1
|
Guo X, Harada C, Harada T. Asking one mechanism in glial cells during neuroinflammation. Neural Regen Res 2025; 20:1077-1078. [PMID: 38989939 PMCID: PMC11438330 DOI: 10.4103/nrr.nrr-d-24-00225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/30/2024] [Indexed: 07/12/2024] Open
Affiliation(s)
- Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | |
Collapse
|
2
|
Tisell A, Söderberg K, Link Y, Lundberg P, Mellergård J. Diffuse white matter pathology in multiple sclerosis during treatment with dimethyl fumarate-An observational study of changes in normal-appearing white matter using proton magnetic resonance spectroscopy. PLoS One 2024; 19:e0309547. [PMID: 39432495 PMCID: PMC11493296 DOI: 10.1371/journal.pone.0309547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 08/13/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is an inflammatory demyelinating disease with neurodegenerative features causing risk for neurologic irreversible disability over time. Examination of normal-appearing white matter (NAWM) changes in MS by proton magnetic resonance spectroscopy (1H-MRS), may detect diffuse white matter pathology that is associated with neurodegeneration. METHODS In this observational study of in total twenty-six patients with MS, starting treatment with dimethyl fumarate (DMF), we measured the absolute concentration of metabolites in periventricular NAWM using 1H-MRS at baseline and after one and three years of treatment. Metabolite concentrations were analyzed both cross-sectionally, in relation to 10 controls and longitudinally in relation to disease activity. RESULTS Patients with MS had higher concentrations of myo-inositol (mIns) in NAWM at baseline compared with controls (mean 5.98 ± 1.37 (SD) and 4.32 ± 1.16 (SD), p<0.01, independent samples t-test). The disease duration was inversely correlated with concentrations of total N-acetylaspartate and N-acetylaspartylglutamate (tNA) (r = -0.62, p<0.01) in NAWM as well as positively to the ratio of mIns and tNA (r = 0.51, p = 0.03). Metabolite concentrations during one-year (n = 19) and three-years (n = 11) follow-up were generally stable. The dropouts were caused by treatment switch after one year, mainly due to new MRI activity. Cross-sectional analyses showed that there was an inverse correlation between concentrations of tNA and mIns at both baseline and at 1 and 3-years follow-up (r = -0.44 to -0.65, p = 0.04 to 0.004). Metabolite concentrations were stable during 1-year follow-up independently of disease activity. CONCLUSIONS Higher concentrations of the astrogliosis marker mIns in MS compared to controls, the inverse relation between MS disease duration and the neuroaxonal integrity marker tNA, as well as the consistent inverse relation between these two metabolites during follow-up, showed that non-lesional white matter pathology is present in this cohort of MS patients in early disease stages. However, metabolite concentrations during follow-up were generally stable and did not reflect differences in disease activity among patients.
Collapse
Affiliation(s)
- Anders Tisell
- Department of Medical Radiation Physics in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Kristina Söderberg
- Department of Radiology in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Yumin Link
- Department of Neurology in Linköping, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Peter Lundberg
- Department of Medical Radiation Physics in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Johan Mellergård
- Department of Neurology in Linköping, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
3
|
Yang J, Zhao H, Qu S. Therapeutic potential of fucoidan in central nervous system disorders: A systematic review. Int J Biol Macromol 2024; 277:134397. [PMID: 39097066 DOI: 10.1016/j.ijbiomac.2024.134397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Central nervous system (CNS) disorders have a complicated pathogenesis, and to date, no single mechanism can fully explain them. Most drugs used for CNS disorders primarily aim to manage symptoms and delay disease progression, and none have demonstrated any pathological reversal. Fucoidan is a safe, sulfated polysaccharide from seaweed that exhibits multiple pharmacological effects, and it is anticipated to be a novel treatment for CNS disorders. To assess the possible clinical uses of fucoidan, this review aims to provide an overview of its neuroprotective mechanism in both in vivo and in vitro CNS disease models, as well as its pharmacokinetics and safety. We included 39 articles on the pharmacology of fucoidan in CNS disorders. In vitro and in vivo experiments demonstrate that fucoidan has important roles in regulating lipid metabolism, enhancing the cholinergic system, maintaining the functional integrity of the blood-brain barrier and mitochondria, inhibiting inflammation, and attenuating oxidative stress and apoptosis, highlighting its potential for CNS disease treatment. Fucoidan has a protective effect against CNS disorders. With ongoing research on fucoidan, it is expected that a natural, highly effective, less toxic, and highly potent fucoidan-based drug or nutritional supplement targeting CNS diseases will be developed.
Collapse
Affiliation(s)
- Jing Yang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004 Shenyang, Liaoning, PR China.
| | - He Zhao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004 Shenyang, Liaoning, PR China.
| | - Shengtao Qu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004 Shenyang, Liaoning, PR China.
| |
Collapse
|
4
|
Olejnik P, Roszkowska Z, Adamus S, Kasarełło K. Multiple sclerosis: a narrative overview of current pharmacotherapies and emerging treatment prospects. Pharmacol Rep 2024; 76:926-943. [PMID: 39177889 PMCID: PMC11387431 DOI: 10.1007/s43440-024-00642-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease characterized by pathological processes of demyelination, subsequent axonal loss, and neurodegeneration within the central nervous system. Despite the availability of numerous disease-modifying therapies that effectively manage this condition, there is an emerging need to identify novel therapeutic targets, particularly for progressive forms of MS. Based on contemporary insights into disease pathophysiology, ongoing efforts are directed toward developing innovative treatment modalities. Primarily, monoclonal antibodies have been extensively investigated for their efficacy in influencing specific pathological pathways not yet targeted. Emerging approaches emphasizing cellular mechanisms, such as chimeric antigen receptor T cell therapy targeting immunological cells, are attracting increasing interest. The evolving understanding of microglia and the involvement of ferroptotic mechanisms in MS pathogenesis presents further avenues for targeted therapies. Moreover, innovative treatment strategies extend beyond conventional approaches to encompass interventions that target alterations in microbiota composition and dietary modifications. These adjunctive therapies hold promise as complementary methods for the holistic management of MS. This narrative review aims to summarize current therapies and outline potential treatment methods for individuals with MS.
Collapse
Affiliation(s)
- Piotr Olejnik
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Zuzanna Roszkowska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Sylwia Adamus
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Kaja Kasarełło
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
5
|
Theophanous S, Sargiannidou I, Kleopa KA. Glial Cells as Key Regulators in Neuroinflammatory Mechanisms Associated with Multiple Sclerosis. Int J Mol Sci 2024; 25:9588. [PMID: 39273535 PMCID: PMC11395575 DOI: 10.3390/ijms25179588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Even though several highly effective treatments have been developed for multiple sclerosis (MS), the underlying pathological mechanisms and drivers of the disease have not been fully elucidated. In recent years, there has been a growing interest in studying neuroinflammation in the context of glial cell involvement as there is increasing evidence of their central role in disease progression. Although glial cell communication and proper function underlies brain homeostasis and maintenance, their multiple effects in an MS brain remain complex and controversial. In this review, we aim to provide an overview of the contribution of glial cells, oligodendrocytes, astrocytes, and microglia in the pathology of MS during both the activation and orchestration of inflammatory mechanisms, as well as of their synergistic effects during the repair and restoration of function. Additionally, we discuss how the understanding of glial cell involvement in MS may provide new therapeutic targets either to limit disease progression or to facilitate repair.
Collapse
Affiliation(s)
- Styliani Theophanous
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| | - Irene Sargiannidou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| | - Kleopas A Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
- Center for Multiple Sclerosis and Related Disorders, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| |
Collapse
|
6
|
Nguyen PT, Makowiecki K, Lewis TS, Fortune AJ, Clutterbuck M, Reale LA, Taylor BV, Rodger J, Cullen CL, Young KM. Low intensity repetitive transcranial magnetic stimulation enhances remyelination by newborn and surviving oligodendrocytes in the cuprizone model of toxic demyelination. Cell Mol Life Sci 2024; 81:346. [PMID: 39134808 PMCID: PMC11335270 DOI: 10.1007/s00018-024-05391-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/22/2024]
Abstract
In people with multiple sclerosis (MS), newborn and surviving oligodendrocytes (OLs) can contribute to remyelination, however, current therapies are unable to enhance or sustain endogenous repair. Low intensity repetitive transcranial magnetic stimulation (LI-rTMS), delivered as an intermittent theta burst stimulation (iTBS), increases the survival and maturation of newborn OLs in the healthy adult mouse cortex, but it is unclear whether LI-rTMS can promote remyelination. To examine this possibility, we fluorescently labelled oligodendrocyte progenitor cells (OPCs; Pdgfrα-CreER transgenic mice) or mature OLs (Plp-CreER transgenic mice) in the adult mouse brain and traced the fate of each cell population over time. Daily sessions of iTBS (600 pulses; 120 mT), delivered during cuprizone (CPZ) feeding, did not alter new or pre-existing OL survival but increased the number of myelin internodes elaborated by new OLs in the primary motor cortex (M1). This resulted in each new M1 OL producing ~ 471 µm more myelin. When LI-rTMS was delivered after CPZ withdrawal (during remyelination), it significantly increased the length of the internodes elaborated by new M1 and callosal OLs, increased the number of surviving OLs that supported internodes in the corpus callosum (CC), and increased the proportion of axons that were myelinated. The ability of LI-rTMS to modify cortical neuronal activity and the behaviour of new and surviving OLs, suggests that it may be a suitable adjunct intervention to enhance remyelination in people with MS.
Collapse
Affiliation(s)
- Phuong Tram Nguyen
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Kalina Makowiecki
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Thomas S Lewis
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Alastair J Fortune
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Mackenzie Clutterbuck
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Laura A Reale
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Bruce V Taylor
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Jennifer Rodger
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Carlie L Cullen
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- Mater Research Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia.
| |
Collapse
|
7
|
Sempik I, Dziadkowiak E, Moreira H, Zimny A, Pokryszko-Dragan A. Primary Progressive Multiple Sclerosis-A Key to Understanding and Managing Disease Progression. Int J Mol Sci 2024; 25:8751. [PMID: 39201438 PMCID: PMC11354232 DOI: 10.3390/ijms25168751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/04/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Primary progressive multiple sclerosis (PPMS), the least frequent type of multiple sclerosis (MS), is characterized by a specific course and clinical symptoms, and it is associated with a poor prognosis. It requires extensive differential diagnosis and often a long-term follow-up before its correct recognition. Despite recent progress in research into and treatment for progressive MS, the diagnosis and management of this type of disease still poses a challenge. Considering the modern concept of progression "smoldering" throughout all the stages of disease, a thorough exploration of PPMS may provide a better insight into mechanisms of progression in MS, with potential clinical implications. The goal of this study was to review the current evidence from investigations of PPMS, including its background, clinical characteristics, potential biomarkers and therapeutic opportunities. Processes underlying CNS damage in PPMS are discussed, including chronic immune-mediated inflammation, neurodegeneration, and remyelination failure. A review of potential clinical, biochemical and radiological biomarkers is presented, which is useful in monitoring and predicting the progression of PPMS. Therapeutic options for PPMS are summarized, with approved therapies, ongoing clinical trials and future directions of investigations. The clinical implications of findings from PPMS research would be associated with reliable assessments of disease outcomes, improvements in individualized therapeutic approaches and, hopefully, novel therapeutic targets, relevant for the management of progression.
Collapse
Affiliation(s)
- Izabela Sempik
- Department of Neurology, Regional Hospital in Legnica, Iwaszkiewicza 5, 59-220 Legnica, Poland;
| | - Edyta Dziadkowiak
- Clinical Department of Neurology, University Centre of Neurology and Neurosurgery, Faculty of Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Helena Moreira
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| | - Anna Zimny
- Department of General and Interventional Radiology and Neuroradiology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Anna Pokryszko-Dragan
- Clinical Department of Neurology, University Centre of Neurology and Neurosurgery, Faculty of Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| |
Collapse
|
8
|
Woo MS, Mayer C, Binkle-Ladisch L, Sonner JK, Rosenkranz SC, Shaposhnykov A, Rothammer N, Tsvilovskyy V, Lorenz SM, Raich L, Bal LC, Vieira V, Wagner I, Bauer S, Glatzel M, Conrad M, Merkler D, Freichel M, Friese MA. STING orchestrates the neuronal inflammatory stress response in multiple sclerosis. Cell 2024; 187:4043-4060.e30. [PMID: 38878778 DOI: 10.1016/j.cell.2024.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/08/2024] [Accepted: 05/16/2024] [Indexed: 07/28/2024]
Abstract
Inflammation-induced neurodegeneration is a defining feature of multiple sclerosis (MS), yet the underlying mechanisms remain unclear. By dissecting the neuronal inflammatory stress response, we discovered that neurons in MS and its mouse model induce the stimulator of interferon genes (STING). However, activation of neuronal STING requires its detachment from the stromal interaction molecule 1 (STIM1), a process triggered by glutamate excitotoxicity. This detachment initiates non-canonical STING signaling, which leads to autophagic degradation of glutathione peroxidase 4 (GPX4), essential for neuronal redox homeostasis and thereby inducing ferroptosis. Both genetic and pharmacological interventions that target STING in neurons protect against inflammation-induced neurodegeneration. Our findings position STING as a central regulator of the detrimental neuronal inflammatory stress response, integrating inflammation with glutamate signaling to cause neuronal cell death, and present it as a tractable target for treating neurodegeneration in MS.
Collapse
Affiliation(s)
- Marcel S Woo
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christina Mayer
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lars Binkle-Ladisch
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jana K Sonner
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sina C Rosenkranz
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Artem Shaposhnykov
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Rothammer
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Volodymyr Tsvilovskyy
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Svenja M Lorenz
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
| | - Lukas Raich
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas C Bal
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vanessa Vieira
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingrid Wagner
- Department of Pathology and Immunology, Division of Clinical Pathology, Faculty of Medicine, University and University Hospital of Geneva, Geneva, Switzerland
| | - Simone Bauer
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, Faculty of Medicine, University and University Hospital of Geneva, Geneva, Switzerland
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
9
|
Vejar S, Pizarro IS, Pulgar-Sepúlveda R, Vicencio SC, Polit A, Amador CA, Del Rio R, Varas R, Orellana JA, Ortiz FC. A preclinical mice model of multiple sclerosis based on the toxin-induced double-site demyelination of callosal and cerebellar fibers. Biol Res 2024; 57:48. [PMID: 39034395 PMCID: PMC11265164 DOI: 10.1186/s40659-024-00529-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is an irreversible progressive CNS pathology characterized by the loss of myelin (i.e. demyelination). The lack of myelin is followed by a progressive neurodegeneration triggering symptoms as diverse as fatigue, motor, locomotor and sensory impairments and/or bladder, cardiac and respiratory dysfunction. Even though there are more than fourteen approved treatments for reducing MS progression, there are still no cure for the disease. Thus, MS research is a very active field and therefore we count with different experimental animal models for studying mechanisms of demyelination and myelin repair, however, we still lack a preclinical MS model assembling demyelination mechanisms with relevant clinical-like signs. RESULTS Here, by inducing the simultaneous demyelination of both callosal and cerebellar white matter fibers by the double-site injection of lysolecithin (LPC), we were able to reproduce CNS demyelination, astrocyte recruitment and increases levels of proinflammatory cytokines levels along with motor, locomotor and urinary impairment, as well as cardiac and respiratory dysfunction, in the same animal model. Single site LPC-injections either in corpus callosum or cerebellum only, fails in to reproduce such a complete range of MS-like signs. CONCLUSION We here report that the double-site LPC injections treatment evoke a complex MS-like mice model. We hope that this experimental approach will help to deepen our knowledge about the mechanisms of demyelinated diseases such as MS.
Collapse
Affiliation(s)
- Sebastián Vejar
- Mechanisms of Myelin Formation and Repair Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Ignacio S Pizarro
- Mechanisms of Myelin Formation and Repair Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Raúl Pulgar-Sepúlveda
- Mechanisms of Myelin Formation and Repair Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Sinay C Vicencio
- Mechanisms of Myelin Formation and Repair Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrés Polit
- Mechanisms of Myelin Formation and Repair Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Cristian A Amador
- Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Rodrigo Varas
- Facultad de Ciencias de Salud, Universidad Autónoma de Chile, 8910060, Santiago, Chile
| | - Juan A Orellana
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, 8330024, Santiago, Chile.
| | - Fernando C Ortiz
- Mechanisms of Myelin Formation and Repair Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
10
|
Song Z, Li J, He Y, Wang X, Tian J, Wu Y. A novel PROTAC molecule dBET1 alleviates pathogenesis of experimental autoimmune encephalomyelitis in mice by degrading BRD4. Int Immunopharmacol 2024; 139:112646. [PMID: 39002520 DOI: 10.1016/j.intimp.2024.112646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/25/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
Neuroinflammation and neurodegeneration are hallmarks of multiple sclerosis (MS). Bromodomain-containing protein 4 (BRD4), a bromodomain and extra-terminal domain (BET) protein family member, is indispensable for the transcription of pro-inflammatory genes. Therefore, inhibiting BRD4 may be a prospective therapeutic approach for modulating the inflammatory response and regulating the course of MS. dBET1, a newly synthesized proteolysis-targeting chimera (PROTAC), exhibits effectively degrades of BRD4. However, the precise effects of dBET1 on MS require further investigation. Therefore, we assessed the effect of dBET1 in experimental autoimmune encephalomyelitis (EAE), a typical MS experimental model. Our findings revealed that BRD4 is mainly expressed in astrocytes and neurons of the spinal cords, and is up-regulated in the spinal cords of EAE mice. The dBET1 attenuated lipopolysaccharide-induced expression of astrocytic pro-inflammatory mediators and inhibited deleterious molecular activity in astrocytes. Correspondingly, dBET1, used in preventive and therapeutic settings, alleviated the behavioral symptoms in EAE mice, as demonstrated by decreased demyelination, alleviated leukocyte infiltration, reduced microglial and astrocyte activation, and diminished inflammatory mediator levels. In addition, dBET1 corrected the imbalance in peripheral T cells and protected blood-brain barrier integrity in EAE mice. The underlying mechanism involved suppressing the phosphoinositide-3-kinase/protein kinase B, mitogen-activated protein kinase /extracellular signal-regulated kinase, and nuclear factor kappa B pathways. In summary, our data strongly suggests that dBET1 is a promising treatment option for MS.
Collapse
Affiliation(s)
- Ziwei Song
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, China
| | - Jin Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yijie He
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xiaokun Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Jianan Tian
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yun Wu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
11
|
Natarajan C, Le LHD, Gunasekaran M, Tracey KJ, Chernoff D, Levine YA. Electrical stimulation of the vagus nerve ameliorates inflammation and disease activity in a rat EAE model of multiple sclerosis. Proc Natl Acad Sci U S A 2024; 121:e2322577121. [PMID: 38968104 PMCID: PMC11252997 DOI: 10.1073/pnas.2322577121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/31/2024] [Indexed: 07/07/2024] Open
Abstract
Multiple sclerosis (MS) is a demyelinating central nervous system (CNS) disorder that is associated with functional impairment and accruing disability. There are multiple U.S. Food and Drug Administration (FDA)-approved drugs that effectively dampen inflammation and slow disability progression. However, these agents do not work well for all patients and are associated with side effects that may limit their use. The vagus nerve (VN) provides a direct communication conduit between the CNS and the periphery, and modulation of the inflammatory reflex via electrical stimulation of the VN (VNS) shows efficacy in ameliorating pathology in several CNS and autoimmune disorders. We therefore investigated the impact of VNS in a rat experimental autoimmune encephalomyelitis (EAE) model of MS. In this study, VNS-mediated neuroimmune modulation is demonstrated to effectively decrease EAE disease severity and duration, infiltration of neutrophils and pathogenic lymphocytes, myelin damage, blood-brain barrier disruption, fibrinogen deposition, and proinflammatory microglial activation. VNS modulates expression of genes that are implicated in MS pathogenesis, as well as those encoding myelin proteins and transcription factors regulating new myelin synthesis. Together, these data indicate that neuroimmune modulation via VNS may be a promising approach to treat MS, that not only ameliorates symptoms but potentially also promotes myelin repair (remyelination).
Collapse
Affiliation(s)
| | | | | | - Kevin J. Tracey
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY11030
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY11549
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY11549
| | | | - Yaakov A. Levine
- SetPoint Medical, Valencia, CA91355
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY11549
- Division of Cardiovascular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm171 76, Sweden
| |
Collapse
|
12
|
Woo MS, Engler JB, Friese MA. The neuropathobiology of multiple sclerosis. Nat Rev Neurosci 2024; 25:493-513. [PMID: 38789516 DOI: 10.1038/s41583-024-00823-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
Chronic low-grade inflammation and neuronal deregulation are two components of a smoldering disease activity that drives the progression of disability in people with multiple sclerosis (MS). Although several therapies exist to dampen the acute inflammation that drives MS relapses, therapeutic options to halt chronic disability progression are a major unmet clinical need. The development of such therapies is hindered by our limited understanding of the neuron-intrinsic determinants of resilience or vulnerability to inflammation. In this Review, we provide a neuron-centric overview of recent advances in deciphering neuronal response patterns that drive the pathology of MS. We describe the inflammatory CNS environment that initiates neurotoxicity by imposing ion imbalance, excitotoxicity and oxidative stress, and by direct neuro-immune interactions, which collectively lead to mitochondrial dysfunction and epigenetic dysregulation. The neuronal demise is further amplified by breakdown of neuronal transport, accumulation of cytosolic proteins and activation of cell death pathways. Continuous neuronal damage perpetuates CNS inflammation by activating surrounding glia cells and by directly exerting toxicity on neighbouring neurons. Further, we explore strategies to overcome neuronal deregulation in MS and compile a selection of neuronal actuators shown to impact neurodegeneration in preclinical studies. We conclude by discussing the therapeutic potential of targeting such neuronal actuators in MS, including some that have already been tested in interventional clinical trials.
Collapse
Affiliation(s)
- Marcel S Woo
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Broder Engler
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
13
|
Woo MS, Bal LC, Winschel I, Manca E, Walkenhorst M, Sevgili B, Sonner JK, Di Liberto G, Mayer C, Binkle-Ladisch L, Rothammer N, Unger L, Raich L, Hadjilaou A, Noli B, Manai AL, Vieira V, Meurs N, Wagner I, Pless O, Cocco C, Stephens SB, Glatzel M, Merkler D, Friese MA. The NR4A2/VGF pathway fuels inflammation-induced neurodegeneration via promoting neuronal glycolysis. J Clin Invest 2024; 134:e177692. [PMID: 39145444 PMCID: PMC11324305 DOI: 10.1172/jci177692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/11/2024] [Indexed: 08/16/2024] Open
Abstract
A disturbed balance between excitation and inhibition (E/I balance) is increasingly recognized as a key driver of neurodegeneration in multiple sclerosis (MS), a chronic inflammatory disease of the central nervous system. To understand how chronic hyperexcitability contributes to neuronal loss in MS, we transcriptionally profiled neurons from mice lacking inhibitory metabotropic glutamate signaling with shifted E/I balance and increased vulnerability to inflammation-induced neurodegeneration. This revealed a prominent induction of the nuclear receptor NR4A2 in neurons. Mechanistically, NR4A2 increased susceptibility to excitotoxicity by stimulating continuous VGF secretion leading to glycolysis-dependent neuronal cell death. Extending these findings to people with MS (pwMS), we observed increased VGF levels in serum and brain biopsies. Notably, neuron-specific deletion of Vgf in a mouse model of MS ameliorated neurodegeneration. These findings underscore the detrimental effect of a persistent metabolic shift driven by excitatory activity as a fundamental mechanism in inflammation-induced neurodegeneration.
Collapse
Affiliation(s)
- Marcel S. Woo
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas C. Bal
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingo Winschel
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elias Manca
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Biomedical Sciences, NEF-Laboratory, University of Cagliari, Monserrato, Cagliari, Italy
| | - Mark Walkenhorst
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bachar Sevgili
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jana K. Sonner
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Giovanni Di Liberto
- Department of Pathology and Immunology, Division of Clinical Pathology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christina Mayer
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lars Binkle-Ladisch
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Rothammer
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lisa Unger
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas Raich
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexandros Hadjilaou
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Protozoa Immunology, Bernhard-Nocht-Institute for Tropical Medicine (BNITM), Hamburg, Germany
| | - Barbara Noli
- Department of Biomedical Sciences, NEF-Laboratory, University of Cagliari, Monserrato, Cagliari, Italy
| | - Antonio L. Manai
- Department of Biomedical Sciences, NEF-Laboratory, University of Cagliari, Monserrato, Cagliari, Italy
| | - Vanessa Vieira
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nina Meurs
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingrid Wagner
- Department of Pathology and Immunology, Division of Clinical Pathology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ole Pless
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg, Germany
| | - Cristina Cocco
- Department of Biomedical Sciences, NEF-Laboratory, University of Cagliari, Monserrato, Cagliari, Italy
| | - Samuel B. Stephens
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Manuel A. Friese
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
14
|
Beliën J, Swinnen S, D'hondt R, Verdú de Juan L, Dedoncker N, Matthys P, Bauer J, Vens C, Moylett S, Dubois B. CHIT1 at diagnosis predicts faster disability progression and reflects early microglial activation in multiple sclerosis. Nat Commun 2024; 15:5013. [PMID: 38866782 PMCID: PMC11169395 DOI: 10.1038/s41467-024-49312-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/30/2024] [Indexed: 06/14/2024] Open
Abstract
Multiple sclerosis (MS) is characterized by heterogeneity in disease course and prediction of long-term outcome remains a major challenge. Here, we investigate five myeloid markers - CHIT1, CHI3L1, sTREM2, GPNMB and CCL18 - in the cerebrospinal fluid (CSF) at diagnostic lumbar puncture in a longitudinal cohort of 192 MS patients. Through mixed-effects and machine learning models, we show that CHIT1 is a robust predictor for faster disability progression. Integrative analysis of 11 CSF and 26 central nervous system (CNS) parenchyma single-cell/nucleus RNA sequencing samples reveals CHIT1 to be predominantly expressed by microglia located in active MS lesions and enriched for lipid metabolism pathways. Furthermore, we find CHIT1 expression to accompany the transition from a homeostatic towards a more activated, MS-associated cell state in microglia. Neuropathological evaluation in post-mortem tissue from 12 MS patients confirms CHIT1 production by lipid-laden phagocytes in actively demyelinating lesions, already in early disease stages. Altogether, we provide a rationale for CHIT1 as an early biomarker for faster disability progression in MS.
Collapse
Affiliation(s)
- Jarne Beliën
- Laboratory for Neuroimmunology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Stijn Swinnen
- Laboratory for Neuroimmunology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Robbe D'hondt
- Department of Public Health and Primary Care, KU Leuven, Kortrijk, Belgium
- Imec research group itec, KU Leuven, Kortrijk, Belgium
| | - Laia Verdú de Juan
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Nina Dedoncker
- Laboratory for Neuroimmunology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Jan Bauer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Celine Vens
- Department of Public Health and Primary Care, KU Leuven, Kortrijk, Belgium
- Imec research group itec, KU Leuven, Kortrijk, Belgium
| | - Sinéad Moylett
- Laboratory for Neuroimmunology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Bénédicte Dubois
- Laboratory for Neuroimmunology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
15
|
Wicklein R, Kreitner L, Wild A, Aly L, Rueckert D, Hemmer B, Korn T, Menten MJ, Knier B. Retinal small vessel pathology is associated with disease burden in multiple sclerosis. Mult Scler 2024; 30:812-819. [PMID: 38751230 PMCID: PMC11134992 DOI: 10.1177/13524585241247775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/26/2024] [Accepted: 03/31/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Alterations of the superficial retinal vasculature are commonly observed in multiple sclerosis (MS) and can be visualized through optical coherence tomography angiography (OCTA). OBJECTIVES This study aimed to examine changes in the retinal vasculature during MS and to integrate findings into current concepts of the underlying pathology. METHODS In this cross-sectional study, including 259 relapsing-remitting MS patients and 78 healthy controls, we analyzed OCTAs using deep-learning-based segmentation algorithm tools. RESULTS We identified a loss of small-sized vessels (diameter < 10 µm) in the superficial vascular complex in all MS eyes, irrespective of their optic neuritis (ON) history. This alteration was associated with MS disease burden and appears independent of retinal ganglion cell loss. In contrast, an observed reduction of medium-sized vessels (diameter 10-20 µm) was specific to eyes with a history of ON and was closely linked to ganglion cell atrophy. CONCLUSION These findings suggest distinct atrophy patterns in retinal vessels in patients with MS. Further studies are necessary to investigate retinal vessel alterations and their underlying pathology in MS.
Collapse
Affiliation(s)
- Rebecca Wicklein
- Department of Neurology, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Linus Kreitner
- Institute for AI and Informatics in Medicine, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Anna Wild
- Department of Neurology, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Lilian Aly
- Department of Neurology, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Daniel Rueckert
- Institute for AI and Informatics in Medicine, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- BioMedIA, Imperial College London, London, UK
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Thomas Korn
- Department of Neurology, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Institute for Experimental Neuroimmunology, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Martin J Menten
- Institute for AI and Informatics in Medicine, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- BioMedIA, Imperial College London, London, UK
| | - Benjamin Knier
- Department of Neurology, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Department of Neurology and Geriatric Neurology, Diakonie Klinikum Schwäbisch Hall, Schwäbisch Hall, Germany
| |
Collapse
|
16
|
Turner TJ, Brun P, Gruber RC, Ofengeim D. Comparative CNS Pharmacology of the Bruton's Tyrosine Kinase (BTK) Inhibitor Tolebrutinib Versus Other BTK Inhibitor Candidates for Treating Multiple Sclerosis. Drugs R D 2024; 24:263-274. [PMID: 38965189 PMCID: PMC11315827 DOI: 10.1007/s40268-024-00468-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Tolebrutinib is a covalent BTK inhibitor designed and selected for potency and CNS exposure to optimize impact on BTK-dependent signaling in CNS-resident cells. We applied a translational approach to evaluate three BTK inhibitors in Phase 3 clinical development in MS with respect to their relative potency to block BTK-dependent signaling and exposure in the CNS METHODS: We used in vitro kinase and cellular activation assays, alongside pharmacokinetic sampling of cerebrospinal fluid (CSF) in the non-human primate cynomolgus to estimate the ability of these candidates (evobrutinib, fenebrutinib, and tolebrutinib) to block BTK-dependent signaling inside the CNS. RESULTS In vitro kinase assays demonstrated that tolebrutinib reacted with BTK 65-times faster than evobrutinib, while fenebrutinib, a classical reversible antagonist with a Ki value of 4.7 nM and slow off-rate (1.54 x 10-5 s-1), also had an association rate 1760-fold slower (0.00245 μM-1 * s-1). Estimates of cellular potency were largely consistent with the in vitro kinase assays, with an estimated IC50 of 0.7 nM for tolebrutinib against 33.5 nM for evobrutinib and 2.9 nM for fenebrutinib. We then observed that evobrutinib, fenebrutinib, and tolebrutinib achieved similar levels of exposure in non-human primate CSF after oral doses of 10 mg/kg. However, tolebrutinib CSF exposure (4.8 ng/mL) (kp,uu CSF=0.40) exceeded the IC90 (the estimated concentration inhibiting 90% of kinase activity) value, while evobrutinib (3.2 ng/mL) (kp,uu CSF=0.13) and fenebrutinib (12.9 ng/mL) (kp,uu CSF=0.15) failed to reach the estimated IC90 values. CONCLUSIONS Tolebrutinib was the only candidate of the three that attained relevant CSF exposure in non-human primates.
Collapse
|
17
|
Krämer J, Wiendl H. Bruton tyrosine kinase inhibitors in multiple sclerosis: evidence and expectations. Curr Opin Neurol 2024; 37:237-244. [PMID: 38533819 DOI: 10.1097/wco.0000000000001269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
PURPOSE OF REVIEW Despite availability of high-efficacy therapies for multiple sclerosis (MS), many patients experience significant disability worsening due to limited effects of currently available drugs on central nervous system (CNS)-compartmentalized inflammation. Bruton tyrosine kinase (BTK) is an intracellular signaling molecule involved in regulation of maturation, survival, migration, and activation of B cells and microglia, which are central players in the immunopathogenesis of progressive MS. Therefore, CNS-penetrant BTK inhibitors may better prevent disease progression by targeting immune cells on both sides of the blood-brain barrier. This review gives an overview on the preliminary results of clinical trials. RECENT FINDINGS Currently, the efficacy and safety of six BTK inhibitors are being evaluated in clinical trials in patients with relapsing and progressive MS. Evobrutinib, tolebrutinib and fenebrutinib have shown efficacy and safety in relapsing MS in phase 2 studies, and evobrutinib and tolebrutinib in their extension studies up to 3-5 years. However, evobrutinib failed to distinguish itself from the comparator drug teriflunomide in reduction of relapse rate (primary end point) in two phase 3 studies in relapsing MS. SUMMARY Inhibition of BTK has emerged as a promising therapeutic approach to target the CNS-compartmentalized inflammation. Results from phase 3 clinical trials will shed light on differences in efficacy and safety of BTK inhibitors and its potential role in the future MS landscape.
Collapse
Affiliation(s)
- Julia Krämer
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | | |
Collapse
|
18
|
Fan X, Zhang S, Sun S, Bi W, Li S, Wang W, Chen X, Fang Z. GFAP palmitoylcation mediated by ZDHHC23 in spinal astrocytes contributes to the development of neuropathic pain. Reg Anesth Pain Med 2024:rapm-2023-104980. [PMID: 38050183 DOI: 10.1136/rapm-2023-104980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/02/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND Cancer pain has a significant impact on patient's quality of life. Astrocytes play an important role in cancer pain signaling. The direct targeting of astrocytes can effectively suppress cancer pain, however, they can cause many side effects. Therefore, there is an urgent need to identify the specific signaling pathways or proteins involved within astrocytes in cancer pain as targets for treating pain. METHODS A neuropathic cancer pain (NCP) model was established by inoculating mouse S-180 sarcoma cells around the right sciatic nerve in C57BL/6 mice. Spontaneous persistent pain and paw withdrawal thresholds were measured using von Frey filaments. The NCP spinal cord dorsal horn (L4-L6) and mouse astrocyte cell line MA-C were used to study protein palmitoylation using acyl-biotin exchange, real-time polymerase chain reaction, ELISA, western blotting, and immunofluorescent staining. RESULTS In a cancer pain model, along with tumor growth, peripheral nerve tissue invasion, and cancer pain onset, astrocytes in the dorsal horn of the spinal cord were activated and palmitoyltransferase ZDHHC23 expression was upregulated, leading to increased palmitoylation levels of GFAP and increased secretion of inflammatory factors, such as (C-X-C motif) ligand (CXCL)10 (CXCL-10), interleukin 6, and granulocyte-macrophage colony-stimulating factor. These factors in turn activate astrocytes by activating the signal transducer and activator of transcription 3 (STAT3) signaling pathway. A competitive peptide targeting GFAP palmitoylations was designed to effectively alleviate morphine tolerance in cancer pain treatment as well as cancer pain signaling and inflammatory factor secretion. CONCLUSIONS In a rodent model, targeting GFAP palmitoylation appears to be an effective strategy in relieving cancer pain and morphine tolerance. Human translational research is warranted.
Collapse
Affiliation(s)
- Xiaoqing Fan
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, Anhui, People's Republic of China
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei, Anhui, People's Republic of China
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, Anhui, People's Republic of China
| | - Siyu Zhang
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, Anhui, People's Republic of China
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Suling Sun
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, Anhui, People's Republic of China
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Wenxu Bi
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, Anhui, People's Republic of China
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Shuyang Li
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, Anhui, People's Republic of China
- School of Basic Medicine, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Wei Wang
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, Anhui, People's Republic of China
- School of Basic Medicine, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Xueran Chen
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, Anhui, People's Republic of China
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Zhiyou Fang
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, Anhui, People's Republic of China
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| |
Collapse
|
19
|
Chomyk A, Kucinski R, Kim J, Christie E, Cyncynatus K, Gossman Z, Chen Z, Richardson B, Cameron M, Turner T, Dutta R, Trapp B. Transcript Profiles of Microglia/Macrophage Cells at the Borders of Chronic Active and Subpial Gray Matter Lesions in Multiple Sclerosis. Ann Neurol 2024; 95:907-916. [PMID: 38345145 PMCID: PMC11060930 DOI: 10.1002/ana.26877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/05/2023] [Accepted: 01/03/2024] [Indexed: 05/01/2024]
Abstract
OBJECTIVE Microglia/macrophages line the border of demyelinated lesions in both cerebral white matter and the cortex in the brains of multiple sclerosis patients. Microglia/macrophages associated with chronic white matter lesions are thought to be responsible for slow lesion expansion and disability progression in progressive multiple sclerosis, whereas those lining gray matter lesions are less studied. Profiling these microglia/macrophages could help to focus therapies on genes or pathways specific to lesion expansion and disease progression. METHODS We compared the morphology and transcript profiles of microglia/macrophages associated with borders of white matter (WM line) and subpial gray matter lesions (GM line) using laser capture microscopy. We performed RNA sequencing on isolated cells followed by immunocytochemistry to determine the distribution of translational products of transcripts increased in WM line microglia. RESULTS Cells in the WM line appear activated, with shorter processes and larger cell bodies, whereas those in the GM line appear more homeostatic, with smaller cell bodies and multiple thin processes. Transcript profiling revealed 176 genes in WM lines and 111 genes in GM lines as differentially expressed. Transcripts associated with immune activation and iron homeostasis were increased in WM line microglia, whereas genes belonging to the canonical Wnt signaling pathway were increased in GM line microglia. INTERPRETATION We propose that the mechanisms of demyelination and dynamics of lesion expansion are responsible for differential transcript expression in WM lines and GM lines, and posit that increased expression of the Fc epsilon receptor, spleen tyrosine kinase, and Bruton's tyrosine kinase, play a key role in regulating microglia/macrophage function at the border of chronic active white matter lesions. ANN NEUROL 2024;95:907-916.
Collapse
Affiliation(s)
- Anthony Chomyk
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Rikki Kucinski
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jihye Kim
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Emilie Christie
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kaitlyn Cyncynatus
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Zachary Gossman
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Zhihong Chen
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Brian Richardson
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mark Cameron
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Ranjan Dutta
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Bruce Trapp
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
20
|
Linnerbauer M, Lößlein L, Vandrey O, Peter A, Han Y, Tsaktanis T, Wogram E, Needhamsen M, Kular L, Nagel L, Zissler J, Andert M, Meszaros L, Hanspach J, Zuber F, Naumann UJ, Diebold M, Wheeler MA, Beyer T, Nirschl L, Cirac A, Laun FB, Günther C, Winkler J, Bäuerle T, Jagodic M, Hemmer B, Prinz M, Quintana FJ, Rothhammer V. The astrocyte-produced growth factor HB-EGF limits autoimmune CNS pathology. Nat Immunol 2024; 25:432-447. [PMID: 38409259 PMCID: PMC10907300 DOI: 10.1038/s41590-024-01756-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 01/12/2024] [Indexed: 02/28/2024]
Abstract
Central nervous system (CNS)-resident cells such as microglia, oligodendrocytes and astrocytes are gaining increasing attention in respect to their contribution to CNS pathologies including multiple sclerosis (MS). Several studies have demonstrated the involvement of pro-inflammatory glial subsets in the pathogenesis and propagation of inflammatory events in MS and its animal models. However, it has only recently become clear that the underlying heterogeneity of astrocytes and microglia can not only drive inflammation, but also lead to its resolution through direct and indirect mechanisms. Failure of these tissue-protective mechanisms may potentiate disease and increase the risk of conversion to progressive stages of MS, for which currently available therapies are limited. Using proteomic analyses of cerebrospinal fluid specimens from patients with MS in combination with experimental studies, we here identify Heparin-binding EGF-like growth factor (HB-EGF) as a central mediator of tissue-protective and anti-inflammatory effects important for the recovery from acute inflammatory lesions in CNS autoimmunity. Hypoxic conditions drive the rapid upregulation of HB-EGF by astrocytes during early CNS inflammation, while pro-inflammatory conditions suppress trophic HB-EGF signaling through epigenetic modifications. Finally, we demonstrate both anti-inflammatory and tissue-protective effects of HB-EGF in a broad variety of cell types in vitro and use intranasal administration of HB-EGF in acute and post-acute stages of autoimmune neuroinflammation to attenuate disease in a preclinical mouse model of MS. Altogether, we identify astrocyte-derived HB-EGF and its epigenetic regulation as a modulator of autoimmune CNS inflammation and potential therapeutic target in MS.
Collapse
Affiliation(s)
- Mathias Linnerbauer
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Lena Lößlein
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Oliver Vandrey
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Anne Peter
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Yanan Han
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Thanos Tsaktanis
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Emile Wogram
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maria Needhamsen
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Lara Kular
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Lisa Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Julia Zissler
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Marie Andert
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Lisa Meszaros
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Jannis Hanspach
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Finnja Zuber
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Ulrike J Naumann
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Martin Diebold
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Tobias Beyer
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Lucy Nirschl
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Ana Cirac
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Frederik B Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Claudia Günther
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Jürgen Winkler
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tobias Bäuerle
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Maja Jagodic
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Veit Rothhammer
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany.
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany.
| |
Collapse
|
21
|
Junior MSO, Reiche L, Daniele E, Kortebi I, Faiz M, Küry P. Star power: harnessing the reactive astrocyte response to promote remyelination in multiple sclerosis. Neural Regen Res 2024; 19:578-582. [PMID: 37721287 PMCID: PMC10581572 DOI: 10.4103/1673-5374.380879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/05/2023] [Accepted: 05/23/2023] [Indexed: 09/19/2023] Open
Abstract
Astrocytes are indispensable for central nervous system development and homeostasis. In response to injury and disease, astrocytes are integral to the immunological- and the, albeit limited, repair response. In this review, we will examine some of the functions reactive astrocytes play in the context of multiple sclerosis and related animal models. We will consider the heterogeneity or plasticity of astrocytes and the mechanisms by which they promote or mitigate demyelination. Finally, we will discuss a set of biomedical strategies that can stimulate astrocytes in their promyelinating response.
Collapse
Affiliation(s)
- Markley Silva Oliveira Junior
- Department of Neurology, Neuroregeneration laboratory, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Laura Reiche
- Department of Neurology, Neuroregeneration laboratory, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Emerson Daniele
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Canada
| | - Ines Kortebi
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Canada
| | - Maryam Faiz
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Canada
| | - Patrick Küry
- Department of Neurology, Neuroregeneration laboratory, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
22
|
Hou B, Yin J, Liu S, Guo J, Zhang B, Zhang Z, Yang L, Tan X, Long Y, Feng S, Zhou J, Wu Y, Wang X, Han S, Wang Z, He X. Inhibiting the NLRP3 Inflammasome with MCC950 Alleviates Neurological Impairment in the Brain of EAE Mice. Mol Neurobiol 2024; 61:1318-1330. [PMID: 37702910 PMCID: PMC10896958 DOI: 10.1007/s12035-023-03618-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/27/2023] [Indexed: 09/14/2023]
Abstract
Multiple sclerosis (MS) is a chronic disease that is characterized by demyelination and neuronal damage. Experimental autoimmune encephalomyelitis (EAE) mice are used to model the disease progression of MS and mirror MS-like pathology. Previous researches have confirmed that inhibition of NLRP3 inflammasome significantly alleviated the severity of EAE mice and the demyelination of spinal cord, but its effect on neuronal damage and oligodendrocyte loss in the brain remains unclear. In this study, female C57BL/6 mice were immunized with MOG35-55 and PTX to establish experimental autoimmune encephalomyelitis (EAE) model. MCC950, a selective NLRP3 inflammasome inhibitor, was used to investigate the effect of NLRP3 inflammasome on the pathological changes and glial cell activation in the brain of EAE mice by immunohistochemistry. Our results demonstrated that MCC950 ameliorated the neuronal damage, demyelination, and oligodendrocyte loss in the brain of EAE mice. This protective effect of MCC950 may be attributed to its ability to suppress the activation of glial cells and prevents microglia polarization to M1 phenotype. Our work indicates that inhibition of NLRP3 inflammasome has the therapeutic effects of neuroprotection through immunomodulation and is a promising therapeutic strategy for MS.
Collapse
Affiliation(s)
- Baohua Hou
- College of Medicine, Henan Polytechnic University, Jiaozuo, 454000, China
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430000, China
- Central Laboratory, The First Affiliated Hospital of Henan Polytechnic University (Jiaozuo Second People's Hospital), Jiaozuo, China
| | - Jun Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430000, China
| | - Shuyan Liu
- Department of Endocrinology, The First Affiliated Hospital of Henan Polytechnic University (Jiaozuo Second People's Hospital), Jiaozuo, 454000, China
| | - Jincheng Guo
- Department of Thoracic Surgery, The First Affiliated Hospital of Henan Polytechnic University (Jiaozuo Second People's Hospital), Jiaozuo, 454000, China
| | - Baobao Zhang
- College of Medicine, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Zhenzhen Zhang
- College of Medicine, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Lanping Yang
- College of Medicine, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Xiying Tan
- College of Medicine, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Yijiao Long
- College of Medicine, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Sijie Feng
- College of Medicine, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Jingchun Zhou
- Beijing Bencaoyuan Pharmaceutical Co, Ltd, Beijing, 102629, China
| | - Yifan Wu
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430000, China
| | - Xueyang Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430000, China
| | - Song Han
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430000, China
| | - Zhenhui Wang
- College of Medicine, Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Xiaohua He
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430000, China.
| |
Collapse
|
23
|
Zhou W, Qu H, Fu XX, Xu MM, Li Q, Jiang Y, Han S. Neuroprotective effects of a novel peptide through the Rho-integrin-Tie2 and PI3K/Akt pathways in experimental autoimmune encephalomyelitis model. Front Pharmacol 2024; 15:1290128. [PMID: 38384299 PMCID: PMC10880193 DOI: 10.3389/fphar.2024.1290128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/15/2024] [Indexed: 02/23/2024] Open
Abstract
Purpose: The interaction between inflammatory cells and integrin in the endothelium plays a key role during infiltration. Previous evidence has shown that synthetic C16 peptide selectively binds to integrins αvβ3 and α5β1 and exhibits a neuroprotective effect. It has also been reported to inhibit the differentiation of microglia into the M1 (pro-inflammatory) phenotype while promoting its differentiation to the M2 (anti-inflammatory) phenotype. This study aimed to investigate the mechanisms of action of the C16 peptide in multiple sclerosis using a rodent model. Methods: Molecular, morphological, and neurophysiological assays were used to investigate the neuroprotective effects of C16 peptide and related signaling pathways in a model of EAE. Results: The results showed that C16 significantly improved the clinical score and cortical somatosensory/motor evoked potential. It also alleviated inflammatory responses, including microglial activation and leukocyte infiltration, relieved the impairment of the brain blood barrier and edema, and reduced neuronal apoptosis, axonal loss, and demyelination induced by EAE. The C16 peptide increased the expressions of pTie-2 and Tie-2, integrin αvβ3, and α5β1 and activated the PI3K/Akt signal pathway but decreased the expression of Rho. Co-treatment of C16 with Tie-2 inhibitor and PI3K inhibitor LY294002 attenuated these effects of C16. Conclusion: The C16 peptide demonstrated neuroprotection in the EAE model through the integrin, Tie-2, and PI3K/Akt signaling pathways, and it could be a potential strategy for treating inflammation-related diseases in the central nervous system.
Collapse
Affiliation(s)
- Wen Zhou
- Department of Emergency Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Han Qu
- Institute of Anatomy and Cell Biology, Medical College, Zhejiang University, Hangzhou, China
| | - Xiao-Xiao Fu
- Institute of Human Anatomy, Histology and Embryology, Basic Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Miao-Miao Xu
- Department of Rehabilitation in Traditional Chinese Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Li
- Department of Emergency Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yuan Jiang
- Department of Pulmonology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Shu Han
- Institute of Anatomy and Cell Biology, Medical College, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Abdelhak A, Antweiler K, Kowarik MC, Senel M, Havla J, Zettl UK, Kleiter I, Skripuletz T, Haarmann A, Stahmann A, Huss A, Gingele S, Krumbholz M, Benkert P, Kuhle J, Friede T, Ludolph AC, Ziemann U, Kümpfel T, Tumani H. Serum glial fibrillary acidic protein and disability progression in progressive multiple sclerosis. Ann Clin Transl Neurol 2024; 11:477-485. [PMID: 38111972 PMCID: PMC10863922 DOI: 10.1002/acn3.51969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/29/2023] [Accepted: 11/21/2023] [Indexed: 12/20/2023] Open
Abstract
OBJECTIVE Progression prediction is a significant unmet need in people with progressive multiple sclerosis (pwPMS). Studies on glial fibrillary acidic protein (GFAP) have either been limited to single center with relapsing MS or were based solely on Expanded Disability Status Scale (EDSS), which limits its generalizability to state-of-the-art clinical settings and trials applying combined outcome parameters. METHODS Serum GFAP and NfL (neurofilament light chain) were investigated in EmBioProMS participants with primary (PP) or secondary progressive MS. Six months confirmed disability progression (CDP) was defined using combined outcome parameters (EDSS, timed-25-foot walk test (T25FW), and nine-hole-peg-test (9HPT)). RESULTS 243 subjects (135 PPMS, 108 SPMS, age 55.5, IQR [49.7-61.2], 135 female, median follow-up: 29.3 months [17.9-40.9]) were included. NfL (age-) and GFAP (age- and sex-) adjusted Z scores were higher in pwPMS compared to HC (p < 0.001 for both). 111 (32.8%) CDP events were diagnosed in participants with ≥3 visits (n = 169). GFAP Z score >3 was associated with higher risk for CDP in participants with low NfL Z score (i.e., ≤1.0) (HR: 2.38 [1.12-5.08], p = 0.025). In PPMS, GFAP Z score >3 was associated with higher risk for CDP (HR: 2.88 [1.21-6.84], p = 0.016). Risk was further increased in PPMS subjects with high GFAP when NfL is low (HR: 4.31 [1.53-12.13], p = 0.006). INTERPRETATION Blood GFAP may help identify pwPPMS at risk of progression. Combination of high GFAP and low NfL levels could distinguish non-active pwPMS with particularly high progression risk.
Collapse
Affiliation(s)
- Ahmed Abdelhak
- Department of NeurologyUniversity of California San Francisco (UCSF)San FranciscoCaliforniaUSA
- Department of NeurologyUniversity Hospital of UlmUlmGermany
| | - Kai Antweiler
- Department of Medical StatisticsUniversity Medical Centre GöttingenGöttingenGermany
| | - Markus C. Kowarik
- Department of Neurology and StrokeUniversity Hospital of TübingenTübingenGermany
- Hertie Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Makbule Senel
- Department of NeurologyUniversity Hospital of UlmUlmGermany
| | - Joachim Havla
- Institute of Clinical Neuroimmunology, LMU HospitalLudwig‐Maximilians UniversityMunichGermany
| | - Uwe K. Zettl
- Department of Neurology, Neuroimmunological SectionUniversity of RostockRostockGermany
| | - Ingo Kleiter
- Marianne‐Strauß‐KlinikBehandlungszentrum Kempfenhausen für Multiple Sklerose Kranke gGmbHBergGermany
| | | | - Axel Haarmann
- Department of NeurologyUniversity Hospital WürzburgWürzburgGermany
| | - Alexander Stahmann
- Forschungs‐ und Projektentwicklungs‐gGmbHMS‐Registry by the German MS‐SocietyHanoverGermany
| | - Andre Huss
- Department of NeurologyUniversity Hospital of UlmUlmGermany
| | - Stefan Gingele
- Department of NeurologyHannover Medical SchoolHanoverGermany
| | - Markus Krumbholz
- Department of Neurology and StrokeUniversity Hospital of TübingenTübingenGermany
- Hertie Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
- Department of Neurology and Pain Treatment, Multiple Sclerosis Center, Center for Translational Medicine, Immanuel Klinik RüdersdorfUniversity Hospital of the Brandenburg Medical School Theodor FontaneRüdersdorf bei BerlinGermany
- Faculty of Health Sciences BrandenburgBrandenburg Medical School Theodor FontaneRüdersdorf bei BerlinGermany
| | - Pascal Benkert
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Department of BiomedicineUniversity Hospital and University of BaselBaselSwitzerland
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Department of Clinical ResearchUniversity Hospital and University of BaselBaselSwitzerland
- Department of NeurologyUniversity Hospital and University of BaselBaselSwitzerland
| | - Jens Kuhle
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Department of BiomedicineUniversity Hospital and University of BaselBaselSwitzerland
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Department of Clinical ResearchUniversity Hospital and University of BaselBaselSwitzerland
- Department of NeurologyUniversity Hospital and University of BaselBaselSwitzerland
| | - Tim Friede
- Department of Medical StatisticsUniversity Medical Centre GöttingenGöttingenGermany
| | - Albert C. Ludolph
- Department of NeurologyUniversity Hospital of UlmUlmGermany
- German Center for Neurodegenerative DiseasesUlmGermany
| | - Ulf Ziemann
- Department of Neurology and StrokeUniversity Hospital of TübingenTübingenGermany
- Hertie Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, LMU HospitalLudwig‐Maximilians UniversityMunichGermany
| | | |
Collapse
|
25
|
Colón Ortiz C, Eroglu C. Astrocyte signaling and interactions in Multiple Sclerosis. Curr Opin Cell Biol 2024; 86:102307. [PMID: 38145604 PMCID: PMC10922437 DOI: 10.1016/j.ceb.2023.102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 12/27/2023]
Abstract
Multiple Sclerosis (MS) is a common cause of impairment in working-aged adults. MS is characterized by neuroinflammation and infiltration of peripheral immune cells to the brain, which cause myelin loss and death of oligodendrocytes and neurons. Many studies on MS have focused on the peripheral immune sources of demyelination and repair. However, recent studies revealed that a glial cell type, the astrocytes, undergo robust morphological and transcriptomic changes that contribute significantly to demyelination and myelin repair. Here, we discuss recent findings elucidating signaling modalities that astrocytes acquire or lose in MS and how these changes alter the interactions of astrocytes with other nervous system cell types.
Collapse
Affiliation(s)
- Crystal Colón Ortiz
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA; Howard Hughes Medical Institute, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
26
|
Akaishi T, Fujimori J, Nakashima I. Enlarged choroid plexus in multiple sclerosis is associated with increased lesion load and atrophy in white matter but not gray matter atrophy. Mult Scler Relat Disord 2024; 82:105424. [PMID: 38181695 DOI: 10.1016/j.msard.2024.105424] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/16/2023] [Accepted: 01/01/2024] [Indexed: 01/07/2024]
Abstract
BACKGROUND Enlargement of the choroid plexus (CP) is reported to associate with inflammatory activity and contribute to brain atrophy in patients with multiple sclerosis (pwMS). However, a recent study in healthy volunteers (HVTs) has suggested that CP enlargement can be attributed to ventriculomegaly. OBJECTIVES To clarify the pathological significance of the enlargement of CP in multiple sclerosis (MS). METHODS A total of 102 pwMS (89 with relapsing-remitting MS and 13 with secondary progressive MS) and 41 HVTs were cross-sectionally evaluated using brain volumetry. The CP volume was compared between disease groups and investigated for the relationships with other brain regional volumes. RESULTS CP volume was significantly larger in pwMS than in HVTs in the univariate analysis, but not in multivariable analysis. Meanwhile, the CP and lateral ventricle (LV) volumes were significantly correlated. CP enlargement was significantly associated with increased lesion load and cerebral white matter (WM) atrophy, even after adjusting for LV volume. In contrast, multivariable analyses revealed that LV enlargement, but not CP enlargement, was associated with total gray matter (GM) atrophy. CONCLUSION CP enlargement was closely associated with LV enlargement. After adjusting for LV volume, CP enlargement in pwMS was associated with increased lesion load and WM atrophy but not GM atrophy.
Collapse
Affiliation(s)
- Tetsuya Akaishi
- Department of Neurology, Tohoku University, Sendai, Japan; Department of Education and Support for Regional Medicine, Tohoku University, Sendai, Japan
| | - Juichi Fujimori
- Division of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan.
| | - Ichiro Nakashima
- Division of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
27
|
Pang Z, Cravatt BF, Ye L. Deciphering Drug Targets and Actions with Single-Cell and Spatial Resolution. Annu Rev Pharmacol Toxicol 2024; 64:507-526. [PMID: 37722721 DOI: 10.1146/annurev-pharmtox-033123-123610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Recent advances in chemical, molecular, and genetic approaches have provided us with an unprecedented capacity to identify drug-target interactions across the whole proteome and genome. Meanwhile, rapid developments of single-cell and spatial omics technologies are revolutionizing our understanding of the molecular architecture of biological systems. However, a significant gap remains in how we align our understanding of drug actions, traditionally based on molecular affinities, with the in vivo cellular and spatial tissue heterogeneity revealed by these newer techniques. Here, we review state-of-the-art methods for profiling drug-target interactions and emerging multiomics tools to delineate the tissue heterogeneity at single-cell resolution. Highlighting the recent technical advances enabling high-resolution, multiplexable in situ small-molecule drug imaging (clearing-assisted tissue click chemistry, or CATCH), we foresee the integration of single-cell and spatial omics platforms, data, and concepts into the future framework of defining and understanding in vivo drug-target interactions and mechanisms of actions.
Collapse
Affiliation(s)
- Zhengyuan Pang
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California, USA;
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, USA;
| | - Li Ye
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California, USA;
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
28
|
Yuan J, Tao Y, Wang M, Huang F, Wu X. Natural compounds as potential therapeutic candidates for multiple sclerosis: Emerging preclinical evidence. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155248. [PMID: 38096716 DOI: 10.1016/j.phymed.2023.155248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Multiple sclerosis is a chronic neurodegenerative disease, with main characteristics of pathological inflammation, neural damage and axonal demyelination. Current mainstream treatments demonstrate more or less side effects, which limit their extensive use. PURPOSE Increasing studies indicate that natural compounds benefit multiple sclerosis without remarkable side effects. Given the needs to explore the potential effects of natural compounds of plant origin on multiple sclerosis and their mechanisms, we review publications involving the role of natural compounds in animal models of multiple sclerosis, excluding controlled trials. STUDY DESIGN AND METHODS Articles were conducted on PubMed and Web of Science databases using the keywords ``multiple sclerosis'' and ``natural compounds'' published from January 1, 2008, to September 1, 2023. RESULTS This review summarized the effects of natural ingredients (flavonoids, terpenoids, polyphenols, alkaloids, glycosides, and others) from three aspects: immune regulation, oxidative stress suppression, and myelin protection and regeneration in multiple sclerosis. CONCLUSION Overall, we concluded 80 studies to show the preclinical evidence that natural compounds may attenuate multiple sclerosis progression via suppressing immune attacks and/or promoting myelin protection or endogenous repair processes. It would pave the roads for the future development of effective therapeutic regiments of multiple sclerosis.
Collapse
Affiliation(s)
- Jinfeng Yuan
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanlin Tao
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mengxue Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
29
|
Ludwig R, Malla B, Höhrhan M, Infante-Duarte C, Anderhalten L. Investigating the Mitoprotective Effects of S1P Receptor Modulators Ex Vivo Using a Novel Semi-Automated Live Imaging Set-Up. Int J Mol Sci 2023; 25:261. [PMID: 38203434 PMCID: PMC10778583 DOI: 10.3390/ijms25010261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
In multiple sclerosis (MS), mitochondrial alterations appear to contribute to disease progression. The sphingosine-1-phosphate receptor modulator siponimod is approved for treating secondary progressive MS. Its preceding compound fingolimod was shown to prevent oxidative stress-induced alterations in mitochondrial morphology. Here, we assessed the effects of siponimod, compared to fingolimod, on neuronal mitochondria in oxidatively stressed hippocampal slices. We have also advanced the model of chronic organotypic hippocampal slices for live imaging, enabling semi-automated monitoring of mitochondrial alterations. The slices were prepared from B6.Cg-Tg(Thy1-CFP/COX8A)S2Lich/J mice that display fluorescent neuronal mitochondria. They were treated with hydrogen peroxide (oxidative stress paradigm) ± 1 nM siponimod or fingolimod for 24 h. Afterwards, mitochondrial dynamics were investigated. Under oxidative stress, the fraction of motile mitochondria decreased and mitochondria were shorter, smaller, and covered smaller distances. Siponimod partly prevented oxidatively induced alterations in mitochondrial morphology; for fingolimod, a similar trend was observed. Siponimod reduced the decrease in mitochondrial track displacement, while both compounds significantly increased track speed and preserved motility. The novel established imaging and analysis tools are suitable for assessing the dynamics of neuronal mitochondria ex vivo. Using these approaches, we showed that siponimod at 1 nM partially prevented oxidatively induced mitochondrial alterations in chronic brain slices.
Collapse
Affiliation(s)
- Rebecca Ludwig
- Experimental and Clinical Research Center (ECRC), 13125 Berlin, Germany; (R.L.); (L.A.)
- Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125 Berlin, Germany
| | - Bimala Malla
- Experimental and Clinical Research Center (ECRC), 13125 Berlin, Germany; (R.L.); (L.A.)
- Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125 Berlin, Germany
| | - Maria Höhrhan
- Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- Institute for Medical Immunology, 13353 Berlin, Germany
| | - Carmen Infante-Duarte
- Experimental and Clinical Research Center (ECRC), 13125 Berlin, Germany; (R.L.); (L.A.)
- Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125 Berlin, Germany
| | - Lina Anderhalten
- Experimental and Clinical Research Center (ECRC), 13125 Berlin, Germany; (R.L.); (L.A.)
- Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125 Berlin, Germany
| |
Collapse
|
30
|
Peng HR, Qiu JQ, Zhou QM, Zhang YK, Chen QY, Yin YQ, Su W, Yu S, Wang YT, Cai Y, Gu MN, Zhang HH, Sun QQ, Hu G, Wu YW, Liu J, Chen S, Zhu ZJ, Song XY, Zhou JW. Intestinal epithelial dopamine receptor signaling drives sex-specific disease exacerbation in a mouse model of multiple sclerosis. Immunity 2023; 56:2773-2789.e8. [PMID: 37992711 DOI: 10.1016/j.immuni.2023.10.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/22/2023] [Accepted: 10/27/2023] [Indexed: 11/24/2023]
Abstract
Although the gut microbiota can influence central nervous system (CNS) autoimmune diseases, the contribution of the intestinal epithelium to CNS autoimmunity is less clear. Here, we showed that intestinal epithelial dopamine D2 receptors (IEC DRD2) promoted sex-specific disease progression in an animal model of multiple sclerosis. Female mice lacking Drd2 selectively in intestinal epithelial cells showed a blunted inflammatory response in the CNS and reduced disease progression. In contrast, overexpression or activation of IEC DRD2 by phenylethylamine administration exacerbated disease severity. This was accompanied by altered lysozyme expression and gut microbiota composition, including reduced abundance of Lactobacillus species. Furthermore, treatment with N2-acetyl-L-lysine, a metabolite derived from Lactobacillus, suppressed microglial activation and neurodegeneration. Taken together, our study indicates that IEC DRD2 hyperactivity impacts gut microbial abundances and increases susceptibility to CNS autoimmune diseases in a female-biased manner, opening up future avenues for sex-specific interventions of CNS autoimmune diseases.
Collapse
Affiliation(s)
- Hai-Rong Peng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Qian Qiu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China; Shanghai Key Laboratory of Aging Studies, Shanghai 201210, China
| | - Qin-Ming Zhou
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu-Kai Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiao-Yu Chen
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yan-Qing Yin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wen Su
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shui Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ya-Ting Wang
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuping Cai
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China; Shanghai Key Laboratory of Aging Studies, Shanghai 201210, China
| | - Ming-Na Gu
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Hao-Hao Zhang
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Qing-Qing Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Gang Hu
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yi-Wen Wu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sheng Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Zheng-Jiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China; Shanghai Key Laboratory of Aging Studies, Shanghai 201210, China.
| | - Xin-Yang Song
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| | - Jia-Wei Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China; Innovation Center of Neurodegeneration, School of Medicine, Nantong University, Nantong, Jiangsu 226001, China.
| |
Collapse
|
31
|
Kipp M. Astrocytes: Lessons Learned from the Cuprizone Model. Int J Mol Sci 2023; 24:16420. [PMID: 38003609 PMCID: PMC10671869 DOI: 10.3390/ijms242216420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
A diverse array of neurological and psychiatric disorders, including multiple sclerosis, Alzheimer's disease, and schizophrenia, exhibit distinct myelin abnormalities at both the molecular and histological levels. These aberrations are closely linked to dysfunction of oligodendrocytes and alterations in myelin structure, which may be pivotal factors contributing to the disconnection of brain regions and the resulting characteristic clinical impairments observed in these conditions. Astrocytes, which significantly outnumber neurons in the central nervous system by a five-to-one ratio, play indispensable roles in the development, maintenance, and overall well-being of neurons and oligodendrocytes. Consequently, they emerge as potential key players in the onset and progression of a myriad of neurological and psychiatric disorders. Furthermore, targeting astrocytes represents a promising avenue for therapeutic intervention in such disorders. To gain deeper insights into the functions of astrocytes in the context of myelin-related disorders, it is imperative to employ appropriate in vivo models that faithfully recapitulate specific aspects of complex human diseases in a reliable and reproducible manner. One such model is the cuprizone model, wherein metabolic dysfunction in oligodendrocytes initiates an early response involving microglia and astrocyte activation, culminating in multifocal demyelination. Remarkably, following the cessation of cuprizone intoxication, a spontaneous process of endogenous remyelination occurs. In this review article, we provide a historical overview of studies investigating the responses and putative functions of astrocytes in the cuprizone model. Following that, we list previously published works that illuminate various aspects of the biology and function of astrocytes in this multiple sclerosis model. Some of the studies are discussed in more detail in the context of astrocyte biology and pathology. Our objective is twofold: to provide an invaluable overview of this burgeoning field, and, more importantly, to inspire fellow researchers to embark on experimental investigations to elucidate the multifaceted functions of this pivotal glial cell subpopulation.
Collapse
Affiliation(s)
- Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany
| |
Collapse
|
32
|
Zou P, Wu C, Liu TCY, Duan R, Yang L. Oligodendrocyte progenitor cells in Alzheimer's disease: from physiology to pathology. Transl Neurodegener 2023; 12:52. [PMID: 37964328 PMCID: PMC10644503 DOI: 10.1186/s40035-023-00385-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/01/2023] [Indexed: 11/16/2023] Open
Abstract
Oligodendrocyte progenitor cells (OPCs) play pivotal roles in myelin formation and phagocytosis, communicating with neighboring cells and contributing to the integrity of the blood-brain barrier (BBB). However, under the pathological circumstances of Alzheimer's disease (AD), the brain's microenvironment undergoes detrimental changes that significantly impact OPCs and their functions. Starting with OPC functions, we delve into the transformation of OPCs to myelin-producing oligodendrocytes, the intricate signaling interactions with other cells in the central nervous system (CNS), and the fascinating process of phagocytosis, which influences the function of OPCs and affects CNS homeostasis. Moreover, we discuss the essential role of OPCs in BBB formation and highlight the critical contribution of OPCs in forming CNS-protective barriers. In the context of AD, the deterioration of the local microenvironment in the brain is discussed, mainly focusing on neuroinflammation, oxidative stress, and the accumulation of toxic proteins. The detrimental changes disturb the delicate balance in the brain, impacting the regenerative capacity of OPCs and compromising myelin integrity. Under pathological conditions, OPCs experience significant alterations in migration and proliferation, leading to impaired differentiation and a reduced ability to produce mature oligodendrocytes. Moreover, myelin degeneration and formation become increasingly active in AD, contributing to progressive neurodegeneration. Finally, we summarize the current therapeutic approaches targeting OPCs in AD. Strategies to revitalize OPC senescence, modulate signaling pathways to enhance OPC differentiation, and explore other potential therapeutic avenues are promising in alleviating the impact of AD on OPCs and CNS function. In conclusion, this review highlights the indispensable role of OPCs in CNS function and their involvement in the pathogenesis of AD. The intricate interplay between OPCs and the AD brain microenvironment underscores the complexity of neurodegenerative diseases. Insights from studying OPCs under pathological conditions provide a foundation for innovative therapeutic strategies targeting OPCs and fostering neurodegeneration. Future research will advance our understanding and management of neurodegenerative diseases, ultimately offering hope for effective treatments and improved quality of life for those affected by AD and related disorders.
Collapse
Affiliation(s)
- Peibin Zou
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Timon Cheng-Yi Liu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Rui Duan
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
33
|
Zong B, Yu F, Zhang X, Zhao W, Li S, Li L. Mechanisms underlying the beneficial effects of physical exercise on multiple sclerosis: focus on immune cells. Front Immunol 2023; 14:1260663. [PMID: 37841264 PMCID: PMC10570846 DOI: 10.3389/fimmu.2023.1260663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
Multiple sclerosis (MS) is a prevalent neuroimmunological illness that leads to neurological disability in young adults. Although the etiology of MS is heterogeneous, it is well established that aberrant activity of adaptive and innate immune cells plays a crucial role in its pathogenesis. Several immune cell abnormalities have been described in MS and its animal models, including T lymphocytes, B lymphocytes, dendritic cells, neutrophils, microglia/macrophages, and astrocytes, among others. Physical exercise offers a valuable alternative or adjunctive disease-modifying therapy for MS. A growing body of evidence indicates that exercise may reduce the autoimmune responses triggered by immune cells in MS. This is partially accomplished by restricting the infiltration of peripheral immune cells into the central nervous system (CNS) parenchyma, curbing hyperactivation of immune cells, and facilitating a transition in the balance of immune cells from a pro-inflammatory to an anti-inflammatory state. This review provides a succinct overview of the correlation between physical exercise, immune cells, and MS pathology, and highlights the potential benefits of exercise as a strategy for the prevention and treatment of MS.
Collapse
Affiliation(s)
- Boyi Zong
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Fengzhi Yu
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
| | - Xiaoyou Zhang
- School of Physical Education, Hubei University, Wuhan, China
| | - Wenrui Zhao
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Shichang Li
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Lin Li
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| |
Collapse
|
34
|
Long Z, Zeng L, He Q, Yang K, Xiang W, Ren X, Deng Y, Chen H. Research progress on the clinical application and mechanism of iguratimod in the treatment of autoimmune diseases and rheumatic diseases. Front Immunol 2023; 14:1150661. [PMID: 37809072 PMCID: PMC10552782 DOI: 10.3389/fimmu.2023.1150661] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/04/2023] [Indexed: 10/10/2023] Open
Abstract
Autoimmune diseases are affected by complex pathophysiology involving multiple cell types, cytokines, antibodies and mimicking factors. Different drugs are used to improve these autoimmune responses, including nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroids, antibodies, and small molecule drugs (DMARDs), which are prevalent clinically in the treatment of rheumatoid arthritis (RA), etc. However, low cost-effectiveness, reduced efficacy, adverse effects, and patient non-response are unattractive factors driving the development of new drugs such as iguratimod. As a new disease-modifying antirheumatic drug, iguratimod has pharmacological activities such as regulating autoimmune disorders, inflammatory cytokines, regulating immune cell activation, differentiation and proliferation, improving bone metabolism, and inhibiting fibrosis. In recent years, clinical studies have found that iguratimod is effective in the treatment of RA, SLE, IGG4-RD, Sjogren 's syndrome, ankylosing spondylitis, interstitial lung disease, and other autoimmune diseases and rheumatic diseases. The amount of basic and clinical research on other autoimmune diseases is also increasing. Therefore, this review systematically reviews the latest relevant literature in recent years, reviews the research results in recent years, and summarizes the research progress of iguratimod in the treatment of related diseases. This review highlights the role of iguratimod in the protection of autoimmune and rheumatic bone and related immune diseases. It is believed that iguratimod's unique mode of action and its favorable patient response compared to other DMARDs make it a suitable antirheumatic and bone protective agent in the future.
Collapse
Affiliation(s)
- Zhiyong Long
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Wang Xiang
- Department of Rheumatology, The First People's Hospital Changde City, Changde, Hunan, China
| | - Xiang Ren
- Department of Rheumatology, The First People's Hospital Changde City, Changde, Hunan, China
| | - Ying Deng
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Hua Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
35
|
Xue J, Lin J, Liu Z, Zhang Q, Tang J, Han J, Wu S, Liu C, Zhao L, Li Y, Zhuo Y. Alleviating early demyelination in ischaemia/reperfusion by inhibiting sphingosine-1-phosphate receptor 2 could protect visual function from impairment. Brain Pathol 2023; 33:e13161. [PMID: 37142391 PMCID: PMC10467042 DOI: 10.1111/bpa.13161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 04/18/2023] [Indexed: 05/06/2023] Open
Abstract
Retinal ischaemia/reperfusion (I/R) injury is a common cause of retinal ganglion cell (RGC) apoptosis and axonal degeneration, resulting in irreversible visual impairment. However, there are no available neuroprotective and neurorestorative therapies for retinal I/R injury, and more effective therapeutic approaches are needed. The role of the myelin sheath of the optic nerve after retinal I/R remains unknown. Here, we report that demyelination of the optic nerve is an early pathological feature of retinal I/R and identify sphingosine-1-phosphate receptor 2 (S1PR2) as a therapeutic target for alleviating demyelination in a model of retinal I/R caused by rapid changes in intraocular pressure. Targeting the myelin sheath via S1PR2 protected RGCs and visual function. In our experiment, we observed early damage to the myelin sheath and persistent demyelination accompanied by S1PR2 overexpression after injury. Blockade of S1PR2 by the pharmacological inhibitor JTE-013 reversed demyelination, increased the number of oligodendrocytes, and inhibited microglial activation, contributing to the survival of RGCs and alleviating axonal damage. Finally, we evaluated the postoperative recovery of visual function by recording visual evoked potentials and assessing the quantitative optomotor response. In conclusion, this study is the first to reveal that alleviating demyelination by inhibiting S1PR2 overexpression may be a therapeutic strategy for retinal I/R-related visual impairment.
Collapse
Affiliation(s)
- Jingfei Xue
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Jicheng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Zhe Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Qi Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Jiahui Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Jiaxu Han
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Siting Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Canying Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Ling Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Yiqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
36
|
Zong B, Yu F, Zhang X, Pang Y, Zhao W, Sun P, Li L. Mechanosensitive Piezo1 channel in physiology and pathophysiology of the central nervous system. Ageing Res Rev 2023; 90:102026. [PMID: 37532007 DOI: 10.1016/j.arr.2023.102026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023]
Abstract
Since the discovery of the mechanosensitive Piezo1 channel in 2010, there has been a significant amount of research conducted to explore its regulatory role in the physiology and pathology of various organ systems. Recently, a growing body of compelling evidence has emerged linking the activity of the mechanosensitive Piezo1 channel to health and disease of the central nervous system. However, the exact mechanisms underlying these associations remain inadequately comprehended. This review systematically summarizes the current research on the mechanosensitive Piezo1 channel and its implications for central nervous system mechanobiology, retrospects the results demonstrating the regulatory role of the mechanosensitive Piezo1 channel on various cell types within the central nervous system, including neural stem cells, neurons, oligodendrocytes, microglia, astrocytes, and brain endothelial cells. Furthermore, the review discusses the current understanding of the involvement of the Piezo1 channel in central nervous system disorders, such as Alzheimer's disease, multiple sclerosis, glaucoma, stroke, and glioma.
Collapse
Affiliation(s)
- Boyi Zong
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Fengzhi Yu
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaoyou Zhang
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Yige Pang
- Department of Neurosurgery, Zibo Central Hospital, Zibo 255000, Shandong, China
| | - Wenrui Zhao
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Peng Sun
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Lin Li
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
37
|
Gill AJ, Schorr EM, Gadani SP, Calabresi PA. Emerging imaging and liquid biomarkers in multiple sclerosis. Eur J Immunol 2023; 53:e2250228. [PMID: 37194443 PMCID: PMC10524168 DOI: 10.1002/eji.202250228] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/10/2023] [Accepted: 05/12/2023] [Indexed: 05/18/2023]
Abstract
The advent of highly effective disease modifying therapy has transformed the landscape of multiple sclerosis (MS) care over the last two decades. However, there remains a critical, unmet need for sensitive and specific biomarkers to aid in diagnosis, prognosis, treatment monitoring, and the development of new interventions, particularly for people with progressive disease. This review evaluates the current data for several emerging imaging and liquid biomarkers in people with MS. MRI findings such as the central vein sign and paramagnetic rim lesions may improve MS diagnostic accuracy and evaluation of therapy efficacy in progressive disease. Serum and cerebrospinal fluid levels of several neuroglial proteins, such as neurofilament light chain and glial fibrillary acidic protein, show potential to be sensitive biomarkers of pathologic processes such as neuro-axonal injury or glial-inflammation. Additional promising biomarkers, including optical coherence tomography, cytokines and chemokines, microRNAs, and extracellular vesicles/exosomes, are also reviewed, among others. Beyond their potential integration into MS clinical care and interventional trials, several of these biomarkers may be informative of MS pathogenesis and help elucidate novel targets for treatment strategies.
Collapse
Affiliation(s)
- Alexander J. Gill
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, US
| | - Emily M. Schorr
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, US
| | - Sachin P. Gadani
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, US
| | - Peter A. Calabresi
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, US
- Department of Neuroscience, Baltimore, MD, US
- Department of Ophthalmology, Baltimore, MD, US
| |
Collapse
|
38
|
Krušič M, Jezernik G, Potočnik U. Gene Ontology Analysis Highlights Biological Processes Influencing Responsiveness to Biological Therapy in Psoriasis. Pharmaceutics 2023; 15:2024. [PMID: 37631238 PMCID: PMC10459906 DOI: 10.3390/pharmaceutics15082024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/27/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Psoriasis is a chronic, immune-mediated and inflammatory skin disease. Although various biological drugs are available for psoriasis treatment, some patients have poor responses or do not respond to treatment. The aim of the present study was to highlight the molecular mechanism of responsiveness to current biological drugs for psoriasis treatment. To this end, we reviewed previously published articles that reported genes associated with treatment response to biological drugs in psoriasis, and gene ontology analysis was subsequently performed using the Cytoscape platform. Herein, we revealed a statistically significant association between NF-kappaB signaling (p value = 3.37 × 10-9), regulation of granulocyte macrophage colony-stimulating factor production (p value = 6.20 × 10-6), glial cell proliferation (p value = 2.41 × 10-5) and treatment response in psoriatic patients. To the best of our knowledge, we are the first to directly associate glial cells with treatment response. Taken together, our study revealed gene ontology (GO) terms, some of which were previously shown to be implicated in the molecular pathway of psoriasis, as novel GO terms involved in responsiveness in psoriatic disease patients.
Collapse
Affiliation(s)
- Martina Krušič
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (M.K.); (G.J.)
| | - Gregor Jezernik
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (M.K.); (G.J.)
| | - Uroš Potočnik
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (M.K.); (G.J.)
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Department for Science and Research, University Clinical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia
| |
Collapse
|
39
|
Jakimovski D, Qureshi F, Ramanathan M, Gehman V, Keshavan A, Leyden K, Dwyer MG, Bergsland N, Weinstock-Guttman B, Zivadinov R. Proteomics and relationship with axonal pathology in multiple sclerosis: 5-year diffusion tensor imaging study. Brain Commun 2023; 5:fcad183. [PMID: 37361716 PMCID: PMC10288551 DOI: 10.1093/braincomms/fcad183] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/08/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023] Open
Abstract
Blood-based biomarkers can be economic and easily accessible tools for monitoring and predicting disease activity in multiple sclerosis. The objective of this study was to determine the predictive value of a multivariate proteomic assay for concurrent and future microstructural/axonal brain pathology in a longitudinal study of a heterogeneous group of people with multiple sclerosis. A proteomic analysis was obtained on serum samples from 202 people with multiple sclerosis (148 relapsing-remitting and 54 progressive) at baseline and 5-year follow-up. The concentration of 21 proteins related to multiple pathways of multiple sclerosis pathophysiology was derived using Proximity Extension Assay on the Olink platform. Patients were imaged on the same 3T MRI scanner at both timepoints. Тhe rate of whole brain, white matter and grey matter atrophy over the 5-year follow-up was determined using the multi-timepoint Structural Image Evaluation, using Normalisation, of Atrophy algorithms. Lesion burden measures were also assessed. The severity of microstructural axonal brain pathology was quantified using diffusion tensor imaging. Fractional anisotropy and mean diffusivity of normal-appearing brain tissue, normal-appearing white matter, grey matter, T2 and T1 lesions were calculated. Age, sex and body mass index-adjusted step-wise regression models were used. Glial fibrillary acidic protein was the most common and highest-ranked proteomic biomarker associated with greater concurrent microstructural central nervous system alterations (P < 0.001). The rate of whole brain atrophy was associated with baseline levels of glial fibrillary acidic protein, protogenin precursor, neurofilament light chain and myelin oligodendrocyte (P < 0.009), whereas grey matter atrophy was associated with higher baseline neurofilament light chain, higher osteopontin and lower protogenin precursor levels (P < 0.016). Higher baseline glial fibrillary acidic protein level was a significant predictor of future severity of the microstructural CNS alterations as measured by normal-appearing brain tissue fractional anisotropy and mean diffusivity (standardized β = -0.397/0.327, P < 0.001), normal-appearing white matter fractional anisotropy (standardized β = -0.466, P < 0.0012), grey matter mean diffusivity (standardized β = 0.346, P < 0.011) and T2 lesion mean diffusivity (standardized β = 0.416, P < 0.001) at the 5-year follow-up. Serum levels of myelin-oligodendrocyte glycoprotein, neurofilament light chain, contactin-2 and osteopontin proteins were additionally and independently associated with worse concomitant and future axonal pathology. Higher glial fibrillary acidic protein levels were associated with future disability progression (Exp(B) = 8.65, P = 0.004). Multiple proteomic biomarkers are independently associated with greater severity of axonal brain pathology as measured by diffusion tensor imaging in multiple sclerosis. Baseline serum glial fibrillary acidic protein levels can predict future disability progression.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | | | - Murali Ramanathan
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | | | | | | | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
- IRCCS, Fondazione Don Carlo Gnocchi, Milan 20113, Italy
| | - Bianca Weinstock-Guttman
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Robert Zivadinov
- Correspondence to: Robert Zivadinov, MD, PhD Department of Neurology, Jacobs School of Medicine and Biomedical Sciences Buffalo Neuroimaging Analysis Center, Center for Biomedical Imaging at Clinical Translational Science Institute University at Buffalo, 100 High St., Buffalo, NY 14203, USA E-mail:
| |
Collapse
|
40
|
Qi C, Feng Y, Jiang Y, Chen W, Vakal S, Chen JF, Zheng W. A 2AR antagonist treatment for multiple sclerosis: Current progress and future prospects. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 170:185-223. [PMID: 37741692 DOI: 10.1016/bs.irn.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Emerging evidence suggests that both selective and non-selective Adenosine A2A receptor (A2AR) antagonists could effectively protect mice from experimental autoimmune encephalomyelitis (EAE), which is the most commonly used animal model for multiple sclerosis (MS) research. Meanwhile, the recent FDA approval of Nourianz® (istradefylline) in 2019 as an add-on treatment to levodopa in Parkinson's disease (PD) with "OFF" episodes, along with its proven clinical safety, has prompted us to explore the potential of A2AR antagonists in treating multiple sclerosis (MS) through clinical trials. However, despite promising findings in experimental autoimmune encephalomyelitis (EAE), the complex and contradictory role of A2AR signaling in EAE pathology has raised concerns about the feasibility of using A2AR antagonists as a therapeutic approach for MS. This review addresses the potential effect of A2AR antagonists on EAE/MS in both the peripheral immune system (PIS) and the central nervous system (CNS). In brief, A2AR antagonists had a moderate effect on the proliferation and inflammatory response, while exhibiting a potent anti-inflammatory effect in the CNS through their impact on microglia, astrocytes, and the endothelial cells/epithelium of the blood-brain barrier. Consequently, A2AR signaling remains an essential immunomodulator in EAE/MS, suggesting that A2AR antagonists hold promise as a drug class for treating MS.
Collapse
Affiliation(s)
- Chenxing Qi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China; Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China
| | - Yijia Feng
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Yiwei Jiang
- Alberta Institute, Wenzhou Medical University, Wenzhou, P.R. China
| | - Wangchao Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China
| | - Serhii Vakal
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Jiang-Fan Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China; Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China
| | - Wu Zheng
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China; Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China.
| |
Collapse
|
41
|
Shi Z, Wang X, Wang J, Chen H, Du Q, Lang Y, Kong L, Luo W, Qiu Y, Zhang Y, Li C, Wen D, Yao J, Cheng X, Cai L, Lin X, Wang R, Mou Z, Li S, Liu D, Zhou H, Zhou H, Yang M. Granzyme B + CD8 + T cells with terminal differentiated effector signature determine multiple sclerosis progression. J Neuroinflammation 2023; 20:138. [PMID: 37268957 DOI: 10.1186/s12974-023-02810-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 05/19/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) leads to demyelination and neurodegeneration with autoimmune responses in central nervous system. Patients begin with a relapsing-remitting (RR) course, and more than 80% of them may advance to secondary progressive MS (SPMS), which is characteristic for the gradual decline of neurological functions without demonstrated treating method to prevent. This study aims to investigate the contribution of peripheral CD8 + T cells during the conversion from RRMS to SPMS, as well as reveal potential diagnostic signature in distinguishing SPMS. METHODS Single-cell RNA sequencing was employed to reveal the heterogeneity of CD8 + T cells between SPMS and RRMS. In addition, flow cytometry was used to further characterized CD8 + T cell dynamic changes in patients. T cell receptor sequencing was performed to detect the clonal expansion of MS. Using Tbx21 siRNA, T-bet was confirmed to manipulate GzmB expression. The correlation between GzmB + CD8 + T cell subsets and clinical characteristics of MS and their potential diagnostic value for SPMS were evaluated by generalized linear regression models and receiver operating characteristic (ROC) curve respectively. RESULTS Other than diminished naïve CD8 + T cell, elevating of activated CD8 + T cell subsets were observed in SPMS patients. Meanwhile, this aberrant amplified peripheral CD8 + T cells not only exhibited terminal differentiated effector (EMRA) phenotype with GzmB expression, but also possessed distinct trajectory from clonal expansion. In addition, T-bet acted as a key transcriptional factor that elicited GzmB expression in CD8 + TEMRA cells of patients with SPMS. Finally, the expression of GzmB in CD8 + T cells was positively correlated with disability and progression of MS, and could effectively distinguish SPMS from RRMS with a high accuracy. CONCLUSIONS Our study mapped peripheral immune cells of RRMS and SPMS patients and provided an evidence for the involvement of GzmB + CD8 + TEMRA cells in the progression of MS, which could be used as a diagnostic biomarker for distinguishing SPMS from RRMS.
Collapse
Affiliation(s)
- Ziyan Shi
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, China
| | - Xiaofei Wang
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, China
| | - Jiancheng Wang
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, China
| | - Hongxi Chen
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, China
| | - Qin Du
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, China
| | - Yanlin Lang
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, China
| | - Lingyao Kong
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, China
| | - Wenqin Luo
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, China
| | - Yuhan Qiu
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, China
| | - Ying Zhang
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, China
| | - Chen Li
- Centre for Translational Research in Cancer, Sichuan Cancer Hospital and Institute, No.55 South Renmin Road, Chengdu, 610000, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Dingke Wen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Yao
- Centre for Translational Research in Cancer, Sichuan Cancer Hospital and Institute, No.55 South Renmin Road, Chengdu, 610000, China
| | - Xia Cheng
- Centre for Translational Research in Cancer, Sichuan Cancer Hospital and Institute, No.55 South Renmin Road, Chengdu, 610000, China
| | - Linjun Cai
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, China
| | - Xue Lin
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, China
| | - Rui Wang
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, China
| | - Zichao Mou
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, China
| | - Shuangjie Li
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, China
| | - Duanya Liu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Hongyu Zhou
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, China.
| | - Mu Yang
- Centre for Translational Research in Cancer, Sichuan Cancer Hospital and Institute, No.55 South Renmin Road, Chengdu, 610000, China.
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, China.
| |
Collapse
|
42
|
Distéfano-Gagné F, Bitarafan S, Lacroix S, Gosselin D. Roles and regulation of microglia activity in multiple sclerosis: insights from animal models. Nat Rev Neurosci 2023:10.1038/s41583-023-00709-6. [PMID: 37268822 DOI: 10.1038/s41583-023-00709-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/04/2023]
Abstract
As resident macrophages of the CNS, microglia are critical immune effectors of inflammatory lesions and associated neural dysfunctions. In multiple sclerosis (MS) and its animal models, chronic microglial inflammatory activity damages myelin and disrupts axonal and synaptic activity. In contrast to these detrimental effects, the potent phagocytic and tissue-remodelling capabilities of microglia support critical endogenous repair mechanisms. Although these opposing capabilities have long been appreciated, a precise understanding of their underlying molecular effectors is only beginning to emerge. Here, we review recent advances in our understanding of the roles of microglia in animal models of MS and demyelinating lesions and the mechanisms that underlie their damaging and repairing activities. We also discuss how the structured organization and regulation of the genome enables complex transcriptional heterogeneity within the microglial cell population at demyelinating lesions.
Collapse
Affiliation(s)
- Félix Distéfano-Gagné
- Axe Neuroscience, Centre de Recherche du CHU de Québec - Université Laval, Québec, Québec, Canada
- Département de Médecine Moléculaire de la Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Sara Bitarafan
- Axe Neuroscience, Centre de Recherche du CHU de Québec - Université Laval, Québec, Québec, Canada
- Département de Médecine Moléculaire de la Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Steve Lacroix
- Axe Neuroscience, Centre de Recherche du CHU de Québec - Université Laval, Québec, Québec, Canada
- Département de Médecine Moléculaire de la Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - David Gosselin
- Axe Neuroscience, Centre de Recherche du CHU de Québec - Université Laval, Québec, Québec, Canada.
- Département de Médecine Moléculaire de la Faculté de Médecine, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
43
|
Krämer J, Bar-Or A, Turner TJ, Wiendl H. Bruton tyrosine kinase inhibitors for multiple sclerosis. Nat Rev Neurol 2023; 19:289-304. [PMID: 37055617 PMCID: PMC10100639 DOI: 10.1038/s41582-023-00800-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 04/15/2023]
Abstract
Current therapies for multiple sclerosis (MS) reduce both relapses and relapse-associated worsening of disability, which is assumed to be mainly associated with transient infiltration of peripheral immune cells into the central nervous system (CNS). However, approved therapies are less effective at slowing disability accumulation in patients with MS, in part owing to their lack of relevant effects on CNS-compartmentalized inflammation, which has been proposed to drive disability. Bruton tyrosine kinase (BTK) is an intracellular signalling molecule involved in the regulation of maturation, survival, migration and activation of B cells and microglia. As CNS-compartmentalized B cells and microglia are considered central to the immunopathogenesis of progressive MS, treatment with CNS-penetrant BTK inhibitors might curtail disease progression by targeting immune cells on both sides of the blood-brain barrier. Five BTK inhibitors that differ in selectivity, strength of inhibition, binding mechanisms and ability to modulate immune cells within the CNS are currently under investigation in clinical trials as a treatment for MS. This Review describes the role of BTK in various immune cells implicated in MS, provides an overview of preclinical data on BTK inhibitors and discusses the (largely preliminary) data from clinical trials.
Collapse
Affiliation(s)
- Julia Krämer
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Amit Bar-Or
- Center for Neuroinflammation and Neurotherapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
44
|
Palacio PL, Pleet ML, Reátegui E, Magaña SM. Emerging role of extracellular vesicles in multiple sclerosis: From cellular surrogates to pathogenic mediators and beyond. J Neuroimmunol 2023; 377:578064. [PMID: 36934525 PMCID: PMC10124134 DOI: 10.1016/j.jneuroim.2023.578064] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/06/2023] [Accepted: 03/05/2023] [Indexed: 03/16/2023]
Abstract
Multiple Sclerosis (MS) is a chronic, inflammatory demyelinating disease of the central nervous system (CNS) driven by a complex interplay of genetic and environmental factors. While the therapeutic arsenal has expanded significantly for management of relapsing forms of MS, treatment of individuals with progressive MS is suboptimal. This treatment inequality is in part due to an incomplete understanding of pathomechanisms at different stages of the disease-underscoring the critical need for new biomarkers. Extracellular vesicles (EVs) and their bioactive cargo have emerged as endogenous nanoparticles with great theranostic potential-as diagnostic and prognostic biomarkers and ultimately as therapeutic candidates for precision nanotherapeutics. The goals of this review are to: 1) summarize the current data investigating the role of EVs and their bioactive cargo in MS pathogenesis, 2) provide a high level overview of advances and challenges in EV isolation and characterization for translational studies, and 3) conclude with future perspectives on this evolving field.
Collapse
Affiliation(s)
- Paola Loreto Palacio
- Department of Pediatrics, Division of Neurology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Michelle L Pleet
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Eduardo Reátegui
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Setty M Magaña
- Department of Pediatrics, Division of Neurology, Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
45
|
Antel JP, Kennedy TE, Kuhlmann T. Seeking neuroprotection in multiple sclerosis: an ongoing challenge. J Clin Invest 2023; 133:168595. [PMID: 37009896 PMCID: PMC10065069 DOI: 10.1172/jci168595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the CNS, featuring inflammation and demyelination with variable recovery. In this issue of the JCI, Kapell, Fazio, and authors address the potential for targeting neuron-oligodendrocyte potassium shuttling at the nodes of Ranvier as a neuroprotective strategy during inflammatory demyelination of the CNS in experimental MS. Their extensive and impressive study could serve as a template for defining the physiologic properties of a putative protective pathway. The authors examined MS features in existent disease models, investigated the impact of pharmacologic intervention, and evaluated its status in tissues from patients with MS. We await future studies that will tackle the challenge of translating these findings into a clinical therapy.
Collapse
Affiliation(s)
- Jack P Antel
- Montreal Neurological Institute, McGill University, Québec, Canada
| | | | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| |
Collapse
|
46
|
Taing K, Chen L, Weng HR. Emerging roles of GPR109A in regulation of neuroinflammation in neurological diseases and pain. Neural Regen Res 2023; 18:763-768. [PMID: 36204834 PMCID: PMC9700108 DOI: 10.4103/1673-5374.354514] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/28/2022] [Accepted: 06/24/2022] [Indexed: 11/04/2022] Open
Abstract
Neuroinflammation plays a critical role in the pathological process of multiple neurological disorders and pathological pain conditions. GPR109A, a Gi protein-coupled receptor, has emerged as an important therapeutic target for controlling inflammation in various tissues and organs. In this review, we summarized current data about the role of GPR109A in neuroinflammation. Specifically, we focused on the pharmacological features of GPR109A and signaling pathways used by GPR109A to ameliorate neuroinflammation and symptoms in Alzheimer's disease, Parkinson's disease, multiple sclerosis, stroke, and pathological pain conditions.
Collapse
Affiliation(s)
- Kyle Taing
- Department of Basic Sciences, California Northstate University College of Medicine, Elk Grove, CA, USA
| | - Lawrence Chen
- Department of Basic Sciences, California Northstate University College of Medicine, Elk Grove, CA, USA
| | - Han-Rong Weng
- Department of Basic Sciences, California Northstate University College of Medicine, Elk Grove, CA, USA
| |
Collapse
|
47
|
Suptela AJ, Marriott I. Cytosolic DNA sensors and glial responses to endogenous DNA. Front Immunol 2023; 14:1130172. [PMID: 36999037 PMCID: PMC10043442 DOI: 10.3389/fimmu.2023.1130172] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 03/17/2023] Open
Abstract
Genomic instability is a key driving force for the development and progression of many neurodegenerative diseases and central nervous system (CNS) cancers. The initiation of DNA damage responses is a critical step in maintaining genomic integrity and preventing such diseases. However, the absence of these responses or their inability to repair genomic or mitochondrial DNA damage resulting from insults, including ionizing radiation or oxidative stress, can lead to an accumulation of self-DNA in the cytoplasm. Resident CNS cells, such as astrocytes and microglia, are known to produce critical immune mediators following CNS infection due to the recognition of pathogen and damage-associated molecular patterns by specialized pattern recognition receptors (PRRs). Recently, multiple intracellular PRRs, including cyclic GMP-AMP synthase, interferon gamma-inducible 16, absent in melanoma 2, and Z-DNA binding protein, have been identified as cytosolic DNA sensors and to play critical roles in glial immune responses to infectious agents. Intriguingly, these nucleic acid sensors have recently been shown to recognize endogenous DNA and trigger immune responses in peripheral cell types. In the present review, we discuss the available evidence that cytosolic DNA sensors are expressed by resident CNS cells and can mediate their responses to the presence of self-DNA. Furthermore, we discuss the potential for glial DNA sensor-mediated responses to provide protection against tumorigenesis versus the initiation of potentially detrimental neuroinflammation that could initiate or foster the development of neurodegenerative disorders. Determining the mechanisms that underlie the detection of cytosolic DNA by glia and the relative role of each pathway in the context of specific CNS disorders and their stages may prove pivotal in our understanding of the pathogenesis of such conditions and might be leveraged to develop new treatment modalities.
Collapse
Affiliation(s)
| | - Ian Marriott
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| |
Collapse
|
48
|
Tovo PA, Marozio L, Abbona G, Calvi C, Frezet F, Gambarino S, Dini M, Benedetto C, Galliano I, Bergallo M. Pregnancy Is Associated with Impaired Transcription of Human Endogenous Retroviruses and of TRIM28 and SETDB1, Particularly in Mothers Affected by Multiple Sclerosis. Viruses 2023; 15:v15030710. [PMID: 36992419 PMCID: PMC10051116 DOI: 10.3390/v15030710] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Accumulating evidence highlights the pathogenetic role of human endogenous retroviruses (HERVs) in eliciting and maintaining multiple sclerosis (MS). Epigenetic mechanisms, such as those regulated by TRIM 28 and SETDB1, are implicated in HERV activation and in neuroinflammatory disorders, including MS. Pregnancy markedly improves the course of MS, but no study explored the expressions of HERVs and of TRIM28 and SETDB1 during gestation. Using a polymerase chain reaction real-time Taqman amplification assay, we assessed and compared the transcriptional levels of pol genes of HERV-H, HERV-K, HERV-W; of env genes of Syncytin (SYN)1, SYN2, and multiple sclerosis associated retrovirus (MSRV); and of TRIM28 and SETDB1 in peripheral blood and placenta from 20 mothers affected by MS; from 27 healthy mothers, in cord blood from their neonates; and in blood from healthy women of child-bearing age. The HERV mRNA levels were significantly lower in pregnant than in nonpregnant women. Expressions of all HERVs were downregulated in the chorion and in the decidua basalis of MS mothers compared to healthy mothers. The former also showed lower mRNA levels of HERV-K-pol and of SYN1, SYN2, and MSRV in peripheral blood. Significantly lower expressions of TRIM28 and SETDB1 also emerged in pregnant vs. nonpregnant women and in blood, chorion, and decidua of mothers with MS vs. healthy mothers. In contrast, HERV and TRIM28/SETDB1 expressions were comparable between their neonates. These results show that gestation is characterized by impaired expressions of HERVs and TRIM28/SETDB1, particularly in mothers with MS. Given the beneficial effects of pregnancy on MS and the wealth of data suggesting the putative contribution of HERVs and epigenetic processes in the pathogenesis of the disease, our findings may further support innovative therapeutic interventions to block HERV activation and to control aberrant epigenetic pathways in MS-affected patients.
Collapse
Affiliation(s)
- Pier-Angelo Tovo
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
- Correspondence: (P.-A.T.); (M.B.)
| | - Luca Marozio
- Department of Surgical Sciences, Obstetrics and Gynecology 1, University of Turin, 10126 Turin, Italy
| | - Giancarlo Abbona
- Pathology Unit, Department Laboratory Medicine, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Cristina Calvi
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
| | - Federica Frezet
- Department of Surgical Sciences, Obstetrics and Gynecology 1, University of Turin, 10126 Turin, Italy
| | - Stefano Gambarino
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
| | - Maddalena Dini
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
| | - Chiara Benedetto
- Department of Surgical Sciences, Obstetrics and Gynecology 1, University of Turin, 10126 Turin, Italy
| | - Ilaria Galliano
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
| | - Massimiliano Bergallo
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
- Correspondence: (P.-A.T.); (M.B.)
| |
Collapse
|
49
|
Manuel AM, Dai Y, Jia P, Freeman LA, Zhao Z. A gene regulatory network approach harmonizes genetic and epigenetic signals and reveals repurposable drug candidates for multiple sclerosis. Hum Mol Genet 2023; 32:998-1009. [PMID: 36282535 PMCID: PMC9991005 DOI: 10.1093/hmg/ddac265] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 02/02/2023] Open
Abstract
Multiple sclerosis (MS) is a complex dysimmune disorder of the central nervous system. Genome-wide association studies (GWAS) have identified 233 genetic variations associated with MS at the genome-wide significant level. Epigenetic studies have pinpointed differentially methylated CpG sites in MS patients. However, the interplay between genetic risk factors and epigenetic regulation remains elusive. Here, we employed a network model to integrate GWAS summary statistics of 14 802 MS cases and 26 703 controls with DNA methylation profiles from 140 MS cases and 139 controls and the human interactome. We identified differentially methylated genes by aggregating additive effects of differentially methylated CpG sites within promoter regions. We reconstructed a gene regulatory network (GRN) using literature-curated transcription factor knowledge. Colocalization of the MS GWAS and methylation quantitative trait loci (mQTL) was performed to assess the GRN. The resultant MS-associated GRN highlighted several single nucleotide polymorphisms with GWAS-mQTL colocalization: rs6032663, rs6065926 and rs2024568 of CD40 locus, rs9913597 of STAT3 locus, and rs887864 and rs741175 of CIITA locus. Moreover, synergistic mQTL and expression QTL signals were identified in CD40, suggesting gene expression alteration was likely induced by epigenetic changes. Web-based Cell-type Specific Enrichment Analysis of Genes (WebCSEA) indicated that the GRN was enriched in T follicular helper cells (P-value = 0.0016). Drug target enrichment analysis of annotations from the Therapeutic Target Database revealed the GRN was also enriched with drug target genes (P-value = 3.89 × 10-4), revealing repurposable candidates for MS treatment. These candidates included vorinostat (HDAC1 inhibitor) and sivelestat (ELANE inhibitor), which warrant further investigation.
Collapse
Affiliation(s)
- Astrid M Manuel
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Yulin Dai
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Leorah A Freeman
- Department of Neurology, Dell Medical School, The University of Texas, Austin, TX 78712, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center, Houston, TX 77030, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center, Houston, TX 77030, USA
| |
Collapse
|
50
|
Guha A, Husain MA, Si Y, Nabors LB, Filippova N, Promer G, Smith R, King PH. RNA regulation of inflammatory responses in glia and its potential as a therapeutic target in central nervous system disorders. Glia 2023; 71:485-508. [PMID: 36380708 DOI: 10.1002/glia.24288] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/29/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022]
Abstract
A major hallmark of neuroinflammation is the activation of microglia and astrocytes with the induction of inflammatory mediators such as IL-1β, TNF-α, iNOS, and IL-6. Neuroinflammation contributes to disease progression in a plethora of neurological disorders ranging from acute CNS trauma to chronic neurodegenerative disease. Posttranscriptional pathways of mRNA stability and translational efficiency are major drivers for the expression of these inflammatory mediators. A common element in this level of regulation centers around the adenine- and uridine-rich element (ARE) which is present in the 3' untranslated region (UTR) of the mRNAs encoding these inflammatory mediators. (ARE)-binding proteins (AUBPs) such as Human antigen R (HuR), Tristetraprolin (TTP) and KH- type splicing regulatory protein (KSRP) are key nodes for directing these posttranscriptional pathways and either promote (HuR) or suppress (TTP and KSRP) glial production of inflammatory mediators. This review will discuss basic concepts of ARE-mediated RNA regulation and its impact on glial-driven neuroinflammatory diseases. We will discuss strategies to target this novel level of gene regulation for therapeutic effect and review exciting preliminary studies that underscore its potential for treating neurological disorders.
Collapse
Affiliation(s)
- Abhishek Guha
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mohammed Amir Husain
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ying Si
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - L Burt Nabors
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Natalia Filippova
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Grace Promer
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Reed Smith
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Peter H King
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Birmingham Department of Veterans Health Care System, Birmingham, Alabama, USA
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, USA
| |
Collapse
|