1
|
Tisell A, Söderberg K, Link Y, Lundberg P, Mellergård J. Diffuse white matter pathology in multiple sclerosis during treatment with dimethyl fumarate-An observational study of changes in normal-appearing white matter using proton magnetic resonance spectroscopy. PLoS One 2024; 19:e0309547. [PMID: 39432495 PMCID: PMC11493296 DOI: 10.1371/journal.pone.0309547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 08/13/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is an inflammatory demyelinating disease with neurodegenerative features causing risk for neurologic irreversible disability over time. Examination of normal-appearing white matter (NAWM) changes in MS by proton magnetic resonance spectroscopy (1H-MRS), may detect diffuse white matter pathology that is associated with neurodegeneration. METHODS In this observational study of in total twenty-six patients with MS, starting treatment with dimethyl fumarate (DMF), we measured the absolute concentration of metabolites in periventricular NAWM using 1H-MRS at baseline and after one and three years of treatment. Metabolite concentrations were analyzed both cross-sectionally, in relation to 10 controls and longitudinally in relation to disease activity. RESULTS Patients with MS had higher concentrations of myo-inositol (mIns) in NAWM at baseline compared with controls (mean 5.98 ± 1.37 (SD) and 4.32 ± 1.16 (SD), p<0.01, independent samples t-test). The disease duration was inversely correlated with concentrations of total N-acetylaspartate and N-acetylaspartylglutamate (tNA) (r = -0.62, p<0.01) in NAWM as well as positively to the ratio of mIns and tNA (r = 0.51, p = 0.03). Metabolite concentrations during one-year (n = 19) and three-years (n = 11) follow-up were generally stable. The dropouts were caused by treatment switch after one year, mainly due to new MRI activity. Cross-sectional analyses showed that there was an inverse correlation between concentrations of tNA and mIns at both baseline and at 1 and 3-years follow-up (r = -0.44 to -0.65, p = 0.04 to 0.004). Metabolite concentrations were stable during 1-year follow-up independently of disease activity. CONCLUSIONS Higher concentrations of the astrogliosis marker mIns in MS compared to controls, the inverse relation between MS disease duration and the neuroaxonal integrity marker tNA, as well as the consistent inverse relation between these two metabolites during follow-up, showed that non-lesional white matter pathology is present in this cohort of MS patients in early disease stages. However, metabolite concentrations during follow-up were generally stable and did not reflect differences in disease activity among patients.
Collapse
Affiliation(s)
- Anders Tisell
- Department of Medical Radiation Physics in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Kristina Söderberg
- Department of Radiology in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Yumin Link
- Department of Neurology in Linköping, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Peter Lundberg
- Department of Medical Radiation Physics in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Johan Mellergård
- Department of Neurology in Linköping, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
2
|
Wang J, Jia R, Wan W, Han H, Wang G, Li Z, Li J. Drug Delivery Targeting Neuroinflammation to Treat Brain Diseases. Bioconjug Chem 2024. [PMID: 39377704 DOI: 10.1021/acs.bioconjchem.4c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Inflammation within the brain is a hallmark of a wide range of brain diseases. The complex role of inflammatory processes in these conditions suggests that neuroinflammation could be a valuable therapeutic target. While several promising anti-inflammatory agents have been identified, their clinical application in brain diseases is often hampered by the inability to cross the blood-brain barrier (BBB) and reach therapeutically effective concentrations at the pathological sites. This limitation highlights the urgent need for effective BBB-penetrating drug delivery systems designed to target brain inflammation. This review critically examines the recent advances over the past five years in drug delivery strategies aimed at mitigating brain inflammation in Alzheimer's disease and ischemic stroke─two of the leading causes of death and disability worldwide. Additionally, we address the key challenges in this field, offering insights into future directions for targeting neuroinflammation in the treatment of brain diseases.
Collapse
Affiliation(s)
- Juntao Wang
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, China
| | - Ruiqin Jia
- School of Pharmacy, Henan University, Kaifeng, 475001, China
| | - Wubo Wan
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, 572022, China
| | - Haijun Han
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, 572022, China
| | - Guoying Wang
- Macquarie Medical School, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Zhen Li
- Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Jia Li
- Macquarie Medical School, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
3
|
Sulkowski G, Dąbrowska-Bouta B, Frontczak-Baniewicz M, Strużyńska L. Involvement of the Kinin B1 Receptor in Increased Permeability of Cerebral Microvessels in Rats Subjected to Autoimmune Encephalomyelitis. Cells 2024; 13:1641. [PMID: 39404404 PMCID: PMC11475802 DOI: 10.3390/cells13191641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Kinins are vasoactive peptides that are involved in various cellular mechanisms, including the inflammatory response. Kinins, released in vessel walls, exacerbate inflammation by modulating the production and release of pro-inflammatory factors via two types of G protein-related receptors-B1 and B2 receptors. B1 R is overexpressed during the inflammation that accompanies numerous neurological disorders, including multiple sclerosis (MS), in which loss of BBB integrity is an early pathomechanism of the disease. In this work, we apply pharmacological inhibition of the kinin B1 receptor with DALBK to investigate its effect on blood-brain barrier (BBB) permeability during the course of EAE, an animal model of MS. Functional, ultrastructural and molecular analyses were performed. The expression of selected BBB-associated proteins such as occludin and claudin-5 was assessed, as well as the astrocytic marker GFAP. We show that administration of a specific antagonist attenuates neurological symptoms in EAE rats and recovers the downregulation of TJ proteins and BBB leakage observed during the course of the disease, as well as significantly reducing the disease-specific activation of astroglia. The results show that B1 R-mediated signaling is involved in inducing molecular changes at the level of cerebral microvessels, leading to increased permeability of the BBB following neuroinflammation in EAE.
Collapse
Affiliation(s)
- Grzegorz Sulkowski
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 A. Pawińskiego str., 02-106 Warsaw, Poland; (G.S.); (B.D.-B.)
| | - Beata Dąbrowska-Bouta
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 A. Pawińskiego str., 02-106 Warsaw, Poland; (G.S.); (B.D.-B.)
| | - Małgorzata Frontczak-Baniewicz
- Electron Microscopy Research Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 A. Pawińskiego str., 02-106 Warsaw, Poland;
| | - Lidia Strużyńska
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 A. Pawińskiego str., 02-106 Warsaw, Poland; (G.S.); (B.D.-B.)
| |
Collapse
|
4
|
Yang JL, Wu JY, Liu JJ, Zheng GQ. Herbal medicines for SOD1 G93A mice of amyotrophic lateral sclerosis: preclinical evidence and possible immunologic mechanism. Front Immunol 2024; 15:1433929. [PMID: 39355247 PMCID: PMC11442286 DOI: 10.3389/fimmu.2024.1433929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/28/2024] [Indexed: 10/03/2024] Open
Abstract
Currently, there is no cure or effective treatment for Amyotrophic Lateral Sclerosis (ALS). The mechanisms underlying ALS remain unclear, with immunological factors potentially playing a significant role. Adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA), a systematic review of preclinical studies was conducted, searching seven databases including PubMed, covering literature from the inception of the databases to April 10, 2024. Methodological quality of the included literature was assessed using CAMARADES, while the risk of bias in the included studies was evaluated using SYRCLE's ROB tool. Review Manager 5.4.1 statistical software was used for meta-analysis of the outcomes. The scoping review followed the Joanna Briggs Institute Methodological Guidelines and reporting of this review followed the PRISMA-extension for Scoping Reviews (PRISMA -ScR) checklist to explore the immunological mechanisms of Herbal Medicine (HM) in treating ALS. This systematic review and meta-analysis involved 18 studies with a total of 443 animals. The studies scored between 4 to 8 for methodological quality and 3 to 7 for risk of bias, both summing up to 10.A remarkable effects of HM in ALS mice, including onset time(Standardized Mean Difference(SMD): 1.75, 95% Confidence Interval(CI) (1.14 ~ 2.36), Z = 5.60, P < 0.01), survival time(SMD = 1.42, 95% CI (0.79 ~ 2.04), Z = 4.44, P < 0.01), stride length(SMD=1.90, 95% CI (1.21 to 2.59), Z = 5.39, P < 0.01) and duration time (Mean Difference(MD)=6.79, 95% CI [-0.28, 13.87], Z=1.88, P =0.06), showing HM's certain efficiency in treating ALS mice. The scoping review ultimately included 35 articles for review. HMs may treat ALS through mechanisms such as combating oxidative stress, excitatory amino acid toxicity, and calcium cytotoxicity, understanding and exploring the mechanisms will bring hope to patients. Individual herbs and their formulations within HM address ALS through a variety of immune pathways, including safeguarding the blood-brain barrier, countering neuroinflammation, impeding complement system activation, mitigating natural killer cell toxicity, and regulating T cell-mediated immune pathways. The preclinical evidence supports the utilization of HM as a conventional treatment for ALS mice. Growing evidence indicates that HM may potentially delay neurological degeneration in ALS by activating diverse signaling pathways, especially immune pathways.
Collapse
Affiliation(s)
| | | | | | - Guo-Qing Zheng
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
5
|
Mallardo M, Mazzeo F, Lus G, Signoriello E, Daniele A, Nigro E. Impact of Lifestyle Interventions on Multiple Sclerosis: Focus on Adipose Tissue. Nutrients 2024; 16:3100. [PMID: 39339700 PMCID: PMC11434938 DOI: 10.3390/nu16183100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder characterized by demyelination in the central nervous system (CNS), affecting individuals globally. The pathological mechanisms underlying MS remain unclear, but current evidence suggests that inflammation and immune dysfunction play a critical role in the pathogenesis of MS disease. Adipose tissue (AT) is a dynamic multifunctional organ involved in various immune diseases, including MS, due to its endocrine function and the secretion of adipokines, which can influence inflammation and immune responses. Physical activity represents an efficacious non-pharmacological strategy for the management of a spectrum of conditions that not only improves inflammatory and immune functions but also directly affects the status and function of AT. Additionally, the exploration of nutritional supplementation represents an important field of MS research aimed at enhancing clinical symptoms and is closely tied to the regulation of metabolic responses, including adipokine secretion. This review, therefore, aims to elucidate the intricate relationship between lifestyle and MS by providing an overview of the latest published data about the involvement of AT and the main adipokines, such as adiponectin, leptin, and tumor necrosis factor α (TNFα) in the pathogenesis of MS. Furthermore, we explore whether physical activity and dietary management could serve as useful strategies to improve the quality of life of MS patients.
Collapse
Affiliation(s)
- Marta Mallardo
- Department of Molecular and Biotechnological Medicine, University of Naples "Federico II", 80138 Naples, Italy
- CEINGE-Biotechnologies Advances S.c.a r.l., Via G. Salvatore 486, 80145 Naples, Italy
| | - Filomena Mazzeo
- Department of Economics, Law, Cybersecurity and Sports Sciences (DiSEGIM), University of Naples "Parthenope", 80035 Naples, Italy
| | - Giacomo Lus
- Multiple Sclerosis Center, II Neurological Clinic, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
- Department of Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
| | - Elisabetta Signoriello
- Multiple Sclerosis Center, II Neurological Clinic, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
- Department of Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
| | - Aurora Daniele
- Department of Molecular and Biotechnological Medicine, University of Naples "Federico II", 80138 Naples, Italy
- CEINGE-Biotechnologies Advances S.c.a r.l., Via G. Salvatore 486, 80145 Naples, Italy
| | - Ersilia Nigro
- CEINGE-Biotechnologies Advances S.c.a r.l., Via G. Salvatore 486, 80145 Naples, Italy
- Department of Pharmaceutical, Biological, Environmental Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via G. Vivaldi 42, 81100 Caserta, Italy
| |
Collapse
|
6
|
van der Weijden CWJ, Pitombeira MS, Peretti DE, Campanholo KR, Kolinger GD, Rimkus CM, Buchpiguel CA, Dierckx RAJO, Renken RJ, Meilof JF, de Vries EFJ, de Paula Faria D. Unsupervised Pattern Analysis to Differentiate Multiple Sclerosis Phenotypes Using Principal Component Analysis on Various MRI Sequences. J Clin Med 2024; 13:5234. [PMID: 39274448 PMCID: PMC11396763 DOI: 10.3390/jcm13175234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/20/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024] Open
Abstract
Background: Multiple sclerosis (MS) has two main phenotypes: relapse-remitting MS (RRMS) and progressive MS (PMS), distinguished by disability profiles and treatment response. Differentiating them using conventional MRI is challenging. Objective: This study explores the use of scaled subprofile modelling using principal component analysis (SSM/PCA) on MRI data to distinguish between MS phenotypes. Methods: MRI scans were performed on patients with RRMS (n = 30) and patients with PMS (n = 20), using the standard sequences T1w, T2w, T2w-FLAIR, and the myelin-sensitive sequences magnetisation transfer (MT) ratio (MTR), quantitative MT (qMT), inhomogeneous MT ratio (ihMTR), and quantitative inhomogeneous MT (qihMT). Results: SSM/PCA analysis of qihMT images best differentiated PMS from RRMS, with the highest specificity (87%) and positive predictive value (PPV) (83%), but a lower sensitivity (67%) and negative predictive value (NPV) (72%). Conversely, T1w data analysis showed the highest sensitivity (93%) and NPV (89%), with a lower PPV (67%) and specificity (53%). Phenotype classification agreement between T1w and qihMT was observed in 57% of patients. In the subset with concordant classifications, the sensitivity, specificity, PPV, and NPV were 100%, 88%, 90%, and 100%, respectively. Conclusions: SSM/PCA on MRI data revealed distinctive patterns for MS phenotypes. Optimal discrimination occurred with qihMT and T1w sequences, with qihMT identifying PMS and T1w identifying RRMS. When qihMT and T1w analyses align, MS phenotype prediction improves.
Collapse
Affiliation(s)
- Chris W J van der Weijden
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
- Department of Radiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Milena S Pitombeira
- Laboratory of Nuclear Medicine, Department of Radiology and Oncology, University of Sao Paulo, São Paulo 05508-220, Brazil
| | - Débora E Peretti
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Kenia R Campanholo
- Laboratory of Nuclear Medicine, Department of Radiology and Oncology, University of Sao Paulo, São Paulo 05508-220, Brazil
| | - Guilherme D Kolinger
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Carolina M Rimkus
- Laboratory of Nuclear Medicine, Department of Radiology and Oncology, University of Sao Paulo, São Paulo 05508-220, Brazil
| | - Carlos Alberto Buchpiguel
- Laboratory of Nuclear Medicine, Department of Radiology and Oncology, University of Sao Paulo, São Paulo 05508-220, Brazil
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Remco J Renken
- Department of Neuroscience, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Jan F Meilof
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
- Department of Neurology, Martini Ziekenhuis, 9728 NT Groningen, The Netherlands
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Daniele de Paula Faria
- Laboratory of Nuclear Medicine, Department of Radiology and Oncology, University of Sao Paulo, São Paulo 05508-220, Brazil
| |
Collapse
|
7
|
Megagiannis P, Mei Y, Yan RE, Yuan L, Wilde JJ, Eckersberg H, Suresh R, Tan X, Chen H, Farmer WT, Cha K, Le PU, Catoire H, Rochefort D, Kwan T, Yee BA, Dion P, Krishnaswamy A, Cloutier JF, Stifani S, Petrecca K, Yeo GW, Murai KK, Feng G, Rouleau GA, Ideker T, Sanjana NE, Zhou Y. Autism-associated CHD8 controls reactive gliosis and neuroinflammation via remodeling chromatin in astrocytes. Cell Rep 2024; 43:114637. [PMID: 39154337 DOI: 10.1016/j.celrep.2024.114637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 06/11/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
Reactive changes of glial cells during neuroinflammation impact brain disorders and disease progression. Elucidating the mechanisms that control reactive gliosis may help us to understand brain pathophysiology and improve outcomes. Here, we report that adult ablation of autism spectrum disorder (ASD)-associated CHD8 in astrocytes attenuates reactive gliosis via remodeling chromatin accessibility, changing gene expression. Conditional Chd8 deletion in astrocytes, but not microglia, suppresses reactive gliosis by impeding astrocyte proliferation and morphological elaboration. Astrocyte Chd8 ablation alleviates lipopolysaccharide-induced neuroinflammation and septic-associated hypothermia in mice. Astrocytic CHD8 plays an important role in neuroinflammation by altering the chromatin landscape, regulating metabolic and lipid-associated pathways, and astrocyte-microglia crosstalk. Moreover, we show that reactive gliosis can be directly mitigated in vivo using an adeno-associated virus (AAV)-mediated Chd8 gene editing strategy. These findings uncover a role of ASD-associated CHD8 in the adult brain, which may warrant future exploration of targeting chromatin remodelers in reactive gliosis and neuroinflammation in injury and neurological diseases.
Collapse
Affiliation(s)
- Platon Megagiannis
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Yuan Mei
- Division of Genetics, Department of Medicine, University of California, San Diego, San Diego, CA, USA; Department of Cellular and Molecular Medicine, Stem Cell Program, Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Rachel E Yan
- New York Genome Center, New York, NY, USA; Department of Biology, New York University, New York, NY, USA
| | - Lin Yuan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Jonathan J Wilde
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hailey Eckersberg
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Rahul Suresh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Xinzhu Tan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Hong Chen
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - W Todd Farmer
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Center, Montreal General Hospital, Montreal, QC, Canada
| | - Kuwook Cha
- Department of Physiology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Phuong Uyen Le
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Helene Catoire
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Daniel Rochefort
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Tony Kwan
- McGill Genome Center and Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Brian A Yee
- Department of Cellular and Molecular Medicine, Stem Cell Program, Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Patrick Dion
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Arjun Krishnaswamy
- Department of Physiology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Jean-Francois Cloutier
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Stefano Stifani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Kevin Petrecca
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, Stem Cell Program, Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Keith K Murai
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Center, Montreal General Hospital, Montreal, QC, Canada
| | - Guoping Feng
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Guy A Rouleau
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Trey Ideker
- Division of Genetics, Department of Medicine, University of California, San Diego, San Diego, CA, USA.
| | - Neville E Sanjana
- New York Genome Center, New York, NY, USA; Department of Biology, New York University, New York, NY, USA
| | - Yang Zhou
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada.
| |
Collapse
|
8
|
Jalali Kondori B, Abdolmaleki A, Raei M, Ghorbani Alvanegh A, Esmaeili Gouvarchin Ghaleh H. Intraperitoneal injection of mesenchymal stem cells-conditioned media (MSCS-CM) treated monocyte can potentially alleviate motor defects in experimental autoimmune encephalomyelitis female mice; An original experimental study. Transpl Immunol 2024; 85:102067. [PMID: 38839021 DOI: 10.1016/j.trim.2024.102067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 05/25/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
INTRODUCTION Multiple sclerosis (MS), as a destructive pathology of myelin in central nervous system (CNS), causes physical and mental complications. Experimental autoimmune encephalomyelitis (EAE) is laboratory model of MS widely used for CNS-associated inflammatory researches. Cell therapy using macrophage M2 (MPM2) is a cell type with anti-inflammatory characteristics for all inflammatory-based neuropathies. This experimental study investigated the probable therapeutic anti-inflammatory effects of intraperitoneal (IP) injection of MPM2 on alleviation of motor defect in EAE-affected animals. MATERIALS AND METHODS 24 C57/BL6 female mice were divided into four groups of EAE, EAE + Dexa, EAE + PBS, and EAE + MP2. EAE was induced through deep cervical injection of spinal homogenate of guinea pigs. MPM2 cells were harvested from bone marrow and injected (106cells/ml) in three days of 10, 13 and 16 post-immunizations (p.i). Clinical score (CS), anti-inflammatory cytokines (IL-4, IL-10), pro-inflammatory gene expression (TNF-α, IL-1β) and histopathological investigations (HE, Nissl and Luxol Fast Blue) were considered. Data were analyzed using SPSS software (v.19) and p < 0.05 was considered significant level. RESULTS During EAE induction, the mean animal weight was decreased (p < 0.05); besides, following MPM2 injection, the weight gain was applied (p < 0.05) in EAE + MPM2 groups than control. Increased (p < 0.05) levels of CS was found during EAE induction in days 17-28 in EAE animals; besides, CS was decreased (p < 0.05) in EAE + MPM2 group than EAE animals. Also, in days 25-28 of experiment, the CS was decreased (p < 0.05) in EAE + MPM2 than EAE + Dexa. Histopathological assessments revealed low density of cell nuclei in corpus callosum, microscopically. LFB staining also showed considerable decrease in white matter density of corpus callosum in EAE group. Acceleration of white matter density was found in EAE + MPM2 group following cell therapy procedure. Genes expression of TNF-α, IL-1β along with IL-4 and IL-10 were decreased (p < 0.05) in EAE + MPM2 group. CONCLUSION IP injection of MPM2 to EAE-affected female mice can potentially reduce the CNS inflammation, neuronal death and myelin destruction. MPM2 cell therapy can improve animal motor defects.
Collapse
Affiliation(s)
- Bahman Jalali Kondori
- Department of Anatomical Sciences, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran; Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Amir Abdolmaleki
- Department of Anatomical Sciences, Medical School, Baqiyatallah University of Medical Sciences, Tehran, Iran; Department of Operating Room, Nahavand School of Allied Medical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Mahdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | | | - Hadi Esmaeili Gouvarchin Ghaleh
- Applied Virology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Simani L, Molaeipour L, Kian S, Leavitt VM. Correlation between cognitive changes and neuroradiological changes over time in multiple sclerosis: a systematic review and meta-analysis. J Neurol 2024; 271:5498-5518. [PMID: 38890188 DOI: 10.1007/s00415-024-12517-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/01/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND While many studies have examined relationships of neuroimaging variables to cognitive measures in multiple sclerosis (MS), longitudinal studies are lacking. The relationship of cognitive changes to neuroradiological changes in MS is thus incompletely understood. The present study systematically reviews all studies reporting a relationship between MRI changes and cognitive changes after at least one year of follow-up. METHOD An extensive and methodical search of online databases was conducted to identify qualified studies until August 2023. Among various cognitive tests and magnetic resonance imaging (MRI) measures, Symbol Digit Modalities Test (SDMT), Paced Auditory Serial Addition Test (PASAT), verbal fluency, T2 lesion volume (T2LV), white matter lesion volume (WML), and grey matter volume (GMV) qualified for inclusion in a meta-analysis investigating the association of cognitive changes to neuroradiological changes. RESULTS We identified 35 studies that explored the link between MRI changes and changes in cognitive outcomes. Of these, twenty studies (57.14%) investigated the association between SDMT/PASAT and MRI metrics. Eleven studies (31.42%) focused on the relationship between MRI metrics and verbal learning and memory, while ten studies (28.57%) reported associations with visuospatial learning and memory. Furthermore, eight studies (22.85%) analyzed the correlation between verbal fluency and MRI measures. Only 5 were eligible for inclusion in the meta-analysis. The meta-analysis evaluated correlations between SDMT/PASAT and GMV (rs = 0.67, 95% CI 0.44-0.91), and verbal fluency and T2LV (rs = 0.35, 95% CI 0.09-0.60). CONCLUSION In this rigorously conducted systematic review, we found a significant association of cognitive changes, specifically SDMT/PASAT and verbal fluency, to changes in T2LV and atrophy in individuals with MS. Findings should be interpreted cautiously due to the limited amount of high-quality research, small sample sizes, and variability in study methodologies.
Collapse
Affiliation(s)
- Leila Simani
- Cognitive Neuroscience Division, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Leila Molaeipour
- Department of Biostatistics and Epidemiology, School of Health, Guilan University of Medical Sciences, Rasht, Iran
| | - Saeid Kian
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Victoria M Leavitt
- Cognitive Neuroscience Division, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
10
|
Valido E, Capossela S, Glisic M, Hertig-Godeschalk A, Bertolo A, Stucki G, Flueck JL, Stoyanov J. Gut microbiome and inflammation among athletes in wheelchair in a crossover randomized pilot trial of probiotic and prebiotic interventions. Sci Rep 2024; 14:12838. [PMID: 38834634 PMCID: PMC11150429 DOI: 10.1038/s41598-024-63163-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/26/2024] [Indexed: 06/06/2024] Open
Abstract
Disorders related to gut health are a significant cause of morbidity among athletes in wheelchair. This pilot feasibility trial aims to investigate whether probiotics compared to prebiotics can improve inflammatory status and gut microbiome composition in elite athletes in wheelchair. We conducted a 12-week, randomized, cross-over controlled trial involving 14 elite Swiss athletes in wheelchair. Participants were given a multispecies-multistrain probiotic or prebiotic (oat bran) daily for 4 weeks (Clinical trials.gov NCT04659408 09/12/2020). This was followed by a 4-week washout and then crossed over. Thirty inflammatory markers were assessed using bead-based multiplex immunoassays (LegendPlex) from serum samples. The gut microbiome was characterized via 16S rRNA sequencing of stool DNA samples. Statistical analyses were conducted using linear mixed-effect models (LMM). At baseline, most athletes (10/14) exhibited low levels of inflammation which associated with higher gut microbiome alpha diversity indices compared to those with high inflammation levels. The use of probiotic had higher decrease in 25 (83%) inflammatory markers measured compared to prebiotic use. Probiotic has the potential in lowering inflammation status and improving the gut microbiome diversity. The future trial should focus on having sufficient sample sizes, population with higher inflammation status, longer intervention exposure and use of differential abundance analysis.
Collapse
Affiliation(s)
- Ezra Valido
- Swiss Paraplegic Research, 6207, Nottwil, Switzerland.
| | | | - Marija Glisic
- Swiss Paraplegic Research, 6207, Nottwil, Switzerland
- Institute of Social and Preventive Medicine (ISPM), University of Bern, 3012, Bern, Switzerland
| | | | - Alessandro Bertolo
- Swiss Paraplegic Research, 6207, Nottwil, Switzerland
- Department of Orthopedic Surgery, University of Bern, Bern Inselspital, 3012, Bern, Switzerland
| | - Gerold Stucki
- Swiss Paraplegic Research, 6207, Nottwil, Switzerland
- Faculty of Health Sciences and Medicine, University of Lucerne, 6003, Lucerne, Switzerland
| | - Joelle Leonie Flueck
- Institute of Sports Medicine, Swiss Paraplegic Centre, 6207, Nottwil, Switzerland
| | - Jivko Stoyanov
- Swiss Paraplegic Research, 6207, Nottwil, Switzerland
- Institute of Social and Preventive Medicine (ISPM), University of Bern, 3012, Bern, Switzerland
| |
Collapse
|
11
|
Hua T, Fan H, Duan Y, Tian D, Chen Z, Xu X, Bai Y, Li Y, Zhang N, Sun J, Li H, Li Y, Li Y, Zeng C, Han X, Zhou F, Huang M, Xu S, Jin Y, Li H, Zhuo Z, Zhang X, Liu Y. Spinal cord and brain atrophy patterns in neuromyelitis optica spectrum disorder and multiple sclerosis. J Neurol 2024; 271:3595-3609. [PMID: 38558149 DOI: 10.1007/s00415-024-12281-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Spinal cord and brain atrophy are common in neuromyelitis optica spectrum disorder (NMOSD) and relapsing-remitting multiple sclerosis (RRMS) but harbor distinct patterns accounting for disability and cognitive impairment. METHODS This study included 209 NMOSD and 304 RRMS patients and 436 healthy controls. Non-negative matrix factorization was used to parse differences in spinal cord and brain atrophy at subject level into distinct patterns based on structural MRI. The weights of patterns were obtained using a linear regression model and associated with Expanded Disability Status Scale (EDSS) and cognitive scores. Additionally, patients were divided into cognitive impairment (CI) and cognitive preservation (CP) groups. RESULTS Three patterns were observed in NMOSD: (1) Spinal Cord-Deep Grey Matter (SC-DGM) pattern was associated with high EDSS scores and decline of visuospatial memory function; (2) Frontal-Temporal pattern was associated with decline of language learning function; and (3) Cerebellum-Brainstem pattern had no observed association. Patients with CI had higher weights of SC-DGM pattern than CP group. Three patterns were observed in RRMS: (1) DGM pattern was associated with high EDSS scores, decreased information processing speed, and decreased language learning and visuospatial memory functions; (2) Frontal-Temporal pattern was associated with overall cognitive decline; and (3) Occipital pattern had no observed association. Patients with CI trended to have higher weights of DGM and Frontal-Temporal patterns than CP group. CONCLUSION This study estimated the heterogeneity of spinal cord and brain atrophy patterns in NMOSD and RRMS patients at individual level, and evaluated the clinical relevance of these patterns, which may contribute to stratifying participants for targeted therapy.
Collapse
Affiliation(s)
- Tiantian Hua
- Department of Radiology, Beijing Tiantan Hospital, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Houyou Fan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yunyun Duan
- Department of Radiology, Beijing Tiantan Hospital, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Decai Tian
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China
| | - Zhenpeng Chen
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Xiaolu Xu
- Department of Radiology, Beijing Tiantan Hospital, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Yutong Bai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuna Li
- Department of Radiology, Beijing Tiantan Hospital, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Ningnannan Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Jie Sun
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Haiqing Li
- Department of Radiology, Huashan Hospital Fudan University, Shanghai, China
| | - Yuxin Li
- Department of Radiology, Huashan Hospital Fudan University, Shanghai, China
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chun Zeng
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Han
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Muhua Huang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Siyao Xu
- Department of Radiology, Beijing Tiantan Hospital, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Ying Jin
- Department of Radiology, Beijing Tiantan Hospital, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Hongfang Li
- Department of Radiology, Beijing Tiantan Hospital, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Zhizheng Zhuo
- Department of Radiology, Beijing Tiantan Hospital, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Xinghu Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
12
|
Li V, Binder MD, Purcell AW, Kilpatrick TJ. Antigen-specific immunotherapy via delivery of tolerogenic dendritic cells for multiple sclerosis. J Neuroimmunol 2024; 390:578347. [PMID: 38663308 DOI: 10.1016/j.jneuroim.2024.578347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/22/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system resulting from loss of immune tolerance. Many disease-modifying therapies for MS have broad immunosuppressive effects on peripheral immune cells, but this can increase risks of infection and attenuate vaccine-elicited immunity. A more targeted approach is to re-establish immune tolerance in an autoantigen-specific manner. This review discusses methods to achieve this, focusing on tolerogenic dendritic cells. Clinical trials in other autoimmune diseases also provide learnings with regards to clinical translation of this approach, including identification of autoantigen(s), selection of appropriate patients and administration route and frequency.
Collapse
Affiliation(s)
- Vivien Li
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Australia; Department of Neurology, The Royal Melbourne Hospital, Melbourne, Australia.
| | - Michele D Binder
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Australia
| | - Anthony W Purcell
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Trevor J Kilpatrick
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Australia; Department of Neurology, The Royal Melbourne Hospital, Melbourne, Australia
| |
Collapse
|
13
|
Nicholas R, Magliozzi R, Marastoni D, Howell O, Roncaroli F, Muraro P, Reynolds R, Friede T. High Levels of Perivascular Inflammation and Active Demyelinating Lesions at Time of Death Associated with Rapidly Progressive Multiple Sclerosis Disease Course: A Retrospective Postmortem Cohort Study. Ann Neurol 2024; 95:706-719. [PMID: 38149648 DOI: 10.1002/ana.26870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/23/2023] [Accepted: 12/24/2023] [Indexed: 12/28/2023]
Abstract
OBJECTIVE Analysis of postmortem multiple sclerosis (MS) tissues combined with in vivo disease milestones suggests that whereas perivascular white matter infiltrates are associated with demyelinating activity in the initial stages, leptomeningeal immune cell infiltration, enriched in B cells, and associated cortical lesions contribute to disease progression. We systematically examine the association of inflammatory features and white matter demyelination at postmortem with clinical milestones. METHODS In 269 MS brains, 20 sites were examined using immunohistochemistry for active lesions (ALs) and perivenular inflammation (PVI). In a subset of 22, a detailed count of CD20+ B cells and CD3+ T cells in PVIs was performed. RESULTS ALs were detected in 22%, whereas high levels of PVI were detected in 52% of cases. ALs were present in 35% of cases with high levels of PVI. Shorter time from onset of progression to death was associated with increased prevalence and higher levels of PVI (both p < 0.0001). Shorter time from onset of progression to wheelchair use was associated with higher prevalence of ALs (odds ratio [OR] = 0.921, 95% confidence interval [CI] = 0.858-0.989, p = 0.0230) and higher level of PVI (OR = 0.932, 95% CI = 0.886-0.981, p = 0.0071). High levels of PVI were associated with meningeal inflammation and increased cortical demyelination and significantly higher levels of B lymphocytes within the PVI. INTERPRETATION ALs, a feature of early disease stage, persist up to death in a subgroup with high levels of PVI. These features link to a rapid progressive phase and higher levels of meningeal inflammation and B-cell infiltrates, supporting the hypothesis that chronic inflammation drives progression in MS. ANN NEUROL 2024;95:706-719.
Collapse
Affiliation(s)
- Richard Nicholas
- Imperial College Healthcare NHS Trust, London, UK
- Department of Brain Sciences, UK Multiple Sclerosis Society Tissue Bank, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Roberta Magliozzi
- Department of Brain Sciences, UK Multiple Sclerosis Society Tissue Bank, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Damiano Marastoni
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Owain Howell
- Department of Brain Sciences, UK Multiple Sclerosis Society Tissue Bank, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
- Institute for Life Sciences, Swansea University, Swansea, UK
| | - Federico Roncaroli
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Paolo Muraro
- Department of Brain Sciences, UK Multiple Sclerosis Society Tissue Bank, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Richard Reynolds
- Department of Brain Sciences, UK Multiple Sclerosis Society Tissue Bank, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Tim Friede
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
14
|
Choi S, Lake S, Harrison DM. Evaluation of the Blood-Brain Barrier, Demyelination, and Neurodegeneration in Paramagnetic Rim Lesions in Multiple Sclerosis on 7 Tesla MRI. J Magn Reson Imaging 2024; 59:941-951. [PMID: 37276054 PMCID: PMC10754232 DOI: 10.1002/jmri.28847] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND Paramagnetic rim lesions (PRLs) are associated with chronic inflammation in multiple sclerosis (MS). 7-Tesla (7T) magnetic resonance imaging (MRI) can evaluate the integrity of the blood-brain barrier (BBB) in addition to the tissue myelination status and cell loss. PURPOSE To use MRI metrics to investigate underlying physiology and clinical importance of PRLs. STUDY TYPE Prospective. SUBJECTS Thirty-six participants (mean-age 47, 23 females, 13 males) of mixed MS subtypes. FIELD STRENGTH/SEQUENCE 7T, MP2RAGE, MULTI-ECHO 3D-GRE, FLAIR. ASSESSMENT Lesion heterogeneity; longitudinal changes in lesion counts; comparison of T1, R2*, and χ; association between baseline lesion types and disease progression (2-3 annual MRI visits with additional years of annual clinical follow-up). STATISTICAL TESTS Two-sample t-test, Wilcoxon Rank-Sum test, Pearson's chi-square test, two-group comparison with linear-mixed-effect model, mixed-effect ANOVA, logistic regression. P-values <0.05 were considered significant. RESULTS A total of 58.3% of participants had at least one PRL at baseline. Higher male proportion in PRL+ group was found. Average change in PRL count was 0.20 (SD = 2.82) for PRLs and 0.00 (SD = 0.82) for mottled lesions. Mean and median pre-/post-contrast T1 were longer in PRL+ than in PRL-. No differences in mean χ were seen for lesions grouped by PRL (P = 0.310, pre-contrast; 0.086, post-contrast) or PRL/M presence (P = 0.234, pre-contrast; 0.163, post-contrast). Median χ were less negative in PRL+ and PRL/M+ than in PRL- and PRL/M-. Mean and median pre-/post-contrast R2* were slower in PRL+ compared to PRL-. Mean and median pre-/post-contrast R2* were slower in PRL/M+ than in PRL/M-. PRL presence at baseline was associated with confirmed EDSS Plus progression (OR 3.75 [1.22-7.59]) and PRL/M+ at baseline with confirmed EDSS Plus progression (OR 3.63 [1.14-7.43]). DATA CONCLUSION Evidence of BBB breakdown in PRLs was not seen. Quantitative metrics confirmed prior results suggesting greater demyelination, cell loss, and possibly disruption of tissue anisotropy in PRLs. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Seongjin Choi
- Department of Neurology, University of Maryland School of Medicine, Baltimore Maryland
| | - Sarah Lake
- Hasbro Children’s Hospital, Brown University
| | - Daniel M. Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore Maryland
- Department of Neurology, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| |
Collapse
|
15
|
Preziosa P, Pagani E, Meani A, Storelli L, Margoni M, Yudin Y, Tedone N, Biondi D, Rubin M, Rocca MA, Filippi M. Chronic Active Lesions and Larger Choroid Plexus Explain Cognition and Fatigue in Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200205. [PMID: 38350048 DOI: 10.1212/nxi.0000000000200205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/18/2023] [Indexed: 02/15/2024]
Abstract
BACKGROUND AND OBJECTIVES Chronic inflammation may contribute to cognitive dysfunction and fatigue in patients with multiple sclerosis (MS). Paramagnetic rim lesions (PRLs) and choroid plexus (CP) enlargement have been proposed as markers of chronic inflammation in MS being associated with a more severe disease course. However, their relation with cognitive impairment and fatigue has not been fully explored yet. Here, we investigated the contribution of PRL number and volume and CP enlargement to cognitive impairment and fatigue in patients with MS. METHODS Brain 3T MRI, neurologic evaluation, and neuropsychological assessment, including the Brief Repeatable Battery of Neuropsychological Tests and Modified Fatigue Impact Scale, were obtained from 129 patients with MS and 73 age-matched and sex-matched healthy controls (HC). PRLs were identified on phase images of susceptibility-weighted imaging, whereas CP volume was quantified using a fully automatic method on brain three-dimensional T1-weighted and fluid-attenuated inversion recovery MRI sequences. Predictors of cognitive impairment and fatigue were identified using random forest. RESULTS Thirty-six (27.9%) patients with MS were cognitively impaired, and 31/113 (27.4%) patients had fatigue. Fifty-nine (45.7%) patients with MS had ≥1 PRLs (median = 0, interquartile range = 0;2). Compared with HC, patients with MS showed significantly higher T2-hyperintense white matter lesion (WM) volume; lower normalized brain, thalamic, hippocampal, caudate, cortical, and WM volumes; and higher normalized CP volume (p from <0.001 to 0.040). The predictors of cognitive impairment (relative importance) (out-of-bag area under the curve [OOB-AUC] = 0.707) were normalized brain volume (100%), normalized caudate volume (89.1%), normalized CP volume (80.3%), normalized cortical volume (70.3%), number (67.3%) and volume (66.7%) of PRLs, and T2-hyperintense WM lesion volume (64.0%). Normalized CP volume was the only predictor of the presence of fatigue (OOB-AUC = 0.563). DISCUSSION Chronic inflammation, with higher number and volume of PRLs and enlarged CP, may contribute to cognitive impairment in MS in addition to gray matter atrophy. The contribution of enlarged CP in explaining fatigue supports the relevance of immune-related processes in determining this manifestation independently of disease severity. PRLs and CP enlargement may contribute to the pathophysiology of cognitive impairment and fatigue in MS, and they may represent clinically relevant therapeutic targets to limit the impact of these clinical manifestations in MS.
Collapse
Affiliation(s)
- Paolo Preziosa
- From the Neuroimaging Research Unit (P.P., E.P., A.M., L.S., M.M., Y.Y., N.T., D.B., M.R., M.A.R., M.F.), Division of Neuroscience; Neurology Unit (P.P., M.M., M.R., M.A.R., M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (P.P., M.R., M.A.R., M.F.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Pagani
- From the Neuroimaging Research Unit (P.P., E.P., A.M., L.S., M.M., Y.Y., N.T., D.B., M.R., M.A.R., M.F.), Division of Neuroscience; Neurology Unit (P.P., M.M., M.R., M.A.R., M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (P.P., M.R., M.A.R., M.F.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Meani
- From the Neuroimaging Research Unit (P.P., E.P., A.M., L.S., M.M., Y.Y., N.T., D.B., M.R., M.A.R., M.F.), Division of Neuroscience; Neurology Unit (P.P., M.M., M.R., M.A.R., M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (P.P., M.R., M.A.R., M.F.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Loredana Storelli
- From the Neuroimaging Research Unit (P.P., E.P., A.M., L.S., M.M., Y.Y., N.T., D.B., M.R., M.A.R., M.F.), Division of Neuroscience; Neurology Unit (P.P., M.M., M.R., M.A.R., M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (P.P., M.R., M.A.R., M.F.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Monica Margoni
- From the Neuroimaging Research Unit (P.P., E.P., A.M., L.S., M.M., Y.Y., N.T., D.B., M.R., M.A.R., M.F.), Division of Neuroscience; Neurology Unit (P.P., M.M., M.R., M.A.R., M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (P.P., M.R., M.A.R., M.F.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Yury Yudin
- From the Neuroimaging Research Unit (P.P., E.P., A.M., L.S., M.M., Y.Y., N.T., D.B., M.R., M.A.R., M.F.), Division of Neuroscience; Neurology Unit (P.P., M.M., M.R., M.A.R., M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (P.P., M.R., M.A.R., M.F.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nicolò Tedone
- From the Neuroimaging Research Unit (P.P., E.P., A.M., L.S., M.M., Y.Y., N.T., D.B., M.R., M.A.R., M.F.), Division of Neuroscience; Neurology Unit (P.P., M.M., M.R., M.A.R., M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (P.P., M.R., M.A.R., M.F.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Diana Biondi
- From the Neuroimaging Research Unit (P.P., E.P., A.M., L.S., M.M., Y.Y., N.T., D.B., M.R., M.A.R., M.F.), Division of Neuroscience; Neurology Unit (P.P., M.M., M.R., M.A.R., M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (P.P., M.R., M.A.R., M.F.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Martina Rubin
- From the Neuroimaging Research Unit (P.P., E.P., A.M., L.S., M.M., Y.Y., N.T., D.B., M.R., M.A.R., M.F.), Division of Neuroscience; Neurology Unit (P.P., M.M., M.R., M.A.R., M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (P.P., M.R., M.A.R., M.F.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria A Rocca
- From the Neuroimaging Research Unit (P.P., E.P., A.M., L.S., M.M., Y.Y., N.T., D.B., M.R., M.A.R., M.F.), Division of Neuroscience; Neurology Unit (P.P., M.M., M.R., M.A.R., M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (P.P., M.R., M.A.R., M.F.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- From the Neuroimaging Research Unit (P.P., E.P., A.M., L.S., M.M., Y.Y., N.T., D.B., M.R., M.A.R., M.F.), Division of Neuroscience; Neurology Unit (P.P., M.M., M.R., M.A.R., M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (P.P., M.R., M.A.R., M.F.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
16
|
Zaccai S, Nemirovsky A, Lerner L, Alfahel L, Eremenko E, Israelson A, Monsonego A. CD4 T-cell aging exacerbates neuroinflammation in a late-onset mouse model of amyotrophic lateral sclerosis. J Neuroinflammation 2024; 21:17. [PMID: 38212835 PMCID: PMC10782641 DOI: 10.1186/s12974-023-03007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/26/2023] [Indexed: 01/13/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset progressive neurodegenerative disorder characterized by the loss of upper and lower motor neurons in the brain and spinal cord. Accumulating evidence suggests that ALS is not solely a neuronal cell- or brain tissue-autonomous disease and that neuroinflammation plays a key role in disease progression. Furthermore, whereas both CD4 and CD8 T cells were observed in spinal cords of ALS patients and in mouse models of the disease, their role in the neuroinflammatory process, especially considering their functional changes with age, is not fully explored. In this study, we revealed the structure of the CD4 T-cell compartment during disease progression of early-onset SOD1G93A and late-onset SOD1G37R mouse models of ALS. We show age-related changes in the CD4 T-cell subset organization between these mutant SOD1 mouse models towards increased frequency of effector T cells in spleens of SOD1G37R mice and robust infiltration of CD4 T cells expressing activation markers and the checkpoint molecule PD1 into the spinal cord. The frequency of infiltrating CD4 T cells correlated with the frequency of infiltrating CD8 T cells which displayed a more exhausted phenotype. Moreover, RNA-Seq and immunohistochemistry analyses of spinal cords from SOD1G37R mice with early clinical symptoms demonstrated immunological trajectories reminiscent of a neurotoxic inflammatory response which involved proinflammatory T cells and antigen presentation related pathways. Overall, our findings suggest that age-related changes of the CD4 T cell landscape is indicative of a chronic inflammatory response, which aggravates the disease process and can be therapeutically targeted.
Collapse
Affiliation(s)
- Shir Zaccai
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Anna Nemirovsky
- The Shraga Segal Dept. of Microbiology, Immunology and Genetics, Faculty of Health Sciences and The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Livnat Lerner
- The Shraga Segal Dept. of Microbiology, Immunology and Genetics, Faculty of Health Sciences and The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Leenor Alfahel
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Ekaterina Eremenko
- The Shraga Segal Dept. of Microbiology, Immunology and Genetics, Faculty of Health Sciences and The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Adrian Israelson
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel.
| | - Alon Monsonego
- The Shraga Segal Dept. of Microbiology, Immunology and Genetics, Faculty of Health Sciences and The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel.
| |
Collapse
|
17
|
Sheremeta CL, Yarlagadda S, Smythe ML, Noakes PG. Prostaglandins in the Inflamed Central Nervous System: Potential Therapeutic Targets. Curr Drug Targets 2024; 25:885-908. [PMID: 39177131 DOI: 10.2174/0113894501323980240815113851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 08/24/2024]
Abstract
The global burden of neurological disorders is evident, yet there remains limited efficacious therapeutics for their treatment. There is a growing recognition of the role of inflammation in diseases of the central nervous system (CNS); among the numerous inflammatory mediators involved, prostaglandins play a crucial role. Prostaglandins are small lipid mediators derived from arachidonic acid via multi-enzymatic pathways. The actions of prostaglandins are varied, with each prostaglandin having a specific role in maintaining homeostasis. In the CNS, prostaglandins can have neuroprotective or neurotoxic properties depending on their specific G-protein receptor. These G-protein receptors have varying subfamilies, tissue distribution, and signal transduction cascades. Further studies into the impact of prostaglandins in CNS-based diseases may contribute to the clarification of their actions, hopefully leading to the development of efficacious therapeutic strategies. This review focuses on the roles played by prostaglandins in neural degeneration, with a focus on Alzheimer's Disease, Multiple Sclerosis, and Amyotrophic Lateral Sclerosis in both preclinical and clinical settings. We further discuss current prostaglandin-related agonists and antagonists concerning suggestions for their use as future therapeutics.
Collapse
Affiliation(s)
- Chynna-Loren Sheremeta
- Institute for Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Sai Yarlagadda
- Institute for Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Mark L Smythe
- Institute for Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Peter G Noakes
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
18
|
Wang YC, Kung WM, Chung YH, Kumar S. Drugs to Treat Neuroinflammation in Neurodegenerative Disorders. Curr Med Chem 2024; 31:1818-1829. [PMID: 37013428 DOI: 10.2174/0929867330666230403125140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/26/2023] [Accepted: 02/10/2023] [Indexed: 04/05/2023]
Abstract
Neuroinflammation is associated with disorders of the nervous system, and it is induced in response to many factors, including pathogen infection, brain injury, toxic substances, and autoimmune diseases. Astrocytes and microglia have critical roles in neuroinflammation. Microglia are innate immune cells in the central nervous system (CNS), which are activated in reaction to neuroinflammation-inducing factors. Astrocytes can have pro- or anti-inflammatory responses, which depend on the type of stimuli presented by the inflamed milieu. Microglia respond and propagate peripheral inflammatory signals within the CNS that cause low-grade inflammation in the brain. The resulting alteration in neuronal activities leads to physiological and behavioral impairment. Consequently, activation, synthesis, and discharge of various pro-inflammatory cytokines and growth factors occur. These events lead to many neurodegenerative conditions, such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis discussed in this study. After understanding neuroinflammation mechanisms and the involvement of neurotransmitters, this study covers various drugs used to treat and manage these neurodegenerative illnesses. The study can be helpful in discovering new drug molecules for treating neurodegenerative disorders.
Collapse
Affiliation(s)
- Yao-Chin Wang
- Graduate Institute of Injury Prevention and Control, College of Public Health, Taipei Medical University, Taipei, Taiwan
- Department of Emergency, Min-Sheng General Hospital, Taoyuan City, Taiwan
| | - Woon-Man Kung
- Department of Exercise and Health Promotion, College of Kinesiology and Health, Chinese Culture University, Taipei, Taiwan
| | - Yi-Hsiu Chung
- Department of Medical Research and Development, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Sunil Kumar
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
- School of Law (Patent), Nottingham Trent University, 50 Shakespeare St, Nottingham, NG14FQ, England
- Pomato IP (Ignite Your Idea), Nottingham, England
| |
Collapse
|
19
|
Emami Nejad A, Mostafavi Zadeh SM, Nickho H, Sadoogh Abbasian A, Forouzan A, Ahmadlou M, Nedaeinia R, Shaverdi S, Manian M. The role of microRNAs involved in the disorder of blood-brain barrier in the pathogenesis of multiple sclerosis. Front Immunol 2023; 14:1281567. [PMID: 38193092 PMCID: PMC10773759 DOI: 10.3389/fimmu.2023.1281567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/30/2023] [Indexed: 01/10/2024] Open
Abstract
miRNAs are involved in various vital processes, including cell growth, development, apoptosis, cellular differentiation, and pathological cellular activities. Circulating miRNAs can be detected in various body fluids including serum, plasma, saliva, and urine. It is worth mentioning that miRNAs remain stable in the circulation in biological fluids and are released from membrane-bound vesicles called exosomes, which protect them from RNase activity. It has been shown that miRNAs regulate blood-brain barrier integrity by targeting both tight junction and adherens junction molecules and can also influence the expression of inflammatory cytokines. Some recent studies have examined the impact of certain commonly used drugs in Multiple Sclerosis on miRNA levels. In this review, we will focus on the recent findings on the role of miRNAs in multiple sclerosis, including their role in the cause of MS and molecular mechanisms of the disease, utilizing miRNAs as diagnostic and clinical biomarkers, using miRNAs as a therapeutic modality or target for Multiple Sclerosis and drug responses in patients, elucidating their importance as prognosticators of disease progression, and highlighting their potential as a future treatment for MS.
Collapse
Affiliation(s)
| | - Seyed Mostafa Mostafavi Zadeh
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Nickho
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Sadoogh Abbasian
- Department of Internal Medicine, School of Medicine, Amiralmomenin Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Azim Forouzan
- Department of Internal Medicine, School of Medicine, Amiralmomenin Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Mojtaba Ahmadlou
- Department of Biostatistics, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saham Shaverdi
- Department of Biology, Payame Noor University (PNU), Tehran, Iran
| | - Mostafa Manian
- Department of Medical Laboratory Science, Faculty of Medicine, Islamic Azad University, Kermanshah, Iran
- Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
20
|
Ramadan Q, Hazaymeh R, Zourob M. Immunity-on-a-Chip: Integration of Immune Components into the Scheme of Organ-on-a-Chip Systems. Adv Biol (Weinh) 2023; 7:e2200312. [PMID: 36866511 DOI: 10.1002/adbi.202200312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/16/2023] [Indexed: 03/04/2023]
Abstract
Studying the immune system in vitro aims to understand how, when, and where the immune cells migrate/differentiate and respond to the various triggering events and the decision points along the immune response journey. It becomes evident that organ-on-a-chip (OOC) technology has a superior capability to recapitulate the cell-cell and tissue-tissue interaction in the body, with a great potential to provide tools for tracking the paracrine signaling with high spatial-temporal precision and implementing in situ real-time, non-destructive detection assays, therefore, enabling extraction of mechanistic information rather than phenotypic information. However, despite the rapid development in this technology, integration of the immune system into OOC devices stays among the least navigated tasks, with immune cells still the major missing components in the developed models. This is mainly due to the complexity of the immune system and the reductionist methodology of the OOC modules. Dedicated research in this field is demanded to establish the understanding of mechanism-based disease endotypes rather than phenotypes. Herein, we systemically present a synthesis of the state-of-the-art of immune-cantered OOC technology. We comprehensively outlined what is achieved and identified the technology gaps emphasizing the missing components required to establish immune-competent OOCs and bridge these gaps.
Collapse
Affiliation(s)
- Qasem Ramadan
- Alfaisal University, Riyadh, 11533, Kingdom of Saudi Arabia
| | - Rana Hazaymeh
- Almaarefa University, Diriyah, 13713, Kingdom of Saudi Arabia
| | | |
Collapse
|
21
|
Min K, Sahu A, Jeon SH, Tae G. Emerging drug delivery systems with traditional routes - A roadmap to chronic inflammatory diseases. Adv Drug Deliv Rev 2023; 203:115119. [PMID: 37898338 DOI: 10.1016/j.addr.2023.115119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 07/17/2023] [Accepted: 10/23/2023] [Indexed: 10/30/2023]
Abstract
Inflammation is prevalent and inevitable in daily life but can generally be accommodated by the immune systems. However, incapable self-healing and persistent inflammation can progress to chronic inflammation, leading to prevalent or fatal chronic diseases. This review comprehensively covers the topic of emerging drug delivery systems (DDSs) for the treatment of chronic inflammatory diseases (CIDs). First, we introduce the basic biology of the chronic inflammatory process and provide an overview of the main CIDs of the major organs. Next, up-to-date information on various DDSs and the associated strategies for ensuring targeted delivery and stimuli-responsiveness applied to CIDs are discussed extensively. The implementation of traditional routes of drug administration to maximize their therapeutic effects against CIDs is then summarized. Finally, perspectives on future DDSs against CIDs are presented.
Collapse
Affiliation(s)
- Kiyoon Min
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Abhishek Sahu
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, 844102, India
| | - Sae Hyun Jeon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
22
|
Elkjaer ML, Waede MR, Kingo C, Damsbo K, Illes Z. Expression of Bruton´s tyrosine kinase in different type of brain lesions of multiple sclerosis patients and during experimental demyelination. Front Immunol 2023; 14:1264128. [PMID: 38022591 PMCID: PMC10679451 DOI: 10.3389/fimmu.2023.1264128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Background Inhibition of Bruton's tyrosine kinase (BTK) is an emerging multiple sclerosis (MS) therapy. BTK inhibitors (BTKi) cross the blood-brain barrier and modulate B cells and microglia, major cellular players in active and chronic active lesions. Objective To assess potential lesional and cellular targets of BTKi, we examined BTK expression in different type of MS white matter (WM) lesions, in unmanipulated CNS resident cells, and in a degenerative MS model associated with microglia activation in vivo. Methods We examined BTK expression by next-generation RNA-sequencing in postmortem 25 control WM, 19 NAWM, 6 remyelinating, 18 active, 13 inactive and 17 chronic active lesions. Presence of B cells and microglia were examined by immunohistochemistry. CNS resident cells were isolated from the mouse brain by magnetic sorting. BTK expression was examined by quantitative PCR in isolated cells and dissected corpus callosum from mice treated with cuprizone (CPZ). Results BTK expression was significantly increased in active and chronic active lesions with upregulated complement receptors and Fcγ receptors. Active lesions contained high number of perivascular B cells, microglia, and macrophages. Chronic active lesions were characterized by microglia/macrophages in the rim. Microglia expressed BTK at high level (120-fold) in contrast to other CNS cell types (2-4-fold). BTK expression was increasing during CPZ treatment reaching significance after stopping CPZ. Conclusion Considering BTK expression in MS lesions and resident cells, BTKi may exert effect on B cells, microglia/macrophages in active lesions, and limit microglia activation in chronic active lesions, where tissue damage propagates.
Collapse
Affiliation(s)
- Maria L. Elkjaer
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Mie R. Waede
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Christina Kingo
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Karina Damsbo
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- BRIDGE – Brain Research Interdisciplinary Guided Ecxellence, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
23
|
Petropoulos IN, John K, Al-Shibani F, Ponirakis G, Khan A, Gad H, Mahfoud ZR, Altarawneh H, Rehman MH, Al-Merekhi D, George P, Ibrahim F, Francis R, Canibano B, Deleu D, El-Sotouhy A, Vattoth S, Stettner M, Own A, Shuaib A, Akhtar N, Kamran S, Malik RA. Corneal immune cells as a biomarker of inflammation in multiple sclerosis: a longitudinal study. Ther Adv Neurol Disord 2023; 16:17562864231204974. [PMID: 37915502 PMCID: PMC10617262 DOI: 10.1177/17562864231204974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/12/2023] [Indexed: 11/03/2023] Open
Abstract
Background Corneal immune cells (ICs) are antigen-presenting cells that are known to increase ocular and systemic inflammatory conditions. Objective We aimed to assess longitudinal changes in corneal IC in patients with multiple sclerosis (MS) and relation to disability and ongoing treatment. Design Prospective observational study conducted between September 2016 and February 2020. Methods Patients with relapsing-remitting MS (RRMS) (n = 45) or secondary progressive MS (SPMS) (n = 15) underwent corneal confocal microscopy (CCM) at baseline and 2-year follow-up for estimation of corneal IC density [dendritic cells with (DCF) (cells/mm2) or without nerve fiber contact (DCP); and non-dendritic cells with (NCF) or without nerve fiber contact (NCP)]. Optical coherence tomography, neuroimaging, and disability assessments were additionally performed. Healthy controls (n = 20) were assessed at baseline. Results In both RRMS and SPMS compared to controls, DCP (p < 0.001 and p < 0.001, respectively) and DCF (p < 0.001 and p = 0.005) were higher and NCF (p = 0.007 and p = 0.02) was lower at baseline. DCP showed excellent performance in identifying patients with MS (sensitivity/specificity = 0.88/0.90) followed by DCF (0.80/0.75) and NCF (0.80/0.85). At follow-up compared to baseline, DCP (p = 0.01) was significantly reduced, and NCP (p = 0.004) and NCF (p = 0.04) were increased. Subgroup analysis showed that baseline NCP and NCF were significantly higher (p = 0.04-0.05) in patients who switched disease-modifying treatment, and baseline NCP (p = 0.05) was higher in patients on interferon. Conclusion Baseline and change in corneal IC were related to axonal degeneration and treatment status. Evaluation of corneal IC using CCM may allow an assessment of ongoing inflammation, disease progression, and the effect of treatment in MS.
Collapse
Affiliation(s)
| | - Karen John
- Division of Research, Weill Cornell Medicine, Doha, Qatar
| | | | | | - Adnan Khan
- Division of Research, Weill Cornell Medicine, Doha, Qatar
| | - Hoda Gad
- Division of Research, Weill Cornell Medicine, Doha, Qatar
| | - Ziyad R. Mahfoud
- Division of Medical Education, Weill Cornell Medicine, Doha, Qatar
- Division of Epidemiology, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | | | | | | | - Pooja George
- Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar
| | - Faiza Ibrahim
- Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar
| | - Reny Francis
- Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar
| | | | - Dirk Deleu
- Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar
| | | | - Surjith Vattoth
- Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Mark Stettner
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Essen, Germany
| | - Ahmed Own
- Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar
| | - Ashfaq Shuaib
- Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar
- Department of Medicine, University of Alberta, Edmonton, Qatar
| | - Naveed Akhtar
- Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar
| | - Saadat Kamran
- Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar
| | - Rayaz A. Malik
- Weill Cornell Medicine-Qatar of Cornell University, Research Division, Qatar Foundation, Education City, Al-Luqta street, Doha 24144, Qatar
| |
Collapse
|
24
|
Smith BC, Tinkey RA, Brock OD, Mariam A, Habean ML, Dutta R, Williams JL. Astrocyte interferon-gamma signaling dampens inflammation during chronic central nervous system autoimmunity via PD-L1. J Neuroinflammation 2023; 20:234. [PMID: 37828609 PMCID: PMC10568873 DOI: 10.1186/s12974-023-02917-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/01/2023] [Indexed: 10/14/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease of the central nervous system (CNS). Infiltrating inflammatory immune cells perpetuate demyelination and axonal damage in the CNS and significantly contribute to pathology and clinical deficits. While the cytokine interferon (IFN)γ is classically described as deleterious in acute CNS autoimmunity, we and others have shown astrocytic IFNγ signaling also has a neuroprotective role. Here, we performed RNA sequencing and ingenuity pathway analysis on IFNγ-treated astrocytes and found that PD-L1 was prominently expressed. Interestingly, PD-1/PD-L1 antagonism reduced apoptosis in leukocytes exposed to IFNγ-treated astrocytes in vitro. To further elucidate the role of astrocytic IFNγ signaling on the PD-1/PD-L1 axis in vivo, we induced the experimental autoimmune encephalomyelitis (EAE) model of MS in Aldh1l1-CreERT2, Ifngr1fl/fl mice. Mice with conditional astrocytic deletion of IFNγ receptor exhibited a reduction in PD-L1 expression which corresponded to increased infiltrating leukocytes, particularly from the myeloid lineage, and exacerbated clinical disease. PD-1 agonism reduced EAE severity and CNS-infiltrating leukocytes. Importantly, PD-1 is expressed by myeloid cells surrounding MS lesions. These data support that IFNγ signaling in astrocytes diminishes inflammation during chronic autoimmunity via upregulation of PD-L1, suggesting potential therapeutic benefit for MS patients.
Collapse
Affiliation(s)
- Brandon C Smith
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC30, Cleveland, OH, 44195, USA
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, USA
| | - Rachel A Tinkey
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC30, Cleveland, OH, 44195, USA
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Orion D Brock
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC30, Cleveland, OH, 44195, USA
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Arshiya Mariam
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Maria L Habean
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC30, Cleveland, OH, 44195, USA
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Ranjan Dutta
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC30, Cleveland, OH, 44195, USA
| | - Jessica L Williams
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC30, Cleveland, OH, 44195, USA.
| |
Collapse
|
25
|
Brier MR, Taha F. Measuring Pathology in Patients with Multiple Sclerosis Using Positron Emission Tomography. Curr Neurol Neurosci Rep 2023; 23:479-488. [PMID: 37418219 DOI: 10.1007/s11910-023-01285-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
PURPOSE OF REVIEW Multiple sclerosis is characterized by a diverse and complex pathology. Clinical relapses, the hallmark of the disease, are accompanied by focal white matter lesions with intense inflammatory and demyelinating activity. Prevention of these relapses has been the major focus of pharmaceutical development, and it is now possible to dramatically reduce this inflammatory activity. Unfortunately, disability accumulation persists for many people living with multiple sclerosis owing to ongoing damage within existing lesions, pathology outside of discrete lesions, and other yet unknown factors. Understanding this complex pathological cascade will be critical to stopping progressive multiple sclerosis. Positron emission tomography uses biochemically specific radioligands to quantitatively measure pathological processes with molecular specificity. This review examines recent advances in the understanding of multiple sclerosis facilitated by positron emission tomography and identifies future avenues to expand understanding and treatment options. RECENT FINDINGS An increasing number of radiotracers allow for the quantitative measurement of inflammatory abnormalities, de- and re-myelination, and metabolic disruption associated with multiple sclerosis. The studies have identified contributions of ongoing, smoldering inflammation to accumulating tissue injury and clinical worsening. Myelin studies have quantified the dynamics of myelin loss and recovery. Lastly, metabolic changes have been found to contribute to symptom worsening. The molecular specificity facilitated by positron emission tomography in people living with multiple sclerosis will critically inform efforts to modulate the pathology leading to progressive disability accumulation. Existing studies show the power of this approach applied to multiple sclerosis. This armamentarium of radioligands allows for new understanding of how the brain and spinal cord of people is impacted by multiple sclerosis.
Collapse
Affiliation(s)
- Matthew R Brier
- Department of Neurology, John L Trotter MS Center, Washington University in St. Louis, St. Louis, USA.
| | - Farris Taha
- Department of Neurology, Medical University of South Carolina, Charleston, USA
| |
Collapse
|
26
|
Elmers J, Colzato LS, Akgün K, Ziemssen T, Beste C. Neurofilaments - Small proteins of physiological significance and predictive power for future neurodegeneration and cognitive decline across the life span. Ageing Res Rev 2023; 90:102037. [PMID: 37619618 DOI: 10.1016/j.arr.2023.102037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/15/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Neurofilaments (NFs) are not only important for axonal integrity and nerve conduction in large myelinated axons but they are also thought to be crucial for receptor and synaptic functioning. Therefore, NFs may play a critical role in cognitive functions, as cognitive processes are known to depend on synaptic integrity and are modulated by dopaminergic signaling. Here, we present a theory-driven interdisciplinary approach that NFs may link inflammation, neurodegeneration, and cognitive functions. We base our hypothesis on a wealth of evidence suggesting a causal link between inflammation and neurodegeneration and between these two and cognitive decline (see Fig. 1), also taking dopaminergic signaling into account. We conclude that NFs may not only serve as biomarkers for inflammatory, neurodegenerative, and cognitive processes but also represent a potential mechanical hinge between them, moreover, they may even have predictive power regarding future cognitive decline. In addition, we advocate the use of both NFs and MRI parameters, as their synthesis offers the opportunity to individualize medical treatment by providing a comprehensive view of underlying disease activity in neurological diseases. Since our society will become significantly older in the upcoming years and decades, maintaining cognitive functions and healthy aging will play an important role. Thanks to technological advances in recent decades, NFs could serve as a rapid, noninvasive, and relatively inexpensive early warning system to identify individuals at increased risk for cognitive decline and could facilitate the management of cognitive dysfunctions across the lifespan.
Collapse
Affiliation(s)
- Julia Elmers
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Lorenza S Colzato
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China.
| | - Katja Akgün
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China.
| |
Collapse
|
27
|
Zeng R, Jiang R, Huang W, Wang J, Zhang L, Ma Y, Wu Y, Meng M, Lan H, Lian Q, Leung FW, Sha W, Chen H. Dissecting shared genetic architecture between obesity and multiple sclerosis. EBioMedicine 2023; 93:104647. [PMID: 37300932 PMCID: PMC10363440 DOI: 10.1016/j.ebiom.2023.104647] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Observational studies have associated obesity with an increased risk of multiple sclerosis (MS). However, the role of genetic factors in their comorbidity remains largely unknown. Our study aimed to investigate the shared genetic architecture underlying obesity and MS. METHODS By leveraging data from genome-wide association studies, we investigated the genetic correlation of body mass index (BMI) and MS by linkage disequilibrium score regression and genetic covariance analyser. The casualty was identified by bidirectional Mendelian randomisation. Linkage disequilibrium score regression in specifically expressed genes and multimarker analysis of GenoMic annotation was utilised to explore single-nucleotide polymorphism (SNP) enrichment at the tissue and cell-type levels. Shared risk SNPs were derived using cross-trait meta-analyses and Heritability Estimation from Summary Statistics. We explored the potential functional genes using summary-data-based Mendelian randomization (SMR). The expression profiles of the risk gene in tissues were further examined. FINDINGS We found a significantly positive genetic correlation between BMI and MS, and the causal association of BMI with MS was supported (β = 0.22, P = 8.03E-05). Cross-trait analysis yielded 39 shared risk SNPs, and the risk gene GGNBP2 was consistently identified in SMR. We observed tissue-specific level SNP heritability enrichment for BMI mainly in brain tissues for MS in immune-related tissues, and cell-type-specific level SNP heritability enrichment in 12 different immune cell types in brain, spleen, lung, and whole blood. The expressions of GGNBP2 were significantly altered in the tissues of patients with obesity or MS compared to those of control subjects. INTERPRETATION Our study indicates the genetic correlation and shared risk genes between obesity and MS. These findings provide insights into the potential mechanisms behind their comorbidity and the future development of therapeutics. FUNDING This work was funded by the National Natural Science Foundation of China (82171698, 82170561, 81300279, and 81741067), the Program for High-level Foreign Expert Introduction of China (G2022030047L), the Natural Science Foundation for Distinguished Young Scholars of Guangdong Province (2021B1515020003), Natural Science Foundation of Guangdong Province (2022A1515012081), the Foreign Distinguished Teacher Program of Guangdong Science and Technology Department (KD0120220129), the Climbing Programme of Introduced Talents and High-level Hospital Construction Project of Guangdong Provincial People's Hospital (DFJH201803, KJ012019099, KJ012021143, and KY012021183), and in part by VA Clinical Merit and ASGE clinical research funds (FWL).
Collapse
Affiliation(s)
- Ruijie Zeng
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Rui Jiang
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China; School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Wentao Huang
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jiaxuan Wang
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Lijun Zhang
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Yuying Ma
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yanjun Wu
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Meijun Meng
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Hekui Lan
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Qizhou Lian
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
| | - Felix W Leung
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Sepulveda Ambulatory Care Center, Veterans Affairs Greater Los Angeles Healthcare System, North Hills, CA, USA.
| | - Weihong Sha
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China; School of Medicine, South China University of Technology, Guangzhou 510006, China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China.
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China; School of Medicine, South China University of Technology, Guangzhou 510006, China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China.
| |
Collapse
|
28
|
Wu JR, Hernandez Y, Miyasaki KF, Kwon EJ. Engineered nanomaterials that exploit blood-brain barrier dysfunction fordelivery to the brain. Adv Drug Deliv Rev 2023; 197:114820. [PMID: 37054953 DOI: 10.1016/j.addr.2023.114820] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023]
Abstract
The blood-brain barrier (BBB) is a highly regulated physical and functional boundarythat tightly controls the transport of materials between the blood and the brain. There is an increasing recognition that the BBB is dysfunctional in a wide range of neurological disorders; this dysfunction can be symptomatic of the disease but can also play a role in disease etiology. BBB dysfunction can be exploited for the delivery of therapeutic nanomaterials. Forexample, there can be a transient, physical disruption of the BBB in diseases such as brain injury and stroke, which allows temporary access of nanomaterials into the brain. Physicaldisruption of the BBB through external energy sources is now being clinically pursued toincrease therapeutic delivery into the brain. In other diseases, the BBB takes on new properties that can beleveraged by delivery carriers. For instance, neuroinflammation induces the expression ofreceptors on the BBB that can be targeted by ligand-modified nanomaterials and theendogenous homing of immune cells into the diseased brain can be hijacked for the delivery ofnanomaterials. Lastly, BBB transport pathways can be altered to increase nanomaterial transport. In this review, we will describe changes that can occur in the BBB in disease, and how these changes have been exploited by engineered nanomaterials forincreased transport into the brain.
Collapse
Affiliation(s)
- Jason R Wu
- Department of Bioengineering, University of California San Diego, La Jolla, CA
| | - Yazmin Hernandez
- Department of Bioengineering, University of California San Diego, La Jolla, CA
| | - Katelyn F Miyasaki
- Department of Bioengineering, University of California San Diego, La Jolla, CA
| | - Ester J Kwon
- Department of Bioengineering, University of California San Diego, La Jolla, CA; Sanford Consortium for Regenerative Medicine.
| |
Collapse
|
29
|
Sun Y, Yu H, Guan Y. Glia Connect Inflammation and Neurodegeneration in Multiple Sclerosis. Neurosci Bull 2023; 39:466-478. [PMID: 36853544 PMCID: PMC10043151 DOI: 10.1007/s12264-023-01034-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/27/2023] [Indexed: 03/01/2023] Open
Abstract
Multiple sclerosis (MS) is regarded as a chronic inflammatory disease that leads to demyelination and eventually to neurodegeneration. Activation of innate immune cells and other inflammatory cells in the brain and spinal cord of people with MS has been well described. However, with the innovation of technology in glial cell research, we have a deep understanding of the mechanisms of glial cells connecting inflammation and neurodegeneration in MS. In this review, we focus on the role of glial cells, including microglia, astrocytes, and oligodendrocytes, in the pathogenesis of MS. We mainly focus on the connection between glial cells and immune cells in the process of axonal damage and demyelinating neuron loss.
Collapse
Affiliation(s)
- Ye Sun
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Haojun Yu
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yangtai Guan
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
30
|
Abstract
Multiple sclerosis (MS) is regarded as a chronic inflammatory disease that leads to demyelination and eventually to neurodegeneration. Activation of innate immune cells and other inflammatory cells in the brain and spinal cord of people with MS has been well described. However, with the innovation of technology in glial cell research, we have a deep understanding of the mechanisms of glial cells connecting inflammation and neurodegeneration in MS. In this review, we focus on the role of glial cells, including microglia, astrocytes, and oligodendrocytes, in the pathogenesis of MS. We mainly focus on the connection between glial cells and immune cells in the process of axonal damage and demyelinating neuron loss.
Collapse
|
31
|
Hollen C, Neilson LE, Barajas RF, Greenhouse I, Spain RI. Oxidative stress in multiple sclerosis-Emerging imaging techniques. Front Neurol 2023; 13:1025659. [PMID: 36712455 PMCID: PMC9878592 DOI: 10.3389/fneur.2022.1025659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/23/2022] [Indexed: 01/14/2023] Open
Abstract
While conventional magnetic resonance imaging (MRI) is central to the evaluation of patients with multiple sclerosis, its role in detecting the pathophysiology underlying neurodegeneration is more limited. One of the common outcome measures for progressive multiple sclerosis trials, atrophy on brain MRI, is non-specific and reflects end-stage changes after considerable neurodegeneration has occurred. Identifying biomarkers that identify processes underlying neurodegeneration before it is irreversible and that reflect relevant neurodegenerative pathophysiology is an area of significant need. Accumulating evidence suggests that oxidative stress plays a major role in the pathogenesis of multiple neurodegenerative diseases, including multiple sclerosis. Imaging markers related to inflammation, myelination, and neuronal integrity have been areas of advancement in recent years but oxidative stress has remained an area of unrealized potential. In this article we will begin by reviewing the role of oxidative stress in the pathogenesis of multiple sclerosis. Chronic inflammation appears to be directly related to the increased production of reactive oxygen species and the effects of subsequent oxidative stress appear to be amplified by aging and accumulating disease. We will then discuss techniques in development used in the assessment of MS as well as other models of neurodegenerative disease in which oxidative stress is implicated. Multiple blood and CSF markers of oxidative stress have been evaluated in subjects with MS, but non-invasive imaging offers major upside in that it provides real-time assessment within the brain.
Collapse
Affiliation(s)
- Christopher Hollen
- Department of Neurology, Veterans Affairs Medical Center, Portland, OR, United States
- Department of Neurology, Oregon Health and Sciences University, Portland, OR, United States
| | - Lee E. Neilson
- Department of Neurology, Veterans Affairs Medical Center, Portland, OR, United States
- Department of Neurology, Oregon Health and Sciences University, Portland, OR, United States
| | - Ramon F. Barajas
- Department of Radiology, Neuroradiology Section, Oregon Health & Sciences University, Portland, OR, United States
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, United States
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Ian Greenhouse
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Rebecca I. Spain
- Department of Neurology, Veterans Affairs Medical Center, Portland, OR, United States
- Department of Neurology, Oregon Health and Sciences University, Portland, OR, United States
| |
Collapse
|
32
|
Interplay between activation of endogenous retroviruses and inflammation as common pathogenic mechanism in neurological and psychiatric disorders. Brain Behav Immun 2023; 107:242-252. [PMID: 36270439 DOI: 10.1016/j.bbi.2022.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/21/2022] [Accepted: 10/13/2022] [Indexed: 12/05/2022] Open
Abstract
Human endogenous retroviruses (ERVs) are ancestorial retroviral elements that were integrated into our genome through germline infections and insertions during evolution. They have repeatedly been implicated in the aetiology and pathophysiology of numerous human disorders, particularly in those that affect the central nervous system. In addition to the known association of ERVs with multiple sclerosis and amyotrophic lateral sclerosis, a growing number of studies links the induction and expression of these retroviral elements with the onset and severity of neurodevelopmental and psychiatric disorders. Although these disorders differ in terms of overall disease pathology and causalities, a certain degree of (subclinical) chronic inflammation can be identified in all of them. Based on these commonalities, we discuss the bidirectional relationship between ERV expression and inflammation and highlight that numerous entry points to this reciprocal sequence of events exist, including initial infections with ERV-activating pathogens, exposure to non-infectious inflammatory stimuli, and conditions in which epigenetic silencing of ERV elements is disrupted.
Collapse
|
33
|
Korupolu R, Malik A, Ratcliff C, Robinson-Whelen S, Taylor HB. Feasibility, Acceptability, and Efficacy of Mindfulness Training in People With Upper Motor Neuron Disorders: A Systematic Review. Arch Phys Med Rehabil 2022; 103:2410-2428. [PMID: 35760105 DOI: 10.1016/j.apmr.2022.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 05/03/2022] [Accepted: 05/12/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVES This systematic review aims to gain a comprehensive understanding of the feasibility, acceptability, and efficacy of mindfulness-based interventions (MBIs) on depression, anxiety, fatigue, and health-related quality of life among individuals with upper motor neuron disorders (UMNDs). DATA SOURCES PubMed, PsycINFO, Excerpta Medica Database, and Cumulative Index to Nursing and Allied Health Literature were searched for relevant studies published between January 2001 and June 2021. STUDY SELECTION Clinical trials published in English evaluating MBIs in adults with the 4 most common UMNDs (multiple sclerosis, brain injury including stroke, spinal cord injury, amyotrophic lateral sclerosis) were included. DATA EXTRACTION Two reviewers independently performed the risk of bias assessment using standardized tools and extracted desired data electronically. DATA SYNTHESIS A total of 44 studies were included: 26 randomized controlled trials, 10 nonrandomized controlled trials, and 8 pre-post intervention studies. The average ± SD duration of MBIs was 8±2 weeks. On average, 85%±14% of participants completed the MBI, and the retention rate at follow-up was 80%±16%. Only 14% of the studies delivered MBIs virtually, and feasibility metrics were similar to in-person studies. Among studies reporting acceptability data, most participants reported satisfaction with the MBI. Randomized controlled trials that evaluated the effects of MBI on depression, anxiety, fatigue, and quality of life revealed greater relative improvement in these outcomes among MBI participants compared with controls, with differences greater when compared with passive control than active control participants. None of the studies included in this review studied dose response. CONCLUSIONS Based on current data, MBIs are feasible and offer a promising approach to address the biopsychosocial needs of individuals with UMNDs. MBIs are associated with a high acceptance rate among participants, with notable improvements in depression, anxiety, fatigue, and quality of life post intervention. Future studies are needed to evaluate alternate models of delivery of MBIs and the dose-response relationship.
Collapse
Affiliation(s)
- Radha Korupolu
- Department of Physical Medicine and Rehabilitation, University of Texas Health Sciences Center at Houston, Houston, Texas; TIRR Memorial Hermann, Houston, Texas.
| | - Aila Malik
- Department of Physical Medicine and Rehabilitation, University of Texas Health Sciences Center at Houston, Houston, Texas
| | - Chelsea Ratcliff
- Department of Psychology, Sam Houston State University, Huntsville, Texas
| | - Susan Robinson-Whelen
- TIRR Memorial Hermann, Houston, Texas; Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas
| | - Heather B Taylor
- Department of Physical Medicine and Rehabilitation, University of Texas Health Sciences Center at Houston, Houston, Texas; TIRR Memorial Hermann, Houston, Texas
| |
Collapse
|
34
|
Liu M, Liu Q. Bone marrow brews central nervous system inflammation and autoimmunity. Clin Transl Med 2022; 12:e1125. [PMID: 36412512 PMCID: PMC9680159 DOI: 10.1002/ctm2.1125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Mingming Liu
- Department of NeurologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjinChina
| | - Qiang Liu
- Department of NeurologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjinChina
| |
Collapse
|
35
|
Richardson KC, Jung K, Pardo J, Turner CT, Granville DJ. Noncytotoxic Roles of Granzymes in Health and Disease. Physiology (Bethesda) 2022; 37:323-348. [PMID: 35820180 DOI: 10.1152/physiol.00011.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Granzymes are serine proteases previously believed to play exclusive and somewhat redundant roles in lymphocyte-mediated target cell death. However, recent studies have challenged this paradigm. Distinct substrate profiles and functions have since emerged for each granzyme while their dysregulated proteolytic activities have been linked to diverse pathologies.
Collapse
Affiliation(s)
- Katlyn C Richardson
- International Collaboration on Repair Discoveries (ICORD), British Columbia Professional Firefighters' Wound Healing Laboratory, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karen Jung
- International Collaboration on Repair Discoveries (ICORD), British Columbia Professional Firefighters' Wound Healing Laboratory, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julian Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), Zaragoza, Spain.,Department of Microbiology, Radiology, Pediatrics and Public Health, University of Zaragoza, Zaragoza, Spain.,CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Zaragoza, Spain
| | - Christopher T Turner
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia.,Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - David J Granville
- International Collaboration on Repair Discoveries (ICORD), British Columbia Professional Firefighters' Wound Healing Laboratory, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
36
|
Shaghaghi M, Cai K. Toward In Vivo MRI of the Tissue Proton Exchange Rate in Humans. BIOSENSORS 2022; 12:bios12100815. [PMID: 36290953 PMCID: PMC9599426 DOI: 10.3390/bios12100815] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/19/2022] [Accepted: 09/29/2022] [Indexed: 05/28/2023]
Abstract
Quantification of proton exchange rate (kex) is a challenge in MR studies. Current techniques either have low resolutions or are dependent on the estimation of parameters that are not measurable. The Omega plot method, on the other hand, provides a direct way for determining kex independent of the agent concentration. However, it cannot be used for in vivo studies without some modification due to the contributions from the water signal. In vivo tissue proton exchange rate (kex) MRI, based on the direct saturation (DS) removed Omega plot, quantifies the weighted average of kex of the endogenous tissue metabolites. This technique has been successfully employed for imaging the variation in the kex of ex vivo phantoms, as well as in vivo human brains in healthy subjects, and stroke or multiple sclerosis (MS) patients. In this paper, we present a brief review of the methods used for kex imaging with a focus on the development of in vivo kex MRI technique based on the DS-removed Omega plot. We then review the recent clinical studies utilizing this technique for better characterizing brain lesions. We also outline technical challenges for the presented technique and discuss its prospects for detecting tissue microenvironmental changes under oxidative stress.
Collapse
Affiliation(s)
- Mehran Shaghaghi
- Department of Radiology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Kejia Cai
- Department of Radiology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
37
|
Kolb H, Al-Louzi O, Beck ES, Sati P, Absinta M, Reich DS. From pathology to MRI and back: Clinically relevant biomarkers of multiple sclerosis lesions. Neuroimage Clin 2022; 36:103194. [PMID: 36170753 PMCID: PMC9668624 DOI: 10.1016/j.nicl.2022.103194] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022]
Abstract
Focal lesions in both white and gray matter are characteristic of multiple sclerosis (MS). Histopathological studies have helped define the main underlying pathological processes involved in lesion formation and evolution, serving as a gold standard for many years. However, histopathology suffers from an intrinsic bias resulting from over-reliance on tissue samples from late stages of the disease or atypical cases and is inadequate for routine patient assessment. Pathological-radiological correlative studies have established advanced MRI's sensitivity to several relevant MS-pathological substrates and its practicality for assessing dynamic changes and following lesions over time. This review focuses on novel imaging techniques that serve as biomarkers of critical pathological substrates of MS lesions: the central vein, chronic inflammation, remyelination and repair, and cortical lesions. For each pathological process, we address the correlative value of MRI to MS pathology, its contribution in elucidating MS pathology in vivo, and the clinical utility of the imaging biomarker.
Collapse
Affiliation(s)
- Hadar Kolb
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA,Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv-Yaffo, Israel,Corresponding author at: Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv-Yaffo, Israel.
| | - Omar Al-Louzi
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA,Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Erin S. Beck
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA,Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA,Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Martina Absinta
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA,Institute of Experimental Neurology (INSPE), IRCSS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy,Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Daniel S. Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
38
|
Siger M. Magnetic Resonance Imaging in Primary Progressive Multiple Sclerosis Patients : Review. Clin Neuroradiol 2022; 32:625-641. [PMID: 35258820 PMCID: PMC9424179 DOI: 10.1007/s00062-022-01144-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/29/2021] [Indexed: 11/21/2022]
Abstract
The recently developed effective treatment of primary progressive multiple sclerosis (PPMS) requires the accurate diagnosis of patients with this type of disease. Currently, the diagnosis of PPMS is based on the 2017 McDonald criteria, although the contribution of magnetic resonance imaging (MRI) to this process is fundamental. PPMS, one of the clinical types of MS, represents 10%-15% of all MS patients. Compared to relapsing-remitting MS (RRMS), PPMS differs in terms of pathology, clinical presentation and MRI features. Regarding conventional MRI, focal lesions on T2-weighted images and acute inflammatory lesions with contrast enhancement are less common in PPMS than in RRMS. On the other hand, MRI features of chronic inflammation, such as slowly evolving/expanding lesions (SELs) and leptomeningeal enhancement (LME), and brain and spinal cord atrophy are more common MRI characteristics in PPMS than RRMS. Nonconventional MRI also shows differences in subtle white and grey matter damage between PPMS and other clinical types of disease. In this review, we present separate diagnostic criteria, conventional and nonconventional MRI specificity for PPMS, which may support and simplify the diagnosis of this type of MS in daily clinical practice.
Collapse
Affiliation(s)
- Malgorzata Siger
- Department of Neurology, Medical University of Łódź, 22 Kopcinskiego Str., 90-153, Łódź, Poland.
| |
Collapse
|
39
|
Rothammer N, Woo MS, Bauer S, Binkle-Ladisch L, Di Liberto G, Egervari K, Wagner I, Haferkamp U, Pless O, Merkler D, Engler JB, Friese MA. G9a dictates neuronal vulnerability to inflammatory stress via transcriptional control of ferroptosis. SCIENCE ADVANCES 2022; 8:eabm5500. [PMID: 35930635 PMCID: PMC9355351 DOI: 10.1126/sciadv.abm5500] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Neuroinflammation leads to neuronal stress responses that contribute to neuronal dysfunction and loss. However, treatments that stabilize neurons and prevent their destruction are still lacking. Here, we identify the histone methyltransferase G9a as a druggable epigenetic regulator of neuronal vulnerability to inflammation. In murine experimental autoimmune encephalomyelitis (EAE) and human multiple sclerosis (MS), we found that the G9a-catalyzed repressive epigenetic mark H3K9me2 was robustly induced by neuroinflammation. G9a activity repressed anti-ferroptotic genes, diminished intracellular glutathione levels, and triggered the iron-dependent programmed cell death pathway ferroptosis. Conversely, pharmacological treatment of EAE mice with a G9a inhibitor restored anti-ferroptotic gene expression, reduced inflammation-induced neuronal loss, and improved clinical outcome. Similarly, neuronal anti-ferroptotic gene expression was reduced in MS brain tissue and was boosted by G9a inhibition in human neuronal cultures. This study identifies G9a as a critical transcriptional enhancer of neuronal ferroptosis and potential therapeutic target to counteract inflammation-induced neurodegeneration.
Collapse
Affiliation(s)
- Nicola Rothammer
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Marcel S. Woo
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Simone Bauer
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Lars Binkle-Ladisch
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Giovanni Di Liberto
- Department of Pathology and Immunology, Division of Clinical Pathology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Kristof Egervari
- Department of Pathology and Immunology, Division of Clinical Pathology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Ingrid Wagner
- Department of Pathology and Immunology, Division of Clinical Pathology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Undine Haferkamp
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 22525 Hamburg, Germany
| | - Ole Pless
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 22525 Hamburg, Germany
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Jan Broder Engler
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Manuel A. Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, 20251 Hamburg, Germany
| |
Collapse
|
40
|
Mohi-Ud-Din R, Mir RH, Mir PA, Banday N, Shah AJ, Sawhney G, Bhat MM, Batiha GE, Pottoo FH, Pottoo FH. Dysfunction of ABC Transporters at the Surface of BBB: Potential Implications in Intractable Epilepsy and Applications of Nanotechnology Enabled Drug Delivery. Curr Drug Metab 2022; 23:735-756. [PMID: 35980054 DOI: 10.2174/1389200223666220817115003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/10/2022] [Accepted: 05/31/2022] [Indexed: 01/05/2023]
Abstract
Epilepsy is a chronic neurological disorder affecting 70 million people globally. One of the fascinating attributes of brain microvasculature is the (BBB), which controls a chain of distinct features that securely regulate the molecules, ions, and cells movement between the blood and the parenchyma. The barrier's integrity is of paramount importance and essential for maintaining brain homeostasis, as it offers both physical and chemical barriers to counter pathogens and xenobiotics. Dysfunction of various transporters in the (BBB), mainly ATP binding cassette (ABC), is considered to play a vital role in hampering the availability of antiepileptic drugs into the brain. ABC (ATP-binding cassette) transporters constitute a most diverse protein superfamily, which plays an essential part in various biological processes, including cell homeostasis, cell signaling, uptake of nutrients, and drug metabolism. Moreover, it plays a crucial role in neuroprotection by out-flowing various internal and external toxic substances from the interior of a cell, thus decreasing their buildup inside the cell. In humans, forty-eight ABC transporters have been acknowledged and categorized into subfamilies A to G based on their phylogenetic analysis. ABC subfamilies B, C, and G, impart a vital role at the BBB in guarding the brain against the entrance of various xenobiotic and their buildup. The illnesses of the central nervous system have received a lot of attention lately Owing to the existence of the BBB, the penetration effectiveness of most CNS medicines into the brain parenchyma is very limited (BBB). In the development of neurological therapies, BBB crossing for medication delivery to the CNS continues to be a major barrier. Nanomaterials with BBB cross ability have indeed been extensively developed for the treatment of CNS diseases due to their advantageous properties. This review will focus on multiple possible factors like inflammation, oxidative stress, uncontrolled recurrent seizures, and genetic polymorphisms that result in the deregulation of ABC transporters in epilepsy and nanotechnology-enabled delivery across BBB in epilepsy.
Collapse
Affiliation(s)
- Roohi Mohi-Ud-Din
- Department of General Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu & Kashmir, 190011, India.,Department of Pharmaceutical Sciences, School of Applied Sciences & Technology, University of Kashmir, Hazratbal, Srinagar-190006, Jammu & Kashmir, India
| | - Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Chandigarh College of Pharmacy, Landran, Punjab-140301, India.,Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Prince Ahad Mir
- Department of Pharmaceutical Sciences, Khalsa College of Pharmacy, G.T. Road, Amritsar-143002, Punjab, India
| | - Nazia Banday
- Department of Pharmaceutical Sciences, School of Applied Sciences & Technology, University of Kashmir, Hazratbal, Srinagar-190006, Jammu & Kashmir, India
| | - Abdul Jalil Shah
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Gifty Sawhney
- Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, Jammu 180001, India
| | - Mudasir Maqbool Bhat
- Department of Pharmaceutical Sciences, Pharmacy Practice Division, University of Kashmir, Hazratbal, Srinagar-190006, Jammu & Kashmir, India
| | - Gaber E Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| |
Collapse
|
41
|
Skok M, Deryabina O, Lykhmus O, Kalashnyk O, Uspenska K, Shuvalova N, Pokholenko I, Lushnikova I, Smozhanyk K, Skibo G, Kordyum V. Mesenchymal stem cell application for treatment of neuroinflammation-induced cognitive impairment in mice. Regen Med 2022; 17:533-546. [PMID: 35638401 DOI: 10.2217/rme-2021-0168] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: The present research has been undertaken to study the therapeutic potential of mesenchymal stem cells (MSCs) for the treatment of neuroinflammation-induced cognitive disorders. Methods: Either umbilical cord or adipose MSCs were injected into mice treated with lipopolysaccharide. The mice were studied in behavioral tests, and their brains were examined by means of immunohistochemistry, electron microscopy and sandwich ELISA. Results: MSCs, introduced either intravenously or intraperitoneally, restored episodic memory of mice disturbed by inflammation, normalized nAChR and Aβ1-42 levels and stimulated proliferation of neural progenitor cells in the brain. The effect of MSCs was observed for months, whereas that of MSC-conditioned medium was transient and stimulated an immune reaction. SDF-1α potentiated the effects of MSCs on the brain and memory. Conclusion: MSCs of different origins provide a long-term therapeutic effect in the treatment of neuroinflammation-induced episodic memory impairment.
Collapse
Affiliation(s)
- Maryna Skok
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, 01054, Ukraine
| | - Olena Deryabina
- State Institute of Genetic and Regenerative Medicine, National Academy of Medical Sciences of Ukraine, Kyiv, 04114, Ukraine.,Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, 03143, Ukraine
| | - Olena Lykhmus
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, 01054, Ukraine
| | - Olena Kalashnyk
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, 01054, Ukraine
| | - Kateryna Uspenska
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, 01054, Ukraine
| | - Nadia Shuvalova
- State Institute of Genetic and Regenerative Medicine, National Academy of Medical Sciences of Ukraine, Kyiv, 04114, Ukraine
| | - Ianina Pokholenko
- State Institute of Genetic and Regenerative Medicine, National Academy of Medical Sciences of Ukraine, Kyiv, 04114, Ukraine.,Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, 03143, Ukraine
| | - Iryna Lushnikova
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| | - Kateryna Smozhanyk
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| | - Galyna Skibo
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| | - Vitalii Kordyum
- State Institute of Genetic and Regenerative Medicine, National Academy of Medical Sciences of Ukraine, Kyiv, 04114, Ukraine.,Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, 03143, Ukraine
| |
Collapse
|
42
|
Pitombeira MS, Koole M, Campanholo KR, Souza AM, Duran FLS, Solla DJF, Mendes MF, Pereira SLA, Rimkus CM, Busatto GF, Callegaro D, Buchpiguel CA, de Paula Faria D. Innate immune cells and myelin profile in multiple sclerosis: a multi-tracer PET/MR study. Eur J Nucl Med Mol Imaging 2022; 49:4551-4566. [PMID: 35838758 DOI: 10.1007/s00259-022-05899-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/30/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE Neuropathological studies have demonstrated distinct profiles of microglia activation and myelin injury among different multiple sclerosis (MS) phenotypes and disability stages. PET imaging using specific tracers may uncover the in vivo molecular pathology and broaden the understanding of the disease heterogeneity. METHODS We used the 18-kDa translocator protein (TSPO) tracer (R)-[11C]PK11195 and [11C]PIB PET images acquired in a hybrid PET/MR 3 T system to characterize, respectively, the profile of innate immune cells and myelin content in 47 patients with MS compared to 18 healthy controls (HC). For the volume of interest (VOI)-based analysis of the dynamic data, (R)-[11C]PK11195 distribution volume (VT) was determined for each subject using a metabolite-corrected arterial plasma input function while [11C]PIB distribution volume ratio (DVR) was estimated using a reference region extracted by a supervised clustering algorithm. A voxel-based analysis was also performed using Statistical Parametric Mapping. Functional disability was evaluated by the Expanded Disability Status Scale (EDSS), Multiple Sclerosis Functional Composite (MSFC), and Symbol Digit Modality Test (SDMT). RESULTS In the VOI-based analysis, [11C]PIB DVR differed between patients and HC in the corpus callosum (P = 0.019) while no differences in (R)-[11C]PK11195 VT were observed in patients relative to HC. Furthermore, no correlations or associations were observed between both tracers within the VOI analyzed. In the voxel-based analysis, high (R)-[11C]PK11195 uptake was observed diffusively in the white matter (WM) when comparing the progressive phenotype and HC, and lower [11C]PIB uptake was observed in certain WM regions when comparing the relapsing-remitting phenotype and HC. None of the tracers were able to differentiate phenotypes at voxel or VOI level in our cohort. Linear regression models adjusted for age, sex, and phenotype demonstrated that higher EDSS was associated with an increased (R)-[11C]PK11195 VT and lower [11C]PIB DVR in corpus callosum (P = 0.001; P = 0.023), caudate (P = 0.015; P = 0.008), and total T2 lesion (P = 0.007; P = 0.012), while better cognitive scores in SDMT were associated with higher [11C]PIB DVR in the corpus callosum (P = 0.001), and lower (R)-[11C]PK11195 VT (P = 0.013). CONCLUSIONS Widespread innate immune cells profile and marked loss of myelin in T2 lesions and regions close to the ventricles may occur independently and are associated with disability, in both WM and GM structures.
Collapse
Affiliation(s)
- Milena Sales Pitombeira
- Department of Neurology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil.,Laboratory of Nuclear Medicine (LIM43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Michel Koole
- Department of Imaging and Pathology, Nuclear Medicine and Molecular Imaging, KU Leuven, Flanders, Belgium
| | - Kenia R Campanholo
- Department of Neurology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil.,Laboratory of Nuclear Medicine (LIM43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Aline M Souza
- Laboratory of Nuclear Medicine (LIM43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Fábio L S Duran
- Laboratory of Psychiatric Neuroimaging (LIM21), Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Davi J Fontoura Solla
- Department of Neurology, Division of Neurosurgery, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Maria F Mendes
- Department of Neurology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Carolina M Rimkus
- Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Geraldo Filho Busatto
- Laboratory of Psychiatric Neuroimaging (LIM21), Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Dagoberto Callegaro
- Department of Neurology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Carlos A Buchpiguel
- Laboratory of Nuclear Medicine (LIM43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Daniele de Paula Faria
- Laboratory of Nuclear Medicine (LIM43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
43
|
Beynon V, George IC, Elliott C, Arnold DL, Ke J, Chen H, Zhu L, Ke C, Giovannoni G, Scaramozza M, Campbell N, Bradley DP, Franchimont N, Gafson A, Belachew S. Chronic lesion activity and disability progression in secondary progressive multiple sclerosis. BMJ Neurol Open 2022; 4:e000240. [PMID: 35720980 PMCID: PMC9185385 DOI: 10.1136/bmjno-2021-000240] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/15/2022] [Indexed: 11/04/2022] Open
Abstract
Objective Slowly expanding lesions (SELs), a subgroup of chronic white matter lesions that gradually expand over time, have been shown to predict disability accumulation in primary progressive multiple sclerosis (MS) disease. However, the relationships between SELs, acute lesion activity (ALA), overall chronic lesion activity (CLA) and disability progression are not well understood. In this study, we examined the ASCEND phase III clinical trial, which compared natalizumab with placebo in secondary progressive MS (SPMS). Methods Patients with complete imaging datasets between baseline and week 108 (N=600) were analysed for SEL prevalence (the number and volume of SELs), disability progression, ALA (assessed by gadolinium-enhancing lesions and new T2-hyperintense lesions) and CLA (assessed by T1-hypointense lesion volume increase within baseline T2-non-enhancing lesions identified as SELs and non-SELs). Results CLA in both SELs and non-SELs was greater in patients with SPMS with confirmed disability progression than in those with no progression. In the complete absence of ALA at baseline and on study, SEL prevalence was significantly lower, while CLA within non-SELs remained associated with disability progression. Natalizumab decreased SEL prevalence and CLA in SELs and non-SELs compared with placebo. Conclusions This study shows that CLA in patients with SPMS is decreased but persists in the absence of ALA and is associated with disability progression, highlighting the need for therapeutics targeting all mechanisms of CLA, including smouldering inflammation and neurodegeneration. Trial registration number NCT01416181.
Collapse
Affiliation(s)
- Vanessa Beynon
- Global Research & Development, Biogen, Cambridge, Massachusetts, USA
| | - Ilena C George
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Douglas L Arnold
- NeuroRx Research, Montreal, Quebec, Canada.,McConnell Brain Imaging Centre, McGill University, Montreal, Quebec, Canada
| | - Jun Ke
- Biostatistics, Biogen Inc, Cambridge, Massachusetts, USA
| | - Huaihou Chen
- Biostatistics, Biogen Inc, Cambridge, Massachusetts, USA
| | - Li Zhu
- Biostatistics, Biogen Inc, Cambridge, Massachusetts, USA
| | - Chunlei Ke
- Biostatistics, Biogen Inc, Cambridge, Massachusetts, USA
| | - Gavin Giovannoni
- Neuroscience and Trauma, Barts and The London School of Medicine and Dentistry Blizard Institute, London, UK
| | | | - Nolan Campbell
- Global Medical, Biogen Inc, Cambridge, Massachusetts, USA
| | | | | | - Arie Gafson
- Digital Health, Biogen Inc, Cambridge, Massachusetts, USA
| | | |
Collapse
|
44
|
Ramírez Hernández E, Alanis Olvera B, Carmona González D, Guerrero Marín O, Pantoja Mercado D, Valencia Gil L, Hernández-Zimbrón LF, Sánchez Salgado JL, Limón ID, Zenteno E. Neuroinflammation and galectins: a key relationship in neurodegenerative diseases. Glycoconj J 2022; 39:685-699. [PMID: 35653015 DOI: 10.1007/s10719-022-10064-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 12/16/2022]
Abstract
Neurodegeneration is a pathological condition that is associated with the loss of neuronal function and structure. In neurodegenerative diseases, mounting evidence indicates that neuroinflammation is a common factor that contributes to neuronal damage and neurodegeneration. Neuroinflammation is characterized by the activation of microglia, the neuroimmune cells of the central nervous system (CNS), which have been implicated as active contributors to neuronal damage. Glycan structure modification is defining the outcome of neuroinflammation and neuronal regeneration; moreover, the expression of galectins, a group of lectins that specifically recognize β-galactosides, has been proposed as a key factor in neuronal regeneration and modulation of the inflammatory response. Of the different galectins identified, galectin-1 stimulates the secretion of neurotrophic factors in astrocytes and promotes neuronal regeneration, whereas galectin-3 induces the proliferation of microglial cells and modulates cell apoptosis. Galectin-8 emerged as a neuroprotective factor, which, in addition to its immunosuppressive function, could generate a neuroprotective environment in the brain. This review describes the role of galectins in the activation and modulation of astrocytes and microglia and their anti- and proinflammatory functions within the context of neuroinflammation. Furthermore, it discusses the potential use of galectins as a therapeutic target for the inflammatory response and remodeling in damaged tissues in the central nervous system.
Collapse
Affiliation(s)
- Eleazar Ramírez Hernández
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | - Beatriz Alanis Olvera
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Daniela Carmona González
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Oscar Guerrero Marín
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Denisse Pantoja Mercado
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lucero Valencia Gil
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis F Hernández-Zimbrón
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Luis Sánchez Salgado
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - I Daniel Limón
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de México, Mexico City, Mexico
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
45
|
Galloway DA, Carew SJ, Blandford SN, Benoit RY, Fudge N, Berry T, Moore GRW, Barron J, Moore CS. Investigating the NLRP3 Inflammasome and its Regulator miR-223-3p in Multiple Sclerosis and Experimental Demyelination. J Neurochem 2022; 163:94-112. [PMID: 35633501 DOI: 10.1111/jnc.15650] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022]
Abstract
Innate immune signalling pathways are essential mediators of inflammation and repair following myelin injury. Inflammasome activation has recently been implicated as a driver of myelin injury in multiple sclerosis (MS) and its animal models, although the regulation and contributions of inflammasome activation in the demyelinated central nervous system (CNS) are not completely understood. Herein, we investigated the NLRP3 (NBD-, LRR- and pyrin domain-containing protein 3) inflammasome and its endogenous regulator microRNA-223-3p within the demyelinated CNS in both MS and an animal model of focal demyelination. We observed that NLRP3 inflammasome components and microRNA-223-3p were upregulated at sites of myelin injury within activated macrophages and microglia. Both microRNA-223-3p and a small-molecule NLRP3 inhibitor, MCC950, supressed inflammasome activation in macrophages and microglia in vitro; compared with microglia, macrophages were more prone to inflammasome activation in vitro. Finally, systemic delivery of MCC950 to mice following lysolecithin-induced demyelination resulted in a significant reduction in axonal injury within demyelinated lesions. In conclusion, we demonstrate that NLRP3 inflammasome activity by macrophages and microglia is a critical component of the inflammatory microenvironment following demyelination and represents a potential therapeutic target for inflammatory-mediated demyelinating diseases, including MS.
Collapse
Affiliation(s)
- Dylan A Galloway
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Newfoundland and Labrador, 300 Prince Philip Drive, St. John's, A1B 3V6, Canada
| | - Samantha J Carew
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Newfoundland and Labrador, 300 Prince Philip Drive, St. John's, A1B 3V6, Canada
| | - Stephanie N Blandford
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Newfoundland and Labrador, 300 Prince Philip Drive, St. John's, A1B 3V6, Canada
| | - Rochelle Y Benoit
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Newfoundland and Labrador, 300 Prince Philip Drive, St. John's, A1B 3V6, Canada
| | - Neva Fudge
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Newfoundland and Labrador, 300 Prince Philip Drive, St. John's, A1B 3V6, Canada
| | - Tangyne Berry
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Newfoundland and Labrador, 300 Prince Philip Drive, St. John's, A1B 3V6, Canada
| | - G R Wayne Moore
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver British Columbia, Canada
| | - Jane Barron
- Discipline of Laboratory Medicine, Faculty of Medicine, Memorial University of Newfoundland, St. John's Newfoundland and Labrador, Canada
| | - Craig S Moore
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Newfoundland and Labrador, 300 Prince Philip Drive, St. John's, A1B 3V6, Canada.,Discipline of Medicine (Neurology), Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
46
|
Noguera-Navarro C, Navas-Carrillo D, Orenes-Piñero E. Gut microbiota alterations and nutritional intervention in multiple sclerosis disease. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2062771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Clara Noguera-Navarro
- Department of Biochemistry and Molecular Biology-A, University of Murcia, Murcia, Spain
| | - Diana Navas-Carrillo
- Department of Surgery, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Esteban Orenes-Piñero
- Department of Biochemistry and Molecular Biology-A, University of Murcia, Murcia, Spain
- Department of Surgery, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| |
Collapse
|
47
|
Long MJC, Miranda Herrera PA, Aye Y. Hitting the Bullseye: Endogenous Electrophiles Show Remarkable Nuance in Signaling Regulation. Chem Res Toxicol 2022; 35:1636-1648. [PMID: 35394758 DOI: 10.1021/acs.chemrestox.2c00006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Our bodies produce a host of electrophilic species that can label specific endogenous proteins in cells. The signaling roles of these molecules are under active debate. However, in our opinion, it is becoming increasingly likely that electrophiles can rewire cellular signaling processes at endogenous levels. Attention is turning more to understanding how nuanced electrophile signaling in cells is. In this Perspective, we describe recent work from our laboratory that has started to inform on different levels of context-specific regulation of proteins by electrophiles. We discuss the relevance of these data to the field and to the broader application of electrophile signaling to precision medicine development, beyond the traditional views of their pleiotropic cytotoxic roles.
Collapse
Affiliation(s)
- Marcus J C Long
- National Centre of Competence in Research Chemical Biology, University of Geneva, 1211 Geneva, Switzerland.,Department of Biochemistry, Faculty of Biology and Medicine, University of Lausanne, 1066 Epalinges, Switzerland
| | - Pierre A Miranda Herrera
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology Lausanne, 1015 Lausanne, Switzerland.,National Centre of Competence in Research Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Yimon Aye
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology Lausanne, 1015 Lausanne, Switzerland.,National Centre of Competence in Research Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
48
|
Kordulewska N, Topa J, Cieślińska A, Jarmołowska B. Osthole Regulates Secretion of Pro-Inflammatory Cytokines and Expression of TLR2 and NF-κB in Normal Human Keratinocytes and Fibroblasts. J Inflamm Res 2022; 15:1501-1519. [PMID: 35261546 PMCID: PMC8898189 DOI: 10.2147/jir.s349216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/20/2022] [Indexed: 12/13/2022] Open
Affiliation(s)
- Natalia Kordulewska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Olsztyn, Poland
- Correspondence: Natalia Kordulewska, Tel + 48 89 523 37 63, Fax + 48 89 535 20 15, Email
| | - Justyna Topa
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, Gdańsk, Poland
| | - Anna Cieślińska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Olsztyn, Poland
| | - Beata Jarmołowska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
49
|
Kamma E, Lasisi W, Libner C, Ng HS, Plemel JR. Central nervous system macrophages in progressive multiple sclerosis: relationship to neurodegeneration and therapeutics. J Neuroinflammation 2022; 19:45. [PMID: 35144628 PMCID: PMC8830034 DOI: 10.1186/s12974-022-02408-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/31/2022] [Indexed: 02/08/2023] Open
Abstract
There are over 15 disease-modifying drugs that have been approved over the last 20 years for the treatment of relapsing–remitting multiple sclerosis (MS), but there are limited treatment options available for progressive MS. The development of new drugs for the treatment of progressive MS remains challenging as the pathophysiology of progressive MS is poorly understood. The progressive phase of MS is dominated by neurodegeneration and a heightened innate immune response with trapped immune cells behind a closed blood–brain barrier in the central nervous system. Here we review microglia and border-associated macrophages, which include perivascular, meningeal, and choroid plexus macrophages, during the progressive phase of MS. These cells are vital and are largely the basis to define lesion types in MS. We will review the evidence that reactive microglia and macrophages upregulate pro-inflammatory genes and downregulate homeostatic genes, that may promote neurodegeneration in progressive MS. We will also review the factors that regulate microglia and macrophage function during progressive MS, as well as potential toxic functions of these cells. Disease-modifying drugs that solely target microglia and macrophage in progressive MS are lacking. The recent treatment successes for progressive MS include include B-cell depletion therapies and sphingosine-1-phosphate receptor modulators. We will describe several therapies being evaluated as a potential treatment option for progressive MS, such as immunomodulatory therapies that can target myeloid cells or as a potential neuroprotective agent.
Collapse
Affiliation(s)
- Emily Kamma
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Wendy Lasisi
- Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, Saint John's, NL, Canada
| | - Cole Libner
- Department of Health Sciences and the Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Huah Shin Ng
- Division of Neurology and the Djavad Mowafaghian Centre for Brain Health, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jason R Plemel
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada. .,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada. .,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada. .,University of Alberta, 5-64 Heritage Medical Research Centre, Edmonton, AB, T6G2S2, Canada.
| |
Collapse
|
50
|
Cantuti-Castelvetri L, Gokce O, Simons M. Reparative inflammation in multiple sclerosis. Semin Immunol 2022; 59:101630. [PMID: 35750551 DOI: 10.1016/j.smim.2022.101630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/09/2022] [Accepted: 06/13/2022] [Indexed: 01/15/2023]
Affiliation(s)
- Ludovico Cantuti-Castelvetri
- Institute of Neuronal Cell Biology, Technical University Munich, 80802 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Ozgun Gokce
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, 80802 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), 81377 Munich, Germany.
| |
Collapse
|