, 27570, Germany
| | - Katja Metfies
- Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, 27570, Germany
| | - William Boulton
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
- School of Computing Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Bernhard M Fuchs
- Max Planck Institute for Marine Microbiology, Bremen, 28359, Germany
| | - Rudolf Amann
- Max Planck Institute for Marine Microbiology, Bremen, 28359, Germany
| | - Antje Boetius
- Max Planck Institute for Marine Microbiology, Bremen, 28359, Germany
- Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, 27570, Germany
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, 28359, Germany
| | - Matthias Wietz
- Max Planck Institute for Marine Microbiology, Bremen, 28359, Germany.
- Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, 27570, Germany.
| |
Collapse
|
25
|
Sun K, Yu M, Zhu XY, Xue CX, Zhang Y, Chen X, Yao P, Chen L, Fu L, Yang Z, Zhang XH. Microbial communities related to the sulfur cycle in the Sansha Yongle Blue Hole. Microbiol Spectr 2023; 11:e0114923. [PMID: 37623326 PMCID: PMC10580873 DOI: 10.1128/spectrum.01149-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/13/2023] [Indexed: 08/26/2023] Open
Abstract
The Sansha Yongle Blue Hole (SYBH), the deepest blue hole in the world, is an excellent habitat for revealing biogeochemical cycles in the anaerobic environment. However, how sulfur cycling is mediated by microorganisms in the SYBH hasn't been fully understood. In this study, the water layers of the SYBH were divided into oxic zone, hypoxic zone, anoxic zone I and II, and microbial-mediated sulfur cycling in the SYBH was comprehensively interpreted. The 16S rRNA genes/transcripts analyses showed that the microbial community structures associated with the sulfur cycling in each zone had distinctive features. Sulfur-oxidizing bacteria were mostly constituted by Gammaproteobacteria, Alphaproteobacteria, Campylobacterota, and Chlorobia above the anoxic zone I and sulfate-reducing bacteria were dominated by Desulfobacterota in anoxic zones. Metagenomic analyses showed that the sulfide-oxidation-related gene sqr and genes encoding the Sox system were mainly distributed in the anoxic zone I, while genes related to dissimilatory sulfate reduction and sulfur intermediate metabolite reduction were mainly distributed in the anoxic zone II, indicating different sulfur metabolic processes between these two zones. Moreover, sulfur-metabolism-related genes were identified in 81 metagenome-assembled genomes (MAGs), indicating a high diversity of microbial communities involved in sulfur cycling. Among them, three MAGs from the candidate phyla JdFR-76 and AABM5-125-24 with genes related to dissimilatory sulfate reduction exhibited distinctive metabolic features. Our results showed unique and novel microbial populations in the SYBH sulfur cycle correlated to the sharp redox gradients, revealing complex biogeochemical processes in this extreme environment. IMPORTANCE Oxygen-deficient regions in the global ocean are expanding rapidly and affect the growth, reproduction and ecological processes of marine organisms. The anaerobic water body of about 150 m in the Sansha Yongle Blue Hole (SYBH) provided a suitable environment to study the specific microbial metabolism in anaerobic seawater. Here, we found that the vertical distributions of the total and active communities of sulfur-oxidizing bacteria (SOB) and sulfate-reducing bacteria (SRB) were different in each water layer of the SYBH according to the dissolved oxygen content. Genes related to sulfur metabolism also showed distinct stratification characteristics. Furthermore, we have obtained diverse metagenome-assembled genomes, some of which exhibit special sulfur metabolic characteristics, especially candidate phyla JdFR-76 and AABM5-125-24 were identified as potential novel SRB. The results of this study will promote further understanding of the sulfur cycle in extreme environments, as well as the environmental adaptability of microorganisms in blue holes.
Collapse
Affiliation(s)
- Kai Sun
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Min Yu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xiao-Yu Zhu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Chun-Xu Xue
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yunhui Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xing Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Peng Yao
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Lin Chen
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Liang Fu
- Sansha Track Ocean Coral Reef Conservation Research Institute, Sansha, China
| | - Zuosheng Yang
- College of Marine Geosciences, Ocean University of China, Qingdao, China
| | - Xiao-Hua Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
26
|
Li Z, Wu Z, Shao B, Tanentzap AJ, Chi J, He W, Liu Y, Wang X, Zhao Y, Tong Y. Biodegradability of algal-derived dissolved organic matter and its influence on methylmercury uptake by phytoplankton. WATER RESEARCH 2023; 242:120175. [PMID: 37301000 DOI: 10.1016/j.watres.2023.120175] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/30/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Methylmercury (MeHg) uptake by phytoplankton represents a key step in determining the exposure risks of aquatic organisms and human beings to this potent neurotoxin. Phytoplankton uptake is believed to be negatively related to dissolved organic matter (DOM) concentration in water. However, microorganisms can rapidly change DOM concentration and composition and subsequent impact on MeHg uptake by phytoplankton has rarely been tested. Here, we explored the influences of microbial degradation on the concentrations and molecular compositions of DOM derived from three common algal sources and tested their subsequent impacts on MeHg uptake by the widespread phytoplankton species Microcystis elabens. Our results indicated that dissolved organic carbon was degraded by 64.3‒74.1% within 28 days of incubating water with microbial consortia from a natural meso‑eutrophic river. Protein-like components in DOM were more readily degraded, while the numbers of molecular formula for peptides-like compounds had increased after 28 days' incubation, probably due to the production and release of bacterial metabolites. Microbial degradation made DOM more humic-like which was consistent with the positive correlations between changes in proportions of Peaks A and C and bacterial abundance in bacterial community structures as illustrated by 16S rRNA gene sequencing. Despite rapid losses of the bulk DOM during the incubation, we found that DOM degraded after 28 days still reduced the MeHg uptake by Microcystis elabens by 32.7‒52.7% relative to a control without microbial decomposers. Our findings emphasize that microbial degradation of DOM would not necessarily enhance the MeHg uptakes by phytoplankton and may become more powerful in inhibiting MeHg uptakes by phytoplankton. The potential roles of microbes in degrading DOM and changing the uptakes of MeHg at the base of food webs should now be incorporated into future risk assessments of aquatic Hg cycling.
Collapse
Affiliation(s)
- Zhike Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Zhengyu Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Bo Shao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Andrew J Tanentzap
- Ecosystems and Global Change Group, School of the Environment, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Jie Chi
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Wei He
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xuejun Wang
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; College of Ecology and Environment, Tibet University, Lhasa 850000, China.
| |
Collapse
|
27
|
Moeller FU, Herbold CW, Schintlmeister A, Mooshammer M, Motti C, Glasl B, Kitzinger K, Behnam F, Watzka M, Schweder T, Albertsen M, Richter A, Webster NS, Wagner M. Taurine as a key intermediate for host-symbiont interaction in the tropical sponge Ianthella basta. THE ISME JOURNAL 2023; 17:1208-1223. [PMID: 37188915 PMCID: PMC10356861 DOI: 10.1038/s41396-023-01420-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023]
Abstract
Marine sponges are critical components of marine benthic fauna assemblages, where their filter-feeding and reef-building capabilities provide bentho-pelagic coupling and crucial habitat. As potentially the oldest representation of a metazoan-microbe symbiosis, they also harbor dense, diverse, and species-specific communities of microbes, which are increasingly recognized for their contributions to dissolved organic matter (DOM) processing. Recent omics-based studies of marine sponge microbiomes have proposed numerous pathways of dissolved metabolite exchange between the host and symbionts within the context of the surrounding environment, but few studies have sought to experimentally interrogate these pathways. By using a combination of metaproteogenomics and laboratory incubations coupled with isotope-based functional assays, we showed that the dominant gammaproteobacterial symbiont, 'Candidatus Taurinisymbion ianthellae', residing in the marine sponge, Ianthella basta, expresses a pathway for the import and dissimilation of taurine, a ubiquitously occurring sulfonate metabolite in marine sponges. 'Candidatus Taurinisymbion ianthellae' incorporates taurine-derived carbon and nitrogen while, at the same time, oxidizing the dissimilated sulfite into sulfate for export. Furthermore, we found that taurine-derived ammonia is exported by the symbiont for immediate oxidation by the dominant ammonia-oxidizing thaumarchaeal symbiont, 'Candidatus Nitrosospongia ianthellae'. Metaproteogenomic analyses also suggest that 'Candidatus Taurinisymbion ianthellae' imports DMSP and possesses both pathways for DMSP demethylation and cleavage, enabling it to use this compound as a carbon and sulfur source for biomass, as well as for energy conservation. These results highlight the important role of biogenic sulfur compounds in the interplay between Ianthella basta and its microbial symbionts.
Collapse
Affiliation(s)
- Florian U Moeller
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Craig W Herbold
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Arno Schintlmeister
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- Large-Instrument Facility for Environmental and Isotope Mass Spectrometry, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Maria Mooshammer
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Cherie Motti
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Bettina Glasl
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Katharina Kitzinger
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Faris Behnam
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Margarete Watzka
- Centre for Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| | - Thomas Schweder
- Institute of Marine Biotechnology e.V., Greifswald, Germany
- Institute of Pharmacy, Pharmaceutical Biotechnology, University of Greifswald, Greifswald, Germany
| | - Mads Albertsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Andreas Richter
- Centre for Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| | - Nicole S Webster
- Australian Institute of Marine Science, Townsville, QLD, Australia
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, St Lucia, QLD, Australia
- Australian Antarctic Division, Kingston, TAS, Australia
| | - Michael Wagner
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria.
- Large-Instrument Facility for Environmental and Isotope Mass Spectrometry, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
28
|
Chu R, Wei Y, Liu J, Li B, Zhang J, Zhou Y, Du Y, Zhang Y. A Variant of the Sulfoglycolytic Transketolase Pathway for the Degradation of Sulfoquinovose into Sulfoacetate. Appl Environ Microbiol 2023; 89:e0061723. [PMID: 37404184 PMCID: PMC10370302 DOI: 10.1128/aem.00617-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023] Open
Abstract
Sulfoquinovose (SQ, 6-deoxy-6-sulfo-glucose) constitutes the polar head group of plant sulfolipids and is one of the most abundantly produced organosulfur compounds in nature. Degradation of SQ by bacterial communities contributes to sulfur recycling in many environments. Bacteria have evolved at least four mechanisms for glycolytic degradation of SQ, termed sulfoglycolysis, producing C3 sulfonate (dihydroxypropanesulfonate and sulfolactate) and C2 sulfonate (isethionate) by-products. These sulfonates are further degraded by other bacteria, leading to the mineralization of the sulfonate sulfur. The C2 sulfonate sulfoacetate is widespread in the environment and is also thought to be a product of sulfoglycolysis, although the mechanistic details are yet unknown. Here, we describe a gene cluster in an Acholeplasma sp., from a metagenome derived from deeply circulating subsurface aquifer fluids (GenBank accession no. QZKD01000037), encoding a variant of the recently discovered sulfoglycolytic transketolase (sulfo-TK) pathway that produces sulfoacetate instead of isethionate as a by-product. We report the biochemical characterization of a coenzyme A (CoA)-acylating sulfoacetaldehyde dehydrogenase (SqwD) and an ADP-forming sulfoacetate-CoA ligase (SqwKL), which collectively catalyze the oxidation of the transketolase product sulfoacetaldehyde into sulfoacetate, coupled with ATP formation. A bioinformatics study revealed the presence of this sulfo-TK variant in phylogenetically diverse bacteria, adding to the variety of mechanisms by which bacteria metabolize this ubiquitous sulfo-sugar. IMPORTANCE Many bacteria utilize environmentally widespread C2 sulfonate sulfoacetate as a sulfur source, and the disease-linked human gut sulfate- and sulfite-reducing bacteria can use it as a terminal electron receptor for anaerobic respiration generating toxic H2S. However, the mechanism of sulfoacetate formation is unknown, although it has been proposed that sulfoacetate originates from bacterial degradation of sulfoquinovose (SQ), the polar head group of sulfolipids present in all green plants. Here, we describe a variant of the recently discovered sulfoglycolytic transketolase (sulfo-TK) pathway. Unlike the regular sulfo-TK pathway that produces isethionate, our biochemical assays with recombinant proteins demonstrated that a CoA-acylating sulfoacetaldehyde dehydrogenase (SqwD) and an ADP-forming sulfoacetate-CoA ligase (SqwKL) in this variant pathway collectively catalyze the oxidation of the transketolase product sulfoacetaldehyde into sulfoacetate, coupled with ATP formation. A bioinformatics study revealed the presence of this sulfo-TK variant in phylogenetically diverse bacteria and interpreted the widespread existence of sulfoacetate.
Collapse
Affiliation(s)
- Ruoxing Chu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Department of Chemistry, Tianjin University, Tianjin, China
| | - Yifeng Wei
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jiayi Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Boran Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Jianing Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yan Zhou
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yan Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Department of Chemistry, Tianjin University, Tianjin, China
| |
Collapse
|
29
|
Lu W, Wang L, Liang J, Lu Y, Wang J, Fu YV. Dynamically Quantifying Intracellular Elemental Sulfur and Predicting Pertinent Gene Transcription by Raman Spectroscopy in Living Cells. Anal Chem 2023. [PMID: 37330921 DOI: 10.1021/acs.analchem.3c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The ability to monitor changes in metabolites and corresponding gene transcription within living cells is highly desirable. However, most current assays for quantification of metabolites or for gene transcription are destructive, precluding tracking the real-time dynamics of living cells. Here, we used the intracellular elemental sulfur in a Thiophaeococcus mangrovi cell as a proof-of-concept to link the quantity of metabolites and relevant gene transcription in living cells by a nondestructive Raman approach. Raman spectroscopy was utilized to quantify intracellular elemental sulfur noninvasively, and a computational mRR (mRNA and Raman) model was developed to infer the transcription of genes relevant to elemental sulfur. The results showed a significant linear correlation between the exponentially transformed Raman spectral intensity of intracellular elemental sulfur and the mRNA levels of genes encoding sulfur globule proteins in T. mangrovi. The mRR model was verified independently in two genera of Thiocapsa and Thiorhodococcus, and the mRNA levels predicted by mRR showed high consistency with actual gene expression detected by real-time polymerase chain reaction (PCR). This approach could enable noninvasive assessment of the quantity of metabolites and link the pertinent gene expression profiles in living cells, providing useful baseline data to spectroscopically map various omics in real time.
Collapse
Affiliation(s)
- Weilai Lu
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing 100101, China
| | - Lu Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Liang
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Lu
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yu Vincent Fu
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
30
|
Tang K, Liu L. Bacteria are driving the ocean's organosulfur cycle. Trends Microbiol 2023:S0966-842X(23)00156-7. [PMID: 37280134 DOI: 10.1016/j.tim.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 06/08/2023]
Abstract
Bacteria are key players in the marine sulfur cycle, from the sunlit ocean surface to the dark abyssal depths. Here, we provide a brief overview of the interlinked metabolic processes of organosulfur compounds, an elusive sulfur cycling process that exists in the dark ocean, and the current challenges that limit our understanding of this key nutrient cycle.
Collapse
Affiliation(s)
- Kai Tang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China.
| | - Le Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| |
Collapse
|
31
|
Carrión O, Zhu XY, Williams BT, Wang J, Zhang XH, Todd JD. Molecular discoveries in microbial DMSP synthesis. Adv Microb Physiol 2023; 83:59-116. [PMID: 37507162 DOI: 10.1016/bs.ampbs.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Dimethylsulfoniopropionate (DMSP) is one of the Earth's most abundant organosulfur compounds because many marine algae, bacteria, corals and some plants produce it to high mM intracellular concentrations. In these organisms, DMSP acts an anti-stress molecule with purported roles to protect against salinity, temperature, oxidative stress and hydrostatic pressure, amongst many other reported functions. However, DMSP is best known for being a major precursor of the climate-active gases and signalling molecules dimethylsulfide (DMS), methanethiol (MeSH) and, potentially, methane, through microbial DMSP catabolism. DMSP catabolism has been extensively studied and the microbes, pathways and enzymes involved have largely been elucidated through the application of molecular research over the last 17 years. In contrast, the molecular biology of DMSP synthesis is a much newer field, with the first DMSP synthesis enzymes only being identified in the last 5 years. In this review, we discuss how the elucidation of key DMSP synthesis enzymes has greatly expanded our knowledge of the diversity of DMSP-producing organisms, the pathways used, and what environmental factors regulate production, as well as to inform on the physiological roles of DMSP. Importantly, the identification of key DMSP synthesis enzymes in the major groups of DMSP producers has allowed scientists to study the distribution and predict the importance of different DMSP-producing organisms to global DMSP production in diverse marine and sediment environments. Finally, we highlight key challenges for future molecular research into DMSP synthesis that need addressing to better understand the cycling of this important marine organosulfur compound, and its magnitude in the environment.
Collapse
Affiliation(s)
- Ornella Carrión
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom.
| | - Xiao-Yu Zhu
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Beth T Williams
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Jinyan Wang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Jonathan D Todd
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom.
| |
Collapse
|
32
|
Wang L, Jiang Q, Chen S, Wang S, Lu J, Gao X, Zhang D, Jin X. Natural epidithiodiketopiperazine alkaloids as potential anticancer agents: Recent mechanisms of action, structural modification, and synthetic strategies. Bioorg Chem 2023; 137:106642. [PMID: 37276722 DOI: 10.1016/j.bioorg.2023.106642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/18/2023] [Accepted: 05/27/2023] [Indexed: 06/07/2023]
Abstract
Cancer has become a grave health crisis that threatens the lives of millions of people worldwide. Because of the drawbacks of the available anticancer drugs, the development of novel and efficient anticancer agents should be encouraged. Epidithiodiketopiperazine (ETP) alkaloids with a 2,5-diketopiperazine (DKP) ring equipped with transannular disulfide or polysulfide bridges or S-methyl moieties constitute a special subclass of fungal natural products. Owing to their privileged sulfur units and intriguing architectural structures, ETP alkaloids exhibit excellent anticancer activities by regulating multiple cancer proteins/signaling pathways, including HIF-1, NF-κB, NOTCH, Wnt, and PI3K/AKT/mTOR, or by inducing cell-cycle arrest, apoptosis, and autophagy. Furthermore, a series of ETP alkaloid derivatives obtained via structural modification showed more potent anticancer activity than natural ETP alkaloids. To solve supply difficulties from natural resources, the total synthetic routes for several ETP alkaloids have been designed. In this review, we summarized several ETP alkaloids with anticancer properties with particular emphasis on their underlying mechanisms of action, structural modifications, and synthetic strategies, which will offer guidance to design and innovate potential anticancer drugs.
Collapse
Affiliation(s)
- Lin Wang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Qinghua Jiang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Siyu Chen
- China Medical University-Queen's University of Belfast Joint College, China Medical University, Shenyang 110122, China
| | - Siyi Wang
- The 1st Clinical Department, China Medical University, Shenyang 110122, China
| | - Jingyi Lu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xun Gao
- Jiangsu Institute Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, China
| | - Dongfang Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Xin Jin
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
33
|
Yuan L, Ju F. Potential Auxiliary Metabolic Capabilities and Activities Reveal Biochemical Impacts of Viruses in Municipal Wastewater Treatment Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5485-5498. [PMID: 36947091 DOI: 10.1021/acs.est.2c07800] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Viruses influence biogeochemical cycles in oceans, freshwater, soil, and human gut through infection and by modulating virocell metabolism through virus-encoded auxiliary metabolic genes (vAMGs). However, the geographical distribution, potential metabolic function, and engineering significance of vAMGs in wastewater treatment plants (WWTPs) remain to be explored. Here, 752 single-contig viral genomes with high confidence, 510 of which belonged to Caudovirales, were recovered from the activated sludge metagenomes of 32 geographically distributed WWTPs. A total of 101 vAMGs involved in various metabolic pathways were identified, the most common of which were the queuosine biosynthesis genes folE, queD, and queE and the sulfur metabolism gene cysH. Phylogenetic analysis and virus-host relationship prediction revealed the probable evolutionary histories of vAMGs involved in carbon (acpP and prsA), nitrogen (amoC), sulfur (cysH), and phosphate (phoH) metabolism, which potentially mediate microbial carbon and nutrient cycling. Notably, 11 of the 38 (28.3%) vAMGs identified in the metagenomes with corresponding metatranscriptomes were transcriptionally expressed, implying an active functional state. This meta-analysis provides the first broad catalog of vAMGs in municipal WWTPs and how they may assist in the basic physiological reactions of their microbial hosts or nutrient cycling in the WWTPs, and therefore, may have important effects on the engineering of wastewater treatment processes.
Collapse
Affiliation(s)
- Ling Yuan
- Environmental Science and Engineering Department, Zhejiang University, Hangzhou 310012, Zhejiang, China
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Environmental Microbiome and Biotechnology Laboratory (EMBLab), Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou 310030, Zhejiang, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Environmental Microbiome and Biotechnology Laboratory (EMBLab), Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Research Center for Industries of the Future, Westlake University, Hangzhou 310030, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| |
Collapse
|
34
|
Lu J, Shu Y, Zhang H, Zhang S, Zhu C, Ding W, Zhang W. The Landscape of Global Ocean Microbiome: From Bacterioplankton to Biofilms. Int J Mol Sci 2023; 24:6491. [PMID: 37047466 PMCID: PMC10095273 DOI: 10.3390/ijms24076491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023] Open
Abstract
The development of metagenomics has opened up a new era in the study of marine microbiota, which play important roles in biogeochemical cycles. In recent years, the global ocean sampling expeditions have spurred this research field toward a deeper understanding of the microbial diversities and functions spanning various lifestyles, planktonic (free-living) or sessile (biofilm-associated). In this review, we deliver a comprehensive summary of marine microbiome datasets generated in global ocean expeditions conducted over the last 20 years, including the Sorcerer II GOS Expedition, the Tara Oceans project, the bioGEOTRACES project, the Micro B3 project, the Bio-GO-SHIP project, and the Marine Biofilms. These datasets have revealed unprecedented insights into the microscopic life in our oceans and led to the publication of world-leading research. We also note the progress of metatranscriptomics and metaproteomics, which are confined to local marine microbiota. Furthermore, approaches to transforming the global ocean microbiome datasets are highlighted, and the state-of-the-art techniques that can be combined with data analyses, which can present fresh perspectives on marine molecular ecology and microbiology, are proposed.
Collapse
Affiliation(s)
- Jie Lu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
| | - Yi Shu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266100, China;
| | - Heng Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
| | - Shangxian Zhang
- Haide College, Ocean University of China, Qingdao 266100, China
| | - Chengrui Zhu
- Haide College, Ocean University of China, Qingdao 266100, China
| | - Wei Ding
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266100, China;
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- Haide College, Ocean University of China, Qingdao 266100, China
| | - Weipeng Zhang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- Haide College, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
35
|
Li SH, Kang I, Cho JC. Metabolic Versatility of the Family Halieaceae Revealed by the Genomics of Novel Cultured Isolates. Microbiol Spectr 2023; 11:e0387922. [PMID: 36916946 PMCID: PMC10100682 DOI: 10.1128/spectrum.03879-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/16/2023] [Indexed: 03/16/2023] Open
Abstract
The family Halieaceae (OM60/NOR5 clade) is a gammaproteobacterial group abundant and cosmopolitan in coastal seawaters and plays an important role in response to phytoplankton blooms. However, the ecophysiology of this family remains understudied because of the vast gap between phylogenetic diversity and cultured representatives. Here, using six pure cultured strains isolated from coastal seawaters, we performed in-depth genomic analyses to provide an overview of the phylogeny and metabolic capabilities of this family. The combined analyses of 16S rRNA genes, genome sequences, and functional genes relevant to taxonomy demonstrated that each strain represents a novel species. Notably, two strains belonged to the hitherto-uncultured NOR5-4 and NOR5-12 subclades. Metabolic reconstructions revealed that the six strains likely have aerobic chemo- or photoheterotrophic lifestyles; five of them possess genes for proteorhodopsin or aerobic anoxygenic phototrophy. The presence of blue- or green-tuned proteorhodopsin in Halieaceae suggested their ability to adapt to light conditions varying with depth or coastal-to-open ocean transition. In addition to the genes of anaplerotic CO2 fixation, genes encoding a complete reductive glycine pathway for CO2 fixation were found in three strains. Putative polysaccharide utilization loci were detected in three strains, suggesting the association with phytoplankton blooms. Read mapping of various metagenomes and metatranscriptomes showed that the six strains are widely distributed and transcriptionally active in marine environments. Overall, the six strains genomically characterized in this study expand the phylogenetic and metabolic diversity of Halieaceae and likely serve as a culture resource for investigating the ecophysiological features of this environmentally relevant bacterial group. IMPORTANCE Although the family Halieaceae (OM60/NOR5 clade) is an abundant and cosmopolitan clade widely found in coastal seas and involved in interactions with phytoplankton, a limited number of cultured isolates are available. In this study, we isolated six pure cultured Halieaceae strains from coastal seawaters and performed a comparative physiological and genomic analysis to give insights into the phylogeny and metabolic potential of this family. The cultured strains exhibited diverse metabolic potential by harboring genes for anaplerotic CO2 fixation, proteorhodopsin, and aerobic anoxygenic phototrophy. Polysaccharide utilization loci detected in some of these strains also indicated an association with phytoplankton blooms. The cultivation of novel strains of Halieaceae and their genomic characteristics largely expanded the phylogenetic and metabolic diversity, which is important for future ecophysiological studies.
Collapse
Affiliation(s)
- Shan-Hui Li
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
| | - Ilnam Kang
- Center for Molecular and Cell Biology, Inha University, Incheon, Republic of Korea
| | - Jang-Cheon Cho
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
| |
Collapse
|
36
|
Liu L, Chen X, Ye J, Ma X, Han Y, He Y, Tang K. Sulfoquinovose is a widespread organosulfur substrate for Roseobacter clade bacteria in the ocean. THE ISME JOURNAL 2023; 17:393-405. [PMID: 36593260 PMCID: PMC9938184 DOI: 10.1038/s41396-022-01353-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 01/03/2023]
Abstract
Sulfoquinovose (SQ) is one of the most abundant organosulfur compounds in the biosphere, and its biosynthesis and degradation can represent an important contribution to the sulfur cycle. To data, in marine environments, the microorganisms capable of metabolising SQ have remained unidentified and the sources of SQ are still uncertain. Herein, the marine Roseobacter clade bacteria (RCB) Dinoroseobacter shibae DFL 12 and Roseobacter denitrificans OCh 114 were found to grow using SQ as the sole source of carbon and energy. In the presence of SQ, we identified a set of highly up-regulated proteins encoded by gene clusters in these two organisms, of which four homologues to proteins in the SQ monooxygenase pathway of Agrobacterium fabrum C58 may confer the ability to metabolise SQ to these marine bacteria. The sulfite released from SQ desulfonation by FMN-dependent SQ monooxygenase (SmoC) may provide bacteria with reduced sulfur for assimilation, while proteins associated with sulfite production via assimilatory sulfate reduction were significantly down-regulated. Such SQ catabolic genes are restricted to a limited number of phylogenetically diverse bacterial taxa with the predominate genera belonging to the Roseobacter clade (Roseobacteraceae). Moreover, transcript analysis of Tara Oceans project and coastal Bohai Sea samples provided additional evidence for SQ metabolism by RCB. SQ was found to be widely distributed in marine phytoplankton and cyanobacteria with variable intracellular concentrations ranging from micromolar to millimolar levels, and the amounts of SQ on particulate organic matter in field samples were, on average, lower than that of dimethylsulfoniopropionate (DMSP) by one order of magnitude. Together, the phototroph-derived SQ actively metabolised by RCB represents a previously unidentified link in the marine sulfur cycle.
Collapse
Affiliation(s)
- Le Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Xiaofeng Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Jianing Ye
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Xiaoyi Ma
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Yu Han
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Yajie He
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Kai Tang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
37
|
Liu H, Cai X, Luo K, Chen S, Su M, Lu J. Microbial Diversity, Community Turnover, and Putative Functions in Submarine Canyon Sediments under the Action of Sedimentary Geology. Microbiol Spectr 2023; 11:e0421022. [PMID: 36802161 PMCID: PMC10100816 DOI: 10.1128/spectrum.04210-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/31/2023] [Indexed: 02/23/2023] Open
Abstract
Sampling challenges in deep-sea ecosystems lead to a lack of knowledge about the distribution of microbes in different submarine canyons. To study microbial diversity and community turnover under different ecological processes, we performed 16S/18S rRNA gene amplicon sequencing for sediment samples from a submarine canyon in the South China Sea. Bacteria, archaea, and eukaryotes made up 57.94% (62 phyla), 41.04% (12 phyla), and 1.02% (4 phyla) of the sequences, respectively. Thaumarchaeota, Planctomycetota, Proteobacteria, Nanoarchaeota, and Patescibacteria are the five most abundant phyla. Heterogeneous community composition was mainly observed in vertical profiles rather than horizontal geographic locations, and microbial diversity in the surface layer was much lower than that in deep layers. According to the null model tests, homogeneous selection dominated community assembly within each sediment layer, whereas heterogeneous selection and dispersal limitation dominated community assembly between distant layers. Different sedimentation processes of sediments, i.e., rapid deposition caused by turbidity currents or slow sedimentation, seem to be primarily responsible for these vertical variations. Finally, functional annotation through shotgun-metagenomic sequencing found that glycosyl transferases and glycoside hydrolases are the most abundant carbohydrate-active enzyme categories. The most likely expressed sulfur cycling pathways include assimilatory sulfate reduction, the link between inorganic and organic sulfur transformation, and organic sulfur transformation, while the potentially activated methane cycling pathways include aceticlastic methanogenesis and aerobic and anaerobic oxidation of methane. Overall, our study revealed high levels of microbial diversity and putative functions in canyon sediments and the important influence of sedimentary geology on microbial community turnover between vertical sediment layers. IMPORTANCE Deep-sea microbes have received growing attention due to their contribution to biogeochemical cycles and climate change. However, related research lags due to the difficulty of collecting samples. Based on our previous study, which revealed the formation of sediments under the dual action of turbidity currents and seafloor obstacles in a submarine canyon in the South China Sea, this interdisciplinary research provides new insights into how sedimentary geology influences microbial community assembly in sediments. We proposed some uncommon or new findings, including the following: (i) microbial diversity was much lower on the surface than in deeper layers (ii) archaea and bacteria dominated the surface and deep layers, respectively; (iii) sedimentary geology played key roles in vertical community turnover; and (iv) the microbes have great potential to catalyze sulfur, carbon, and methane cycling. This study may lead to extensive discussion of the assembly and function of deep-sea microbial communities in the context of geology.
Collapse
Affiliation(s)
- Hualin Liu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Xueyu Cai
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Kunwen Luo
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Sihan Chen
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Ming Su
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou Guangdong, China
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou Guangdong, China
- Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, China
| |
Collapse
|
38
|
Metagenome-Assembled Genome of a Novel Cyclobacteriaceae Epibiont of a Heterotrophic Diazotroph. Microbiol Resour Announc 2023; 12:e0059422. [PMID: 36688647 PMCID: PMC9933675 DOI: 10.1128/mra.00594-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Here, we describe the metagenome-assembled genome (MAG) HetDA_MAG_SS2, in the family Cyclobacteriaceae. It was found in association with a HetDA cyanobiont isolated from a Station ALOHA Trichodesmium colony. Annotation suggests that HetDA_MAG_SS2 is a chemoorganoheterotroph with the potential for lithoheterotrophy, containing genes for aerobic respiration, mixed acid fermentation, dissimilatory nitrate reduction to ammonium, and sulfide oxidation.
Collapse
|
39
|
Ardila PAR, Alonso RÁ, Valsero JJD, García RM, Cabrera FÁ, Cosío EL, Laforet SD. Assessment of heavy metal pollution in marine sediments from southwest of Mallorca island, Spain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:16852-16866. [PMID: 36600163 PMCID: PMC9928826 DOI: 10.1007/s11356-022-25014-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 12/23/2022] [Indexed: 05/24/2023]
Abstract
Anthropogenic activities in urban, agrarian, or industrial areas are the main cause of heavy metals in sediments worldwide. Since the 1960s, there have been submarine discharges through outfalls of poorly treated or untreated wastewater on the south coast of Mallorca island (Mediterranean Sea). In this study, the pollution of marine sediments is analyzed at a great number of points on the south of the seacoast. Heavy metal concentrations of As, Ba, Cd, Cr, Cu, Hg, Ni, Pb, Se, V, and Zn, total inorganic carbon (TIC), sulfur, mineralogy, and grain size were analyzed. The objective is to evaluate the concentrations of toxic substances and their spatial distribution and ranges that can negatively affect marine ecosystems and human health. In addition, the results obtained have been compared with standardized indices for marine sediments, and a regional index has been developed with the background values of heavy metals obtained in the sediments of the study area. To obtain consistent conclusions, concentrations of heavy metals were classified with the Igeo Index. The concentrations of heavy metals obtained show that a great number of samples exceeded the limits considered for uncontaminated sediments according to the index applied. Elements such as Hg, Ba, Pb, and Cu showed high concentrations close to the outfalls and lower concentrations in zones far from these points. To support the assessment, chemical processes such as dissolution or chemical precipitation have been studied. The results also show that marine sediments can be a good trap for chemical elements and a good proxy to analyze the impact of anthropogenic activities in areas heavily pressured by humans, and the risk to the environment and human health.
Collapse
Affiliation(s)
| | - Rebeca Álvarez Alonso
- IGME-CSIC, Geological Survey of Spain, Balearic Island Unit, Carrer de Felicià Fuster, 7, 07006, Palma, Spain
| | | | | | - Flor Árcega Cabrera
- Unidad de Química Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Puerto de Abrigo S/N, Sisal, Yucatán, 97355, México
| | - Elisabeth Lamas Cosío
- Unidad de Química Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Puerto de Abrigo S/N, Sisal, Yucatán, 97355, México
| | | |
Collapse
|
40
|
Ferrer-González FX, Hamilton M, Smith CB, Schreier JE, Olofsson M, Moran MA. Bacterial transcriptional response to labile exometabolites from photosynthetic picoeukaryote Micromonas commoda. ISME COMMUNICATIONS 2023; 3:5. [PMID: 36690682 PMCID: PMC9870897 DOI: 10.1038/s43705-023-00212-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/30/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023]
Abstract
Dissolved primary production released into seawater by marine phytoplankton is a major source of carbon fueling heterotrophic bacterial production in the ocean. The composition of the organic compounds released by healthy phytoplankton is poorly known and difficult to assess with existing chemical methods. Here, expression of transporter and catabolic genes by three model marine bacteria (Ruegeria pomeroyi DSS-3, Stenotrophomonas sp. SKA14, and Polaribacter dokdonensis MED152) was used as a biological sensor of metabolites released from the picoeukaryote Micromonas commoda RCC299. Bacterial expression responses indicated that the three species together recognized 38 picoeukaryote metabolites. This was consistent with the Micromonas expression of genes for starch metabolism and synthesis of peptidoglycan-like intermediates. A comparison of the hypothesized Micromonas exometabolite pool with that of the diatom Thalassiosira pseudonana CCMP1335, analyzed previously with the same biological sensor method, indicated that both phytoplankton released organic acids, nucleosides, and amino acids, but differed in polysaccharide and organic nitrogen release. Future ocean conditions are expected to favor picoeukaryotic phytoplankton over larger-celled microphytoplankton. Results from this study suggest that such a shift could alter the substrate pool available to heterotrophic bacterioplankton.
Collapse
Affiliation(s)
| | - Maria Hamilton
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Christa B Smith
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Jeremy E Schreier
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Malin Olofsson
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
41
|
Havryliuk O, Hovorukha V, Bida I, Gladka G, Tymoshenko A, Kyrylov S, Mariychuk R, Tashyrev O. Anaerobic Degradation of the Invasive Weed Solidago canadensis L. ( goldenrod) and Copper Immobilization by a Community of Sulfate-Reducing and Methane-Producing Bacteria. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12010198. [PMID: 36616327 PMCID: PMC9824853 DOI: 10.3390/plants12010198] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/12/2022] [Accepted: 12/23/2022] [Indexed: 06/01/2023]
Abstract
The weed Solidago canadensis L. poses a global threat to the environment as it spreads uncontrollably on roadsides, in forests, fields, meadows, and farmland. Goldenrod emits toxic substances that suppress other plants on the site, displacing wild ones. Thus, goldenrod conquers huge areas very quickly. The use of herbicides and mechanical methods does not solve the problem of the spontaneous spread of goldenrod. On the other hand, many scientists consider goldenrod as a valuable source of biologically active substances: flavonoids, phenolic compounds, vitamins, etc. In this study, we consider Solidago plants as a promising, free (cheap), and renewable substrate for the production of methane gas. The goal of the study was to identify the main patterns of degradation of the Solidago canadensis L. plant by methane-producing and sulfate-reducing bacteria with methane gas production and simultaneous detoxification of toxic copper. The composition of the gas phase was monitored by gas chromatography. The pH and redox potential parameters were determined potentiometrically; metal concentrations were measured by photometry. The concentration of flavonoids, sugars and phenolic compounds in plant biomass was determined according to well-known protocols. As a result of the study, high efficiencies of methane degradation in the Solidago plant and copper detoxification were obtained. Methane yield has reached the value of 68.2 L kg-1 TS of Solidago canadensis L. biomass. The degradation coefficient (Kd) was also high at 21.4. The Cu(II) was effectively immobilized by methanogens and sulfate reducers during the goldenrod degradation at the initial concentrations of 500 mg L-1. Thus, a new method of beneficial application of invasive plants was presented. The result confirms the possibility of using methanogenic microorganisms to produce methane gas from invasive weeds and detoxification of toxic metals.
Collapse
Affiliation(s)
- Olesia Havryliuk
- Department of Extremophilic Microorganisms Biology, Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine
| | - Vira Hovorukha
- Department of Extremophilic Microorganisms Biology, Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine
| | - Iryna Bida
- Department of Extremophilic Microorganisms Biology, Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine
| | - Galyna Gladka
- Department of Extremophilic Microorganisms Biology, Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine
| | - Artem Tymoshenko
- Department of Biotechnology, Faculty of Environmental Safety, Engineering and Technologies, National Aviation University, 03058 Kyiv, Ukraine
| | - Semen Kyrylov
- Department of Biotechnology, Faculty of Environmental Safety, Engineering and Technologies, National Aviation University, 03058 Kyiv, Ukraine
| | - Ruslan Mariychuk
- Department of Ecology, Faculty of Humanities and Natural Sciences, Presov Universityin Presov, 08116 Presov, Slovakia
| | - Oleksandr Tashyrev
- Department of Extremophilic Microorganisms Biology, Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine
| |
Collapse
|
42
|
Han S, Li Y, Gao H. Generation and Physiology of Hydrogen Sulfide and Reactive Sulfur Species in Bacteria. Antioxidants (Basel) 2022; 11:antiox11122487. [PMID: 36552695 PMCID: PMC9774590 DOI: 10.3390/antiox11122487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Sulfur is not only one of the most abundant elements on the Earth, but it is also essential to all living organisms. As life likely began and evolved in a hydrogen sulfide (H2S)-rich environment, sulfur metabolism represents an early form of energy generation via various reactions in prokaryotes and has driven the sulfur biogeochemical cycle since. It has long been known that H2S is toxic to cells at high concentrations, but now this gaseous molecule, at the physiological level, is recognized as a signaling molecule and a regulator of critical biological processes. Recently, many metabolites of H2S, collectively called reactive sulfur species (RSS), have been gradually appreciated as having similar or divergent regulatory roles compared with H2S in living organisms, especially mammals. In prokaryotes, even in bacteria, investigations into generation and physiology of RSS remain preliminary and an understanding of the relevant biological processes is still in its infancy. Despite this, recent and exciting advances in the fields are many. Here, we discuss abiotic and biotic generation of H2S/RSS, sulfur-transforming enzymes and their functioning mechanisms, and their physiological roles as well as the sensing and regulation of H2S/RSS.
Collapse
|
43
|
Fu J, Li P, Lin Y, Du H, Liu H, Zhu W, Ren H. Fight for carbon neutrality with state-of-the-art negative carbon emission technologies. ECO-ENVIRONMENT & HEALTH 2022; 1:259-279. [PMID: 38077253 PMCID: PMC10702919 DOI: 10.1016/j.eehl.2022.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/06/2022] [Accepted: 11/17/2022] [Indexed: 06/22/2024]
Abstract
After the Industrial Revolution, the ever-increasing atmospheric CO2 concentration has resulted in significant problems for human beings. Nearly all countries in the world are actively taking measures to fight for carbon neutrality. In recent years, negative carbon emission technologies have attracted much attention due to their ability to reduce or recycle excess CO2 in the atmosphere. This review summarizes the state-of-the-art negative carbon emission technologies, from the artificial enhancement of natural carbon sink technology to the physical, chemical, or biological methods for carbon capture, as well as CO2 utilization and conversion. Finally, we expound on the challenges and outlook for improving negative carbon emission technology to accelerate the pace of achieving carbon neutrality.
Collapse
Affiliation(s)
- Jiaju Fu
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, The Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Pan Li
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, The Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuan Lin
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, The Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Huitong Du
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, The Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hongzhi Liu
- Chinese Society for Environmental Sciences, Beijing 100082, China
| | - Wenlei Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, The Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, The Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
44
|
Novel sulfur isotope analyses constrain sulfurized porewater fluxes as a minor component of marine dissolved organic matter. Proc Natl Acad Sci U S A 2022; 119:e2209152119. [PMID: 36201540 PMCID: PMC9565371 DOI: 10.1073/pnas.2209152119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Marine dissolved organic matter (DOM) is a major reservoir that links global carbon, nitrogen, and phosphorus. DOM is also important for marine sulfur biogeochemistry as the largest water column reservoir of organic sulfur. Dissolved organic sulfur (DOS) can originate from phytoplankton-derived biomolecules in the surface ocean or from abiotically "sulfurized" organic matter diffusing from sulfidic sediments. These sources differ in 34S/32S isotope ratios (δ34S values), with phytoplankton-produced DOS tracking marine sulfate (21‰) and sulfurized DOS mirroring sedimentary porewater sulfide (∼0 to -10‰). We measured the δ34S values of solid-phase extracted (SPE) DOM from marine water columns and porewater from sulfidic sediments. Marine DOMSPE δ34S values ranged from 14.9‰ to 19.9‰ and C:S ratios from 153 to 303, with lower δ34S values corresponding to higher C:S ratios. Marine DOMSPE samples showed consistent trends with depth: δ34S values decreased, C:S ratios increased, and δ13C values were constant. Porewater DOMSPE was 34S-depleted (∼-0.6‰) and sulfur-rich (C:S ∼37) compared with water column samples. We interpret these trends as reflecting at most 20% (and on average ∼8%) contribution of abiotic sulfurized sources to marine DOSSPE and conclude that sulfurized porewater is not a main component of oceanic DOS and DOM. We hypothesize that heterogeneity in δ34S values and C:S ratios reflects the combination of sulfurized porewater inputs and preferential microbial scavenging of sulfur relative to carbon without isotope fractionation. Our findings strengthen links between oceanic sulfur and carbon cycling, supporting a realization that organic sulfur, not just sulfate, is important to marine biogeochemistry.
Collapse
|
45
|
Ma L, Dai X, Ai G, Zheng X, Zhang Y, Pan C, Hu M, Jiang C, Wang L, Dong Z. Isolation and Identification of Efficient Malathion-Degrading Bacteria from Deep-Sea Hydrothermal Sediment. Microorganisms 2022; 10:microorganisms10091797. [PMID: 36144399 PMCID: PMC9502784 DOI: 10.3390/microorganisms10091797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
The genetic and metabolic diversity of deep-sea microorganisms play important roles in phosphorus and sulfur cycles in the ocean, distinguishing them from terrestrial counterparts. Malathion is a representative organophosphorus component in herbicides, pesticides, and insecticides and is analogues of neurotoxic agent. Malathion has been one of the best-selling generic organophosphate insecticides from 1980 to 2012. Most of the sprayed malathion has migrated by surface runoff to ocean sinks, and it is highly toxic to aquatic organisms. Hitherto, there is no report on bacterial cultures capable of degrading malathion isolated from deep-sea sediment. In this study, eight bacterial strains, isolated from sediments from deep-sea hydrothermal regions, were identified as malathion degradators. Two of the tested strains, Pseudidiomarina homiensis strain FG2 and Pseudidiomarina sp. strain CB1, can completely degrade an initial concentration of 500 mg/L malathion within 36 h. Since the two strains have abundant carboxylesterases (CEs) genes, malathion monocarboxylic acid (MMC α and MMC β) and dibasic carboxylic acid were detected as key intermediate metabolites of malathion degradation, and the pathway of malathion degradation between the two strains was identified as a passage from malathion monocarboxylic acid to malathion dicarboxylic acid.
Collapse
Affiliation(s)
- Ling Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Dai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guomin Ai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaofang Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanfeng Zhang
- Shenzhen Siyomicro BIO-Tech Co., Ltd., Shenzhen 518116, China
| | - Chaozhi Pan
- Shenzhen Siyomicro BIO-Tech Co., Ltd., Shenzhen 518116, China
| | - Meng Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Department of Microbiology, College of Life Science, Hunan Normal University, 36 Lushan Rd., Yuelu District, Changsha 410081, China
- Correspondence: (L.W.); (Z.D.)
| | - Zhiyang Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (L.W.); (Z.D.)
| |
Collapse
|
46
|
Jackson R, Gabric A. Climate Change Impacts on the Marine Cycling of Biogenic Sulfur: A Review. Microorganisms 2022; 10:1581. [PMID: 36013999 PMCID: PMC9412504 DOI: 10.3390/microorganisms10081581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
A key component of the marine sulfur cycle is the climate-active gas dimethylsulfide (DMS), which is synthesized by a range of organisms from phytoplankton to corals, and accounts for up to 80% of global biogenic sulfur emissions. The DMS cycle starts with the intracellular synthesis of the non-gaseous precursor dimethylsulfoniopropionate (DMSP), which is released to the water column by various food web processes such as zooplankton grazing. This dissolved DMSP pool is rapidly turned over by microbially mediated conversion using two known pathways: demethylation (releasing methanethiol) and cleavage (producing DMS). Some of the formed DMS is ventilated to the atmosphere, where it undergoes rapid oxidation and contributes to the formation of sulfate aerosols, with the potential to affect cloud microphysics, and thus the regional climate. The marine phase cycling of DMS is complex, however, as heterotrophs also contribute to the consumption of the newly formed dissolved DMS. Interestingly, due to microbial consumption and other water column sinks such as photolysis, the amount of DMS that enters the atmosphere is currently thought to be a relatively minor fraction of the total amount cycled through the marine food web-less than 10%. These microbial processes are mediated by water column temperature, but the response of marine microbial assemblages to ocean warming is poorly characterized, although bacterial degradation appears to increase with an increase in temperature. This review will focus on the potential impact of climate change on the key microbially mediated processes in the marine cycling of DMS. It is likely that the impact will vary across different biogeographical regions from polar to tropical. For example, in the rapidly warming polar oceans, microbial communities associated with the DMS cycle will likely change dramatically during the 21st century with the decline in sea ice. At lower latitudes, where corals form an important source of DMS (P), shifts in the microbiome composition have been observed during thermal stress with the potential to alter the DMS cycle.
Collapse
Affiliation(s)
- Rebecca Jackson
- Coasts and Ocean Research, Oceans and Atmosphere, CSIRO, Canberra, ACT 2601, Australia
| | - Albert Gabric
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
47
|
Schön ME, Martijn J, Vosseberg J, Köstlbacher S, Ettema TJG. The evolutionary origin of host association in the Rickettsiales. Nat Microbiol 2022; 7:1189-1199. [PMID: 35798888 PMCID: PMC9352585 DOI: 10.1038/s41564-022-01169-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/30/2022] [Indexed: 12/14/2022]
Abstract
The evolution of obligate host-association of bacterial symbionts and pathogens remains poorly understood. The Rickettsiales are an alphaproteobacterial order of obligate endosymbionts and parasites that infect a wide variety of eukaryotic hosts, including humans, livestock, insects and protists. Induced by their host-associated lifestyle, Rickettsiales genomes have undergone reductive evolution, leading to small, AT-rich genomes with limited metabolic capacities. Here we uncover eleven deep-branching alphaproteobacterial metagenome assembled genomes from aquatic environments, including data from the Tara Oceans initiative and other publicly available datasets, distributed over three previously undescribed Rickettsiales-related clades. Phylogenomic analyses reveal that two of these clades, Mitibacteraceae and Athabascaceae, branch sister to all previously sampled Rickettsiales. The third clade, Gamibacteraceae, branch sister to the recently identified ectosymbiotic ‘Candidatus Deianiraea vastatrix’. Comparative analyses indicate that the gene complement of Mitibacteraceae and Athabascaceae is reminiscent of that of free-living and biofilm-associated bacteria. Ancestral genome content reconstruction across the Rickettsiales species tree further suggests that the evolution of host association in Rickettsiales was a gradual process that may have involved the repurposing of a type IV secretion system. Phylogenomic analyses reveal novel environmental clades of Rickettsiales providing insights into their evolution from free-living to host-associated lifestyle.
Collapse
Affiliation(s)
- Max E Schön
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Joran Martijn
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Julian Vosseberg
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Stephan Köstlbacher
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden. .,Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
48
|
Wang L, Wang Y, Huang X, Ma R, Li J, Wang F, Jiao N, Zhang R. Potential metabolic and genetic interaction among viruses, methanogen and methanotrophic archaea, and their syntrophic partners. ISME COMMUNICATIONS 2022; 2:50. [PMID: 37938729 PMCID: PMC9723712 DOI: 10.1038/s43705-022-00135-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/30/2022] [Accepted: 06/15/2022] [Indexed: 04/27/2023]
Abstract
The metabolism of methane in anoxic ecosystems is mainly mediated by methanogens and methane-oxidizing archaea (MMA), key players in global carbon cycling. Viruses are vital in regulating their host fate and ecological function. However, our knowledge about the distribution and diversity of MMA viruses and their interactions with hosts is rather limited. Here, by searching metagenomes containing mcrA (the gene coding for the α-subunit of methyl-coenzyme M reductase) from a wide variety of environments, 140 viral operational taxonomic units (vOTUs) that potentially infect methanogens or methane-oxidizing archaea were retrieved. Four MMA vOTUs (three infecting the order Methanobacteriales and one infecting the order Methanococcales) were predicted to cross-domain infect sulfate-reducing bacteria. By facilitating assimilatory sulfur reduction, MMA viruses may increase the fitness of their hosts in sulfate-depleted anoxic ecosystems and benefit from synthesis of the sulfur-containing amino acid cysteine. Moreover, cell-cell aggregation promoted by MMA viruses may be beneficial for both the viruses and their hosts by improving infectivity and environmental stress resistance, respectively. Our results suggest a potential role of viruses in the ecological and environmental adaptation of methanogens and methane-oxidizing archaea.
Collapse
Affiliation(s)
- Long Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xingyu Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ruijie Ma
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Jiangtao Li
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| |
Collapse
|
49
|
Shaw DK, Sekar J, Ramalingam PV. Recent insights into oceanic dimethylsulfoniopropionate biosynthesis and catabolism. Environ Microbiol 2022; 24:2669-2700. [PMID: 35611751 DOI: 10.1111/1462-2920.16045] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022]
Abstract
Dimethylsulfoniopropionate (DMSP), a globally important organosulfur compound is produced in prodigious amounts (2.0 Pg sulfur) annually in the marine environment by phytoplankton, macroalgae, heterotrophic bacteria, some corals and certain higher plants. It is an important marine osmolyte and a major precursor molecule for the production of climate-active volatile gas dimethyl sulfide (DMS). DMSP synthesis take place via three pathways: a transamination 'pathway-' in some marine bacteria and algae, a Met-methylation 'pathway-' in angiosperms and bacteria and a decarboxylation 'pathway-' in the dinoflagellate, Crypthecodinium. The enzymes DSYB and TpMMT are involved in the DMSP biosynthesis in eukaryotes while marine heterotrophic bacteria engage key enzymes such as DsyB and MmtN. Several marine bacterial communities import DMSP and degrade it via cleavage or demethylation pathways or oxidation pathway, thereby generating DMS, methanethiol, and dimethylsulfoxonium propionate, respectively. DMSP is cleaved through diverse DMSP lyase enzymes in bacteria and via Alma1 enzyme in phytoplankton. The demethylation pathway involves four different enzymes, namely DmdA, DmdB, DmdC and DmdD/AcuH. However, enzymes involved in the oxidation pathway have not been yet identified. We reviewed the recent advances on the synthesis and catabolism of DMSP and enzymes that are involved in these processes.
Collapse
Affiliation(s)
- Deepak Kumar Shaw
- Microbiology Lab, Department of Biotechnology, M. S. Swaminathan Research Foundation, Taramani, Chennai, 600113, Tamil Nadu, India
| | - Jegan Sekar
- Microbiology Lab, Department of Biotechnology, M. S. Swaminathan Research Foundation, Taramani, Chennai, 600113, Tamil Nadu, India
| | - Prabavathy Vaiyapuri Ramalingam
- Microbiology Lab, Department of Biotechnology, M. S. Swaminathan Research Foundation, Taramani, Chennai, 600113, Tamil Nadu, India
| |
Collapse
|
50
|
Spartina alterniflora Invaded Coastal Wetlands by Raising Soil Sulfur Contents: A Meta-Analysis. WATER 2022. [DOI: 10.3390/w14101633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nowadays, plant invasion has become a global ecological threat to local biodiversity and ecosystem stability. Spartina alterniflora encroaches on the ecological niches of local species and changes the soil’s nutrient cycle. However, few comprehensive assessments focus on the effects of S. alterniflora invasion. Here, we investigated how soil sulfur changed with spatiotemporal variation and life forms of native species after S. alterniflora invasion and speculated the possible mechanism of the sulfur increase based on the references. The invasion of S. alterniflora increased soil total sulfur by 57.29% and phytotoxic sulfide by 193.29%. In general, the invasion of S. alterniflora enhanced the total plant biomass and soil nutrients, e.g., soil organic carbon, total nitrogen, and soil microbial biomass carbon, further increasing soil sulfur content. The sulfur accumulation caused by S. alterniflora might result in the poisoning of native species. Thus, we hypothesized that the success of S. alterniflora invasion was closely connected with soil sulfur, especially toxic sulfide. Our study suggests that researchers should give more attention to the correlation between S. alterniflora invasion and the soil sulfur increase. More research is needed to investigate the mechanisms of the successful invasion by accumulating phytotoxic sulfide.
Collapse
|