1
|
Quaresima V, Pilotto A, Trasciatti C, Tolassi C, Parigi M, Bertoli D, Mordenti C, Galli A, Rizzardi A, Caratozzolo S, Benussi A, Ashton NJ, Blennow K, Zetterberg H, Giliani S, Brugnoni D, Padovani A. Plasma p-tau181 and amyloid markers in Alzheimer's disease: A comparison between Lumipulse and SIMOA. Neurobiol Aging 2024; 143:30-40. [PMID: 39208716 DOI: 10.1016/j.neurobiolaging.2024.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Aim of the project was to evaluate the technical and clinical validity of plasma Lumipulse p-tau, Aβ42 and Aβ40 species and their correlation with CSF core Alzheimer's Disease (AD) markers; a method comparison with SIMOA was also performed. One-hundred-thirthy-three participants, namely 55 A+T+N+ AD, 28 Neurodegenerative disorders (NDD) and 50 controls were enrolled for the study. Lumipulse technical validity showed high stability for p-tau181, Aβ42, and Aβ40, with higher stability of p-tau to repeated freezing thaw cycles. p-tau181 levels detected by both techniques were higher in AD compared to both NDD/controls and exhibited a similar correlation with CSF p-tau levels, whereas Aβ42 levels were slightly lower in AD with both methods. In the comparison between SIMOA and Lumipulse plasma markers, both techniques exhibited similar diagnostic accuracy for AD for p-tau181 (0.87; 95 %CI 0.81-0.94, vs 0.85; 95 %CI 0.78-0.93), whereas the best performance was reached by p-tau181/ Aβ42 Lumipulse ratio (ROC AUC 0.915, 95 %CI 0.86-0.97). The study thus confirmed the construct validity of both Lumipulse and SIMOA techniques for the identification of CSF AD pattern in clinical settings.
Collapse
Affiliation(s)
- Virginia Quaresima
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Department of continuity of care and frailty, Neurology Unit, ASST Spedali Civili Hospital, Brescia, Italy; Residency Program in Clinical Pathology and Clinical Biochemistry, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Neurobiorepository and Laboratory of advanced biological markers, University of Brescia and ASST Spedali Civili Hospital, Brescia, Italy; A. Nocivelli Institute for Molecular Medicine Spedali Civili Hospital and Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Andrea Pilotto
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Department of continuity of care and frailty, Neurology Unit, ASST Spedali Civili Hospital, Brescia, Italy; Neurobiorepository and Laboratory of advanced biological markers, University of Brescia and ASST Spedali Civili Hospital, Brescia, Italy.
| | - Chiara Trasciatti
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Department of continuity of care and frailty, Neurology Unit, ASST Spedali Civili Hospital, Brescia, Italy; Neurobiorepository and Laboratory of advanced biological markers, University of Brescia and ASST Spedali Civili Hospital, Brescia, Italy
| | - Chiara Tolassi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Department of continuity of care and frailty, Neurology Unit, ASST Spedali Civili Hospital, Brescia, Italy; Residency Program in Clinical Pathology and Clinical Biochemistry, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Neurobiorepository and Laboratory of advanced biological markers, University of Brescia and ASST Spedali Civili Hospital, Brescia, Italy; A. Nocivelli Institute for Molecular Medicine Spedali Civili Hospital and Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marta Parigi
- A. Nocivelli Institute for Molecular Medicine Spedali Civili Hospital and Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Diego Bertoli
- Central Clinical Laboratory, ASST Spedali Civili Hospital, Brescia, Italy
| | - Cristina Mordenti
- Central Clinical Laboratory, ASST Spedali Civili Hospital, Brescia, Italy
| | - Alice Galli
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Department of continuity of care and frailty, Neurology Unit, ASST Spedali Civili Hospital, Brescia, Italy; Neurobiorepository and Laboratory of advanced biological markers, University of Brescia and ASST Spedali Civili Hospital, Brescia, Italy
| | - Andrea Rizzardi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Department of continuity of care and frailty, Neurology Unit, ASST Spedali Civili Hospital, Brescia, Italy
| | - Salvatore Caratozzolo
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Department of continuity of care and frailty, Neurology Unit, ASST Spedali Civili Hospital, Brescia, Italy
| | - Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Department of continuity of care and frailty, Neurology Unit, ASST Spedali Civili Hospital, Brescia, Italy; Neurology Clinic, Trieste University Hospital, Trieste, Italy
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway; King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, UK; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK; Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, PR China; Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK; Department of Old Age Psychiatry, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, UK; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Silvia Giliani
- A. Nocivelli Institute for Molecular Medicine Spedali Civili Hospital and Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Duilio Brugnoni
- Central Clinical Laboratory, ASST Spedali Civili Hospital, Brescia, Italy
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Department of continuity of care and frailty, Neurology Unit, ASST Spedali Civili Hospital, Brescia, Italy; Neurobiorepository and Laboratory of advanced biological markers, University of Brescia and ASST Spedali Civili Hospital, Brescia, Italy; Brain Health Center, University of Brescia, Brescia, Italy
| |
Collapse
|
2
|
Quispialaya KM, Therriault J, Aliaga A, Tissot C, Servaes S, Rahmouni N, Karikari TK, Benedet AL, Ashton NJ, Macedo AC, Lussier FZ, Stevenson J, Wang YT, Arias JF, Hosseini A, Matsudaira T, Jean-Claude B, Gilfix BM, Zimmer ER, Soucy JP, Pascoal TA, Gauthier S, Zetterberg H, Blennow K, Rosa-Neto P. Plasma phosphorylated tau181 outperforms [ 18F] fluorodeoxyglucose positron emission tomography in the identification of early Alzheimer disease. Eur J Neurol 2024:e16255. [PMID: 39447157 DOI: 10.1111/ene.16255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND AND PURPOSE This study was undertaken to compare the performance of plasma p-tau181 with that of [18F]fluorodeoxyglucose (FDG) positron emission tomography (PET) in the identification of early biological Alzheimer disease (AD). METHODS We included 533 cognitively impaired participants from the Alzheimer's Disease Neuroimaging Initiative. Participants underwent PET scans, biofluid collection, and cognitive tests. Receiver operating characteristic analyses were used to determine the diagnostic accuracy of plasma p-tau181 and [18F]FDG-PET using clinical diagnosis and core AD biomarkers ([18F]florbetapir-PET and cerebrospinal fluid [CSF] p-tau181) as reference standards. Differences in the diagnostic accuracy between plasma p-tau181 and [18F]FDG-PET were determined by bootstrap-based tests. Correlations of [18F]FDG-PET and plasma p-tau181 with CSF p-tau181, amyloid β (Aβ) PET, and cognitive performance were evaluated to compare associations between measurements. RESULTS We observed that both plasma p-tau181 and [18F]FDG-PET identified individuals with positive AD biomarkers in CSF or on Aβ-PET. In the MCI group, plasma p-tau181 outperformed [18F]FDG-PET in identifying AD measured by CSF (p = 0.0007) and by Aβ-PET (p = 0.001). We also observed that both plasma p-tau181 and [18F]FDG-PET metabolism were associated with core AD biomarkers. However, [18F]FDG-PET uptake was more closely associated with cognitive outcomes (Montreal Cognitive Assessment, Mini-Mental State Examination, Clinical Dementia Rating Sum of Boxes, and logical memory delayed recall, p < 0.001) than plasma p-tau181. CONCLUSIONS Overall, although both plasma p-tau181 and [18F]FDG-PET were associated with core AD biomarkers, plasma p-tau181 outperformed [18F]FDG-PET in identifying individuals with early AD pathophysiology. Taken together, our study suggests that plasma p-tau181 may aid in detecting individuals with underlying early AD.
Collapse
Affiliation(s)
- Kely Monica Quispialaya
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute, Montreal, Quebec, Canada
- Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Antonio Aliaga
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, Quebec, Canada
- Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Department of Pharmacology, Graduate Program in Biological Sciences: Biochemistry (PPGBioq) and Pharmacology and Therapeutics (PPGFT), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Cécile Tissot
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Stijn Servaes
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Nesrine Rahmouni
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Department of Neurology and Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Andrea L Benedet
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Wallenberg Centre for Molecular Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Arthur C Macedo
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Firoza Z Lussier
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jenna Stevenson
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, Quebec, Canada
| | - Yi-Ting Wang
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Jaime Fernandez Arias
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Ali Hosseini
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Takashi Matsudaira
- Department of Biofunctional Imaging, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Neurology, National Hospital Organization Shizuoka Institute of Epilepsy and Neurological Disorders, Urushiyama, Japan
| | - Bertrand Jean-Claude
- Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Brian M Gilfix
- Department of Specialized Medicine, McGill University, Montreal, Quebec, Canada
| | - Eduardo R Zimmer
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, Quebec, Canada
- Department of Pharmacology, Graduate Program in Biological Sciences: Biochemistry (PPGBioq) and Pharmacology and Therapeutics (PPGFT), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Brain Institute of Rio Grande do Sul, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Tharick A Pascoal
- Department of Neurology and Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Serge Gauthier
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, University College London Institute of Neurology, London, UK
- UK Dementia Research Institute at University College London, London, UK
- Hong Kong Centre for Neurodegenerative Diseases, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute, Montreal, Quebec, Canada
- Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Musso G, Gabelli C, Puthenparampil M, Cosma C, Cagnin A, Gallo P, Sorarù G, Pegoraro E, Zaninotto M, Antonini A, Moz S, Zambon CF, Plebani M, Corbetta M, Basso D. Blood biomarkers for Alzheimer's disease with the Lumipulse automated platform: Age-effect and clinical value interpretation. Clin Chim Acta 2024; 565:120014. [PMID: 39442787 DOI: 10.1016/j.cca.2024.120014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/20/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Advances in analytical methods have recently paved the way to Alzheimer's disease (AD) biomarkers testing in blood along with the more established CSF testing. To ensure a forthcoming application of this low-invasive diagnostic that might allow to recognize early onset of dementia, appropriate pathological cut-points need to be defined. METHODS In this cross-sectional study we measured blood and CSF neurofilament light chain (NFL), phosphorylated tau (pTau 181), Amyloid-β1-42 (AB 1-42) and Amyloid-β1-40 (AB 1-40) on a fully automated chemiluminescent platform (Lumipulse, Fujirebio) in 80 cognitively impaired patients and 55 cognitively unimpaired subjects. Clinical cut points were calculated with receiver-operator characteristic (ROC) curve analysis and a head-to-head comparison of blood and CSF testing was performed. RESULTS Blood NFL best discriminant thresholds to distinguish neurodegenerative diseases from controls varied age-dependently, being 19 and 33 pg/mL in subjects 50-65 years and > 65 years respectively. AD was best framed by AB 1-42/1-40 ratio < 0.079 and ptau181 > 1 pg/mL. Though a strong correlation for all biomarkers, only blood AB ratio was equal to CSF testing for AD diagnosis. CONCLUSIONS The specific context of use might be considered to define the cut-offs of blood biomarkers of neurodegenerative diseases. Future efforts towards reference materials for each AD blood biomarker will improve clinical cut-offs.
Collapse
Affiliation(s)
- Giulia Musso
- Department of Medicine - DIMED, University of Padova, via Giustiniani, 2, 35128 Padova Italy; Laboratory Medicine, University-Hospital of Padova, via Giustiniani, 2, 35128 Padova, Italy.
| | - Carlo Gabelli
- Regional Brain Aging Center, University-Hospital of Padova, via Giustiniani, 2, 35128 Padova, Italy
| | - Marco Puthenparampil
- Department of Neurosciences, University of Padova, via Giustiniani, 5, 35128 Padova, Italy
| | - Chiara Cosma
- Department of Medicine - DIMED, University of Padova, via Giustiniani, 2, 35128 Padova Italy
| | - Annachiara Cagnin
- Department of Neurosciences, University of Padova, via Giustiniani, 5, 35128 Padova, Italy
| | - Paolo Gallo
- Department of Neurosciences, University of Padova, via Giustiniani, 5, 35128 Padova, Italy
| | - Gianni Sorarù
- Department of Neurosciences, University of Padova, via Giustiniani, 5, 35128 Padova, Italy
| | - Elena Pegoraro
- Department of Neurosciences, University of Padova, via Giustiniani, 5, 35128 Padova, Italy
| | - Martina Zaninotto
- QI.LAB.MED, Spin-off of the University of Padova, via Antoniana, 220/E, 35011 Campodarsego, Italy
| | - Angelo Antonini
- Department of Neurosciences, University of Padova, via Giustiniani, 5, 35128 Padova, Italy
| | - Stefania Moz
- Laboratory Medicine, University-Hospital of Padova, via Giustiniani, 2, 35128 Padova, Italy
| | - Carlo Federico Zambon
- Department of Medicine - DIMED, University of Padova, via Giustiniani, 2, 35128 Padova Italy; Laboratory Medicine, University-Hospital of Padova, via Giustiniani, 2, 35128 Padova, Italy
| | - Mario Plebani
- Department of Medicine - DIMED, University of Padova, via Giustiniani, 2, 35128 Padova Italy; QI.LAB.MED, Spin-off of the University of Padova, via Antoniana, 220/E, 35011 Campodarsego, Italy
| | - Maurizio Corbetta
- Department of Neurosciences, University of Padova, via Giustiniani, 5, 35128 Padova, Italy
| | - Daniela Basso
- Department of Medicine - DIMED, University of Padova, via Giustiniani, 2, 35128 Padova Italy; Laboratory Medicine, University-Hospital of Padova, via Giustiniani, 2, 35128 Padova, Italy
| |
Collapse
|
4
|
Jiang S, Yang S, Deng K, Jiang R, Xue Y. Machine learning models for diagnosing Alzheimer's disease using brain cortical complexity. Front Aging Neurosci 2024; 16:1434589. [PMID: 39450051 PMCID: PMC11500324 DOI: 10.3389/fnagi.2024.1434589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Objective This study aimed to develop and validate machine learning models (MLMs) to diagnose Alzheimer's disease (AD) using cortical complexity indicated by fractal dimension (FD). Methods A total of 296 participants with normal cognitive (NC) function and 182 with AD from the AD Neuroimaging Initiative database were randomly divided into training and internal validation cohorts. Then, FDs, demographic characteristics, baseline global cognitive function scales [Montreal Cognitive Assessment (MoCA), Functional Activities Questionnaire (FAQ), Global Deterioration Scale (GDS), Neuropsychiatric Inventory (NPI)], phospho-tau (p-tau 181), amyloidβ-42/40, apolipoprotein E (APOE) and polygenic hazard score (PHS) were collected to establish multiple MLMs. Receiver operating characteristic curves were used to evaluate model performance. Participants from our institution (n = 66; 33 with NC and 33 with AD) served as external validation cohorts to validate the MLMs. Decision curve analysis was used to estimate the models' clinical values. Results The FDs from 30 out of 69 regions showed significant alteration. All MLMs were conducted based on the 30 significantly different FDs. The FD model had good accuracy in predicting AD in three cohorts [area under the receiver operating characteristic (ROC) curve (AUC) = 0.842, 0.808, and 0.803]. There were no statistically significant differences in AUC values between the FD model and the other combined models in the training and internal validation cohorts except MoCA + FD and FAQ + FD models. Among MLMs, the MoCA + FD model showed the best predictive efficiency in three cohorts (AUC = 0.951, 0.931, and 0.955) and had the highest clinical net benefit. Conclusion The FD model showed favorable diagnostic performance for AD. Among MLMs, the MoCA + FD model can predict AD with the highest efficiency and could be used as a non-invasive diagnostic method.
Collapse
Affiliation(s)
- Shaofan Jiang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors, Fujian Medical University, Fuzhou, China
| | - Siyu Yang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Kaiji Deng
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Rifeng Jiang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yunjing Xue
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
5
|
Gildengers A, Weinstein AM, Gujral S, Zeng X, Diaz JL, Lafferty TK, Cowie M, Emanuel JE, Lopez O, Royse SK, Lopresti B, Karikari TK. Where Do Plasma Biomarkers fit in With Current Alzheimer's Disease Detection? Am J Geriatr Psychiatry 2024:S1064-7481(24)00478-0. [PMID: 39448295 DOI: 10.1016/j.jagp.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
OBJECTIVES We examine the clinical utility of plasma-based detection for Alzheimer's disease (AD) pathophysiology in older adults with mild cognitive impairment (MCI) and whether cognitive screening can inform when to use plasma-based AD tests. METHODS Seventy-four community-dwelling older adults with MCI had testing with plasma phosphorylated tau (p-tau) 217 and 181, positron emission tomography (PET) imaging for amyloid beta (Aβ), and cognitive assessment. Receiver operating characteristic (ROC) analysis was used to assess the diagnostic value of plasma p-tau. RESULTS Plasma p-tau217 distinguished MCI participants who had PET imaging evidence of Aβ accumulation from those without (AUC of 0.92, specificity of 0.96, and sensitivity of 0.90), outperforming plasma p-tau181 (AUC of 0.76, specificity of 0.87 and sensitivity of 0.59) for the same purpose. Of the 60 MCI participants that were amnestic, 22 were Aβ+. The 14 participants that were nonamnestic were all Aβ-. CONCLUSIONS Our findings support the clinical use of plasma p-tau, particularly p-tau217, for patient detection of AD pathophysiology in older adults with amnestic MCI, but not in those who are nonamnestic.
Collapse
Affiliation(s)
- Ariel Gildengers
- Department of Psychiatry (AG, AMW, SG, XZ, TKL, MC, JEE, TKK), University of Pittsburgh School of Medicine, Pittsburgh, PA.
| | - Andrea M Weinstein
- Department of Psychiatry (AG, AMW, SG, XZ, TKL, MC, JEE, TKK), University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Swathi Gujral
- Department of Psychiatry (AG, AMW, SG, XZ, TKL, MC, JEE, TKK), University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Xuemei Zeng
- Department of Psychiatry (AG, AMW, SG, XZ, TKL, MC, JEE, TKK), University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jihui L Diaz
- Department of Psychiatry (AG, AMW, SG, XZ, TKL, MC, JEE, TKK), University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Tara K Lafferty
- Department of Psychiatry (AG, AMW, SG, XZ, TKL, MC, JEE, TKK), University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Matthew Cowie
- Department of Psychiatry (AG, AMW, SG, XZ, TKL, MC, JEE, TKK), University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - James E Emanuel
- Department of Psychiatry (AG, AMW, SG, XZ, TKL, MC, JEE, TKK), University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Oscar Lopez
- Department of Neurology (OL), University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Sarah K Royse
- Department of Radiology (SKR, BL), University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Brian Lopresti
- Department of Radiology (SKR, BL), University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Thomas K Karikari
- Department of Psychiatry (AG, AMW, SG, XZ, TKL, MC, JEE, TKK), University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
6
|
Cano A, Capdevila M, Puerta R, Arranz J, Montrreal L, de Rojas I, García-González P, Olivé C, García-Gutiérrez F, Sotolongo-Grau O, Orellana A, Aguilera N, Ramis M, Rosende-Roca M, Lleó A, Fortea J, Tartari JP, Lafuente A, Vargas L, Pérez-Cordón A, Muñoz N, Sanabria Á, Alegret M, Morató X, Tárraga L, Fernández V, Marquié M, Valero S, Alcolea D, Boada M, Ruiz A. Clinical value of plasma pTau181 to predict Alzheimer's disease pathology in a large real-world cohort of a memory clinic. EBioMedicine 2024; 108:105345. [PMID: 39299003 PMCID: PMC11424964 DOI: 10.1016/j.ebiom.2024.105345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND The identification of patients with an elevated risk of developing Alzheimer's disease (AD) dementia and eligible for the disease-modifying treatments (DMTs) in the earliest stages is one of the greatest challenges in the clinical practice. Plasma biomarkers has the potential to predict these issues, but further research is still needed to translate them to clinical practice. Here we evaluated the clinical applicability of plasma pTau181 as a predictive marker of AD pathology in a large real-world cohort of a memory clinic. METHODS Three independent cohorts (modelling [n = 991, 59.7% female], testing [n = 642, 56.2% female] and validation [n = 441, 55.1% female]) of real-world patients with subjective cognitive decline (SCD), mild cognitive impairment (MCI), AD dementia, and other dementias were included. Paired cerebrospinal fluid (CSF) and plasma samples were used to measure AT(N) CSF biomarkers and plasma pTau181. FINDINGS CSF and plasma pTau181 showed correlation in all phenotypes except in SCD and other dementias. Age significantly influenced the biomarker's performance. The general Aβ(+) vs Aβ(-) ROC curve showed an AUC = 0.77 [0.74-0.80], whereas the specific ROC curve of MCI due to AD vs non-AD MCI showed an AUC = 0.89 [0.85-0.93]. A cut-off value of 1.30 pg/ml of plasma pTau181 exhibited a sensitivity of 93.57% [88.72-96.52], specificity of 72.38% [62.51-79.01], VPP of 77.85% [70.61-83.54], and 8.30% false negatives in the subjects with MCI of the testing cohort. The HR of cox regression showed that patients with MCI up to this cut-off value exhibited a HR = 1.84 [1.05-3.22] higher risk to convert to AD dementia than patients with MCI below the cut-off value. INTERPRETATION Plasma pTau181 has the potential to be used in the memory clinics as a screening biomarker of AD pathology in subjects with MCI, presenting a valuable prognostic utility in predicting the MCI conversion to AD dementia. In the context of a real-world population, a confirmatory test employing gold-standard procedures is still advisable. FUNDING This study has been mainly funded by Ace Alzheimer Center Barcelona, Instituto de Salud Carlos III (ISCIII), Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Spanish Ministry of Science and Innovation, Fundación ADEY, Fundación Echevarne and Grífols S.A.
Collapse
Affiliation(s)
- Amanda Cano
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| | - María Capdevila
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain; Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Spain
| | - Raquel Puerta
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain
| | - Javier Arranz
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Montrreal
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain
| | - Itziar de Rojas
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Pablo García-González
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Claudia Olivé
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain
| | | | - Oscar Sotolongo-Grau
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain
| | - Adelina Orellana
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Nuria Aguilera
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain
| | - Maribel Ramis
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain
| | - Maitee Rosende-Roca
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Alberto Lleó
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Fortea
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain; Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Juan Pablo Tartari
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain
| | - Asunción Lafuente
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain
| | - Liliana Vargas
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain
| | - Alba Pérez-Cordón
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain
| | - Nathalia Muñoz
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain
| | - Ángela Sanabria
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain
| | - Montserrat Alegret
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Xavier Morató
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain
| | - Lluís Tárraga
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Victoria Fernández
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain
| | - Marta Marquié
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Sergi Valero
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Daniel Alcolea
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mercè Boada
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Agustín Ruiz
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
7
|
Spitz G, Hicks AJ, McDonald SJ, Dore V, Krishnadas N, O'Brien TJ, O'Brien WT, Vivash L, Law M, Ponsford JL, Rowe C, Shultz SR. Plasma biomarkers in chronic single moderate-severe traumatic brain injury. Brain 2024:awae255. [PMID: 39315931 DOI: 10.1093/brain/awae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 06/06/2024] [Accepted: 07/04/2024] [Indexed: 09/25/2024] Open
Abstract
Blood biomarkers are an emerging diagnostic and prognostic tool that reflect a range of neuropathological processes following traumatic brain injury (TBI). Their effectiveness in identifying long-term neuropathological processes after TBI is unclear. Studying biomarkers in the chronic phase is vital because elevated levels in TBI might result from distinct neuropathological mechanisms during acute and chronic phases. Here, we examine plasma biomarkers in the chronic period following TBI and their association with amyloid and tau PET, white matter microarchitecture, brain age and cognition. We recruited participants ≥40 years of age who had suffered a single moderate-severe TBI ≥10 years previously between January 2018 and March 2021. We measured plasma biomarkers using single molecule array technology [ubiquitin C-terminal hydrolase L1 (UCH-L1), neurofilament light (NfL), tau, glial fibrillary acidic protein (GFAP) and phosphorylated tau (P-tau181)]; PET tracers to measure amyloid-β (18F-NAV4694) and tau neurofibrillary tangles (18F-MK6240); MRI to assess white matter microstructure and brain age; and the Rey Auditory Verbal Learning Test to measure verbal-episodic memory. A total of 90 post-TBI participants (73% male; mean = 58.2 years) were recruited on average 22 years (range = 10-33 years) post-injury, and 32 non-TBI control participants (66% male; mean = 57.9 years) were recruited. Plasma UCH-L1 levels were 67% higher {exp(b) = 1.67, P = 0.018, adjusted P = 0.044, 95% confidence interval (CI) [10% to 155%], area under the curve = 0.616} and P-tau181 were 27% higher {exp(b) = 1.24, P = 0.011, adjusted P = 0.044, 95% CI [5% to 46%], area under the curve = 0.632} in TBI participants compared with controls. Amyloid and tau PET were not elevated in TBI participants. Higher concentrations of plasma P-tau181, UCH-L1, GFAP and NfL were significantly associated with worse white matter microstructure but not brain age in TBI participants. For TBI participants, poorer verbal-episodic memory was associated with higher concentration of P-tau181 {short delay: b = -2.17, SE = 1.06, P = 0.043, 95% CI [-4.28, -0.07]; long delay: bP-tau = -2.56, SE = 1.08, P = 0.020, 95% CI [-4.71, -0.41]}, tau {immediate memory: bTau = -6.22, SE = 2.47, P = 0.014, 95% CI [-11.14, -1.30]} and UCH-L1 {immediate memory: bUCH-L1 = -2.14, SE = 1.07, P = 0.048, 95% CI [-4.26, -0.01]}, but was not associated with functional outcome. Elevated plasma markers related to neuronal damage and accumulation of phosphorylated tau suggest the presence of ongoing neuropathology in the chronic phase following a single moderate-severe TBI. Plasma biomarkers were associated with measures of microstructural brain disruption on MRI and disordered cognition, further highlighting their utility as potential objective tools to monitor evolving neuropathology post-TBI.
Collapse
Affiliation(s)
- Gershon Spitz
- Monash-Epworth Rehabilitation Research Centre, School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3004, Australia
| | - Amelia J Hicks
- Monash-Epworth Rehabilitation Research Centre, School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Stuart J McDonald
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3004, Australia
- Department of Neurology, The Alfred, Melbourne, VIC 3004, Australia
| | - Vincent Dore
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC 3084, Australia
| | - Natasha Krishnadas
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC 3084, Australia
| | - Terence J O'Brien
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3004, Australia
- Department of Neurology, The Alfred, Melbourne, VIC 3004, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia
| | - William T O'Brien
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3004, Australia
| | - Lucy Vivash
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3004, Australia
- Department of Neurology, The Alfred, Melbourne, VIC 3004, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Meng Law
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3004, Australia
- Department of Radiology, Alfred Health, Melbourne, VIC 3004, Australia
| | - Jennie L Ponsford
- Monash-Epworth Rehabilitation Research Centre, School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Christopher Rowe
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC 3084, Australia
| | - Sandy R Shultz
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3004, Australia
- Department of Neurology, The Alfred, Melbourne, VIC 3004, Australia
- The Centre for Trauma and Mental Health Research, Health Sciences and Human Services, Vancouver Island University, Nanaimo, BC V9R 5S5, Canada
| |
Collapse
|
8
|
Liu E, Zhang Y, Wang JZ. Updates in Alzheimer's disease: from basic research to diagnosis and therapies. Transl Neurodegener 2024; 13:45. [PMID: 39232848 PMCID: PMC11373277 DOI: 10.1186/s40035-024-00432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/11/2024] [Indexed: 09/06/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized pathologically by extracellular deposition of β-amyloid (Aβ) into senile plaques and intracellular accumulation of hyperphosphorylated tau (pTau) as neurofibrillary tangles. Clinically, AD patients show memory deterioration with varying cognitive dysfunctions. The exact molecular mechanisms underlying AD are still not fully understood, and there are no efficient drugs to stop or reverse the disease progression. In this review, we first provide an update on how the risk factors, including APOE variants, infections and inflammation, contribute to AD; how Aβ and tau become abnormally accumulated and how this accumulation plays a role in AD neurodegeneration. Then we summarize the commonly used experimental models, diagnostic and prediction strategies, and advances in periphery biomarkers from high-risk populations for AD. Finally, we introduce current status of development of disease-modifying drugs, including the newly officially approved Aβ vaccines, as well as novel and promising strategies to target the abnormal pTau. Together, this paper was aimed to update AD research progress from fundamental mechanisms to the clinical diagnosis and therapies.
Collapse
Affiliation(s)
- Enjie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yao Zhang
- Department of Endocrine, Liyuan Hospital, Key Laboratory of Ministry of Education for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Jian-Zhi Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China.
| |
Collapse
|
9
|
Hunter TR, Santos LE, Tovar-Moll F, De Felice FG. Alzheimer's disease biomarkers and their current use in clinical research and practice. Mol Psychiatry 2024:10.1038/s41380-024-02709-z. [PMID: 39232196 DOI: 10.1038/s41380-024-02709-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
While blood-based tests are readily available for various conditions, including cardiovascular diseases, type 2 diabetes, and common cancers, Alzheimer's disease (AD) and other neurodegenerative diseases lack an early blood-based screening test that can be used in primary care. Major efforts have been made towards the investigation of approaches that may lead to minimally invasive, cost-effective, and reliable tests capable of measuring brain pathological status. Here, we review past and current technologies developed to investigate biomarkers of AD, including novel blood-based approaches and the more established cerebrospinal fluid and neuroimaging biomarkers of disease. The utility of blood as a source of AD-related biomarkers in both clinical practice and interventional trials is discussed, supported by a comprehensive list of clinical trials for AD drugs and interventions that list biomarkers as primary or secondary endpoints. We highlight that identifying individuals in early preclinical AD using blood-based biomarkers will improve clinical trials and the optimization of therapeutic treatments as they become available. Lastly, we discuss challenges that remain in the field and address new approaches being developed, such as the examination of cargo packaged within extracellular vesicles of neuronal origin isolated from peripheral blood.
Collapse
Affiliation(s)
- Tai R Hunter
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Luis E Santos
- D'Or Institute for Research and Education, Rio de Janeiro, RJ, Brazil.
| | | | - Fernanda G De Felice
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
- D'Or Institute for Research and Education, Rio de Janeiro, RJ, Brazil.
- Centre for Neuroscience Studies and Department of Psychiatry, Queen's University, Kingston, ON, Canada.
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
10
|
Tagai K, Tatebe H, Matsuura S, Hong Z, Kokubo N, Matsuoka K, Endo H, Oyama A, Hirata K, Shinotoh H, Kataoka Y, Matsumoto H, Oya M, Kurose S, Takahata K, Ichihashi M, Kubota M, Seki C, Shimada H, Takado Y, Kawamura K, Zhang MR, Soeda Y, Takashima A, Higuchi M, Tokuda T. A novel plasma p-tau181 assay as a specific biomarker of tau pathology in Alzheimer's disease. Transl Neurodegener 2024; 13:44. [PMID: 39238067 PMCID: PMC11375937 DOI: 10.1186/s40035-024-00439-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024] Open
Affiliation(s)
- Kenji Tagai
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
- Department of Psychiatry, The Jikei University of Medicine, Tokyo, 105-8461, Japan
| | - Harutsugu Tatebe
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| | - Sayo Matsuura
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| | - Zhang Hong
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| | - Naomi Kokubo
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| | - Kiwamu Matsuoka
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| | - Hironobu Endo
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| | - Asaka Oyama
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| | - Kosei Hirata
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| | - Hitoshi Shinotoh
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| | - Yuko Kataoka
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| | - Hideki Matsumoto
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
- Department of Oral and Maxillofacial Radiology, Tokyo Dental College, Tokyo, 101-0061, Japan
| | - Masaki Oya
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| | - Shin Kurose
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
- Department of Psychiatry, Keio University School of Medicine, Tokyo, 160-0016, Japan
| | - Keisuke Takahata
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
- Department of Psychiatry, Keio University School of Medicine, Tokyo, 160-0016, Japan
| | - Masanori Ichihashi
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| | - Manabu Kubota
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| | - Chie Seki
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| | - Hitoshi Shimada
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
- Department of Functional Neurology and Neurosurgery, Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Yuhei Takado
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| | - Kazunori Kawamura
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| | - Ming-Rong Zhang
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| | - Yoshiyuki Soeda
- Laboratory for Alzheimer's Disease, Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, 171-8588, Japan
| | - Akihiko Takashima
- Laboratory for Alzheimer's Disease, Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, 171-8588, Japan
| | - Makoto Higuchi
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| | - Takahiko Tokuda
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan.
| |
Collapse
|
11
|
Mandelblatt J, Dage JL, Zhou X, Small BJ, Ahles TA, Ahn J, Artese A, Bethea TN, Breen EC, Carroll JE, Cohen HJ, Extermann M, Graham D, Claudine I, Jim HSL, McDonald BC, Nakamura ZM, Patel SK, Rebeck GW, Rentscher KE, Root JC, Russ KA, Tometich DB, Turner RS, Van Dyk K, Zhai W, Huang LW, Saykin AJ. Alzheimer disease-related biomarkers and cancer-related cognitive decline: the Thinking and Living with Cancer study. J Natl Cancer Inst 2024; 116:1495-1507. [PMID: 38788675 PMCID: PMC11378315 DOI: 10.1093/jnci/djae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/22/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
PURPOSE We evaluated whether plasma Alzheimer disease (AD)-related biomarkers were associated with cancer-related cognitive decline among older breast cancer survivors. METHODS We included survivors aged 60-90 years with primary stage 0-III breast cancers (n = 236) and frequency-matched noncancer control paricipant (n = 154) who passed a cognitive screen and had banked plasma specimens. Participants were assessed at baseline (presystemic therapy) and annually for up to 60 months. Cognition was measured using tests of attention, processing speed, and executive function and learning and memory; perceived cognition was measured by the Functional Assessment of Cancer Therapy-Cognitive Function v3 Perceived Cognitive Impairments. Baseline plasma neurofilament light, glial fibrillary acidic protein, β-amyloid 42 and 40 and phosphorylated tau 181 were assayed using single molecule arrays. Mixed models tested associations between cognition and baseline AD biomarkers, time, group (survivor vs control participant), and their 2- and 3-way interactions, controlling for age, race, Wide Range 4 Achievement Test Word Reading score, comorbidity, and body mass index; 2-sided P values of .05 were considered statistically significant. RESULTS There were no group differences in baseline AD-related biomarkers except survivors had higher baseline neurofilament light levels than control participants (P = .013). Survivors had lower adjusted longitudinal attention, processing speed, and executive function than control participants starting from baseline and continuing over time (P ≤ .002). However, baseline AD-related biomarker levels were not independently associated with adjusted cognition over time, except control participants had lower attention, processing speed, and executive function scores with higher glial fibrillary acidic protein levels (P = .008). CONCLUSION The results do not support a relationship between baseline AD-related biomarkers and cancer-related cognitive decline. Further investigation is warranted to confirm the findings, test effects of longitudinal changes in AD-related biomarkers, and examine other mechanisms and factors affecting cognition presystemic therapy.
Collapse
Affiliation(s)
- Jeanne Mandelblatt
- Georgetown Lombardi Institute for Cancer and Aging Research, Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, DC, USA
| | - Jeffrey L Dage
- Stark Neurosciences Research Institute, Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xingtao Zhou
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University, Washington, DC, USA
| | - Brent J Small
- School of Aging Studies, University of South Florida, and Health Outcomes and Behavior Program, Moffitt Cancer Center, Tampa, FL, USA
| | - Tim A Ahles
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jaeil Ahn
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University, Washington, DC, USA
| | - Ashley Artese
- Department of Exercise Science and Health Promotion, Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, FL, USA
| | - Traci N Bethea
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, DC, USA
| | - Elizabeth C Breen
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
- Cousins Center for Psychoneuroimmunology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Judith E Carroll
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
- Cousins Center for Psychoneuroimmunology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Harvey J Cohen
- Department of Medicine, Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC, USA
| | - Martine Extermann
- Senior Adult Oncology Program, Department of Oncology, Moffitt Cancer Center, University of South Florida, Tampa, FL, USA
| | - Deena Graham
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Isaacs Claudine
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, DC, USA
| | - Heather S L Jim
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL, USA
| | - Brenna C McDonald
- Department of Radiology and Imaging Sciences, Melvin and Bren Simon Comprehensive Cancer Center, and Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zev M Nakamura
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sunita K Patel
- Department of Population Sciences and Department of Supportive Care Medicine, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - G William Rebeck
- Department of Neuroscience, Georgetown University, Washington, DC, USA
| | - Kelly E Rentscher
- Department of Psychiatry and Behavioral Medicine, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - James C Root
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kristen A Russ
- Department of Medical and Molecular Genetics and National Centralized Repository for Alzheimer’s and Related Dementias, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Danielle B Tometich
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL, USA
| | - R Scott Turner
- Department of Neurology, Georgetown University, Washington, DC, USA
| | - Kathleen Van Dyk
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Wanting Zhai
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University, Washington, DC, USA
| | - Li-Wen Huang
- Division of Hematology/Oncology, University of California San Francisco and San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Melvin and Bren Simon Comprehensive Cancer Center, and Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
12
|
Chen Y, Zeng X, Diaz JL, Sehrawat A, Lafferty TK, Boslett JJ, Klunk WE, Pascoal TA, Villemagne VL, Cohen AD, Lopez O, Yates NA, Karikari TK. Effect of blood collection tube containing protease inhibitors on the pre-analytical stability of Alzheimer's disease plasma biomarkers. J Neurochem 2024; 168:2736-2750. [PMID: 38814273 PMCID: PMC11449657 DOI: 10.1111/jnc.16130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/31/2024]
Abstract
The reliability of plasma biomarkers of Alzheimer's disease (AD) can be compromised by protease-induced degradation. This can limit the feasibility of conducting plasma biomarker studies in environments that lack the capacity for immediate processing and appropriate storage of blood samples. We hypothesized that blood collection tube supplementation with protease inhibitors can improve the stability of plasma biomarkers at room temperatures (RT). In this study, we conducted a comparative analysis of blood biomarker stability in traditional ethylenediaminetetraacetic acid (EDTA) tubes versus BD™ P100 collection tubes, the latter being coated with a protease inhibitor cocktail. The stability of six plasma AD biomarkers was evaluated over time under RT conditions. We evaluated three experimental approaches. In Approach 1, pooled plasma samples underwent storage at RT for up to 96 h. In Approach 2, plasma samples isolated upfront from whole blood collected into EDTA or P100 tubes were stored at RT for 0 h or 24 h before biomarker measurements. In Approach 3, whole blood samples were collected into paired EDTA and P100 tubes, followed by storage at RT for 0 h or 24 h before isolating the plasma for analyses. Biomarkers were measured with Single Molecule Array (Simoa) and immunoprecipitation-mass spectrometry (IP-MS) assays. Both the IP-MS and Simoa methods revealed that the use of P100 tubes significantly improves the stability of Aβ42 and Aβ40 across all approaches. However, the Aβ42/Aβ40 ratio levels were significantly stabilized only in the IP-MS assay in Approach 3. No significant differences were observed in the levels of plasma p-tau181, GFAP, and NfL for samples collected using either tube type in any of the approaches. Supplementation of blood collection tubes with protease inhibitors could reduce the protease-induced degradation of plasma Aβ42 and Aβ40, and the Aβ42/40 ratio for the IP-MS assay. These findings have crucial implications for preanalytical procedures, particularly in resource-limited settings.
Collapse
Affiliation(s)
- Yijun Chen
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Xuemei Zeng
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jihui L. Diaz
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Anuradha Sehrawat
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Tara K. Lafferty
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - James J. Boslett
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - William E. Klunk
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Tharick A. Pascoal
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Victor L. Villemagne
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Annie D. Cohen
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Oscar Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Nathan A. Yates
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Thomas K. Karikari
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| |
Collapse
|
13
|
Thanapornsangsuth P, Booncharoen K, Khieukhajee J, Luechaipanit W, Haethaisong T, Chongsuksantikul A, Supharatpariyakorn T, Chunharas C, Likitjaroen Y, Hemachudha T. The Bayesian approach for real-world implementation of plasma p-tau217 in tertiary care memory clinics in Thailand. Alzheimers Dement 2024; 20:6456-6467. [PMID: 39016441 PMCID: PMC11497765 DOI: 10.1002/alz.14138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 08/06/2024]
Abstract
INTRODUCTION Plasma phosphorylated tau (p-tau)217 is a promising biomarker for Alzheimer's disease (AD) diagnosis, but its clinical implementation remains challenging. We propose a strategy based on Bayes' theorem and test it in real-life memory clinics. METHODS Memory clinic patients were evaluated by neurocognitive specialists for prespecified diagnosis and subsequently underwent blood collection for p-tau217, cerebrospinal fluid, or amyloid positron emission tomography. Using cross-validation, the Bayesian approach (pretest probability × individualized likelihood ratio) was compared to other models for AD diagnosis. RESULTS The Bayesian strategy demonstrated an area under the receiver operating characteristic curve (AUC) of 0.98 (95% confidence interval [CI]: 0.96-1.0), significantly outperforming multivariable logistic regression (p-tau217, age, apolipoprotein E; AUC 0.95, p = 0.024) and p-tau217 alone (AUC = 0.94, p = 0.007). When applying the two-threshold approach, the Bayesian strategy yielded an accuracy of 0.94 (95% CI: 0.88-1.0) without requiring confirmatory tests in 62.9% of the iterations. DISCUSSION The Bayesian strategy offers an effective and flexible approach to address the limitations of plasma p-tau217 in clinical practice. HIGHLIGHTS Incorporating pretest probability into the interpretation of plasma phosphorylated tau (p-tau)217 improves the diagnostic performance significantly. The strategy could obviate the need for confirmatory testing in most of the patients. Plasma p-tau217 proves useful as a biomarker for Alzheimer's disease in low- and middle-income country such as Thailand.
Collapse
Affiliation(s)
- Poosanu Thanapornsangsuth
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral ZoonosesKing Chulalongkorn Memorial Hospital The Thai Red Cross SocietyBangkokThailand
- Division of NeurologyDepartment of MedicineFaculty of MedicineChulalongkorn UniversityBangkokThailand
- Memory ClinicKing Chulalongkorn Memorial Hospital, The Thai Red Cross SocietyBangkokThailand
- Chula Neuroscience CenterKing Chulalongkorn Memorial HospitalThai Red Cross SocietyBangkokThailand
| | - Kittithatch Booncharoen
- Memory ClinicKing Chulalongkorn Memorial Hospital, The Thai Red Cross SocietyBangkokThailand
- Neurocognitive Unit, Division of Neurology, Department of Medicine, Faculty of MedicineChulalongkorn UniversityBangkokThailand
- Neurology CenterPhyathai 1 HospitalBangkokThailand
| | | | - Watayuth Luechaipanit
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral ZoonosesKing Chulalongkorn Memorial Hospital The Thai Red Cross SocietyBangkokThailand
| | - Thanaporn Haethaisong
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral ZoonosesKing Chulalongkorn Memorial Hospital The Thai Red Cross SocietyBangkokThailand
| | - Adipa Chongsuksantikul
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral ZoonosesKing Chulalongkorn Memorial Hospital The Thai Red Cross SocietyBangkokThailand
| | - Thirawat Supharatpariyakorn
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral ZoonosesKing Chulalongkorn Memorial Hospital The Thai Red Cross SocietyBangkokThailand
| | - Chaipat Chunharas
- Division of NeurologyDepartment of MedicineFaculty of MedicineChulalongkorn UniversityBangkokThailand
- Memory ClinicKing Chulalongkorn Memorial Hospital, The Thai Red Cross SocietyBangkokThailand
- Chula Neuroscience CenterKing Chulalongkorn Memorial HospitalThai Red Cross SocietyBangkokThailand
- Cognitive Clinical and Computational NeuroscienceDepartment of Internal MedicineFaculty of MedicineChulalongkorn UniversityBangkokThailand
| | - Yuttachai Likitjaroen
- Division of NeurologyDepartment of MedicineFaculty of MedicineChulalongkorn UniversityBangkokThailand
- Memory ClinicKing Chulalongkorn Memorial Hospital, The Thai Red Cross SocietyBangkokThailand
- Neurocognitive Unit, Division of Neurology, Department of Medicine, Faculty of MedicineChulalongkorn UniversityBangkokThailand
| | - Thiravat Hemachudha
- Division of NeurologyDepartment of MedicineFaculty of MedicineChulalongkorn UniversityBangkokThailand
| |
Collapse
|
14
|
Cheng F, Fransson LÅ, Mani K. Interplay between glypican-1, amyloid-β and tau phosphorylation in human neural stem cells. Neuroscience 2024; 553:121-127. [PMID: 38992568 DOI: 10.1016/j.neuroscience.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/19/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) is characterized by accumulation of amyloid beta (Aβ) and hyperphosphorylated tau (Tau-P) in the brain. Aβ enhances the activity of kinases involved in the formation of Tau-P. Phosphorylation at Thr 181 determines the propagation of multiple tau phosphorylations. Aβ is derived from the amyloid precursor protein (APP). Cleavage of APP by β-secretase also initiates release of heparan sulfate (HS) from the proteoglycan glypican-1 (GPC1). OBJECTIVES In this study, we have explored possible connections between GPC1 expression, HS release, APP processing and Tau-P formation in human neural stem cells. METHODS GPC1 formation was suppressed by using CRISPR/Cas9 and increased by using a vector encoding GPC1. HS release from GPC1 was increased by growing cells in medium containing Arg and ascorbate. Effects were monitored by immunofluorescence microscopy and slot immunoblotting using antibodies/antisera recognizing Aβ, GPC1, HS released from GPC1, total Tau, and Tau phosphorylated at Thr-181, 217 or 231. The latter have been used as blood biomarkers for AD. RESULTS Suppression of GPC1 expression resulted in increased phosphorylation at Thr 181 and Thr 217. When GPC1 was overexpressed, phosphorylation at Thr 217 decreased. Stimulation of HS release from GPC1 diminished tau phosphorylation at all of the three Thr positions, while expression of GPC1 was unaffected. Simultaneous stimulation of HS release and APP processing by the cytokine TNF-α also suppressed tau phosphorylation. CONCLUSION The increased release of GPC1-derived HS may interfere with Aβ formation and/or Aβ interaction with tau.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, Biomedical Center A13, SE-221 84 Lund, Sweden
| | - Lars-Åke Fransson
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, Biomedical Center A13, SE-221 84 Lund, Sweden
| | - Katrin Mani
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, Biomedical Center A13, SE-221 84 Lund, Sweden.
| |
Collapse
|
15
|
Eastwood SM, Meyer MR, Kirmess KM, Wente-Roth TL, Irvin F, Holubasch MS, Verghese PB, West T, Braunstein JB, Yarasheski KE, Contois JH. PrecivityAD2™ Blood Test: Analytical Validation of an LC-MS/MS Assay for Quantifying Plasma Phospho-tau217 and Non-Phospho-tau217 Peptide Concentrations That Are Used with Plasma Amyloid-β42/40 in a Multianalyte Assay with Algorithmic Analysis for Detecting Brain Amyloid Pathology. Diagnostics (Basel) 2024; 14:1739. [PMID: 39202226 PMCID: PMC11353612 DOI: 10.3390/diagnostics14161739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive irreversible neurodegenerative disorder that represents a major global public health concern. Traditionally, AD is diagnosed using cerebrospinal fluid biomarker analysis or brain imaging modalities. Recently, less burdensome, more widely available blood biomarker (BBM) assays for amyloid-beta (Aβ42/40) and phosphorylated-tau concentrations have been found to accurately identify the presence/absence of brain amyloid plaques and tau tangles and have helped to streamline AD diagnosis. However, few BBMs have been rigorously analytically validated. Herein, we report the analytical validation of a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) multiplex method for quantifying plasma phosphorylated-tau217 (p-tau217) and non-phosphorylated-tau217 (np-tau217) peptide concentrations. We combined the p-tau217/np-tau217 concentrations ratio (%p-tau217) and the previously validated LC-MS/MS multiplex assay for plasma Aβ42/40 into a new multianalyte assay with algorithmic analysis (MAAA; PrecivityAD2™ test) that identifies brain amyloid status based on brain amyloid positron emission tomography. We found (a) the %p-tau217 assay is precise, accurate, sensitive, and linear over a wide analytical measurement range, and free from carryover and interference; (b) the pre-analytical specimen collection, processing, storage, and shipping conditions that maintain plasma tau peptide stability; and (c) using the measured analytical imprecision for plasma Aβ42/40 and p-tau217/np-tau217 levels in a worst-case scenario model, the PrecivityAD2 test algorithm for amyloid pathology classification changed for only 3.5% of participants from brain amyloid positive to negative, or from negative to positive. The plasma sample preparation and LC-MS/MS methods underlying the PrecivityAD2 test are suitable for use in the clinical laboratory and valid for the test's intended purpose: to aid in the diagnostic evaluation of individuals aged 55 and older with signs or symptoms of mild cognitive impairment or dementia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Kevin E. Yarasheski
- C2N Diagnostics, 4340 Duncan Avenue, Suite 110, Saint Louis, MO 63110, USA; (S.M.E.); (M.R.M.); (K.M.K.); (T.L.W.-R.); (F.I.); (M.S.H.); (P.B.V.); (T.W.); (J.B.B.); (J.H.C.)
| | | |
Collapse
|
16
|
Huang SS, Huang CH, Hsu NT, Ong HN, Lin JJ, Wu YW, Chen WT, Chen WJ, Chang WT, Tsai MS. Application of Phosphorylated Tau for Predicting Outcomes Among Sudden Cardiac Arrest Survivors. Neurocrit Care 2024:10.1007/s12028-024-02055-6. [PMID: 38982004 DOI: 10.1007/s12028-024-02055-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/21/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Phosphorylated Tau (p-Tau), an early biomarker of neuronal damage, has emerged as a promising candidate for predicting neurological outcomes in cardiac arrest (CA) survivors. Despite its potential, the correlation of p-Tau with other clinical indicators remains underexplored. This study assesses the predictive capability of p-Tau and its effectiveness when used in conjunction with other predictors. METHODS In this single-center retrospective study, 230 CA survivors had plasma and brain computed tomography scans collected within 24 h after the return of spontaneous circulation (ROSC) from January 2016 to June 2023. The patients with prearrest Cerebral Performance Category scores ≥ 3 were excluded (n = 33). The neurological outcomes at discharge with Cerebral Performance Category scores 1-2 indicated favorable outcomes. Plasma p-Tau levels were measured using an enzyme-linked immunosorbent assay, diastolic blood pressure (DBP) was recorded after ROSC, and the gray-to-white matter ratio (GWR) was calculated from brain computed tomography scans within 24 h after ROSC. RESULTS Of 197 patients enrolled in the study, 54 (27.4%) had favorable outcomes. Regression analysis showed that higher p-Tau levels correlated with unfavorable neurological outcomes. The levels of p-Tau were significantly correlated with DBP and GWR. For p-Tau to differentiate between neurological outcomes, an optimal cutoff of 456 pg/mL yielded an area under the receiver operating characteristic curve of 0.71. Combining p-Tau, GWR, and DBP improved predictive accuracy (area under the receiver operating characteristic curve = 0.80 vs. 0.71, p = 0.008). CONCLUSIONS Plasma p-Tau levels measured within 24 h following ROSC, particularly when combined with GWR and DBP, may serve as a promising biomarker of neurological outcomes in CA survivors, with higher levels predicting unfavorable outcomes.
Collapse
Affiliation(s)
- Sih-Shiang Huang
- Department of Emergency Medicine, National Taiwan University Medical College and Hospital, Taipei, Taiwan
| | - Chien-Hua Huang
- Department of Emergency Medicine, National Taiwan University Medical College and Hospital, Taipei, Taiwan
| | | | - Hooi-Nee Ong
- Department of Emergency Medicine, National Taiwan University Medical College and Hospital, Taipei, Taiwan
| | - Jr-Jiun Lin
- Department of Emergency Medicine, National Taiwan University Medical College and Hospital, Taipei, Taiwan
| | | | - Wei-Ting Chen
- Department of Emergency Medicine, National Taiwan University Medical College and Hospital, Taipei, Taiwan
| | - Wen-Jone Chen
- Department of Emergency Medicine, National Taiwan University Medical College and Hospital, Taipei, Taiwan
- Cardiology Division, Department of Internal Medicine, National Taiwan University Medical College and Hospital, Taipei, Taiwan
- Department of Internal Medicine, Min-Shen General Hospital, Taoyuan, Taiwan
| | - Wei-Tien Chang
- Department of Emergency Medicine, National Taiwan University Medical College and Hospital, Taipei, Taiwan
| | - Min-Shan Tsai
- Department of Emergency Medicine, National Taiwan University Medical College and Hospital, Taipei, Taiwan.
| |
Collapse
|
17
|
Schindler SE, Galasko D, Pereira AC, Rabinovici GD, Salloway S, Suárez-Calvet M, Khachaturian AS, Mielke MM, Udeh-Momoh C, Weiss J, Batrla R, Bozeat S, Dwyer JR, Holzapfel D, Jones DR, Murray JF, Partrick KA, Scholler E, Vradenburg G, Young D, Algeciras-Schimnich A, Aubrecht J, Braunstein JB, Hendrix J, Hu YH, Mattke S, Monane M, Reilly D, Somers E, Teunissen CE, Shobin E, Vanderstichele H, Weiner MW, Wilson D, Hansson O. Acceptable performance of blood biomarker tests of amyloid pathology - recommendations from the Global CEO Initiative on Alzheimer's Disease. Nat Rev Neurol 2024; 20:426-439. [PMID: 38866966 DOI: 10.1038/s41582-024-00977-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 06/14/2024]
Abstract
Anti-amyloid treatments for early symptomatic Alzheimer disease have recently become clinically available in some countries, which has greatly increased the need for biomarker confirmation of amyloid pathology. Blood biomarker (BBM) tests for amyloid pathology are more acceptable, accessible and scalable than amyloid PET or cerebrospinal fluid (CSF) tests, but have highly variable levels of performance. The Global CEO Initiative on Alzheimer's Disease convened a BBM Workgroup to consider the minimum acceptable performance of BBM tests for clinical use. Amyloid PET status was identified as the reference standard. For use as a triaging test before subsequent confirmatory tests such as amyloid PET or CSF tests, the BBM Workgroup recommends that a BBM test has a sensitivity of ≥90% with a specificity of ≥85% in primary care and ≥75-85% in secondary care depending on the availability of follow-up testing. For use as a confirmatory test without follow-up tests, a BBM test should have performance equivalent to that of CSF tests - a sensitivity and specificity of ~90%. Importantly, the predictive values of all biomarker tests vary according to the pre-test probability of amyloid pathology and must be interpreted in the complete clinical context. Use of BBM tests that meet these performance standards could enable more people to receive an accurate and timely Alzheimer disease diagnosis and potentially benefit from new treatments.
Collapse
Affiliation(s)
- Suzanne E Schindler
- Department of Neurology, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St Louis, MO, USA.
| | - Douglas Galasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Ana C Pereira
- Department of Neurology, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Gil D Rabinovici
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Stephen Salloway
- Department of Neurology, Alpert Medical School, Brown University, Providence, RI, USA
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | | | - Michelle M Mielke
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Chi Udeh-Momoh
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Joan Weiss
- US Department of Health and Human Services, Health Resources and Services Administration, Bureau of Health Workforce, Rockville, MD, USA
| | | | | | - John R Dwyer
- Global Alzheimer's Platform Foundation, Washington, DC, USA
| | - Drew Holzapfel
- The Global CEO Initiative on Alzheimer's Disease, Philadelphia, PA, USA
| | | | | | | | - Emily Scholler
- The Global CEO Initiative on Alzheimer's Disease, Philadelphia, PA, USA
| | - George Vradenburg
- Davos Alzheimer's Collaborative, Philadelphia, PA, USA
- UsAgainstAlzheimer's, Washington, DC, USA
| | | | | | | | | | | | | | - Soeren Mattke
- The USC Brain Health Observatory, University of Southern California, Los Angeles, CA, USA
| | | | | | | | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universitiet, Amsterdam, The Netherlands
| | | | | | - Michael W Weiner
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
| | | | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.
- Memory Clinic, Skåne University Hospital, Malmö, Sweden.
| |
Collapse
|
18
|
Hole KL, Zhu B, Huggon L, Brown JT, Mason JM, Williams RJ. Tau P301L disengages from the proteosome core complex and neurogranin coincident with enhanced neuronal network excitability. Cell Death Dis 2024; 15:429. [PMID: 38890273 PMCID: PMC11189525 DOI: 10.1038/s41419-024-06815-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
Tauopathies are characterised by the pathological accumulation of misfolded tau. The emerging view is that toxic tau species drive synaptic dysfunction and potentially tau propagation before measurable neurodegeneration is evident, but the underlying molecular events are not well defined. Human non-mutated 0N4R tau (tauWT) and P301L mutant 0N4R tau (tauP301L) were expressed in mouse primary cortical neurons using adeno-associated viruses to monitor early molecular changes and synaptic function before the onset of neuronal loss. In this model tauP301L was differentially phosphorylated relative to tauwt with a notable increase in phosphorylation at ser262. Affinity purification - mass spectrometry combined with tandem mass tagging was used to quantitatively compare the tauWT and tauP301L interactomes. This revealed an enrichment of tauP301L with ribosomal proteins but a decreased interaction with the proteasome core complex and reduced tauP301L degradation. Differences in the interaction of tauP301L with members of a key synaptic calcium-calmodulin signalling pathway were also identified, most notably, increased association with CaMKII but reduced association with calcineurin and the candidate AD biomarker neurogranin. Decreased association of neurogranin to tauP301L corresponded with the appearance of enhanced levels of extracellular neurogranin suggestive of potential release or leakage from synapses. Finally, analysis of neuronal network activity using micro-electrode arrays showed that overexpression of tauP301L promoted basal hyperexcitability coincident with these changes in the tau interactome and implicating tau in specific early alterations in synaptic function.
Collapse
Affiliation(s)
- Katriona L Hole
- Department of Life Sciences, University of Bath, Bath, UK
- The Francis Crick Institute, London, UK
| | - Bangfu Zhu
- Department of Life Sciences, University of Bath, Bath, UK
| | - Laura Huggon
- Department of Life Sciences, University of Bath, Bath, UK
- UK Dementia Research Institute at King's College London, London, UK
| | - Jon T Brown
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Jody M Mason
- Department of Life Sciences, University of Bath, Bath, UK
| | | |
Collapse
|
19
|
Chang HI, Huang KL, Huang CG, Huang CW, Huang SH, Lin KJ, Chang CC. Clinical Significance of the Plasma Biomarker Panels in Amyloid-Negative and Tau PET-Positive Amnestic Patients: Comparisons with Alzheimer's Disease and Unimpaired Cognitive Controls. Int J Mol Sci 2024; 25:5607. [PMID: 38891795 PMCID: PMC11171590 DOI: 10.3390/ijms25115607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
The purpose of this study was to investigate whether plasma biomarkers can help to diagnose, differentiate from Alzheimer disease (AD), and stage cognitive performance in patients with positron emission tomography (PET)-confirmed primary age-related tauopathy, termed tau-first cognitive proteinopathy (TCP) in this study. In this multi-center study, we enrolled 285 subjects with young-onset AD (YOAD; n = 55), late-onset AD (LOAD; n = 96), TCP (n = 44), and cognitively unimpaired controls (CTL; n = 90) and analyzed plasma Aβ42/Aβ40, pTau181, neurofilament light (NFL), and total-tau using single-molecule assays. Amyloid and tau centiloids reflected pathological burden, and hippocampal volume reflected structural integrity. Receiver operating characteristic curves and areas under the curves (AUCs) were used to determine the diagnostic accuracy of plasma biomarkers compared to hippocampal volume and amyloid and tau centiloids. The Mini-Mental State Examination score (MMSE) served as the major cognitive outcome. Logistic stepwise regression was used to assess the overall diagnostic accuracy, combining fluid and structural biomarkers and a stepwise linear regression model for the significant variables for MMSE. For TCP, tau centiloid reached the highest AUC for diagnosis (0.79), while pTau181 could differentiate TCP from YOAD (accuracy 0.775) and LOAD (accuracy 0.806). NFL reflected the clinical dementia rating in TCP, while pTau181 (rho = 0.3487, p = 0.03) and Aβ42/Aβ40 (rho = -0.36, p = 0.02) were significantly correlated with tau centiloid. Hippocampal volume (unstandardized β = 4.99, p = 0.01) outperformed all of the fluid biomarkers in predicting MMSE scores in the TCP group. Our results support the superiority of tau PET to diagnose TCP, pTau181 to differentiate TCP from YOAD or LOAD, and NFL for functional staging.
Collapse
Affiliation(s)
- Hsin-I Chang
- Department of Neurology, Cognition and Aging Center, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (H.-I.C.); (C.-W.H.)
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Kuo-Lun Huang
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333423, Taiwan;
| | - Chung-Gue Huang
- Department of Medical Laboratory, Linkou Chang Gung Memorial Hospital, Department of Medical Bio-Technology and Laboratory Science, Chang Gung University, Taoyuan 333423, Taiwan;
| | - Chi-Wei Huang
- Department of Neurology, Cognition and Aging Center, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (H.-I.C.); (C.-W.H.)
| | - Shu-Hua Huang
- Department of Nuclear Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Kun-Ju Lin
- Department of Nuclear Medicine, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333423, Taiwan;
| | - Chiung-Chih Chang
- Department of Neurology, Cognition and Aging Center, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (H.-I.C.); (C.-W.H.)
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 80404, Taiwan
| |
Collapse
|
20
|
Zeng X, Chen Y, Sehrawat A, Lee J, Lafferty TK, Kofler J, Berman SB, Sweet RA, Tudorascu DL, Klunk WE, Ikonomovic MD, Pfister A, Zetterberg H, Snitz BE, Cohen AD, Villemagne VL, Pascoal TA, Kamboh ML, Lopez OI, Blennow K, Karikari TK. Alzheimer blood biomarkers: practical guidelines for study design, sample collection, processing, biobanking, measurement and result reporting. Mol Neurodegener 2024; 19:40. [PMID: 38750570 PMCID: PMC11095038 DOI: 10.1186/s13024-024-00711-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/13/2024] [Indexed: 05/19/2024] Open
Abstract
Alzheimer's disease (AD), the most common form of dementia, remains challenging to understand and treat despite decades of research and clinical investigation. This might be partly due to a lack of widely available and cost-effective modalities for diagnosis and prognosis. Recently, the blood-based AD biomarker field has seen significant progress driven by technological advances, mainly improved analytical sensitivity and precision of the assays and measurement platforms. Several blood-based biomarkers have shown high potential for accurately detecting AD pathophysiology. As a result, there has been considerable interest in applying these biomarkers for diagnosis and prognosis, as surrogate metrics to investigate the impact of various covariates on AD pathophysiology and to accelerate AD therapeutic trials and monitor treatment effects. However, the lack of standardization of how blood samples and collected, processed, stored analyzed and reported can affect the reproducibility of these biomarker measurements, potentially hindering progress toward their widespread use in clinical and research settings. To help address these issues, we provide fundamental guidelines developed according to recent research findings on the impact of sample handling on blood biomarker measurements. These guidelines cover important considerations including study design, blood collection, blood processing, biobanking, biomarker measurement, and result reporting. Furthermore, the proposed guidelines include best practices for appropriate blood handling procedures for genetic and ribonucleic acid analyses. While we focus on the key blood-based AD biomarkers for the AT(N) criteria (e.g., amyloid-beta [Aβ]40, Aβ42, Aβ42/40 ratio, total-tau, phosphorylated-tau, neurofilament light chain, brain-derived tau and glial fibrillary acidic protein), we anticipate that these guidelines will generally be applicable to other types of blood biomarkers. We also anticipate that these guidelines will assist investigators in planning and executing biomarker research, enabling harmonization of sample handling to improve comparability across studies.
Collapse
Affiliation(s)
- Xuemei Zeng
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Yijun Chen
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Anuradha Sehrawat
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Jihui Lee
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Tara K Lafferty
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Julia Kofler
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Sarah B Berman
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Robert A Sweet
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Dana L Tudorascu
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - William E Klunk
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Milos D Ikonomovic
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh HS, Pittsburgh, PA, USA
| | - Anna Pfister
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Beth E Snitz
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Anne D Cohen
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Victor L Villemagne
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Tharick A Pascoal
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - M. llyas Kamboh
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Oscar I Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Thomas K Karikari
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA.
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.
| |
Collapse
|
21
|
Lad M, Taylor JP, Griffiths TD. Subjective hearing loss is not associated with an increased risk of Alzheimer's disease dementia. Heliyon 2024; 10:e30423. [PMID: 38765087 PMCID: PMC11101718 DOI: 10.1016/j.heliyon.2024.e30423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 05/21/2024] Open
Abstract
Hearing loss is a risk-factor for dementia but the reasons for this are unclear. Subjective hearing loss is related to increased future dementia risk, however, this metric has not been previously examined with cognitive, neuroimaging and biochemical measures that are relevant to Alzheimer's disease. We assessed Cognitively Normal and Mild Cognitively Impaired participants from the Alzheimer's Disease Neuroimaging Initiative with subjective hearing loss to examine if they had faster decline in episodic memory scores, hippocampal volume and greater pTau positivity. The likelihood of a dementia diagnosis in hearing impaired participants over a 5-year period was also assessed. There were no statistically significant differences between the hearing subgroups over a 5-year period nor were there in conversions to a dementia diagnosis. Objective hearing loss metrics may provide a more reliable link between hearing loss and dementia risk.
Collapse
Affiliation(s)
- Meher Lad
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Tim D Griffiths
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| |
Collapse
|
22
|
Ahmadi N, Dratva MA, Heyworth N, Wang X, Blennow K, Banks SJ, Sudermann EE. Moving Beyond Depression: Mood Symptoms Across the Spectrum Relate to Tau Pathology in Older Women at Risk for Alzheimer's Disease. Int J Aging Hum Dev 2024:914150241253257. [PMID: 38751054 DOI: 10.1177/00914150241253257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
We examined how symptoms across the mood spectrum relate to Alzheimer's disease (AD) biomarkers in older women at high risk for AD. Participants included 25 women aged 65+ with mild cognitive deficits and elevated AD genetic risk. The Profile of Mood States Questionnaire measured mood symptoms and a total mood disturbance (TMD) score. Tau burden in the meta-temporal region of interest was measured using MK-6240 Tau positron emission tomography (PET) imaging. A subset (n = 12) also had p-Tau181, and Aß40/42 levels measured in plasma. Higher TMD scores related to higher tau PET standardized uptake value ratio (SUVR). Greater negative mood symptoms correlated with higher tau PET SUVR, while greater vigor correlated with lower SUVR. Similar results were seen with plasma p-Tau181 levels, but not with Aβ40/42 levels. In conclusion, positive and negative mood symptoms related to tau pathology in older women at high risk for AD, highlighting a role of mental well-being in AD risk.
Collapse
Affiliation(s)
| | - Melanie A Dratva
- Department of Neurosciences, University of California, San Diego, USA
| | - Nadine Heyworth
- Department of Neurosciences, University of California, San Diego, USA
| | - Xin Wang
- Department of Neurosciences, University of California, San Diego, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Lab, Sahlgrenska University Hospital, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P.R. China
| | - Sarah J Banks
- Department of Neurosciences, University of California, San Diego, USA
- Department of Psychiatry, University of California, San Diego, USA
| | - Erin E Sudermann
- Department of Psychiatry, University of California, San Diego, USA
| |
Collapse
|
23
|
Oliveri D, Moschetti G, Griego A, Scarpa E. Endothelial cellular senescence and tau accumulation: An interplay full of opportunities? IBRAIN 2024; 10:225-230. [PMID: 38915948 PMCID: PMC11193862 DOI: 10.1002/ibra.12154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 06/26/2024]
Abstract
Recent research has shown that tau protein can be passed to neighboring cells, leading to cellular senescence in the endothelial cells present in the central nervous system (CNS). This discovery could potentially open new doors for testing novel therapeutic compounds that specifically target senescent cells (senolytics) or for identifying new biomarkers that can enable early detection of tauopathies and dementia.
Collapse
Affiliation(s)
- Doriana Oliveri
- Department of Pharmaceutical Sciences (DISFARM)University of MilanMilanItaly
- Infection Dynamics Laboratory‐National Institute of Molecular Genetics (INGM)MilanItaly
| | - Giorgia Moschetti
- Department of Pharmaceutical Sciences (DISFARM)University of MilanMilanItaly
- Infection Dynamics Laboratory‐National Institute of Molecular Genetics (INGM)MilanItaly
| | - Anna Griego
- Department of Pharmaceutical Sciences (DISFARM)University of MilanMilanItaly
- Infection Dynamics Laboratory‐National Institute of Molecular Genetics (INGM)MilanItaly
| | - Edoardo Scarpa
- Department of Pharmaceutical Sciences (DISFARM)University of MilanMilanItaly
- Infection Dynamics Laboratory‐National Institute of Molecular Genetics (INGM)MilanItaly
| |
Collapse
|
24
|
Pilotto A, Quaresima V, Trasciatti C, Tolassi C, Bertoli D, Mordenti C, Galli A, Rizzardi A, Caratozzolo S, Zancanaro A, Contador J, Hansson O, Palmqvist S, Santis GD, Zetterberg H, Blennow K, Brugnoni D, Suárez-Calvet M, Ashton NJ, Padovani A. Plasma p-tau217 in Alzheimer's disease: Lumipulse and ALZpath SIMOA head-to-head comparison. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.02.24306780. [PMID: 38746261 PMCID: PMC11092737 DOI: 10.1101/2024.05.02.24306780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Background Plasma phosphorylated-tau217 (p-tau217) has been shown to be one of the most accurate diagnostic markers for Alzheimer's disease (AD). No studies have compared the clinical performance of p-tau217 as assessed by the fully automated Lumipulse and SIMOA ALZpath p-tau217. Aim To evaluate the diagnostic accuracy of Lumipulse and SIMOA plasma p-tau217 assays for AD. Methods The study included 392 participants, 162 with AD, 70 with other neurodegenerative diseases (NDD) with CSF biomarkers and 160 healthy controls. Plasma p-tau217 levels were measured using the Lumipulse and ALZpath SIMOA assays. The ability of p-tau217 assessed by both techniques to discriminate AD from NDD and controls was investigated using ROC analyses. Results Both techniques showed high internal consistency of p-tau217 with similar correlation with CSF p-tau181 levels. In head-to-head comparison, Lumipulse and SIMOA showed similar diagnostic accuracy for differentiating AD from NDD (area under the curve [AUC] 0.952, 95%CI 0.927-0.978 vs 0.955, 95%CI 0.928-0.982, respectively) and HC (AUC 0.938, 95%CI 0.910-0.966 and 0.937, 95% CI0.907-0.967 for both assays). Conclusions This study demonstrated the high precision and diagnostic accuracy of p-tau217 for the clinical diagnosis of Alzheimer's disease using either fully automated or semi-automated techniques.
Collapse
|
25
|
Dark HE, An Y, Duggan MR, Joynes C, Davatzikos C, Erus G, Lewis A, Moghekar AR, Resnick SM, Walker KA. Alzheimer's and neurodegenerative disease biomarkers in blood predict brain atrophy and cognitive decline. Alzheimers Res Ther 2024; 16:94. [PMID: 38689358 PMCID: PMC11059745 DOI: 10.1186/s13195-024-01459-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Although blood-based biomarkers have been identified as cost-effective and scalable alternatives to PET and CSF markers of neurodegenerative disease, little is known about how these biomarkers predict future brain atrophy and cognitive decline in cognitively unimpaired individuals. Using data from the Baltimore Longitudinal Study of Aging (BLSA), we examined whether plasma biomarkers of Alzheimer's disease (AD) pathology (amyloid-β [Aβ42/40], phosphorylated tau [pTau-181]), astrogliosis (glial fibrillary acidic protein [GFAP]), and neuronal injury (neurofilament light chain [NfL]) were associated with longitudinal brain volume loss and cognitive decline. Additionally, we determined whether sex, APOEε4 status, and plasma amyloid-β status modified these associations. METHODS Plasma biomarkers were measured using Quanterix SIMOA assays. Regional brain volumes were measured by 3T MRI, and a battery of neuropsychological tests assessed five cognitive domains. Linear mixed effects models adjusted for demographic factors, kidney function, and intracranial volume (MRI analyses) were completed to relate baseline plasma biomarkers to baseline and longitudinal brain volume and cognitive performance. RESULTS Brain volume analyses included 622 participants (mean age ± SD: 70.9 ± 10.2) with an average of 3.3 MRI scans over 4.7 years. Cognitive performance analyses included 674 participants (mean age ± SD: 71.2 ± 10.0) with an average of 3.9 cognitive assessments over 5.7 years. Higher baseline pTau-181 was associated with steeper declines in total gray matter volume and steeper regional declines in several medial temporal regions, whereas higher baseline GFAP was associated with greater longitudinal increases in ventricular volume. Baseline Aβ42/40 and NfL levels were not associated with changes in brain volume. Lower baseline Aβ42/40 (higher Aβ burden) was associated with a faster decline in verbal memory and visuospatial performance, whereas higher baseline GFAP was associated with a faster decline in verbal fluency. Results were generally consistent across sex and APOEε4 status. However, the associations of higher pTau-181 with increasing ventricular volume and memory declines were significantly stronger among individuals with higher Aβ burden, as was the association of higher GFAP with memory decline. CONCLUSIONS Among cognitively unimpaired older adults, plasma biomarkers of AD pathology (pTau-181) and astrogliosis (GFAP), but not neuronal injury (NfL), serve as markers of future brain atrophy and cognitive decline.
Collapse
Affiliation(s)
- Heather E Dark
- Laboratory of Behavioral Neuroscience, National Institute On Aging, NIH BRC BG RM 04B311, 251 Bayview Blvd, Baltimore, MD, 21224, USA.
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute On Aging, NIH BRC BG RM 04B311, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Michael R Duggan
- Laboratory of Behavioral Neuroscience, National Institute On Aging, NIH BRC BG RM 04B311, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Cassandra Joynes
- Laboratory of Behavioral Neuroscience, National Institute On Aging, NIH BRC BG RM 04B311, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | | | - Guray Erus
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexandria Lewis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Abhay R Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute On Aging, NIH BRC BG RM 04B311, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Keenan A Walker
- Laboratory of Behavioral Neuroscience, National Institute On Aging, NIH BRC BG RM 04B311, 251 Bayview Blvd, Baltimore, MD, 21224, USA.
| |
Collapse
|
26
|
Bouteloup V, Pellegrin I, Dubois B, Chene G, Planche V, Dufouil C. Explaining the Variability of Alzheimer Disease Fluid Biomarker Concentrations in Memory Clinic Patients Without Dementia. Neurology 2024; 102:e209219. [PMID: 38527237 PMCID: PMC11175632 DOI: 10.1212/wnl.0000000000209219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/02/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Patients' comorbidities can affect Alzheimer disease (AD) blood biomarker concentrations. Because a limited number of factors have been explored to date, our aim was to assess the proportion of the variance in fluid biomarker levels explained by the clinical features of AD and by a large number of non-AD-related factors. METHODS MEMENTO enrolled 2,323 individuals with cognitive complaints or mild cognitive impairment in 26 French memory clinics. Baseline evaluation included clinical and neuropsychological assessments, brain MRI, amyloid-PET, CSF (optional), and blood sampling. Blood biomarker levels were determined using the Simoa-HDX analyzer. We performed linear regression analysis of the clinical features of AD (cognition, AD genetic risk score, and brain atrophy) to model biomarker concentrations. Next, we added covariates among routine biological tests, inflammatory markers, demographic and behavioral determinants, treatments, comorbidities, and preanalytical sample handling in final models using both stepwise selection processes and least absolute shrinkage and selection operator (LASSO). RESULTS In total, 2,257 participants were included in the analysis (median age 71.7, 61.8% women, 55.2% with high educational levels). For blood biomarkers, the proportion of variance explained by clinical features of AD was 13.7% for neurofilaments (NfL), 11.4% for p181-tau, 3.0% for Aβ-42/40, and 1.4% for total-tau. In final models accounting for non-AD-related factors, the variance was mainly explained by age, routine biological tests, inflammatory markers, and preanalytical sample handling. In CSF, the proportion of variance explained by clinical features of AD was 24.8% for NfL, 22.3% for Aβ-42/40, 19.8% for total-tau, and 17.2% for p181-tau. In contrast to blood biomarkers, the largest proportion of variance was explained by cognition after adjustment for covariates. The covariates that explained the largest proportion of variance were also the most frequently selected with LASSO. The performance of blood biomarkers for predicting A+ and T+ status (PET or CSF) remained unchanged after controlling for drivers of variance. DISCUSSION This comprehensive analysis demonstrated that the variance in AD blood biomarker concentrations was mainly explained by age, with minor contributions from cognition, brain atrophy, and genetics, conversely to CSF measures. These results challenge the use of blood biomarkers as isolated stand-alone biomarkers for AD.
Collapse
Affiliation(s)
- Vincent Bouteloup
- From the Univ. Bordeaux (V.B., G.C., C.D.), Inserm, Bordeaux Population Health, UMR1219, Bordeaux; CIC 1401 EC (V.B., G.C., C.D.), Pôle Santé Publique, CHU de Bordeaux; Laboratory of Immunology and Immunogenetics (I.P.), Resources Biological Center (CRB), CHU Bordeaux; Univ. Bordeaux (I.P.), CNRS, ImmunoConcEpT, UMR 5164, Bordeaux; Alzheimer Research Center IM2A (B.D.), Salpêtrière Hospital, AP-HP, Sorbonne University, Paris; Univ. Bordeaux (V.P.), CNRS, Institut des Maladies Neuroégénératives, UMR 5293, Bordeaux; Pôle de Neurosciences Cliniques (V.P.), Centre Mémoire de Ressources et de Recherche, CHU Bordeaux, France
| | - Isabelle Pellegrin
- From the Univ. Bordeaux (V.B., G.C., C.D.), Inserm, Bordeaux Population Health, UMR1219, Bordeaux; CIC 1401 EC (V.B., G.C., C.D.), Pôle Santé Publique, CHU de Bordeaux; Laboratory of Immunology and Immunogenetics (I.P.), Resources Biological Center (CRB), CHU Bordeaux; Univ. Bordeaux (I.P.), CNRS, ImmunoConcEpT, UMR 5164, Bordeaux; Alzheimer Research Center IM2A (B.D.), Salpêtrière Hospital, AP-HP, Sorbonne University, Paris; Univ. Bordeaux (V.P.), CNRS, Institut des Maladies Neuroégénératives, UMR 5293, Bordeaux; Pôle de Neurosciences Cliniques (V.P.), Centre Mémoire de Ressources et de Recherche, CHU Bordeaux, France
| | - Bruno Dubois
- From the Univ. Bordeaux (V.B., G.C., C.D.), Inserm, Bordeaux Population Health, UMR1219, Bordeaux; CIC 1401 EC (V.B., G.C., C.D.), Pôle Santé Publique, CHU de Bordeaux; Laboratory of Immunology and Immunogenetics (I.P.), Resources Biological Center (CRB), CHU Bordeaux; Univ. Bordeaux (I.P.), CNRS, ImmunoConcEpT, UMR 5164, Bordeaux; Alzheimer Research Center IM2A (B.D.), Salpêtrière Hospital, AP-HP, Sorbonne University, Paris; Univ. Bordeaux (V.P.), CNRS, Institut des Maladies Neuroégénératives, UMR 5293, Bordeaux; Pôle de Neurosciences Cliniques (V.P.), Centre Mémoire de Ressources et de Recherche, CHU Bordeaux, France
| | - Genevieve Chene
- From the Univ. Bordeaux (V.B., G.C., C.D.), Inserm, Bordeaux Population Health, UMR1219, Bordeaux; CIC 1401 EC (V.B., G.C., C.D.), Pôle Santé Publique, CHU de Bordeaux; Laboratory of Immunology and Immunogenetics (I.P.), Resources Biological Center (CRB), CHU Bordeaux; Univ. Bordeaux (I.P.), CNRS, ImmunoConcEpT, UMR 5164, Bordeaux; Alzheimer Research Center IM2A (B.D.), Salpêtrière Hospital, AP-HP, Sorbonne University, Paris; Univ. Bordeaux (V.P.), CNRS, Institut des Maladies Neuroégénératives, UMR 5293, Bordeaux; Pôle de Neurosciences Cliniques (V.P.), Centre Mémoire de Ressources et de Recherche, CHU Bordeaux, France
| | - Vincent Planche
- From the Univ. Bordeaux (V.B., G.C., C.D.), Inserm, Bordeaux Population Health, UMR1219, Bordeaux; CIC 1401 EC (V.B., G.C., C.D.), Pôle Santé Publique, CHU de Bordeaux; Laboratory of Immunology and Immunogenetics (I.P.), Resources Biological Center (CRB), CHU Bordeaux; Univ. Bordeaux (I.P.), CNRS, ImmunoConcEpT, UMR 5164, Bordeaux; Alzheimer Research Center IM2A (B.D.), Salpêtrière Hospital, AP-HP, Sorbonne University, Paris; Univ. Bordeaux (V.P.), CNRS, Institut des Maladies Neuroégénératives, UMR 5293, Bordeaux; Pôle de Neurosciences Cliniques (V.P.), Centre Mémoire de Ressources et de Recherche, CHU Bordeaux, France
| | - Carole Dufouil
- From the Univ. Bordeaux (V.B., G.C., C.D.), Inserm, Bordeaux Population Health, UMR1219, Bordeaux; CIC 1401 EC (V.B., G.C., C.D.), Pôle Santé Publique, CHU de Bordeaux; Laboratory of Immunology and Immunogenetics (I.P.), Resources Biological Center (CRB), CHU Bordeaux; Univ. Bordeaux (I.P.), CNRS, ImmunoConcEpT, UMR 5164, Bordeaux; Alzheimer Research Center IM2A (B.D.), Salpêtrière Hospital, AP-HP, Sorbonne University, Paris; Univ. Bordeaux (V.P.), CNRS, Institut des Maladies Neuroégénératives, UMR 5293, Bordeaux; Pôle de Neurosciences Cliniques (V.P.), Centre Mémoire de Ressources et de Recherche, CHU Bordeaux, France
| |
Collapse
|
27
|
Gonzalez-Ortiz F, Kirsebom BE, Contador J, Tanley JE, Selnes P, Gísladóttir B, Pålhaugen L, Suhr Hemminghyth M, Jarholm J, Skogseth R, Bråthen G, Grøndtvedt G, Bjørnerud A, Tecelao S, Waterloo K, Aarsland D, Fernández-Lebrero A, García-Escobar G, Navalpotro-Gómez I, Turton M, Hesthamar A, Kac PR, Nilsson J, Luchsinger J, Hayden KM, Harrison P, Puig-Pijoan A, Zetterberg H, Hughes TM, Suárez-Calvet M, Karikari TK, Fladby T, Blennow K. Plasma brain-derived tau is an amyloid-associated neurodegeneration biomarker in Alzheimer's disease. Nat Commun 2024; 15:2908. [PMID: 38575616 PMCID: PMC10995141 DOI: 10.1038/s41467-024-47286-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/26/2024] [Indexed: 04/06/2024] Open
Abstract
Staging amyloid-beta (Aβ) pathophysiology according to the intensity of neurodegeneration could identify individuals at risk for cognitive decline in Alzheimer's disease (AD). In blood, phosphorylated tau (p-tau) associates with Aβ pathophysiology but an AD-type neurodegeneration biomarker has been lacking. In this multicenter study (n = 1076), we show that brain-derived tau (BD-tau) in blood increases according to concomitant Aβ ("A") and neurodegeneration ("N") abnormalities (determined using cerebrospinal fluid biomarkers); We used blood-based A/N biomarkers to profile the participants in this study; individuals with blood-based p-tau+/BD-tau+ profiles had the fastest cognitive decline and atrophy rates, irrespective of the baseline cognitive status. Furthermore, BD-tau showed no or much weaker correlations with age, renal function, other comorbidities/risk factors and self-identified race/ethnicity, compared with other blood biomarkers. Here we show that blood-based BD-tau is a biomarker for identifying Aβ-positive individuals at risk of short-term cognitive decline and atrophy, with implications for clinical trials and implementation of anti-Aβ therapies.
Collapse
Affiliation(s)
- Fernando Gonzalez-Ortiz
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.
| | - Bjørn-Eivind Kirsebom
- Department of Neurology, University Hospital of North Norway, Tromsø, Norway
- Department of Psychology, Faculty of Health Sciences, The Arctic University of Norway, Tromsø, Norway
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| | - José Contador
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
- Cognitive Decline and Movement Disorders Unit, Neurology Department, Hospital del Mar, Barcelona, Spain
| | - Jordan E Tanley
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Per Selnes
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
| | | | - Lene Pålhaugen
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
| | - Mathilde Suhr Hemminghyth
- Research Group for Age-Related Medicine, Haugesund Hospital, Haugesund, Norway
- Department of Neuropsychology, Haugesund Hospital, Haugesund, Norway
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway
| | - Jonas Jarholm
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
| | - Ragnhild Skogseth
- Department of Geriatric Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
- Department of Clinical Sciences, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Geir Bråthen
- Department of Neurology and Clinical Neurophysiology, University Hospital of Trondheim, Trondheim, Norway
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Gøril Grøndtvedt
- Department of Neurology and Clinical Neurophysiology, University Hospital of Trondheim, Trondheim, Norway
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Atle Bjørnerud
- Department of Physics, University of Oslo, Oslo, Norway
- Unit for Computational Radiology and Artificial Intelligence, Oslo University hospital, Oslo, Norway
- Department of Psychology, Faculty for Social Sciences, University of Oslo, Oslo, Norway
| | - Sandra Tecelao
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
| | - Knut Waterloo
- Department of Neurology, University Hospital of North Norway, Tromsø, Norway
- Department of Psychology, Faculty of Health Sciences, The Arctic University of Norway, Tromsø, Norway
| | - Dag Aarsland
- Department of Old Age Psychiatry. Institute of psychiatry, Psychology and Neuroscience King's College London, London, UK
- Centre for Age-Related Diseases, University Hospital Stavanger, Stavanger, Norway
| | - Aida Fernández-Lebrero
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
- Cognitive Decline and Movement Disorders Unit, Neurology Department, Hospital del Mar, Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, 08003, Spain
- ERA-Net on Cardiovascular Diseases (ERA-CVD) consortium, Barcelona, Spain
| | - Greta García-Escobar
- Hospital del Mar Research Institute, Barcelona, Spain
- ERA-Net on Cardiovascular Diseases (ERA-CVD) consortium, Barcelona, Spain
| | - Irene Navalpotro-Gómez
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
- Cognitive Decline and Movement Disorders Unit, Neurology Department, Hospital del Mar, Barcelona, Spain
- ERA-Net on Cardiovascular Diseases (ERA-CVD) consortium, Barcelona, Spain
| | - Michael Turton
- Bioventix Plc, 7 Romans Business Park, East Street, Farnham, Surrey, GU9 7SX, UK
| | - Agnes Hesthamar
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Przemyslaw R Kac
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Johanna Nilsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Jose Luchsinger
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Kathleen M Hayden
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Peter Harrison
- Bioventix Plc, 7 Romans Business Park, East Street, Farnham, Surrey, GU9 7SX, UK
| | - Albert Puig-Pijoan
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
- ERA-Net on Cardiovascular Diseases (ERA-CVD) consortium, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Timothy M Hughes
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
- Cognitive Decline and Movement Disorders Unit, Neurology Department, Hospital del Mar, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tormod Fladby
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
28
|
Jarek DJ, Mizerka H, Nuszkiewicz J, Szewczyk-Golec K. Evaluating p-tau217 and p-tau231 as Biomarkers for Early Diagnosis and Differentiation of Alzheimer's Disease: A Narrative Review. Biomedicines 2024; 12:786. [PMID: 38672142 PMCID: PMC11048667 DOI: 10.3390/biomedicines12040786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
The escalating prevalence of Alzheimer's disease (AD) highlights the urgent need to develop reliable biomarkers for early diagnosis and intervention. AD is characterized by the pathological accumulation of amyloid-beta plaques and tau neurofibrillary tangles. Phosphorylated tau (p-tau) proteins, particularly p-tau217 and p-tau231, have been identified as promising biomarker candidates to differentiate the disease progression from preclinical stages. This narrative review is devoted to a critical evaluation of the diagnostic accuracy, sensitivity, and specificity of p-tau217 and p-tau231 levels in the detection of AD, measured in plasma, serum, and cerebrospinal fluid, compared to established biomarkers. Additionally, the efficacy of these markers in distinguishing AD from other neurodegenerative disorders is examined. The significant advances offered by p-tau217 and p-tau231 in AD diagnostics are highlighted, demonstrating their unique utility in early detection and differential diagnosis. This comprehensive analysis not only confirms the excellent diagnostic capabilities of these markers, but also deepens the understanding of the molecular dynamics of AD, contributing to the broader scientific discourse on neurodegenerative diseases. This review is aimed to provide key information for researchers and clinicians across disciplines, filling interdisciplinary gaps and highlighting the role of p-tau proteins in revolutionizing AD research and clinical practice.
Collapse
Affiliation(s)
- Dorian Julian Jarek
- Student Research Club of Medical Biology and Biochemistry, Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland;
| | - Hubert Mizerka
- Student Research Club of Medical Biology and Biochemistry, Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland;
| | - Jarosław Nuszkiewicz
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland;
| | - Karolina Szewczyk-Golec
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland;
| |
Collapse
|
29
|
Sarto J, Esteller-Gauxax D, Tort-Merino A, Guillén N, Pérez-Millan A, Falgàs N, Borrego-Écija S, Fernández-Villullas G, Bosch B, Juncà-Parella J, Antonell A, Naranjo L, Ruiz-García R, Augé JM, Sánchez-Valle R, Lladó A, Balasa M. Impact of demographics and comorbid conditions on plasma biomarkers concentrations and their diagnostic accuracy in a memory clinic cohort. J Neurol 2024; 271:1973-1984. [PMID: 38151575 DOI: 10.1007/s00415-023-12153-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/29/2023]
Abstract
Plasma biomarkers have emerged as promising tools for identifying amyloid beta (Aβ) pathology. Before implementation in routine clinical practice, confounding factors modifying their concentration beyond neurodegenerative diseases should be identified. We studied the association of a comprehensive list of demographics, comorbidities, medication and laboratory parameters with plasma p-tau181, glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) on a prospective memory clinic cohort and studied their impact on diagnostic accuracy for discriminating CSF/amyloid PET-defined Aβ status. Three hundred sixty patients (mean age 66.5 years, 55% females, 53% Aβ positive) were included. Sex, age and Aβ status-adjusted models showed that only estimated glomerular filtration rate (eGFR, standardized β -0.115 [-0.192 to -0.035], p = 0.005) was associated with p-tau181 levels, although with a much smaller effect than Aβ status (0.685 [0.607-0.763], p < 0.001). Age, sex, body mass index (BMI), Charlson comorbidity index (CCI) and eGFR significantly modified GFAP concentration. Age, blood volume (BV) and eGFR were associated with NfL levels. p-tau181 predicted Aβ status with 87% sensitivity and specificity with no relevant increase in diagnostic performance by adding any of the confounding factors. Using two cut-offs, plasma p-tau181 could have spared 62% of amyloid-PET/CSF testing. Excluding patients with chronic kidney disease did not change the proposed cut-offs nor the diagnostic performance. In conclusion, in a memory clinic cohort, age, sex, eGFR, BMI, BV and CCI slightly modified plasma p-tau181, GFAP and NfL concentrations but their impact on the diagnostic accuracy of plasma biomarkers for Aβ status discrimination was minimal.
Collapse
Affiliation(s)
- Jordi Sarto
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036, Barcelona, Spain
| | - Diana Esteller-Gauxax
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036, Barcelona, Spain
| | - Adrià Tort-Merino
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036, Barcelona, Spain
| | - Núria Guillén
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036, Barcelona, Spain
| | - Agnès Pérez-Millan
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036, Barcelona, Spain
| | - Neus Falgàs
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036, Barcelona, Spain
| | - Sergi Borrego-Écija
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036, Barcelona, Spain
| | - Guadalupe Fernández-Villullas
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036, Barcelona, Spain
| | - Beatriz Bosch
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036, Barcelona, Spain
| | - Jordi Juncà-Parella
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036, Barcelona, Spain
| | - Anna Antonell
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036, Barcelona, Spain
| | - Laura Naranjo
- Immunology Service, Biomedical Diagnostic Center, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Raquel Ruiz-García
- Immunology Service, Biomedical Diagnostic Center, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Josep María Augé
- Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Raquel Sánchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036, Barcelona, Spain
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Albert Lladó
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036, Barcelona, Spain
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Mircea Balasa
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036, Barcelona, Spain.
| |
Collapse
|
30
|
Momota Y, Bun S, Hirano J, Kamiya K, Ueda R, Iwabuchi Y, Takahata K, Yamamoto Y, Tezuka T, Kubota M, Seki M, Shikimoto R, Mimura Y, Kishimoto T, Tabuchi H, Jinzaki M, Ito D, Mimura M. Amyloid-β prediction machine learning model using source-based morphometry across neurocognitive disorders. Sci Rep 2024; 14:7633. [PMID: 38561395 PMCID: PMC10984960 DOI: 10.1038/s41598-024-58223-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
Previous studies have developed and explored magnetic resonance imaging (MRI)-based machine learning models for predicting Alzheimer's disease (AD). However, limited research has focused on models incorporating diverse patient populations. This study aimed to build a clinically useful prediction model for amyloid-beta (Aβ) deposition using source-based morphometry, using a data-driven algorithm based on independent component analyses. Additionally, we assessed how the predictive accuracies varied with the feature combinations. Data from 118 participants clinically diagnosed with various conditions such as AD, mild cognitive impairment, frontotemporal lobar degeneration, corticobasal syndrome, progressive supranuclear palsy, and psychiatric disorders, as well as healthy controls were used for the development of the model. We used structural MR images, cognitive test results, and apolipoprotein E status for feature selection. Three-dimensional T1-weighted images were preprocessed into voxel-based gray matter images and then subjected to source-based morphometry. We used a support vector machine as a classifier. We applied SHapley Additive exPlanations, a game-theoretical approach, to ensure model accountability. The final model that was based on MR-images, cognitive test results, and apolipoprotein E status yielded 89.8% accuracy and a receiver operating characteristic curve of 0.888. The model based on MR-images alone showed 84.7% accuracy. Aβ-positivity was correctly detected in non-AD patients. One of the seven independent components derived from source-based morphometry was considered to represent an AD-related gray matter volume pattern and showed the strongest impact on the model output. Aβ-positivity across neurological and psychiatric disorders was predicted with moderate-to-high accuracy and was associated with a probable AD-related gray matter volume pattern. An MRI-based data-driven machine learning approach can be beneficial as a diagnostic aid.
Collapse
Affiliation(s)
- Yuki Momota
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
- Department of Functional Brain Imaging Research, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba-Shi, Chiba, 263-8555, Japan
| | - Shogyoku Bun
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
| | - Jinichi Hirano
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
| | - Kei Kamiya
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Ryo Ueda
- Office of Radiation Technology, Keio University Hospital, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Yu Iwabuchi
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Keisuke Takahata
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
- Department of Functional Brain Imaging Research, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba-Shi, Chiba, 263-8555, Japan
| | - Yasuharu Yamamoto
- Department of Functional Brain Imaging Research, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba-Shi, Chiba, 263-8555, Japan
| | - Toshiki Tezuka
- Department of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Masahito Kubota
- Department of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Morinobu Seki
- Department of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Ryo Shikimoto
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Yu Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Taishiro Kishimoto
- Psychiatry Department, Donald and Barbara Zucker School of Medicine, Hempstead, NY, 11549, USA
- Hills Joint Research Laboratory for Future Preventive Medicine and Wellness, Keio University School of Medicine, Mori JP Tower F7, 1-3-1 Azabudai, Minato-ku, Tokyo, 106-0041, Japan
| | - Hajime Tabuchi
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Masahiro Jinzaki
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Daisuke Ito
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
- Memory Center, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Masaru Mimura
- Center for Preventive Medicine, Keio University, Mori JP Tower 7th Floor, 1-3-1 Azabudai, Minato-ku, Tokyo, 106-0041, Japan
| |
Collapse
|
31
|
Rosano C, Karikari TK, Cvejkus R, Bellaver B, Ferreira PCL, Zmuda J, Wheeler V, Pascoal TA, Miljkovic I. Sex differences in Alzheimer's disease blood biomarkers in a Caribbean population of African ancestry: The Tobago Health Study. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2024; 10:e12460. [PMID: 38617114 PMCID: PMC11010267 DOI: 10.1002/trc2.12460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 04/16/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) is increasing in the Caribbean, especially for persons of African ancestry (PAA) and women. However, studies have mostly utilized surveys without AD biomarkers. METHODS In the Tobago Health Study (n = 309; 109 women, mean age 70.3 ± 6.6), we assessed sex differences and risk factors for serum levels of phosphorylated tau-181 (p-tau181), amyloid-beta (Aβ)42/40 ratio, glial fibrillary acidic protein (GFAP), and neurofilament light chain (NfL). Blood samples were from 2010 to 2013 for men and from 2019 to 2023 for women. RESULTS Women were more obese, hypertensive, and sedentary but reported less smoking and alcohol use than men (age-adjusted p < 0.04). Compared to men, women had worse levels of AD biomarkers, with higher p-tau181 and lower Aβ42/40, independent of covariates (p < 0.001). In sex-stratified analyses, higher p-tau181 was associated with older age in women and with hypertension in men. GFAP and NfL did not differ by sex. DISCUSSION Women had worse AD biomarkers than men, unexplained by age, cardiometabolic diseases, or lifestyle. Studying risk factors for AD in PAA is warranted, especially for women earlier in life.
Collapse
Affiliation(s)
- Caterina Rosano
- Department of EpidemiologySchool of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Thomas K. Karikari
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Ryan Cvejkus
- Department of EpidemiologySchool of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Bruna Bellaver
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | | - Joseph Zmuda
- Department of EpidemiologySchool of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Victor Wheeler
- Tobago Health Studies OfficeScarboroughTobagoTrinidad and Tobago
| | - Tharick A. Pascoal
- Department of NeurologySchool of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Iva Miljkovic
- Department of EpidemiologySchool of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
32
|
Therriault J, Schindler SE, Salvadó G, Pascoal TA, Benedet AL, Ashton NJ, Karikari TK, Apostolova L, Murray ME, Verberk I, Vogel JW, La Joie R, Gauthier S, Teunissen C, Rabinovici GD, Zetterberg H, Bateman RJ, Scheltens P, Blennow K, Sperling R, Hansson O, Jack CR, Rosa-Neto P. Biomarker-based staging of Alzheimer disease: rationale and clinical applications. Nat Rev Neurol 2024; 20:232-244. [PMID: 38429551 DOI: 10.1038/s41582-024-00942-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2024] [Indexed: 03/03/2024]
Abstract
Disease staging, whereby the spatial extent and load of brain pathology are used to estimate the severity of Alzheimer disease (AD), is pivotal to the gold-standard neuropathological diagnosis of AD. Current in vivo diagnostic frameworks for AD are based on abnormal concentrations of amyloid-β and tau in the cerebrospinal fluid or on PET scans, and breakthroughs in molecular imaging have opened up the possibility of in vivo staging of AD. Focusing on the key principles of disease staging shared across several areas of medicine, this Review highlights the potential for in vivo staging of AD to transform our understanding of preclinical AD, refine enrolment criteria for trials of disease-modifying therapies and aid clinical decision-making in the era of anti-amyloid therapeutics. We provide a state-of-the-art review of recent biomarker-based AD staging systems and highlight their contributions to the understanding of the natural history of AD. Furthermore, we outline hypothetical frameworks to stage AD severity using more accessible fluid biomarkers. In addition, by applying amyloid PET-based staging to recently published anti-amyloid therapeutic trials, we highlight how biomarker-based disease staging frameworks could illustrate the numerous pathological changes that have already taken place in individuals with mildly symptomatic AD. Finally, we discuss challenges related to the validation and standardization of disease staging and provide a forward-looking perspective on potential clinical applications.
Collapse
Affiliation(s)
- Joseph Therriault
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, Quebec, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.
| | - Suzanne E Schindler
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Gemma Salvadó
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Tharick A Pascoal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andréa Lessa Benedet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- NIHR Biomedical Research Centre, South London and Maudsley NHS Foundation, London, UK
| | - Thomas K Karikari
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Liana Apostolova
- Department of Neurology, University of Indiana School of Medicine, Indianapolis, IN, USA
| | | | - Inge Verberk
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Jacob W Vogel
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Department of Clinical Sciences, Malmö, SciLifeLab, Lund University, Lund, Sweden
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Serge Gauthier
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Charlotte Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
- Tracy Family SILQ Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Philip Scheltens
- Alzheimer Centre Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Reisa Sperling
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | | | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
33
|
Mendes AJ, Ribaldi F, Lathuiliere A, Ashton NJ, Janelidze S, Zetterberg H, Scheffler M, Assal F, Garibotto V, Blennow K, Hansson O, Frisoni GB. Head-to-head study of diagnostic accuracy of plasma and cerebrospinal fluid p-tau217 versus p-tau181 and p-tau231 in a memory clinic cohort. J Neurol 2024; 271:2053-2066. [PMID: 38195896 PMCID: PMC10972950 DOI: 10.1007/s00415-023-12148-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND AND OBJECTIVE Phosphorylated tau (p-tau) 217 has recently received attention because it seems more reliable than other p-tau variants for identifying Alzheimer's disease (AD) pathology. Thus, we aimed to compare the diagnostic accuracy of plasma and CSF p-tau217 with p-tau181 and p-tau231 in a memory clinic cohort. METHODS The study included 114 participants (CU = 33; MCI = 67; Dementia = 14). The p-tau variants were correlated versus continuous measures of amyloid (A) and tau (T)-PET. The p-tau phospho-epitopes were assessed through: (i) effect sizes (δ) between diagnostic and A ± and T ± groups; (ii) receiver operating characteristic (ROC) analyses in A-PET and T-PET. RESULTS The correlations between both plasma and CSF p-tau217 with A-PET and T-PET (r range 0.64-0.83) were stronger than those of p-tau181 (r range 0.44-0.79) and p-tau231 (r range 0.46-0.76). Plasma p-tau217 showed significantly higher diagnostic accuracy than p-tau181 and p-tau231 in (i) differences between diagnostic and biomarker groups (δrange: p-tau217 = 0.55-0.96; p-tau181 = 0.51-0.67; p-tau231 = 0.53-0.71); (ii) ROC curves to identify A-PET and T-PET positivity (AUCaverage: p-tau217 = 0.96; p-tau181 = 0.76; p-tau231 = 0.79). On the other hand, CSF p-tau217 (AUCaverage = 0.95) did not reveal significant differences in A-PET and T-PET AUC than p-tau181 (AUCaverage = 0.88) and p-tau231 (AUCaverage = 0.89). DISCUSSION Plasma p-tau217 demonstrated better performance in the identification of AD pathology and clinical phenotypes in comparison with other variants of p-tau in a memory clinic cohort. Furthermore, p-tau217 had comparable performance in plasma and CSF. Our findings suggest the potential of plasma p-tau217 in the diagnosis and screening for AD, which could allow for a decreased use of invasive biomarkers in the future.
Collapse
Affiliation(s)
- Augusto J Mendes
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland.
- Geneva Memory Center, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Geneva, Switzerland.
| | - Federica Ribaldi
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Geneva Memory Center, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Geneva, Switzerland
| | - Aurelien Lathuiliere
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Geneva Memory Center, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Geneva, Switzerland
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- King's College London, Institute of Psychiatry, Psychology and Neuroscience Maurice Wohl Institute Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Max Scheffler
- Division of Radiology, Geneva University Hospitals, Geneva, Switzerland
| | - Frédéric Assal
- Division of Neurology, Department of Clinical Neurosciences, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Valentina Garibotto
- Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland
- CIBM Center for Biomedical Imaging, Geneva, Switzerland
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, People's Republic of China
| | - Oskar Hansson
- Clinical Memory Research Unit, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Giovanni B Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Geneva Memory Center, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
34
|
Kac PR, González-Ortiz F, Emeršič A, Dulewicz M, Koutarapu S, Turton M, An Y, Smirnov D, Kulczyńska-Przybik A, Varma VR, Ashton NJ, Montoliu-Gaya L, Camporesi E, Winkel I, Paradowski B, Moghekar A, Troncoso JC, Lashley T, Brinkmalm G, Resnick SM, Mroczko B, Kvartsberg H, Gregorič Kramberger M, Hanrieder J, Čučnik S, Harrison P, Zetterberg H, Lewczuk P, Thambisetty M, Rot U, Galasko D, Blennow K, Karikari TK. Plasma p-tau212 antemortem diagnostic performance and prediction of autopsy verification of Alzheimer's disease neuropathology. Nat Commun 2024; 15:2615. [PMID: 38521766 PMCID: PMC10960791 DOI: 10.1038/s41467-024-46876-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 03/04/2024] [Indexed: 03/25/2024] Open
Abstract
Blood phosphorylated tau (p-tau) biomarkers, including p-tau217, show high associations with Alzheimer's disease (AD) neuropathologic change and clinical stage. Certain plasma p-tau217 assays recognize tau forms phosphorylated additionally at threonine-212, but the contribution of p-tau212 alone to AD is unknown. We developed a blood-based immunoassay that is specific to p-tau212 without cross-reactivity to p-tau217. Here, we examined the diagnostic utility of plasma p-tau212. In five cohorts (n = 388 participants), plasma p-tau212 showed high performances for AD diagnosis and for the detection of both amyloid and tau pathology, including at autopsy as well as in memory clinic populations. The diagnostic accuracy and fold changes of plasma p-tau212 were similar to those for p-tau217 but higher than p-tau181 and p-tau231. Immunofluorescent staining of brain tissue slices showed prominent p-tau212 reactivity in neurofibrillary tangles that co-localized with p-tau217 and p-tau202/205. These findings support plasma p-tau212 as a peripherally accessible biomarker of AD pathophysiology.
Collapse
Grants
- R01 AG075336 NIA NIH HHS
- R01 AG078796 NIA NIH HHS
- R01 AG083874 NIA NIH HHS
- R01 AG072641 NIA NIH HHS
- R01 AG068398 NIA NIH HHS
- R21 AG078538 NIA NIH HHS
- R01 MH108509 NIMH NIH HHS
- RF1 AG025516 NIA NIH HHS
- P30 AG066468 NIA NIH HHS
- R01 AG073267 NIA NIH HHS
- P01 AG025204 NIA NIH HHS
- #AARF-21-850325 Alzheimer's Association
- R01 MH121619 NIMH NIH HHS
- R37 AG023651 NIA NIH HHS
- R21 AG080705 NIA NIH HHS
- U24 AG082930 NIA NIH HHS
- RF1 AG052525 NIA NIH HHS
- R01 AG053952 NIA NIH HHS
- Demensförbundet (Dementia Association)
- Anna Lisa and Brother Björnsson’s Foundation
- BrightFocus Foundation (BrightFocus)
- Alzheimerfonden
- the Swedish Dementia Foundation, Gun and Bertil Stohnes Foundation, Åhlén-stifelsen, and Gamla Tjänarinnor Foundation.
- Vetenskapsrådet (Swedish Research Council)
- Alzheimer’s Drug Discovery Foundation (ADDF)
- EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
- EU Joint Programme – Neurodegenerative Disease Research (Programi i Përbashkët i BE-së për Kërkimet mbi Sëmundjet Neuro-degjeneruese)
- Swedish State Support for Clinical Research (#ALFGBG-71320), the AD Strategic Fund and the Alzheimer’s Association (#ADSF-21-831376-C, #ADSF-21-831381-C, and #ADSF-21-831377-C) the Bluefield Project, the Olav Thon Foundation, the Erling-Persson Family Foundation, Hjärnfonden, Sweden (#FO2022-0270), the National Institute for Health and Care Research University College London Hospitals Biomedical Research Centre, and the UK Dementia Research Institute at UCL (UKDRI-1003)
- the Swedish Alzheimer Foundation (#AF-930351, #AF-939721 and #AF-968270), Hjärnfonden, Sweden (#FO2017-0243 and #ALZ2022-0006), the Swedish state under the agreement between the Swedish government and the County Councils, the ALF-agreement (#ALFGBG-715986 and #ALFGBG-965240), the National Institute of Health (NIH), USA, (grant #1R01AG068398-01) the Alzheimer’s Association 2021 Zenith Award (ZEN-21-848495).
- Alzheimer’s Association
- National Institute of Health (NIH) - (R01 AG083874-01, U24 AG082930-01 1 RF1 AG052525-01A1, 5 P30 AG066468-04, 5 R01 AG053952-05, 3 R01 MH121619-04S1, 5 R37 AG023651-18, 2 RF1 AG025516-12A1, 5 R01 AG073267-02, 2 R01 MH108509-06, 5 R01 AG075336-02, 5 R01 AG072641-02, 2 P01 AG025204-16) the Swedish Alzheimer Foundation (Alzheimerfonden), the Aina (Ann) Wallströms and Mary-Ann Sjöbloms stiftelsen, and the Emil och Wera Cornells stiftelsen.
Collapse
Affiliation(s)
- Przemysław R Kac
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden.
| | - Fernando González-Ortiz
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, 431 80, Sweden
| | - Andreja Emeršič
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, 1000, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Maciej Dulewicz
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
| | - Srinivas Koutarapu
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
| | | | - Yang An
- Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Denis Smirnov
- Department of Neurosciences, University of California, San Diego, CA, 92161, USA
| | | | - Vijay R Varma
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
- Department of Old Age Psychiatry, King's College London, London, SE5 8AF, UK
- Centre for Age-Related Medicine, Stavanger University Hospital, 4011, Stavanger, Norway
- South London & Maudsley NHS Foundation, NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia, SE5 8AF, London, UK
| | - Laia Montoliu-Gaya
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
| | - Elena Camporesi
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
| | - Izabela Winkel
- Dementia Disorders Center, Medical University of Wrocław, 59-330, Ścinawa, Poland
| | - Bogusław Paradowski
- Department of Neurology, Medical University of Wrocław, 50-556, Wrocław, Poland
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Juan C Troncoso
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Pathology, John Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Tammaryn Lashley
- Department of Neurodegenerative diseases, UCL Queen Square Institute of Neurology, WC1N 1PJ, London, UK
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, Białystok, 15-269, Poland
| | - Hlin Kvartsberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, 431 80, Sweden
| | - Milica Gregorič Kramberger
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, 1000, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, 141 52, Huddinge, Sweden
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1E 6BT, UK
| | - Saša Čučnik
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, 1000, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- Department of Rheumatology, University Medical Center Ljubljana, Ljubljana, Slovenia
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, 431 80, Sweden
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1E 6BT, UK
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK
- Hong Kong Center for Neurodegenerative Diseases, HKCeND, Hong Kong, 1512-1518, China
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Piotr Lewczuk
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, Białystok, 15-269, Poland
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Madhav Thambisetty
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Uroš Rot
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, 1000, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Douglas Galasko
- Department of Neurosciences, University of California, San Diego, CA, 92161, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, 431 80, Sweden
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 80, Sweden
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| |
Collapse
|
35
|
Nashiro K, Yoo HJ, Cho C, Kim AJ, Nasseri P, Min J, Dahl MJ, Mercer N, Choupan J, Choi P, Lee HRJ, Choi D, Alemu K, Herrera AY, Ng NF, Thayer JF, Mather M. Heart rate and breathing effects on attention and memory (HeartBEAM): study protocol for a randomized controlled trial in older adults. Trials 2024; 25:190. [PMID: 38491546 PMCID: PMC10941428 DOI: 10.1186/s13063-024-07943-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/18/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND In healthy people, the "fight-or-flight" sympathetic system is counterbalanced by the "rest-and-digest" parasympathetic system. As we grow older, the parasympathetic system declines as the sympathetic system becomes hyperactive. In our prior heart rate variability biofeedback and emotion regulation (HRV-ER) clinical trial, we found that increasing parasympathetic activity through daily practice of slow-paced breathing significantly decreased plasma amyloid-β (Aβ) in healthy younger and older adults. In healthy adults, higher plasma Aβ is associated with greater risk of Alzheimer's disease (AD). Our primary goal of this trial is to reproduce and extend our initial findings regarding effects of slow-paced breathing on Aβ. Our secondary objectives are to examine the effects of daily slow-paced breathing on brain structure and the rate of learning. METHODS Adults aged 50-70 have been randomized to practice one of two breathing protocols twice daily for 9 weeks: (1) "slow-paced breathing condition" involving daily cognitive training followed by slow-paced breathing designed to maximize heart rate oscillations or (2) "random-paced breathing condition" involving daily cognitive training followed by random-paced breathing to avoid increasing heart rate oscillations. The primary outcomes are plasma Aβ40 and Aβ42 levels and plasma Aβ42/40 ratio. The secondary outcomes are brain perivascular space volume, hippocampal volume, and learning rates measured by cognitive training performance. Other pre-registered outcomes include plasma pTau-181/tTau ratio and urine Aβ42. Recruitment began in January 2023. Interventions are ongoing and will be completed by the end of 2023. DISCUSSION Our HRV-ER trial was groundbreaking in demonstrating that a behavioral intervention can reduce plasma Aβ levels relative to a randomized control group. We aim to reproduce these findings while testing effects on brain clearance pathways and cognition. TRIAL REGISTRATION ClinicalTrials.gov NCT05602220. Registered on January 12, 2023.
Collapse
Affiliation(s)
- Kaoru Nashiro
- University of Southern California, Los Angeles, USA.
| | - Hyun Joo Yoo
- University of Southern California, Los Angeles, USA
| | | | | | | | - Jungwon Min
- University of Southern California, Los Angeles, USA
| | - Martin J Dahl
- University of Southern California, Los Angeles, USA
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Noah Mercer
- University of Southern California, Los Angeles, USA
| | - Jeiran Choupan
- University of Southern California, Los Angeles, USA
- NeuroScope Inc., New York, USA
| | - Paul Choi
- University of Southern California, Los Angeles, USA
| | | | - David Choi
- University of Southern California, Los Angeles, USA
| | | | | | | | | | - Mara Mather
- University of Southern California, Los Angeles, USA
| |
Collapse
|
36
|
Brum WS, Cullen NC, Therriault J, Janelidze S, Rahmouni N, Stevenson J, Servaes S, Benedet AL, Zimmer ER, Stomrud E, Palmqvist S, Zetterberg H, Frisoni GB, Ashton NJ, Blennow K, Mattsson-Carlgren N, Rosa-Neto P, Hansson O. A blood-based biomarker workflow for optimal tau-PET referral in memory clinic settings. Nat Commun 2024; 15:2311. [PMID: 38486040 PMCID: PMC10940585 DOI: 10.1038/s41467-024-46603-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/04/2024] [Indexed: 03/18/2024] Open
Abstract
Blood-based biomarkers for screening may guide tau positrion emissition tomography (PET) scan referrals to optimize prognostic evaluation in Alzheimer's disease. Plasma Aβ42/Aβ40, pTau181, pTau217, pTau231, NfL, and GFAP were measured along with tau-PET in memory clinic patients with subjective cognitive decline, mild cognitive impairment or dementia, in the Swedish BioFINDER-2 study (n = 548) and in the TRIAD study (n = 179). For each plasma biomarker, cutoffs were determined for 90%, 95%, or 97.5% sensitivity to detect tau-PET-positivity. We calculated the percentage of patients below the cutoffs (who would not undergo tau-PET; "saved scans") and the tau-PET-positivity rate among participants above the cutoffs (who would undergo tau-PET; "positive predictive value"). Generally, plasma pTau217 performed best. At the 95% sensitivity cutoff in both cohorts, pTau217 resulted in avoiding nearly half tau-PET scans, with a tau-PET-positivity rate among those who would be referred for a scan around 70%. And although tau-PET was strongly associated with subsequent cognitive decline, in BioFINDER-2 it predicted cognitive decline only among individuals above the referral cutoff on plasma pTau217, supporting that this workflow could reduce prognostically uninformative tau-PET scans. In conclusion, plasma pTau217 may guide selection of patients for tau-PET, when accurate prognostic information is of clinical value.
Collapse
Affiliation(s)
- Wagner S Brum
- Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Nicholas C Cullen
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Joseph Therriault
- McGill Centre for Studies in Aging, McGill University, Verdun, Quebec, QC, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Quebec, QC, Canada
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
| | - Nesrine Rahmouni
- McGill Centre for Studies in Aging, McGill University, Verdun, Quebec, QC, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Quebec, QC, Canada
| | - Jenna Stevenson
- McGill Centre for Studies in Aging, McGill University, Verdun, Quebec, QC, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Quebec, QC, Canada
| | - Stijn Servaes
- McGill Centre for Studies in Aging, McGill University, Verdun, Quebec, QC, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Quebec, QC, Canada
| | - Andrea L Benedet
- Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Eduardo R Zimmer
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- McGill Centre for Studies in Aging, McGill University, Verdun, Quebec, QC, Canada
- Department of Pharmacology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Graduate Program in Biological Sciences: Pharmacology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Lund, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Lund, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Giovanni B Frisoni
- Memory Center, Geneva University and University Hospital, Geneva, Switzerland
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- King's College London, Institute of Psychiatry, Psychology and Neuroscience Maurice Wohl Institute Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Pedro Rosa-Neto
- McGill Centre for Studies in Aging, McGill University, Verdun, Quebec, QC, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Quebec, QC, Canada
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
37
|
Chen Y, Zeng X, Lee J, Sehrawat A, Lafferty TK, Boslett JJ, Klunk WE, Pascoal TA, Villemagne VL, Cohen AD, Lopez O, Yates NA, Karikari TK. Effect of blood collection tube containing protease inhibitors on the pre-analytical stability of Alzheimer's disease plasma biomarkers. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.05.24303504. [PMID: 38496591 PMCID: PMC10942510 DOI: 10.1101/2024.03.05.24303504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
INTRODUCTION The reliability of plasma Alzheimer's disease (AD) biomarkers can be compromised by protease-induced degradation. This limits the feasibility of conducting plasma biomarker studies in environments that lack the capacity for immediate processing and appropriate storage of blood samples. We hypothesized that blood collection tube supplementation with protease inhibitors can improve the stability of plasma biomarkers at room temperatures (RT). This study conducted a comparative analysis of blood biomarker stability in traditional ethylenediaminetetraacetic acid (EDTA) tubes versus BD™ P100 collection tubes, the latter being coated with a protease inhibitor cocktail. The stability of six plasma AD biomarkers was evaluated over time under RT conditions. METHODS We evaluated three experimental approaches. In Approach 1, pooled plasma samples underwent storage at RT for up to 96 hours. In Approach 2, plasma samples isolated upfront from whole blood collected into EDTA or P100 tubes were stored at RT for 0h or 24h before biomarker measurements. In Approach 3, whole blood samples were collected into paired EDTA or P100 tubes, followed by storage at RT for 0h or 24h before isolating the plasma for analyses. Biomarkers were measured with Single Molecule Array (Simoa) and immunoprecipitation-mass spectrometry (IP-MS) assays. RESULTS Both the IP-MS and Simoa methods revealed that the use of P100 tubes significantly improved the stability of Aβ42 and Aβ40 across all approaches. Additionally, the Aβ42/Aβ40 ratio levels were significantly stabilized only in the IP-MS assay in Approach 3. No significant differences were observed in the levels of plasma p-tau181, GFAP, and NfL for samples collected using either tube type in any of the approaches. CONCLUSION Supplementation of blood collection tubes with protease inhibitors could reduce the protease-induced degradation of plasma Aβ42 and Aβ40, and the Aβ ratio for IP-MS assay. This has crucial implications for preanalytical procedures, particularly in resource-limited settings.
Collapse
|
38
|
Miller MW, Wolf EJ, Zhao X, Logue MW, Hawn SE. An EWAS of dementia biomarkers and their associations with age, African ancestry, and PTSD. Clin Epigenetics 2024; 16:38. [PMID: 38431614 PMCID: PMC10908031 DOI: 10.1186/s13148-024-01649-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Large-scale cohort and epidemiological studies suggest that PTSD confers risk for dementia in later life but the biological mechanisms underlying this association remain unknown. This study examined this question by assessing the influences of PTSD, APOE ε4 genotypes, DNA methylation, and other variables on the age- and dementia-associated biomarkers Aβ40, Aβ42, GFAP, NfL, and pTau-181 measured in plasma. Our primary hypothesis was that PTSD would be associated with elevated levels of these markers. METHODS Analyses were based on data from a PTSD-enriched cohort of 849 individuals. We began by performing factor analyses of the biomarkers, the results of which identified a two-factor solution. Drawing from the ATN research framework, we termed the first factor, defined by Aβ40 and Aβ42, "Factor A" and the second factor, defined by GFAP, NfL and pTau-181, "Factor TN." Next, we performed epigenome-wide association analyses (EWAS) of the two-factor scores. Finally, using structural equation modeling (SEM), we evaluated (a) the influence of PTSD, age, APOE ε4 genotype and other covariates on levels of the ATN factors, and (b) tested the mediating influence of the EWAS-significant DNAm loci on these associations. RESULTS The Factor A EWAS identified one significant locus, cg13053408, in FANCD2OS. The Factor TN analysis identified 3 EWAS-significant associations: cg26033520 near ASCC1, cg23156469 in FAM20B, and cg15356923 in FAM19A4. The SEM showed age to be related to both factors, more so with Factor TN (β = 0.581, p < 0.001) than Factor A (β = 0.330, p < 0.001). Genotype-determined African ancestry was associated with lower Factor A (β = 0.196, p < 0.001). Contrary to our primary hypothesis, we found a modest negative bivariate correlation between PTSD and the TN factor scores (r = - 0.133, p < 0.001) attributable primarily to reduced levels of GFAP (r = - 0.128, p < 0.001). CONCLUSIONS This study identified novel epigenetic associations with ATN biomarkers and demonstrated robust age and ancestral associations that will be essential to consider in future efforts to develop the clinical applications of these tests. The association between PTSD and reduced GFAP, which has been reported previously, warrants further investigation.
Collapse
Affiliation(s)
- Mark W Miller
- National Center for PTSD, VA Boston Healthcare System (116B-2), 150 S. Huntington Avenue, Boston, MA, 02130, USA.
- Department of Psychiatry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA.
| | - Erika J Wolf
- National Center for PTSD, VA Boston Healthcare System (116B-2), 150 S. Huntington Avenue, Boston, MA, 02130, USA
- Department of Psychiatry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Xiang Zhao
- National Center for PTSD, VA Boston Healthcare System (116B-2), 150 S. Huntington Avenue, Boston, MA, 02130, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Mark W Logue
- National Center for PTSD, VA Boston Healthcare System (116B-2), 150 S. Huntington Avenue, Boston, MA, 02130, USA
- Department of Psychiatry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
- Biomedical Genetics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Sage E Hawn
- National Center for PTSD, VA Boston Healthcare System (116B-2), 150 S. Huntington Avenue, Boston, MA, 02130, USA
- Department of Psychology, Old Dominion University, Norfolk, VA, 23529, USA
| |
Collapse
|
39
|
Ashton NJ, Brum WS, Di Molfetta G, Benedet AL, Arslan B, Jonaitis E, Langhough RE, Cody K, Wilson R, Carlsson CM, Vanmechelen E, Montoliu-Gaya L, Lantero-Rodriguez J, Rahmouni N, Tissot C, Stevenson J, Servaes S, Therriault J, Pascoal T, Lleó A, Alcolea D, Fortea J, Rosa-Neto P, Johnson S, Jeromin A, Blennow K, Zetterberg H. Diagnostic Accuracy of a Plasma Phosphorylated Tau 217 Immunoassay for Alzheimer Disease Pathology. JAMA Neurol 2024; 81:255-263. [PMID: 38252443 PMCID: PMC10804282 DOI: 10.1001/jamaneurol.2023.5319] [Citation(s) in RCA: 72] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/10/2023] [Indexed: 01/23/2024]
Abstract
Importance Phosphorylated tau (p-tau) is a specific blood biomarker for Alzheimer disease (AD) pathology, with p-tau217 considered to have the most utility. However, availability of p-tau217 tests for research and clinical use has been limited. Expanding access to this highly accurate AD biomarker is crucial for wider evaluation and implementation of AD blood tests. Objective To determine the utility of a novel and commercially available immunoassay for plasma p-tau217 to detect AD pathology and evaluate reference ranges for abnormal amyloid β (Aβ) and longitudinal change across 3 selected cohorts. Design, Setting, and Participants This cohort study examined data from 3 single-center observational cohorts: cross-sectional and longitudinal data from the Translational Biomarkers in Aging and Dementia (TRIAD) cohort (visits October 2017-August 2021) and Wisconsin Registry for Alzheimer's Prevention (WRAP) cohort (visits February 2007-November 2020) and cross-sectional data from the Sant Pau Initiative on Neurodegeneration (SPIN) cohort (baseline visits March 2009-November 2021). Participants included individuals with and without cognitive impairment grouped by amyloid and tau (AT) status using PET or CSF biomarkers. Data were analyzed from February to June 2023. Exposures Magnetic resonance imaging, Aβ positron emission tomography (PET), tau PET, cerebrospinal fluid (CSF) biomarkers (Aβ42/40 and p-tau immunoassays), and plasma p-tau217 (ALZpath pTau217 assay). Main Outcomes and Measures Accuracy of plasma p-tau217 in detecting abnormal amyloid and tau pathology, longitudinal p-tau217 change according to baseline pathology status. Results The study included 786 participants (mean [SD] age, 66.3 [9.7] years; 504 females [64.1%] and 282 males [35.9%]). High accuracy was observed in identifying elevated Aβ (area under the curve [AUC], 0.92-0.96; 95% CI, 0.89-0.99) and tau pathology (AUC, 0.93-0.97; 95% CI, 0.84-0.99) across all cohorts. These accuracies were comparable with CSF biomarkers in determining abnormal PET signal. The detection of abnormal Aβ pathology using a 3-range reference yielded reproducible results and reduced confirmatory testing by approximately 80%. Longitudinally, plasma p-tau217 values showed an annual increase only in Aβ-positive individuals, with the highest increase observed in those with tau positivity. Conclusions and Relevance This study found that a commercially available plasma p-tau217 immunoassay accurately identified biological AD, comparable with results using CSF biomarkers, with reproducible cut-offs across cohorts. It detected longitudinal changes, including at the preclinical stage.
Collapse
Affiliation(s)
- Nicholas J. Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience Maurice Wohl Institute Clinical Neuroscience Institute, London, United Kingdom
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, United Kingdom
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Wagner S. Brum
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Guglielmo Di Molfetta
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Andrea L. Benedet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Burak Arslan
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Erin Jonaitis
- Wisconsin Alzheimer’s Institute, School of Medicine and Public Health, University of Wisconsin–Madison, Madison
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin–Madison, Madison
- Department of Medicine, Division of Geriatrics and Gerontology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison
| | - Rebecca E. Langhough
- Wisconsin Alzheimer’s Institute, School of Medicine and Public Health, University of Wisconsin–Madison, Madison
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin–Madison, Madison
- Department of Medicine, Division of Geriatrics and Gerontology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison
| | - Karly Cody
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin–Madison, Madison
| | - Rachael Wilson
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin–Madison, Madison
- Department of Medicine, Division of Geriatrics and Gerontology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison
| | - Cynthia M. Carlsson
- Wisconsin Alzheimer’s Institute, School of Medicine and Public Health, University of Wisconsin–Madison, Madison
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin–Madison, Madison
- Department of Medicine, Division of Geriatrics and Gerontology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison
- Geriatric Research Education and Clinical Center of the Wm. S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | | | - Laia Montoliu-Gaya
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Juan Lantero-Rodriguez
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Nesrine Rahmouni
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal
- Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Cecile Tissot
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal
- Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Jenna Stevenson
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal
- Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Stijn Servaes
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal
- Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal
- Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Tharick Pascoal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alberto Lleó
- Department of Neurology, Institut d’Investigacions Biomèdiques Sant Pau, Hospital de Sant Pau, Universitat Autònoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Catalunya
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Daniel Alcolea
- Department of Neurology, Institut d’Investigacions Biomèdiques Sant Pau, Hospital de Sant Pau, Universitat Autònoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Catalunya
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Juan Fortea
- Department of Neurology, Institut d’Investigacions Biomèdiques Sant Pau, Hospital de Sant Pau, Universitat Autònoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Catalunya
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal
- Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Sterling Johnson
- Wisconsin Alzheimer’s Institute, School of Medicine and Public Health, University of Wisconsin–Madison, Madison
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin–Madison, Madison
| | | | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin–Madison, Madison
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| |
Collapse
|
40
|
Huang L, Huang Q, Xie F, Guo Q. Neuropsychiatric symptoms in Alzheimer's continuum and their association with plasma biomarkers. J Affect Disord 2024; 348:200-206. [PMID: 38159651 DOI: 10.1016/j.jad.2023.12.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 12/02/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Little is known about association between neuropsychiatric symptoms and plasma biomarkers across the entire Alzheimer's continuum. METHODS A total of 305 individuals with amyloid-β (Aβ) deposition (determined by 18F-florbetapir PET) participated in this study, including cognitively normal controls (n = 53), subjective cognitive decline (SCD, n = 75), mild cognitive impairment (MCI, n = 74), and dementia (n = 103). Plasma biomarkers (Aβ1-42, Aβ1-40, total tau [t-tau], phosphorylated tau 181 [p-tau181], and neurofilament light [NfL]), apolipoprotein E (APOE) genotyping and Neuropsychiatric Inventory Questionnaire (NPI-Q) were completed. Neuropsychiatric symptoms were classified into four subsymdromes (hyperactivity, psychosis, affective, and apathy). Logistic regression analysis was conducted to investigate relationships between neuropsychiatric symptoms and plasma biomarkers. RESULTS About one-third of cognitively unimpaired individuals (normal controls: 34.0 %, SCD: 28.0 %) reported one or more neuropsychiatric symptoms, and more in symptomatic stages such as MCI (40.5 %) and dementia (81.0 %). Plasma NfL significantly increased in dementia group compared to SCD and healthy controls, relating to a higher risk of aberrant motor behavior, anxiety, sleep disturbance, disinhibition, and euphoria. Older age (odds ratio [OR] = 1.079, 95 % confidence interval [CI] = 1.022-1.140, p = 0.006), lower cognitive score (OR = 0.846, 95%CI = 0.791-0.905, p < 0.001) and increased plasma NfL (OR = 1.021, 95%CI = 1.00-1.042, p = 0.041) could predict psychosis. No significant differences were found in plasma Aβ1-42/Aβ1-40, t-tau or p-tau181 across all groups, and none correlated with neuropsychiatric symptoms. LIMITATIONS The cross-sectional design, small sample size and use of NPI-Q. CONCLUSIONS This study supported neuropsychiatric symptoms as early manifestations of preclinical Alzheimer's disease, and suggested plasma NfL to be a potential biomarker for detecting neuropsychiatric symptoms in Alzheimer's continuum.
Collapse
Affiliation(s)
- Lin Huang
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Qi Huang
- PET Center, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Fang Xie
- PET Center, Huashan Hospital, Fudan University, 200040 Shanghai, China.
| | - Qihao Guo
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China,.
| |
Collapse
|
41
|
Wu J, Xiao Z, Wang M, Wu W, Ma X, Liang X, Zheng L, Ding S, Luo J, Cao Y, Hong Z, Chen J, Zhao Q, Ding D. The impact of kidney function on plasma neurofilament light and phospho-tau 181 in a community-based cohort: the Shanghai Aging Study. Alzheimers Res Ther 2024; 16:32. [PMID: 38347655 PMCID: PMC10860286 DOI: 10.1186/s13195-024-01401-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/26/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND The blood-based biomarkers are approaching the clinical practice of Alzheimer's disease (AD). Chronic kidney disease (CKD) has a potential confounding effect on peripheral protein levels. It is essential to characterize the impact of renal function on AD markers. METHODS Plasma phospho-tau181 (P-tau181), and neurofilament light (NfL) were assayed via the Simoa HD-X platform in 1189 dementia-free participants from the Shanghai Aging Study (SAS). The estimated glomerular filter rate (eGFR) was calculated. The association between renal function and blood NfL, P-tau181 was analyzed. An analysis of interactions between various demographic and comorbid factors and eGFR was conducted. RESULTS The eGFR levels were negatively associated with plasma concentrations of NfL and P-tau181 (B = - 0.19, 95% CI - 0.224 to - 0.156, P < 0.001; B = - 0.009, 95% CI - 0.013 to -0.005, P < 0.001, respectively). After adjusting for demographic characteristics and comorbid diseases, eGFR remained significantly correlated with plasma NfL (B = - 0.010, 95% CI - 0.133 to - 0.068, P < 0.001), but not with P-tau181 (B = - 0.003, 95% CI - 0.007 to 0.001, P = 0.194). A significant interaction between age and eGFR was found for plasma NfL (Pinteraction < 0.001). In participants ≥ 70 years and with eGFR < 60 ml/min/1.73 m2, the correlation between eGFR and plasma NfL was significantly remarkable (B = - 0.790, 95% CI - 1.026 to - 0,554, P < 0.001). CONCLUSIONS Considering renal function and age is crucial when interpreting AD biomarkers in the general aging population.
Collapse
Affiliation(s)
- Jie Wu
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhenxu Xiao
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Mengjing Wang
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Departemnt of Nephrology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Wanqing Wu
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoxi Ma
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoniu Liang
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Zheng
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Saineng Ding
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianfeng Luo
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China
| | - Yang Cao
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, 70182, Örebro, Sweden
| | - Zhen Hong
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Chen
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Departemnt of Nephrology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qianhua Zhao
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China.
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| | - Ding Ding
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
42
|
Bisi N, Pinzi L, Rastelli G, Tonali N. Early Diagnosis of Neurodegenerative Diseases: What Has Been Undertaken to Promote the Transition from PET to Fluorescence Tracers. Molecules 2024; 29:722. [PMID: 38338465 PMCID: PMC10856728 DOI: 10.3390/molecules29030722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Alzheimer's Disease (AD) and Parkinson's Disease (PD) represent two among the most frequent neurodegenerative diseases worldwide. A common hallmark of these pathologies is the misfolding and consequent aggregation of amyloid proteins into soluble oligomers and insoluble β-sheet-rich fibrils, which ultimately lead to neurotoxicity and cell death. After a hundred years of research on the subject, this is the only reliable histopathological feature in our hands. Since AD and PD are diagnosed only once neuronal death and the first symptoms have appeared, the early detection of these diseases is currently impossible. At present, there is no effective drug available, and patients are left with symptomatic and inconclusive therapies. Several reasons could be associated with the lack of effective therapeutic treatments. One of the most important factors is the lack of selective probes capable of detecting, as early as possible, the most toxic amyloid species involved in the onset of these pathologies. In this regard, chemical probes able to detect and distinguish among different amyloid aggregates are urgently needed. In this article, we will review and put into perspective results from ex vivo and in vivo studies performed on compounds specifically interacting with such early species. Following a general overview on the three different amyloid proteins leading to insoluble β-sheet-rich amyloid deposits (amyloid β1-42 peptide, Tau, and α-synuclein), a list of the advantages and disadvantages of the approaches employed to date is discussed, with particular attention paid to the translation of fluorescence imaging into clinical applications. Furthermore, we also discuss how the progress achieved in detecting the amyloids of one neurodegenerative disease could be leveraged for research into another amyloidosis. As evidenced by a critical analysis of the state of the art, substantial work still needs to be conducted. Indeed, the early diagnosis of neurodegenerative diseases is a priority, and we believe that this review could be a useful tool for better investigating this field.
Collapse
Affiliation(s)
- Nicolò Bisi
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17, Av. des Sciences, 91400 Orsay, France
| | - Luca Pinzi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125 Modena, Italy; (L.P.); (G.R.)
| | - Giulio Rastelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125 Modena, Italy; (L.P.); (G.R.)
| | - Nicolò Tonali
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17, Av. des Sciences, 91400 Orsay, France
| |
Collapse
|
43
|
Coley N, Zetterberg H, Cantet C, Guyonnet S, Ashton NJ, Vellas B, Blennow K, Andrieu S. Plasma p-tau181 as an outcome and predictor of multidomain intervention effects: a secondary analysis of a randomised, controlled, dementia prevention trial. THE LANCET. HEALTHY LONGEVITY 2024; 5:e120-e130. [PMID: 38310892 DOI: 10.1016/s2666-7568(23)00255-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 02/06/2024] Open
Abstract
BACKGROUND It is unknown whether multidomain interventions, which might preserve late-life cognition, affect Alzheimer's disease pathology. Previous studies measured cerebrospinal fluid and imaging Alzheimer's disease biomarkers in small subsamples of multidomain trial participants. Newly developed assays enable the measurement of blood-based Alzheimer's disease biomarkers in larger samples. We aimed to assess whether plasma tau phosphorylated at threonine 181 (p-tau181) was able to detect or predict 3-year multidomain intervention effects. METHODS This is a secondary analysis of the randomised, controlled, Multidomain Alzheimer Prevention Trial (MAPT) testing a 3-year multidomain intervention, omega-3 fatty acid supplementation, or both versus placebo, in individuals aged 70 years and older in 13 memory centres in France and Monaco. Plasma p-tau181 was measured in stored blood samples in a subsample of 527 participants on an intention-to-treat basis. Changes in cognitive score were calculated as a composite measure using the average of Z scores for the following tests: Mini Mental State Examination orientation items, Free and Cued Selective Reminding Test (sum of free and total recall scores), category fluency, and Digit Symbol Substitution Test. Intervention effects on 3-year change in p-tau181 concentration were estimated by use of a linear mixed model with centre-specific random intercepts. FINDINGS Recruitment took place between May 30, 2008, and Feb 24, 2011. Median baseline plasma p-tau181 was 8·8 pg/mL (IQR 6·7-11·9) in the total sample, and significantly higher in older individuals, men, APOE ε4 carriers, and participants with renal dysfunction or a positive PET amyloid scan. During 3-year follow-up, individuals with raised baseline p-tau181 underwent greater cognitive decline (eg, mean difference in 3-year change on the composite cognitive score between control group participants with normal and abnormal baseline levels of p-tau was -0·34 [effect size -0·52; 95% CI -0·61 to 0·07] in the fully adjusted model using a 12·4 pg/mL cutoff for abnormal baseline p-tau181), but there were no intervention effects on change in p-tau181 either in this subgroup or the total population, and no effect on cognitive change in individuals with raised baseline p-tau181 (eg, in the fully adjusted model using the 12·4 pg/mL cutoff for p-tau181 abnormality, the mean difference [95% CI] in this subgroup in 3-year decline on the composite cognitive score between the control group and the multidomain + omega-3 group, the omega-3 group, and the multidomain intervention group, was, respectively: 0·13 [-0·21 to 0·47], 0·03 [-0·30 to 0·36], and 0·10 [-0·26 to 0·46]). Surprisingly, individuals with raised baseline p-tau181 showed a decrease in p-tau181 during follow-up (eg, unadjusted mean [95% CI] 3-year change was -3·01 pg/mL (-4·45 to -1·56) in control group subjects with abnormal baseline p-tau181 [using the 12·4 pg/mL abnormal p-tau cutoff]). INTERPRETATION Our results support the utility of p-tau181 as a prognostic biomarker, but it did not predict or detect intervention effects in this study. Further investigation of its usefulness as a prevention trial outcome measure is required. FUNDING Toulouse Gérontopôle, French Ministry of Health and Pierre Fabre Research Institute.
Collapse
Affiliation(s)
- Nicola Coley
- Centre for Epidemiology and Research in Population Health, INSERM-University of Toulouse, UPS, Toulouse, France; Department of Epidemiology and Public Health, Toulouse University Hospital, Toulouse, France.
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Centre for Neurodegenerative Diseases, Clear Water Bay, Hong Kong Special Administrative Region, China; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Christelle Cantet
- Centre for Epidemiology and Research in Population Health, INSERM-University of Toulouse, UPS, Toulouse, France; Gérontopôle of Toulouse, Institute of Ageing, Toulouse University Hospital, Toulouse, France
| | - Sophie Guyonnet
- Centre for Epidemiology and Research in Population Health, INSERM-University of Toulouse, UPS, Toulouse, France; Gérontopôle of Toulouse, Institute of Ageing, Toulouse University Hospital, Toulouse, France
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Institute of Psychiatry, Psychology and Neuroscience King's College London, London, UK; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK; Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Bruno Vellas
- Centre for Epidemiology and Research in Population Health, INSERM-University of Toulouse, UPS, Toulouse, France; Gérontopôle of Toulouse, Institute of Ageing, Toulouse University Hospital, Toulouse, France
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Sandrine Andrieu
- Centre for Epidemiology and Research in Population Health, INSERM-University of Toulouse, UPS, Toulouse, France; Department of Epidemiology and Public Health, Toulouse University Hospital, Toulouse, France
| |
Collapse
|
44
|
Rubenstein R, McQuillan L, Wang KKW, Robertson C, Chang B, Yang Z, Xu H, Williamson J, Wagner AK. Temporal Profiles of P-Tau, T-Tau, and P-Tau:Tau Ratios in Cerebrospinal Fluid and Blood from Moderate-Severe Traumatic Brain Injury Patients and Relationship to 6-12 Month Global Outcomes. J Neurotrauma 2024; 41:369-392. [PMID: 37725589 DOI: 10.1089/neu.2022.0479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
Traumatic brain injury (TBI) can initiate progressive injury responses, which are linked to increased risk of neurodegenerative diseases known as "tauopathies." Increased post-TBI tau hyperphosphorylation has been reported in brain tissue and biofluids. Acute-to-chronic TBI total (T)-tau and phosphorylated (P)-tau temporal profiles in the cerebrospinal fluid (CSF) and serum and their relationship to global outcome is unknown. Our multi-site longitudinal study examines these concurrent profiles acutely (CSF and serum) and also characterizes the acute- to-chronic serum patterns. Serial serum and CSF samples from individuals with moderate-to-severe TBI were obtained from two cohorts (acute, subacute, and chronic samples from University of Pittsburgh [UPitt] [n = 286 unique subjects] and acute samples from Baylor College of Medicine [BCM] [n = 114 unique subjects]) and assayed for T-tau and P-tau using the Rolling Circle Amplification-Surround Optical Fiber ImmunoAssay platform. Biokinetic analyses described serum T-tau and P-tau temporal patterns. T-tau and P-tau levels are compared with those in healthy controls (n = 89 for both CSF and serum), and univariate/multivariable associations are made with global outcome, including the Disability Rating Scale (DRS) and the Glasgow Outcome Scale-Extended (GOS-E) scores at 3 and 6 months post-TBI (BCM cohort) and at 6 and 12 months post-TBI (UPitt cohort). For both the UPitt and BCM cohorts, temporal increases in median serum and CSF T-tau and P-tau levels occurred over the first 5 days post-injury, while the initial increases of P-tau:T-tau ratio plateaued by day 4 post-injury (UPitt: n = 99, BCM: n = 48). Biokinetic analyses with UPitt data showed novel findings that T-tau (n = 74) and P-tau (n = 87) reached delayed maximum levels at 4.5 and 5.1 days, while exhibiting long serum half-lives (152 and 123 days), respectively. The post-TBI rise in acute (days 2-6) serum P-tau (up to 276-fold) far outpaced that of T-tau (7.3-fold), leading to a P-tau:T-tau increase of up to 267-fold, suggesting a shift toward tau hyperphosphorylation. BCM analyses showed that days 0-6 mean CSF T-tau and P-tau levels and P-tau:T-tau ratios were associated with greater disability (DRS) (n = 48) and worse global outcome (GOS-E) (n = 48) 6 months post-injury. Days 0-6 mean serum T-tau, P-tau, and P-tau:T-tau ratio were not associated with outcome in either cohort (UPitt: n = 145 [DRS], n = 154 [GOS-E], BCM: n = 99 [DRS and GOS-E]). UPitt multivariate models showed that higher chronic (months 1-6) mean P-tau levels and P-tau:T-tau ratio, but not T-tau levels, are associated with greater disability (DRS: n = 119) and worse global outcomes (GOS-E: n = 117) 12 months post-injury. This work shows the potential importance of monitoring post-TBI T-tau and P-tau levels over time. This multi-site longitudinal study features concurrent acute TBI T-tau and P-tau profiles in CSF and serum, and also characterizes acute-to-chronic serum profiles. Longitudinal profiles, along with no temporal concordance between trajectory groups over time, imply a sustained post-TBI shift in tau phosphorylation dynamics that may favor tauopathy development chronically.
Collapse
Affiliation(s)
- Richard Rubenstein
- Department of Neurology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Leah McQuillan
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kevin K W Wang
- Department of Emergency Medicine, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Claudia Robertson
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Binggong Chang
- Department of Neurology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Zhihui Yang
- Department of Psychiatry and Neuroscience, University of Florida, Gainesville, Florida, USA
| | - Haiyan Xu
- Department of Psychiatry and Neuroscience, University of Florida, Gainesville, Florida, USA
| | - John Williamson
- Department of Emergency Medicine, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
- Department of Psychiatry, Malcolm Randall VA Medical Center, Gainesville, Florida, USA
| | - Amy K Wagner
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
45
|
Kimura T, Sato H, Kano M, Tatsumi L, Tomita T. Novel aspects of the phosphorylation and structure of pathological tau: implications for tauopathy biomarkers. FEBS Open Bio 2024; 14:181-193. [PMID: 37391389 PMCID: PMC10839341 DOI: 10.1002/2211-5463.13667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/17/2023] [Accepted: 06/29/2023] [Indexed: 07/02/2023] Open
Abstract
The deposition of highly phosphorylated and aggregated tau is a characteristic of tauopathies, including Alzheimer's disease. It has long been known that different isoforms of tau are aggregated in different cell types and brain regions in each tauopathy. Recent advances in analytical techniques revealed the details of the biochemical and structural biological differences of tau specific to each tauopathy. In this review, we explain recent advances in the analysis of post-translational modifications of tau, particularly phosphorylation, brought about by the development of mass-spectrometry and Phos-tag technology. We then discuss the structure of tau filaments in each tauopathy revealed by the advent of cryo-EM. Finally, we describe the progress in biofluid and imaging biomarkers for tauopathy. This review summarizes current efforts to elucidate the characteristics of pathological tau and the landscape of the use of tau as a biomarker to diagnose and determine the pathological stage of tauopathy.
Collapse
Affiliation(s)
- Taeko Kimura
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoJapan
| | - Haruaki Sato
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoJapan
| | - Maria Kano
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoJapan
| | - Lisa Tatsumi
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoJapan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoJapan
| |
Collapse
|
46
|
Guo Y, You J, Zhang Y, Liu WS, Huang YY, Zhang YR, Zhang W, Dong Q, Feng JF, Cheng W, Yu JT. Plasma proteomic profiles predict future dementia in healthy adults. NATURE AGING 2024; 4:247-260. [PMID: 38347190 DOI: 10.1038/s43587-023-00565-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/22/2023] [Indexed: 02/22/2024]
Abstract
The advent of proteomics offers an unprecedented opportunity to predict dementia onset. We examined this in data from 52,645 adults without dementia in the UK Biobank, with 1,417 incident cases and a follow-up time of 14.1 years. Of 1,463 plasma proteins, GFAP, NEFL, GDF15 and LTBP2 consistently associated most with incident all-cause dementia (ACD), Alzheimer's disease (AD) and vascular dementia (VaD), and ranked high in protein importance ordering. Combining GFAP (or GDF15) with demographics produced desirable predictions for ACD (area under the curve (AUC) = 0.891) and AD (AUC = 0.872) (or VaD (AUC = 0.912)). This was also true when predicting over 10-year ACD, AD and VaD. Individuals with higher GFAP levels were 2.32 times more likely to develop dementia. Notably, GFAP and LTBP2 were highly specific for dementia prediction. GFAP and NEFL began to change at least 10 years before dementia diagnosis. Our findings strongly highlight GFAP as an optimal biomarker for dementia prediction, even more than 10 years before the diagnosis, with implications for screening people at high risk for dementia and for early intervention.
Collapse
Affiliation(s)
- Yu Guo
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jia You
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - Yi Zhang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei-Shi Liu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu-Yuan Huang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya-Ru Zhang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Zhang
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China.
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China.
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
47
|
Woo MS, Tissot C, Lantero‐Rodriguez J, Snellman A, Therriault J, Rahmouni N, Macedo AC, Servaes S, Wang Y, Arias JF, Hosseini SA, Chamoun M, Lussier FZ, Benedet AL, Ashton NJ, Karikari TK, Triana‐Baltzer G, Kolb HC, Stevenson J, Mayer C, Kobayashi E, Massarweh G, Friese MA, Pascoal TA, Gauthier S, Zetterberg H, Blennow K, Rosa‐Neto P. Plasma pTau-217 and N-terminal tau (NTA) enhance sensitivity to identify tau PET positivity in amyloid-β positive individuals. Alzheimers Dement 2024; 20:1166-1174. [PMID: 37920945 PMCID: PMC10916953 DOI: 10.1002/alz.13528] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION We set out to identify tau PET-positive (A+T+) individuals among amyloid-beta (Aβ) positive participants using plasma biomarkers. METHODS In this cross-sectional study we assessed 234 participants across the AD continuum who were evaluated by amyloid PET with [18 F]AZD4694 and tau-PET with [18 F]MK6240 and measured plasma levels of total tau, pTau-181, pTau-217, pTau-231, and N-terminal tau (NTA-tau). We evaluated the performances of plasma biomarkers to predict tau positivity in Aβ+ individuals. RESULTS Highest associations with tau positivity in Aβ+ individuals were found for plasma pTau-217 (AUC [CI95% ] = 0.89 [0.82, 0.96]) and NTA-tau (AUC [CI95% ] = 0.88 [0.91, 0.95]). Combining pTau-217 and NTA-tau resulted in the strongest agreement (Cohen's Kappa = 0.74, CI95% = 0.57/0.90, sensitivity = 92%, specificity = 81%) with PET for classifying tau positivity. DISCUSSION The potential for identifying tau accumulation in later Braak stages will be useful for patient stratification and prognostication in treatment trials and in clinical practice. HIGHLIGHTS We found that in a cohort without pre-selection pTau-181, pTau-217, and NTA-tau showed the highest association with tau PET positivity. We found that in Aβ+ individuals pTau-217 and NTA-tau showed the highest association with tau PET positivity. Combining pTau-217 and NTA-tau resulted in the strongest agreement with the tau PET-based classification.
Collapse
|
48
|
Cheng YW, Lin YJ, Lin YS, Hong WP, Kuan YC, Wu KY, Hsu JL, Wang PN, Pai MC, Chen CS, Fuh JL, Hu CJ, Chiu MJ. Application of blood-based biomarkers of Alzheimer's disease in clinical practice: Recommendations from Taiwan Dementia Society. J Formos Med Assoc 2024:S0929-6646(24)00051-2. [PMID: 38296698 DOI: 10.1016/j.jfma.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/29/2023] [Accepted: 01/14/2024] [Indexed: 02/02/2024] Open
Abstract
Blood-based biomarkers (BBM) are potentially powerful tools that assist in the biological diagnosis of Alzheimer's disease (AD) in vivo with minimal invasiveness, relatively low cost, and good accessibility. This review summarizes current evidence for using BBMs in AD, focusing on amyloid, tau, and biomarkers for neurodegeneration. Blood-based phosphorylated tau and the Aβ42/Aβ40 ratio showed consistent concordance with brain pathology measured by CSF or PET in the research setting. In addition, glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) are neurodegenerative biomarkers that show the potential to assist in the differential diagnosis of AD. Other pathology-specific biomarkers, such as α-synuclein and TAR DNA-binding protein 43 (TDP-43), can potentially detect AD concurrent pathology. Based on current evidence, the working group from the Taiwan Dementia Society (TDS) achieved consensus recommendations on the appropriate use of BBMs for AD in clinical practice. BBMs may assist clinical diagnosis and prognosis in AD subjects with cognitive symptoms; however, the results should be interpreted by dementia specialists and combining biochemical, neuropsychological, and neuroimaging information. Further studies are needed to evaluate BBMs' real-world performance and potential impact on clinical decision-making.
Collapse
Affiliation(s)
- Yu-Wen Cheng
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Ju Lin
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yung-Shuan Lin
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Pin Hong
- Department of Neurology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Yi-Chun Kuan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan; Department of Neurology and Dementia Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Yi Wu
- Department of Psychiatry, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Jung-Lung Hsu
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital and Chang Gung University, New Taipei City, Taiwan; Graduate Institute of Mind, Brain, & Consciousness, Taipei Medical University, Taipei, Taiwan; Brain & Consciousness Research Center, Shuang Ho Hospital, New Taipei City, Taiwan
| | - Pei-Ning Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Chyi Pai
- Division of Behavioral Neurology, Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Alzheimer's Disease Research Center, National Cheng Kung University Hospital, Tainan, Taiwan; Institute of Gerontology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Sheng Chen
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Psychiatry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jong-Ling Fuh
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chaur-Jong Hu
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan; Department of Neurology and Dementia Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Jang Chiu
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
49
|
Liu S, Xu L, Shen Y, Wang L, Lai X, Hu H. Qingxin Kaiqiao Fang decreases Tau hyperphosphorylation in Alzheimer's disease via the PI3K/Akt/GSK3β pathway in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117031. [PMID: 37579924 DOI: 10.1016/j.jep.2023.117031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/20/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alzheimer's disease (AD) belongs to the category of "senile dementia" in traditional Chinese medicine. AD is associated with brain emptiness or collaterals blocked by phlegm-heat. "Fumanjian" from Jingyue Quanshu treats dementia by promoting qi circulation, alleviating depression, eliminating turbidity, cultivating positivity, and dispelling evil spirits. Qingxin Kaiqiao Fang (QKF), derived from Fumanjian, is effective in treating AD owing to previously mentioned clinical effects. Elucidating the mechanism(s) of action of QKF on AD associated with phlegm-heat may be beneficial for therapeutic management; however, further research is needed. AIM OF THE STUDY This study aimed to determine the role of the PI3K/Akt pathway in AD, especially the specific effector protein involved, and explore the efficacy of QKF in treating AD by modulating the PI3K/Akt signal. MATERIALS AND METHODS High-performance liquid chromatography-Q-orbitrap-mass spectrometry was used to analyze the chemical components of QKF. Subsequently, APP/PS1 double-transgenic mice were used for behavioral tests, and hematoxylin-eosin and Nissl staining were used to assess the neuroprotective and cognitive effects of QKF. Cerebrospinal fluid pharmacology was used in in vitro validation, and Aβ25-35 was used to induce PC12 cells to establish the AD cell model. Various methods, including immunohistochemistry, Western blotting, quantitative real-time polymerase chain reaction, morphological assay, cell counting kit-8(CCK-8) assay, and terminal deoxynucleotide transferase (TdT)-mediated dUTP nick-end labeling (TUNEL)staining, were used to evaluate the effect of QKF on Tau hyperphosphorylation and anti-apoptosis. These methods also assessed the influence of QKF on the PI3K/Akt/GSK3β pathway involving the mRNA and protein expressions. Finally, the inhibitor - LY294002 was used for reverse validation. RESULTS We identified 295 chemical components in the water extract of QKF.QKF improved spatial cognition and learning memory in APP/PS1 mice, protected PC12 cell morphology, improved cell survival, reduced Aβ25-35-induced apoptosis, and inhibited the hyperphosphorylation of Tau protein via the PI3k/Akt/GSK3β signaling pathway. Furthermore, this protective effect of QKF was reduced by LY294002 in vitro. CONCLUSIONS QKF can improve spatial cognition, learning, and memory abilities in APP/PS1 mice and protect PC12 cells. Decreasing the Tau hyperphosphorylation in AD exhibits curative efficacy on AD via the PI3K/Akt/GSK3β pathway in vitro and in vivo.
Collapse
Affiliation(s)
- Shuo Liu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Lu Cheng District, Wenzhou, 325000, China; The Second Clinical College, Wenzhou Medical University, Wenzhou, 325003, China
| | - Luting Xu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Lu Cheng District, Wenzhou, 325000, China; The Second Clinical College, Wenzhou Medical University, Wenzhou, 325003, China
| | - Yan Shen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Lu Cheng District, Wenzhou, 325000, China; The Second Clinical College, Wenzhou Medical University, Wenzhou, 325003, China
| | - Liuying Wang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Lu Cheng District, Wenzhou, 325000, China; The Second Clinical College, Wenzhou Medical University, Wenzhou, 325003, China
| | - Xiaoxiao Lai
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Lu Cheng District, Wenzhou, 325000, China; The Second Clinical College, Wenzhou Medical University, Wenzhou, 325003, China
| | - Haiyan Hu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Lu Cheng District, Wenzhou, 325000, China; The Second Clinical College, Wenzhou Medical University, Wenzhou, 325003, China.
| |
Collapse
|
50
|
Therriault J, Woo MS, Salvadó G, Gobom J, Karikari TK, Janelidze S, Servaes S, Rahmouni N, Tissot C, Ashton NJ, Benedet AL, Montoliu-Gaya L, Macedo AC, Lussier FZ, Stevenson J, Vitali P, Friese MA, Massarweh G, Soucy JP, Pascoal TA, Stomrud E, Palmqvist S, Mattsson-Carlgren N, Gauthier S, Zetterberg H, Hansson O, Blennow K, Rosa-Neto P. Comparison of immunoassay- with mass spectrometry-derived p-tau quantification for the detection of Alzheimer's disease pathology. Mol Neurodegener 2024; 19:2. [PMID: 38185677 PMCID: PMC10773025 DOI: 10.1186/s13024-023-00689-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND Antibody-based immunoassays have enabled quantification of very low concentrations of phosphorylated tau (p-tau) protein forms in cerebrospinal fluid (CSF), aiding in the diagnosis of AD. Mass spectrometry enables absolute quantification of multiple p-tau variants within a single run. The goal of this study was to compare the performance of mass spectrometry assessments of p-tau181, p-tau217 and p-tau231 with established immunoassay techniques. METHODS We measured p-tau181, p-tau217 and p-tau231 concentrations in CSF from 173 participants from the TRIAD cohort and 394 participants from the BioFINDER-2 cohort using both mass spectrometry and immunoassay methods. All subjects were clinically evaluated by dementia specialists and had amyloid-PET and tau-PET assessments. Bland-Altman analyses evaluated the agreement between immunoassay and mass spectrometry p-tau181, p-tau217 and p-tau231. P-tau associations with amyloid-PET and tau-PET uptake were also compared. Receiver Operating Characteristic (ROC) analyses compared the performance of mass spectrometry and immunoassays p-tau concentrations to identify amyloid-PET positivity. RESULTS Mass spectrometry and immunoassays of p-tau217 were highly comparable in terms of diagnostic performance, between-group effect sizes and associations with PET biomarkers. In contrast, p-tau181 and p-tau231 concentrations measured using antibody-free mass spectrometry had lower performance compared with immunoassays. CONCLUSIONS Our results suggest that while similar overall, immunoassay-based p-tau biomarkers are slightly superior to antibody-free mass spectrometry-based p-tau biomarkers. Future work is needed to determine whether the potential to evaluate multiple biomarkers within a single run offsets the slightly lower performance of antibody-free mass spectrometry-based p-tau quantification.
Collapse
Affiliation(s)
- Joseph Therriault
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre Intégré Universitaire de Santé Et de Services Sociaux (CIUSSS) de l'Ouest-de-L'Île-de-Montréal, 6875 La Salle Blvd - FBC Room 3149, Montréal, Québec, H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Marcel S Woo
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre Intégré Universitaire de Santé Et de Services Sociaux (CIUSSS) de l'Ouest-de-L'Île-de-Montréal, 6875 La Salle Blvd - FBC Room 3149, Montréal, Québec, H4H 1R3, Canada
- Department of Neurology, Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, 20251, Germany
| | - Gemma Salvadó
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Johan Gobom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, S-431 80, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, S-431 80, Sweden
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, S-431 80, Sweden
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, 15213, USA
| | - Shorena Janelidze
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Stijn Servaes
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre Intégré Universitaire de Santé Et de Services Sociaux (CIUSSS) de l'Ouest-de-L'Île-de-Montréal, 6875 La Salle Blvd - FBC Room 3149, Montréal, Québec, H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Nesrine Rahmouni
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre Intégré Universitaire de Santé Et de Services Sociaux (CIUSSS) de l'Ouest-de-L'Île-de-Montréal, 6875 La Salle Blvd - FBC Room 3149, Montréal, Québec, H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Cécile Tissot
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre Intégré Universitaire de Santé Et de Services Sociaux (CIUSSS) de l'Ouest-de-L'Île-de-Montréal, 6875 La Salle Blvd - FBC Room 3149, Montréal, Québec, H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, S-431 80, Sweden
- Wallenberg Centre for Molecular Medicine, University of Gothenburg, Gothenburg, S-413 45, Sweden
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, SE5 9RT, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, SE5 8AF, UK
| | - Andréa Lessa Benedet
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, S-431 80, Sweden
| | - Laia Montoliu-Gaya
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, S-431 80, Sweden
| | - Arthur C Macedo
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre Intégré Universitaire de Santé Et de Services Sociaux (CIUSSS) de l'Ouest-de-L'Île-de-Montréal, 6875 La Salle Blvd - FBC Room 3149, Montréal, Québec, H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Firoza Z Lussier
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre Intégré Universitaire de Santé Et de Services Sociaux (CIUSSS) de l'Ouest-de-L'Île-de-Montréal, 6875 La Salle Blvd - FBC Room 3149, Montréal, Québec, H4H 1R3, Canada
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, 15213, USA
| | - Jenna Stevenson
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre Intégré Universitaire de Santé Et de Services Sociaux (CIUSSS) de l'Ouest-de-L'Île-de-Montréal, 6875 La Salle Blvd - FBC Room 3149, Montréal, Québec, H4H 1R3, Canada
| | - Paolo Vitali
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Manuel A Friese
- Department of Neurology, Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, 20251, Germany
| | - Gassan Massarweh
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Jean-Paul Soucy
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Tharick A Pascoal
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, 15213, USA
| | - Erik Stomrud
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Sebastian Palmqvist
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Niklas Mattsson-Carlgren
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Serge Gauthier
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre Intégré Universitaire de Santé Et de Services Sociaux (CIUSSS) de l'Ouest-de-L'Île-de-Montréal, 6875 La Salle Blvd - FBC Room 3149, Montréal, Québec, H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, S-431 80, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, S-431 80, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 6BG, UK
- UK Dementia Research Institute at UCL, London, WC1N 6BG, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Oskar Hansson
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, S-431 80, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, S-431 80, Sweden
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre Intégré Universitaire de Santé Et de Services Sociaux (CIUSSS) de l'Ouest-de-L'Île-de-Montréal, 6875 La Salle Blvd - FBC Room 3149, Montréal, Québec, H4H 1R3, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada.
| |
Collapse
|