1
|
Conflitti P, Lyman E, Sansom MSP, Hildebrand PW, Gutiérrez-de-Terán H, Carloni P, Ansell TB, Yuan S, Barth P, Robinson AS, Tate CG, Gloriam D, Grzesiek S, Eddy MT, Prosser S, Limongelli V. Functional dynamics of G protein-coupled receptors reveal new routes for drug discovery. Nat Rev Drug Discov 2025:10.1038/s41573-024-01083-3. [PMID: 39747671 DOI: 10.1038/s41573-024-01083-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 01/04/2025]
Abstract
G protein-coupled receptors (GPCRs) are the largest human membrane protein family that transduce extracellular signals into cellular responses. They are major pharmacological targets, with approximately 26% of marketed drugs targeting GPCRs, primarily at their orthosteric binding site. Despite their prominence, predicting the pharmacological effects of novel GPCR-targeting drugs remains challenging due to the complex functional dynamics of these receptors. Recent advances in X-ray crystallography, cryo-electron microscopy, spectroscopic techniques and molecular simulations have enhanced our understanding of receptor conformational dynamics and ligand interactions with GPCRs. These developments have revealed novel ligand-binding modes, mechanisms of action and druggable pockets. In this Review, we highlight such aspects for recently discovered small-molecule drugs and drug candidates targeting GPCRs, focusing on three categories: allosteric modulators, biased ligands, and bivalent and bitopic compounds. Although studies so far have largely been retrospective, integrating structural data on ligand-induced receptor functional dynamics into the drug discovery pipeline has the potential to guide the identification of drug candidates with specific abilities to modulate GPCR interactions with intracellular effector proteins such as G proteins and β-arrestins, enabling more tailored selectivity and efficacy profiles.
Collapse
Affiliation(s)
- Paolo Conflitti
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Lugano, Switzerland
| | - Edward Lyman
- Department of Physics and Astronomy, University of Delaware, Newark, DE, USA
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Peter W Hildebrand
- Institute of Medical Physics and Biophysics, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Hugo Gutiérrez-de-Terán
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | - Paolo Carloni
- INM-9/IAS-5 Computational Biomedicine, Forschungszentrum Jülich, Jülich, Germany
- Department of Physics, RWTH Aachen University, Aachen, Germany
| | - T Bertie Ansell
- Department of Biochemistry, University of Oxford, Oxford, UK
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Shuguang Yuan
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Patrick Barth
- Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Anne S Robinson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | - David Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark
| | - Stephan Grzesiek
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, Basel, Switzerland
| | - Matthew T Eddy
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL, USA
| | - Scott Prosser
- Department of Chemistry, University of Toronto, Mississauga, Ontario, Canada
| | - Vittorio Limongelli
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Lugano, Switzerland.
| |
Collapse
|
2
|
Incontro S, Musella ML, Sammari M, Di Scala C, Fantini J, Debanne D. Lipids shape brain function through ion channel and receptor modulations: physiological mechanisms and clinical perspectives. Physiol Rev 2025; 105:137-207. [PMID: 38990068 DOI: 10.1152/physrev.00004.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Lipids represent the most abundant molecular type in the brain, with a fat content of ∼60% of the dry brain weight in humans. Despite this fact, little attention has been paid to circumscribe the dynamic role of lipids in brain function and disease. Membrane lipids such as cholesterol, phosphoinositide, sphingolipids, arachidonic acid, and endocannabinoids finely regulate both synaptic receptors and ion channels that ensure critical neural functions. After a brief introduction on brain lipids and their respective properties, we review here their role in regulating synaptic function and ion channel activity, action potential propagation, neuronal development, and functional plasticity and their contribution in the development of neurological and neuropsychiatric diseases. We also provide possible directions for future research on lipid function in brain plasticity and diseases.
Collapse
Affiliation(s)
| | | | - Malika Sammari
- UNIS, INSERM, Aix-Marseille Université, Marseille, France
| | | | | | | |
Collapse
|
3
|
López-Tubau JM, Laibach N, Burciaga-Monge A, Alseekh S, Deng C, Fernie AR, Altabella T, Ferrer A. Differential impact of impaired steryl ester biosynthesis on the metabolome of tomato fruits and seeds. PHYSIOLOGIA PLANTARUM 2025; 177:e70022. [PMID: 39710490 DOI: 10.1111/ppl.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024]
Abstract
Steryl esters (SE) are a storage pool of sterols that accumulates in cytoplasmic lipid droplets and helps to maintain plasma membrane sterol homeostasis throughout plant growth and development. Ester formation in plant SE is catalyzed by phospholipid:sterol acyltransferase (PSAT) and acyl-CoA:sterol acyltransferase (ASAT), which transfer long-chain fatty acid groups to free sterols from phospholipids and acyl-CoA, respectively. Comparative mass spectrometry-based metabolomic analysis between ripe fruits and seeds of a tomato (Solanum lycopersicum cv Micro-Tom) mutant lacking functional PSAT and ASAT enzymes (slasat1xslpsat1) shows that disruption of SE biosynthesis has a differential impact on the metabolome of these organs, including changes in the composition of free and glycosylated sterols. Significant perturbations were observed in the fruit lipidome in contrast to the mild effect detected in the lipidome of seeds. A contrasting response was also observed in phenylpropanoid metabolism, which is down-regulated in fruits and appears to be stimulated in seeds. Comparison of global metabolic changes using volcano plot analysis suggests that disruption of SE biosynthesis favours a general state of metabolic activation that is more evident in seeds than fruits. Interestingly, there is an induction of autophagy in both tissues, which may contribute along with other metabolic changes to the phenotypes of early seed germination and enhanced fruit tolerance to Botrytis cinerea displayed by the slasat1xslpsat1 mutant. The results of this study reveal unreported connections between SE metabolism and the metabolic status of plant cells and lay the basis for further studies aimed at elucidating the mechanisms underlying the observed effects.
Collapse
Affiliation(s)
- Joan Manel López-Tubau
- Plant Synthetic Biology and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Cerdanyola, Barcelona, Spain
| | - Natalie Laibach
- Plant Synthetic Biology and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Cerdanyola, Barcelona, Spain
- Hochshule Rhein-Waal. Faculty of Life Sciences, Rhine-Waal University of Applied Sciences, Kleve, Germany
| | - Alma Burciaga-Monge
- Plant Synthetic Biology and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Cerdanyola, Barcelona, Spain
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Cuiyun Deng
- Plant Synthetic Biology and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Cerdanyola, Barcelona, Spain
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Teresa Altabella
- Plant Synthetic Biology and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Cerdanyola, Barcelona, Spain
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Albert Ferrer
- Plant Synthetic Biology and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Cerdanyola, Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Xu G, Yu J, Liu S, Cai L, Han XX. In situ surface-enhanced Raman spectroscopy for membrane protein analysis and sensing. Biosens Bioelectron 2025; 267:116819. [PMID: 39362137 DOI: 10.1016/j.bios.2024.116819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/08/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
Membrane proteins are involved in a variety of dynamic cellular processes and exploration of the structural basis of membrane proteins is of significance for a better understanding of their functions. In situ analysis of membrane proteins and their dynamics is, however, challenging for conventional techniques. Surface-enhanced Raman spectroscopy (SERS) is powerful in protein structural characterization, allowing for sensitive, in-situ and real-time identification and dynamic monitoring under physiological conditions. In this review, the applications of SERS in probing membrane proteins are outlined, discussed and prospected. It starts with a brief introduction to membrane proteins, SERS theories and SERS-based strategies that commonly-used for membrane proteins. How to assemble phospholipid biolayers on SERS-active materials is highlighted, followed by respectively discussing about direct and indirect strategies for membrane protein sensing. SERS-based monitoring of protein-ligand interactions is finally introduced and its potential in biomedical applications is discussed in detail. The review ends with critical discussion about current challenges and limitations of this research field, and the promising perspectives in both fundamental and applied sciences.
Collapse
Affiliation(s)
- Guangyang Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Jiaheng Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Shiyi Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Linjun Cai
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, 130012, PR China
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
5
|
Cheng D, Guo Y, Lyu J, Liu Y, Xu W, Zheng W, Wang Y, Qiao P. Advances and challenges in preparing membrane proteins for native mass spectrometry. Biotechnol Adv 2025; 78:108483. [PMID: 39571766 DOI: 10.1016/j.biotechadv.2024.108483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/07/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
Native mass spectrometry (nMS) is becoming a crucial tool for analyzing membrane proteins (MPs), yet challenges remain in solubilizing and stabilizing their native conformations while resolving and characterizing the heterogeneity introduced by post-translational modifications and ligand binding. This review highlights recent advancements and persistent challenges in preparing MPs for nMS. Optimizing detergents and additives can significantly reduce sample heterogeneity and surface charge, enhancing MP signal quality and structural preservation in nMS. A strategic workflow incorporating affinity capture, stabilization agents, and size-exclusion chromatography to remove unfolded species demonstrates success in improving nMS characterization. Continued development of customized detergents and reagents tailored for specific MPs may further minimize heterogeneity and boost signals. Instrumental advances are also needed to elucidate more dynamically complex and labile MPs. Effective sample preparation workflows may provide insights into MP structures, dynamics, and interactions underpinning membrane biology. With ongoing methodological innovation, nMS shows promise to complement biophysical studies and facilitate drug discovery targeting this clinically important yet technically demanding protein class.
Collapse
Affiliation(s)
- Di Cheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yi Guo
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Jixing Lyu
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Yang Liu
- Regenxbox In., Rockville, MD 20850, USA
| | - Wenhao Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Weiyi Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yuchen Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Pei Qiao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
6
|
Zhu J, Cao Y, Qin X, Liang Q. Budding of Asymmetric Lipid Bilayers: Effects of Cholesterol, Anionic Lipid, and Electric Field. J Phys Chem B 2024; 128:12741-12751. [PMID: 39670354 DOI: 10.1021/acs.jpcb.4c07782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Membrane budding is vital for various cellular processes such as synaptic activity regulation, vesicle transport and release, and endocytosis/exocytosis. Although protein-mediated membrane budding has been extensively investigated, the effects of the lipid asymmetry of the two leaflets and the asymmetrically electrical environments of the cellular membrane on membrane budding remain elusive. In this work, using coarse-grained molecular dynamics simulations, we systematically investigate the impacts of lipid bilayer asymmetry and external electric fields mimicking the asymmetric membrane potential on the membrane budding. The results show that the differential stress induced by the asymmetric distribution of lipids in the two leaflets is a crucial factor for the membrane budding. The unidirectional flip of cholesterol induced by the membrane curvature and the asymmetric ion adsorption induced by the anionic lipids promote the budding process. Furthermore, the external electric field applied perpendicularly to the bilayer plane increases the transmembrane potential and produces an additional differential stress across the leaflets by imposing an asymmetric torque on the lipid headgroups in the two leaflets, facilitating the membrane budding. These findings offer insights into how the structural and the environmental asymmetry in natural cellular membranes influence membrane budding in cellular processes.
Collapse
Affiliation(s)
- Jin Zhu
- Center for Statistical and Theoretical Condensed Matter Physics & Department of Physics, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Yu Cao
- Center for Statistical and Theoretical Condensed Matter Physics & Department of Physics, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Xiaoxue Qin
- Center for Statistical and Theoretical Condensed Matter Physics & Department of Physics, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Qing Liang
- Center for Statistical and Theoretical Condensed Matter Physics & Department of Physics, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| |
Collapse
|
7
|
Kuyler GC, Barnard E, Sridhar P, Murray RJ, Pollock NL, Wheatley M, Dafforn TR, Klumperman B. Tunable Terpolymer Series for the Systematic Investigation of Membrane Proteins. Biomacromolecules 2024. [PMID: 39725644 DOI: 10.1021/acs.biomac.4c01219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Membrane proteins (MPs) are critical to cellular processes and serve as essential therapeutic targets. However, their isolation and characterization are often impeded by traditional detergent-based methods, which can compromise their native states, and retention of their native lipid environment. Amphiphilic polymers have emerged as effective alternatives, enabling the formation of nanoscale discs that preserve MPs' structural and functional integrity. We introduce a novel series of poly(styrene-co-maleic acid-co-(N-benzyl)maleimide) (BzAM) terpolymers with tunable amphiphilicity, synthesized through controlled polymerization. Designed to mimic and improve upon industry-standard poly(styrene-co-maleic acid), these well-defined terpolymers offer enhanced control over molecular weight and distribution, allowing for systematic evaluation of polymer properties and their effect on membrane solubilization. The BzAM series effectively solubilized membranes and demonstrated a direct correlation between polymer hydrophobicity and solubilization efficiency of bacterial ABC transporter, Sav1866. This research highlights the importance of rational polymer design in MP research and provides a foundation for future developments.
Collapse
Affiliation(s)
- Gestél C Kuyler
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
- Centre for Health and Life Sciences, Coventry University, Coventry CV1 2DS, United Kingdom
| | - Elaine Barnard
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Pooja Sridhar
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Rebecca J Murray
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
- Centre for Health and Life Sciences, Coventry University, Coventry CV1 2DS, United Kingdom
| | - Naomi L Pollock
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Mark Wheatley
- Centre for Health and Life Sciences, Coventry University, Coventry CV1 2DS, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands B15 2TT, United Kingdom
| | - Timothy R Dafforn
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Bert Klumperman
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
8
|
Fontana F, Donato AC, Malik A, Gelain F. Unveiling Interactions between Self-Assembling Peptides and Neuronal Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26811-26823. [PMID: 39653368 DOI: 10.1021/acs.langmuir.4c02050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
The use of self-assembling peptide hydrogels in the treatment of spinal cord and brain injuries, especially when combined with adult neural stem cells, has shown great potential. To advance tissue engineering, it is essential to understand the effect of mechanochemical signaling on cellular differentiation. The elucidation of the molecular interactions at the level of the neuronal membrane still represents a promising area of investigation for many drug delivery and tissue engineering applications. An innovative molecular dynamics framework has been introduced to investigate the effect of SAP fibrils with different charges on neural membrane lipid domain dynamics. Such advance enables the in silico exploration of the biomimetic properties of SAP hydrogels and other polymeric biomaterials for tissue engineering applications.
Collapse
Affiliation(s)
- Federico Fontana
- Center for Nanomedicine and Tissue Engineering (CNTE), A.S.S.T. Grande Ospedale Metropolitano Niguarda, Piazza dell'Ospedale Maggiore 3, Milan 20162, Italy
- Fondazione IRCCS Casa Sollievo della Sofferenza, Unità di Ingegneria Tissutale, Viale Cappuccini 1, San Giovanni Rotondo, Foggia 71013, Italy
| | - Alice Cristina Donato
- Center for Nanomedicine and Tissue Engineering (CNTE), A.S.S.T. Grande Ospedale Metropolitano Niguarda, Piazza dell'Ospedale Maggiore 3, Milan 20162, Italy
- Histology Unit, Department of Molecular Medicine, University of Padova, Padova 35121, Italy
| | - Ashish Malik
- Center for Nanomedicine and Tissue Engineering (CNTE), A.S.S.T. Grande Ospedale Metropolitano Niguarda, Piazza dell'Ospedale Maggiore 3, Milan 20162, Italy
- Fondazione IRCCS Casa Sollievo della Sofferenza, Unità di Ingegneria Tissutale, Viale Cappuccini 1, San Giovanni Rotondo, Foggia 71013, Italy
| | - Fabrizio Gelain
- Center for Nanomedicine and Tissue Engineering (CNTE), A.S.S.T. Grande Ospedale Metropolitano Niguarda, Piazza dell'Ospedale Maggiore 3, Milan 20162, Italy
- Fondazione IRCCS Casa Sollievo della Sofferenza, Unità di Ingegneria Tissutale, Viale Cappuccini 1, San Giovanni Rotondo, Foggia 71013, Italy
| |
Collapse
|
9
|
Nguyen A, Ondrus AE. In Silico Tools to Score and Predict Cholesterol-Protein Interactions. J Med Chem 2024; 67:20765-20775. [PMID: 39616623 DOI: 10.1021/acs.jmedchem.4c01885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Cholesterol is structurally distinct from other lipids, which confers it with singular roles in membrane organization and protein function. As a signaling molecule, cholesterol engages in discrete interactions with transmembrane, peripheral, and certain soluble proteins to control cellular responses. Accordingly, the cholesterol-protein interface is central to cholesterol-related diseases and is an essential consideration in drug design. However, cholesterol's hydrophobic, un-drug-like nature presents a unique challenge to traditional in silico analyses. In this Perspective, we survey a collection of tools designed to predict and evaluate cholesterol binding sites in proteins, including classical sequence motifs, molecular docking, template-based strategies, molecular dynamics simulations, and recent artificial intelligence approaches. We then comment on contemporary tools to evaluate ligand-protein interactions, their applicability to cholesterol, and the yet-untapped potential of cholesterol-protein interactions in human health and disease.
Collapse
Affiliation(s)
- Anna Nguyen
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Alison E Ondrus
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois 60607, United States
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
10
|
Veeramachaneni RJ, Donelan CA, Tomcho KA, Aggarwal S, Lapinsky DJ, Cascio M. Structural studies of the human α 1 glycine receptor via site-specific chemical cross-linking coupled with mass spectrometry. BIOPHYSICAL REPORTS 2024; 4:100184. [PMID: 39393591 PMCID: PMC11550363 DOI: 10.1016/j.bpr.2024.100184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
By identifying distance constraints, chemical cross-linking coupled with mass spectrometry (CX-MS) can be a powerful complementary technique to other structural methods by interrogating macromolecular protein complexes under native-like conditions. In this study, we developed a CX-MS approach to identify the sites of chemical cross-linking from a single targeted location within the human α1 glycine receptor (α1 GlyR) in its apo state. The human α1 GlyR belongs to the family of pentameric ligand-gated ion channel receptors that function in fast neurotransmission. A single chemically reactive cysteine was reintroduced into a Cys null α1 GlyR construct at position 41 within the extracellular domain of human α1 homomeric GlyR overexpressed in a baculoviral system. After purification and reconstitution into vesicles, methanethiosulfonate-benzophenone-alkyne, a heterotrifunctional cross-linker, was site specifically attached to Cys41 via disulfide bond formation. The resting receptor was then subjected to UV photocross-linking. Afterward, monomeric and oligomeric α1 GlyR bands from SDS-PAGE gels were trypsinized and analyzed by tandem MS in bottom-up studies. Dozens of intrasubunit and intersubunit sites of α1 GlyR cross-linking were differentiated and identified from single gel bands of purified protein, showing the utility of this experimental approach to identify a diverse array of distance constraints of the α1 GlyR in its resting state. These studies highlight CX-MS as an experimental approach to identify chemical cross-links within full-length integral membrane protein assemblies in a native-like lipid environment.
Collapse
Affiliation(s)
- Rathna J Veeramachaneni
- Department of Chemistry and Biochemistry, Duquesne University Pittsburgh, Pittsburgh, Pennsylvania
| | - Chelsee A Donelan
- Department of Chemistry and Biochemistry, Duquesne University Pittsburgh, Pittsburgh, Pennsylvania
| | - Kayce A Tomcho
- Department of Chemistry and Biochemistry, Duquesne University Pittsburgh, Pittsburgh, Pennsylvania; Department of Chemistry, Ohio Wesleyan University, Delaware, Ohio
| | - Shaili Aggarwal
- Graduate School of Pharmaceutical Sciences, Duquesne University Pittsburgh, Pittsburgh, Pennsylvania
| | - David J Lapinsky
- Graduate School of Pharmaceutical Sciences, Duquesne University Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael Cascio
- Department of Chemistry and Biochemistry, Duquesne University Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
11
|
Hu JJ, Yang J, Liu Y, Lu G, Zhao Z, Xia F, Lou X. Tuning the affinity of probes with transmembrane proteins by constructing peptide-conjugated cis/ trans isomers based on molecular scaffolds. J Mater Chem B 2024; 12:12523-12529. [PMID: 39494739 DOI: 10.1039/d4tb01801j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
For protein analysis, the current peptide-based probes rely almost on the specific recognition of the protein while neglecting the potential influence of the environment near the protein. Herein, we propose that to achieve high recognition of transmembrane protein integrin αvβ3, the interactions from the membrane substrate could be helpful. Moreover, to guarantee the additive effect of different interactions, the cis and trans isomers of peptide-based probes are distinguished. In detail, we synthesized the peptide-conjugated cis/trans isomers (cis-RTP and trans-RTP) by modifying the Arg-Gly-Asp (RGD)-targeting peptide and palmitic acid-conjugated Arg-Arg-Arg-Arg (Pal-RRRR) peptide to the two ends of the molecular scaffold-tetraphenylethene derivative. Due to the difference in spatial structure, isothermal titration calorimetry and simulation experiments demonstrated that cis-RTP can bind more stably to integrin αvβ3 than trans-RTP. As a result, cis-RTP has shown more excellent properties in inhibiting cell migration and killing cells by regulating actin and extracellular signal-regulated kinase. Unlike the existing probe design for protein, this study provides a concept of microenvironment-helpful recognition and a promising strategy of cis/trans isomers to modulate the interaction between proteins and probes.
Collapse
Affiliation(s)
- Jing-Jing Hu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China.
| | - Juliang Yang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China.
| | - Yiheng Liu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China.
| | - Guangwen Lu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China.
| | - Zujin Zhao
- Department State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China.
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China.
| |
Collapse
|
12
|
Samanta R, Harmalkar A, Prathima P, Gray JJ. Advancing Membrane-Associated Protein Docking with Improved Sampling and Scoring in Rosetta. J Chem Theory Comput 2024; 20:10740-10749. [PMID: 39574325 DOI: 10.1021/acs.jctc.4c00927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The oligomerization of protein macromolecules on cell membranes plays a fundamental role in regulating cellular function. From modulating signal transduction to directing immune response, membrane proteins (MPs) play a crucial role in biological processes and are often the target of many pharmaceutical drugs. Despite their biological relevance, the challenges in experimental determination have hampered the structural availability of membrane proteins and their complexes. Computational docking provides a promising alternative to model membrane protein complex structures. Here, we present Rosetta-MPDock, a flexible transmembrane (TM) protein docking protocol that captures binding-induced conformational changes. Rosetta-MPDock samples large conformational ensembles of flexible monomers and docks them within an implicit membrane environment. We benchmarked this method on 29 TM-protein complexes of variable backbone flexibility. These complexes are classified based on the root-mean-square deviation between the unbound and bound states (RMSDUB) as rigid (RMSDUB < 1.2 Å), moderately flexible (RMSDUB ∈ [1.2, 2.2] Å), and flexible targets (RMSDUB > 2.2 Å). In a local docking scenario, i.e. with membrane protein partners starting ≈10 Å apart embedded in the membrane in their unbound conformations, Rosetta-MPDock successfully predicts the correct interface (success defined as achieving 3 near-native structures in the 5 top-ranked models) for 67% moderately flexible targets and 60% of the highly flexible targets, a substantial improvement from the existing membrane protein docking methods. Further, by integrating AlphaFold2-multimer for structure determination and using Rosetta-MPDock for docking and refinement, we demonstrate improved success rates over the benchmark targets from 64% to 73%. Rosetta-MPDock advances the capabilities for membrane protein complex structure prediction and modeling to tackle key biological questions and elucidate functional mechanisms in the membrane environment. The benchmark set and the code is available for public use at github.com/Graylab/MPDock.
Collapse
Affiliation(s)
- Rituparna Samanta
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Ameya Harmalkar
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Priyamvada Prathima
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jeffrey J Gray
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
13
|
Engberg O, Mathath AV, Döbel V, Frie C, Lemberg MK, Chakraborty D, Huster D. Evaluating the impact of the membrane thickness on the function of the intramembrane protease GlpG. Biophys J 2024; 123:4067-4081. [PMID: 39488732 PMCID: PMC11628809 DOI: 10.1016/j.bpj.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/02/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024] Open
Abstract
Cellular membranes exhibit a huge diversity of lipids and membrane proteins that differ in their properties and chemical structure. Cells organize these molecules into distinct membrane compartments characterized by specific lipid profiles and hydrophobic thicknesses of the respective domains. If a hydrophobic mismatch occurs between a membrane protein and the surrounding lipids, there can be functional consequences such as reduced protein activity. This phenomenon has been extensively studied for single-pass transmembrane proteins, rhodopsin, and small polypeptides such as gramicidin. Here, we investigate the E. coli rhomboid intramembrane protease GlpG as a model to systematically explore the impact of membrane thickness on GlpG activity. We used fully saturated 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine(DMPC) model lipids and altered membrane thickness by varying the cholesterol content. Physical membrane parameters were determined by 2H and 31P NMR spectroscopy and correlated with GlpG activity measurements in the respective host membranes. Differences in bulk and annular lipids as well as alterations in protein structure in the respective host membranes were determined using molecular dynamics simulations. Our findings indicate that GlpG can influence the membrane thickness in DLPC/cholesterol membranes but not in DMPC/cholesterol membranes. Moreover, we observe that GlpG protease activity is reduced in DLPC membranes at low cholesterol content, which was not observed for DMPC. While a change in GlpG activity can already be due to smallest differences in the lipid environment, potentially enabling allosteric regulation of intramembrane proteolysis, there is no overall correlation to cholesterol-mediated lipid bilayer organization and phase behavior. Additional factors such as the influence of cholesterol on membrane bending rigidity and curvature energy need to be considered. In conclusion, the functionality of α-helical membrane proteins such as GlpG relies not only on hydrophobic matching but also on other membrane properties, specific lipid interaction, and the composition of the annular layer.
Collapse
Affiliation(s)
- Oskar Engberg
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Anjana V Mathath
- Biophysical and Computational Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Mangalore, Karnataka, India
| | - Viola Döbel
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Christian Frie
- Center for Biochemistry and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Marius K Lemberg
- Center for Biochemistry and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Debashree Chakraborty
- Biophysical and Computational Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Mangalore, Karnataka, India
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
14
|
Zimmer SE, Giang W, Levental I, Kowalczyk AP. The transmembrane domain of the desmosomal cadherin desmoglein-1 governs lipid raft association to promote desmosome adhesive strength. Mol Biol Cell 2024; 35:ar152. [PMID: 39504468 DOI: 10.1091/mbc.e24-05-0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
Cholesterol- and sphingolipid-enriched domains called lipid rafts are hypothesized to selectively coordinate protein complex assembly within the plasma membrane to regulate cellular functions. Desmosomes are mechanically resilient adhesive junctions that associate with lipid raft membrane domains, yet the mechanisms directing raft association of the desmosomal proteins, particularly the transmembrane desmosomal cadherins, are poorly understood. We identified the desmoglein-1 (DSG1) transmembrane domain (TMD) as a key determinant of desmoglein lipid raft association and designed a panel of DSG1TMD variants to assess the contribution of TMD physicochemical properties (length, bulkiness, and palmitoylation) to DSG1 lipid raft association. Sucrose gradient fractionations revealed that TMD length and bulkiness, but not palmitoylation, govern DSG1 lipid raft association. Further, DSG1 raft association determines plakoglobin recruitment to raft domains. Super-resolution imaging and functional assays uncovered a strong relationship between the efficiency of DSG1TMD lipid raft association and the formation of morphologically and functionally robust desmosomes. Lipid raft association regulated both desmosome assembly dynamics and DSG1 cell surface stability, indicating that DSG1 lipid raft association is required for both desmosome formation and maintenance. These studies identify the biophysical properties of desmoglein transmembrane domains as key determinants of lipid raft association and desmosome adhesive function.
Collapse
Affiliation(s)
- Stephanie E Zimmer
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - William Giang
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903
| | - Andrew P Kowalczyk
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| |
Collapse
|
15
|
Brown C, Ghosh S, McAllister R, Kumar M, Walker G, Sun E, Aman T, Panda A, Kumar S, Li W, Coleman J, Liu Y, Rothman JE, Bhattacharyya M, Gupta K. A proteome-wide quantitative platform for nanoscale spatially resolved extraction of membrane proteins into native nanodiscs. Nat Methods 2024:10.1038/s41592-024-02517-x. [PMID: 39609567 DOI: 10.1038/s41592-024-02517-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 10/16/2024] [Indexed: 11/30/2024]
Abstract
The native membrane environment profoundly influences every aspect of membrane protein (MP) biology. Despite this, the most prevalent method of studying MPs uses detergents to disrupt and remove this vital membrane context, impeding our ability to decipher the local molecular context and its effect. Here we develop a membrane proteome-wide platform that enables rapid spatially resolved extraction of target MPs directly from cellular membranes into native nanodiscs that maintain the local membrane context, using a library of membrane-active polymers. We accompany this with an open-access database that quantifies the polymer-specific extraction efficiency for 2,065 unique mammalian MPs and provides the most optimized extraction condition for each. To validate, we demonstrate how this resource can enable rapid extraction and purification of target MPs from different organellar membranes with high efficiency and purity. Further, we show how the database can be extended to capture overexpressed multiprotein complexes by taking two synaptic vesicle MPs. We expect these publicly available resources to empower researchers across disciplines to efficiently capture membrane 'nano-scoops' containing a target MP and interface with structural, functional and bioanalytical approaches.
Collapse
Affiliation(s)
- Caroline Brown
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD, USA
| | - Snehasish Ghosh
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD, USA
| | - Rachel McAllister
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Mukesh Kumar
- F.M. Kirby Neurobiology Center, Department of Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Cell Signaling Technology, Danvers, MA, USA
| | - Gerard Walker
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Eric Sun
- Nanobiology Institute, Yale University, West Haven, CT, USA
| | - Talat Aman
- Nanobiology Institute, Yale University, West Haven, CT, USA
| | - Aniruddha Panda
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Shailesh Kumar
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Wenxue Li
- Department of Pharmacology, Yale University, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Jeff Coleman
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Yansheng Liu
- Department of Pharmacology, Yale University, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - James E Rothman
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Kallol Gupta
- Nanobiology Institute, Yale University, West Haven, CT, USA.
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
16
|
Ma Z, Nang SC, Liu Z, Zhu J, Mu K, Xu L, Xiao M, Wang L, Li J, Jiang X. Membrane lipid homeostasis dually regulates conformational transition of phosphoethanolamine transferase EptA. Nat Commun 2024; 15:10166. [PMID: 39580503 PMCID: PMC11585620 DOI: 10.1038/s41467-024-54607-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024] Open
Abstract
The phosphoethanolamine transferase EptA utilizes phosphatidylethanolamine (PE) in the bacterial cell membrane to modify the structure of lipopolysaccharide, thereby conferring antimicrobial resistance on Gram-negative pathogens. Previous studies have indicated that excessive consumption of PE can disrupt the cell membrane, leading to cell death. This implies the presence of a regulatory mechanism for EptA catalysis to maintain a balance between antimicrobial resistance and bacterial growth. Through microsecond-scale all-atom molecular dynamics simulations, we demonstrate that membrane lipid homeostasis modulates the conformational transition and catalytic activation of EptA. The conformation of EptA oscillates between closed and open states, ensuring the precise spatiotemporal sequence of substrates binding. Interestingly, the conformation of EptA is significantly influenced by its surrounding lipid microenvironment, particularly the PE proportion in the membrane. PE-rich membrane conditions initiate and stabilize the open conformation of EptA through both orthosteric and allosteric effects. Importantly, the reaction mediated by EptA gradually depletes PE in the membrane, ultimately hindering its conformational transition and catalytic activation. These findings collectively establish a self-promoted model, illustrating the regulatory mechanism of EptA during the development of antibiotic resistance.
Collapse
Affiliation(s)
- Zhenyu Ma
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Sue C Nang
- Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Zhuo Liu
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Jingyi Zhu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Kaijie Mu
- Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Limei Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Min Xiao
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jian Li
- Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
| | - Xukai Jiang
- National Glycoengineering Research Center, Shandong University, Qingdao, China.
| |
Collapse
|
17
|
Handlin LJ, Macchi NL, Dumaire NLA, Salih L, Lessie EN, McCommis KS, Moutal A, Dai G. Membrane lipid nanodomains modulate HCN pacemaker channels in nociceptor DRG neurons. Nat Commun 2024; 15:9898. [PMID: 39548079 PMCID: PMC11568329 DOI: 10.1038/s41467-024-54053-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Cell membranes consist of heterogeneous lipid nanodomains that influence key cellular processes. Using FRET-based fluorescent assays and fluorescence lifetime imaging microscopy (FLIM), we find that the dimension of cholesterol-enriched ordered membrane domains (OMD) varies considerably, depending on specific cell types. Particularly, nociceptor dorsal root ganglion (DRG) neurons exhibit large OMDs. Disruption of OMDs potentiated action potential firing in nociceptor DRG neurons and facilitated the opening of native hyperpolarization-activated cyclic nucleotide-gated (HCN) pacemaker channels. This increased neuronal firing is partially due to an increased open probability and altered gating kinetics of HCN channels. The gating effect on HCN channels is likely due to a direct modulation of their voltage sensors by OMDs. In animal models of neuropathic pain, we observe reduced OMD size and a loss of HCN channel localization within OMDs. Additionally, cholesterol supplementation inhibited HCN channels and reduced neuronal hyperexcitability in pain models. These findings suggest that disturbances in lipid nanodomains play a critical role in regulating HCN channels within nociceptor DRG neurons, influencing pain modulation.
Collapse
Affiliation(s)
- Lucas J Handlin
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Natalie L Macchi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Nicolas L A Dumaire
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Lyuba Salih
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Erin N Lessie
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Kyle S McCommis
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Aubin Moutal
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Gucan Dai
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, USA.
| |
Collapse
|
18
|
Kwon S, Majumder A, Straub JE. Exploring Free Energy Landscapes for Protein Partitioning into Membrane Domains in All-Atom and Coarse-Grained Simulations. J Chem Theory Comput 2024; 20:9687-9698. [PMID: 39484915 DOI: 10.1021/acs.jctc.4c00881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
It is known that membrane environment can impact the structure and function of integral membrane proteins. As such, elucidation of the thermodynamic driving forces governing protein partitioning between membrane domains of varying lipid composition is a fundamental topic in membrane biophysics. Molecular dynamics simulations provide valuable tools for quantitatively characterizing the free energy landscapes governing protein partitioning at the molecular level. In this study, we propose an efficient simulation methodology for the calculation of free energies for the partitioning of transmembrane proteins between liquid-disorder (Ld) and liquid-ordered (Lo) domains in all-atom (AA) phase-separated lipid bilayers. The computed potential of mean force defining the equilibrium partition coefficients is compared for AA and coarse-grained systems. Energy decomposition is used to identify differences in the underlying thermodynamics. Our findings highlight the importance of employing AA models to accurately estimate relevant free energy changes during protein translation between membrane domains.
Collapse
Affiliation(s)
- Seulki Kwon
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Ayan Majumder
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - John E Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
19
|
Yao Z, Shangguan H, Xie W, Liu J, He S, Huang H, Li F, Chen J, Zhan Y, Wu X, Dai Y, Pei Y, Wang Z, Zhang G. SIPSC-Kac: Integrating swarm intelligence and protein spatial characteristics for enhanced lysine acetylation site identification. Int J Biol Macromol 2024; 282:137237. [PMID: 39515694 DOI: 10.1016/j.ijbiomac.2024.137237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/27/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Elucidation of post-translational modifications (PTMs), such as lysine acetylation (Kac), is crucial for understanding protein function and regulation. Although traditional experimental methods for identifying Kac sites are accurate, they are time-consuming and costly, leading to incomplete acetylome mapping. Computational approaches, particularly those incorporating machine learning, offer a rapid alternative, but face challenges owing to dataset imbalance, limited feature space, and the need for more effective feature-selection algorithms. To address these challenges, we present SIPSC-Kac, a novel computational method that integrates swarm intelligence algorithms with protein spatial characteristics to enhance the prediction of Kac sites. We used the AlphaFold system for spatial feature extraction and employed swarm intelligence for optimal feature selection, outperforming existing methods in terms of accuracy and computational efficiency. SIPSC-Kac demonstrated superior performance across multiple bacterial species, which was validated by its high performance in evaluation metrics. Our web server provides researchers with a user-friendly platform for Kac site prediction, thereby contributing to the advancement of bioinformatics and proteomic research. The SIPSC-Kac code and web server are accessible, thereby promoting broad applications in the scientific community.
Collapse
Affiliation(s)
- Zhaomin Yao
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China; College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning 110167, China
| | - Haonan Shangguan
- College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning 110167, China
| | - Weiming Xie
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China; College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning 110167, China
| | - Jiahao Liu
- School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Sinuo He
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Hexin Huang
- School of Business Administration, Northeastern University, Shenyang, Liaoning 110167, China
| | - Fei Li
- College of Computer Science and Technology, Jilin University, Changchun, Jilin 130012, China
| | - Jiaming Chen
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China; College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning 110167, China
| | - Ying Zhan
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China; College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning 110167, China
| | - Xiaodan Wu
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Yingxin Dai
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China; College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning 110167, China
| | - Yusong Pei
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Zhiguo Wang
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China; College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning 110167, China.
| | - Guoxu Zhang
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China; College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning 110167, China.
| |
Collapse
|
20
|
Bukhdruker S, Melnikov I, Baeken C, Balandin T, Gordeliy V. Crystallographic insights into lipid-membrane protein interactions in microbial rhodopsins. Front Mol Biosci 2024; 11:1503709. [PMID: 39606035 PMCID: PMC11599742 DOI: 10.3389/fmolb.2024.1503709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
The primary goal of our work is to provide structural insights into the influence of the hydrophobic lipid environment on the membrane proteins (MPs) structure and function. Our work will not cover the well-studied hydrophobic mismatch between the lipid bilayer and MPs. Instead, we will focus on the less-studied direct molecular interactions of lipids with the hydrophobic surfaces of MPs. To visualize the first layer of amphiphiles surrounding MPs and analyze their interaction with the proteins, we use the available highest-quality crystallographic structures of microbial rhodopsins. The results of the structure-based analysis allowed us to formulate the hypothetical concept of the role of the nearest layer of the lipids as an integral part of the MPs that are important for their structure and function. We then discuss how the lipid-MPs interaction is influenced by exogenous hydrophobic molecules, noble gases, which can compete with lipids for the surface of MPs and can be used in the systematic approach to verify the proposed concept experimentally. Finally, we raise the problems of currently available structural data that should be overcome to obtain a more profound picture of the lipid-MP interactions.
Collapse
Affiliation(s)
- S. Bukhdruker
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble, France
| | - I. Melnikov
- Structural Biology Group, European Synchrotron Radiation Facility, Grenoble, France
| | - C. Baeken
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - T. Balandin
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - V. Gordeliy
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble, France
| |
Collapse
|
21
|
Insausti S, Ramos-Caballero A, Wiley B, González-Resines S, Torralba J, Elizaga-Lara A, Shamblin C, Ojida A, Caaveiro JMM, Zwick MB, Rujas E, Domene C, Nieva JL. Generation of a Nonbilayer Lipid Nanoenvironment after Epitope Binding Potentiates Neutralizing HIV-1 MPER Antibody. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59934-59948. [PMID: 39446590 PMCID: PMC11551957 DOI: 10.1021/acsami.4c13353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
Establishment of interactions with the envelope lipids is a cardinal feature of broadly neutralizing antibodies (bnAbs) that recognize the Env membrane-proximal external region (MPER) of HIV. The lipid envelope constitutes a relevant component of the full "quinary" MPER epitope, and thus antibodies may be optimized through engineering their capacity to interact with lipids. However, the role of the chemically complex lipid nanoenvironment in the mechanism of MPER molecular recognition and viral neutralization remains poorly understood. To approach this issue, we computationally and experimentally investigated lipid interactions of broadly neutralizing antibody 10E8 and optimized versions engineered to enhance their epitope and membrane affinity by grafting bulky aromatic compounds. Our data revealed a correlation between neutralization potency and the establishment of favorable interactions with small headgroup lipids cholesterol and phosphatidylethanolamine, evolving after specific engagement with MPER. Molecular dynamics simulations of chemically modified Fabs in complex with an MPER-Transmembrane Domain helix supported the generation of a nanoenvironment causing localized deformation of the thick, rigid viral membrane and identified sphingomyelin preferentially occupying a phospholipid-binding site of 10E8. Together, these interactions appear to facilitate insertion of the Fabs through their engagement with the MPER epitope. These findings implicate individual lipid molecules in the neutralization function of MPER bnAbs, validate targeted chemical modification as a method to optimize MPER antibodies, and suggest pathways for MPER peptide-liposome vaccine development.
Collapse
Affiliation(s)
- Sara Insausti
- Instituto
Biofisika (CSIC, UPV/EHU), University of
the Basque Country (UPV/EHU), P.O. Box 644, Bilbao 48080, Spain
- Department
of Biochemistry and Molecular Biology, University
of the Basque Country (UPV/EHU), P.O.
Box 644, Bilbao 48080, Spain
| | - Ander Ramos-Caballero
- Instituto
Biofisika (CSIC, UPV/EHU), University of
the Basque Country (UPV/EHU), P.O. Box 644, Bilbao 48080, Spain
| | - Brian Wiley
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AX, United Kingdom
| | - Saul González-Resines
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AX, United Kingdom
| | - Johana Torralba
- Instituto
Biofisika (CSIC, UPV/EHU), University of
the Basque Country (UPV/EHU), P.O. Box 644, Bilbao 48080, Spain
- Department
of Biochemistry and Molecular Biology, University
of the Basque Country (UPV/EHU), P.O.
Box 644, Bilbao 48080, Spain
| | - Anne Elizaga-Lara
- Instituto
Biofisika (CSIC, UPV/EHU), University of
the Basque Country (UPV/EHU), P.O. Box 644, Bilbao 48080, Spain
- Department
of Biochemistry and Molecular Biology, University
of the Basque Country (UPV/EHU), P.O.
Box 644, Bilbao 48080, Spain
| | - Christine Shamblin
- Department
of Immunology and Microbiology, The Scripps
Research Institute, La Jolla, California 92037, United States
| | - Akio Ojida
- Department
of Chemical Biology, School of Pharmaceutical Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Jose M. M. Caaveiro
- Laboratory
of Protein Drug Discovery, School of Pharmaceutical Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Michael B. Zwick
- Department
of Immunology and Microbiology, The Scripps
Research Institute, La Jolla, California 92037, United States
| | - Edurne Rujas
- Instituto
Biofisika (CSIC, UPV/EHU), University of
the Basque Country (UPV/EHU), P.O. Box 644, Bilbao 48080, Spain
- Department
of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria 01006, Spain
- Basque
Foundation for Science, Ikerbasque, Bilbao48013, Spain
| | - Carmen Domene
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AX, United Kingdom
| | - José L. Nieva
- Instituto
Biofisika (CSIC, UPV/EHU), University of
the Basque Country (UPV/EHU), P.O. Box 644, Bilbao 48080, Spain
- Department
of Biochemistry and Molecular Biology, University
of the Basque Country (UPV/EHU), P.O.
Box 644, Bilbao 48080, Spain
| |
Collapse
|
22
|
Tang B, Kang W, Dong Q, Qin Z, Duan L, Zhao X, Yuan G, Pan Y. Research progress on S-palmitoylation modification mediated by the ZDHHC family in glioblastoma. Front Cell Dev Biol 2024; 12:1413708. [PMID: 39563863 PMCID: PMC11573772 DOI: 10.3389/fcell.2024.1413708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 10/18/2024] [Indexed: 11/21/2024] Open
Abstract
S-Palmitoylation has been widely noticed and studied in a variety of diseases. Increasing evidence suggests that S-palmitoylation modification also plays a key role in Glioblastoma (GBM). The zDHHC family, as an important member of S-palmitoyltransferases, has received extensive attention for its function and mechanism in GBM which is one of the most common primary malignant tumors of the brain and has an adverse prognosis. This review focuses on the zDHHC family, essential S-palmitoyltransferases, and their involvement in GBM. By summarizing recent studies on zDHHC molecules in GBM, we highlight their significance in regulating critical processes such as cell proliferation, invasion, and apoptosis. Specifically, members of zDHHC3, zDHHC4, zDHHC5 and others affect key processes such as signal transduction and phenotypic transformation in GBM cells through different pathways, which in turn influence tumorigenesis and progression. This review systematically outlines the mechanism of zDHHC family-mediated S-palmitoylation modification in GBM, emphasizes its importance in the development of this disease, and provides potential targets and strategies for the treatment of GBM. It also offers theoretical foundations and insights for future research and clinical applications.
Collapse
Affiliation(s)
- Beiyan Tang
- The Second Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Wei Kang
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Qiang Dong
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Zhenwei Qin
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Lei Duan
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xianjun Zhao
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Guoqiang Yuan
- Key Laboratory of Neurology of Gansu Province, Lanzhou University, Lanzhou, Gansu, China
- Academician Workstation, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yawen Pan
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University, Lanzhou, Gansu, China
- Academician Workstation, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
23
|
Kontiza A, Gerichten JV, Saunders KDG, Spick M, Whetton AD, Newman CF, Bailey MJ. Single-Cell Lipidomics: An Automated and Accessible Microfluidic Workflow Validated by Capillary Sampling. Anal Chem 2024; 96:17594-17601. [PMID: 39460701 PMCID: PMC11541894 DOI: 10.1021/acs.analchem.4c03435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/04/2024] [Accepted: 10/23/2024] [Indexed: 10/28/2024]
Abstract
We report the first demonstration of a microfluidics-based approach to measure lipids in single living cells using widely available liquid chromatography mass spectrometry (LC-MS) instrumentation. The method enables the rapid sorting of live cells into liquid chambers formed on standard Petri dishes and their subsequent dispensing into vials for analysis using LC-MS. This approach facilitates automated sampling, data acquisition, and analysis and carries the additional advantage of chromatographic separation, aimed at reducing matrix effects present in shotgun lipidomics approaches. We demonstrate that our method detects comparable numbers of features at around 200 lipids in populations of single cells versus established live single-cell capillary sampling methods and with greater throughput, albeit with the loss of spatial resolution. We also show the importance of optimization steps in addressing challenges from lipid contamination, especially in blanks, and demonstrate a 75% increase in the number of lipids identified. This work opens up a novel, accessible, and high-throughput way to obtain single-cell lipid profiles and also serves as an important validation of single-cell lipidomics through the use of different sampling methods.
Collapse
Affiliation(s)
- Anastasia Kontiza
- School
of Chemistry and Chemical Engineering, Faculty of Engineering and
Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Johanna von Gerichten
- School
of Chemistry and Chemical Engineering, Faculty of Engineering and
Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Kyle D. G. Saunders
- School
of Chemistry and Chemical Engineering, Faculty of Engineering and
Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Matt Spick
- School
of Health Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Anthony D. Whetton
- vHive,
School of Veterinary Medicine, School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Carla F. Newman
- Cellular
Imaging and Dynamics, GlaxoSmithKline, Stevenage SG1 2NY, United Kingdom
| | - Melanie J. Bailey
- School
of Chemistry and Chemical Engineering, Faculty of Engineering and
Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| |
Collapse
|
24
|
Zhu K, Han Y, Jian Y, Jiang G, Lu D, Liu Z. Anionic cardiolipin stabilizes the transmembrane region of hyaluronan synthase and promotes catalysis-relevant dynamics. Arch Biochem Biophys 2024; 761:110165. [PMID: 39332577 DOI: 10.1016/j.abb.2024.110165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Hyaluronic acid (HA) is a glycosaminoglycan essential for cellular processes and finding increasingly applications in medicine, pharmaceuticals, and cosmetics. While membrane-integrated Class I hyaluronan synthase (HAS) catalyzes HA synthesis in most organisms, the molecular mechanisms by which HAS-lipid interactions impact HAS catalysis remain unclear. This study employed coarse-grained molecular dynamics simulation combined with dimensionality reduction to uncover the interplay between lipids and Streptococcus equisimilis HAS (SeHAS). A minimum of 67 % cardiolipin is necessary for HA synthesis, as determined through simulations using gradient-composed membranes. The anionic cardiolipin stabilizes the cationic transmembrane regions of SeHAS and thereby maintains its conformation. Moreover, the highly dynamic cardiolipin is required to modulate the catalysis-relevant motions in HAS and thus facilitate HA synthesis. These findings provide molecular insights essential not only for understanding the physiological functions of HAS, but also for the development of cell factories and enzyme catalysts for HA production.
Collapse
Affiliation(s)
- Kaiyi Zhu
- Key Lab of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yilei Han
- Key Lab of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yupei Jian
- Key Lab of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Guoqiang Jiang
- Key Lab of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Diannan Lu
- Key Lab of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zheng Liu
- Key Lab of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
25
|
Zhang H, Li Y, Huang J, Shen L, Xiong Y. Precise targeting of lipid metabolism in the era of immuno-oncology and the latest advances in nano-based drug delivery systems for cancer therapy. Acta Pharm Sin B 2024; 14:4717-4737. [PMID: 39664426 PMCID: PMC11628863 DOI: 10.1016/j.apsb.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 12/13/2024] Open
Abstract
Over the past decade, research has increasingly identified unique dysregulations in lipid metabolism within the tumor microenvironment (TME). Lipids, diverse biomolecules, not only constitute biological membranes but also function as signaling molecules and energy sources. Enhanced synthesis or uptake of lipids in the TME significantly promotes tumorigenesis and proliferation. Moreover, lipids secreted into the TME influence tumor-resident immune cells (TRICs), thereby aiding tumor survival against chemotherapy and immunotherapy. This review aims to highlight recent advancements in understanding lipid metabolism in both tumor cells and TRICs, with a particular emphasis on exogenous lipid uptake and endogenous lipid de novo synthesis. Targeting lipid metabolism for intervention in anticancer therapies offers a promising therapeutic avenue for cancer treatment. Nano-drug delivery systems (NDDSs) have emerged as a means to maximize anti-tumor effects by rewiring tumor metabolism. This review provides a comprehensive overview of recent literature on the development of NDDSs targeting tumor lipid metabolism, particularly in the context of tumor immunotherapy. It covers four key aspects: reprogramming lipid uptake, reprogramming lipolysis, reshaping fatty acid oxidation (FAO), and reshuffling lipid composition on the cell membrane. The review concludes with a discussion of future prospects and challenges in this burgeoning field of research.
Collapse
Affiliation(s)
- Hongyan Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yujie Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jingyi Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Limei Shen
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Yang Xiong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
26
|
Morihara H, Yokoe S, Wakabayashi S, Takai S. TMEM182 inhibits myocardial differentiation of human iPS cells by maintaining the activated state of Wnt/β-catenin signaling through an increase in ILK expression. FASEB Bioadv 2024; 6:565-579. [PMID: 39512841 PMCID: PMC11539028 DOI: 10.1096/fba.2024-00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/19/2024] [Accepted: 10/04/2024] [Indexed: 11/15/2024] Open
Abstract
Transmembrane protein 182 (TMEM182) is notably abundant in muscle and adipose tissue, but its role in the heart remains unknown. This study examined the contribution of TMEM182 in the differentiation of human induced pluripotent stem cells (hiPSCs) into cardiomyocytes. For this, we generated hiPSCs overexpressing TMEM182 in a doxycycline-inducible manner and induced their differentiation into cardiomyocytes. On Day 12 of differentiation, expression of the cardiomyocyte markers, TNNT2 and MYH6, was significantly decreased in TMEM182-overexpressing cells. Additionally, we found that phosphorylation of GSK-3β (Ser9) and β-catenin (Ser552) was increased during TMEM182 overexpression, suggesting activation of Wnt/β-catenin signaling. We further focused on integrin-linked kinase (ILK) as the mechanism by which TMEM182 activates Wnt/β-catenin signaling. Evaluation showed that ILK expression was increased in cells overexpressing TMEM182. These results suggest that TMEM182 maintains Wnt/β-catenin signaling in an activated state after mesoderm formation by increasing ILK expression, thereby suppressing hiPSCs differentiation into cardiomyocytes.
Collapse
Affiliation(s)
- Hirofumi Morihara
- Department of Pharmacology, Faculty of MedicineOsaka Medical and Pharmaceutical UniversityTakatsukiJapan
| | - Shunichi Yokoe
- Department of Pharmacology, Faculty of MedicineOsaka Medical and Pharmaceutical UniversityTakatsukiJapan
| | - Shigeo Wakabayashi
- Department of Pharmacology, Faculty of MedicineOsaka Medical and Pharmaceutical UniversityTakatsukiJapan
- Department of Nursing, Faculty of Health SciencesOsaka Aoyama UniversityMinohJapan
| | - Shinji Takai
- Department of Pharmacology, Faculty of MedicineOsaka Medical and Pharmaceutical UniversityTakatsukiJapan
- Department of Innovative Medicine, Graduate School of MedicineOsaka Medical and Pharmaceutical UniversityTakatsukiJapan
| |
Collapse
|
27
|
Jang W, Haucke V. ER remodeling via lipid metabolism. Trends Cell Biol 2024; 34:942-954. [PMID: 38395735 DOI: 10.1016/j.tcb.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/22/2023] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Unlike most other organelles found in multiple copies, the endoplasmic reticulum (ER) is a unique singular organelle within eukaryotic cells. Despite its continuous membrane structure, encompassing more than half of the cellular endomembrane system, the ER is subdivided into specialized sub-compartments, including morphological, membrane contact site (MCS), and de novo organelle biogenesis domains. In this review, we discuss recent emerging evidence indicating that, in response to nutrient stress, cells undergo a reorganization of these sub-compartmental ER domains through two main mechanisms: non-destructive remodeling of morphological ER domains via regulation of MCS and organelle hitchhiking, and destructive remodeling of specialized domains by ER-phagy. We further highlight and propose a critical role of membrane lipid metabolism in this ER remodeling during starvation.
Collapse
Affiliation(s)
- Wonyul Jang
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany; Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
28
|
Xu G, Zhu J, Song L, Li W, Tang J, Cai L, Han XX. Immobilization of Membrane-Associated Protein Complexes on SERS-Active Nanomaterials for Structural and Dynamic Characterization. NANO LETTERS 2024; 24:13843-13850. [PMID: 39423236 DOI: 10.1021/acs.nanolett.4c04423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Exploring the structural basis of membrane proteins is significant for a deeper understanding of protein functions. In situ analysis of membrane proteins and their dynamics, however, still challenges conventional techniques. Here we report the first attempt to immobilize membrane protein complexes on surface-enhanced Raman scattering (SERS)-active supports, titanium dioxide-coated silver (Ag@TiO2) nanoparticles. Biocompatible immobilization of microsomal monooxygenase complexes is achieved through lipid fission and fusion. SERS activity of the Ag@TiO2 nanoparticles enables in situ monitoring of protein-protein electron transfer and enzyme catalysis in real time. Through SERS fingerprints of the monooxygenase redox centers, the correlations between these protein-ligand interactions and reactive oxygen species generation are revealed, providing novel insights into the molecular mechanisms underlying monooxygenase-mediated apoptotic regulation. This study offers a novel strategy to explore structure-function relationships of membrane protein complexes and has the potential to advance the development of novel reactive oxygen species-inducing drugs for cancer therapy.
Collapse
Affiliation(s)
- Guangyang Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jinyu Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Li Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jinping Tang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Linjun Cai
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, P. R. China
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
29
|
Volovik MV, Batishchev OV. Viral fingerprints of the ion channel evolution: compromise of complexity and function. J Biomol Struct Dyn 2024:1-20. [PMID: 39365745 DOI: 10.1080/07391102.2024.2411523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/29/2024] [Indexed: 10/06/2024]
Abstract
Evolution from precellular supramolecular assemblies to cellular world originated from the ability to make a barrier between the interior of the cell and the outer environment. This step resulted from the possibility to form a membrane, which preserves the cell like a wall of the castle. However, every castle needs gates for trading, i.e. in the case of cell, for controlled exchange of substances. These 'gates' should have the mechanism of opening and closing, guards, entry rules, and so on. Different structures are known to be able to make membrane permeable to various substances, from ions to macromolecules. They are amphipathic peptides, their assemblies, sophisticated membrane channels with numerous transmembrane domains, etc. Upon evolving, cellular world preserved and selected many variants, which, finally, have provided both prokaryotes and eukaryotes with highly selective and regulated ion channels. However, various simpler variants of ion channels are found in viruses. Despite the origin of viruses is still under debates, they have evolved parallelly with the cellular forms of life. Being initial form of the enveloped organisms, reduction of protocells or their escaped parts, viruses might be fingerprints of the evolutionary steps of cellular structures like ion channels. Therefore, viroporins may provide us a necessary information about selection between high functionality and less complex structure in supporting all the requirements for controlled membrane permeability. In this review we tried to elucidate these compromises and show the possible way of the evolution of ion channels, from peptides to complex multi-subunit structures, basing on viral examples.
Collapse
Affiliation(s)
- Marta V Volovik
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Oleg V Batishchev
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
30
|
Poudel B, Vanegas JM. Structural Rearrangement of the AT1 Receptor Modulated by Membrane Thickness and Tension. J Phys Chem B 2024; 128:9470-9481. [PMID: 39298653 DOI: 10.1021/acs.jpcb.4c03325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Membrane-embedded mechanosensitive (MS) proteins, including ion channels and G-protein coupled receptors (GPCRs), are essential for the transduction of external mechanical stimuli into biological signals. The angiotensin II type 1 (AT1) receptor plays many important roles in cardiovascular regulation and is associated with diseases such as hypertension and congestive heart failure. The membrane-mediated activation of the AT1 receptor is not well understood, despite this being one of the most widely studied GPCRs within the context of biased agonism. Here, we use extensive molecular dynamics (MD) simulations to characterize the effect of the local membrane environment on the activation of the AT1 receptor. We show that membrane thickness plays an important role in the stability of active and inactive states of the receptor, as well as the dynamic interchange between states. Furthermore, our simulation results show that membrane tension is effective in driving large-scale structural changes in the inactive state such as the outward movement of transmembrane helix 6 to stabilize intermediate active-like conformations. We conclude by comparing our simulation observations with AlphaFold 2 predictions, as a proxy to experimental structures, to provide a framework for how membrane mediated stimuli can facilitate activation of the AT1 receptor through the β-arrestin signaling pathway.
Collapse
Affiliation(s)
- Bharat Poudel
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Juan M Vanegas
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
31
|
Białek W, Hryniewicz-Jankowska A, Czechowicz P, Sławski J, Collawn JF, Czogalla A, Bartoszewski R. The lipid side of unfolded protein response. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159515. [PMID: 38844203 DOI: 10.1016/j.bbalip.2024.159515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/16/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
Although our current knowledge of the molecular crosstalk between the ER stress, the unfolded protein response (UPR), and lipid homeostasis remains limited, there is increasing evidence that dysregulation of either protein or lipid homeostasis profoundly affects the other. Most research regarding UPR signaling in human diseases has focused on the causes and consequences of disrupted protein folding. The UPR itself consists of very complex pathways that function to not only maintain protein homeostasis, but just as importantly, modulate lipid biogenesis to allow the ER to adjust and promote cell survival. Lipid dysregulation is known to activate many aspects of the UPR, but the complexity of this crosstalk remains a major research barrier. ER lipid disequilibrium and lipotoxicity are known to be important contributors to numerous human pathologies, including insulin resistance, liver disease, cardiovascular diseases, neurodegenerative diseases, and cancer. Despite their medical significance and continuous research, however, the molecular mechanisms that modulate lipid synthesis during ER stress conditions, and their impact on cell fate decisions, remain poorly understood. Here we summarize the current view on crosstalk and connections between altered lipid metabolism, ER stress, and the UPR.
Collapse
Affiliation(s)
- Wojciech Białek
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | | | - Paulina Czechowicz
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Jakub Sławski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Rafał Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| |
Collapse
|
32
|
Iyer SS, Srivastava A. Membrane lateral organization from potential energy disconnectivity graph. Biophys Chem 2024; 313:107284. [PMID: 39002248 DOI: 10.1016/j.bpc.2024.107284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/15/2024]
Abstract
Understanding the thermodynamic and kinetic properties of biomolecules requires elucidation of their complex energy landscape. A disconnectivity graph analysis of the energy landscape provides a framework for mapping the multi-dimensional landscape onto a two-dimensional representation while preserving the key features of the energy landscape. Several studies show that the structure or shape of the disconnectity graph is directly associated with the function of protein and nucleic acid molecules. In this review, we discuss how disconnectivity analysis of the potential energy surface can be extended to lipid molecules to glean important information about membrane organization. The shape of the disconnectivity graphs can be used to predict the lateral organization of multi-component lipid bilayer. We hope that this review encourages the use of disconnectivity graphs routinely by membrane biophysicists to predict the lateral organization of lipids.
Collapse
Affiliation(s)
| | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science Bangalore, C. V. Raman Road, Bangalore, Karnataka 560012, India.
| |
Collapse
|
33
|
Zhang C, Feng Y, Calderin JD, Balutowski A, Ahmed R, Knapp C, Fratti RA. Lysophospholipid headgroup size, and acyl chain length and saturation differentially affect vacuole acidification, Ca 2+ transport, and fusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615487. [PMID: 39386589 PMCID: PMC11463366 DOI: 10.1101/2024.09.27.615487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
SNARE-mediated membrane fusion is regulated by the lipid composition of the engaged bilayers. Lipid composition impacts fusion through direct protein lipid interactions or through modulating the physical properties of membranes at the site of contact, including the induction of positive curvature by lysophospholipids (LPLs). The degree of positive curvature induced is due to the length and saturation of the single acyl chain in addition to the size of the head group. Here we examined how yeast vacuole fusion and ion transport were differentially affected by changes in lysolipid properties. We found that lysophosphatidylcholine (LPC) with acyl chains containing 14-18 carbons all inhibited fusion with IC 50 values ranging from ∼40-120 µM. The monounsaturation of LPC-18:1 had no effect when compared to its saturated counterpart LPC-18:0. On the other hand, head group size played a more significant role in blocking fusion as lysophosphatidic acid (LPA)-18:1 failed to fully inhibit fusion. We also show that both Ca 2+ uptake and SNARE-dependent Ca 2+ efflux was sensitive to changes in the acyl chain length and saturation of LPCs, while LPA only affected Ca 2+ efflux. Finally, we tested these LPLs on vacuole acidification by the V-ATPase. This showed that LPC-18:0 could fully inhibit acidification whereas other LPCs had moderate effects. Again, LPA had no effect. Together these data suggest that the effects of LPLs were due to a combination of head group size and acyl chain length leading to a range in degree of positive curvature.
Collapse
|
34
|
Thon O, Wang Z, Schmidpeter PAM, Nimigean CM. PIP2 inhibits pore opening of the cyclic nucleotide-gated channel SthK. Nat Commun 2024; 15:8230. [PMID: 39300080 DOI: 10.1038/s41467-024-52469-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
The signaling lipid phosphatidylinositol-4,5-bisphosphate (PIP2) regulates many ion channels. It inhibits eukaryotic cyclic nucleotide-gated (CNG) channels while activating their relatives, the hyperpolarization-activated and cyclic nucleotide-modulated (HCN) channels. The prokaryotic SthK channel from Spirochaeta thermophila shares features with CNG and HCN channels and is an established model for this channel family. Here, we show SthK activity is inhibited by PIP2. A cryo-EM structure of SthK in nanodiscs reveals a PIP2-fitting density coordinated by arginine and lysine residues from the S4 helix and the C-linker, located between voltage-sensing and pore domains of adjacent subunits. Mutation of two arginine residues weakens PIP2 inhibition with the double mutant displaying insensitivity to PIP2. We propose that PIP2 inhibits SthK by gluing S4 and S6 together, stabilizing a resting channel conformation. The PIP2 binding site is partially conserved in CNG channels suggesting the possibility of a similar inhibition mechanism in the eukaryotic homologs.
Collapse
Affiliation(s)
- Oliver Thon
- Department of Anesthesiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, USA
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Zhihan Wang
- Department of Anesthesiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, USA
| | - Philipp A M Schmidpeter
- Department of Anesthesiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, USA.
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA.
| | - Crina M Nimigean
- Department of Anesthesiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, USA.
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, NY, USA.
| |
Collapse
|
35
|
Kennelly JP, Xiao X, Gao Y, Kim S, Hong SG, Villanueva M, Ferrari A, Vanharanta L, Nguyen A, Nagari RT, Burton NR, Tol MJ, Becker AP, Lee MJ, Ikonen E, Backus KM, Mack JJ, Tontonoz P. Cholesterol binding to VCAM-1 promotes vascular inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613543. [PMID: 39345495 PMCID: PMC11429921 DOI: 10.1101/2024.09.17.613543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Hypercholesterolemia has long been implicated in endothelial cell (EC) dysfunction, but the mechanisms by which excess cholesterol causes vascular pathology are incompletely understood. Here we used a cholesterol-mimetic probe to map cholesterol-protein interactions in primary human ECs and discovered that cholesterol binds to and stabilizes the adhesion molecule VCAM-1. We show that accessible plasma membrane (PM) cholesterol in ECs is acutely responsive to inflammatory stimuli and that the nonvesicular cholesterol transporter Aster-A regulates VCAM-1 stability in activated ECs by controlling the size of this pool. Deletion of Aster-A in ECs increases VCAM-1 protein, promotes immune cell recruitment to vessels, and impairs pulmonary immune homeostasis. Conversely, depleting cholesterol from the endothelium in vivo dampens VCAM-1 induction in response to inflammatory stimuli. These findings identify cholesterol binding to VCAM-1 as a key step during EC activation and provide a biochemical explanation for the ability of excess membrane cholesterol to promote immune cell recruitment to the endothelium.
Collapse
Affiliation(s)
- John P. Kennelly
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
- These authors contributed equally
| | - Xu Xiao
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
- These authors contributed equally
| | - Yajing Gao
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
| | - Sumin Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Soon-Gook Hong
- Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
- Department of Medicine, Division of Cardiology, UCLA, Los Angeles, CA, USA
| | | | - Alessandra Ferrari
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
| | - Lauri Vanharanta
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
| | - Alexander Nguyen
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Rohith T. Nagari
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
| | - Nikolas R. Burton
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Marcus J. Tol
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
| | - Andrew P. Becker
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
| | - Min Jae Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Elina Ikonen
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
| | - Keriann M. Backus
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
- DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California 90095, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California 90095, United States
| | - Julia J. Mack
- Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
- Department of Medicine, Division of Cardiology, UCLA, Los Angeles, CA, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
36
|
Dong Y, Tang H, Dai H, Zhao H, Wang J. The application of nanodiscs in membrane protein drug discovery & development and drug delivery. Front Chem 2024; 12:1444801. [PMID: 39359422 PMCID: PMC11445163 DOI: 10.3389/fchem.2024.1444801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
The phospholipid bilayer nanodiscs (LNDs), as a rapidly-developing tool in recent years, provide a natural bio-memebrane environment to maintain the native conformation and functions of membrane proteins as well as a versatile delivery vehicle for a variety of hydrophobic and hydrophilic drugs. We have seen unprecedented advantages of phospholipid bilayer nanodiscs in membrane protein structure characterization, biochemical and physiological studies of membrane proteins, membrane environment studies, drug discovery & development, and drug delivery. Many previous reviews have been mainly focused on the advantages of nanodiscs in membrane protein researches, but few have touched upon the importance and potential application of nanodiscs in pharmaceutical industries. This review will provide general description of the structural characteristics, advantages, classification, and applications of phospholipid nanodiscs, with particular focus on nanodisc-enabled membrane protein drug discovery & development as well as drug delivery.
Collapse
Affiliation(s)
- Yingkui Dong
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Huan Tang
- Hefei China Science Longwood Biological Technology Co., Ltd, Hefei, Anhui, China
| | - Han Dai
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Hongxin Zhao
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Hefei China Science Longwood Biological Technology Co., Ltd, Hefei, Anhui, China
| | - Junfeng Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
- University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
37
|
Handlin LJ, Macchi NL, Dumaire NLA, Salih L, Lessie EN, McCommis KS, Moutal A, Dai G. Membrane Lipid Nanodomains Modulate HCN Pacemaker Channels in Nociceptor DRG Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.02.556056. [PMID: 37732182 PMCID: PMC10508734 DOI: 10.1101/2023.09.02.556056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Cell membranes consist of heterogeneous lipid nanodomains that influence key cellular processes. Using FRET-based fluorescent assays and fluorescence lifetime imaging microscopy (FLIM), we found that the dimension of cholesterol-enriched ordered membrane domains (OMD) varies considerably, depending on specific cell types. Particularly, nociceptor dorsal root ganglion (DRG) neurons exhibit large OMDs. Disruption of OMDs potentiated action potential firing in nociceptor DRG neurons and facilitated the opening of native hyperpolarization-activated cyclic nucleotide-gated (HCN) pacemaker channels. This increased neuronal firing is partially due to an increased open probability and altered gating kinetics of HCN channels. The gating effect on HCN channels was likely due to a direct modulation of their voltage sensors by OMDs. In animal models of neuropathic pain, we observed reduced OMD size and a loss of HCN channel localization within OMDs. Additionally, cholesterol supplementation inhibited HCN channels and reduced neuronal hyperexcitability in pain models. These findings suggest that disturbances in lipid nanodomains play a critical role in regulating HCN channels within nociceptor DRG neurons, influencing pain modulation.
Collapse
|
38
|
Kim S. All-Atom Membrane Builder via Multiscale Simulation. J Chem Inf Model 2024. [PMID: 39250520 DOI: 10.1021/acs.jcim.4c01059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
I present an automated and flexible tool designed for constructing bilayer membranes at all-atom (AA) resolution. The builder initiates the construction and equilibration of bilayer membranes at Martini coarse-grained (CG) resolution, followed by resolution enhancement to the atomic level using the accompanying backmapping tool. Notably, this tool enables users to create bilayer membranes with user-defined lipid compositions and protein structures, while also offering the flexibility to accommodate new lipid types. To assess the simplicity and robustness of the tool, I demonstrate the construction of several membranes incorporating protein structures. The tool is freely available at github.com/ksy141/mstool.
Collapse
Affiliation(s)
- Siyoung Kim
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
39
|
de Combiens E, Sakhi IB, Lourdel S. A Focus on the Proximal Tubule Dysfunction in Dent Disease Type 1. Genes (Basel) 2024; 15:1175. [PMID: 39336766 PMCID: PMC11431675 DOI: 10.3390/genes15091175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Dent disease type 1 is a rare X-linked recessive inherited renal disorder affecting mainly young males, generally leading to end-stage renal failure and for which there is no cure. It is caused by inactivating mutations in the gene encoding ClC-5, a 2Cl-/H+ exchanger found on endosomes in the renal proximal tubule. This transporter participates in reabsorbing all filtered plasma proteins, which justifies why proteinuria is commonly observed when ClC-5 is defective. In the context of Dent disease type 1, a proximal tubule dedifferentiation was shown to be accompanied by a dysfunctional cell metabolism. However, the exact mechanisms linking such alterations to chronic kidney disease are still unclear. In this review, we gather knowledge from several Dent disease type 1 models to summarize the current hypotheses generated to understand the progression of this disorder. We also highlight some urinary biomarkers for Dent disease type 1 suggested in different studies.
Collapse
Affiliation(s)
- Elise de Combiens
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne Université, Université Paris Cité, F-75006 Paris, France; (E.d.C.); (S.L.)
- Unité Métabolisme et Physiologie Rénale, Centre National de la Recherche Scientifique (CNRS) EMR8228, F-75006 Paris, France
| | | | - Stéphane Lourdel
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne Université, Université Paris Cité, F-75006 Paris, France; (E.d.C.); (S.L.)
- Unité Métabolisme et Physiologie Rénale, Centre National de la Recherche Scientifique (CNRS) EMR8228, F-75006 Paris, France
| |
Collapse
|
40
|
Doktorova M, Daum S, Ebenhan J, Neudorf S, Han B, Sharma S, Kasson P, Levental KR, Bacia K, Kenworthy AK, Levental I. Caveolin assemblies displace one bilayer leaflet to organize and bend membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610209. [PMID: 39257813 PMCID: PMC11383982 DOI: 10.1101/2024.08.28.610209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Caveolin is a monotopic integral membrane protein, widely expressed in metazoa and responsible for constructing enigmatic membrane invaginations known as caveolae. Recently, the high-resolution structure of a purified human caveolin assembly, the CAV1-8S complex, revealed a unique organization of 11 protomers arranged in a tightly packed, radially symmetric spiral disc. One face and the outer rim of this disc are highly hydrophobic, suggesting that the complex incorporates into membranes by displacing hundreds of lipids from one leaflet. The feasibility of this unique molecular architecture and its biophysical and functional consequences are currently unknown. Using Langmuir film balance measurements, we find that CAV1-8S is highly surface active and intercalates into lipid monolayers. Molecular simulations of biomimetic bilayers support this 'leaflet replacement' model and reveal that while CAV1-8S effectively displaces phospholipids from one bilayer leaflet, it accumulates 40-70 cholesterol molecules into a disordered monolayer between the complex and its distal lipid leaflet. We find that CAV1-8S preferentially associates with positively curved membrane surfaces due to its influence on the conformations of distal leaflet lipids, and that these effects laterally sort lipids of the distal leaflet. Large-scale simulations of multiple caveolin assemblies confirmed their association with large, positively curved membrane morphologies, consistent with the shape of caveolae. Further, association with curved membranes regulates the exposure of caveolin residues implicated in protein-protein interactions. Altogether, the unique structure of CAV1-8S imparts unusual modes of membrane interaction with implications for membrane organization, morphology, and physiology.
Collapse
Affiliation(s)
- Milka Doktorova
- Department of Molecular Physiology and Biological Physics, University of Virginia, USA
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Sebastian Daum
- Department of Physical Chemistry, Martin Luther University Halle-Wittenberg, Germany
| | - Jan Ebenhan
- Department of Physical Chemistry, Martin Luther University Halle-Wittenberg, Germany
| | - Sarah Neudorf
- Department of Physical Chemistry, Martin Luther University Halle-Wittenberg, Germany
| | - Bing Han
- Department of Molecular Physiology and Biological Physics, University of Virginia, USA
| | - Satyan Sharma
- Department of Cell and Molecular Biology, Uppsala University, Sweden
| | - Peter Kasson
- Department of Cell and Molecular Biology, Uppsala University, Sweden
- Departments of Chemistry and Biochemistry and Biomedical Engineering, Georgia Institute of Technology, USA
| | - Kandice R Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia, USA
| | - Kirsten Bacia
- Department of Physical Chemistry, Martin Luther University Halle-Wittenberg, Germany
| | - Anne K Kenworthy
- Department of Molecular Physiology and Biological Physics, University of Virginia, USA
| | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia, USA
| |
Collapse
|
41
|
Sharma KD, Doktorova M, Waxham MN, Heberle FA. Cryo-EM images of phase-separated lipid bilayer vesicles analyzed with a machine-learning approach. Biophys J 2024; 123:2877-2891. [PMID: 38689500 PMCID: PMC11393711 DOI: 10.1016/j.bpj.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/08/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024] Open
Abstract
Lateral lipid heterogeneity (i.e., raft formation) in biomembranes plays a functional role in living cells. Three-component mixtures of low- and high-melting lipids plus cholesterol offer a simplified experimental model for raft domains in which a liquid-disordered (Ld) phase coexists with a liquid-ordered (Lo) phase. Using such models, we recently showed that cryogenic electron microscopy (cryo-EM) can detect phase separation in lipid vesicles based on differences in bilayer thickness. However, the considerable noise within cryo-EM data poses a significant challenge for accurately determining the membrane phase state at high spatial resolution. To this end, we have developed an image-processing pipeline that utilizes machine learning (ML) to predict the bilayer phase in projection images of lipid vesicles. Importantly, the ML method exploits differences in both the thickness and molecular density of Lo compared to Ld, which leads to improved phase identification. To assess accuracy, we used artificial images of phase-separated lipid vesicles generated from all-atom molecular dynamics simulations of Lo and Ld phases. Synthetic ground-truth data sets mimicking a series of compositions along a tieline of Ld + Lo coexistence were created and then analyzed with various ML models. For all tieline compositions, we find that the ML approach can correctly identify the bilayer phase with >90% accuracy, thus providing a means to isolate the intensity profiles of coexisting Ld and Lo phases, as well as accurately determine domain-size distributions, number of domains, and phase-area fractions. The method described here provides a framework for characterizing nanoscopic lateral heterogeneities in membranes and paves the way for a more detailed understanding of raft properties in biological contexts.
Collapse
Affiliation(s)
- Karan D Sharma
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee
| | - Milka Doktorova
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - M Neal Waxham
- Department of Neurobiology and Anatomy, University of Texas Health Science Center, Houston, Texas
| | | |
Collapse
|
42
|
Kim NH, Shim G, Park GH, Yu YG. A nondestructive membrane engineering method using an amphiphilic polymer. Protein Sci 2024; 33:e5143. [PMID: 39150080 PMCID: PMC11328118 DOI: 10.1002/pro.5143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/09/2024] [Accepted: 07/28/2024] [Indexed: 08/17/2024]
Abstract
The cellular signaling process or ion transport is mediated by membrane proteins (MPs) located on the cell surface, and functional studies of MPs have mainly been conducted using cells endogenously or transiently expressing target proteins. Reconstitution of purified MPs in the surface of live cells would have advantages of short manipulation time and ability to target cells in which gene transfection is difficult. However, direct reconstitution of MPs in live cells has not been established. The traditional detergent-mediated reconstitution method of MPs into a lipid bilayer cannot be applied to live cells because this disrupts and reforms the lipid bilayer structure, which is detrimental to cell viability. In this study, we demonstrated that GPCRs (prostaglandin E2 receptor 4 [EP4] and glucagon-like peptide-1 receptor [GLP1R]) or serotonin receptor 3A (5HT3A), a ligand-gated ion channel, stabilized with amphiphilic poly-γ-glutamate (APG), can be reconstituted into mammalian cell plasma membranes without affecting cell viability. Furthermore, 5HT3A reconstituted in mammalian cells showed ligand-dependent Ca2+ ion transport activity. APG-mediated reconstitution of GPCR in synthetic liposomes showed that electrostatic interaction between APG and membrane surface charge contributed to the reconstitution process. This APG-mediated membrane engineering method could be applied to the functional modification of cell membranes with MPs in live cells.
Collapse
Affiliation(s)
- Nam Hyuk Kim
- Department of Chemistry, Kookmin University, Seoul, Republic of Korea
- Antibody Research Institute, Kookmin University, Seoul, Republic of Korea
| | - Goeun Shim
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Ga Hyeon Park
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Yeon Gyu Yu
- Department of Chemistry, Kookmin University, Seoul, Republic of Korea
- Antibody Research Institute, Kookmin University, Seoul, Republic of Korea
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| |
Collapse
|
43
|
Šakanović A, Kranjc N, Omersa N, Aden S, Kežar A, Kisovec M, Zavec AB, Caserman S, Gilbert RJC, Podobnik M, Crnković A, Anderluh G. In vitro evolution driven by epistasis reveals alternative cholesterol-specific binding motifs of perfringolysin O. J Biol Chem 2024; 300:107664. [PMID: 39128714 PMCID: PMC11416283 DOI: 10.1016/j.jbc.2024.107664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024] Open
Abstract
The crucial molecular factors that shape the interfaces of lipid-binding proteins with their target ligands and surfaces remain unknown due to the complex makeup of biological membranes. Cholesterol, the major modulator of bilayer structure in mammalian cell membranes, is recognized by various proteins, including the well-studied cholesterol-dependent cytolysins. Here, we use in vitro evolution to investigate the molecular adaptations that preserve the cholesterol specificity of perfringolysin O, the prototypical cholesterol-dependent cytolysin from Clostridium perfringens. We identify variants with altered membrane-binding interfaces whose cholesterol-specific activity exceeds that of the wild-type perfringolysin O. These novel variants represent alternative evolutionary outcomes and have mutations at conserved positions that can only accumulate when epistatic constraints are alleviated. Our results improve the current understanding of the biochemical malleability of the surface of a lipid-binding protein.
Collapse
Affiliation(s)
- Aleksandra Šakanović
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Nace Kranjc
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Neža Omersa
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Saša Aden
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Andreja Kežar
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Matic Kisovec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Apolonija Bedina Zavec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Simon Caserman
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Robert J C Gilbert
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Ana Crnković
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia.
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia.
| |
Collapse
|
44
|
Ptakova A, Zimova L, Barvik I, Bon RS, Vlachova V. Functional determinants of lysophospholipid- and voltage-dependent regulation of TRPC5 channel. Cell Mol Life Sci 2024; 81:374. [PMID: 39210039 PMCID: PMC11362415 DOI: 10.1007/s00018-024-05417-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/30/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Lysophosphatidylcholine (LPC) is a bioactive lipid present at high concentrations in inflamed and injured tissues where it contributes to the initiation and maintenance of pain. One of its important molecular effectors is the transient receptor potential canonical 5 (TRPC5), but the explicit mechanism of the activation is unknown. Using electrophysiology, mutagenesis and molecular dynamics simulations, we show that LPC-induced activation of TRPC5 is modulated by xanthine ligands and depolarizing voltage, and involves conserved residues within the lateral fenestration of the pore domain. Replacement of W577 with alanine (W577A) rendered the channel insensitive to strong depolarizing voltage, but LPC still activated this mutant at highly depolarizing potentials. Substitution of G606 located directly opposite position 577 with tryptophan rescued the sensitivity of W577A to depolarization. Molecular simulations showed that depolarization widens the lower gate of the channel and this conformational change is prevented by the W577A mutation or removal of resident lipids. We propose a gating scheme in which depolarizing voltage and lipid-pore helix interactions act together to promote TRPC5 channel opening.
Collapse
Affiliation(s)
- Alexandra Ptakova
- Department of Cellular Neurophysiology, Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Lucie Zimova
- Department of Cellular Neurophysiology, Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Ivan Barvik
- Division of Biomolecular Physics, Institute of Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Robin S Bon
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM) and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Viktorie Vlachova
- Department of Cellular Neurophysiology, Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic.
| |
Collapse
|
45
|
Wu D, Tang H, Qiu X, Song S, Chen S, Robinson CV. Native MS-guided lipidomics to define endogenous lipid microenvironments of eukaryotic receptors and transporters. Nat Protoc 2024:10.1038/s41596-024-01037-4. [PMID: 39174660 DOI: 10.1038/s41596-024-01037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/06/2024] [Indexed: 08/24/2024]
Abstract
The mammalian membrane is composed of various eukaryotic lipids interacting with extensively post-translationally modified proteins. Probing interactions between these mammalian membrane proteins and their diverse and heterogeneous lipid cohort remains challenging. Recently, native mass spectrometry (MS) combined with bottom-up 'omics' approaches has provided valuable information to relate structural and functional lipids to membrane protein assemblies in eukaryotic membranes. Here we provide a step-by-step protocol to identify and provide relative quantification for endogenous lipids bound to mammalian membrane proteins and their complexes. Using native MS to guide our lipidomics strategies, we describe the necessary sample preparation steps, followed by native MS data acquisition, tailored lipidomics and data interpretation. We also highlight considerations for the integration of different levels of information from native MS and lipidomics and how to deal with the various challenges that arise during the experiments. This protocol begins with the preparation of membrane proteins from mammalian cells and tissues for native MS. The results enable not only direct assessment of copurified endogenous lipids but also determination of the apparent affinities of specific lipids. Detailed sample preparation for lipidomics analysis is also covered, along with comprehensive settings for liquid chromatography-MS analysis. This protocol is suitable for the identification and quantification of endogenous lipids, including fatty acids, sterols, glycerolipids, phospholipids and glycolipids and can be used to interrogate proteins from recombinant sources to native membranes.
Collapse
Affiliation(s)
- Di Wu
- Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Haiping Tang
- Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Xingyu Qiu
- Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Siyuan Song
- Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Siyun Chen
- Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, Oxford, UK.
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
| |
Collapse
|
46
|
Drabik D, Hinc P, Stephan M, Cavalcanti RRM, Czogalla A, Dimova R. Effect of leaflet asymmetry on the stretching elasticity of lipid bilayers with phosphatidic acid. Biophys J 2024; 123:2406-2421. [PMID: 38822521 PMCID: PMC11365108 DOI: 10.1016/j.bpj.2024.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/03/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024] Open
Abstract
The asymmetry of membranes has a significant impact on their biophysical characteristics and behavior. This study investigates the composition and mechanical properties of symmetric and asymmetric membranes in giant unilamellar vesicles (GUVs) made of palmitoyloleoyl phosphatidylcholine (POPC) and palmitoyloleoyl phosphatidic acid (POPA). A combination of fluorescence quantification, zeta potential measurements, micropipette aspiration, and bilayer molecular dynamics simulations are used to characterize these membranes. The outer leaflet composition in vesicles is found consistent across the two preparation methods we employed, namely electroformation and inverted emulsion transfer. However, characterizing the inner leaflet poses challenges. Micropipette aspiration of GUVs show that oil residues do not substantially alter membrane elasticity, but simulations reveal increased membrane thickness and decreased interleaflet coupling in the presence of oil. Asymmetric membranes with a POPC:POPA mixture in the outer leaflet and POPC in the inner leaflet display similar stretching elasticity values to symmetric POPC:POPA membranes, suggesting potential POPA insertion into the inner leaflet during vesicle formation and suppressed asymmetry. The inverse compositional asymmetry, with POPC in the outer leaflet and POPC:POPA in the inner one yield less stretchable membranes with higher compressibility modulus compared with their symmetric counterparts. Challenges in achieving and predicting compositional correspondence highlight the limitations of phase-transfer-based methods. In addition, caution is advised when using fluorescently labeled lipids (even at low fractions of 0.5 mol %), as unexpected gel-like domains in symmetric POPC:POPA membranes were observed only with a specific type of labeled DOPE (dioleoylphosphatidylethanolamine) and the same fraction of unlabeled DOPE. The latter suggest that such domain formation may result from interactions between lipids and membrane fluorescent probes. Overall, this study underscores the complexity of factors influencing GUV membrane asymmetry, emphasizing the need for further research and improvement of characterization techniques.
Collapse
Affiliation(s)
- Dominik Drabik
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland; Max Planck Institute of Colloids and Interfaces, Potsdam, Germany; Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland.
| | - Piotr Hinc
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Mareike Stephan
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | | | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
| |
Collapse
|
47
|
Sanders G, Borbat PP, Georgieva ER. Conformations of influenza A M2 protein in DOPC/DOPS and E. coli native lipids and proteins. Biophys J 2024; 123:2584-2593. [PMID: 38932458 PMCID: PMC11365223 DOI: 10.1016/j.bpj.2024.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/21/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024] Open
Abstract
We compared the conformations of the transmembrane domain (TMD) of influenza A M2 (IM2) protein reconstituted in 1,2-dioleoyl-sn-glycero-3-phosphocholine/1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPC/DOPS) bilayers to those in isolated Escherichia coli (E. coli) membranes, having preserved its native proteins and lipids. IM2 is a single-pass transmembrane protein known to assemble into a homo-tetrameric proton channel. To represent this channel, we made a construct containing the IM2's TMD region flanked by the juxtamembrane residues. The single cysteine substitution, L43C, of leucine located in the bilayer polar region was paramagnetically tagged with a methanethiosulfonate nitroxide label for the electron spin resonance (ESR) study. For this particular residue, we probed the conformations of the spin-labeled IM2 reconstituted in DOPC/DOPS and isolated E. coli membranes using continuous-wave ESR and double electron-electron resonance (DEER) spectroscopy. The total protein-to-lipid molar ratio spanned the range from 1:230 to 1:10,400. The continuous-wave ESR spectra corresponded to very slow spin-label motion in both environments. In all cases, the DEER data were reconstructed into distance distributions with well-resolved peaks at 1.68 and 2.37 nm in distance and amplitude ratios of 1.41 ± 0.2 and 2:1, respectively. This suggests four nitroxide spin labels located at the corners of a square, indicative of an axially symmetric tetramer. The distance modeling of DEER data with molecular modeling software applied to the NMR molecular structures (PDB: 2L0J) confirmed the symmetry and closed state of the C-terminal exit pore of the IM2 TMD tetramer in agreement with the model. Thus, we can conclude that, under conditions of pH 7.4 used in this study, IM2 TMD has similar conformations in model lipid bilayers and membranes made of native E. coli lipids and proteins of comparable thickness and fluidity, notwithstanding the complexity of the E. coli membranes caused by their lipid diversity and the abundance of integral and peripheral membrane proteins.
Collapse
Affiliation(s)
- Griffin Sanders
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Peter P Borbat
- Department of Chemistry and Chemical Biology, ACERT, Cornell University, Ithaca, New York
| | - Elka R Georgieva
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas.
| |
Collapse
|
48
|
Hariharan P, Guan L. Reconstitution of the Melibiose Permease of Salmonella enterica serovar Typhimurium (MelB St) into Lipid Nanodiscs. Bio Protoc 2024; 14:e5045. [PMID: 39131193 PMCID: PMC11309958 DOI: 10.21769/bioprotoc.5045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 08/13/2024] Open
Abstract
Membrane proteins play critical roles in cell physiology and pathology. The conventional way to study membrane proteins at protein levels is to use optimal detergents to extract proteins from membranes. Identification of the optimal detergent is tedious , and in some cases, the protein functions are compromised. While this detergent-based approach has produced meaningful results in membrane protein research, a lipid environment should be more suitable to recapture the protein's native folding and functions. This protocol describes how to prepare amphipathic membrane scaffold-proteins (MSPs)-based nanodiscs of a cation-coupled melibiose symporter of Salmonella enterica serovar Typhimurium (MelBSt), a member of the major facilitator superfamily. MSPs generate nano-assemblies containing membrane proteins surrounded by a patch of native lipids to better preserve their native conformations and functions. This protocol requires purified membrane protein in detergents, purified MSPs in solution, and detergent-destabilized phospholipids. The mixture of all three components at specific ratios is incubated in the presence of Bio-Beads SM-2 resins, which absorb all detergent molecules, allowing the membrane protein to associate with lipids surrounded by the MSPs. By reconstituting the purified membrane proteins back into their native-like lipid environment, these nanodisc-like particles can be directly used in cryo-EM single-particle analysis for structure determination and other biophysical analyses. It is noted that nanodiscs may potentially limit the dynamics of membrane proteins due to suboptimal nanodisc size compared to the native lipid bilayer. Key features • This protocol was built based on the method originally developed by Sligar et al. [1] and modified for a specific major facilitator superfamily transporter • This protocol is robust and reproducible • Lipid nanodiscs can increase membrane protein stability, and reconstituted transporters in lipid nanodiscs can regain function if their function is compromised using detergents • The reconstituted lipids nanodisc can be used for cryo-EM single-particle analysis.
Collapse
Affiliation(s)
- Parameswaran Hariharan
- Dept of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Lan Guan
- Dept of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
49
|
Brown C, Ghosh S, McAllister R, Kumar M, Walker G, Sun E, Aman T, Panda A, Kumar S, Li W, Coleman J, Liu Y, Rothman JE, Bhattacharyya M, Gupta K. A proteome-wide quantitative platform for nanoscale spatially resolved extraction of membrane proteins into native nanodiscs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.10.579775. [PMID: 38405833 PMCID: PMC10888908 DOI: 10.1101/2024.02.10.579775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The intricate molecular environment of the native membrane profoundly influences every aspect of membrane protein (MP) biology. Despite this, the most prevalent method of studying MPs uses detergent-like molecules that disrupt and remove this vital local membrane context. This severely impedes our ability to quantitatively decipher the local molecular context and comprehend its regulatory role in the structure, function, and biogenesis of MPs. Using a library of membrane-active polymers we have developed a platform for the high-throughput analysis of the membrane proteome. The platform enables near-complete spatially resolved extraction of target MPs directly from their endogenous membranes into native nanodiscs that maintain the local membrane context. We accompany this advancement with an open-access database that quantifies the polymer-specific extraction variability for 2065 unique mammalian MPs and provides the most optimized condition for each of them. Our method enables rapid and near-complete extraction and purification of target MPs directly from their endogenous organellar membranes at physiological expression levels while maintaining the nanoscale local membrane environment. Going beyond the plasma membrane proteome, our platform enables extraction from any target organellar membrane including the endoplasmic reticulum, mitochondria, lysosome, Golgi, and even transient organelles such as the autophagosome. To further validate this platform, we took several independent MPs and demonstrated how our resource can enable rapid extraction and purification of target MPs from different organellar membranes with high efficiency and purity. Further, taking two synaptic vesicle MPs, we show how the database can be extended to capture multiprotein complexes between overexpressed MPs. We expect these publicly available resources to empower researchers across disciplines to efficiently capture membrane 'nano-scoops' containing a target MP and interface with structural, functional, and other bioanalytical approaches. We demonstrate an example of this by combining our extraction platform with single-molecule TIRF imaging to demonstrate how it can enable rapid determination of homo-oligomeric states of target MPs in native cell membranes.
Collapse
Affiliation(s)
- Caroline Brown
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - Snehasish Ghosh
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - Rachel McAllister
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Mukesh Kumar
- F.M. Kirby Neurobiology Center, Department of Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gerard Walker
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Eric Sun
- Nanobiology Institute, Yale University, West Haven, CT, USA
| | - Talat Aman
- Nanobiology Institute, Yale University, West Haven, CT, USA
| | - Aniruddha Panda
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Shailesh Kumar
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Wenxue Li
- Department of Pharmacology, Yale University, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Jeff Coleman
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Yansheng Liu
- Department of Pharmacology, Yale University, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - James E Rothman
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Kallol Gupta
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| |
Collapse
|
50
|
Cs Szabo B, Szabo M, Nagy P, Varga Z, Panyi G, Kovacs T, Zakany F. Novel insights into the modulation of the voltage-gated potassium channel K V1.3 activation gating by membrane ceramides. J Lipid Res 2024; 65:100596. [PMID: 39019344 PMCID: PMC11367112 DOI: 10.1016/j.jlr.2024.100596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
Membrane lipids extensively modulate the activation gating of voltage-gated potassium channels (KV), however, much less is known about the mechanisms of ceramide and glucosylceramide actions including which structural element is the main intramolecular target and whether there is any contribution of indirect, membrane biophysics-related mechanisms to their actions. We used two-electrode voltage-clamp fluorometry capable of recording currents and fluorescence signals to simultaneously monitor movements of the pore domain (PD) and the voltage sensor domain (VSD) of the KV1.3 ion channel after attaching an MTS-TAMRA fluorophore to a cysteine introduced into the extracellular S3-S4 loop of the VSD. We observed rightward shifts in the conductance-voltage (G-V) relationship, slower current activation kinetics, and reduced current amplitudes in response to loading the membrane with C16-ceramide (Cer) or C16-glucosylceramide (GlcCer). When analyzing VSD movements, only Cer induced a rightward shift in the fluorescence signal-voltage (F-V) relationship and slowed fluorescence activation kinetics, whereas GlcCer exerted no such effects. These results point at a distinctive mechanism of action with Cer primarily targeting the VSD, while GlcCer only the PD of KV1.3. Using environment-sensitive probes and fluorescence-based approaches, we show that Cer and GlcCer similarly increase molecular order in the inner, hydrophobic regions of bilayers, however, Cer induces a robust molecular reorganization at the membrane-water interface. We propose that this unique ordering effect in the outermost membrane layer in which the main VSD rearrangement involving an outward sliding of the top of S4 occurs can explain the VSD targeting mechanism of Cer, which is unavailable for GlcCer.
Collapse
Affiliation(s)
- Bence Cs Szabo
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Mate Szabo
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Peter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamas Kovacs
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Florina Zakany
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|