1
|
Kim JW, Kleinfelter B, Kavalali ET, Monteggia LM. Distinct synaptic mechanisms drive the behavioral response to acute stress and rapid correction by ketamine. Neuropsychopharmacology 2024; 49:1916-1924. [PMID: 38956176 PMCID: PMC11473657 DOI: 10.1038/s41386-024-01908-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/09/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
Prevailing hypotheses on the mechanisms of antidepressant action posit that antidepressants directly counteract deficiencies in major neurotransmitter signaling systems that underlie depression. The rapidly acting antidepressant ketamine has been postulated to correct excess glutamatergic signaling via glutamatergic antagonism leading to the rescue of neuronal structural deficits and reversal of behavioral symptoms. We studied this premise using systemic administration of the acetylcholinesterase inhibitor physostigmine, which has been shown to rapidly elicit a shorter-term period of depressed mood in humans via cholinergic mechanisms. We observed that physostigmine induces acute stress in tandem with long term depression of glutamate release in the hippocampus of mice. However, ketamine rapidly acts to re-establish glutamatergic synaptic efficacy via postsynaptic signaling and behaviorally masks the reduction in passive coping induced by physostigmine. These results underscore the divergence of synaptic signaling mechanisms underlying mood changes and antidepressant action and highlight how distinct synaptic mechanisms may underlie neuropsychiatric disorders versus their treatment.
Collapse
Affiliation(s)
- Ji-Woon Kim
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, 37240, USA
- College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
- Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Institute of Regulatory innovation through Science, Kyung Hee University, Seoul, Republic of Korea
| | - Benjamin Kleinfelter
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, 37240, USA
| | - Ege T Kavalali
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, 37240, USA
| | - Lisa M Monteggia
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, 37240, USA.
| |
Collapse
|
2
|
Lv W, Wang Y. Neural Influences on Tumor Progression Within the Central Nervous System. CNS Neurosci Ther 2024; 30:e70097. [PMID: 39469896 PMCID: PMC11519750 DOI: 10.1111/cns.70097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/21/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024] Open
Abstract
For decades, researchers have studied how brain tumors, the immune system, and drugs interact. With the advances in cancer neuroscience, which centers on defining and therapeutically targeting nervous system-cancer interactions, both within the local tumor microenvironment (TME) and on a systemic level, the subtle relationship between neurons and tumors in the central nervous system (CNS) has been deeply studied. Neurons, as the executors of brain functional activities, have been shown to significantly influence the emergence and development of brain tumors, including both primary and metastatic tumors. They engage with tumor cells via chemical or electrical synapses, directly regulating tumors or via intricate coupling networks, and also contribute to the TME through paracrine signaling, secreting proteins that exert regulatory effects. For instance, in a study involving a mouse model of glioblastoma, the authors observed a 42% increase in tumor volume when neuronal activity was stimulated, compared to controls (p < 0.01), indicating a direct correlation between neural activity and tumor growth. These thought-provoking results offer promising new strategies for brain tumor therapies, highlighting the potential of neuronal modulation to curb tumor progression. Future strategies may focus on developing drugs to inhibit or neutralize proteins and other bioactive substances secreted by neurons, break synaptic connections and interactions between infiltrating cells and tumor cells, as well as disrupt electrical coupling within glioma cell networks. By harnessing the insights gained from this research, we aspire to usher in a new era of brain tumor therapies that are both more potent and precise.
Collapse
Affiliation(s)
- Wenhao Lv
- Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouZhejiangChina
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
| | - Yongjie Wang
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
| |
Collapse
|
3
|
Zhou YS, Tao HB, Lv SS, Liang KQ, Shi WY, Liu KY, Li YY, Chen LY, Zhou L, Yin SJ, Zhao QR. Effects of Kv1.3 knockout on pyramidal neuron excitability and synaptic plasticity in piriform cortex of mice. Acta Pharmacol Sin 2024; 45:2045-2060. [PMID: 38862816 PMCID: PMC11420205 DOI: 10.1038/s41401-024-01275-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 03/24/2024] [Indexed: 06/13/2024] Open
Abstract
Kv1.3 belongs to the voltage-gated potassium (Kv) channel family, which is widely expressed in the central nervous system and associated with a variety of neuropsychiatric disorders. Kv1.3 is highly expressed in the olfactory bulb and piriform cortex and involved in the process of odor perception and nutrient metabolism in animals. Previous studies have explored the function of Kv1.3 in olfactory bulb, while the role of Kv1.3 in piriform cortex was less known. In this study, we investigated the neuronal changes of piriform cortex and feeding behavior after smell stimulation, thus revealing a link between the olfactory sensation and body weight in Kv1.3 KO mice. Coronal slices including the anterior piriform cortex were prepared, whole-cell recording and Ca2+ imaging of pyramidal neurons were conducted. We showed that the firing frequency evoked by depolarization pulses and Ca2+ influx evoked by high K+ solution were significantly increased in pyramidal neurons of Kv1.3 knockout (KO) mice compared to WT mice. Western blotting and immunofluorescence analyses revealed that the downstream signaling molecules CaMKII and PKCα were activated in piriform cortex of Kv1.3 KO mice. Pyramidal neurons in Kv1.3 KO mice exhibited significantly reduced paired-pulse ratio and increased presynaptic Cav2.1 expression, proving that the presynaptic vesicle release might be elevated by Ca2+ influx. Using Golgi staining, we found significantly increased dendritic spine density of pyramidal neurons in Kv1.3 KO mice, supporting the stronger postsynaptic responses in these neurons. In olfactory recognition and feeding behavior tests, we showed that Kv1.3 conditional knockout or cannula injection of 5-(4-phenoxybutoxy) psoralen, a Kv1.3 channel blocker, in piriform cortex both elevated the olfactory recognition index and altered the feeding behavior in mice. In summary, Kv1.3 is a key molecule in regulating neuronal activity of the piriform cortex, which may lay a foundation for the treatment of diseases related to piriform cortex and olfactory detection.
Collapse
Affiliation(s)
- Yong-Sheng Zhou
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Hao-Bo Tao
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Si-Si Lv
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Ke-Qin Liang
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Wen-Yi Shi
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Ke-Yi Liu
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Yun-Yun Li
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Lv-Yi Chen
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Ling Zhou
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Shi-Jin Yin
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
| | - Qian-Ru Zhao
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
| |
Collapse
|
4
|
Wang K, Nilsson M, Angelini M, Olcese R, Elinder F, Pantazis A. A Rich Conformational Palette Underlies Human Ca V2.1-Channel Availability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615501. [PMID: 39464068 PMCID: PMC11507735 DOI: 10.1101/2024.09.27.615501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Depolarization-evoked opening of CaV2.1 (P/Q-type) Ca2+-channels triggers neurotransmitter release, while voltage-dependent inactivation (VDI) limits channel availability to open, contributing to synaptic plasticity. The mechanism of CaV2.1 response to voltage is unclear. Using voltage-clamp fluorometry and kinetic modeling, we optically tracked and physically characterized the structural dynamics of the four CaV2.1 voltage-sensor domains (VSDs). VSD-I seems to directly drive opening and convert between two modes of function, associated with VDI. VSD-II is apparently voltage-insensitive. VSD-III and VSD-IV sense more negative voltages and undergo voltage-dependent conversion uncorrelated with VDI. Auxiliary β -subunits regulate VSD-I-to-pore coupling and VSD conversion kinetics. CaV2.1 VSDs are differentially sensitive to voltage changes brief and long-lived. Specifically the voltage-dependent conformational changes of VSD-I are linked to synaptic release and plasticity.
Collapse
Affiliation(s)
- Kaiqian Wang
- Division of Cell and Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University; SE-581 85 Linköping, Sweden
| | - Michelle Nilsson
- Division of Cell and Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University; SE-581 85 Linköping, Sweden
| | - Marina Angelini
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Riccardo Olcese
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Fredrik Elinder
- Division of Cell and Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University; SE-581 85 Linköping, Sweden
- Science for Life Laboratory, Linköping University; SE-581 85 Linköping, Sweden
| | - Antonios Pantazis
- Division of Cell and Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University; SE-581 85 Linköping, Sweden
- Wallenberg Center for Molecular Medicine, Linköping University; SE-581 85 Linköping, Sweden
| |
Collapse
|
5
|
Medeiros AT, Gratz SJ, Delgado A, Ritt JT, O'Connor-Giles KM. Ca 2+ channel and active zone protein abundance intersects with input-specific synapse organization to shape functional synaptic diversity. eLife 2024; 12:RP88412. [PMID: 39291956 PMCID: PMC11410372 DOI: 10.7554/elife.88412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Synaptic heterogeneity is a hallmark of nervous systems that enables complex and adaptable communication in neural circuits. To understand circuit function, it is thus critical to determine the factors that contribute to the functional diversity of synapses. We investigated the contributions of voltage-gated calcium channel (VGCC) abundance, spatial organization, and subunit composition to synapse diversity among and between synapses formed by two closely related Drosophila glutamatergic motor neurons with distinct neurotransmitter release probabilities (Pr). Surprisingly, VGCC levels are highly predictive of heterogeneous Pr among individual synapses of either low- or high-Pr inputs, but not between inputs. We find that the same number of VGCCs are more densely organized at high-Pr synapses, consistent with tighter VGCC-synaptic vesicle coupling. We generated endogenously tagged lines to investigate VGCC subunits in vivo and found that the α2δ-3 subunit Straightjacket along with the CAST/ELKS active zone (AZ) protein Bruchpilot, both key regulators of VGCCs, are less abundant at high-Pr inputs, yet positively correlate with Pr among synapses formed by either input. Consistently, both Straightjacket and Bruchpilot levels are dynamically increased across AZs of both inputs when neurotransmitter release is potentiated to maintain stable communication following glutamate receptor inhibition. Together, these findings suggest a model in which VGCC and AZ protein abundance intersects with input-specific spatial and molecular organization to shape the functional diversity of synapses.
Collapse
Affiliation(s)
- Audrey T Medeiros
- Neuroscience Graduate Training Program, Brown University, Providence, United States
| | - Scott J Gratz
- Department of Neuroscience, Brown University, Providence, United States
| | - Ambar Delgado
- Department of Neuroscience, Brown University, Providence, United States
| | - Jason T Ritt
- Department of Neuroscience, Brown University, Providence, United States
- Carney Institute for Brain Science, Brown University, Providence, United States
| | - Kate M O'Connor-Giles
- Neuroscience Graduate Training Program, Brown University, Providence, United States
- Department of Neuroscience, Brown University, Providence, United States
- Carney Institute for Brain Science, Brown University, Providence, United States
| |
Collapse
|
6
|
Harracksingh AN, Singh A, Mayorova TD, Bejoy B, Hornbeck J, Elkhatib W, McEdwards G, Gauberg J, Taha A, Islam IM, Erclik T, Currie MA, Noyes M, Senatore A. Mint/X11 PDZ domains from non-bilaterian animals recognize and bind Ca V2 calcium channel C-termini in vitro. Sci Rep 2024; 14:21615. [PMID: 39284887 PMCID: PMC11405698 DOI: 10.1038/s41598-024-70652-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
PDZ domain mediated interactions with voltage-gated calcium (CaV) channel C-termini play important roles in localizing membrane Ca2+ signaling. The first such interaction was described between the scaffolding protein Mint-1 and CaV2.2 in mammals. In this study, we show through various in silico analyses that Mint is an animal-specific gene with a highly divergent N-terminus but a strongly conserved C-terminus comprised of a phosphotyrosine binding domain, two tandem PDZ domains (PDZ-1 and PDZ-2), and a C-terminal auto-inhibitory element that binds and inhibits PDZ-1. In addition to CaV2 chanels, most genes that interact with Mint are also deeply conserved including amyloid precursor proteins, presenilins, neurexin, and CASK and Veli which form a tripartite complex with Mint in bilaterians. Through yeast and bacterial 2-hybrid experiments, we show that Mint and CaV2 channels from cnidarians and placozoans interact in vitro, and in situ hybridization revealed co-expression in dissociated neurons from the cnidarian Nematostella vectensis. Unexpectedly, the Mint orthologue from the ctenophore Hormiphora californiensis strongly bound the divergent C-terminal ligands of cnidarian and placozoan CaV2 channels, despite neither the ctenophore Mint, nor the placozoan and cnidarian orthologues, binding the ctenophore CaV2 channel C-terminus. Altogether, our analyses suggest that the capacity of Mint to bind CaV2 channels predates bilaterian animals, and that evolutionary changes in CaV2 channel C-terminal sequences resulted in altered binding modalities with Mint.
Collapse
Affiliation(s)
- Alicia N Harracksingh
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | - Anhadvir Singh
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | - Tatiana D Mayorova
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- NINDS, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brian Bejoy
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | - Jillian Hornbeck
- Institute for Systems Genetics, NYU Grossman School of Medicine, 550 1st Ave, New York, NY, 10016, USA
| | - Wassim Elkhatib
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | - Gregor McEdwards
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | - Julia Gauberg
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | - Abdul Taha
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | - Ishrat Maliha Islam
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | - Ted Erclik
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | - Mark A Currie
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | - Marcus Noyes
- Institute for Systems Genetics, NYU Grossman School of Medicine, 550 1st Ave, New York, NY, 10016, USA
| | - Adriano Senatore
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada.
| |
Collapse
|
7
|
Calderon-Rivera A, Gomez K, Rodríguez-Palma EJ, Khanna R. SUMOylation and DeSUMOylation: Tug of War of Pain Signaling. Mol Neurobiol 2024:10.1007/s12035-024-04478-w. [PMID: 39276308 DOI: 10.1007/s12035-024-04478-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024]
Abstract
SUMOylation is a post-translational modification that attaches a small ubiquitin-like modifier (SUMO) group to a target protein via SUMO ligases, while deSUMOylation refers to the removal of this SUMO group by sentrin-specific proteases (SENPs). Although the functions of these processes have been well described in the nucleus, the role of SUMOylation and deSUMOylation in regulating ion channels is emerging as a novel area of study. Despite this, their contributions to pain signaling remain less clear. Therefore, this review consolidates the current evidence on the link(s) between SUMOylation, deSUMOylation, and pain, with a specific focus on ion channels expressed in the sensory system. Additionally, we explore the role of SUMOylation in the expression and function of kinases, vesicle proteins, and transcription factors, which result in the modulation of certain ion channels contributing to pain. Altogether, this review aims to highlight the relationship between SUMOylation and deSUMOylation in the modulation of ion channels, ultimately exploring the potential therapeutic role of these processes in chronic pain.
Collapse
Affiliation(s)
- Aida Calderon-Rivera
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, Gainesville, FL, 32610, USA
| | - Kimberly Gomez
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, Gainesville, FL, 32610, USA
| | - Erick J Rodríguez-Palma
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, Gainesville, FL, 32610, USA
| | - Rajesh Khanna
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, Gainesville, FL, 32610, USA.
- Pain and Addiction Therapeutics (PATH) Collaboratory, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
8
|
Cranston AL, Kraev I, Stewart MG, Horsley D, Santos RX, Robinson L, Dreesen E, Armstrong P, Palliyil S, Harrington CR, Wischik CM, Riedel G. Rescue of synaptosomal glutamate release defects in tau transgenic mice by the tau aggregation inhibitor hydromethylthionine. Cell Signal 2024; 121:111269. [PMID: 38909930 DOI: 10.1016/j.cellsig.2024.111269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Glutamatergic neurotransmission, important for learning and memory, is disrupted in different ways in patients with Alzheimer's disease (AD) and frontotemporal dementia (FTD) tauopathies. We have previously reported that two tau transgenic mouse models, L1 and L66, produce different phenotypes resembling AD and FTD, respectively. The AD-like L1 model expresses the truncated core aggregation domain of the AD paired helical filament (PHF) form of tau (tau296-390) whereas the FTD-like L66 model expresses full-length tau carrying two mutations at P301S/G335D. We have used synaptosomes isolated from these mice to investigate K+-evoked glutamate release and, if abnormal, to determine responsiveness to hydromethylthionine, a tau aggregation inhibitor previously shown to reduce tau pathology in these models. We report that the transgenes in these two mouse lines cause opposite abnormalities in glutamate release. Over-expression of the core tau unit in L1 produces a significant reduction in glutamate release and a loss of Ca2+-dependency compared with wild-type control mice. Full-length mutant tau produces an increase in glutamate release that retains normal Ca2+-dependency. Chronic pre-treatment with hydromethylthionine normalises both reduced (L1) and excessive glutamate (L66) and restores normal Ca2+-dependency in L1 mice. This implies that both patterns of impairment are the result of tau aggregation, but that the direction and Ca2+-dependency of the abnormality is determined by expression of the disease-specific transgene. Our results lead to the conclusion that the tauopathies need not be considered a single entity in terms of the downstream effects of pathological aggregation of tau protein. In this case, directionally opposite abnormalities in glutamate release resulting from different types of tau aggregation in the two mouse models can be corrected by hydromethylthionine. This may help to explain the activity of hydromethylthionine on cognitive decline and brain atrophy in both AD and behavioural-variant FTD.
Collapse
Affiliation(s)
- Anna L Cranston
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, UK
| | - Igor Kraev
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK
| | - Mike G Stewart
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK
| | - David Horsley
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, UK
| | - Renato X Santos
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, UK
| | - Lianne Robinson
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, UK
| | - Eline Dreesen
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, UK
| | - Paul Armstrong
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, UK
| | - Soumya Palliyil
- Scottish Biologics Facility, University of Aberdeen, Foresterhill AB25 2ZP, UK
| | - Charles R Harrington
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, UK; TauRx Therapeutics Ltd, 395 King Street, Aberdeen, AB24 5RP, UK
| | - Claude M Wischik
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, UK; TauRx Therapeutics Ltd, 395 King Street, Aberdeen, AB24 5RP, UK
| | - Gernot Riedel
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, UK.
| |
Collapse
|
9
|
Ritzau-Jost A, Gsell F, Sell J, Sachs S, Montanaro J, Kirmann T, Maaß S, Irani SR, Werner C, Geis C, Sauer M, Shigemoto R, Hallermann S. LGI1 Autoantibodies Enhance Synaptic Transmission by Presynaptic K v1 Loss and Increased Action Potential Broadening. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200284. [PMID: 39141878 PMCID: PMC11379440 DOI: 10.1212/nxi.0000000000200284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
BACKGROUND AND OBJECTIVES Autoantibodies against the protein leucine-rich glioma inactivated 1 (LGI1) cause the most common subtype of autoimmune encephalitis with predominant involvement of the limbic system, associated with seizures and memory deficits. LGI1 and its receptor ADAM22 are part of a transsynaptic protein complex that includes several proteins involved in presynaptic neurotransmitter release and postsynaptic glutamate sensing. Autoantibodies against LGI1 increase excitatory synaptic strength, but studies that genetically disrupt the LGI1-ADAM22 complex report a reduction in postsynaptic glutamate receptor-mediated responses. Thus, the mechanisms underlying the increased synaptic strength induced by LGI1 autoantibodies remain elusive, and the contributions of presynaptic molecules to the LGI1-transsynaptic complex remain unclear. We therefore investigated the presynaptic mechanisms that mediate autoantibody-induced synaptic strengthening. METHODS We studied the effects of patient-derived purified polyclonal LGI1 autoantibodies on synaptic structure and function by combining direct patch-clamp recordings from presynaptic boutons and somata of hippocampal neurons with super-resolution light and electron microscopy of hippocampal cultures and brain slices. We also identified the protein domain mediating the presynaptic effect using domain-specific patient-derived monoclonal antibodies. RESULTS LGI1 autoantibodies dose-dependently increased short-term depression during high-frequency transmission, consistent with increased release probability. The increased neurotransmission was not related to presynaptic calcium channels because presynaptic Cav2.1 channel density, calcium current amplitude, and calcium channel gating were unaffected by LGI1 autoantibodies. By contrast, application of LGI1 autoantibodies homogeneously reduced Kv1.1 and Kv1.2 channel density on the surface of presynaptic boutons. Direct presynaptic patch-clamp recordings revealed that LGI1 autoantibodies cause a pronounced broadening of the presynaptic action potential. Domain-specific effects of LGI1 autoantibodies were analyzed at the neuronal soma. Somatic action potential broadening was induced by polyclonal LGI1 autoantibodies and patient-derived monoclonal autoantibodies targeting the epitempin domain, but not the leucin-rich repeat domain. DISCUSSION Our results indicate that LGI1 autoantibodies reduce the density of both Kv1.1 and Kv1.2 on presynaptic boutons, without actions on calcium channel density or function, thereby broadening the presynaptic action potential and increasing neurotransmitter release. This study provides a molecular explanation for the neuronal hyperactivity observed in patients with LGI1 autoantibodies.
Collapse
Affiliation(s)
- Andreas Ritzau-Jost
- From the Carl-Ludwig-Institute of Physiology (A.R.-J., F.G., T.K., S.M., S.H.), Faculty of Medicine, Leipzig University; Section Translational Neuroimmunology (J.S., C.G.), Department of Neurology, Jena University Hospital; Department of Biotechnology and Biophysics (S.S., C.W., M.S.), University of Würzburg, Biocenter, Germany; Institute of Science and Technology Austria (ISTA) (J.M., R.S.), Klosterneuburg, Austria; Oxford Autoimmune Neurology Group (S.R.I.), Nuffield Department of Clinical Neurosciences, University of Oxford, ; Department of Neurology (S.R.I.), John Radcliffe Hospital, Oxford University Hospitals, United Kingdom; and Departments of Neurology and Neurosciences (S.R.I.), Mayo Clinic Jacksonville, FL
| | - Felix Gsell
- From the Carl-Ludwig-Institute of Physiology (A.R.-J., F.G., T.K., S.M., S.H.), Faculty of Medicine, Leipzig University; Section Translational Neuroimmunology (J.S., C.G.), Department of Neurology, Jena University Hospital; Department of Biotechnology and Biophysics (S.S., C.W., M.S.), University of Würzburg, Biocenter, Germany; Institute of Science and Technology Austria (ISTA) (J.M., R.S.), Klosterneuburg, Austria; Oxford Autoimmune Neurology Group (S.R.I.), Nuffield Department of Clinical Neurosciences, University of Oxford, ; Department of Neurology (S.R.I.), John Radcliffe Hospital, Oxford University Hospitals, United Kingdom; and Departments of Neurology and Neurosciences (S.R.I.), Mayo Clinic Jacksonville, FL
| | - Josefine Sell
- From the Carl-Ludwig-Institute of Physiology (A.R.-J., F.G., T.K., S.M., S.H.), Faculty of Medicine, Leipzig University; Section Translational Neuroimmunology (J.S., C.G.), Department of Neurology, Jena University Hospital; Department of Biotechnology and Biophysics (S.S., C.W., M.S.), University of Würzburg, Biocenter, Germany; Institute of Science and Technology Austria (ISTA) (J.M., R.S.), Klosterneuburg, Austria; Oxford Autoimmune Neurology Group (S.R.I.), Nuffield Department of Clinical Neurosciences, University of Oxford, ; Department of Neurology (S.R.I.), John Radcliffe Hospital, Oxford University Hospitals, United Kingdom; and Departments of Neurology and Neurosciences (S.R.I.), Mayo Clinic Jacksonville, FL
| | - Stefan Sachs
- From the Carl-Ludwig-Institute of Physiology (A.R.-J., F.G., T.K., S.M., S.H.), Faculty of Medicine, Leipzig University; Section Translational Neuroimmunology (J.S., C.G.), Department of Neurology, Jena University Hospital; Department of Biotechnology and Biophysics (S.S., C.W., M.S.), University of Würzburg, Biocenter, Germany; Institute of Science and Technology Austria (ISTA) (J.M., R.S.), Klosterneuburg, Austria; Oxford Autoimmune Neurology Group (S.R.I.), Nuffield Department of Clinical Neurosciences, University of Oxford, ; Department of Neurology (S.R.I.), John Radcliffe Hospital, Oxford University Hospitals, United Kingdom; and Departments of Neurology and Neurosciences (S.R.I.), Mayo Clinic Jacksonville, FL
| | - Jacqueline Montanaro
- From the Carl-Ludwig-Institute of Physiology (A.R.-J., F.G., T.K., S.M., S.H.), Faculty of Medicine, Leipzig University; Section Translational Neuroimmunology (J.S., C.G.), Department of Neurology, Jena University Hospital; Department of Biotechnology and Biophysics (S.S., C.W., M.S.), University of Würzburg, Biocenter, Germany; Institute of Science and Technology Austria (ISTA) (J.M., R.S.), Klosterneuburg, Austria; Oxford Autoimmune Neurology Group (S.R.I.), Nuffield Department of Clinical Neurosciences, University of Oxford, ; Department of Neurology (S.R.I.), John Radcliffe Hospital, Oxford University Hospitals, United Kingdom; and Departments of Neurology and Neurosciences (S.R.I.), Mayo Clinic Jacksonville, FL
| | - Toni Kirmann
- From the Carl-Ludwig-Institute of Physiology (A.R.-J., F.G., T.K., S.M., S.H.), Faculty of Medicine, Leipzig University; Section Translational Neuroimmunology (J.S., C.G.), Department of Neurology, Jena University Hospital; Department of Biotechnology and Biophysics (S.S., C.W., M.S.), University of Würzburg, Biocenter, Germany; Institute of Science and Technology Austria (ISTA) (J.M., R.S.), Klosterneuburg, Austria; Oxford Autoimmune Neurology Group (S.R.I.), Nuffield Department of Clinical Neurosciences, University of Oxford, ; Department of Neurology (S.R.I.), John Radcliffe Hospital, Oxford University Hospitals, United Kingdom; and Departments of Neurology and Neurosciences (S.R.I.), Mayo Clinic Jacksonville, FL
| | - Sebastian Maaß
- From the Carl-Ludwig-Institute of Physiology (A.R.-J., F.G., T.K., S.M., S.H.), Faculty of Medicine, Leipzig University; Section Translational Neuroimmunology (J.S., C.G.), Department of Neurology, Jena University Hospital; Department of Biotechnology and Biophysics (S.S., C.W., M.S.), University of Würzburg, Biocenter, Germany; Institute of Science and Technology Austria (ISTA) (J.M., R.S.), Klosterneuburg, Austria; Oxford Autoimmune Neurology Group (S.R.I.), Nuffield Department of Clinical Neurosciences, University of Oxford, ; Department of Neurology (S.R.I.), John Radcliffe Hospital, Oxford University Hospitals, United Kingdom; and Departments of Neurology and Neurosciences (S.R.I.), Mayo Clinic Jacksonville, FL
| | - Sarosh R Irani
- From the Carl-Ludwig-Institute of Physiology (A.R.-J., F.G., T.K., S.M., S.H.), Faculty of Medicine, Leipzig University; Section Translational Neuroimmunology (J.S., C.G.), Department of Neurology, Jena University Hospital; Department of Biotechnology and Biophysics (S.S., C.W., M.S.), University of Würzburg, Biocenter, Germany; Institute of Science and Technology Austria (ISTA) (J.M., R.S.), Klosterneuburg, Austria; Oxford Autoimmune Neurology Group (S.R.I.), Nuffield Department of Clinical Neurosciences, University of Oxford, ; Department of Neurology (S.R.I.), John Radcliffe Hospital, Oxford University Hospitals, United Kingdom; and Departments of Neurology and Neurosciences (S.R.I.), Mayo Clinic Jacksonville, FL
| | - Christian Werner
- From the Carl-Ludwig-Institute of Physiology (A.R.-J., F.G., T.K., S.M., S.H.), Faculty of Medicine, Leipzig University; Section Translational Neuroimmunology (J.S., C.G.), Department of Neurology, Jena University Hospital; Department of Biotechnology and Biophysics (S.S., C.W., M.S.), University of Würzburg, Biocenter, Germany; Institute of Science and Technology Austria (ISTA) (J.M., R.S.), Klosterneuburg, Austria; Oxford Autoimmune Neurology Group (S.R.I.), Nuffield Department of Clinical Neurosciences, University of Oxford, ; Department of Neurology (S.R.I.), John Radcliffe Hospital, Oxford University Hospitals, United Kingdom; and Departments of Neurology and Neurosciences (S.R.I.), Mayo Clinic Jacksonville, FL
| | - Christian Geis
- From the Carl-Ludwig-Institute of Physiology (A.R.-J., F.G., T.K., S.M., S.H.), Faculty of Medicine, Leipzig University; Section Translational Neuroimmunology (J.S., C.G.), Department of Neurology, Jena University Hospital; Department of Biotechnology and Biophysics (S.S., C.W., M.S.), University of Würzburg, Biocenter, Germany; Institute of Science and Technology Austria (ISTA) (J.M., R.S.), Klosterneuburg, Austria; Oxford Autoimmune Neurology Group (S.R.I.), Nuffield Department of Clinical Neurosciences, University of Oxford, ; Department of Neurology (S.R.I.), John Radcliffe Hospital, Oxford University Hospitals, United Kingdom; and Departments of Neurology and Neurosciences (S.R.I.), Mayo Clinic Jacksonville, FL
| | - Markus Sauer
- From the Carl-Ludwig-Institute of Physiology (A.R.-J., F.G., T.K., S.M., S.H.), Faculty of Medicine, Leipzig University; Section Translational Neuroimmunology (J.S., C.G.), Department of Neurology, Jena University Hospital; Department of Biotechnology and Biophysics (S.S., C.W., M.S.), University of Würzburg, Biocenter, Germany; Institute of Science and Technology Austria (ISTA) (J.M., R.S.), Klosterneuburg, Austria; Oxford Autoimmune Neurology Group (S.R.I.), Nuffield Department of Clinical Neurosciences, University of Oxford, ; Department of Neurology (S.R.I.), John Radcliffe Hospital, Oxford University Hospitals, United Kingdom; and Departments of Neurology and Neurosciences (S.R.I.), Mayo Clinic Jacksonville, FL
| | - Ryuichi Shigemoto
- From the Carl-Ludwig-Institute of Physiology (A.R.-J., F.G., T.K., S.M., S.H.), Faculty of Medicine, Leipzig University; Section Translational Neuroimmunology (J.S., C.G.), Department of Neurology, Jena University Hospital; Department of Biotechnology and Biophysics (S.S., C.W., M.S.), University of Würzburg, Biocenter, Germany; Institute of Science and Technology Austria (ISTA) (J.M., R.S.), Klosterneuburg, Austria; Oxford Autoimmune Neurology Group (S.R.I.), Nuffield Department of Clinical Neurosciences, University of Oxford, ; Department of Neurology (S.R.I.), John Radcliffe Hospital, Oxford University Hospitals, United Kingdom; and Departments of Neurology and Neurosciences (S.R.I.), Mayo Clinic Jacksonville, FL
| | - Stefan Hallermann
- From the Carl-Ludwig-Institute of Physiology (A.R.-J., F.G., T.K., S.M., S.H.), Faculty of Medicine, Leipzig University; Section Translational Neuroimmunology (J.S., C.G.), Department of Neurology, Jena University Hospital; Department of Biotechnology and Biophysics (S.S., C.W., M.S.), University of Würzburg, Biocenter, Germany; Institute of Science and Technology Austria (ISTA) (J.M., R.S.), Klosterneuburg, Austria; Oxford Autoimmune Neurology Group (S.R.I.), Nuffield Department of Clinical Neurosciences, University of Oxford, ; Department of Neurology (S.R.I.), John Radcliffe Hospital, Oxford University Hospitals, United Kingdom; and Departments of Neurology and Neurosciences (S.R.I.), Mayo Clinic Jacksonville, FL
| |
Collapse
|
10
|
Zhou Y, Sun W, Fu Y, Wang J, Fan J, Liang Y, Jia W, Han R. Effect of esketamine combined with pregabalin on acute postsurgical pain in patients who underwent resection of spinal neoplasms: a randomized controlled trial. Pain 2024; 165:e96-e105. [PMID: 38501980 DOI: 10.1097/j.pain.0000000000003211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/31/2024] [Indexed: 03/20/2024]
Abstract
ABSTRACT Moderate-to-severe acute postsurgical pain (APSP) can prolong the recovery and worsen the prognosis of patients who undergo spinal surgery. Esketamine and pregabalin may resolve APSP without causing hyperpathia or respiratory depression after surgery. However, there are other risks, such as dissociative symptoms. We designed a randomized controlled trial to investigate the effect of the combination of these 2 drugs on the incidence of APSP in patients who underwent resection of spinal neoplasms. Patients aged 18 to 65 years were randomized to receive esketamine (a bolus dose of 0.5 mg·kg -1 and an infusion dose of 0.12 mg·kg -1 ·h -1 for 48 hours after surgery) combined with oral pregabalin (75-150 mg/day, starting 2 hours before surgery and ending at 2 weeks after surgery) or an identical volume of normal saline and placebo capsules. The primary outcome was the proportion of patients with moderate-to-severe APSP (visual analog scale score ≥ 40) during the first 48 hours after surgery. Secondary outcomes included the incidence of drug-related adverse events. A total of 90 patients were randomized. The incidence of moderate-to-severe APSP in the combined group (27.3%) was lower than that in the control group (60.5%) during the first 48 hours after surgery (odds ratio = 0.25, 95% CI = 0.10-0.61; P = 0.002). The occurrence of mild dissociative symptoms was higher in the combined group than in the control group (18.2% vs 0%). In conclusion, esketamine combined with pregabalin could effectively alleviate APSP after spinal surgery, but an analgesic strategy might increase the risk of mild dissociative symptoms.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuchao Liang
- Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Wenqing Jia
- Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | | |
Collapse
|
11
|
Borjas NC, Anstötz M, Maccaferri G. Multiple layers of diversity govern the cell type specificity of GABAergic input received by mouse subicular pyramidal neurons. J Physiol 2024; 602:4195-4213. [PMID: 39141819 DOI: 10.1113/jp286679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/23/2024] [Indexed: 08/16/2024] Open
Abstract
The subiculum is a key region of the brain involved in the initiation of pathological activity in temporal lobe epilepsy, and local GABAergic inhibition is essential to prevent subicular-originated epileptiform discharges. Subicular pyramidal cells may be easily distinguished into two classes based on their different firing patterns. Here, we have compared the strength of the GABAa receptor-mediated inhibitory postsynaptic currents received by regular- vs. burst-firing subicular neurons and their dynamic modulation by the activation of μ opioid receptors. We have taken advantage of the sequential re-patching of the same cell to initially classify pyramidal neurons according to their firing patters, and then to measure GABAergic events triggered by the optogenetic stimulation of parvalbumin- and somatostatin-expressing interneurons. Activation of parvalbumin-expressing cells generated larger responses in postsynaptic burst-firing neurons whereas the opposite was observed for currents evoked by the stimulation of somatostatin-expressing interneurons. In all cases, events depended critically on ω-agatoxin IVA- but not on ω-conotoxin GVIA-sensitive calcium channels. Optogenetic GABAergic input originating from both parvalbumin- and somatostatin-expressing cells was reduced in amplitude following the exposure to a μ opioid receptor agonist. The kinetics of this pharmacological sensitivity was different in regular- vs. burst-firing neurons, but only when responses were evoked by the activation of parvalbumin-expressing neurons, whereas no differences were observed when somatostatin-expressing cells were stimulated. In conclusion, our results show that a high degree of complexity regulates the organizing principles of subicular GABAergic inhibition, with the interaction of pre- and postsynaptic diversity at multiple levels. KEY POINTS: Optogenetic stimulation of parvalbumin- and somatostatin-expressing interneurons (PVs and SOMs) triggers inhibitory postsynaptic currents (IPSCs) in both regular- and burst-firing (RFs and BFs) subicular pyramidal cells. The amplitude of optogenetically evoked IPSCs from PVs (PV-opto IPSCs) is larger in BFs whereas IPSCs generated by the light activation of SOMs (SOM-opto IPSCs) are larger in RFs. Both PV- and SOM-opto IPSCs critically depend on ω-agatoxin IVA-sensitive P/Q type voltage-gated calcium channels, whereas no major effects are observed following exposure to ω-conotoxin GVIA, suggesting no significant involvement of N-type channels. The amplitude of both PV- and SOM-opto IPSCs is reduced by the probable pharmacological activation of presynaptic μ opioid receptors, with a faster kinetics of the effect observed in PV-opto IPSCs from RFs vs. BFs, but not in SOM-opto IPSCs. These results help us understand the complex interactions between different layers of diversity regulating GABAergic input onto subicular microcircuits.
Collapse
Affiliation(s)
- Nancy Castro Borjas
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Max Anstötz
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Gianmaria Maccaferri
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, USA
| |
Collapse
|
12
|
Yin Y, Zhao P, Xu X, Zhou B, Chen J, Jiang X, Liu Y, Wu Y, Yue W, Xu H, Bu W. Piezoelectric Analgesia Blocks Cancer-Induced Bone Pain. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403979. [PMID: 39044708 DOI: 10.1002/adma.202403979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/23/2024] [Indexed: 07/25/2024]
Abstract
The manipulation of cell surface receptors' activity will open a new frontier for drug development and disease treatment. However, limited by the desensitization of drugs, effective physical intervention strategy remains challenging. Here, the controllable internalization of transient receptor potential vanilloid 1 (TRPV1) on neural cells by local piezoelectric field is reported. Single-cell-level local electric field is construct by synthesizing piezoelectric BiOIO3 nanosheets (BIONSs). Upon a mild ultrasound of 0.08 W cm-2, an electric field of 15.29 µV is generated on the surface of BIONSs, further inducing TRPV1 internalization in 5 min. The as-downregulated TRPV1 expression results in the reduction of Ca2+ signal in a spinal neuron and the inhibition of the activity of wide range dynamic neurons, therefore effectively preventing the transmission of cancer-induced bone pain (CIBP). This strategy not only charts a new course for CIBP alleviation, but also introduces a promising nanotechnology for regulating cell surface receptors, showing significant potential in neuropathological and receptor-related diseases.
Collapse
Affiliation(s)
- Yifei Yin
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Shanghai, 200072, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200072, China
- Center of Minimally Invasive Treatment for Tumor, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Peiran Zhao
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Xianyun Xu
- Department of Clinical Laboratory, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330006, China
| | - Bangguo Zhou
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Shanghai, 200072, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200072, China
- Center of Minimally Invasive Treatment for Tumor, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Jian Chen
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Xingwu Jiang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Yanyan Liu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Yelin Wu
- Center of Minimally Invasive Treatment for Tumor, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Wenwen Yue
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Shanghai, 200072, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200072, China
- Center of Minimally Invasive Treatment for Tumor, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Huixiong Xu
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032, China
| | - Wenbo Bu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| |
Collapse
|
13
|
Yan J, Armstrong JPK, Scarpa F, Perriman AW. Hydrogel-Based Artificial Synapses for Sustainable Neuromorphic Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403937. [PMID: 39087845 DOI: 10.1002/adma.202403937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/16/2024] [Indexed: 08/02/2024]
Abstract
Hydrogels find widespread applications in biomedicine because of their outstanding biocompatibility, biodegradability, and tunable material properties. Hydrogels can be chemically functionalized or reinforced to respond to physical or chemical stimulation, which opens up new possibilities in the emerging field of intelligent bioelectronics. Here, the state-of-the-art in functional hydrogel-based transistors and memristors is reviewed as potential artificial synapses. Within these systems, hydrogels can serve as semisolid dielectric electrolytes in transistors and as switching layers in memristors. These synaptic devices with volatile and non-volatile resistive switching show good adaptability to external stimuli for short-term and long-term synaptic memory effects, some of which are integrated into synaptic arrays as artificial neurons; although, there are discrepancies in switching performance and efficacy. By comparing different hydrogels and their respective properties, an outlook is provided on a new range of biocompatible, environment-friendly, and sustainable neuromorphic hardware. How potential energy-efficient information storage and processing can be achieved using artificial neural networks with brain-inspired architecture for neuromorphic computing is described. The development of hydrogel-based artificial synapses can significantly impact the fields of neuromorphic bionics, biometrics, and biosensing.
Collapse
Affiliation(s)
- Jiongyi Yan
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - James P K Armstrong
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS1 3NY, UK
| | - Fabrizio Scarpa
- Bristol Composites Institute, School of Civil, Aerospace and Design Engineering (CADE), University of Bristol, University Walk, Bristol, BS8 1TR, UK
| | - Adam W Perriman
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| |
Collapse
|
14
|
Chichorro JG, Gambeta E, Baggio DF, Zamponi GW. Voltage-gated Calcium Channels as Potential Therapeutic Targets in Migraine. THE JOURNAL OF PAIN 2024; 25:104514. [PMID: 38522594 DOI: 10.1016/j.jpain.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 03/26/2024]
Abstract
Migraine is a complex and highly incapacitating neurological disorder that affects around 15% of the general population with greater incidence in women, often at the most productive age of life. Migraine physiopathology is still not fully understood, but it involves multiple mediators and events in the trigeminovascular system and the central nervous system. The identification of calcitonin gene-related peptide as a key mediator in migraine physiopathology has led to the development of effective and highly selective antimigraine therapies. However, this treatment is neither accessible nor effective for all migraine sufferers. Thus, a better understanding of migraine mechanisms and the identification of potential targets are still clearly warranted. Voltage-gated calcium channels (VGCCs) are widely distributed in the trigeminovascular system, and there is accumulating evidence of their contribution to the mechanisms associated with headache pain. Several drugs used in migraine abortive or prophylactic treatment target VGCCs, which probably contributes to their analgesic effect. This review aims to summarize the current evidence of VGGC contribution to migraine physiopathology and to discuss how current pharmacological options for migraine treatment interfere with VGGC function. PERSPECTIVE: Calcitonin gene-related peptide (CGRP) represents a major migraine mediator, but few studies have investigated the relationship between CGRP and VGCCs. CGRP release is calcium channel-dependent and VGGCs are key players in familial migraine. Further studies are needed to determine whether VGCCs are suitable molecular targets for treating migraine.
Collapse
Affiliation(s)
- Juliana G Chichorro
- Biological Sciences Sector, Department of Pharmacology, Federal University of Parana, Curitiba, Parana, Brazil.
| | - Eder Gambeta
- Cumming School of Medicine, Department of Clinical Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Darciane F Baggio
- Biological Sciences Sector, Department of Pharmacology, Federal University of Parana, Curitiba, Parana, Brazil
| | - Gerald W Zamponi
- Cumming School of Medicine, Department of Clinical Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
15
|
Chin M, Kaeser PS. The intracellular C-terminus confers compartment-specific targeting of voltage-gated calcium channels. Cell Rep 2024; 43:114428. [PMID: 38996073 PMCID: PMC11441329 DOI: 10.1016/j.celrep.2024.114428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
To achieve the functional polarization that underlies brain computation, neurons sort protein material into distinct compartments. Ion channel composition, for example, differs between axons and dendrites, but the molecular determinants for their polarized trafficking remain obscure. Here, we identify mechanisms that target voltage-gated Ca2+ channels (CaVs) to distinct subcellular compartments. In hippocampal neurons, CaV2s trigger neurotransmitter release at the presynaptic active zone, and CaV1s localize somatodendritically. After knockout of all three CaV2s, expression of CaV2.1, but not CaV1.3, restores neurotransmitter release. We find that chimeric CaV1.3s with CaV2.1 intracellular C-termini localize to the active zone, mediate synaptic vesicle exocytosis, and render release sensitive to CaV1 blockers. This dominant targeting function of the CaV2.1 C-terminus requires the first EF hand in its proximal segment, and replacement of the CaV2.1 C-terminus with that of CaV1.3 abolishes CaV2.1 active zone localization and function. We conclude that CaV intracellular C-termini mediate compartment-specific targeting.
Collapse
Affiliation(s)
- Morven Chin
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Xiong X, Qiu J, Fu S, Gu B, Zhong C, Zhao L, Gao Y. A dual-response fluorescent probe for norepinephrine and viscosity and its application in depression research. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124270. [PMID: 38608559 DOI: 10.1016/j.saa.2024.124270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
Depression is a serious mental disease that causes grievous harm to human health and quality of life. The vesicular exocytosis of noradrenaline (NE), rather than its intrinsic intracellular concentration, is more associated with depression. Based on the reports on exocytosis of NE, it is reasonable to assume that the viscosity of cells has an important effect on the release of NE. Herein, a dual-response fluorescent probe (RHO-DCO-NE) for detecting NE and viscosity was designed and synthesized. The probe can simultaneously detect NE concentration and viscosity level with negligible crosstalk between the two channels. We utilized the probe to study the effect of viscosity changes on the NE release of PC12 and the corticosterone-induced PC12 cells. The experiment data revealed that the decrease in viscosity level can accelerate the release of NE of depression cell models. The finding provides new insight into the study of the pathological mechanisms of depression.
Collapse
Affiliation(s)
- Xinyi Xiong
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China
| | - Jianwen Qiu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China
| | - Shaofei Fu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China
| | - Biaofeng Gu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China
| | - Chunli Zhong
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China
| | - Lan Zhao
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350003, China
| | - Yong Gao
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China.
| |
Collapse
|
17
|
Talluri B, Addya S, Terashvili M, Medda BK, Banerjee A, Shaker R, Sengupta JN, Banerjee B. Adult zymosan re-exposure exacerbates the molecular alterations in the brainstem rostral ventromedial medulla of rats with early life zymosan-induced cystitis. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 16:100160. [PMID: 39252992 PMCID: PMC11381896 DOI: 10.1016/j.ynpai.2024.100160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 09/11/2024]
Abstract
Recent evidence suggests that the descending modulatory pathways from the brainstem rostral ventromedial medulla (RVM) are important for bladder inflammatory pain. This study aimed to identify the long-term molecular changes in RVM neurons due to early life cystitis during neuronal development and the effect of reexposure later in adulthood. RVM tissues from two treatment protocols were used: (1) neonatal zymosan exposures with acute adult rechallenge (RC) and (2) only neonatal zymosan exposures (NRC). RNAseq analysis showed upregulation of several genes associated with synaptic plasticity (Grin1, Grip2, Notch1, Arc, and Scn2b) in the cystitis groups compared to controls in both protocols. The RC protocol exhibited a stronger treatment effect with significantly higher fold differences between the groups compared to the NRC protocol (p < 0.001, fold differences RC vs NRC). In microarrays, miR-34a-5p showed cystitis-induced downregulation in both protocols. Bioinformatics analysis identified multiple 3'UTRs complementary binding sites for miR-34a-5p on Grin2b, Notch1, Grip2, Scn2b, and Arc genes. The enhanced response in the RC protocol indicates a possible priming effect of early life cystitis on rechallenge in adulthood. These long-term molecular alterations may play a critical role in the development of chronic bladder pain conditions as seen in patients with Interstitial Cystitis/Bladder pain syndrome.
Collapse
Affiliation(s)
- Bhavana Talluri
- Gastroenterology & Hepatology Division, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sankar Addya
- Sydney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Maia Terashvili
- Gastroenterology & Hepatology Division, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Bidyut K Medda
- Gastroenterology & Hepatology Division, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Anjishnu Banerjee
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Reza Shaker
- Gastroenterology & Hepatology Division, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jyoti N Sengupta
- Gastroenterology & Hepatology Division, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Banani Banerjee
- Gastroenterology & Hepatology Division, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
18
|
Martínez-Magaña CJ, Muñoz-Castillo PA, Murbartián J. Spinal bestrophin-1 and anoctamin-1 channels have a pronociceptive role in the tactile allodynia induced by REM sleep deprivation in rats. Brain Res 2024; 1834:148915. [PMID: 38582414 DOI: 10.1016/j.brainres.2024.148915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Bestrophin-1 and anoctamin-1 are members of the calcium-activated chloride channels (CaCCs) family and are involved in inflammatory and neuropathic pain. However, their role in pain hypersensitivity induced by REM sleep deprivation (REMSD) has not been studied. This study aimed to determine if anoctamin-1 and bestrophin-1 are involved in the pain hypersensitivity induced by REMSD. We used the multiple-platform method to induce REMSD. REM sleep deprivation for 48 h induced tactile allodynia and a transient increase in corticosterone concentration at the beginning of the protocol (12 h) in female and male rats. REMSD enhanced c-Fos and α2δ-1 protein expression but did not change activating transcription factor 3 (ATF3) and KCC2 expression in dorsal root ganglia and dorsal spinal cord. Intrathecal injection of CaCCinh-A01, a non-selective bestrophin-1 blocker, and T16Ainh-A01, a specific anoctamin-1 blocker, reverted REMSD-induced tactile allodynia. However, T16Ainh-A01 had a higher antiallodynic effect in male than female rats. In addition, REMSD increased bestrophin-1 protein expression in DRG but not in DSC in male and female rats. In marked contrast, REMSD decreased anoctamin-1 protein expression in DSC but not in DRG, only in female rats. Bestrophin-1 and anoctamin-1 promote pain and maintain tactile allodynia induced by REM sleep deprivation in both male and female rats, but their expression patterns differ between the sexes.
Collapse
Affiliation(s)
| | | | - Janet Murbartián
- Departamento de Farmacobiología, Cinvestav, Sede sur, Mexico City, Mexico.
| |
Collapse
|
19
|
Currim F, Tanwar R, Brown-Leung JM, Paranjape N, Liu J, Sanders LH, Doorn JA, Cannon JR. Selective dopaminergic neurotoxicity modulated by inherent cell-type specific neurobiology. Neurotoxicology 2024; 103:266-287. [PMID: 38964509 PMCID: PMC11288778 DOI: 10.1016/j.neuro.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disease affecting millions of individuals worldwide. Hallmark features of PD pathology are the formation of Lewy bodies in neuromelanin-containing dopaminergic (DAergic) neurons of the substantia nigra pars compacta (SNpc), and the subsequent irreversible death of these neurons. Although genetic risk factors have been identified, around 90 % of PD cases are sporadic and likely caused by environmental exposures and gene-environment interaction. Mechanistic studies have identified a variety of chemical PD risk factors. PD neuropathology occurs throughout the brain and peripheral nervous system, but it is the loss of DAergic neurons in the SNpc that produce many of the cardinal motor symptoms. Toxicology studies have found specifically the DAergic neuron population of the SNpc exhibit heightened sensitivity to highly variable chemical insults (both in terms of chemical structure and mechanism of neurotoxic action). Thus, it has become clear that the inherent neurobiology of nigral DAergic neurons likely underlies much of this neurotoxic response to broad insults. This review focuses on inherent neurobiology of nigral DAergic neurons and how such neurobiology impacts the primary mechanism of neurotoxicity. While interactions with a variety of other cell types are important in disease pathogenesis, understanding how inherent DAergic biology contributes to selective sensitivity and primary mechanisms of neurotoxicity is critical to advancing the field. Specifically, key biological features of DAergic neurons that increase neurotoxicant susceptibility.
Collapse
Affiliation(s)
- Fatema Currim
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA
| | - Reeya Tanwar
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA
| | - Josephine M Brown-Leung
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA
| | - Neha Paranjape
- Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Jennifer Liu
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Center for Neurodegeneration and Neurotherapeutics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Laurie H Sanders
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Center for Neurodegeneration and Neurotherapeutics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jonathan A Doorn
- Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA.
| |
Collapse
|
20
|
Gao M, Ooms JF, Leurs R, Vischer HF. Histamine H 3 Receptor Isoforms: Insights from Alternative Splicing to Functional Complexity. Biomolecules 2024; 14:761. [PMID: 39062475 PMCID: PMC11274711 DOI: 10.3390/biom14070761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Alternative splicing significantly enhances the diversity of the G protein-coupled receptor (GPCR) family, including the histamine H3 receptor (H3R). This post-transcriptional modification generates multiple H3R isoforms with potentially distinct pharmacological and physiological profiles. H3R is primarily involved in the presynaptic inhibition of neurotransmitter release in the central nervous system. Despite the approval of pitolisant for narcolepsy (Wakix®) and daytime sleepiness in adults with obstructive sleep apnea (Ozawade®) and ongoing clinical trials for other H3R antagonists/inverse agonists, the functional significance of the numerous H3R isoforms remains largely enigmatic. Recent publicly available RNA sequencing data have confirmed the expression of multiple H3R isoforms in the brain, with some isoforms exhibiting unique tissue-specific distribution patterns hinting at isoform-specific functions and interactions within neural circuits. In this review, we discuss the complexity of H3R isoforms with a focus on their potential roles in central nervous system (CNS) function. Comparative analysis across species highlights evolutionary conservation and divergence in H3R splicing, suggesting species-specific regulatory mechanisms. Understanding the functionality of H3R isoforms is crucial for the development of targeted therapeutics. This knowledge will inform the design of more precise pharmacological interventions, potentially enhancing therapeutic efficacy and reducing adverse effects in the treatment of neurological and psychiatric disorders.
Collapse
Affiliation(s)
| | | | | | - Henry F. Vischer
- Amsterdam Institute of Molecular and Life Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (M.G.); (J.F.O.); (R.L.)
| |
Collapse
|
21
|
McCarthy CI, Kavalali ET. Nano-organization of synaptic calcium signaling. Biochem Soc Trans 2024; 52:1459-1471. [PMID: 38752834 PMCID: PMC11346461 DOI: 10.1042/bst20231385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/17/2024] [Accepted: 05/03/2024] [Indexed: 06/27/2024]
Abstract
Recent studies suggest an exquisite structural nano-organization within single synapses, where sites of evoked fusion - marked by clustering of synaptic vesicles, active zone proteins and voltage-gated calcium channels - are directly juxtaposed to postsynaptic receptor clusters within nanocolumns. This direct nanometer scale alignment between presynaptic fusion apparatus and postsynaptic receptors is thought to ensure the fidelity of synaptic signaling and possibly allow multiple distinct signals to occur without interference from each other within a single active zone. The functional specificity of this organization is made possible by the inherent nano-organization of calcium signals, where all the different calcium sources such as voltage-gated calcium channels, intracellular stores and store-operated calcium entry have dedicated local targets within their nanodomain to ensure precision of action. Here, we discuss synaptic nano-organization from the perspective of calcium signals, where some of the principal findings from early work in the 1980s continue to inspire current studies that exploit new genetic tools and super-resolution imaging technologies.
Collapse
Affiliation(s)
- Clara I. McCarthy
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, U.S.A
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, U.S.A
| | - Ege T. Kavalali
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, U.S.A
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, U.S.A
| |
Collapse
|
22
|
Ferron L, Harding EK, Gandini MA, Brideau C, Stys PK, Zamponi GW. Functional remodeling of presynaptic voltage-gated calcium channels in superficial layers of the dorsal horn during neuropathic pain. iScience 2024; 27:109973. [PMID: 38827405 PMCID: PMC11140212 DOI: 10.1016/j.isci.2024.109973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 06/04/2024] Open
Abstract
N- and P/Q-type voltage-gated Ca2+ channels are critical for synaptic transmission. While their expression is increased in the dorsal root ganglion (DRG) neuron cell bodies during neuropathic pain conditions, less is known about their synaptic remodeling. Here, we combined genetic tools with 2-photon Ca2+ imaging to explore the functional remodeling that occurs in central presynaptic terminals of DRG neurons during neuropathic pain. We imaged GCaMP6s fluorescence responses in an ex vivo spinal cord preparation from mice expressing GCaMP6s in Trpv1-Cre lineage nociceptors. We show that Ca2+ transient amplitude is increased in central terminals of these neurons after spared nerve injury, and that this increase is mediated by both N- and P/Q-type channels. We found that GABA-B receptor-dependent inhibition of Ca2+ transients was potentiated in the superficial layer of the dorsal horn. Our results provide direct evidence toward nerve injury-induced functional remodeling of presynaptic Ca2+ channels in Trpv1-lineage nociceptor terminals.
Collapse
Affiliation(s)
- Laurent Ferron
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Calgary Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Erika K. Harding
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Calgary Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Maria A. Gandini
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Calgary Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Craig Brideau
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Calgary Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Peter K. Stys
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Calgary Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Gerald W. Zamponi
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Calgary Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
23
|
Martín-Belmonte A, Aguado C, Alfaro-Ruiz R, Kulik A, de la Ossa L, Moreno-Martínez AE, Alberquilla S, García-Carracedo L, Fernández M, Fajardo-Serrano A, Aso E, Shigemoto R, Martín ED, Fukazawa Y, Ciruela F, Luján R. Nanoarchitecture of Ca V2.1 channels and GABA B receptors in the mouse hippocampus: Impact of APP/PS1 pathology. Brain Pathol 2024:e13279. [PMID: 38887180 DOI: 10.1111/bpa.13279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Voltage-gated CaV2.1 (P/Q-type) Ca2+ channels play a crucial role in regulating neurotransmitter release, thus contributing to synaptic plasticity and to processes such as learning and memory. Despite their recognized importance in neural function, there is limited information on their potential involvement in neurodegenerative conditions such as Alzheimer's disease (AD). Here, we aimed to explore the impact of AD pathology on the density and nanoscale compartmentalization of CaV2.1 channels in the hippocampus in association with GABAB receptors. Histoblotting experiments showed that the density of CaV2.1 channel was significantly reduced in the hippocampus of APP/PS1 mice in a laminar-dependent manner. CaV2.1 channel was enriched in the active zone of the axon terminals and was present at a very low density over the surface of dendritic tree of the CA1 pyramidal cells, as shown by quantitative SDS-digested freeze-fracture replica labelling (SDS-FRL). In APP/PS1 mice, the density of CaV2.1 channel in the active zone was significantly reduced in the strata radiatum and lacunosum-moleculare, while it remained unaltered in the stratum oriens. The decline in Cav2.1 channel density was found to be associated with a corresponding impairment in the GABAergic synaptic function, as evidenced by electrophysiological experiments carried out in the hippocampus of APP/PS1 mice. Remarkably, double SDS-FRL showed a co-clustering of CaV2.1 channel and GABAB1 receptor in nanodomains (~40-50 nm) in wild type mice, while in APP/PS1 mice this nanoarchitecture was absent. Together, these findings suggest that the AD pathology-induced reduction in CaV2.1 channel density and CaV2.1-GABAB1 de-clustering may play a role in the synaptic transmission alterations shown in the AD hippocampus. Therefore, uncovering these layer-dependent changes in P/Q calcium currents associated with AD pathology can benefit the development of future strategies for AD management.
Collapse
Affiliation(s)
- Alejandro Martín-Belmonte
- Departamento de Ciencias Médicas, Facultad de Medicina, Synaptic Structure Laboratory, Instituto de Biomedicina de la UCLM (IB-UCLM), Universidad Castilla-La Mancha, Albacete, Spain
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, Barcelona, Spain
| | - Carolina Aguado
- Departamento de Ciencias Médicas, Facultad de Medicina, Synaptic Structure Laboratory, Instituto de Biomedicina de la UCLM (IB-UCLM), Universidad Castilla-La Mancha, Albacete, Spain
- Laboratorio de Estructura Sináptica, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Albacete, Spain
| | - Rocío Alfaro-Ruiz
- Departamento de Ciencias Médicas, Facultad de Medicina, Synaptic Structure Laboratory, Instituto de Biomedicina de la UCLM (IB-UCLM), Universidad Castilla-La Mancha, Albacete, Spain
- Laboratorio de Estructura Sináptica, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Albacete, Spain
| | - Akos Kulik
- Institute for Physiology II, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Luis de la Ossa
- Departamento de Sistemas Informáticos, Escuela Superior de Ingeniería Informática, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Ana Esther Moreno-Martínez
- Departamento de Ciencias Médicas, Facultad de Medicina, Synaptic Structure Laboratory, Instituto de Biomedicina de la UCLM (IB-UCLM), Universidad Castilla-La Mancha, Albacete, Spain
- Laboratorio de Estructura Sináptica, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Albacete, Spain
| | - Samuel Alberquilla
- Laboratory of Neurophysiology and Synaptic Plasticity, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Lucía García-Carracedo
- Laboratory of Neurophysiology and Synaptic Plasticity, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Miriam Fernández
- Departamento de Ciencias Médicas, Facultad de Medicina, Synaptic Structure Laboratory, Instituto de Biomedicina de la UCLM (IB-UCLM), Universidad Castilla-La Mancha, Albacete, Spain
- Laboratorio de Estructura Sináptica, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Albacete, Spain
| | - Ana Fajardo-Serrano
- Departamento de Ciencias Médicas, Facultad de Medicina, Synaptic Structure Laboratory, Instituto de Biomedicina de la UCLM (IB-UCLM), Universidad Castilla-La Mancha, Albacete, Spain
| | - Ester Aso
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, Barcelona, Spain
| | - Ryuichi Shigemoto
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Eduardo D Martín
- Laboratory of Neurophysiology and Synaptic Plasticity, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Faculty of Medical Science, University of Fukui, Fukui, Japan
- Life Science Innovation Center, University of Fukui, Fukui, Japan
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, Barcelona, Spain
| | - Rafael Luján
- Departamento de Ciencias Médicas, Facultad de Medicina, Synaptic Structure Laboratory, Instituto de Biomedicina de la UCLM (IB-UCLM), Universidad Castilla-La Mancha, Albacete, Spain
- Laboratorio de Estructura Sináptica, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Albacete, Spain
| |
Collapse
|
24
|
Brockhaus J, Kahl I, Ahmad M, Repetto D, Reissner C, Missler M. Conditional Knockout of Neurexins Alters the Contribution of Calcium Channel Subtypes to Presynaptic Ca 2+ Influx. Cells 2024; 13:981. [PMID: 38891114 PMCID: PMC11171642 DOI: 10.3390/cells13110981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/23/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Presynaptic Ca2+ influx through voltage-gated Ca2+ channels (VGCCs) is a key signal for synaptic vesicle release. Synaptic neurexins can partially determine the strength of transmission by regulating VGCCs. However, it is unknown whether neurexins modulate Ca2+ influx via all VGCC subtypes similarly. Here, we performed live cell imaging of synaptic boutons from primary hippocampal neurons with a Ca2+ indicator. We used the expression of inactive and active Cre recombinase to compare control to conditional knockout neurons lacking either all or selected neurexin variants. We found that reduced total presynaptic Ca2+ transients caused by the deletion of all neurexins were primarily due to the reduced contribution of P/Q-type VGCCs. The deletion of neurexin1α alone also reduced the total presynaptic Ca2+ influx but increased Ca2+ influx via N-type VGCCs. Moreover, we tested whether the decrease in Ca2+ influx induced by activation of cannabinoid receptor 1 (CB1-receptor) is modulated by neurexins. Unlike earlier observations emphasizing a role for β-neurexins, we found that the decrease in presynaptic Ca2+ transients induced by CB1-receptor activation depended more strongly on the presence of α-neurexins in hippocampal neurons. Together, our results suggest that neurexins have unique roles in the modulation of presynaptic Ca2+ influx through VGCC subtypes and that different neurexin variants may affect specific VGCCs.
Collapse
Affiliation(s)
- Johannes Brockhaus
- Institute of Anatomy and Molecular Neurobiology, University of Münster, 48149 Münster, Germany
| | - Iris Kahl
- Institute of Anatomy and Molecular Neurobiology, University of Münster, 48149 Münster, Germany
| | - Mohiuddin Ahmad
- Institute of Anatomy and Molecular Neurobiology, University of Münster, 48149 Münster, Germany
- Department of Cell Biology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Daniele Repetto
- Institute of Anatomy and Molecular Neurobiology, University of Münster, 48149 Münster, Germany
| | - Carsten Reissner
- Institute of Anatomy and Molecular Neurobiology, University of Münster, 48149 Münster, Germany
| | - Markus Missler
- Institute of Anatomy and Molecular Neurobiology, University of Münster, 48149 Münster, Germany
| |
Collapse
|
25
|
Trovò L, Kouvaros S, Schwenk J, Fernandez-Fernandez D, Fritzius T, Rem PD, Früh S, Gassmann M, Fakler B, Bischofberger J, Bettler B. Synaptotagmin-11 facilitates assembly of a presynaptic signaling complex in post-Golgi cargo vesicles. EMBO Rep 2024; 25:2610-2634. [PMID: 38698221 PMCID: PMC11169412 DOI: 10.1038/s44319-024-00147-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/05/2024] Open
Abstract
GABAB receptors (GBRs), the G protein-coupled receptors for GABA, regulate synaptic transmission throughout the brain. A main synaptic function of GBRs is the gating of Cav2.2-type Ca2+ channels. However, the cellular compartment where stable GBR/Cav2.2 signaling complexes form remains unknown. In this study, we demonstrate that the vesicular protein synaptotagmin-11 (Syt11) binds to both the auxiliary GBR subunit KCTD16 and Cav2.2 channels. Through these dual interactions, Syt11 recruits GBRs and Cav2.2 channels to post-Golgi vesicles, thus facilitating assembly of GBR/Cav2.2 signaling complexes. In addition, Syt11 stabilizes GBRs and Cav2.2 channels at the neuronal plasma membrane by inhibiting constitutive internalization. Neurons of Syt11 knockout mice exhibit deficits in presynaptic GBRs and Cav2.2 channels, reduced neurotransmitter release, and decreased GBR-mediated presynaptic inhibition, highlighting the critical role of Syt11 in the assembly and stable expression of GBR/Cav2.2 complexes. These findings support that Syt11 acts as a vesicular scaffold protein, aiding in the assembly of signaling complexes from low-abundance components within transport vesicles. This mechanism enables insertion of pre-assembled functional signaling units into the synaptic membrane.
Collapse
Affiliation(s)
- Luca Trovò
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Jochen Schwenk
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | | | | | - Simon Früh
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Martin Gassmann
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS Center for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation, Freiburg, Germany
| | | | - Bernhard Bettler
- Department of Biomedicine, University of Basel, Basel, Switzerland.
| |
Collapse
|
26
|
Medeiros AT, Gratz S, Delgado A, Ritt J, O’Connor-Giles KM. Ca 2+ channel and active zone protein abundance intersects with input-specific synapse organization to shape functional synaptic diversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.02.535290. [PMID: 37034654 PMCID: PMC10081318 DOI: 10.1101/2023.04.02.535290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Synaptic heterogeneity is a hallmark of nervous systems that enables complex and adaptable communication in neural circuits. To understand circuit function, it is thus critical to determine the factors that contribute to the functional diversity of synapses. We investigated the contributions of voltage-gated calcium channel (VGCC) abundance, spatial organization, and subunit composition to synapse diversity among and between synapses formed by two closely related Drosophila glutamatergic motor neurons with distinct neurotransmitter release probabilities (Pr). Surprisingly, VGCC levels are highly predictive of heterogeneous Pr among individual synapses of either low- or high-Pr inputs, but not between inputs. We find that the same number of VGCCs are more densely organized at high-Pr synapses, consistent with tighter VGCC-synaptic vesicle coupling. We generated endogenously tagged lines to investigate VGCC subunits in vivo and found that the α2δ-3 subunit Straightjacket along with the CAST/ELKS active zone (AZ) protein Bruchpilot, both key regulators of VGCCs, are less abundant at high-Pr inputs, yet positively correlate with Pr among synapses formed by either input. Consistently, both Straightjacket and Bruchpilot levels are dynamically increased across AZs of both inputs when neurotransmitter release is potentiated to maintain stable communication following glutamate receptor inhibition. Together, these findings suggest a model in which VGCC and AZ protein abundance intersects with input-specific spatial and molecular organization to shape the functional diversity of synapses.
Collapse
Affiliation(s)
- A. T. Medeiros
- Neuroscience Graduate Training Program, Brown University, Providence, RI
| | - S.J. Gratz
- Department of Neuroscience, Brown University, Providence, RI
| | - A. Delgado
- Department of Neuroscience, Brown University, Providence, RI
| | - J.T. Ritt
- Department of Neuroscience, Brown University, Providence, RI
- Carney Institute for Brain Science, Brown University, Providence, RI
| | - Kate M. O’Connor-Giles
- Neuroscience Graduate Training Program, Brown University, Providence, RI
- Department of Neuroscience, Brown University, Providence, RI
- Carney Institute for Brain Science, Brown University, Providence, RI
| |
Collapse
|
27
|
Lee HW, Chen SJ, Tsai KJ, Hsu KS, Chen YF, Chang CH, Lin HH, Hsueh WY, Hsieh HP, Lee YF, Chiang HC, Chang JY. Targeting cathepsin S promotes activation of OLF1-BDNF/TrkB axis to enhance cognitive function. J Biomed Sci 2024; 31:46. [PMID: 38725007 PMCID: PMC11084077 DOI: 10.1186/s12929-024-01037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/27/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Cathepsin S (CTSS) is a cysteine protease that played diverse roles in immunity, tumor metastasis, aging and other pathological alterations. At the cellular level, increased CTSS levels have been associated with the secretion of pro-inflammatory cytokines and disrupted the homeostasis of Ca2+ flux. Once CTSS was suppressed, elevated levels of anti-inflammatory cytokines and changes of Ca2+ influx were observed. These findings have inspired us to explore the potential role of CTSS on cognitive functions. METHODS We conducted classic Y-maze and Barnes Maze tests to assess the spatial and working memory of Ctss-/- mice, Ctss+/+ mice and Ctss+/+ mice injected with the CTSS inhibitor (RJW-58). Ex vivo analyses including long-term potentiation (LTP), Golgi staining, immunofluorescence staining of sectioned whole brain tissues obtained from experimental animals were conducted. Furthermore, molecular studies were carried out using cultured HT-22 cell line and primary cortical neurons that treated with RJW-58 to comprehensively assess the gene and protein expressions. RESULTS Our findings reported that targeting cathepsin S (CTSS) yields improvements in cognitive function, enhancing both working and spatial memory in behavior models. Ex vivo studies showed elevated levels of long-term potentiation levels and increased synaptic complexity. Microarray analysis demonstrated that brain-derived neurotrophic factor (BDNF) was upregulated when CTSS was knocked down by using siRNA. Moreover, the pharmacological blockade of the CTSS enzymatic activity promoted BDNF expression in a dose- and time-dependent manner. Notably, the inhibition of CTSS was associated with increased neurogenesis in the murine dentate gyrus. These results suggested a promising role of CTSS modulation in cognitive enhancement and neurogenesis. CONCLUSION Our findings suggest a critical role of CTSS in the regulation of cognitive function by modulating the Ca2+ influx, leading to enhanced activation of the BDNF/TrkB axis. Our study may provide a novel strategy for improving cognitive function by targeting CTSS.
Collapse
Affiliation(s)
- Hao-Wei Lee
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
- Taipei Cancer Center, TMU Research Center of Cancer Translational Medicine, Taipei Medical University Hospital, College of Medicine, Taipei Medical University, No. 252, Wuxing St., Xinyi Dist., Taipei, 110301, Taiwan (R.O.C.)
| | - Szu-Jung Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuei-Sen Hsu
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Fan Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Chih-Hua Chang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Hsiao-Han Lin
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Wen-Yun Hsueh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Hsing-Pang Hsieh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Yueh-Feng Lee
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Huai-Chueh Chiang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Jang-Yang Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan.
- Taipei Cancer Center, TMU Research Center of Cancer Translational Medicine, Taipei Medical University Hospital, College of Medicine, Taipei Medical University, No. 252, Wuxing St., Xinyi Dist., Taipei, 110301, Taiwan (R.O.C.).
| |
Collapse
|
28
|
Mei T, Liu W, Sun F, Chen Y, Xu G, Huang Z, Jiang Y, Wang S, Chen L, Liu J, Fan F, Xiao K. Bio-inspired Two-dimensional Nanofluidic Ionic Transistor for Neuromorphic Signal Processing. Angew Chem Int Ed Engl 2024; 63:e202401477. [PMID: 38419469 DOI: 10.1002/anie.202401477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 03/02/2024]
Abstract
Voltage-gated ion channels prevalent in neurons play important roles in generating action potential and information transmission by responding to transmembrane potential. Fabricating bio-inspired ionic transistors with ions as charge carriers will be crucial for realizing neuro-inspired devices and brain-liking computing. Here, we reported a two-dimensional nanofluidic ionic transistor based on a MXene membrane with sub-1 nm interlayer channels. By applying a gating voltage on the MXene nanofluidic, a transmembrane potential will be generated to active the ionic transistor, which is similar to the transmembrane potential of neuron cells and can be effectively regulated by changing membrane parameters, e.g., thickness, composition, and interlayer spacing. For the symmetric MXene nanofluidic, a high on/off ratio of ~2000 can be achieved by forming an ionic depletion or accumulation zone, contingent on the sign of the gating potential. An asymmetric PET/MXene-composited nanofluidic transitioned the ionic transistor from ambipolar to unipolar, resulting in a more sensitive gate voltage characteristic with a low subthreshold swing of 560 mV/decade. Furthermore, ionic logic gate circuits, including the "NOT", "NAND", and "NOR" gate, were implemented for neuromorphic signal processing successfully, which provides a promising pathway towards highly parallel, low energy consumption, and ion-based brain-like computing.
Collapse
Affiliation(s)
- Tingting Mei
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, 518055, P.R. China
- School of Materials and Environmental Engineering, Shenzhen Polytechnic University, Shenzhen, 518055, PR China
| | - Wenchao Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, 518055, P.R. China
| | - Fusai Sun
- State Key Laboratory of Catalysis, 2011-iChEM, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physic, Zhongshan Road 457, Dalian, 116023, P.R. China
| | - Yuanxia Chen
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, 518055, P.R. China
| | - Guoheng Xu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, 518055, P.R. China
| | - Zijia Huang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, 518055, P.R. China
| | - Yisha Jiang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, 518055, P.R. China
| | - Senyao Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, 518055, P.R. China
| | - Lu Chen
- School of Materials and Environmental Engineering, Shenzhen Polytechnic University, Shenzhen, 518055, PR China
| | - Junjun Liu
- School of Materials and Environmental Engineering, Shenzhen Polytechnic University, Shenzhen, 518055, PR China
| | - Fengtao Fan
- State Key Laboratory of Catalysis, 2011-iChEM, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physic, Zhongshan Road 457, Dalian, 116023, P.R. China
| | - Kai Xiao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, 518055, P.R. China
| |
Collapse
|
29
|
Dong Z, Zhao J, Xu J, Deng W, Sun P. Strongly Adhesive, Self-Healing, Hemostatic Hydrogel for the Repair of Traumatic Brain Injury. Biomacromolecules 2024; 25:2462-2475. [PMID: 38533630 DOI: 10.1021/acs.biomac.3c01406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
With wide clinical demands, therapies for traumatic brain injury (TBI) are a major problem in surgical procedures and after major trauma. Due to the difficulty in regeneration of neurons or axons after injury, as well as the inhibition of blood vessel growth by the formation of neural scars, existing treatment measures have limited effectiveness in repairing brain tissue. Herein, the biomultifunctional hydrogels are developed for TBI treatment based on the Schiff base reaction of calcium ion (Ca2+)-cross-linked oxidized sodium alginate (OSA) and carboxymethyl chitosan (CMCS). The obtained COCS hydrogel exhibits excellent adhesion to wet tissues, self-repair capability, and antimicrobial properties. What's particularly interesting is that the addition of Ca2+ increases the hydrogel's extensibility, enhancing its hemostatic capabilities. Biological assessments indicate that the COCS hydrogel demonstrates excellent biocompatibility, hemostatic properties, and the ability to promote arterial vessel repair. Importantly, the COCS hydrogel promotes the growth of cerebral microvessels by upregulating CD31, accelerates the proliferation of astrocytes, enhances the expression of GFAP, and stimulates the expression of neuron-specific markers such as NEUN and β-tubulin. All of these findings highlight that the strongly adhesive, self-healing, hemostatic hydrogel shows great potential for the repair of traumatic brain injury and other tissue repair therapy.
Collapse
Affiliation(s)
- Zuoxiang Dong
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, Shandong 266000, China
| | - Jihu Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, Shandong 266000, China
| | - Jian Xu
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, Shandong 266000, China
| | - Wenshuai Deng
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, Shandong 266000, China
| | - Peng Sun
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, Shandong 266000, China
| |
Collapse
|
30
|
Zhu Q, Zhu X, Zhang L. ER membrane complex (EMC): Structure, functions, and roles in diseases. FASEB J 2024; 38:e23539. [PMID: 38498340 DOI: 10.1096/fj.202302266r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/22/2024] [Accepted: 02/21/2024] [Indexed: 03/20/2024]
Abstract
The endoplasmic reticulum (ER) is the largest membrane system in eukaryotic cells and is the primary site for the biosynthesis of lipids and carbohydrates, as well as for the folding, assembly, modification, and transport of secreted and integrated membrane proteins. The ER membrane complex (EMC) on the ER membrane is an ER multiprotein complex that affects the quality control of membrane proteins, which is abundant and widely preserved. Its disruption has been found to affect a wide range of processes, including protein and lipid synthesis, organelle communication, endoplasmic reticulum stress, and viral maturation, and may lead to neurodevelopmental disorders and cancer. Therefore, EMC has attracted the attention of many scholars and become a hot field. In this paper, we summarized the main contributions of the research of EMC in the past nearly 15 years, and reviewed the structure and function of EMC as well as its related diseases. We hope this review will promote further progress of research on EMC.
Collapse
Affiliation(s)
- Qi Zhu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xianjun Zhu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Lin Zhang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| |
Collapse
|
31
|
Mateus JC, Sousa MM, Burrone J, Aguiar P. Beyond a Transmission Cable-New Technologies to Reveal the Richness in Axonal Electrophysiology. J Neurosci 2024; 44:e1446232023. [PMID: 38479812 PMCID: PMC10941245 DOI: 10.1523/jneurosci.1446-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 03/17/2024] Open
Abstract
The axon is a neuronal structure capable of processing, encoding, and transmitting information. This assessment contrasts with a limiting, but deeply rooted, perspective where the axon functions solely as a transmission cable of somatodendritic activity, sending signals in the form of stereotypical action potentials. This perspective arose, at least partially, because of the technical difficulties in probing axons: their extreme length-to-diameter ratio and intricate growth paths preclude the study of their dynamics through traditional techniques. Recent findings are challenging this view and revealing a much larger repertoire of axonal computations. Axons display complex signaling processes and structure-function relationships, which can be modulated via diverse activity-dependent mechanisms. Additionally, axons can exhibit patterns of activity that are dramatically different from those of their corresponding soma. Not surprisingly, many of these recent discoveries have been driven by novel technology developments, which allow for in vitro axon electrophysiology with unprecedented spatiotemporal resolution and signal-to-noise ratio. In this review, we outline the state-of-the-art in vitro toolset for axonal electrophysiology and summarize the recent discoveries in axon function it has enabled. We also review the increasing repertoire of microtechnologies for controlling axon guidance which, in combination with the available cutting-edge electrophysiology and imaging approaches, have the potential for more controlled and high-throughput in vitro studies. We anticipate that a larger adoption of these new technologies by the neuroscience community will drive a new era of experimental opportunities in the study of axon physiology and consequently, neuronal function.
Collapse
Affiliation(s)
- J C Mateus
- i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - M M Sousa
- i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - J Burrone
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom
| | - P Aguiar
- i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
32
|
Li J, Veeraraghavan P, Young SM. Ca V 2.1 α 1 subunit motifs that control presynaptic Ca V 2.1 subtype abundance are distinct from Ca V 2.1 preference. J Physiol 2024; 602:485-506. [PMID: 38155373 PMCID: PMC10872416 DOI: 10.1113/jp284957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023] Open
Abstract
Presynaptic voltage-gated Ca2+ channel (CaV ) subtype abundance at mammalian synapses regulates synaptic transmission in health and disease. In the mammalian central nervous system (CNS), most presynaptic terminals are CaV 2.1 dominant with a developmental reduction in CaV 2.2 and CaV 2.3 levels, and CaV 2 subtype levels are altered in various diseases. However, the molecular mechanisms controlling presynaptic CaV 2 subtype levels are largely unsolved. Because the CaV 2 α1 subunit cytoplasmic regions contain varying levels of sequence conservation, these regions are proposed to control presynaptic CaV 2 subtype preference and abundance. To investigate the potential role of these regions, we expressed chimeric CaV 2.1 α1 subunits containing swapped motifs with the CaV 2.2 and CaV 2.3 α1 subunit on a CaV 2.1/CaV 2.2 null background at the calyx of Held presynaptic terminals. We found that expression of CaV 2.1 α1 subunit chimeras containing the CaV 2.3 loop II-III region or cytoplasmic C-terminus (CT) resulted in a large reduction of presynaptic Ca2+ currents compared to the CaV 2.1 α1 subunit. However, the Ca2+ current sensitivity to the CaV 2.1 blocker agatoxin-IVA was the same between the chimeras and the CaV 2.1 α1 subunit. Additionally, we found no reduction in presynaptic Ca2+ currents with CaV 2.1/2.2 cytoplasmic CT chimeras. We conclude that the motifs in the CaV 2.1 loop II-III and CT do not individually regulate CaV 2.1 preference, although these motifs control CaV 2.1 levels and the CaV 2.3 CT contains motifs that negatively regulate presynaptic CaV 2.3 levels. We propose that the motifs controlling presynaptic CaV 2.1 preference are distinct from those regulating CaV 2.1 levels and may act synergistically to impact pathways regulating CaV 2.1 preference and abundance. KEY POINTS: Presynaptic CaV 2 subtype abundance regulates neuronal circuit properties, although the mechanisms regulating presynaptic CaV 2 subtype abundance and preference remain enigmatic. The CaV α1 subunit determines subtype and contains multiple motifs implicated in regulating presynaptic subtype abundance and preference. The CaV 2.1 α1 subunit domain II-III loop and cytoplasmic C-terminus are positive regulators of presynaptic CaV 2.1 abundance but do not regulate preference. The CaV 2.3 α1 subunit cytoplasmic C-terminus negatively regulates presynaptic CaV 2 subtype abundance but not preference, whereas the CaV 2.2 α1 subunit cytoplasmic C-terminus is not a key regulator of presynaptic CaV 2 subtype abundance or preference. The CaV 2 α1 subunit motifs determining the presynaptic CaV 2 preference are distinct from abundance.
Collapse
Affiliation(s)
- Jianing Li
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
- Cell Developmental Biology Graduate Program, University of Iowa, Iowa City, IA 52242, USA
| | | | - Samuel M. Young
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
- Department of Otolaryngology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
33
|
Tian S, Zheng H, Wu L, Wu W. Factors influencing short-term prognosis after botulinum toxin type A treatment for hemifacial spasm:A retrospective study. Heliyon 2024; 10:e24898. [PMID: 38312606 PMCID: PMC10835370 DOI: 10.1016/j.heliyon.2024.e24898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/17/2023] [Accepted: 01/16/2024] [Indexed: 02/06/2024] Open
Abstract
Background It is widely acknowledged that botulinum toxin type A (BTX-A) has been widely used in the treatment of hemifacial spasm (HFS). However, there is currently a lack of systematic analysis of the factors affecting its therapeutic effect. Therefore, this study aims to explore the influencing factors of BTX-A in the treatment of HFS and to identify risk factors for poor prognosis. Methods Retrospective study including 118 patients with HFS treated with BTX-A from 2019 January to 2023 April. Demographic and etiological variables as well as doses, number of sessions of BTX-A, infiltrated muscles, therapeutic response according to the Cohen evaluation scale, and side effects were analyzed. Logistic regression analysis was performed to identify the factors that are associated with the short-term prognosis of BTX-A for the treatment of HFS. Results Among the 118 patients with HFS included in this study, 57 achieved complete relief, 51 had significant relief, 7 had partial relief, and no improvement was observed in 3. The overall effective rate was 91.53 %. Results from the univariate analysis indicated that male, drinking, diabetes, and hypertension were all associated with poor short-term prognosis of BTX-A in the treatment of HFS. Multivariable logistic regression analysis further revealed that hypertension was an independent risk factor for poor short-term prognosis following BTX-A treatment for HFS (OR=5.847, P<0.05). Conclusion BTX-A was effective in treating HFS and had minimal adverse effects. Hypertension was an independent risk factor for poor short-term prognosis following BTX-A treatment of HFS.
Collapse
Affiliation(s)
- Sheng Tian
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Heqing Zheng
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Lanxiang Wu
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Wei Wu
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| |
Collapse
|
34
|
Chin M, Kaeser PS. The intracellular C-terminus confers compartment-specific targeting of voltage-gated Ca 2+ channels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.23.573183. [PMID: 38187530 PMCID: PMC10769351 DOI: 10.1101/2023.12.23.573183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
To achieve the functional polarization that underlies brain computation, neurons sort protein material into distinct compartments. Ion channel composition, for example, differs between axons and dendrites, but the molecular determinants for their polarized trafficking remain obscure. Here, we identify the mechanisms that target voltage-gated Ca2+ channels (CaVs) to distinct subcellular compartments. In hippocampal neurons, CaV2s trigger neurotransmitter release at the presynaptic active zone, and CaV1s localize somatodendritically. After knockout of all three CaV2s, expression of CaV2.1, but not of CaV1.3, restores neurotransmitter release. Chimeric CaV1.3 channels with CaV2.1 intracellular C-termini localize to the active zone, mediate synaptic vesicle exocytosis, and render release fully sensitive to blockade of CaV1 channels. This dominant targeting function of the CaV2.1 C-terminus requires an EF hand in its proximal segment, and replacement of the CaV2.1 C-terminus with that of CaV1.3 abolishes CaV2.1 active zone localization. We conclude that the intracellular C-termini mediate compartment-specific CaV targeting.
Collapse
Affiliation(s)
- Morven Chin
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Pascal S. Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
35
|
Cui S, Jiang P, Cheng Y, Cai H, Zhu J, Yu Y. Molecular mechanisms underlying resting-state brain functional correlates of behavioral inhibition. Neuroimage 2023; 283:120415. [PMID: 37863277 DOI: 10.1016/j.neuroimage.2023.120415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/22/2023] [Accepted: 10/18/2023] [Indexed: 10/22/2023] Open
Abstract
Previous literature has established the presence of sex differences in behavioral inhibition as well as its neural substrates and related disease risk. However, there is limited evidence that speaks directly to the question of whether or not there are sex-dependent associations between behavioral inhibition and resting-state brain function and, if so, how they are modulated by the underlying molecular mechanisms. We computed functional connectivity density (FCD) using resting-state functional MRI data to examine their associations with behavioral inhibition ability measured using a Go/No-Go task across a large cohort of 510 healthy young adults. Then, we examined the spatial relationships of the FCD correlates of behavioral inhibition with gene expression and neurotransmitter atlases to explore their potential genetic architecture and neurochemical basis. A significant negative correlation between behavioral inhibition and FCD in the left superior parietal lobule was found in females but not males. Further spatial correlation analyses demonstrated that the identified neural correlates of behavioral inhibition were associated with expression of gene categories predominantly implicating essential components of the cerebral cortex (glial cell, neuron, axon, dendrite, and synapse) and ion channel activity, as well as were linked to the serotonergic system. Our findings may not only yield important insights into the molecular mechanisms underlying the female-specific neural substrates of behavioral inhibition, but also provide a critical context for understanding how biological sex might contribute to variation in behavioral inhibition and its related disease risk.
Collapse
Affiliation(s)
- Shunshun Cui
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Ping Jiang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Yan Cheng
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China.
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China.
| |
Collapse
|
36
|
Teng M, Li Y, Zhao X, White JC, Zhao L, Sun J, Zhu W, Wu F. Vitamin D modulation of brain-gut-virome disorder caused by polystyrene nanoplastics exposure in zebrafish (Danio rerio). MICROBIOME 2023; 11:266. [PMID: 38008755 PMCID: PMC10680193 DOI: 10.1186/s40168-023-01680-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/27/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Many studies have investigated how nanoplastics (NPs) exposure mediates nerve and intestinal toxicity through a dysregulated brain-gut axis interaction, but there are few studies aimed at alleviating those effects. To determine whether and how vitamin D can impact that toxicity, fish were supplemented with a vitamin D-low diet and vitamin D-high diet. RESULTS Transmission electron microscopy (TEM) showed that polystyrene nanoplastics (PS-NPs) accumulated in zebrafish brain and intestine, resulting in brain blood-brain barrier basement membrane damage and the vacuolization of intestinal goblet cells and mitochondria. A high concentration of vitamin D reduced the accumulation of PS-NPs in zebrafish brain tissues by 20% and intestinal tissues by 58.8% and 52.2%, respectively, and alleviated the pathological damage induced by PS-NPs. Adequate vitamin D significantly increased the content of serotonin (5-HT) and reduced the anxiety-like behavior of zebrafish caused by PS-NPs exposure. Virus metagenome showed that PS-NPs exposure affected the composition and abundance of zebrafish intestinal viruses. Differentially expressed viruses in the vitamin D-low and vitamin D-high group affected the secretion of brain neurotransmitters in zebrafish. Virus AF191073 was negatively correlated with neurotransmitter 5-HT, whereas KT319643 was positively correlated with malondialdehyde (MDA) content and the expression of cytochrome 1a1 (cyp1a1) and cytochrome 1b1 (cyp1b1) in the intestine. This suggests that AF191073 and KT319643 may be key viruses that mediate the vitamin D reduction in neurotoxicity and immunotoxicity induced by PS-NPs. CONCLUSION Vitamin D can alleviate neurotoxicity and immunotoxicity induced by PS-NPs exposure by directionally altering the gut virome. These findings highlight the potential of vitamin D to alleviate the brain-gut-virome disorder caused by PS-NPs exposure and suggest potential therapeutic strategies to reduce the risk of NPs toxicity in aquaculture, that is, adding adequate vitamin D to diet. Video Abstract.
Collapse
Affiliation(s)
- Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yunxia Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Lihui Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jiaqi Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wentao Zhu
- Department of Applied Chemistry, Innovation Center of Pesticide Research, College of Science, China Agricultural University, Beijing, 100193, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
37
|
Dunn TW, Fan X, Lee J, Smith P, Gandhi R, Sossin WS. The role of specific isoforms of Ca V2 and the common C-terminal of Ca V2 in calcium channel function in sensory neurons of Aplysia. Sci Rep 2023; 13:20216. [PMID: 37980443 PMCID: PMC10657410 DOI: 10.1038/s41598-023-47573-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023] Open
Abstract
The presynaptic release apparatus can be specialized to enable specific synaptic functions. Habituation is the diminishing of a physiological response to a frequently repeated stimulus and in Aplysia, habituation to touch is mediated by a decrease in transmitter release from the sensory neurons that respond to touch even after modest rates of action potential firing. This synaptic depression is not common among Aplysia synaptic connections suggesting the presence of a release apparatus specialized for this depression. We found that specific splice forms of ApCaV2, the calcium channel required for transmitter release, are preferentially used in sensory neurons, consistent with a specialized release apparatus. However, we were not able to find a specific ApCaV2 splice uniquely required for synaptic depression. The C-terminus of ApCaV2 alpha1 subunit retains conserved binding to Aplysia rab-3 interacting molecule (ApRIM) and ApRIM-binding protein (ApRBP) and the C-terminus is required for full synaptic expression of ApCaV2. We also identified a splice form of ApRIM that did not interact with the ApCav2 alpha 1 subunit, but it was not preferentially used in sensory neurons.
Collapse
Affiliation(s)
- Tyler W Dunn
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Xiaotang Fan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Jiwon Lee
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Petranea Smith
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Rushali Gandhi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Wayne S Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada.
| |
Collapse
|
38
|
Zhang Y, Wang T, Cai Y, Cui T, Kuah M, Vicini S, Wang T. Role of α2δ-3 in regulating calcium channel localization at presynaptic active zones during homeostatic plasticity. Front Mol Neurosci 2023; 16:1253669. [PMID: 38025261 PMCID: PMC10662314 DOI: 10.3389/fnmol.2023.1253669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
The homeostatic modulation of synaptic transmission is an evolutionarily conserved mechanism that is critical for stabilizing the nervous system. At the Drosophila neuromuscular junction (NMJ), presynaptic homeostatic potentiation (PHP) compensates for impairments in postsynaptic glutamate receptors due to pharmacological blockade or genetic deletion. During PHP, there is an increase in presynaptic neurotransmitter release, counteracting postsynaptic changes and restoring excitation to baseline levels. Previous studies have shown that α2δ-3, an auxiliary subunit of voltage-gated calcium channels (VGCCs), is essential for both the rapid induction and sustained expression of PHP at the Drosophila NMJ. However, the molecular mechanisms by which α2δ-3 regulates neurotransmitter release during PHP remain to be elucidated. In this study, we utilized electrophysiological, confocal imaging, and super-resolution imaging approaches to explore how α2δ-3 regulates synaptic transmission during PHP. Our findings suggest that α2δ-3 governs PHP by controlling the localization of the calcium channel pore-forming α1 subunit at presynaptic release sites, or active zones. Moreover, we examined the role of two structural domains within α2δ-3 in regulating neurotransmitter release and calcium channel localization. Our results highlight that these domains in α2δ-3 serve distinct functions in controlling synaptic transmission and presynaptic calcium channel abundance, at baseline in the absence of perturbations and during PHP. In summary, our research offers compelling evidence that α2δ-3 is an indispensable signaling component for controlling calcium channel trafficking and stabilization in homeostatic plasticity.
Collapse
Affiliation(s)
- Yanfeng Zhang
- Department of Pediatric Neurology, First Hospital of Jilin University, Changchun, Jilin, China
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States
| | - Ting Wang
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States
| | - Yimei Cai
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States
| | - Tao Cui
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States
| | - Michelle Kuah
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States
| | - Stefano Vicini
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| | - Tingting Wang
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
39
|
Barton JR, Londregan AK, Alexander TD, Entezari AA, Covarrubias M, Waldman SA. Enteroendocrine cell regulation of the gut-brain axis. Front Neurosci 2023; 17:1272955. [PMID: 38027512 PMCID: PMC10662325 DOI: 10.3389/fnins.2023.1272955] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Enteroendocrine cells (EECs) are an essential interface between the gut and brain that communicate signals about nutrients, pain, and even information from our microbiome. EECs are hormone-producing cells expressed throughout the gastrointestinal epithelium and have been leveraged by pharmaceuticals like semaglutide (Ozempic, Wegovy), terzepatide (Mounjaro), and retatrutide (Phase 2) for diabetes and weight control, and linaclotide (Linzess) to treat irritable bowel syndrome (IBS) and visceral pain. This review focuses on role of intestinal EECs to communicate signals from the gut lumen to the brain. Canonically, EECs communicate information about the intestinal environment through a variety of hormones, dividing EECs into separate classes based on the hormone each cell type secretes. Recent studies have revealed more diverse hormone profiles and communication modalities for EECs including direct synaptic communication with peripheral neurons. EECs known as neuropod cells rapidly relay signals from gut to brain via a direct communication with vagal and primary sensory neurons. Further, this review discusses the complex information processing machinery within EECs, including receptors that transduce intraluminal signals and the ion channel complement that govern initiation and propagation of these signals. Deeper understanding of EEC physiology is necessary to safely treat devastating and pervasive conditions like irritable bowel syndrome and obesity.
Collapse
Affiliation(s)
- Joshua R. Barton
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Annie K. Londregan
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Tyler D. Alexander
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Ariana A. Entezari
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Manuel Covarrubias
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Scott A. Waldman
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
40
|
Li J, Veeraraghavan P, Young SM. CaV2.1 α1 subunit motifs that control presynaptic CaV2.1 subtype abundance are distinct from CaV2.1 preference. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.28.538778. [PMID: 37162941 PMCID: PMC10168310 DOI: 10.1101/2023.04.28.538778] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Presynaptic voltage-gated Ca2+ channels (CaV) subtype abundance at mammalian synapses regulates synaptic transmission in health and disease. In the mammalian central nervous system, most presynaptic terminals are CaV2.1 dominant with a developmental reduction in CaV2.2 and CaV2.3 levels, and CaV2 subtype levels are altered in various diseases. However, the molecular mechanisms controlling presynaptic CaV2 subtype levels are largely unsolved. Since the CaV2 α1 subunit cytoplasmic regions contain varying levels of sequence conservation, these regions are proposed to control presynaptic CaV2 subtype preference and abundance. To investigate the potential role of these regions, we expressed chimeric CaV2.1 α1subunits containing swapped motifs with the CaV2.2 and CaV2.3 α1 subunit on a CaV2.1/CaV2.2 null background at the calyx of Held presynaptic terminal. We found that expression of CaV2.1 α1 subunit chimeras containing the CaV2.3 loop II-III region or cytoplasmic C-terminus (CT) resulted in a large reduction of presynaptic Ca2+ currents compared to the CaV2.1 α1 subunit. However, the Ca2+ current sensitivity to the CaV2.1 blocker Agatoxin-IVA, was the same between the chimeras and the CaV2.1 α1 subunit. Additionally, we found no reduction in presynaptic Ca2+ currents with CaV2.1/2.2 cytoplasmic CT chimeras. We conclude that the motifs in the CaV2.1 loop II-III and CT do not individually regulate CaV2.1 preference, but these motifs control CaV2.1 levels and the CaV2.3 CT contains motifs that negatively regulate presynaptic CaV2.3 levels. We propose that the motifs controlling presynaptic CaV2.1 preference are distinct from those regulating CaV2.1 levels and may act synergistically to impact pathways regulating CaV2.1 preference and abundance.
Collapse
|
41
|
Davis SE, Cirincione AB, Jimenez-Torres AC, Zhu J. The Impact of Neurotransmitters on the Neurobiology of Neurodegenerative Diseases. Int J Mol Sci 2023; 24:15340. [PMID: 37895020 PMCID: PMC10607327 DOI: 10.3390/ijms242015340] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Neurodegenerative diseases affect millions of people worldwide. Neurodegenerative diseases result from progressive damage to nerve cells in the brain or peripheral nervous system connections that are essential for cognition, coordination, strength, sensation, and mobility. Dysfunction of these brain and nerve functions is associated with Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic lateral sclerosis, and motor neuron disease. In addition to these, 50% of people living with HIV develop a spectrum of cognitive, motor, and/or mood problems collectively referred to as HIV-Associated Neurocognitive Disorders (HAND) despite the widespread use of a combination of antiretroviral therapies. Neuroinflammation and neurotransmitter systems have a pathological correlation and play a critical role in developing neurodegenerative diseases. Each of these diseases has a unique pattern of dysregulation of the neurotransmitter system, which has been attributed to different forms of cell-specific neuronal loss. In this review, we will focus on a discussion of the regulation of dopaminergic and cholinergic systems, which are more commonly disturbed in neurodegenerative disorders. Additionally, we will provide evidence for the hypothesis that disturbances in neurotransmission contribute to the neuronal loss observed in neurodegenerative disorders. Further, we will highlight the critical role of dopamine as a mediator of neuronal injury and loss in the context of NeuroHIV. This review will highlight the need to further investigate neurotransmission systems for their role in the etiology of neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | | | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA; (S.E.D.); (A.B.C.); (A.C.J.-T.)
| |
Collapse
|
42
|
Shao W, Zheng H, Zhu J, Li W, Li Y, Hu W, Zhang J, Jing L, Wang K, Jiang X. Deletions of Cacna2d3 in parvalbumin-expressing neurons leads to autistic-like phenotypes in mice. Neurochem Int 2023; 169:105569. [PMID: 37419212 DOI: 10.1016/j.neuint.2023.105569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/23/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Autism spectrum disorder (ASD) is a series of highly inherited neurodevelopmental disorders. Loss-of-function (LOF) mutations in the CACNA2D3 gene are associated with ASD. However, the underlying mechanism is unknown. Dysfunction of cortical interneurons (INs) is strongly implicated in ASD. Parvalbumin-expressing (PV) INs and somatostatin-expressing (SOM) INs are the two most subtypes. Here, we characterized a mouse knockout of the Cacna2d3 gene in PV-expressing neurons (PVCre;Cacna2d3f/f mice) or in SOM-expressing neurons (SOMCre;Cacna2d3f/f mice), respectively. PVCre;Cacna2d3f/f mice showed deficits in the core ASD behavioral domains (including impaired sociability and increased repetitive behavior), as well as anxiety-like behavior and improved spatial memory. Furthermore, loss of Cacna2d3 from a subset of PV neurons results in a reduction of GAD67 and PV expression in the medial prefrontal cortex (mPFC). These may underlie the increased neuronal excitability in the mPFC, which contribute to the abnormal social behavior in PVCre;Cacna2d3f/f mice. Whereas, SOMCre;Cacna2d3f/f mice showed no obvious deficits in social, cognitive, or emotional phenotypes. Our findings provide the first evidence suggesting the causal role of Cacna2d3 insufficiency in PV neurons in autism.
Collapse
Affiliation(s)
- Wei Shao
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Hang Zheng
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Jingwen Zhu
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Wenhao Li
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Yifan Li
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenjie Hu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Juanjuan Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Liang Jing
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.
| | - Kai Wang
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Center for Neuropsychiatric Disorders and Mental Health, Hefei, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China.
| | - Xiao Jiang
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.
| |
Collapse
|
43
|
Kim SR, Eom Y, Lee SH. Comprehensive analysis of sex differences in the function and ultrastructure of hippocampal presynaptic terminals. Neurochem Int 2023; 169:105570. [PMID: 37451344 DOI: 10.1016/j.neuint.2023.105570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/08/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Sex differences in the brain, encompassing variations in specific brain structures, size, cognitive function, and synaptic connections, have been identified across numerous species. While previous research has explored sex differences in postsynaptic structures, synaptic plasticity, and hippocampus-dependent functions, the hippocampal presynaptic terminals remain largely uninvestigated. The hippocampus is a critical structure responsible for multiple brain functions. This study examined presynaptic differences in cultured hippocampal neurons derived from male and female mice using a combination of biochemical assays, functional analyses measuring exocytosis and endocytosis of synaptic vesicle proteins, ultrastructural analyses via electron microscopy, and presynaptic Ca2+-specific optical probes. Our findings revealed that female neurons exhibited a higher number of synaptic vesicles at presynaptic terminals compared to male neurons. However, no significant differences were observed in presynaptic protein expression, presynaptic terminal ultrastructure, synaptic vesicle exocytosis and endocytosis, or presynaptic Ca2+ alterations between male and female neurons.
Collapse
Affiliation(s)
- Sung Rae Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea; Brain Research Core Facilities of Korea Brain Research Institute (KBRI), Daegu 41068, Republic of Korea.
| | - Yunkyung Eom
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
| | - Sung Hoon Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
44
|
Ślęczkowska M, Misra K, Santoro S, Gerrits MM, Hoeijmakers JGJ. Ion Channel Genes in Painful Neuropathies. Biomedicines 2023; 11:2680. [PMID: 37893054 PMCID: PMC10604193 DOI: 10.3390/biomedicines11102680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Neuropathic pain (NP) is a typical symptom of peripheral nerve disorders, including painful neuropathy. The biological mechanisms that control ion channels are important for many cell activities and are also therapeutic targets. Disruption of the cellular mechanisms that govern ion channel activity can contribute to pain pathophysiology. The voltage-gated sodium channel (VGSC) is the most researched ion channel in terms of NP; however, VGSC impairment is detected in only <20% of painful neuropathy patients. Here, we discuss the potential role of the other peripheral ion channels involved in sensory signaling (transient receptor potential cation channels), neuronal excitation regulation (potassium channels), involuntary action potential generation (hyperpolarization-activated cyclic nucleotide-gated channels), thermal pain (anoctamins), pH modulation (acid sensing ion channels), and neurotransmitter release (calcium channels) related to pain and their prospective role as therapeutic targets for painful neuropathy.
Collapse
Affiliation(s)
- Milena Ślęczkowska
- Department of Toxicogenomics, Maastricht University, 6229 ER Maastricht, The Netherlands;
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
| | - Kaalindi Misra
- Laboratory of Human Genetics of Neurological Disorders, IRCCS San Raffaele Scientific Institute, INSPE, 20132 Milan, Italy; (K.M.); (S.S.)
| | - Silvia Santoro
- Laboratory of Human Genetics of Neurological Disorders, IRCCS San Raffaele Scientific Institute, INSPE, 20132 Milan, Italy; (K.M.); (S.S.)
| | - Monique M. Gerrits
- Department of Clinical Genetics, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands;
| | - Janneke G. J. Hoeijmakers
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
45
|
Kim YK, Eom Y, Yoon H, Lee Y, Lee SH. Benzo[a]pyrene represses synaptic vesicle exocytosis by inhibiting P/Q-type calcium channels in hippocampal neurons. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115301. [PMID: 37506439 DOI: 10.1016/j.ecoenv.2023.115301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Humans are exposed to the common carcinogen benzo[a]pyrene (BaP) by ingesting contaminated foods and water or inhaling polluted air. Given the enriched lipids and reduced antioxidative properties in the brain and the accumulation of BaP in the brain due to its high lipophilicity, the brain is susceptible to BaP-induced toxicity. Exposure to BaP leads to impairments in learning and memory, increased anxiety behavior, and neuronal death. It induces protein dysfunctions in neuronal compartments that play essential roles in neuronal activity or physiology. However, the neurotoxicity of BaP on presynaptic terminals, which is crucial to neurotransmission by releasing synaptic vesicles that contain neurotransmitters, has not yet been investigated. In the present study, we investigated the toxicity of BaP at presynaptic terminals in living hippocampal neurons. These neurons were sourced from transgenic mice pups (postnatal 1-day, a total of 12 pups, equal numbers for each sex) that endogenously express synaptic vesicle-fused pHluorin, which is a green fluorescent protein that enables monitoring of synaptic vesicle dynamics. We observed that BaP suppressed synaptic vesicle exocytosis by inhibiting presynaptic Ca2+ entry via P/Q-type Ca2+ channels. Together with molecular docking simulation, we speculate that BaP and metabolites may bind to the P/Q Ca2+ channels. These results suggest the toxic mechanism of BaP exposure-induced abnormal behavior that provides a basis to evaluate the risk assessment of BaP-induced neurotoxicity.
Collapse
Affiliation(s)
- Yeong-Kyeong Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yunkyung Eom
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hongryul Yoon
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yoonji Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
| | - Sung Hoon Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
46
|
Petzoldt AG. Presynaptic Precursor Vesicles-Cargo, Biogenesis, and Kinesin-Based Transport across Species. Cells 2023; 12:2248. [PMID: 37759474 PMCID: PMC10527734 DOI: 10.3390/cells12182248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/11/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
The faithful formation and, consequently, function of a synapse requires continuous and tightly controlled delivery of synaptic material. At the presynapse, a variety of proteins with unequal molecular properties are indispensable to compose and control the molecular machinery concerting neurotransmitter release through synaptic vesicle fusion with the presynaptic membrane. As presynaptic proteins are produced mainly in the neuronal soma, they are obliged to traffic along microtubules through the axon to reach the consuming presynapse. This anterograde transport is performed by highly specialised and diverse presynaptic precursor vesicles, membranous organelles able to transport as different proteins such as synaptic vesicle membrane and membrane-associated proteins, cytosolic active zone proteins, ion-channels, and presynaptic membrane proteins, coordinating synaptic vesicle exo- and endocytosis. This review aims to summarise and categorise the diverse and numerous findings describing presynaptic precursor cargo, mode of trafficking, kinesin-based axonal transport and the molecular mechanisms of presynaptic precursor vesicles biogenesis in both vertebrate and invertebrate model systems.
Collapse
Affiliation(s)
- Astrid G Petzoldt
- Institute for Biology and Genetics, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| |
Collapse
|
47
|
Li J, Gong M, Wang X, Fan F, Zhang B. Triphenylamine-Based Helical Polymer for Flexible Memristors. Biomimetics (Basel) 2023; 8:391. [PMID: 37754142 PMCID: PMC10526500 DOI: 10.3390/biomimetics8050391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Flexible nonvolatile memristors have potential applications in wearable devices. In this work, a helical polymer, poly (N, N-diphenylanline isocyanide) (PPIC), was synthesized as the active layer, and flexible electronic devices with an Al/PPIC/ITO architecture were prepared on a polyethylene terephthalate (PET) substrate. The device showed typical nonvolatile rewritable memristor characteristics. The high-molecular-weight helical structure stabilized the active layer under different bending degrees, bending times, and number of bending cycles. The memristor was further employed to simulate the information transmission capability of neural fibers, providing new perspectives for the development of flexible wearable memristors and biomimetic neural synapses. This demonstration highlights the promising possibilities for the advancement of artificial intelligence skin and intelligent flexible robots in the future.
Collapse
Affiliation(s)
- Jinyong Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Minglei Gong
- Shanghai i-Reader Biotech Co., Ltd., Shanghai 201100, China
| | - Xiaoyang Wang
- Guangxi Key Laboratory of Information Material, Engineering Research Center of Electronic Information Materials and Devices, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541200, China
| | - Fei Fan
- Shanghai i-Reader Biotech Co., Ltd., Shanghai 201100, China
| | - Bin Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
48
|
Zhang Y, Riexinger J, Yang X, Mikhailova E, Jin Y, Zhou L, Bayley H. A microscale soft ionic power source modulates neuronal network activity. Nature 2023; 620:1001-1006. [PMID: 37648756 PMCID: PMC10468398 DOI: 10.1038/s41586-023-06295-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/07/2023] [Indexed: 09/01/2023]
Abstract
Bio-integrated devices need power sources to operate1,2. Despite widely used technologies that can provide power to large-scale targets, such as wired energy supplies from batteries or wireless energy transduction3, a need to efficiently stimulate cells and tissues on the microscale is still pressing. The ideal miniaturized power source should be biocompatible, mechanically flexible and able to generate an ionic current for biological stimulation, instead of using electron flow as in conventional electronic devices4-6. One approach is to use soft power sources inspired by the electrical eel7,8; however, power sources that combine the required capabilities have not yet been produced, because it is challenging to obtain miniaturized units that both conserve contained energy before usage and are easily triggered to produce an energy output. Here we develop a miniaturized soft power source by depositing lipid-supported networks of nanolitre hydrogel droplets that use internal ion gradients to generate energy. Compared to the original eel-inspired design7, our approach can shrink the volume of a power unit by more than 105-fold and it can store energy for longer than 24 h, enabling operation on-demand with a 680-fold greater power density of about 1,300 W m-3. Our droplet device can serve as a biocompatible and biological ionic current source to modulate neuronal network activity in three-dimensional neural microtissues and in ex vivo mouse brain slices. Ultimately, our soft microscale ionotronic device might be integrated into living organisms.
Collapse
Affiliation(s)
- Yujia Zhang
- Department of Chemistry, University of Oxford, Oxford, UK.
| | | | - Xingyun Yang
- Department of Chemistry, University of Oxford, Oxford, UK
| | | | - Yongcheng Jin
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Linna Zhou
- Department of Chemistry, University of Oxford, Oxford, UK.
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Hagan Bayley
- Department of Chemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
49
|
Oh KH, Xiong A, Choe JY, Richmond JE, Kim H. Active Zone Trafficking of CaV2/UNC-2 Channels Is Independent of β/CCB-1 and α2δ/UNC-36 Subunits. J Neurosci 2023; 43:5142-5157. [PMID: 37160370 PMCID: PMC10343168 DOI: 10.1523/jneurosci.2264-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/28/2023] [Accepted: 05/02/2023] [Indexed: 05/11/2023] Open
Abstract
The CaV2 voltage-gated calcium channel is the major conduit of calcium ions necessary for neurotransmitter release at presynaptic active zones (AZs). The CaV2 channel is a multimeric complex that consists of a pore-forming α1 subunit and two auxiliary β and α2δ subunits. Although auxiliary subunits are critical for channel function, whether they are required for α1 trafficking is unresolved. Using endogenously fluorescent protein-tagged CaV2 channel subunits in Caenorhabditis elegans, we show that UNC-2/α1 localizes to AZs even in the absence of CCB-1/β or UNC-36/α2δ, albeit at low levels. When UNC-2 is manipulated to be trapped in the endoplasmic reticulum (ER), CCB-1 and UNC-36 fail to colocalize with UNC-2 in the ER, indicating that they do not coassemble with UNC-2 in the ER. Moreover, blocking ER-associated degradation does not further increase presynaptic UNC-2 channels in ccb-1 or unc-36 mutants, indicating that UNC-2 levels are not regulated in the ER. An unc-2 mutant lacking C-terminal AZ protein interaction sites with intact auxiliary subunit binding sites displays persistent presynaptic UNC-2 localization and a prominent increase of UNC-2 channels in nonsynaptic axonal regions, underscoring a protective role of auxiliary subunits against UNC-2 degradation. In the absence of UNC-2, presynaptic CCB-1 and UNC-36 are profoundly diminished to barely detectable levels, indicating that UNC-2 is required for the presynaptic localization of CCB-1 and UNC-36. Together, our findings demonstrate that although the pore-forming subunit does not require auxiliary subunits for its trafficking and transport to AZs, it recruits auxiliary subunits to stabilize and expand calcium channel signalosomes.SIGNIFICANCE STATEMENT Synaptic transmission in the neuron hinges on the coupling of synaptic vesicle exocytosis with calcium influx. This calcium influx is mediated by CaV2 voltage-gated calcium channels. These channels consist of one pore-forming α1 subunit and two auxiliary β and α2δ subunits. The auxiliary subunits enhance channel function and regulate the overall level of channels at presynaptic terminals. However, it is not settled how these auxiliary subunits regulate the overall channel level. Our study in C. elegans finds that although the auxiliary subunits do not coassemble with α1 and aid trafficking, they are recruited to α1 and stabilize the channel complex at presynaptic terminals. Our study suggests that drugs that target the auxiliary subunits can directly destabilize and have an impact on CaV2 channels.
Collapse
Affiliation(s)
- Kelly H Oh
- Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| | - Ame Xiong
- Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| | - Jun-Yong Choe
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858
| | - Janet E Richmond
- Department of Biological Sciences, University of Illinois, Chicago, Illinois 60607
| | - Hongkyun Kim
- Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| |
Collapse
|
50
|
Reyes Fernandez PC, Wright CS, Farach-Carson MC, Thompson WR. Examining Mechanisms for Voltage-Sensitive Calcium Channel-Mediated Secretion Events in Bone Cells. Calcif Tissue Int 2023; 113:126-142. [PMID: 37261463 PMCID: PMC11008533 DOI: 10.1007/s00223-023-01097-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023]
Abstract
In addition to their well-described functions in cell excitability, voltage-sensitive calcium channels (VSCCs) serve a critical role in calcium (Ca2+)-mediated secretion of pleiotropic paracrine and endocrine factors, including those produced in bone. Influx of Ca2+ through VSCCs activates intracellular signaling pathways to modulate a variety of cellular processes that include cell proliferation, differentiation, and bone adaptation in response to mechanical stimuli. Less well understood is the role of VSCCs in the control of bone and calcium homeostasis mediated through secreted factors. In this review, we discuss the various functions of VSCCs in skeletal cells as regulators of Ca2+ dynamics and detail how these channels might control the release of bioactive factors from bone cells. Because VSCCs are druggable, a better understanding of the multiple functions of these channels in the skeleton offers the opportunity for developing new therapies to enhance and maintain bone and to improve systemic health.
Collapse
Affiliation(s)
- Perla C Reyes Fernandez
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN, 46202, USA
- Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA
| | - Christian S Wright
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN, 46202, USA
- Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA
| | - Mary C Farach-Carson
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
- Departments of BioSciences and Bioengineering, Rice University, Houston, TX, 77005, USA
| | - William R Thompson
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN, 46202, USA.
- Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA.
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
| |
Collapse
|