1
|
Wedenoja S, Pihlajamäki M, Gissler M, Wedenoja J, Öhman H, Heinonen S, Kere J, Kääriäinen H, Tanner L. Infertility following trisomic pregnancies: A nationwide cohort study. Int J Gynaecol Obstet 2025; 168:326-332. [PMID: 39056516 DOI: 10.1002/ijgo.15828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
OBJECTIVE To study whether gynecologic or reproductive disorders show association with trisomic conceptions. METHODS This nationwide cohort study utilized the Registry of Congenital Malformations to identify women who had a trisomic pregnancy (n = 5784), either with trisomy 13 (T13; n = 351), trisomy 18 (T18; n = 1065) or trisomy 21 (T21; n = 4369) from 1987 to 2018. We used the Finnish Maternity cohort to match the cases to population controls (n = 34 422) on the age, residence, and timing of pregnancy. These data were cross-linked to the ICD-10 diagnoses of the national Care Registry for Health Care data on specialized health care in Finland during 1996 to 2019. Both inflammatory (ICD-10 diagnoses: N70-N77) and noninflammatory disorders of the genital tract (N80-N98) were studied. Crude odds ratios (ORs) with 95% CIs were calculated for associations between diagnoses and trisomic conceptions. RESULTS The diagnosis of female infertility (N97) at any time was associated with trisomic conceptions (OR: 1.19, 95% CI: 1.08-1.32). In the subgroup analysis, this association was found for T18 (OR: 1.29, 95% CI: 1.03-1.61) and T21 (OR: 1.17, 95% CI: 1.04-1.32), but not for T13 (OR: 1.15, 95% CI: 0.75-1.72). When restricting the timing of the diagnosis of female infertility, an elevated OR was found only after the index pregnancy (OR: 1.81, 95% CI: 1.56-2.09). These increased odds for infertility after trisomic conceptions were observed both in women <35 years (T18 OR: 1.91, 95% CI: 1.21-3.00; T21 OR: 1.68, 95% CI: 1.31-2.14) and in women ≥35 years (T18 OR: 2.17, 95% CI: 1.40-3.33; T21 OR: 1.87; 95% CI: 1.47-2.39), but not after T13 conceptions. CONCLUSION Our observational data suggest a link between trisomic conceptions and subsequent diagnoses of infertility but do not demonstrate causality. These data implicate that partially similar mechanisms might predispose to trisomy and infertility, regardless of maternal age.
Collapse
Affiliation(s)
- Satu Wedenoja
- Information Brokers, Finnish Institute for Health and Welfare, Helsinki, Finland
- Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Mika Pihlajamäki
- Information Brokers, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Mika Gissler
- Information Brokers, Finnish Institute for Health and Welfare, Helsinki, Finland
- Research Center for Child Psychiatry, University of Turku, Turku, Finland
- Region Stockholm, Academic Primary Health Care Center, Stockholm, Sweden
- Karolinska Institutet, Department of Molecular Medicine and Surgery, Stockholm, Sweden
| | - Juho Wedenoja
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Hanna Öhman
- Biobank Borealis of Northern Finland, Oulu University Hospital, Oulu, Finland
- Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Seppo Heinonen
- Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Juha Kere
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Helena Kääriäinen
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Laura Tanner
- Department of Clinical Genetics, Helsinki University Hospital, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Zhou C, Zhang X, Xu G, Ran Y, Wang H, Xie X, Li A, Li F, Li X, Ding J, Zhang M, Sun QY, Ou XH. A Microtubule-Associated Protein Functions in Preventing Oocytes from Evading the Spindle Assembly Checkpoint. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2413097. [PMID: 39721007 DOI: 10.1002/advs.202413097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/02/2024] [Indexed: 12/28/2024]
Abstract
Aneuploidy eggs are a common cause of human infertility, spontaneous abortion, or trisomy syndromes. The spindle assembly checkpoint (SAC) plays a crucial role in preventing aneuploidy in oocytes, yet it is unclear if additional mechanisms exist to ensure oocyte adherence to this checkpoint. It is now revealed that the microtubule-associated protein NUSAP can prevent oocytes from evading the SAC and regulate the speed of the cell cycle. Mechanistically, the study identifies NUSAP as a novel stabilizer of the E3 ubiquitin ligase APC/CCDH1, protecting CDH1 from SCFBTRC-mediated degradation. Depletion of NUSAP reduces CDH1 protein level, leading to abnormal spindle assembly and chromosome alignment, and disrupting the balance of cell cycle proteins. This misregulated balance causes oocytes to evade the SAC. Consequently, these abnormal oocytes not only fail to arrest at metaphase but also accelerate the cell process, ultimately resulting in the production of aneuploid eggs. Together, the findings not only clarify the existence of mechanisms that ensure oocytes compliance with the spindle assembly checkpoint but also expand the new functions of NUSAP beyond its role as a microtubule- associated protein.
Collapse
Affiliation(s)
- Changyin Zhou
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xue Zhang
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China
| | - Genlu Xu
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yuting Ran
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, 230036, China
| | - Hui Wang
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, 230036, China
| | - Xuefeng Xie
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China
| | - Ang Li
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China
| | - Fei Li
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China
| | - Xiaozhen Li
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China
| | - Jinlong Ding
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Mianqun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, 230036, China
| | - Qing-Yuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China
| | - Xiang-Hong Ou
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China
| |
Collapse
|
3
|
Bellou E, Zielinska AP, Mönnich EU, Schweizer N, Politi AZ, Wellecke A, Sibold C, Tandler-Schneider A, Schuh M. Chromosome architecture and low cohesion bias acrocentric chromosomes towards aneuploidy during mammalian meiosis. Nat Commun 2024; 15:10713. [PMID: 39715766 DOI: 10.1038/s41467-024-54659-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/12/2024] [Indexed: 12/25/2024] Open
Abstract
Aneuploidy in eggs is a leading cause of miscarriages or viable developmental syndromes. Aneuploidy rates differ between individual chromosomes. For instance, chromosome 21 frequently missegregates, resulting in Down Syndrome. What causes chromosome-specific aneuploidy in meiosis is unclear. Chromosome 21 belongs to the class of acrocentric chromosomes, whose centromeres are located close to the chromosome end, resulting in one long and one short chromosome arm. We demonstrate that acrocentric chromosomes are generally more often aneuploid than metacentric chromosomes in porcine eggs. Kinetochores of acrocentric chromosomes are often partially covered by the short chromosome arm during meiosis I in human and porcine oocytes and orient less efficiently toward the spindle poles. These partially covered kinetochores are more likely to be incorrectly attached to the spindle. Additionally, sister chromatids of acrocentric chromosomes are held together by lower levels of cohesin, making them more vulnerable to age-dependent cohesin loss. Chromosome architecture and low cohesion therefore bias acrocentric chromosomes toward aneuploidy during mammalian meiosis.
Collapse
Affiliation(s)
- Eirini Bellou
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Agata P Zielinska
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Eike Urs Mönnich
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Nina Schweizer
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Antonio Z Politi
- Facility for Light Microscopy, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Antonina Wellecke
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | | | | | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
4
|
Saini A, McPherson NO, Nottle MB. Addition of granulocyte macrophage colony stimulating factor (GM-CSF) during in vitro oocyte maturation improves embryo development in a mouse model of advanced maternal age. J Reprod Dev 2024; 70:411-417. [PMID: 39522961 DOI: 10.1262/jrd.2024-066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Oocyte developmental competence declines in women aged 35 and older resulting in many women resorting to IVF. The present study determined whether adding Granulocyte-macrophage colony-stimulating factor (GM-CSF) during in vitro oocyte maturation (IVM) could improve oocyte developmental competence in a mouse model of advanced maternal age. Oocytes from 12-14 month C57BL6 J × CBA mice were treated with 10 ng/ml of GM-CSF during IVM, and embryo development, mitochondrial activity, spindle formation and chromosomal alignment were examined. The addition of GM-CSF tended to increase fertilisation rates (76.19 vs. 82.03%; P = 0.07) but did not affect cumulus expansion compared with control. The addition of GM-CSF also increased blastocysts rates (51.10 vs. 61.52%; P < 0.01) and the number of good quality blastocysts (33.31 vs. 44.13%; P < 0.05) present at 96 h of culture as well as inner cell mass (12.64 vs. 15.62 ; P < 0.01) and total cell number (42.98 vs. 48.78 ; P < 0.05). GM-CSF treatment also increased mitochondrial membrane potential two to three fold in the outer (2.86 vs. 0.97; P < 0.001), intermediate (3.25 vs. 0.89; P < 0.001) and peri nuclear areas (3.62 vs. 1.08; P < 0.001). GM-CSF treatment did not influence spindle formation or chromosomal alignment. Together our results indicate that the addition of GM-CSF during IVM may improve oocyte quality in women of advanced maternal age.
Collapse
Affiliation(s)
- Anmol Saini
- Discipline of Reproduction and Development, School of Biomedicine, The University of Adelaide, South Australia 5005, Australia
- Robinson Research Institute, The University of Adelaide, South Australia 5005, Australia
| | - Nicole O McPherson
- Discipline of Reproduction and Development, School of Biomedicine, The University of Adelaide, South Australia 5005, Australia
- Robinson Research Institute, The University of Adelaide, South Australia 5005, Australia
- Freemasons Centre for Male Health and Wellbeing, The University of Adelaide, South Australia 5005, Australia
- Genea, Sydney, New South Wales 2000, Australia
| | - Mark B Nottle
- Discipline of Reproduction and Development, School of Biomedicine, The University of Adelaide, South Australia 5005, Australia
- Robinson Research Institute, The University of Adelaide, South Australia 5005, Australia
| |
Collapse
|
5
|
Kobayashi H, Imanaka S. Mitochondrial DNA Damage and Its Repair Mechanisms in Aging Oocytes. Int J Mol Sci 2024; 25:13144. [PMID: 39684855 DOI: 10.3390/ijms252313144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
The efficacy of assisted reproductive technologies (ARTs) in older women remains constrained, largely due to an incomplete understanding of the underlying pathophysiology. This review aims to consolidate the current knowledge on age-associated mitochondrial alterations and their implications for ovarian aging, with an emphasis on the causes of mitochondrial DNA (mtDNA) mutations, their repair mechanisms, and future therapeutic directions. Relevant articles published up to 30 September 2024 were identified through a systematic search of electronic databases. The free radical theory proposes that reactive oxygen species (ROS) inflict damage on mtDNA and impair mitochondrial function essential for ATP generation in oocytes. Oocytes face prolonged pressure to repair mtDNA mutations, persisting for up to five decades. MtDNA exhibits limited capacity for double-strand break repair, heavily depending on poly ADP-ribose polymerase 1 (PARP1)-mediated repair of single-strand breaks. This process depletes nicotinamide adenine dinucleotide (NAD⁺) and ATP, creating a detrimental cycle where continued mtDNA repair further compromises oocyte functionality. Interventions that interrupt this destructive cycle may offer preventive benefits. In conclusion, the cumulative burden of mtDNA mutations and repair demands can lead to ATP depletion and elevate the risk of aneuploidy, ultimately contributing to ART failure in older women.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-cho, Kashihara 634-0813, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan
| | - Shogo Imanaka
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-cho, Kashihara 634-0813, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan
| |
Collapse
|
6
|
Ma C, Hu K, Zhang X, Yu Y, Xu Z, Ma T, Ruan H, Zhang Y, Wang J, Yue X, Liang C, Xiang H, Guo R, Cao Y, Ding Z. Gestational exposure to arsenic reduces female offspring fertility by impairing the repair of DNA double-strand breaks and synapsis formation in oocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 289:117478. [PMID: 39642648 DOI: 10.1016/j.ecoenv.2024.117478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/29/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Arsenic is a pollutant that can cross the placenta; however, research on the effects of arsenic exposure during pregnancy on the fertility of female offspring is limited. To address this gap, we developed a mouse model to investigate the relationship between arsenic exposure during pregnancy and fertility in female offspring. Our fertility assessment revealed that gestational exposure to 1 mg/kg arsenic or higher (10 mg/kg) resulted in reduction in litter size, ovarian volume, and multistage-follicle number in female offspring. By assessing the in vitro developmental capacity of oocytes and zygotes, we confirmed that the reduced fertility was due not to impaired oocyte quality but rather to a reduction in oocyte quantity. Arsenic exposure impedes synapsis formation in MPI and compromises homologous recombination-mediated repair of double-strand breaks, resulting in fewer crossovers. This disruption activates the pachytene-checkpoint, hindering the progression of the MPI and resulting in the elimination of defective oocytes through p-Chk2 activation. Our study reveals for the first time the detrimental effects of arsenic exposure during pregnancy on the fertility of female offspring, underscoring the urgent need to prevent such exposure to safeguard reproductive health.
Collapse
Affiliation(s)
- Cong Ma
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China
| | - Kaiqin Hu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China
| | - Xueke Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China
| | - Yaru Yu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China
| | - Zuying Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China
| | - Tian Ma
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China
| | - Hongzhen Ruan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China
| | - Yingying Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China
| | - Jiajia Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China
| | - Xinyu Yue
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China
| | - Chunmei Liang
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, China
| | - Huifen Xiang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China
| | - Rui Guo
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No. 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No. 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei 230032, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei 230032, China.
| | - Zhiming Ding
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No. 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei 230032, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei 230032, China.
| |
Collapse
|
7
|
Wang S, Ren J, Jing Y, Qu J, Liu GH. Perspectives on biomarkers of reproductive aging for fertility and beyond. NATURE AGING 2024; 4:1697-1710. [PMID: 39672897 DOI: 10.1038/s43587-024-00770-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/29/2024] [Indexed: 12/15/2024]
Abstract
Reproductive aging, spanning an age-related functional decline in the female and male reproductive systems, compromises fertility and leads to a range of health complications. In this Perspective, we first introduce a comprehensive framework for biomarkers applicable in clinical settings and discuss the existing repertoire of biomarkers used in practice. These encompass functional, imaging-based and biofluid-based biomarkers, all of which reflect the physiological characteristics of reproductive aging and help to determine the reproductive biological age. Next, we delve into the molecular alterations associated with aging in the reproductive system, highlighting the gap between these changes and their potential as biomarkers. Finally, to enhance the precision and practicality of assessing reproductive aging, we suggest adopting cutting-edge technologies for identifying new biomarkers and conducting thorough validations in population studies before clinical applications. These advancements will foster improved comprehension, prognosis and treatment of subfertility, thereby increasing chances of preserving reproductive health and resilience in populations of advanced age.
Collapse
Affiliation(s)
- Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Aging Translational Medicine Center, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
| | - Jie Ren
- Aging Biomarker Consortium, Beijing, China
- Key Laboratory of RNA Science and Engineering, China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Jing
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
- Aging Translational Medicine Center, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jing Qu
- Aging Biomarker Consortium, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, CAS, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| | - Guang-Hui Liu
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, CAS, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| |
Collapse
|
8
|
Winstanley YE, Stables JS, Gonzalez MB, Umehara T, Norman RJ, Robker RL. Emerging therapeutic strategies to mitigate female and male reproductive aging. NATURE AGING 2024; 4:1682-1696. [PMID: 39672895 DOI: 10.1038/s43587-024-00771-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/29/2024] [Indexed: 12/15/2024]
Abstract
People today are choosing to have children later in life, often in their thirties and forties, when their fertility is in decline. We sought to identify and compile effective methods for improving either male or female fertility in this context of advanced reproductive age. We found few clinical studies with strong evidence for therapeutics that mitigate reproductive aging or extend fertility; however, this Perspective summarizes the range of emerging experimental strategies under development. Preclinical studies, in mouse models of aging, have identified pharmaceutical candidates that improve egg and sperm quality. Further, a diverse array of medically assisted reproduction methodologies, including those that stimulate rare ovarian follicles and rejuvenate egg quality using mitochondria, may have future utility for older patients. Finally, we highlight the many knowledge gaps and possible future directions in the field of therapeutics to extend the age of healthy human reproduction.
Collapse
Affiliation(s)
- Yasmyn E Winstanley
- Robinson Research Institute, School of Biomedicine; The University of Adelaide, Adelaide, South Australia, Australia
| | - Jennifer S Stables
- Robinson Research Institute, School of Biomedicine; The University of Adelaide, Adelaide, South Australia, Australia
| | - Macarena B Gonzalez
- Robinson Research Institute, School of Biomedicine; The University of Adelaide, Adelaide, South Australia, Australia
| | - Takashi Umehara
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Robert J Norman
- Robinson Research Institute, Adelaide Medical School; The University of Adelaide, Adelaide, South Australia, Australia
| | - Rebecca L Robker
- Robinson Research Institute, School of Biomedicine; The University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
9
|
Xiao W, Akao S, Otsuki J. Correlation between female pronuclear/cytoplasmic ratio and number of chromosomes in mouse zygotic stage: implications for aneuploidy assessment in ART. J Assist Reprod Genet 2024:10.1007/s10815-024-03312-5. [PMID: 39585518 DOI: 10.1007/s10815-024-03312-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/03/2024] [Indexed: 11/26/2024] Open
Abstract
PURPOSE The objective of this study was to investigate the correlation between the pronuclear/cytoplasmic (PN/C) ratio and the number of chromosomes in mouse zygotes to understand the implications of pronuclear size regulation in early embryonic development. METHODS A combination of enucleation and aggregated chromosomes/chromatin (AC) transfer was utilized to create oocytes with varying numbers of chromosomes. Time-lapse imaging and immunofluorescence staining were employed to analyze pronuclear dynamics and chromosomal configurations. RESULTS Higher chromosome numbers correspond to a larger PN/C ratio. Oocytes with a higher number of chromosomes exhibited larger pronuclei. CONCLUSION The study underscores the complexity of pronuclear size regulation and its correlation with the number of chromosomes. The findings suggest potential applications in ART, where assessing the PN/C ratio could serve as a biomarker for zygote quality and aneuploidy.
Collapse
Affiliation(s)
- Wei Xiao
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 1-1-1 Tsushimanaka, Kita, Okayama, 700-8530, Japan
| | - Sakura Akao
- Faculty of Agriculture, Okayama University, 1-1-1 Tsushimanaka, Kita, Okayama, 700-8530, Japan
| | - Junko Otsuki
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 1-1-1 Tsushimanaka, Kita, Okayama, 700-8530, Japan.
- Assisted Reproductive Technology Center, Okayama University, 1-1-1 Tsushimanaka, Kita, Okayama, 700-8530, Japan.
| |
Collapse
|
10
|
Liu C, Dernburg AF. Chemically induced proximity reveals a Piezo-dependent meiotic checkpoint at the oocyte nuclear envelope. Science 2024; 386:eadm7969. [PMID: 39571011 DOI: 10.1126/science.adm7969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 09/20/2024] [Indexed: 11/24/2024]
Abstract
Sexual reproduction relies on robust quality control during meiosis. Assembly of the synaptonemal complex between homologous chromosomes (synapsis) regulates meiotic recombination and is crucial for accurate chromosome segregation in most eukaryotes. Synapsis defects can trigger cell cycle delays and, in some cases, apoptosis. We developed and deployed a chemically induced proximity system to identify key elements of this quality control pathway in Caenorhabditis elegans. Persistence of the polo-like kinase PLK-2 at pairing centers-specialized chromosome regions that interact with the nuclear envelope-induced apoptosis of oocytes in response to phosphorylation and destabilization of the nuclear lamina. Unexpectedly, the Piezo1/PEZO-1 channel localized to the nuclear envelope and was required to transduce this signal to promote apoptosis in maturing oocytes.
Collapse
Affiliation(s)
- Chenshu Liu
- California Institute for Quantitative Biosciences (QB3) and Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Abby F Dernburg
- California Institute for Quantitative Biosciences (QB3) and Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
11
|
Mao J, Yang G, Su Q, Zeng Z, Lin J, Kong L, Zhang L, Liu L, Yang Y, Wu H. Maternal and Neonatal Perinatal Outcomes of Singleton Pregnancies in Advanced-Age Women Undergoing IVF/ICSI-ET Compared with Spontaneous Conception: A Retrospective Propensity Score Matched Cohort Study. Int J Gen Med 2024; 17:5249-5259. [PMID: 39554873 PMCID: PMC11569707 DOI: 10.2147/ijgm.s490959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/18/2024] [Indexed: 11/19/2024] Open
Abstract
Objective To assess the safety and efficiency of in vitro fertilization/ intracytoplasmic sperm injection and embryo transfer (IVF/ICSI-ET) on maternal and neonatal perinatal outcomes in women (≥40y) with singleton pregnancies. Methods This multi-center retrospective cohort study, carried out from January 2018 to June 2023, enrolled 1762 women (≥40y) with singleton pregnancies of at least 28 weeks. Participants were divided into two groups: the IVF/ICSI-ET group (204 cases) and the spontaneous conception (SC) group (1558 cases). After 1:2 propensity score matching (PSM), the two groups were compared for maternal and neonatal outcomes. The SC group (1558 cases) was further divided by age into the <43 years group (1195 cases) and the ≥43 years group (363 cases) for subgroup analysis. Results Adverse maternal and neonatal outcomes were comparable between the IVF/ICSI-ET group and the SC group, with a higher cesarean section rate (78% vs 67.5%, P =0.013), an increased maternal ICU admissions rate (5.5% vs 1.3%, P =0.008), and a lower birth defects rate (1.1% vs 4.6%, P =0.037) in the IVF/ICSI-ET group. Subgroup analysis showed that women aged ≥43 years had higher incidences of gestational diabetes, gestational hypertension, cesarean section, and neonatal asphyxia compared to women aged <43 years. Conclusion This study indicated IVF/ICSI-ET is relatively safe for women ≥40 years with singleton pregnancies. However, advanced maternal age deteriorated maternal and neonatal outcomes, and IVF/ICSI-ET further heightened the risk of cesarean section and maternal ICU admissions. Therefore, enhanced care and vigilance are crucial for women over 40 undergoing IVF/ICSI-ET.
Collapse
Affiliation(s)
- Jingxia Mao
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
- Department of Obstetrics, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Guibo Yang
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
- Department of Obstetrics, The Maternity and Child Health Care of Guangxi Zhuang Autonomous Region, Nanning, People’s Republic of China
| | - Qin Su
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
- Department of Obstetrics, The First People’s Hospital of Yulin, Yulin, People’s Republic of China
| | - Zhonghong Zeng
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Jueying Lin
- Department of Obstetrics, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Lin Kong
- Department of Obstetrics, The Maternity and Child Health Care of Guangxi Zhuang Autonomous Region, Nanning, People’s Republic of China
| | - Lidun Zhang
- Department of Obstetrics, The First People’s Hospital of Yulin, Yulin, People’s Republic of China
| | - Lidan Liu
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Yihua Yang
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Hongbo Wu
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| |
Collapse
|
12
|
Tsui KH, Li CJ, Lin LT. Melatonin supplementation attenuates cuproptosis and ferroptosis in aging cumulus and granulosa cells: potential for improving IVF outcomes in advanced maternal age. Reprod Biol Endocrinol 2024; 22:138. [PMID: 39516964 PMCID: PMC11545199 DOI: 10.1186/s12958-024-01311-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Advanced maternal age is associated with decreased oocyte quantity and quality and in vitro fertilization (IVF) success rates. This study aimed to investigate whether melatonin supplementation can improve IVF outcomes in women of advanced maternal age by modulating cuproptosis and ferroptosis. METHODS This prospective cohort study included 161 women aged 35-45 years undergoing IVF-frozen embryo transfer cycles. Participants were assigned to either melatonin (n = 86, 2 mg daily for ≥ 8 weeks) or control (n = 75) groups. Cumulus cells were analyzed for cuproptosis and ferroptosis-related gene expression. Additional experiments were conducted on the HGL5 human granulosa cell line to assess mitochondrial function and metabolic reprogramming. RESULTS Melatonin supplementation significantly improved IVF outcomes in women aged ≥ 38 years, increasing clinical pregnancy rates (46.0% vs. 20.3%, P < 0.01), ongoing pregnancy rates (36.5% vs. 15.3%, P < 0.01), and live birth rates (33.3% vs. 15.3%, P < 0.05). In cumulus cells from patients, gene expression analysis revealed that melatonin modulated cuproptosis and ferroptosis-related genes, including ATP7B and GPX4, with more pronounced effects in the ≥ 38 years group. This suggests melatonin enhances cellular resilience against oxidative stress and metal-induced toxicity in the ovarian microenvironment. In vitro studies using HGL5 cells showed melatonin reduced oxidative stress markers, improved mitochondrial function, restored expression of glycolysis and TCA cycle-related genes and modulated cuproptosis and ferroptosis-related gene expression. These findings provide mechanistic insight into melatonin's protective effects against regulated cell death in ovarian cells, potentially explaining the improved IVF outcomes observed. CONCLUSIONS Melatonin supplementation significantly improved IVF outcomes in women of advanced maternal age, particularly those ≥ 38 years old, likely by modulating cuproptosis and ferroptosis and enhancing mitochondrial function in cumulus and granulosa cells. These results suggest that melatonin could be a promising adjuvant therapy for improving IVF success rates in older women.
Collapse
Affiliation(s)
- Kuan-Hao Tsui
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung County, 90741, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
- Department of Obstetrics and Gynecology, National Yang-Ming University School of Medicine, Taipei, 112, Taiwan
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, 112, Taiwan
- Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan
| | - Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung County, 90741, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Li-Te Lin
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan.
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung County, 90741, Taiwan.
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, 804, Taiwan.
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, 804, Taiwan.
- Department of Obstetrics and Gynecology, National Yang-Ming University School of Medicine, Taipei, 112, Taiwan.
| |
Collapse
|
13
|
Ding Z, Sun Y, Wu C, Ma C, Ruan H, Zhang Y, Xu Y, Zhou P, Cao Y, Xu Z, Xiang H. Methylmercury chloride inhibits meiotic maturation of mouse oocytes in vitro by disrupting the cytoskeleton. Food Chem Toxicol 2024; 193:115024. [PMID: 39341490 DOI: 10.1016/j.fct.2024.115024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/14/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Methylmercury chloride (MMC) is a persistent heavy metal contaminant that can bioaccumulate in humans via the food chain, exerting detrimental effects on health. Nevertheless, the specific influence of MMC on oocyte meiotic maturation has yet to be elucidated. This research demonstrated that MMC exposure during the in vitro cultivation of mouse oocytes did not influence germinal vesicle breakdown but markedly decreased oocyte maturation rates. Subsequent analysis indicated that MMC exposure resulted in aberrant spindle morphology and disorganized chromosome alignment, alongside continuous activation of the spindle assembly checkpoint (SAC). However, MMC exposure didn't alter the localization pattern of microtubule-organizing center-associated proteins. MMC exposure considerably diminished the acetylation level of α-tubulin, signifying reduced microtubule stability. Additionally, MMC exposure disrupted the dynamic alterations of F-actin. MMC exposure didn't affect mitochondrial localization, mitochondrial membrane potential, adenosine triphosphate content or the concentrations of reactive oxygen species. Nonetheless, MMC exposure triggered DNA damage and modified histone modification levels. Consequently, the defects in oocyte maturation induced by MMC exposure can be attributed to impaired cytoskeleton dynamics and DNA damage. This study offers the first comprehensive elucidation of the negative impacts of MMC on oocyte maturation, highlighting the potential reproductive health risks associated with MMC exposure.
Collapse
Affiliation(s)
- Zhiming Ding
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China
| | - Yan Sun
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China
| | - Caiyun Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China
| | - Cong Ma
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China
| | - Hongzhen Ruan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China
| | - Yingying Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China
| | - Yan Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No.81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei, 230032, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Anhui Provincial Institute of Translational Medicine, No.81 Meishan Road, Hefei, 230032, China.
| | - Zuying Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No.81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei, 230032, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Anhui Provincial Institute of Translational Medicine, No.81 Meishan Road, Hefei, 230032, China.
| | - Huifen Xiang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No.81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei, 230032, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Anhui Provincial Institute of Translational Medicine, No.81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
14
|
Quaas AM, Penzias AS, Adashi EY. Embryonic aneuploidy - the true "last barrier in assisted reproductive technology"? F&S SCIENCE 2024; 5:303-305. [PMID: 39127422 DOI: 10.1016/j.xfss.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/18/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Human embryonic aneuploidy may represent one of the final frontiers in assisted reproductive technology, primarily secondary to oocyte aneuploidy. Mammalian oocytes possess unique characteristics predisposing them to much higher rates of aneuploidy than sperm or most somatic cells. Some of these characteristics are age-independent, whereas others result from reproductive aging and environmental toxicity. A detailed understanding of these properties may lead to novel diagnostic and therapeutic tools designed to detect and prevent oocyte and embryonic aneuploidy to overcome this ultimate barrier to success in assisted reproductive technology.
Collapse
Affiliation(s)
| | - Alan S Penzias
- Boston IVF, Waltham, Massachusetts; Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Department of Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, Massachusetts
| | - Eli Y Adashi
- Department of Medical Science, Warren Alpert Medical School, Brown University, Providence, Rhode Island
| |
Collapse
|
15
|
Wu C, Ding Z, Yang C, Ma C, Chen H, Zhou P, Xu Z, Xiang H. Bisphenol AP inhibits mouse oocyte maturation in vitro by disrupting cytoskeleton architecture and cell cycle processes. Toxicol Appl Pharmacol 2024; 492:117118. [PMID: 39362309 DOI: 10.1016/j.taap.2024.117118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/20/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
Bisphenol A (BPA) is among the extensively researched environmental endocrine-disrupting chemicals (EDCs), and its utilization is restricted owing to the detrimental impacts it has on human health. Bisphenol AP (BPAP) is one of the alternatives to BPA, but the influence of BPAP on human health has not been elucidated. The objective of the current research was to determine the influence of BPAP exposure on the in vitro maturation of mouse oocytes and to explore its potential reproductive toxicity. BPAP exposure was found to inhibit polar body extrusion during mouse oocyte maturation, resulting in an arrest at the metaphase I stage of meiosis. Exposure to BPAP led to sustained activation of BubR1, preventing the degradation of both Securin and Cyclin B1. Mechanistically, BPAP exposure disrupts spindle assembly and chromosome alignment. Levels of acetylated α-tubulin were significantly elevated in BPAP-treated oocytes, reflecting decreased spindle stability. Exposure to BPAP also induced DNA damage and impaired DNA damage repair. In addition, BPAP exposure altered histone modification levels. In summary, this investigation suggests that exposure to BPAP can influence cytoskeletal assembly, interfere with cell cycle progression, induce DNA damage, alter histone modifications, and ultimately impede oocyte meiotic maturation. This investigation enhances understanding of the impact of bisphenol analogs on female gametes, underscoring that BPAP cannot be considered a reliable replacement for BPA.
Collapse
Affiliation(s)
- Caiyun Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China
| | - Zhiming Ding
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China
| | - Chen Yang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China
| | - Cong Ma
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China
| | - Huilei Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No.81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei 230032, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, No.81 Meishan Road, Hefei 230032, China.
| | - Zuying Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No.81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei 230032, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, No.81 Meishan Road, Hefei 230032, China.
| | - Huifen Xiang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No.81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei 230032, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, No.81 Meishan Road, Hefei 230032, China.
| |
Collapse
|
16
|
Payero L, Alani E. Crossover recombination between homologous chromosomes in meiosis: recent progress and remaining mysteries. Trends Genet 2024:S0168-9525(24)00234-8. [PMID: 39490337 DOI: 10.1016/j.tig.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 11/05/2024]
Abstract
Crossing over between homologous chromosomes in meiosis is essential in most eukaryotes to produce gametes with the correct ploidy. Meiotic crossovers are typically evenly spaced, with each homolog pair receiving at least one crossover. The association of crossovers with distal sister chromatid cohesion is critical for the proper segregation of homologs in the first meiotic division. Studies in baker's yeast (Saccharomyces cerevisiae) have shown that meiotic crossovers result primarily from the biased resolution of double Holliday junction (dHJ) recombination intermediates through the actions of factors that belong to the DNA mismatch repair family. These findings and studies involving fine-scale mapping of meiotic crossover events have led to a new generation of mechanistic models for crossing over that are currently being tested.
Collapse
Affiliation(s)
- Lisette Payero
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
17
|
MacLachlan N, Routh A, Hunt G, Barbon A, Haworth M, Miller J, Pocknell A, Price E. Diagnosis of Menopause in a Captive Sumatran Orangutan (Pongo abelii). Zoo Biol 2024. [PMID: 39436673 DOI: 10.1002/zoo.21874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/11/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024]
Abstract
Humans were long thought to be the only mammal to experience menopause, the permanent cessation of reproduction followed by a long post-reproductive lifespan. More recently, evidence has been found for the existence of menopause in other long-lived mammals, including chimpanzees and gorillas. However, orangutans, which have the longest interbirth interval of any primate, have rarely been studied in this period of their lives. In this paper, we describe clinical, ultrasound, endocrine, and histological evidence consistent with a natural menopause in a captive, previously fertile, Sumatran orangutan (Pongo abelii), aged approximately 50. Consecutive serum samples showed low levels of estradiol and high levels of follicle-stimulating hormone. Transvaginal ultrasound revealed an atrophic uterus with an antero-posterior diameter of 2.36 cm, an endometrial thickness of 2 mm, and inactive ovaries. Following this female's death from a subdural hematoma, histological examination of the ovaries showed a dense stroma with corpora albicantia, in comparison to the numerous primordial follicles seen in the ovaries of a stillborn infant female orangutan. These multiple lines of evidence suggest that Sumatran orangutans can now be added to the list of mammals which undergo a true menopause, which may ensure that females' final offspring can be reared to independence.
Collapse
Affiliation(s)
| | - Andrew Routh
- Durrell Wildlife Conservation Trust, Trinity, Jersey
| | - Gordon Hunt
- Durrell Wildlife Conservation Trust, Trinity, Jersey
| | | | | | - John Miller
- Jersey General Hospital, Saint Helier, Jersey
| | - Ann Pocknell
- LABOKLIN GmbH & Co. KG, Bad Kissingen, Bavaria, Germany
| | - Eluned Price
- Durrell Wildlife Conservation Trust, Trinity, Jersey
| |
Collapse
|
18
|
Dias CMF, Furlan SMP, Ferriani RA, Navarro PADAS. Serum progesterone measurement on the day of fresh embryo transfer and its correlation with pregnancy success rates: A prospective analysis. Clinics (Sao Paulo) 2024; 79:100511. [PMID: 39388739 DOI: 10.1016/j.clinsp.2024.100511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
Studies regarding serum Progesterone (P4) concentration and Clinical Pregnancy Rates (CPR) in fresh Embryo Transfer (ET) after Controlled Ovarian Stimulation Cycles (COS) remain inconclusive. To find a P4 cutoff point on fresh ET day associated with higher CPR, and to identify predictive factors of CPR and P4, the authors conducted a prospective cohort of 106 patients who underwent COS at a public IVF center. The luteal phase was supported with vaginal micronized progesterone (200 mg, 8/8h), beginning on oocyte retrieval day. The primary outcome was CPR beyond the 8th week of pregnancy. A ROC curve was constructed to identify the best cutoff point correlated with higher CPR. Multivariate analysis evaluated predictive variables of CPR and P4 concentration. P4 levels showed no significant differences between pregnant and non-pregnant patients (67.12 ± 31.1 ng/mL vs. 64.17 ± 61.76, p = 0.7465). The cutoff point correlated with higher CPR was P4 ≥ 28.9 ng/mL (AUC 0.5654). Women's age (OR = 0.878; 95 % CI 0.774-0.995) and top-quality embryo transfer (OR = 2.89; 95 % CI 1.148-7.316) were associated with CPR. Women's age ≥ 40 years (OR = 0.0956; 95 % CI 0.0156-0.5851), poor response to COS (OR = 0.0964; 95 % CI 0.0155-0.5966), and follicles ≥ 10 mm (OR = 1.465; 95 % CI 1.013-2.117) were associated with the cutoff point. As the ROC curve was unsatisfactory, P4 ≥ 28.9 ng/mL should not be used to infer gestational success. In fresh ET, P4 concentration may merely reflect a woman's age and individual response to COS rather than being a reliable CPR predictor.
Collapse
Affiliation(s)
- Carla Maria Franco Dias
- Department of Gynecology and Obstetrics, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| | - Suelen Maria Parizotto Furlan
- Department of Gynecology and Obstetrics, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Rui Alberto Ferriani
- Department of Gynecology and Obstetrics, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | |
Collapse
|
19
|
Mori M, Koshiguchi M, Takenouchi O, Mukose MA, Takase HM, Mishina T, Mei H, Kihara M, Abe T, Inoue A, Kitajima TS. Aging-associated reduction of chromosomal histones in mammalian oocytes. Genes Cells 2024; 29:808-819. [PMID: 39044347 PMCID: PMC11555632 DOI: 10.1111/gtc.13146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/14/2024] [Accepted: 07/14/2024] [Indexed: 07/25/2024]
Abstract
Mammalian oocytes undergo a long-term meiotic arrest that can last for almost the entire reproductive lifespan. This arrest occurs after DNA replication and is prolonged with age, which poses a challenge to oocytes in maintaining replication-dependent chromosomal proteins required for the completion of meiosis. In this study, we show that chromosomal histones are reduced with age in mouse oocytes. Both types of histone H3 variants, replication-dependent H3.1/H3.2 and replication-independent H3.3, decrease with age. Aging-associated histone reduction is associated with transcriptomic features that are caused by genetic depletion of histone H3.3. Neither the genetic reduction of chromosomal H3.1/H3.2 nor H3.3 accelerates the aging-associated increase in premature chromosome separation that causes meiotic segregation errors. We suggest that aging-associated reduction of chromosomal histones is linked to several transcriptomic abnormalities but does not significantly contribute to errors in meiotic chromosome segregation during the reproductive lifespan of mice.
Collapse
Affiliation(s)
- Masashi Mori
- Laboratory for Chromosome SegregationRIKEN Center for Biosystems Dynamics Research (BDR)KobeJapan
| | - Manami Koshiguchi
- Laboratory for Chromosome SegregationRIKEN Center for Biosystems Dynamics Research (BDR)KobeJapan
| | - Osamu Takenouchi
- Laboratory for Chromosome SegregationRIKEN Center for Biosystems Dynamics Research (BDR)KobeJapan
| | - Mei A. Mukose
- Laboratory for Chromosome SegregationRIKEN Center for Biosystems Dynamics Research (BDR)KobeJapan
- Graduate School of BiostudiesKyoto UniversityKyotoJapan
| | - Hinako M. Takase
- Laboratory for Chromosome SegregationRIKEN Center for Biosystems Dynamics Research (BDR)KobeJapan
- Laboratory for Animal Resources and Genetic EngineeringRIKEN Center for Biosystems Dynamics Research (BDR)KobeJapan
| | - Tappei Mishina
- Laboratory for Chromosome SegregationRIKEN Center for Biosystems Dynamics Research (BDR)KobeJapan
- Present address:
Faculty of AgricultureKyushu UniversityFukuokaJapan
| | - Hailiang Mei
- Laboratory for Epigenome Inheritance, RIKEN Center for Integrative Medical SciencesYokohamaJapan
| | - Miho Kihara
- Laboratory for Animal Resources and Genetic EngineeringRIKEN Center for Biosystems Dynamics Research (BDR)KobeJapan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic EngineeringRIKEN Center for Biosystems Dynamics Research (BDR)KobeJapan
| | - Azusa Inoue
- Laboratory for Epigenome Inheritance, RIKEN Center for Integrative Medical SciencesYokohamaJapan
| | - Tomoya S. Kitajima
- Laboratory for Chromosome SegregationRIKEN Center for Biosystems Dynamics Research (BDR)KobeJapan
- Graduate School of BiostudiesKyoto UniversityKyotoJapan
| |
Collapse
|
20
|
Chen H, Liu Y, Huang Y, Zhang P, Du D, Yu W, Wu C, Ruan H, Zhou P, Ding Z, Xiang H. Bisphenol M inhibits mouse oocyte maturation in vitro by disrupting cytoskeleton architecture and cell cycle processes. Reprod Toxicol 2024; 129:108667. [PMID: 39059776 DOI: 10.1016/j.reprotox.2024.108667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Bisphenol M (BPM), an alternative to bisphenol A (BPA), is commonly utilized in various industrial applications. However, BPM does not represent a safe substitute for BPA due to its detrimental effects on living beings. This research aimed to assess the influence of BPM exposure on the in vitro maturation of mouse oocytes. The findings revealed that BPM exposure had a notable impact on the germinal vesicle breakdown (GVBD) rate and polar body extrusion (PBE) rate throughout the meiotic progression of mouse oocytes, ultimately resulting in meiotic arrest. Investigations demonstrated that oocytes exposure to BPM led to continued activation of spindle assembly checkpoint. Further studies revealed that securin and cyclin B1 could not be degraded in BPM-exposed oocytes, and meiosis could not realize the transition from the MI to the AI stage. Mechanistically, BPM exposure resulted in abnormal spindle assembly and disrupted chromosome alignment of oocytes. Additionally, abnormal positioning of microtubule organizing center-associated proteins implied that MTOC may be dysfunctional. Furthermore, an elevation in the acetylation level of α-tubulin in oocytes was observed after BPM treatment, leading to decreased microtubule stability. In addition to its impact on microtubules, BPM exposure led to a reduction in the expression of the actin, signifying the disruption of actin assembly. Further research indicated a heightened incidence of DNA damage in oocytes following BPM exposure. Besides, BPM exposure induced alterations in histone modifications. The outcomes of this experiment demonstrate that BPM exposure impairs oocyte quality and inhibits meiotic maturation of mouse oocytes.
Collapse
Affiliation(s)
- Huilei Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Bengbu Medical University, No.287 Changhuai Road, Bengbu 233000, China
| | - Yang Liu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China
| | - Yue Huang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China
| | - Pin Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China
| | - Danli Du
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Bengbu Medical University, No.287 Changhuai Road, Bengbu 233000, China
| | - Wenhua Yu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Bengbu Medical University, No.287 Changhuai Road, Bengbu 233000, China
| | - Caiyun Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China
| | - Hongzhen Ruan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No.81 Meishan Road, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei 230032, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, No.81 Meishan Road, Hefei 230032, China.
| | - Zhiming Ding
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No.81 Meishan Road, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei 230032, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, No.81 Meishan Road, Hefei 230032, China.
| | - Huifen Xiang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No.81 Meishan Road, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei 230032, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, No.81 Meishan Road, Hefei 230032, China.
| |
Collapse
|
21
|
Long S, Zheng Y, Deng X, Guo J, Xu Z, Scharffetter-Kochanek K, Dou Y, Jiang M. Maintaining mitochondrial DNA copy number mitigates ROS-induced oocyte decline and female reproductive aging. Commun Biol 2024; 7:1229. [PMID: 39354016 PMCID: PMC11445474 DOI: 10.1038/s42003-024-06888-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/12/2024] [Indexed: 10/03/2024] Open
Abstract
Oocytes play a crucial role in transmitting maternal mitochondrial DNA (mtDNA), essential for the continuation of species. However, the effects of mitochondrial reactive oxygen species (ROS) on mammalian oocyte maturation and mtDNA maintenance remain unclear. We investigated this by conditionally knocking out the Sod2 gene in primordial follicles, elevating mitochondrial matrix ROS levels from early oocyte stages. Our data indicates that reproductive aging in Sod2 conditional knockout females begins at 6 months, with oxidative stress impairing oocyte quality, particularly affecting OXPHOS complex II and mtDNA-encoded mRNA levels. Despite unchanged mtDNA mutation load, mtDNA copy numbers exhibited significant variations. Strikingly, reducing mtDNA copy numbers by reducing mtSSB protein, crucial for mtDNA replication, accelerated reproductive aging onset to three months, underscoring the critical role of mtDNA copy number maintenance under oxidative stress conditions. This research provides new insights into the relationship among mitochondrial ROS, mtDNA, and reproductive aging, offering potential strategies for delaying aging-related fertility decline.
Collapse
Affiliation(s)
- Shiyun Long
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yunchao Zheng
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xiaoling Deng
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- Fudan University, Shanghai, China
| | - Jing Guo
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Zhe Xu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Karin Scharffetter-Kochanek
- Klinik für Dermatologie und Allergologie, Universitätsklinikum Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Deutschland
| | - Yanmei Dou
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| | - Min Jiang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
22
|
Benn P, Merrion K. Chromosome segregation of human nonhomologous Robertsonian translocations: insights from preimplantation genetic testing. Eur J Hum Genet 2024:10.1038/s41431-024-01693-w. [PMID: 39341985 DOI: 10.1038/s41431-024-01693-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/15/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
Robertsonian translocations (robs) are associated with a high risk for unbalanced segregations. Preimplantation Genetic Testing (PGT) offers an early opportunity to evaluate segregation patterns and selection against chromosome imbalances. The objective of this study was to evaluate the chromosome complements in blastocysts for male and female rob carriers and provide information useful in PGT counseling for rob carriers. PGT results were reviewed for 296 couples where a balanced and nonhomologous rob was present in one member of the couple. All embryos had day 5/6 trophectoderm biopsy and SNP-based PGT. The study included 2235 blastocysts, of which 2151 (96.2%) had results. Significantly fewer blastocysts were available for female rob carriers (mean 4.60/IVF cycle) compared to males (5.49/cycle). Male carriers were more likely to have blastocysts with a normal/balanced chromosome complement; 84.8% versus 62.8% (P < 0.00001). Male carriers had fewer blastocysts with monosomy (60/152, 39.5%) compared to female carriers (218/396, 55.1%) (P = 0.001). Twenty-one (1%) blastocysts showed 3:0 segregation; these were mostly double trisomies and derived from female carriers. Differences between chromosome complements for male versus female carriers suggest that selection against unbalanced forms may occur during spermatogenesis. Six blastocyst samples showed an unexpected ("noncanonical") combination of trisomy and monosomy. One case of uniparental disomy was identified. For female carriers, there was no association between unbalanced segregation and parental age but for male carriers, there was an inverse association. PGT is a highly beneficial option for rob carriers and patients can be counseled using our estimates for the chance of at least one normal/balanced embryo.
Collapse
Affiliation(s)
- Peter Benn
- University of Connecticut Health Center, Farmington, CT, 06030, USA.
| | | |
Collapse
|
23
|
Chen X, Zhang X, Jiang T, Xu W. Klinefelter syndrome: etiology and clinical considerations in male infertility†. Biol Reprod 2024; 111:516-528. [PMID: 38785325 DOI: 10.1093/biolre/ioae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Klinefelter syndrome (KS) is the most prevalent chromosomal disorder occurring in males. It is defined by an additional X chromosome, 47,XXY, resulting from errors in chromosomal segregation during parental gametogenesis. A major phenotype is impaired reproductive function, in the form of low testosterone and infertility. This review comprehensively examines the genetic and physiological factors contributing to infertility in KS, in addition to emergent assisted reproductive technologies, and the unique ethical challenges KS patients face when seeking infertility treatment. The pathology underlying KS is increased susceptibility for meiotic errors during spermatogenesis, resulting in aneuploid or even polyploid gametes. Specific genetic elements potentiating this susceptibility include polymorphisms in checkpoint genes regulating chromosomal synapsis and segregation. Physiologically, the additional sex chromosome also alters testicular endocrinology and metabolism by dysregulating interstitial and Sertoli cell function, collectively impairing normal sperm development. Additionally, epigenetic modifications like aberrant DNA methylation are being increasingly implicated in these disruptions. We also discuss assisted reproductive approaches leveraged in infertility management for KS patients. Application of assisted reproductive approaches, along with deep comprehension of the meiotic and endocrine disturbances precipitated by supernumerary X chromosomes, shows promise in enabling biological parenthood for KS individuals. This will require continued multidisciplinary collaboration between experts with background of genetics, physiology, ethics, and clinical reproductive medicine.
Collapse
Affiliation(s)
- Xinyue Chen
- Reproductive Endocrinology and Regulation Laboratory, Department of Obstetric and Gynecologic, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Xueguang Zhang
- Reproductive Endocrinology and Regulation Laboratory, Department of Obstetric and Gynecologic, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Ting Jiang
- Reproductive Endocrinology and Regulation Laboratory, Department of Obstetric and Gynecologic, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Wenming Xu
- Reproductive Endocrinology and Regulation Laboratory, Department of Obstetric and Gynecologic, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University-The Chinese University of Hong Kong (SCU-CUHK) Joint Laboratory for Reproductive Medicine, Chengdu 610041, China
| |
Collapse
|
24
|
Ma A, Yang Y, Cao L, Chen L, Zhang JV. FBXO47 regulates centromere pairing as key component of centromeric SCF E3 ligase in mouse spermatocytes. Commun Biol 2024; 7:1099. [PMID: 39244596 PMCID: PMC11380685 DOI: 10.1038/s42003-024-06782-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024] Open
Abstract
Centromere pairing is crucial for synapsis in meiosis. This study delves into the Skp1-Cullin1-F-box protein (SCF) E3 ubiquitin ligase complex, specifically focusing on F-box protein 47 (FBXO47), in mouse meiosis. Here, we revealed that FBXO47 is localized at the centromere and it regulates centromere pairing cooperatively with SKP1 to ensure proper synapsis in pachynema. The absence of FBXO47 causes defective centromeres, resulting in incomplete centromere pairing, which leads to corruption of SC at centromeric ends and along chromosome axes, triggering premature dissociation of chromosomes and pachytene arrest. FBXO47 deficient pachytene spermatocytes exhibited drastically reduced SKP1 expression at centromeres and chromosomes. Additionally, FBXO47 stabilizes SKP1 by down-regulating its ubiquitination in HEK293T cells. In essence, we propose that FBXO47 collaborates with SKP1 to facilitate centromeric SCF formation in spermatocytes. In summary, we posit that the centromeric SCF E3 ligase complex regulates centromere pairing for pachynema progression in mice.
Collapse
Affiliation(s)
- Ani Ma
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China.
| | - Yali Yang
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Lianbao Cao
- Department of Gynecological Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Lijun Chen
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jian V Zhang
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen, Guangdong, China.
- Sino-European Center of Biomedicine and Health, Shenzhen, Guangdong, China.
| |
Collapse
|
25
|
Al Hashimi B, Linara-Demakakou E, Harvey SC, Harvey KE, Griffin DK, Ahuja K, Macklon NS. Double vitrification and warming of blastocysts does not affect pregnancy, miscarriage or live birth rates. Reprod Biomed Online 2024; 49:104103. [PMID: 39024926 DOI: 10.1016/j.rbmo.2024.104103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/10/2024] [Accepted: 05/01/2024] [Indexed: 07/20/2024]
Abstract
RESEARCH QUESTION Does double blastocyst vitrification and warming affect pregnancy, miscarriage or live birth rates, or birth outcomes, from embryos that have undergone preimplantation genetic testing for aneuploidies (PGT-A) testing? DESIGN This retrospective observational analysis of embryo transfers was performed at a single centre between January 2017 and August 2022. The double-vitrification group included frozen blastocysts that were vitrified after 5-7 days of culture, warmed, biopsied (either once or twice) and re-vitrified. The single vitrification (SV) group included fresh blastocysts that were biopsied at 5-7 days and then vitrified. RESULTS A comparison of the 84 double-vitrification blastocysts and 729 control single-vitrification blastocysts indicated that the double-vitrification embryos were frozen later in development and had expanded more than the single-vitrification embryos. Of the 813 embryo transfer procedures reported, 452 resulted in the successful delivery of healthy infants (56%). There were no significant differences between double-vitrification and single-vitrification embryos in the pregnancy, miscarriage or live birth rates achieved after single-embryo transfer (55% versus 56%). Logistic regression indicated that while reduced live birth rates were associated with increasing maternal age at oocyte collection, longer culture prior to freezing and lower embryo quality, double vitrification was not a significant predictor of live birth rate. CONCLUSIONS Blastocyst double vitrification was not shown to impact pregnancy, miscarriage or live birth rates. Although caution is necessary due to the study size, no effects of double vitrification on miscarriage rates, birthweight or gestation period were noted. These data offer reassurance given the absence of the influence of double vitrification on all outcomes after PGT-A.
Collapse
Affiliation(s)
- Balsam Al Hashimi
- London Women's Clinic, London, UK.; School of Biosciences, University of Kent, Canterbury, Kent, UK..
| | | | - Simon C Harvey
- Faculty of Engineering and Science, University of Greenwich, Gillingham, Chatham, Kent, UK
| | - Katie E Harvey
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, Buckinghamshire, UK
| | | | | | | |
Collapse
|
26
|
Sparić R, Stojković M, Plešinac J, Pecorella G, Malvasi A, Tinelli A. Advanced maternal age (AMA) and pregnancy: a feasible but problematic event. Arch Gynecol Obstet 2024; 310:1365-1376. [PMID: 39120753 DOI: 10.1007/s00404-024-07678-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024]
Abstract
This narrative review aimed to summarize all adverse outcomes of pregnancy in advanced maternal age (AMA) to assess the age of the mother as a potentially crucial risk factor. AMA refers to women older than 35 years. While expectations and the role of women in society have undergone significant changes today, the biology of aging remains unchanged. Various pathologic changes occur in the human body with age, including chronic noncommunicable diseases, as well as notable changes in reproductive organs, that significantly affect fertility. Despite substantial advancements in technology and medicine, pregnancy in AMA remains a formidable challenge. Although there are some advantages to postponing childbirth, they primarily relate to maternal maturity and economic stability. However, regrettably, there are also many adverse aspects of pregnancy at advanced ages. These include complications affecting both the mother and the fetus. Pregnants in AMA were more prone to suffer from gestational diabetes mellitus, preeclampsia, and eclampsia during pregnancy compared to younger women. In addition, miscarriages and ectopic pregnancies were more prevalent. Delivery was more frequently completed via cesarean section, and postpartum complications and maternal mortality were also higher. Unfortunately, there were also complications concerning the fetus, such as chromosomal abnormalities, premature birth, low birth weight, admission to the neonatal intensive care unit, and stillbirth.
Collapse
Affiliation(s)
- Radmila Sparić
- Faculty of Medicine, University of Belgrade, Dr Subotića 8, 11000, Belgrade, Serbia
- Clinic for Gynecology and Obstetrics, University Clinical Centre of Serbia, Dr Koste Todorovića 26, 11000, Belgrade, Serbia
| | - Marta Stojković
- Faculty of Medicine, University of Belgrade, Dr Subotića 8, 11000, Belgrade, Serbia
| | - Jovana Plešinac
- Clinic for Gynecology and Obstetrics, University Clinical Centre of Serbia, Dr Koste Todorovića 26, 11000, Belgrade, Serbia
| | - Giovanni Pecorella
- Department of Gynecology, Obstetrics and Reproduction Medicine, Saarland University, 66424, Homburg, Germany
| | - Antonio Malvasi
- Division of Gynecology and Obstetrics, Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy
| | - Andrea Tinelli
- Department of Obstetrics and Gynecology, and CERICSAL (CEntro di RIcerca Clinico SALentino), "Veris Delli Ponti Hospital", Via Giuseppina Delli Ponti, 73020, Scorrano, LE, Italy.
| |
Collapse
|
27
|
Ma C, Xu Y, Zhang X, Shi X, Zhang Y, Luo M, Wu C, Ding Z, Xiang H, Cao Y. Melatonin mitigates PNMC-induced disruption of spindle assembly and mitochondrial function in mouse Oocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116703. [PMID: 38986335 DOI: 10.1016/j.ecoenv.2024.116703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
3-methyl-4-nitrophenol (PNMC), a degradation product of organophosphorus insecticides and a byproduct of fuel combustion, exerting endocrine-disrupting effects. However, its impact on the meiotic process of oocytes remains unclear. In the present study, we investigated the effects of PNMC on meiotic maturation of mouse oocytes in vitro and related mechanisms. Morphologically, PNMC-exposure affected germinal vesicle breakdown (GVBD) and polar body extrusion (PBE) in mouse oocytes. Proteomic analysis suggested that PNMC-exposure altered oocyte protein expression that are associated with cytoskeleton, mitochondrial function and oxidative stress. Further studies demonstrated that PNMC-exposure disrupted spindle assembly and chromosome alignment, caused sustained activation of spindle assembly checkpoint (SAC), and arrested meiosis in oocytes. Specifically, PNMC-exposure interfered with the function of microtubule organizing centers (MTOCs) by significantly reducing phosphorylated mitogen activated protein kinase (p-MAPK) expression and disrupting the localization of Pericentrin and p-Aurora A, leading to spindle assembly failure. Besides, PNMC-exposure also increased α-tubulin acetylation, decreased microtubule stability. Moreover, PNMC-exposure impaired mitochondrial function, evidenced by abnormal mitochondrial distribution, decreased mitochondrial membrane potential and ATP levels, release of Cytochrome C into the cytoplasm, and elevated ROS levels. As a result, exposure to PNMC caused DNA damage and early apoptosis in oocytes. Fortunately, melatonin was able to promote oocyte maturation by removing the excessive ROS and enhancing mitochondrial function. These results highlight the adverse effects of PNMC on meiotic maturation, and underscore the protective role of melatonin against PNMC-induced damage.
Collapse
Affiliation(s)
- Cong Ma
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China
| | - Yan Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China
| | - Xueke Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China
| | - Xuejiao Shi
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China
| | - Yingying Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China
| | - Meijie Luo
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China
| | - Caiyun Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China
| | - Zhiming Ding
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No.81 Meishan Road, Hefei, Anhui 230032, China.
| | - Huifen Xiang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No.81 Meishan Road, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei 230032, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, No.81 Meishan Road, Hefei 230032, China.
| |
Collapse
|
28
|
Wu T, Luo Y, Zhang M, Chen B, Du X, Gu H, Xie S, Pan Z, Yu R, Hai R, Niu X, Hao G, Jin L, Shi J, Sun X, Kuang Y, Li W, Sang Q, Wang L. Mechanisms of minor pole-mediated spindle bipolarization in human oocytes. Science 2024; 385:eado1022. [PMID: 39172836 DOI: 10.1126/science.ado1022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/29/2024] [Accepted: 07/02/2024] [Indexed: 08/24/2024]
Abstract
Spindle bipolarization, the process of a microtubule mass transforming into a bipolar spindle, is a prerequisite for accurate chromosome segregation. In contrast to mitotic cells, the process and mechanism of spindle bipolarization in human oocytes remains unclear. Using high-resolution imaging in more than 1800 human oocytes, we revealed a typical state of multipolar intermediates that form during spindle bipolarization and elucidated the mechanism underlying this process. We found that the minor poles formed in multiple kinetochore clusters contribute to the generation of multipolar intermediates. We further determined the essential roles of HAUS6, KIF11, and KIF18A in spindle bipolarization and identified mutations in these genes in infertile patients characterized by oocyte or embryo defects. These results provide insights into the physiological and pathological mechanisms of spindle bipolarization in human oocytes.
Collapse
Affiliation(s)
- Tianyu Wu
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| | - Yuxi Luo
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| | - Meiling Zhang
- Center for Reproductive Medicine and Fertility Preservation Program, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Biaobang Chen
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 200032, China
| | - Xingzhu Du
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| | - Hao Gu
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| | - Siyuan Xie
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| | - Zhiqi Pan
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| | - Ran Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| | - Ruiqi Hai
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| | - Xiangli Niu
- Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning 530029, China
| | - Guimin Hao
- Hebei Clinical Research Center for Birth Defects, Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Liping Jin
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Juanzi Shi
- Assisted Reproduction Center, Northwest Women's and Children's Hospital, Xi'an 710003, China
| | - Xiaoxi Sun
- Shanghai JIAI Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Yanping Kuang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Wen Li
- Center for Reproductive Medicine and Fertility Preservation Program, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qing Sang
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| | - Lei Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| |
Collapse
|
29
|
Shapiro JG, Changela N, Jang JK, Joshi JN, McKim KS. Distinct checkpoint and homolog biorientation pathways regulate meiosis I in Drosophila oocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.608908. [PMID: 39229242 PMCID: PMC11370425 DOI: 10.1101/2024.08.21.608908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Mitosis and meiosis have two mechanisms for regulating the accuracy of chromosome segregation: error correction and the spindle assembly checkpoint (SAC). We have investigated the function of several checkpoint proteins in meiosis I of Drosophila oocytes. Evidence of a SAC response by several of these proteins is found upon depolymerization of microtubules by colchicine. However, unattached kinetochores or errors in biorientation of homologous chromosomes does not induce a SAC response. Furthermore, the metaphase I arrest does not depend on SAC genes, suggesting the APC is inhibited even if the SAC is silenced. Two SAC proteins, ROD of the ROD-ZW10-Zwilch (RZZ) complex and MPS1, are also required for the biorientation of homologous chromosomes during meiosis I, suggesting an error correction function. Both proteins aid in preventing or correcting erroneous attachments and depend on SPC105R for localization to the kinetochore. We have defined a region of SPC105R, amino acids 123-473, that is required for ROD localization and biorientation of homologous chromosomes at meiosis I. Surprisingly, ROD removal, or "streaming", is independent of the dynein adaptor Spindly and is not linked to the stabilization of end-on attachments. Instead, meiotic RZZ streaming appears to depend on cell cycle stage and may be regulated independently of kinetochore attachment or biorientation status. We also show that dynein adaptor Spindly is also required for biorientation at meiosis I, and surprisingly, the direction of RZZ streaming.
Collapse
Affiliation(s)
- Joanatta G Shapiro
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Neha Changela
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Janet K Jang
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Jay N Joshi
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Kim S McKim
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| |
Collapse
|
30
|
Lawson JM, Salem SE, Miller D, Kahler A, van den Boer WJ, Shilton CA, Sever T, Mouncey RR, Ward J, Hampshire DJ, Foote AK, Bryan JS, Juras R, Pynn OD, Davis BW, Bellone RR, Raudsepp T, de Mestre AM. Naturally occurring horse model of miscarriage reveals temporal relationship between chromosomal aberration type and point of lethality. Proc Natl Acad Sci U S A 2024; 121:e2405636121. [PMID: 39102548 PMCID: PMC11331123 DOI: 10.1073/pnas.2405636121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/04/2024] [Indexed: 08/07/2024] Open
Abstract
Chromosomal abnormalities are a common cause of human miscarriage but rarely reported in any other species. As a result, there are currently inadequate animal models available to study this condition. Horses present one potential model since mares receive intense gynecological care. This allowed us to investigate the prevalence of chromosomal copy number aberrations in 256 products of conception (POC) in a naturally occurring model of pregnancy loss (PL). Triploidy (three haploid sets of chromosomes) was the most common aberration, found in 42% of POCs following PL over the embryonic period. Over the same period, trisomies and monosomies were identified in 11.6% of POCs and subchromosomal aberrations in 4.2%. Whole and subchromosomal aberrations involved 17 autosomes, with chromosomes 3, 4, and 20 having the highest number of aberrations. Triploid fetuses had clear gross developmental anomalies of the brain. Collectively, data demonstrate that alterations in chromosome number contribute to PL similarly in women and mares, with triploidy the dominant ploidy type over the key period of organogenesis. These findings, along with highly conserved synteny between human and horse chromosomes, similar gestation lengths, and the shared single greatest risk for PL being advancing maternal age, provide strong evidence for the first animal model to truly recapitulate many key features of human miscarriage arising due to chromosomal aberrations, with shared benefits for humans and equids.
Collapse
Affiliation(s)
- Jessica M. Lawson
- Department of Pathobiology and Population Sciences, Royal Veterinary College, LondonAL9 7TA, UK
| | - Shebl E. Salem
- Department of Biomedical Sciences, Baker Institute for Animal Health, Cornell University, Ithaca, NY14853
| | - Donald Miller
- Department of Biomedical Sciences, Baker Institute for Animal Health, Cornell University, Ithaca, NY14853
| | - Anne Kahler
- Department of Pathobiology and Population Sciences, Royal Veterinary College, LondonAL9 7TA, UK
| | - Wilhelmina J. van den Boer
- Department of Biomedical Sciences, Baker Institute for Animal Health, Cornell University, Ithaca, NY14853
| | - Charlotte A. Shilton
- Department of Pathobiology and Population Sciences, Royal Veterinary College, LondonAL9 7TA, UK
| | - Tia Sever
- Department of Biomedical Sciences, Baker Institute for Animal Health, Cornell University, Ithaca, NY14853
| | - Rebecca R. Mouncey
- Department of Pathobiology and Population Sciences, Royal Veterinary College, LondonAL9 7TA, UK
| | - Jenna Ward
- Department of Biomedical Sciences, Baker Institute for Animal Health, Cornell University, Ithaca, NY14853
| | - Daniel J. Hampshire
- Department of Pathobiology and Population Sciences, Royal Veterinary College, LondonAL9 7TA, UK
| | - Alastair K. Foote
- Rossdales Laboratories, Rossdales Ltd, Beaufort Cottages Stables, NewmarketCB8 8JS, UK
| | - Jill S. Bryan
- Rossdales Laboratories, Rossdales Ltd, Beaufort Cottages Stables, NewmarketCB8 8JS, UK
| | - Rytis Juras
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX77843
| | - Oliver D. Pynn
- Rossdales Veterinary Surgeons, Rossdales Ltd, Beaufort Cottages Stables, NewmarketCB8 8JS, UK
| | - Brian W. Davis
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX77843
| | - Rebecca R. Bellone
- Department of Population Health and Reproduction, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, CA95617
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA95617
| | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX77843
| | - Amanda M. de Mestre
- Department of Biomedical Sciences, Baker Institute for Animal Health, Cornell University, Ithaca, NY14853
| |
Collapse
|
31
|
Haseeb MA, Bernys AC, Dickert EE, Bickel SE. An RNAi screen to identify proteins required for cohesion rejuvenation during meiotic prophase in Drosophila oocytes. G3 (BETHESDA, MD.) 2024; 14:jkae123. [PMID: 38849129 PMCID: PMC11304968 DOI: 10.1093/g3journal/jkae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024]
Abstract
Accurate chromosome segregation during meiosis requires the maintenance of sister chromatid cohesion, initially established during premeiotic S phase. In human oocytes, DNA replication and cohesion establishment occur decades before chromosome segregation and deterioration of meiotic cohesion is one factor that leads to increased segregation errors as women age. Our previous work led us to propose that a cohesion rejuvenation program operates to establish new cohesive linkages during meiotic prophase in Drosophila oocytes and depends on the cohesin loader Nipped-B and the cohesion establishment factor Eco. In support of this model, we recently demonstrated that chromosome-associated cohesin turns over extensively during meiotic prophase and failure to load cohesin onto chromosomes after premeiotic S phase results in arm cohesion defects in Drosophila oocytes. To identify proteins required for prophase cohesion rejuvenation but not S phase establishment, we conducted a Gal4-UAS inducible RNAi screen that utilized two distinct germline drivers. Using this strategy, we identified 29 gene products for which hairpin expression during meiotic prophase, but not premeiotic S phase, significantly increased segregation errors. Prophase knockdown of Brahma or Pumilio, two positives with functional links to the cohesin loader, caused a significant elevation in the missegregation of recombinant homologs, a phenotype consistent with premature loss of arm cohesion. Moreover, fluorescence in situ hybridization confirmed that Brahma, Pumilio, and Nipped-B are required during meiotic prophase for the maintenance of arm cohesion. Our data support the model that Brahma and Pumilio regulate Nipped-B-dependent cohesin loading during rejuvenation. Future analyses will better define the mechanism(s) that govern meiotic cohesion rejuvenation and whether additional prophase-specific positives function in this process.
Collapse
Affiliation(s)
- Muhammad A Haseeb
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA 03755
| | - Alana C Bernys
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA 03755
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA 08544
| | - Erin E Dickert
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA 03755
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA 27710
| | - Sharon E Bickel
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA 03755
| |
Collapse
|
32
|
Shang Y, Song N, He R, Wu M. Antioxidants and Fertility in Women with Ovarian Aging: A Systematic Review and Meta-Analysis. Adv Nutr 2024; 15:100273. [PMID: 39019217 PMCID: PMC11345374 DOI: 10.1016/j.advnut.2024.100273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/19/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024] Open
Abstract
Ovarian aging is a major factor for female subfertility. Multiple antioxidants have been applied in different clinical scenarios, but their effects on fertility in women with ovarian aging are still unclear. To address this, a meta-analysis was performed to evaluate the effectiveness and safety of antioxidants on fertility in women with ovarian aging. A total of 20 randomized clinical trials with 2617 participants were included. The results showed that use of antioxidants not only significantly increased the number of retrieved oocytes and high-quality embryo rates but also reduced the dose of gonadotropin, contributing to higher clinical pregnancy rates. According to the subgroup analysis of different dose settings, better effects were more pronounced with lower doses; in terms of antioxidant types, coenzyme Q10 (CoQ10) tended to be more effective than melatonin, myo-inositol, and vitamins. When compared with placebo or no treatment, CoQ10 showed more advantages, whereas small improvements were observed with other drugs. In addition, based on subgroup analysis of CoQ10, the optimal treatment regimen of CoQ10 for improving pregnancy rate was 30 mg/d for 3 mo before the controlled ovarian stimulation cycle, and women with diminished ovarian reserve clearly benefited from CoQ10 treatment, especially those aged <35 y. Our study suggests that antioxidant consumption is an effective and safe complementary therapy for women with ovarian aging. Appropriate antioxidant treatment should be offered at a low dose according to the patient's age and ovarian reserve. This study was registered at PROSPERO as CRD42022359529.
Collapse
Affiliation(s)
- Yujie Shang
- School of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China; Hubei Shizhen Laboratory, Wuhan, China; School of Basic Medical Sciences, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Nannan Song
- Liyang Branch of Jiangsu Provincial Hospital of Chinese Medicine, Changzhou, China
| | - Ruohan He
- Maternal and Child Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minghua Wu
- School of Basic Medical Sciences, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China; NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
33
|
Takenouchi O, Sakakibara Y, Kitajima TS. Live chromosome identifying and tracking reveals size-based spatial pathway of meiotic errors in oocytes. Science 2024; 385:eadn5529. [PMID: 39024439 DOI: 10.1126/science.adn5529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/24/2024] [Indexed: 07/20/2024]
Abstract
Meiotic errors of relatively small chromosomes in oocytes result in egg aneuploidies that cause miscarriages and congenital diseases. Unlike somatic cells, which preferentially mis-segregate larger chromosomes, aged oocytes preferentially mis-segregate smaller chromosomes through unclear processes. Here, we provide a comprehensive three-dimensional chromosome identifying-and-tracking dataset throughout meiosis I in live mouse oocytes. This analysis reveals a prometaphase pathway that actively moves smaller chromosomes to the inner region of the metaphase plate. In the inner region, chromosomes are pulled by stronger bipolar microtubule forces, which facilitates premature chromosome separation, a major cause of segregation errors in aged oocytes. This study reveals a spatial pathway that facilitates aneuploidy of small chromosomes preferentially in aged eggs and implicates the role of the M phase in creating a chromosome size-based spatial arrangement.
Collapse
Affiliation(s)
- Osamu Takenouchi
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Yogo Sakakibara
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Tomoya S Kitajima
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| |
Collapse
|
34
|
Haseeb MA, Weng KA, Bickel SE. Chromatin-associated cohesin turns over extensively and forms new cohesive linkages in Drosophila oocytes during meiotic prophase. Curr Biol 2024; 34:2868-2879.e6. [PMID: 38870933 PMCID: PMC11258876 DOI: 10.1016/j.cub.2024.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/27/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024]
Abstract
In dividing cells, accurate chromosome segregation depends on sister chromatid cohesion, protein linkages that are established during DNA replication. Faithful chromosome segregation in oocytes requires that cohesion, first established in S phase, remain intact for days to decades, depending on the organism. Premature loss of meiotic cohesion in oocytes leads to the production of aneuploid gametes and contributes to the increased incidence of meiotic segregation errors as women age (maternal age effect). The prevailing model is that cohesive linkages do not turn over in mammalian oocytes. However, we have previously reported that cohesion-related defects arise in Drosophila oocytes when individual cohesin subunits or cohesin regulators are knocked down after meiotic S phase. Here, we use two strategies to express a tagged cohesin subunit exclusively during mid-prophase in Drosophila oocytes and demonstrate that newly expressed cohesin is used to form de novo linkages after meiotic S phase. Cohesin along the arms of oocyte chromosomes appears to completely turn over within a 2-day window during prophase, whereas replacement is less extensive at centromeres. Unlike S-phase cohesion establishment, the formation of new cohesive linkages during meiotic prophase does not require acetylation of conserved lysines within the Smc3 head. Our findings indicate that maintenance of cohesion between S phase and chromosome segregation in Drosophila oocytes requires an active cohesion rejuvenation program that generates new cohesive linkages during meiotic prophase.
Collapse
Affiliation(s)
- Muhammad A Haseeb
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH 03755, USA
| | - Katherine A Weng
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH 03755, USA
| | - Sharon E Bickel
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH 03755, USA.
| |
Collapse
|
35
|
Verlhac MH. Exploring the maternal inheritance transmitted by the oocyte to its progeny. C R Biol 2024; 347:45-52. [PMID: 38888193 DOI: 10.5802/crbiol.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024]
Abstract
Fertility is declining worldwide and many couples are turning towards assisted reproductive technologies (ART) to conceive babies. Organisms that propagate via sexual reproduction often come from the fusion between two gametes, an oocyte and a sperm, whose qualities seem to be decreasing in the human species. Interestingly, while the sperm mostly transmits its haploid genome, the oocyte transmits not only its haploid set of chromosomes but also its huge cytoplasm to its progeny. This is what can be defined as the maternal inheritance composed of chromosomes, organelles, lipids, metabolites, proteins and RNAs. To decipher the decline in oocyte quality, it is essential to explore the nature of the maternal inheritance, and therefore study the last stages of murine oogenesis, namely the end of oocyte growth followed by the two meiotic divisions. These divisions are extremely asymmetric in terms of the size of the daughter cells, allowing to preserve the maternal inheritance accumulated during oocyte growth within these huge cells to support early embryo development. Studies performed in Marie-Hélène Verlhac's lab have allowed to discover the unprecedented impact of original acto-myosin based mechanisms in the constitution as well as the preservation of this maternal inheritance and the consequences when these processes go awry.
Collapse
|
36
|
Ma C, Zhang X, Zhang Y, Ruan H, Xu X, Wu C, Ding Z, Cao Y. Sirtuin 5-driven meiotic spindle assembly and actin-based migration in mouse oocyte meiosis. Heliyon 2024; 10:e32466. [PMID: 38933958 PMCID: PMC11201115 DOI: 10.1016/j.heliyon.2024.e32466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Sirtuin 5 (Sirt5), a member of the Sirtuin family, is involved in various intracellular biological processes. However, the function of Sirt5 in oocyte maturation has not been clearly elucidated. In this study, we observed that Sirt5 was persistently expressed during the meiotic division of mouse oocytes, with a notable decline in expression in aging oocytes. Sirt5 inhibition led to the failure of the first polar body extrusion and induced cell cycle arrest, indicative of unsuccessful oocyte maturation. Furthermore, Sirt5 inhibition was associated with the extrusion of abnormally large polar bodies, suggesting disrupted asymmetric oocyte division. Mechanistically, the inhibition of Sirt5 resulted in aberrant spindle assembly and disordered chromosome alignment in oocytes. Moreover, Sirt5 inhibition caused the spindle to be centrally located in the oocyte without migrating to the cortical region, consequently preventing the formation of the actin cap. Further investigation revealed that Sirt5 inhibition notably diminished the expression of phosphorylated cofilin and profilin1, while increasing cytoplasmic F-actin levels. These findings suggest that Sirt5 inhibition during oocyte maturation adversely affects spindle assembly and chromosome alignment and disrupts actin dynamics impairing spindle migration and contributing to the failure of symmetric oocyte division and maturation.
Collapse
Affiliation(s)
- Cong Ma
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China
| | - Xueke Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China
| | - Yingying Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China
| | - Hongzhen Ruan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China
| | - Xiaofeng Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China
| | - Caiyun Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China
| | - Zhiming Ding
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China
- Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No.81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei, 230032, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China
- Anhui Provincial Institute of Translational Medicine, No.81 Meishan Road, Hefei, 230032, China
| |
Collapse
|
37
|
Boylan CF, Sambo KM, Neal-Perry G, Brayboy LM. Ex ovo omnia-why don't we know more about egg quality via imaging? Biol Reprod 2024; 110:1201-1212. [PMID: 38767842 PMCID: PMC11180616 DOI: 10.1093/biolre/ioae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024] Open
Abstract
Determining egg quality is the foremost challenge in assisted reproductive technology (ART). Although extensive advances have been made in multiple areas of ART over the last 40 years, oocyte quality assessment tools have not much evolved beyond standard morphological observation. The oocyte not only delivers half of the nuclear genetic material and all of the mitochondrial DNA to an embryo but also provides complete developmental support during embryonic growth. Oocyte mitochondrial numbers far exceed those of any somatic cell, yet little work has been done to evaluate the mitochondrial bioenergetics of an oocyte. Current standard oocyte assessment in in vitro fertilization (IVF) centers include the observation of oocytes and their surrounding cell complex (cumulus cells) via stereomicroscope or inverted microscope, which is largely primitive. Additional oocyte assessments include polar body grading and polarized light meiotic spindle imaging. However, the evidence regarding the aforementioned methods of oocyte quality assessment and IVF outcomes is contradictory and non-reproducible. High-resolution microscopy techniques have also been implemented in animal and human models with promising outcomes. The current era of oocyte imaging continues to evolve with discoveries in artificial intelligence models of oocyte morphology selection albeit at a slow rate. In this review, the past, current, and future oocyte imaging techniques will be examined with the goal of drawing attention to the gap which limits our ability to assess oocytes in real time. The implications of improved oocyte imaging techniques on patients undergoing IVF will be discussed as well as the need to develop point of care oocyte assessment testing in IVF labs.
Collapse
Affiliation(s)
- Caitlin F Boylan
- University of North Carolina, Chapel Hill, NC, USA
- Eastern Virginia Medical School, Norfolk, VA, USA
| | - Keshia M Sambo
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | | - Lynae M Brayboy
- Department of Neuropediatrics Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Klinik für Pädiatrie m. S. Neurologie, Charité Campus Virchow Klinikum, Berlin, Germany
- Department of Reproductive Biology, Bedford Research Foundation, Bedford, MA, USA
| |
Collapse
|
38
|
Huang W, Li X, Yang H, Huang H. The impact of maternal age on aneuploidy in oocytes: Reproductive consequences, molecular mechanisms, and future directions. Ageing Res Rev 2024; 97:102292. [PMID: 38582380 DOI: 10.1016/j.arr.2024.102292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/12/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Age-related aneuploidy in human oocytes is a major factor contributing to decreased fertility and adverse reproductive outcomes. As females age, their oocytes are more prone to meiotic chromosome segregation errors, leading primarily to aneuploidy. Elevated aneuploidy rates have also been observed in oocytes from very young, prepubertal conceptions. A key barrier to developing effective treatments for age-related oocyte aneuploidy is our incomplete understanding of the molecular mechanisms involved. The challenge is becoming increasingly critical as more people choose to delay childbearing, a trend that has significant societal implications. In this review, we summarize current knowledge regarding the process of oocyte meiosis and folliculogenesis, highlighting the relationship between age and chromosomal aberrations in oocytes and embryos, and integrate proposed mechanisms of age-related meiotic disturbances across structural, protein, and genomic levels. Our goal is to spur new research directions and therapeutic avenues.
Collapse
Affiliation(s)
- Weiwei Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
| | - Xinyuan Li
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
| | - Hongbo Yang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China.
| | - Hefeng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Department of Obstetrics and Gynecology, International Institutes of Medicine, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China; Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
39
|
Lin LT, Li CJ, Chern CU, Lin PH, Lin PW, Chen YC, Tsai HW, Tsui KH. Intravascular Laser Blood Irradiation (ILIB) Enhances Antioxidant Activity and Energy Metabolism in Aging Ovaries. J Pers Med 2024; 14:551. [PMID: 38929772 PMCID: PMC11205042 DOI: 10.3390/jpm14060551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Ovarian aging is characterized by the accumulation of free radicals, leading to tissue damage and affecting reproductive health. Intravascular laser irradiation of blood (ILIB, using a low-energy He-Ne laser) is known for its efficacy in treating vascular-related diseases by reducing free radicals and inflammation. However, its impact on ovarian aging remains unexplored. This study aimed to investigate the effects of ILIB on oxidative stress and energy metabolism in aging ovaries. METHODS Genetic analysis was conducted on 75 infertile patients with aging ovaries, divided into ILIB-treated and control (CTRL) groups. Patients underwent two courses of laser treatment, and clinical parameters were evaluated. Cumulus cells were collected for the genetic analysis of oxeiptosis, glycolysis, and the tricarboxylic acid (TCA) cycle. RESULTS The analysis of gene expression patterns revealed intriguing findings in ILIB-treated patients compared to the untreated group. Notably, ILIB treatment resulted in significant upregulation of oxeiptosis-related genes AIFM1 and NRF2, suggesting a potential protective effect against oxidative stress-induced cell death. Furthermore, ILIB treatment led to a downregulation of glycolysis-associated gene hexokinase 2 (HK2), indicating a shift away from anaerobic metabolism, along with an increase in PDHA levels, indicative of enhanced mitochondrial function. Consistent with these changes, ILIB-treated patients exhibited elevated expression of the key TCA cycle genes citrate synthase (CS), succinate dehydrogenase complex subunit A (SDHA), and fumarate hydratase (FH), signifying improved energy metabolism. CONCLUSION The findings from this study underscore the potential of ILIB as a therapeutic strategy for mitigating ovarian aging. By targeting oxidative stress and enhancing energy metabolism, ILIB holds promise for preserving ovarian function and reproductive health in aging individuals. Further research is warranted to elucidate the underlying mechanisms and optimize the application of ILIB in clinical settings, with the ultimate goal of improving fertility outcomes in women experiencing age-related ovarian decline.
Collapse
Affiliation(s)
- Li-Te Lin
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Department of Nursing, Shu-Zen Junior College of Medicine and Management, Kaohsiung 821, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department of Obstetrics and Gynaecology, National Yang-Ming University School of Medicine, Taipei 112, Taiwan
| | - Chia-Jung Li
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Department of Nursing, Shu-Zen Junior College of Medicine and Management, Kaohsiung 821, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Chyi-Uei Chern
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Pei-Hsuan Lin
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Po-Wen Lin
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Yu-Chen Chen
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Hsiao-Wen Tsai
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Kuan-Hao Tsui
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Department of Nursing, Shu-Zen Junior College of Medicine and Management, Kaohsiung 821, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department of Obstetrics and Gynaecology, National Yang-Ming University School of Medicine, Taipei 112, Taiwan
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
40
|
Butkiewicz AF, Amaral A, Cerveira-Pinto M, Kordowitzki P. Assessing the Influence of Maternal Age in Bovine Embryos and Oocytes: A Model for Human Reproductive Aging. Aging Dis 2024:AD.2024.0305. [PMID: 38916737 DOI: 10.14336/ad.2024.0305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/05/2024] [Indexed: 06/26/2024] Open
Abstract
In the first weeks after fertilization, embryo mortality in cattle is significantly higher. It is well known that the age of the dam is one of the crucial factors affecting the quality of embryos and oocytes in many mammalian species. In older cattle, there are several evidences that embryo quality decreases, due to a decrease in ovarian reserve, a decrease in mtDNA and ATP, a decrease in progesterone levels, and due to susceptibility to genetic mutations. Herein, we intend to provide an updated summary of recent research on the effects of maternal age on embryos and oocytes of domestic cattle which are a widely used model species for human oocytes and early embryonic development.
Collapse
Affiliation(s)
- Aleksander Franciszek Butkiewicz
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Ana Amaral
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Marta Cerveira-Pinto
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Pawel Kordowitzki
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
- Department of Gynaecology, European Competence Center for Ovarian Cancer, Charité, Berlin, Germany
| |
Collapse
|
41
|
Bergin K, Estevez SL, Alkon-Meadows T, Nyein E, Cohen N, Hernandez-Nieto C, Gounko D, Lee JA, Copperman AB, Buyuk E. Single Euploid Embryo Transfer Outcomes After Uterine Septum Resection. J Minim Invasive Gynecol 2024; 31:432-437. [PMID: 38360394 DOI: 10.1016/j.jmig.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/28/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
STUDY OBJECTIVE To study pregnancy outcomes after single euploid embryo transfer (SEET) in patients who underwent prior uterine septum resection to those with uteri of normal contour, without Müllerian anomalies or uterine abnormalities including polyps or fibroids, and without a history of prior uterine surgeries. DESIGN Retrospective cohort study. SETTING Single academic affiliated center. PATIENTS 60 cycles of patients with prior hysteroscopic uterine septum resection who underwent an autologous SEET between 2012 and 2020 were used as the investigational cohort. A 3:1 ratio propensity score matched control cohort of 180 single euploid embryo transfer cycles from patients without a history of uterine septa were used as the control group. INTERVENTIONS No interventions administered. MEASUREMENTS AND MAIN RESULTS Pregnancy, clinical pregnancy loss, ongoing clinical pregnancy, and live birth rates in patients with a history of uterine septum resection compared with matched patients without Müllerian anomalies or uterine surgeries. Patients with a prior uterine septum had significantly lower rates of chemical pregnancy (58.33% vs 77.2%, p = .004), implantation (41.67% vs 65.6%, p = .001), and live birth (33.33% vs 57.8%, p = .001) per transfer. No statistical difference in clinical pregnancy loss rates was found when comparing septum patients with controls (8.33% vs 7.8%, p = .89). CONCLUSION Patients with a history of hysteroscopic resection who undergo in vitro fertilization are more susceptible to suboptimal clinical outcomes compared with patients with normal uteri. Early pregnancy loss rates in patients with a uterine septum are higher than in those without; however, after resection, the rates are comparable. Patients born with septate uteri require assessment of surgical intervention prior to SEET, and to optimize their reproductive outcomes.
Collapse
Affiliation(s)
- Keri Bergin
- Reproductive Medicine Associates of New York (all authors); Icahn School of Medicine at Mount Sinai (Drs. Bergin, Estevez, Nyein, Copperman, and Buyuk), New York.
| | - Samantha L Estevez
- Reproductive Medicine Associates of New York (all authors); Icahn School of Medicine at Mount Sinai (Drs. Bergin, Estevez, Nyein, Copperman, and Buyuk), New York
| | | | - Ethan Nyein
- Reproductive Medicine Associates of New York (all authors); Icahn School of Medicine at Mount Sinai (Drs. Bergin, Estevez, Nyein, Copperman, and Buyuk), New York
| | - Natalie Cohen
- Reproductive Medicine Associates of New York (all authors)
| | | | - Dmitry Gounko
- Reproductive Medicine Associates of New York (all authors)
| | - Joseph A Lee
- Reproductive Medicine Associates of New York (all authors)
| | - Alan B Copperman
- Reproductive Medicine Associates of New York (all authors); Icahn School of Medicine at Mount Sinai (Drs. Bergin, Estevez, Nyein, Copperman, and Buyuk), New York
| | - Erkan Buyuk
- Reproductive Medicine Associates of New York (all authors); Icahn School of Medicine at Mount Sinai (Drs. Bergin, Estevez, Nyein, Copperman, and Buyuk), New York
| |
Collapse
|
42
|
Zhang X, Zheng PS. Mechanism of chromosomal mosaicism in preimplantation embryos and its effect on embryo development. J Assist Reprod Genet 2024; 41:1127-1141. [PMID: 38386118 PMCID: PMC11143108 DOI: 10.1007/s10815-024-03048-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
Aneuploidy is one of the main causes of miscarriage and in vitro fertilization failure. Mitotic abnormalities in preimplantation embryos are the main cause of mosaicism, which may be influenced by several endogenous factors such as relaxation of cell cycle control mechanisms, defects in chromosome cohesion, centrosome aberrations and abnormal spindle assembly, and DNA replication stress. In addition, incomplete trisomy rescue is a rare cause of mosaicism. However, there may be a self-correcting mechanism in mosaic embryos, which allows some mosaicisms to potentially develop into normal embryos. At present, it is difficult to accurately diagnose mosaicism using preimplantation genetic testing for aneuploidy. Therefore, in clinical practice, embryos diagnosed as mosaic should be considered comprehensively based on the specific situation of the patient.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Reproductive Medicine, The First Affiliated Hospital, Xi'an Jiaotong University of Medical School, Xi'an, 710061, Shanxi, P.R. China
| | - Peng-Sheng Zheng
- Department of Reproductive Medicine, The First Affiliated Hospital, Xi'an Jiaotong University of Medical School, Xi'an, 710061, Shanxi, P.R. China.
- Section of Cancer Stem Cell Research, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of People's Republic of China, Xi'an, 710061, Shanxi, P.R. China.
| |
Collapse
|
43
|
Zhang H, Su W, Zhao R, Li M, Zhao S, Chen Z, Zhao H. Epigallocatechin-3-gallate improves the quality of maternally aged oocytes. Cell Prolif 2024; 57:e13575. [PMID: 38010042 PMCID: PMC10984106 DOI: 10.1111/cpr.13575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/15/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023] Open
Abstract
The decline in female fertility as age advances is intricately linked to the diminished developmental potential of oocytes. Despite this challenge, the strategies available to enhance the quality of aged oocytes remain limited. Epigallocatechin-3-gallate (EGCG), characterised by its anti-inflammatory, antioxidant and tissue protective properties, holds promise as a candidate for improving the quality of maternally aged oocytes. In this study, we explored the precise impact and underlying mechanisms of EGCG on aged oocytes. EGCG exhibited the capacity to enhance the quality of aged oocytes both in vitro and in vivo. Specifically, the application of EGCG in vitro resulted in noteworthy improvements, including an increased rate of first polar body extrusion, enhanced mitochondrial function, refined spindle morphology and a reduction in oxidative stress. These beneficial effects were further validated by the improved fertility observed among aged mice. In addition, our findings propose that EGCG might augment the expression of Arf6. This augmentation, in turn, contributes to the assembly of spindle-associated F-actin, which can contribute to mitigate the aneuploidy induced by the disruption of spindle F-actin within aged oocytes. This work thus contributes not only to understanding the role of EGCG in bolstering oocyte health, but also underscores its potential as a therapeutic intervention to address fertility challenges associated with advanced age.
Collapse
Affiliation(s)
- HongHui Zhang
- State Key Laboratory of Reproductive Medicine and Offspring HealthShandong UniversityJinanChina
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversityNanjingChina
- Key Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticShandong UniversityJinanChina
- Research Unit of Gametogenesis and Health of ART‐Offspring, Chinese Academy of Medical Sciences (No.2021RU001)JinanChina
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Wei Su
- State Key Laboratory of Reproductive Medicine and Offspring HealthShandong UniversityJinanChina
- Key Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticShandong UniversityJinanChina
- Research Unit of Gametogenesis and Health of ART‐Offspring, Chinese Academy of Medical Sciences (No.2021RU001)JinanChina
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - RuSong Zhao
- State Key Laboratory of Reproductive Medicine and Offspring HealthShandong UniversityJinanChina
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversityNanjingChina
- Key Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticShandong UniversityJinanChina
- Research Unit of Gametogenesis and Health of ART‐Offspring, Chinese Academy of Medical Sciences (No.2021RU001)JinanChina
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Mei Li
- State Key Laboratory of Reproductive Medicine and Offspring HealthShandong UniversityJinanChina
- Key Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticShandong UniversityJinanChina
- Research Unit of Gametogenesis and Health of ART‐Offspring, Chinese Academy of Medical Sciences (No.2021RU001)JinanChina
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - ShiGang Zhao
- State Key Laboratory of Reproductive Medicine and Offspring HealthShandong UniversityJinanChina
- Key Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticShandong UniversityJinanChina
- Research Unit of Gametogenesis and Health of ART‐Offspring, Chinese Academy of Medical Sciences (No.2021RU001)JinanChina
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Zi‐Jiang Chen
- State Key Laboratory of Reproductive Medicine and Offspring HealthShandong UniversityJinanChina
- Key Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticShandong UniversityJinanChina
- Research Unit of Gametogenesis and Health of ART‐Offspring, Chinese Academy of Medical Sciences (No.2021RU001)JinanChina
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghaiChina
- Center for Reproductive Medicine, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Han Zhao
- State Key Laboratory of Reproductive Medicine and Offspring HealthShandong UniversityJinanChina
- Key Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticShandong UniversityJinanChina
- Research Unit of Gametogenesis and Health of ART‐Offspring, Chinese Academy of Medical Sciences (No.2021RU001)JinanChina
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| |
Collapse
|
44
|
Wang Y, Chen Y, Gao J, Xie H, Guo Y, Yang J, Liu J, Chen Z, Li Q, Li M, Ren J, Wen L, Tang F. Mapping crossover events of mouse meiotic recombination by restriction fragment ligation-based Refresh-seq. Cell Discov 2024; 10:26. [PMID: 38443370 PMCID: PMC10915157 DOI: 10.1038/s41421-023-00638-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/11/2023] [Indexed: 03/07/2024] Open
Abstract
Single-cell whole-genome sequencing methods have undergone great improvements over the past decade. However, allele dropout, which means the inability to detect both alleles simultaneously in an individual diploid cell, largely restricts the application of these methods particularly for medical applications. Here, we develop a new single-cell whole-genome sequencing method based on third-generation sequencing (TGS) platform named Refresh-seq (restriction fragment ligation-based genome amplification and TGS). It is based on restriction endonuclease cutting and ligation strategy in which two alleles in an individual cell can be cut into equal fragments and tend to be amplified simultaneously. As a new single-cell long-read genome sequencing method, Refresh-seq features much lower allele dropout rate compared with SMOOTH-seq. Furthermore, we apply Refresh-seq to 688 sperm cells and 272 female haploid cells (secondary polar bodies and parthenogenetic oocytes) from F1 hybrid mice. We acquire high-resolution genetic map of mouse meiosis recombination at low sequencing depth and reveal the sexual dimorphism in meiotic crossovers. We also phase the structure variations (deletions and insertions) in sperm cells and female haploid cells with high precision. Refresh-seq shows great performance in screening aneuploid sperm cells and oocytes due to the low allele dropout rate and has great potential for medical applications such as preimplantation genetic diagnosis.
Collapse
Affiliation(s)
- Yan Wang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Yijun Chen
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Junpeng Gao
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Haoling Xie
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Yuqing Guo
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Jingwei Yang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Jun'e Liu
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Zonggui Chen
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- Changping Laboratory, Beijing, China
| | - Qingqing Li
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Mengyao Li
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Jie Ren
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Lu Wen
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Fuchou Tang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China.
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Changping Laboratory, Beijing, China.
| |
Collapse
|
45
|
Zaffagnini G, Cheng S, Salzer MC, Pernaute B, Duran JM, Irimia M, Schuh M, Böke E. Mouse oocytes sequester aggregated proteins in degradative super-organelles. Cell 2024; 187:1109-1126.e21. [PMID: 38382525 DOI: 10.1016/j.cell.2024.01.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/04/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
Oocytes are among the longest-lived cells in the body and need to preserve their cytoplasm to support proper embryonic development. Protein aggregation is a major threat for intracellular homeostasis in long-lived cells. How oocytes cope with protein aggregation during their extended life is unknown. Here, we find that mouse oocytes accumulate protein aggregates in specialized compartments that we named endolysosomal vesicular assemblies (ELVAs). Combining live-cell imaging, electron microscopy, and proteomics, we found that ELVAs are non-membrane-bound compartments composed of endolysosomes, autophagosomes, and proteasomes held together by a protein matrix formed by RUFY1. Functional assays revealed that in immature oocytes, ELVAs sequester aggregated proteins, including TDP-43, and degrade them upon oocyte maturation. Inhibiting degradative activity in ELVAs leads to the accumulation of protein aggregates in the embryo and is detrimental for embryo survival. Thus, ELVAs represent a strategy to safeguard protein homeostasis in long-lived cells.
Collapse
Affiliation(s)
- Gabriele Zaffagnini
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Shiya Cheng
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Marion C Salzer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Barbara Pernaute
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Juan Manuel Duran
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077 Göttingen, Germany
| | - Elvan Böke
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
46
|
Horakova A, Konecna M, Anger M. Chromosome Division in Early Embryos-Is Everything under Control? And Is the Cell Size Important? Int J Mol Sci 2024; 25:2101. [PMID: 38396778 PMCID: PMC10889803 DOI: 10.3390/ijms25042101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Chromosome segregation in female germ cells and early embryonic blastomeres is known to be highly prone to errors. The resulting aneuploidy is therefore the most frequent cause of termination of early development and embryo loss in mammals. And in specific cases, when the aneuploidy is actually compatible with embryonic and fetal development, it leads to severe developmental disorders. The main surveillance mechanism, which is essential for the fidelity of chromosome segregation, is the Spindle Assembly Checkpoint (SAC). And although all eukaryotic cells carry genes required for SAC, it is not clear whether this pathway is active in all cell types, including blastomeres of early embryos. In this review, we will summarize and discuss the recent progress in our understanding of the mechanisms controlling chromosome segregation and how they might work in embryos and mammalian embryos in particular. Our conclusion from the current literature is that the early mammalian embryos show limited capabilities to react to chromosome segregation defects, which might, at least partially, explain the widespread problem of aneuploidy during the early development in mammals.
Collapse
Affiliation(s)
- Adela Horakova
- Department of Genetics and Reproductive Biotechnologies, Veterinary Research Institute, 621 00 Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Science, 277 21 Libechov, Czech Republic
- Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic
| | - Marketa Konecna
- Department of Genetics and Reproductive Biotechnologies, Veterinary Research Institute, 621 00 Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Science, 277 21 Libechov, Czech Republic
- Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic
| | - Martin Anger
- Department of Genetics and Reproductive Biotechnologies, Veterinary Research Institute, 621 00 Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Science, 277 21 Libechov, Czech Republic
| |
Collapse
|
47
|
Budrewicz J, Chavez SL. Insights into embryonic chromosomal instability: mechanisms of DNA elimination during mammalian preimplantation development. Front Cell Dev Biol 2024; 12:1344092. [PMID: 38374891 PMCID: PMC10875028 DOI: 10.3389/fcell.2024.1344092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/15/2024] [Indexed: 02/21/2024] Open
Abstract
Mammalian preimplantation embryos often contend with aneuploidy that arose either by the inheritance of meiotic errors from the gametes, or from mitotic mis-segregation events that occurred following fertilization. Regardless of the origin, mis-segregated chromosomes become encapsulated in micronuclei (MN) that are spatially isolated from the main nucleus. Much of our knowledge of MN formation comes from dividing somatic cells during tumorigenesis, but the error-prone cleavage-stage of early embryogenesis is fundamentally different. One unique aspect is that cellular fragmentation (CF), whereby small subcellular bodies pinch off embryonic blastomeres, is frequently observed. CF has been detected in both in vitro and in vivo-derived embryos and likely represents a response to chromosome mis-segregation since it only appears after MN formation. There are multiple fates for MN, including sequestration into CFs, but the molecular mechanism(s) by which this occurs remains unclear. Due to nuclear envelope rupture, the chromosomal material contained within MN and CFs becomes susceptible to double stranded-DNA breaks. Despite this damage, embryos may still progress to the blastocyst stage and exclude chromosome-containing CFs, as well as non-dividing aneuploid blastomeres, from participating in further development. Whether these are attempts to rectify MN formation or eliminate embryos with poor implantation potential is unknown and this review will discuss the potential implications of DNA removal by CF/blastomere exclusion. We will also extrapolate what is known about the intracellular pathways mediating MN formation and rupture in somatic cells to preimplantation embryogenesis and how nuclear budding and DNA release into the cytoplasm may impact overall development.
Collapse
Affiliation(s)
- Jacqueline Budrewicz
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, United States
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Shawn L. Chavez
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, United States
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, United States
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR, United States
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
48
|
Wu X, Wang S, Guo Y, Song S, Zeng S. KAT8 functions in redox homeostasis and mitochondrial dynamics during mouse oocyte meiosis progression. FASEB J 2024; 38:e23435. [PMID: 38243686 DOI: 10.1096/fj.202301946r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/11/2023] [Accepted: 01/05/2024] [Indexed: 01/21/2024]
Abstract
As a histone acetyltransferase, lysine acetyltransferase 8 (KAT8) participates in diverse biological processes. However, the effect of KAT8 on oocyte maturation in mice remains unclear. In this study, we found that mouse oocytes overexpressing Kat8-OE induced maturation failure manifested reduced rates of GVBD and first polar body emission. In addition, immunostaining results revealed that Kat8 overexpressing oocytes showed inappropriate mitochondrial distribution patterns, overproduction of reactive oxygen species (ROS), accumulation of phosphorylated γH2AX, hyperacetylation of α-tubulin, and severely disrupted spindle/chromosome organization. Moreover, we revealed that Kat8 overexpression induced a decline in SOD1 proteins and KAT8's interaction with SOD1 in mouse ovaries via immunoprecipitation. Western blotting data confirmed that Kat8-OE induced downregulation of SOD1 expression, which is a key factor for the decline of oocyte quality in advanced maternal age. Also, the injection of Myc-Sod1 cRNA could partially rescue maternal age-induced meiotic defects in oocytes. In conclusion, our data demonstrated that high level of KAT8 inhibited SOD1 activity, which in turn induced defects of mitochondrial dynamics, imbalance of redox homeostasis, and spindle/chromosome disorganization during mouse oocyte maturation.
Collapse
Affiliation(s)
- Xuan Wu
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shiwei Wang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yajun Guo
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuang Song
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shenming Zeng
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
49
|
Yang Q, Chen W, Cong L, Wang M, Li H, Wang H, Luo X, Zhu J, Zeng X, Zhu Z, Xu Y, Lei M, Zhao Y, Wei C, Sun Y. NADase CD38 is a key determinant of ovarian aging. NATURE AGING 2024; 4:110-128. [PMID: 38129670 PMCID: PMC10798903 DOI: 10.1038/s43587-023-00532-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 10/27/2023] [Indexed: 12/23/2023]
Abstract
The ovary ages earlier than most other tissues, yet the underlying mechanisms remain elusive. Here a comprehensive analysis of transcriptomic landscapes in different organs in young and middle-aged mice revealed that the ovaries showed earlier expression of age-associated genes, identifying increased NADase CD38 expression and decreased NAD+ levels in the ovary of middle-aged mice. Bulk and single-cell RNA sequencing revealed that CD38 deletion mitigated ovarian aging, preserving fertility and follicle reserve in aged mice by countering age-related gene expression changes and intercellular communication alterations. Mechanistically, the earlier onset of inflammation induced higher expression levels of CD38 and decreased NAD+ levels in the ovary, thereby accelerating ovarian aging. Consistently, pharmacological inhibition of CD38 enhanced fertility in middle-aged mice. Our findings revealed the mechanisms underlying the earlier aging of the ovary relative to other organs, providing a potential therapeutic target for ameliorating age-related female infertility.
Collapse
Affiliation(s)
- Qingling Yang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Wenhui Chen
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Luping Cong
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengchen Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Li
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huan Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyan Luo
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Zhu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinxin Zeng
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenye Zhu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yining Xu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Min Lei
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanqing Zhao
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chenlu Wei
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingpu Sun
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
50
|
Essers R, Lebedev IN, Kurg A, Fonova EA, Stevens SJC, Koeck RM, von Rango U, Brandts L, Deligiannis SP, Nikitina TV, Sazhenova EA, Tolmacheva EN, Kashevarova AA, Fedotov DA, Demeneva VV, Zhigalina DI, Drozdov GV, Al-Nasiry S, Macville MVE, van den Wijngaard A, Dreesen J, Paulussen A, Hoischen A, Brunner HG, Salumets A, Zamani Esteki M. Prevalence of chromosomal alterations in first-trimester spontaneous pregnancy loss. Nat Med 2023; 29:3233-3242. [PMID: 37996709 PMCID: PMC10719097 DOI: 10.1038/s41591-023-02645-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/11/2023] [Indexed: 11/25/2023]
Abstract
Pregnancy loss is often caused by chromosomal abnormalities of the conceptus. The prevalence of these abnormalities and the allocation of (ab)normal cells in embryonic and placental lineages during intrauterine development remain elusive. In this study, we analyzed 1,745 spontaneous pregnancy losses and found that roughly half (50.4%) of the products of conception (POCs) were karyotypically abnormal, with maternal and paternal age independently contributing to the increased genomic aberration rate. We applied genome haplarithmisis to a subset of 94 pregnancy losses with normal parental and POC karyotypes. Genotyping of parental DNA as well as POC extra-embryonic mesoderm and chorionic villi DNA, representing embryonic and trophoblastic tissues, enabled characterization of the genomic landscape of both lineages. Of these pregnancy losses, 35.1% had chromosomal aberrations not previously detected by karyotyping, increasing the rate of aberrations of pregnancy losses to 67.8% by extrapolation. In contrast to viable pregnancies where mosaic chromosomal abnormalities are often restricted to chorionic villi, such as confined placental mosaicism, we found a higher degree of mosaic chromosomal imbalances in extra-embryonic mesoderm rather than chorionic villi. Our results stress the importance of scrutinizing the full allelic architecture of genomic abnormalities in pregnancy loss to improve clinical management and basic research of this devastating condition.
Collapse
Affiliation(s)
- Rick Essers
- Department of Clinical Genetics, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
- Department of Genetics and Cell Biology, GROW-Research Institute for Oncology and Reproduction, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, The Netherlands
| | - Igor N Lebedev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Ants Kurg
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Elizaveta A Fonova
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Servi J C Stevens
- Department of Clinical Genetics, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
- Department of Genetics and Cell Biology, GROW-Research Institute for Oncology and Reproduction, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, The Netherlands
| | - Rebekka M Koeck
- Department of Clinical Genetics, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
- Department of Genetics and Cell Biology, GROW-Research Institute for Oncology and Reproduction, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, The Netherlands
| | - Ulrike von Rango
- Department of Anatomy & Embryology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, The Netherlands
| | - Lloyd Brandts
- Department of Clinical Epidemiology and Medical Technology Assessment (KEMTA), Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Spyridon Panagiotis Deligiannis
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki, Finland
| | - Tatyana V Nikitina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Elena A Sazhenova
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Ekaterina N Tolmacheva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Anna A Kashevarova
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Dmitry A Fedotov
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Viktoria V Demeneva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Daria I Zhigalina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Gleb V Drozdov
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Salwan Al-Nasiry
- Department of Genetics and Cell Biology, GROW-Research Institute for Oncology and Reproduction, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, The Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Merryn V E Macville
- Department of Clinical Genetics, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
- Department of Genetics and Cell Biology, GROW-Research Institute for Oncology and Reproduction, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, The Netherlands
| | - Arthur van den Wijngaard
- Department of Clinical Genetics, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
- Department of Genetics and Cell Biology, GROW-Research Institute for Oncology and Reproduction, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, The Netherlands
| | - Jos Dreesen
- Department of Clinical Genetics, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Aimee Paulussen
- Department of Clinical Genetics, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
- Department of Genetics and Cell Biology, GROW-Research Institute for Oncology and Reproduction, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, The Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Internal Medicine, Center for Infectious Disease (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Expertise Center for Immunodeficiency and Autoinflammation and Radboud Center for Infectious Disease (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Han G Brunner
- Department of Clinical Genetics, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
- Department of Genetics and Cell Biology, GROW-Research Institute for Oncology and Reproduction, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Andres Salumets
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.
- Competence Center on Health Technologies, Tartu, Estonia.
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention & Technology (CLINTEC), Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| | - Masoud Zamani Esteki
- Department of Clinical Genetics, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands.
- Department of Genetics and Cell Biology, GROW-Research Institute for Oncology and Reproduction, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, The Netherlands.
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention & Technology (CLINTEC), Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|