1
|
Chen J, Cai M, Zhan C. Neuronal Regulation of Feeding and Energy Metabolism: A Focus on the Hypothalamus and Brainstem. Neurosci Bull 2025; 41:665-675. [PMID: 39704987 DOI: 10.1007/s12264-024-01335-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/19/2024] [Indexed: 12/21/2024] Open
Abstract
In the face of constantly changing environments, the central nervous system (CNS) rapidly and accurately calculates the body's needs, regulates feeding behavior, and maintains energy homeostasis. The arcuate nucleus of the hypothalamus (ARC) plays a key role in this process, serving as a critical brain region for detecting nutrition-related hormones and regulating appetite and energy homeostasis. Agouti-related protein (AgRP)/neuropeptide Y (NPY) neurons in the ARC are core elements that interact with other brain regions through a complex appetite-regulating network to comprehensively control energy homeostasis. In this review, we explore the discovery and research progress of AgRP neurons in regulating feeding and energy metabolism. In addition, recent advances in terms of feeding behavior and energy homeostasis, along with the redundant neural mechanisms involved in energy metabolism, are discussed. Finally, the challenges and opportunities in the field of neural regulation of feeding and energy metabolism are briefly discussed.
Collapse
Affiliation(s)
- Jing Chen
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing, 100053, China
| | - Meiting Cai
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Key Laboratory of Immune Response and Immunotherapy, CAS Key Laboratory of Brain Function and Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Cheng Zhan
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Key Laboratory of Immune Response and Immunotherapy, CAS Key Laboratory of Brain Function and Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
2
|
Tan X, Zhang J, Chen W, Chen T, Cui G, Liu Z, Hu R. Progress on Direct Regulation of Systemic Immunity by the Central Nervous System. World Neurosurg 2025; 196:123814. [PMID: 39983990 DOI: 10.1016/j.wneu.2025.123814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/23/2025]
Abstract
This article reviews the research progress on the direct regulation of the immune system by the central nervous system (CNS). The traditional "neuro-endocrine-immune" network model has confirmed the close connection between the CNS and the immune system. However, due to the complex mediating role of the endocrine system, its application in clinical treatment is limited. In recent years, the direct regulation of the peripheral immune system through the CNS has provided new methods for the clinical treatment of neuroimmune-related diseases. This article analyzes the changes in the peripheral immune system after CNS injury and summarizes the effects of various stimulation methods, including transcranial magnetic stimulation, transcranial electrical stimulation, deep brain stimulation, spinal cord stimulation, and vagus nerve stimulation, on the peripheral immune system. Additionally, it explores the clinical research progress and future development directions of these stimulation methods. It is proposed that these neural regulation techniques exhibit positive effects in reducing peripheral inflammation, protecting immune cells and organ functions, and improving immunosuppressive states, providing new perspectives and therapeutic potential for the treatment of immune-related diseases.
Collapse
Affiliation(s)
- Xiaotian Tan
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Junming Zhang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Weiming Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tunan Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Gaoyu Cui
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhi Liu
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Rong Hu
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
3
|
Xu J, Wang B, Ao H. Corticosterone effects induced by stress and immunity and inflammation: mechanisms of communication. Front Endocrinol (Lausanne) 2025; 16:1448750. [PMID: 40182637 PMCID: PMC11965140 DOI: 10.3389/fendo.2025.1448750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/28/2025] [Indexed: 04/05/2025] Open
Abstract
The body instinctively responds to external stimuli by increasing energy metabolism and initiating immune responses upon receiving stress signals. Corticosterone (CORT), a glucocorticoid (GC) that regulates secretion along the hypothalamic-pituitary-adrenal (HPA) axis, mediates neurotransmission and humoral regulation. Due to the widespread expression of glucocorticoid receptors (GR), the effects of CORT are almost ubiquitous in various tissue cells. Therefore, on the one hand, CORT is a molecular signal that activates the body's immune system during stress and on the other hand, due to the chemical properties of GCs, the anti-inflammatory properties of CORT act as stabilizers to control the body's response to stress. Inflammation is a manifestation of immune activation. CORT plays dual roles in this process by both promoting inflammation and exerting anti-inflammatory effects in immune regulation. As a stress hormone, CORT levels fluctuate with the degree and duration of stress, determining its effects and the immune changes it induces. The immune system is essential for the body to resist diseases and maintain homeostasis, with immune imbalance being a key factor in the development of various diseases. Therefore, understanding the role of CORT and its mechanisms of action on immunity is crucial. This review addresses this important issue and summarizes the interactions between CORT and the immune system.
Collapse
Affiliation(s)
- Jingyu Xu
- School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Baojuan Wang
- Department of Reproductive Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Haiqing Ao
- School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
4
|
Zheng J, Wang H, Wu W, Wang L, Qin M, Zhu L, Liu Z, Chen Y, Yu Y. Role of FPR2 antagonism in alleviating social isolation-induced depression and protecting blood-brain barrier integrity. J Neuroinflammation 2025; 22:79. [PMID: 40083006 PMCID: PMC11907847 DOI: 10.1186/s12974-025-03408-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/04/2025] [Indexed: 03/16/2025] Open
Abstract
Social isolation (SI) is a prevalent issue in modern society, particularly exacerbated during the COVID-19 pandemic, and it is a significant contributor to depressive disorders. Inflammation-related markers are upregulated in patients with major depressive disorder (MDD) unresponsive to first-line selective serotonin reuptake inhibitor (SSRI) antidepressants. This study investigates the role of formyl peptide receptor 2 (FPR2), a G-protein coupled receptor expressed in central and peripheral immune cells, in SI-induced depression. We developed a mouse model of SI by housing mice individually for three weeks. SI mice exhibited increased capillary-associated microglia (CAMs) with upregulated FPR2 expression in the prefrontal cortex (PFC) and hippocampus compared to group-housed controls. Notably, subcutaneous administration of the FPR2 antagonist WRW4 alleviated depressive and anxiety-like behaviors in SI mice, reducing microglial activation and neuronal damage. WRW4 treatment decreased CAM numbers and their FPR2 expression. RNA sequencing revealed that SI primarily induced changes in genes associated with blood-brain barrier (BBB) function, followed by alterations in genes related to hormone activity, immune activation, and neuronal function. Transcriptomic changes in brain endothelial cells from SI mice resembled those observed in animal models of several neurological disorders and in MDD patients. WRW4 treatment partially reversed these transcriptomic alterations and restored compromised BBB integrity. Additionally, intracerebroventricular (ICV) injection of WRW4 also alleviated depressive and anxiety-like behaviors in SI mice. Finally, our analysis of public transcriptome databases indicates FPR2 upregulation in the orbital ventral PFC of MDD patients and peripheral blood mononuclear cells of those in severe depressive episodes. These findings suggest that the pharmacological targeting of FPR2 may rescue SI-induced pathology in mice by protecting BBB integrity.
Collapse
Affiliation(s)
- Jiayi Zheng
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hanqi Wang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wanning Wu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Linlin Wang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Meizhen Qin
- School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, China
| | - Lingfeng Zhu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhen Liu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yijun Chen
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yang Yu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
5
|
Bu S, Wang Q, Zhang G, Zhang Z, Dai J, Zhang Z. Inflammation molecular network alterations in a depressive-like primate model. J Affect Disord 2025; 379:410-420. [PMID: 40081592 DOI: 10.1016/j.jad.2025.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
At present, there are no definitive biomarkers for major depressive disorder (MDD). Previous studies prompted that neuroimmunoinflammation is involved in the pathogenesis of depression and its factors become potential diagnostic biomarkers. Non-human primates exhibit depression-like behavior similar to humans in chronically stressed environments. Therefore, in the present study, after completing Whole transcriptome sequencing of peripheral blood, neurology-related and inflammatory molecules in plasma and cerebrospinal fluid were measured by Olink proximity extension assay technology simultaneously in 4 natural depressive-like (DL) cynomolgus monkeys and 4 normal controls to screen potential biological markers. Further, postmortem brain tissues and peripheral blood RNA sequencing data from MDD patients available in the Gene Expression Omnibus (GEO) database were used for cross-species validation. Compared to control monkeys, depressive-like monkeys exhibited elevated levels of neurocan (NCAN). RNA sequencing revealed Toll-like receptor 4 (TLR4) and the interacting S100 calcium-binding protein A family as key molecules in the inflammatory gene network. GEO brain tissue data showed up-regulation of S100A8 and S100A9 in the anterior cingulate cortex of MDD patients. These findings suggest that depressive-like monkeys are in a state of chronic low-grade inflammation and identify NCAN and TLR4 inflammatory network molecules as potential biomarkers of MDD.
Collapse
Affiliation(s)
- Siyuan Bu
- Department of Neurology in Affiliated ZhongDa Hospital and Jiangsu Provincial Medical Key Discipline, School of Medicine, Institution of Neuropsychiatry, Key Laboratory of Developmental Genes and Human Disease of Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China
| | - Qingyun Wang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, 999077, Hong Kong
| | - Gaojia Zhang
- Department of Neurology in Affiliated ZhongDa Hospital and Jiangsu Provincial Medical Key Discipline, School of Medicine, Institution of Neuropsychiatry, Key Laboratory of Developmental Genes and Human Disease of Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China; Department of Psychology and Sleep Medicine, the Second Hospital of Anhui Medical University, Hefei 230000, China
| | - Zhiting Zhang
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ji Dai
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhijun Zhang
- Department of Neurology in Affiliated ZhongDa Hospital and Jiangsu Provincial Medical Key Discipline, School of Medicine, Institution of Neuropsychiatry, Key Laboratory of Developmental Genes and Human Disease of Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China; Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Department of Mental Health and Public Health, Faculty of Life and Health Sciences of Shenzhen University of Advanced Technology, The Brain Cognition and Brain Disease Institute of Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
6
|
Zhang Y, Jiang Y, Fan H, Yuan R, Cai J, Zhong B, Qin Q, Zhang Z, Zhang Y, Cheng S. Investigating the shared genetic architecture between anxiety and stroke. Behav Brain Res 2025; 480:115400. [PMID: 39681175 DOI: 10.1016/j.bbr.2024.115400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND An epidemiological association between anxiety and stroke is well-established; however, the role of shared genetic factors remain unclear. This study aimed to investigate the shared genetic architecture between anxiety and stroke. METHODS Using public genome-wide association study (GWAS) summary statistics of anxiety and stroke, we performed linkage disequilibrium score regression and super genetic covariance analyzer for global and local genetic correlation studies. Risk single nucleotide polymorphisms (SNPs) were identified through genome-wide association meta-analysis, multi-trait analysis of GWAS and PLINK, followed by functional mapping and annotation. Additionally, we conducted transcriptome-wide association studies to explore the relationship between genes and associated disease risk. RESULTS Our analysis revealed a significant genome-wide genetic correlation between anxiety and stroke. We also identified one previously unreported significant SNP (rs62099231), one risk loci, as well as identified three shared risk genes for anxiety and stroke (WDR6, CCDC71, NCKIPSD). CONCLUSION Our study demonstrated a shared genetic structure between anxiety and stroke, enhancing our understanding of their pathogenesis and highlighting potential therapeutic targets.
Collapse
Affiliation(s)
- Yichen Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Nanchang University, Nanchang, Jiangxi 330006, PR China.
| | - Yong'An Jiang
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Nanchang University, Nanchang, Jiangxi 330006, PR China.
| | - Hengyi Fan
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China.
| | - Raorao Yuan
- Department of Critical Care Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China.
| | - Jianhui Cai
- Department of Neurosurgery, Nanchang County People's Hospital, Nanchang, Jiangxi 330200, PR China; Nanchang Cranio-Cerebral Trauma Laboratory, Nanchang, Jiangxi 330200, PR China.
| | - Bo Zhong
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Department of Neurosurgery, Xinyu People's Hospital, Xinyu, Jiangxi 338000, PR China.
| | - Qian Qin
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Nanchang University, Nanchang, Jiangxi 330006, PR China.
| | - Zile Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Nanchang University, Nanchang, Jiangxi 330006, PR China.
| | - Yan Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Jiangxi Academy of Medical Sciences, No. 461, Bayi Road, Nanchang, China.
| | - Shiqi Cheng
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China.
| |
Collapse
|
7
|
Duan Y, Wang D, Mao Y, Cheng G, Liao W, Li J. Altered hypothalamus functional connectivity and psychological stress in patients with alopecia areata. Quant Imaging Med Surg 2025; 15:1834-1844. [PMID: 40160661 PMCID: PMC11948389 DOI: 10.21037/qims-24-1684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/31/2024] [Indexed: 04/02/2025]
Abstract
Background Alopecia areata (AA) is a nonscarring chronic inflammatory hair loss disease with a complex etiology. Psychological stress and dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis have been strongly linked to the etiology of AA, but the associated changes in intrinsic brain activity remain unknown. We hypothesized that patients with AA exhibit altered hypothalamic activity that is linked to psychological stress. This study aimed to characterize the altered hypothalamic activity in patients with AA and its relationship to psychological stress. Methods A total of 102 patients with AA and 84 age- and sex-matched healthy controls (HCs) were recruited. All participants underwent resting-state functional magnetic resonance imaging (rs-fMRI) to assess brain activity and completed neuropsychological evaluations, including the Hamilton Anxiety Rating Scale (HAM-A) score and the Hamilton Depression Rating Scale (HAM-D). Additionally, patients with AA were assessed using the Dermatology Life Quality Index (DLQI), and blood samples were obtained to measure total serum immunoglobulin E (IgE) levels. We chose the hypothalamus as the region of interest (ROI) to compare alterations in hypothalamic of amplitude of low-frequency fluctuation (ALFF) and whole-brain functional connectivity (FC) between patients with AA and HCs. Analyses of the correlation of brain activity and clinical data were conducted, including neuropsychological tests, DLQI, and blood samples. Results The HAM-A score, the HAM-D score, and the altered ALFF in the hypothalamus showed a statistically significant difference between patients with AA and HCs (P<0.05). Patients with AA exhibited increased FC between the hypothalamus, the left postcentral gyrus, and right inferior temporal gyrus (Gaussian random field-corrected: voxel <0.001 and cluster <0.05). Moreover, increased FC between the hypothalamus and left postcentral gyrus was positively correlated with HAM-D score (r=0.296; P=0.020), while increased FC between the hypothalamus and the right inferior temporal gyrus was negatively correlated with both DLQI (r=-0.256; P=0.012) and total serum IgE (r=-0.203; P=0.048). Conclusions Patients with AA exhibited altered hypothalamus activity and connectivity. These alterations may underlie the neurophysiological basis of psychological stress experienced by patients with AA.
Collapse
Affiliation(s)
- Yingxing Duan
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Dongcui Wang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Yitao Mao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Gechang Cheng
- Department of Orthopedics, Micro & Hand Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Junfeng Li
- Department of Radiology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| |
Collapse
|
8
|
Lin T, Meegaskumbura M. Fish MicroRNA Responses to Thermal Stress: Insights and Implications for Aquaculture and Conservation Amid Global Warming. Animals (Basel) 2025; 15:624. [PMID: 40075907 PMCID: PMC11898199 DOI: 10.3390/ani15050624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/11/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
In the context of global warming, heat tolerance is becoming a crucial physiological trait influencing fish species' distribution and survival. While our understanding of fish heat tolerance and stress has expanded from behavioral studies to transcriptomic analyses, knowledge at the transcriptomic level is still limited. Recently, the highly conserved microRNAs (miRNAs) have provided new insights into the molecular mechanisms of heat stress in fish. This review systematically examines current research across three main reference databases to elucidate the universal responses and mechanisms of fish miRNAs under heat stress. Our initial screening of 569 articles identified 13 target papers for comprehensive analysis. Among these, at least 214 differentially expressed miRNAs (DEMs) were found, with 15 DEMs appearing in at least two studies (12 were upregulated and 13 were downregulated). The 15 recurrent DEMs were analyzed using DIANA mirPath v.3 and the microT-CDS v5.0 database to identify potential target genes. The results suggest that multiple miRNAs target various genes, forming a complex network that regulates glucose and energy metabolism, maintains homeostasis, and modulates inflammation and immune responses. Significantly, miR-1, miR-122, let-7a, and miR-30b were consistently differentially expressed in multiple studies, indicating their potential relevance in heat stress responses. However, these miRNAs should not be considered definitive biomarkers without further validation. Future research should focus on experimentally confirming their regulatory roles through functional assays, conducting transcriptomic comparisons across different species, and performing target validation studies. These miRNAs, conserved across species, could be valuable for monitoring wild fish health, enhancing aquaculture breeding, and guiding conservation strategies. However, the specific regulatory mechanisms of these miRNAs need clarification to confirm their reliability as biomarkers for thermal stress.
Collapse
Affiliation(s)
| | - Madhava Meegaskumbura
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| |
Collapse
|
9
|
Li XJ, Wu S, Liu ZH, Liu AA, Peng HS, Wang YJ, Chen YX, Liu JG, Xu C. CXCR2 modulates chronic pain comorbid depression in mice by regulating adult neurogenesis in the ventral dentate gyrus. Acta Pharmacol Sin 2025:10.1038/s41401-025-01496-9. [PMID: 39972170 DOI: 10.1038/s41401-025-01496-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/21/2025] [Indexed: 02/21/2025]
Abstract
Research shows that chronic pain may induce depression-like behaviors through impairing adult hippocampal neurogenesis (AHN) in the ventral dentate gyrus (DG), whereas restoration of AHN may effectively alleviate depression. The C-X-C motif chemokine receptor 2 (CXCR2) is a chemokine receptor involved in various neural activities of the hippocampus including AHN. In this study we investigated the role of CXCR2 of neural stem cells (NSCs) in the ventral DG in regulating both AHN and depression-like behaviors of mice with chronic neuropathic pain. Chronic neuropathic pain was induced in mice by the spared nerve injury (SNI) surgery; mechanical allodynia and depression-like behaviors were monitored, then mouse DG was collected for analysis. We observed that chronic neuropathic pain significantly decreased the number of immature neurons in the ventral DG by inhibiting the neuronal differentiation of NSCs; specific overexpression of CXCR2 in NSCs by injecting the adeno-associated virus (AAV) into the DG restored adult neurogenesis accompanied by alleviated depression-like behaviors in SNI mice. In contrast, the knockdown of CXCR2 in hippocampal NSCs of naive mice was sufficient to inhibit adult neurogenesis, inducing depression-like behaviors. Moreover, we found that the Wnt3a/β-catenin pathway was downregulated in the ventral DG of SNI mice, which was restored after CXCR2 overexpression or infusing a CXCR2 agonist CXCL1 into the ventral DG. We conclude that CXCR2 expressed in hippocampal NSCs is crucial for regulating adult neurogenesis and chronic pain-induced depression-like behavior, thus representing a new target for the treatment of chronic pain comorbid depression.
Collapse
Affiliation(s)
- Xiao-Jie Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310061, China
- Department of Rehabilitation Health, Wuhan Hankou Hospital, Wuhan, 430000, China
| | - Shuo Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310061, China
| | - Zi-Han Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - An-An Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hui-Sheng Peng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310061, China
| | - Yu-Jun Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
| | - Ye-Xiang Chen
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310061, China.
| | - Jing-Gen Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310061, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Chi Xu
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310061, China.
| |
Collapse
|
10
|
Jiang H, Zhang M, Li XM, Zhang NN, Du YS, Xia CY, Wang HQ, Zhang YN, Yang XY, Chen AP, Lai HQ, Yan X, Chu SF, Wang ZZ, Chen NH. The pathogenesis of depression: Roles of connexin 43-based gap junctions and inflammation. Eur J Pharmacol 2025; 989:177260. [PMID: 39798913 DOI: 10.1016/j.ejphar.2025.177260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/13/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND Depression is a leading chronic mental illness worldwide, characterized by anhedonia and pessimism. Connexin is a kind of widely distributed protein in the body. Connexin 43 (Cx43) plays an important role in the pathogenesis of depression. Growing evidence has indicated that inflammation is closely associated with neuropsychiatric diseases such as depression. Inflammation occurs in patients with mood disorders, and symptomatic relief after multiple treatments is often accompanied by proinflammatory restoration. In this study, we sought to determine the upstream and downstream relationship of Cx43 abnormalities and peripheral inflammation in inducing depression. METHODS AND RESULTS Gap27, as a Cx43 mimetic peptide, specifically blocks Cx43 gap junction channels in the brain. The mice were treated with injection of Gap27 into the prefrontal cortex (PFC), conditional knockout of Cx43 in the PFC, and lipopolysaccharide (LPS) intraperitoneal injection. Our results revealed that the treatments gave rise to the depressive-like behavior occurrence in mice, including reducing the sucrose preference and spontaneous activities, and increasing immobility time in the forced swimming test. Functional blockade of Cx43 induced abnormal expression of peripheral inflammatory cytokines including interleukin (IL)-1β, IL-6, tumor necrosis factor-α, IL-2, IL-10, and IL-18. Furthermore, depression associated with peripheral inflammation derived from LPS intraperitoneal injection significantly reduced the Cx43 expression and the diffusion distance of gap junction channel permeability dye in the PFC. CONCLUSION These results showed that blockade of Cx43 in the PFC and peripheral inflammation are complicatedly intertwined, and reinforcing each other during the induction of depression.
Collapse
Affiliation(s)
- Hong Jiang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Meng Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Xin-Mu Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Ning-Ning Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Yu-Sheng Du
- Hunan University of Traditional Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, Hunan, China
| | - Cong-Yuan Xia
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Hui-Qin Wang
- Hunan University of Traditional Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, Hunan, China
| | - Ya-Ni Zhang
- Institute of Clinical Pharmacology and Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xue-Ying Yang
- Institute of Clinical Pharmacology and Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Ai-Ping Chen
- China Three Gorges University College of Medicine and Health Sciences, Yichang, 443002, China
| | - Hua-Qing Lai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Xu Yan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China; Hunan University of Traditional Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, Hunan, China.
| |
Collapse
|
11
|
Shi S, Sun Y, Zan G, Zhao M. The interaction between central and peripheral immune systems in methamphetamine use disorder: current status and future directions. J Neuroinflammation 2025; 22:40. [PMID: 39955589 PMCID: PMC11829452 DOI: 10.1186/s12974-025-03372-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025] Open
Abstract
Methamphetamine (METH) use disorder (MUD) is characterized by compulsive drug-seeking behavior and substantial neurotoxicity, posing a considerable burden on individuals and society. Traditionally perceived as a localized central nervous system disorder, recent preclinical and clinical studies have elucidated that MUD is a multifaceted disorder influenced by various biological systems, particularly the immune system. Emerging evidence suggests that both central and peripheral immune responses play a crucial role in the initiation and persistence of MUD. Conceptualizing it as a systemic immune process prompts significant inquiries regarding the mechanisms of communication between peripheral and central compartments. Also, whether this intercommunication could serve as diagnostic biomarkers or therapeutic targets. This review begins by offering an overview of mechanistic studies pertaining to the neuroimmune and peripheral immune systems. Finally, future directions are suggested through the integration of innovative technologies and multidimensional data to promote the translation of basic mechanistic research into clinical diagnostic and therapeutic interventions.
Collapse
Affiliation(s)
- Sai Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Sun
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guiying Zan
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences, Shanghai, China.
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Road, Shanghai, 200030, China.
| |
Collapse
|
12
|
Jiang H, Gong B, Yan Z, Wang P, Hong J. Identification of novel biomarkers associated with immune infiltration in major depression disorder and atopic dermatitis. Arch Dermatol Res 2025; 317:417. [PMID: 39953304 DOI: 10.1007/s00403-025-03907-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/18/2025] [Accepted: 01/27/2025] [Indexed: 02/17/2025]
Abstract
Major depression disorder (MDD) and atopic dermatitis (AD) are distinct disorders involving immune inflammatory responses. This study aimed to investigate the comorbid relationship between AD and MDD and to identify possible common mechanisms. We obtained AD and MDD data from the Gene Expression Omnibus (GEO) database. Differential expression analysis and the Genecard database were employed to identify shared genes associated with inflammatory diseases. These shared genes were then subjected to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Hub genes were selected based on the protein-protein interactions using CytoHubba, and key regulatory genes were identified through enrichment analysis. Subsequently, we conducted immune infiltration and correlation analyses of the shared genes in AD. Finally, we employed three machine learning models to predict the significance of shared genes. A total of 17 shared genes were identified in the AD_Inflammatory_MDD dataset (S100A9, PTGER2, PI3, SNCA, DAB2, PDGFA, FSTL1, CALD1, XK, UTS2, DHRS9, PARD3, NFIB, TMEM158, LIPH, RAB27B, and SH3BRL2). These genes were associated with biological processes such as the regulation of mesenchymal cell proliferation, cellular ketone metabolic processes, and glial cell differentiation. The neuroactive ligand-receptor interaction, IL-17 signaling, and Rap1 signaling pathways were significantly enriched in KEGG analysis. SNCA, S100A9, SH3BGRL2, RAB27B, TMEM158, DAB2, FSTL1, CALD1, and XK were identified as hub genes contributing to comorbid AD and MDD development. The three machine learning models consistently identified SNCA and PARD3 as important biomarkers.SNCA, S100A9, SH3BGRL2, RAB27B, TMEM158, DAB2, FSTL1, CALD1, and XK were identified as significant genes contributing to the development of AD and MDD comorbidities. Immune infiltration analysis showed a notable increase in the infiltration of various subtypes of CD4 + T cells, suggesting a potential association between the development of skin inflammation and the immune response. Across different machine learning models, SNCA and PARD3 consistently emerged as important biomarkers, providing a new direction for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Han Jiang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Bizhen Gong
- Postgraduate School, Medical School of Chinese People's Liberation Army, Beijing, 100853, China
- Senior Department of Traditional Chinese Medicine, the Sixth Medical Center of PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Zhaoxian Yan
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, China.
- Department of Integrative Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200433, China.
| | - Peng Wang
- Postgraduate School, Medical School of Chinese People's Liberation Army, Beijing, 100853, China.
- Senior Department of Traditional Chinese Medicine, the Sixth Medical Center of PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Jing Hong
- Department of Integrative Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200433, China.
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China.
| |
Collapse
|
13
|
Jaschke NP, Wang A. Integrated control of leukocyte compartments as a feature of adaptive physiology. Immunity 2025; 58:279-294. [PMID: 39909034 DOI: 10.1016/j.immuni.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 12/10/2024] [Accepted: 01/16/2025] [Indexed: 02/07/2025]
Abstract
As a highly diverse and mobile organ, the immune system is uniquely equipped to participate in tissue responses in a tunable manner, depending on the number, type, and nature of cells deployed to the respective organ. Most acute organismal stressors that threaten survival-predation, infection, poisoning, and others-induce pronounced redistribution of immune cells across tissue compartments. Here, we review the current understanding of leukocyte compartmentalization under homeostatic and noxious conditions. We argue that leukocyte shuttling between compartments is a function of local tissue demands, which are linked to the organ's contribution to adaptive physiology at steady state and upon challenge. We highlight the neuroendocrine signals that relay and organize this trafficking behavior and outline mechanisms underlying the functional diversification of leukocyte responses. In this context, we discuss important areas of future inquiry and the implications of this scientific space for clinical medicine in the era of targeted immunomodulation.
Collapse
Affiliation(s)
- Nikolai P Jaschke
- Department of Internal Medicine (Rheumatology, Allergy & Immunology) and Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
| | - Andrew Wang
- Department of Internal Medicine (Rheumatology, Allergy & Immunology) and Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
14
|
Wang H, Zhang L, Yang WY, Ji XY, Gao AQ, Wei YH, Ding X, Kang Y, Ding JH, Fan Y, Lu M, Hu G. Visceral adipose tissue-derived extracellular vesicles promote stress susceptibility in obese mice via miR-140-5p. Acta Pharmacol Sin 2025:10.1038/s41401-025-01484-z. [PMID: 39930136 DOI: 10.1038/s41401-025-01484-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/14/2025] [Indexed: 03/17/2025]
Abstract
Obesity increases the risk of depression. Evidence shows that peripheral inflammation, glycemic dysregulation, and hyperactivity within the hypothalamic-pituitary-adrenal axis are implicated in both obesity and depression. In this study we investigated the impact of visceral adipose tissue (VAT), a crucial characteristic of obesity, on stress susceptibility in obese mice. Age-matched mice were fed with chow diet (CD) or high-fat diet (HFD), respectively, for 12 weeks. CD mice were deprived of VAT and received transplantation of VAT from HFD mice (TransHFD) or CD mice (TransCD). Extracellular vesicles (EVs) were prepared from VAT of CD or HFD mice, and intravenously injected (100 μg, 4 times in 2 weeks) in naïve mice or injected into hippocampus (5 μg, 4 times in 2 weeks) through implanted bilateral cannula. Depression-like behaviors were assessed 14 days after transplantation. We showed that HFD mice exhibited significantly higher body weight gain and impaired insulin and glucose tolerance, accompanied by increased stress susceptibility. Transplantation of VAT or VAT-derived EVs from HFD mice caused synaptic damage and promoted stress susceptibility in recipient mice. Through inhibiting miRNA biogenesis in the VAT and miRNA sequencing analysis, we demonstrated that miR-140-5p was significantly upregulated in both VAT-EVs and hippocampus of HFD mice. Overexpression of hippocampal miR-140-5p in naïve mice not only facilitated acute stress-induced depression-like behaviors, but also decreased hippocampal CREB-BDNF signaling cascade and synaptic plasticity. Conversely, knockdown of miR-140-5p in the VAT, VAT-EVs or hippocampus of HFD mice protected against acute stress, reducing stress susceptibility that were mediated via CREB-BDNF pathway. In summary, VAT-EVs or the cargo miRNAs in obese mice promote synaptic damage and stress susceptibility, providing potential therapeutic targets for metabolism-related affective disorders.
Collapse
Affiliation(s)
- Hao Wang
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Li Zhang
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wan-Yue Yang
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiao-Yi Ji
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - An-Qi Gao
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yi-Hong Wei
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xin Ding
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yue Kang
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jian-Hua Ding
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China
| | - Yi Fan
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China
| | - Gang Hu
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
15
|
Guo H, Ali T, Li S. Neural circuits mediating chronic stress: Implications for major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2025; 137:111280. [PMID: 39909171 DOI: 10.1016/j.pnpbp.2025.111280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/18/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
Major depressive disorder (MDD), also known as depression, is a prevalent mental disorder that leads to severe disease burden worldwide. Over the past two decades, significant progress has been made in understanding the pathogenesis and developing novel treatments for MDD. Among the complicated etiologies of MDD, chronic stress is a major risk factor. Exploring the underlying brain circuit mechanisms of chronic stress regulation has been an area of active research for recent years. A growing body of preclinical and clinical research has revealed that abnormalities in the brain circuits are closely associated with failures in coping with stress in depressed individuals. Nevertheless, neural circuit mechanisms underlying chronic stress processing and the onset of depression remain a major puzzle. Here, we review recent literature focusing on circuit- and cell-type-specific dissection of depression-like behaviors in chronic stress-related animal models of MDD and outline the key questions.
Collapse
Affiliation(s)
- Hongling Guo
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China.
| | - Tahir Ali
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Shupeng Li
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China; Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Lu Q, Cheng Y, Zhou Z, Fan J, Chen J, Yan C, Zeng X, Yang J, Wang X. Effects of emotions on IVF/ICSI outcomes in infertile women: a systematic review and meta-analysis. J Assist Reprod Genet 2025:10.1007/s10815-025-03388-7. [PMID: 39875719 DOI: 10.1007/s10815-025-03388-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/30/2024] [Indexed: 01/30/2025] Open
Abstract
To assess whether infertile women's psychological conditions, such as depression, anxiety, and stress, are associated with in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) outcomes, we systematically searched for relevant articles from January 1, 2004, to March 29, 2024, in five databases, including PubMed, Web of Science, EMBASE, Cochrane Library, and PsycINFO. A random-effects model was used to examine pooled standardized mean differences (SMD) and 95% confidence interval (CI). A total of 29 articles fulfilled the inclusion criteria and were included in this meta-analysis. The statistical analysis revealed that infertile women with higher levels of anxiety [SMD: -0.17, 95% CI: (-0.27, -0.06), P = 0.002] and depression [SMD: -0.17, 95% CI: (-0.30, -0.04), P = 0.008] were less likely to have a successful pregnancy following IVF/ICSI treatment. Although not statistically significant, the results indicate a trend of increasing IVF/ICSI success with increasing participants' perceived stress levels [SMD: 0.09, 95% CI: (-0.01, 0.19), P = 0.07]. There was also no statistically significant correlation between infertility-related stress and IVF/ICSI outcomes [SMD: -0.26, 95% CI: (-0.79, 0.28), P = 0.35]. In general, it suggested that medical personnel should be aware of the mental health of infertile women involved in IVF/ICSI.
Collapse
Affiliation(s)
- Qianqian Lu
- Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing Women and Children's Healthcare Institute, Nanjing, Jiangsu, China
| | - Yun Cheng
- Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing Women and Children's Healthcare Institute, Nanjing, Jiangsu, China
| | - Zhi Zhou
- Reproductive Medical Center, Hainan Women and Children's Medical Center, Haikou, Hainan, China
| | - Jianing Fan
- Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing Women and Children's Healthcare Institute, Nanjing, Jiangsu, China
| | - Jie Chen
- Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing Women and Children's Healthcare Institute, Nanjing, Jiangsu, China
| | - Chen Yan
- Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing Women and Children's Healthcare Institute, Nanjing, Jiangsu, China
| | - Xin Zeng
- Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing Women and Children's Healthcare Institute, Nanjing, Jiangsu, China
| | - Juan Yang
- Affiliated Maternal and Child Health Care Center, Hainan Medical University, Hainan Academy of Medical Sciences, Haikou, Hainan, China.
| | - Xinyan Wang
- Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing Women and Children's Healthcare Institute, Nanjing, Jiangsu, China.
| |
Collapse
|
17
|
Singh A, Shim P, Naeem S, Rahman S, Lutfy K. Pituitary adenylyl cyclase-activating polypeptide modulates the stress response: the involvement of different brain areas and microglia. Front Psychiatry 2025; 15:1495598. [PMID: 39931196 PMCID: PMC11807976 DOI: 10.3389/fpsyt.2024.1495598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/06/2024] [Indexed: 02/13/2025] Open
Abstract
Stress is necessary for survival. However, chronic unnecessary stress exposure leads to cardiovascular, gastrointestinal and neuropsychiatric disorders. Thus, understanding the mechanisms involved in the initiation and maintenance of the stress response is essential since it may reveal the underpinning pathophysiology of these disorders and may aid in the development of medication to treat stress-mediated diseases. Pituitary adenylyl cyclase activating polypeptide (PACAP) and its receptors (PAC1, VPAC1 and VPAC2) are expressed in the hypothalamus and other brain areas as well as in the adrenal gland. Previous research has shown that this peptide/receptor system serves as a modulator of the stress response. In addition to modulating the stress response, this system may also be connected to its emerging role as neuroprotective against hypoxia, ischemia, and neurodegeneration. This article aims to review the literature regarding the role of PACAP and its receptors in the stress response, the involvement of different brain regions and microglia in PACAP-mediated modulation of the stress response, and the long-term adaptation to stress recognizable clinically as survival with resilience while manifested in anxiety, depression and other neurobehavioral disorders.
Collapse
Affiliation(s)
- Anika Singh
- College of Pharmacy, The University of Rhode Island, Kingston, RI, United States
| | - Paul Shim
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, United States
| | - Sadaf Naeem
- Institute of Pharmaceutical Sciences, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD, United States
| | - Kabirullah Lutfy
- College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
18
|
Liu X, Shi X, Zhao H, Wang C. Exploring the molecular mechanisms of comorbidity of myocardial infarction and anxiety disorders by combining multiple data sets with in vivo experimental validation. Int Immunopharmacol 2025; 146:113852. [PMID: 39733641 DOI: 10.1016/j.intimp.2024.113852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/25/2024] [Accepted: 12/10/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND The incidence of comorbidity between myocardial infarction (MI) and anxiety disorders is increasing. However, the biological association between them has not been fully understood. OBJECTIVE This study aims to investigate the molecular mechanisms of comorbidity between MI and anxiety disorders and to predict their key genes and potential therapeutic drugs. METHODS We searched Gene Expression Omnibus databases and performed differential analyses using the limma package to identify the functional enrichment of differential genes. Next, we constructed regulatory networks to investigate the relationship between hub genes and autophagy, ferroptosis, and immunity. Furthermore, we predicted transcription factors by R package, constructed a miRNA network, performed the single-cell analysis of key gene expression, and predicted drug targeting of differential genes using the Connectivity Map database. RESULTS The datasets for MI and anxiety disorders were analyzed for up and down-regulated differential genes, resulting in 35 intersecting differential genes. The top 10 feature genes from each dataset were intersected using Random Forest, resulting in the identification of three intersecting genes: STK17B, AKIRIN2, and WDR77. Validation of the above key genes was carried out by in vitro experiments. We examined the gene expression of STK17B, WDR77 and AKIRIN2 in the hippocampus and myocardial infarction border zone respectively by qPCR and WB, and the results confirmed that the above are the key genes for myocardial infarction and anxiety. There is a significant correlation between the comorbidity mechanism of myocardial infarction and anxiety disorders with ferroptosis and immunity. The construction of the miRNA network revealed that miR-205 and let-7 had higher average connectivity among the three hub genes. The single-cell analysis revealed significant expression of key genes in Endothelial cells, Cardiomyocytes, Macrophages, and Fibroblasts datasets. Cd274 showed a higher correlation with key genes in myocardial infarction and anxiety disorders. CONCLUSION Validation by multiple datasets and in vitro experiments showed that STK17B, AKIRIN2, and WDR77 are the key genes in the comorbidity of myocardial infarction and anxiety disorders, and ferroptosis and immunity are the key links in the comorbidity mechanism of myocardial infarction and anxiety disorders.
Collapse
Affiliation(s)
- Xiang Liu
- Beijing University of Chinese Medicine, Beijing, China.
| | - Xiaojun Shi
- Beijing University of Chinese Medicine, Beijing, China
| | - Haibin Zhao
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Chao Wang
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
19
|
Jiao W, Lin J, Deng Y, Ji Y, Liang C, Wei S, Jing X, Yan F. The immunological perspective of major depressive disorder: unveiling the interactions between central and peripheral immune mechanisms. J Neuroinflammation 2025; 22:10. [PMID: 39828676 PMCID: PMC11743025 DOI: 10.1186/s12974-024-03312-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/26/2024] [Indexed: 01/22/2025] Open
Abstract
Major depressive disorder is a prevalent mental disorder, yet its pathogenesis remains poorly understood. Accumulating evidence implicates dysregulated immune mechanisms as key contributors to depressive disorders. This review elucidates the complex interplay between peripheral and central immune components underlying depressive disorder pathology. Peripherally, systemic inflammation, gut immune dysregulation, and immune dysfunction in organs including gut, liver, spleen and adipose tissue influence brain function through neural and molecular pathways. Within the central nervous system, aberrant microglial and astrocytes activation, cytokine imbalances, and compromised blood-brain barrier integrity propagate neuroinflammation, disrupting neurotransmission, impairing neuroplasticity, and promoting neuronal injury. The crosstalk between peripheral and central immunity creates a vicious cycle exacerbating depressive neuropathology. Unraveling these multifaceted immune-mediated mechanisms provides insights into major depressive disorder's pathogenic basis and potential biomarkers and targets. Modulating both peripheral and central immune responses represent a promising multidimensional therapeutic strategy.
Collapse
Affiliation(s)
- Wenli Jiao
- School of Nursing, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China
| | - Jiayi Lin
- School of Nursing, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China
| | - Yanfang Deng
- Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yelin Ji
- School of Nursing, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China
| | - Chuoyi Liang
- School of Nursing, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China
| | - Sijia Wei
- School of Nursing, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China
| | - Xi Jing
- School of Nursing, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geoscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, Guangdong, China.
| | - Fengxia Yan
- School of Nursing, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
20
|
Ding H, Jiang Y, Sun Q, Song Y, Dong S, Xu Q, Li L, Liu C, Li B, Jiang H, Peng B, Peng S, Zhang C, Zhu J, Zhong M, Zhang G, Chang X. Integrating genetics and transcriptomics to characterize shared mechanisms in digestive diseases and psychiatric disorders. Commun Biol 2025; 8:47. [PMID: 39809838 PMCID: PMC11733146 DOI: 10.1038/s42003-025-07481-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
Digestive and psychiatric disorders tend to co-occur, yet mechanisms remain unclear. Leveraging genetic and transcriptomic data integration, we conduct multi-trait analysis of GWAS (MTAG) and weighted gene co-expression network analysis (WGCNA) to explore shared mechanism between psychiatric and gastrointestinal disorders. Significant genetic correlations were found between these disorders, especially in irritable bowel syndrome (IBS), gastroesophageal reflux disease (GERD), depression (DEP), and neuroticism (NE). MTAG identify 60 novel pleiotropic loci for IBS and 14 for GERD, predominantly located near genes associated with neurological pathways. Further WGCNA identifies multiple co-expression modules enriched with genes involved in neurological pathways in digestive tissues, with some modules strongly preserved across brain and digestive tissues. Moreover, our network analysis suggests BSN, CELF4, and NRXN1 as central players in the regulation of the gut-brain axis (GBA). This study enhances our understanding of the GBA and underscores BSN, CELF4, and NRXN1 as crucial targets for future research.
Collapse
Affiliation(s)
- Huanxin Ding
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, P. R. China
- Medical Center for Digestive Diseases, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, P. R. China
- Laboratory of Metabolism and Gastrointestinal Tumor, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, P. R. China
- Shandong Provincial Engineering Research Center of Minimally Invasive Diagnosis and Treatment for Digestive Diseases, Jinan, Shandong, P. R. China
| | - Yue Jiang
- College of Medical Information and Artificial Intelligence, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, P. R. China
| | - Qing Sun
- Department of Gastroentero-Anorectal Surgery, Zhuji People's Hospital of Zhejiang Province, Shaoxing City, Zhejiang Province, P. R. China
| | - Yingchao Song
- College of Medical Information and Artificial Intelligence, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, P. R. China
| | - Shuohui Dong
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, P. R. China
| | - Qian Xu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, P. R. China
- Medical Center for Digestive Diseases, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, P. R. China
- Laboratory of Metabolism and Gastrointestinal Tumor, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, P. R. China
- Shandong Provincial Engineering Research Center of Minimally Invasive Diagnosis and Treatment for Digestive Diseases, Jinan, Shandong, P. R. China
| | - Linzehao Li
- College of Medical Information and Artificial Intelligence, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, P. R. China
| | - Chuxuan Liu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, P. R. China
- Medical Center for Digestive Diseases, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, P. R. China
- Laboratory of Metabolism and Gastrointestinal Tumor, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, P. R. China
- Shandong Provincial Engineering Research Center of Minimally Invasive Diagnosis and Treatment for Digestive Diseases, Jinan, Shandong, P. R. China
| | - Bingjun Li
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, P. R. China
- Medical Center for Digestive Diseases, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, P. R. China
- Laboratory of Metabolism and Gastrointestinal Tumor, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, P. R. China
- Shandong Provincial Engineering Research Center of Minimally Invasive Diagnosis and Treatment for Digestive Diseases, Jinan, Shandong, P. R. China
| | - Hengxuan Jiang
- College of Medical Information and Artificial Intelligence, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, P. R. China
| | - Bichen Peng
- College of Medical Information and Artificial Intelligence, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, P. R. China
| | - Shi Peng
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, P. R. China
- Medical Center for Digestive Diseases, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, P. R. China
- Laboratory of Metabolism and Gastrointestinal Tumor, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, P. R. China
- Shandong Provincial Engineering Research Center of Minimally Invasive Diagnosis and Treatment for Digestive Diseases, Jinan, Shandong, P. R. China
| | - Chumeng Zhang
- College of Medical Information and Artificial Intelligence, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, P. R. China
| | - Jiankang Zhu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, P. R. China
- Medical Center for Digestive Diseases, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, P. R. China
- Laboratory of Metabolism and Gastrointestinal Tumor, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, P. R. China
- Shandong Provincial Engineering Research Center of Minimally Invasive Diagnosis and Treatment for Digestive Diseases, Jinan, Shandong, P. R. China
| | - Mingwei Zhong
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, P. R. China
- Medical Center for Digestive Diseases, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, P. R. China
- Laboratory of Metabolism and Gastrointestinal Tumor, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, P. R. China
- Shandong Provincial Engineering Research Center of Minimally Invasive Diagnosis and Treatment for Digestive Diseases, Jinan, Shandong, P. R. China
| | - Guangyong Zhang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, P. R. China.
- Medical Center for Digestive Diseases, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, P. R. China.
- Laboratory of Metabolism and Gastrointestinal Tumor, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, P. R. China.
- Shandong Provincial Engineering Research Center of Minimally Invasive Diagnosis and Treatment for Digestive Diseases, Jinan, Shandong, P. R. China.
| | - Xiao Chang
- College of Medical Information and Artificial Intelligence, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, P. R. China.
| |
Collapse
|
21
|
Baune BT, Fromme SE. The role of immunomodulators in severe mental disorders: future perspectives. Curr Opin Psychiatry 2025; 38:41-47. [PMID: 39526680 DOI: 10.1097/yco.0000000000000976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
PURPOSE OF REVIEW The immune system is of pivotal importance with regard to the development and maintenance of mental illness. Aberrant cytokine levels are significant immune markers, and research is increasingly focusing on the complement system and the gut-brain axis. The efficacy and safety of immunomodulatory interventions are currently the subject of clinical studies. Hence, this review is timeline and relevant to evaluate the latest evidence on the clinical value of immunomodulatory treatments from studies over the past 18 months in schizophrenia, bipolar disorder and unipolar depression. RECENT FINDINGS While conventional psychotropic drugs (antidepressants, antipsychotics, lithium) appear to have immunomodulatory adverse effects, antibiotics (minocycline), nonsteroid anti-inflammatory drugs (celecoxib) and anti-inflammatory therapeutics in particular are the subject of ongoing clinical trials. Integrative medical interventions such as nutritional supplements (e.g., N -acetyl- l -cysteine, polyunsaturated fatty acids) and exercise interventions (e.g., running, yoga) are being evaluated for their immunomodulatory effects and clinical value. SUMMARY No evidence-based recommendation can be made for the immunomodulatory treatment of depression, although celecoxib appears to be more effective than minocycline and omega-3 fatty acid. N -acetylcysteine (NAC) may be beneficial for the treatment of bipolar and schizophrenia disorders. However, further translational research is required to confirm these findings.
Collapse
Affiliation(s)
- Bernhard T Baune
- Department of Psychiatry, University of Muenster, Muenster, Germany
- Department of Psychiatry, University of Melbourne
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Sarah E Fromme
- Department of Psychiatry, University of Muenster, Muenster, Germany
| |
Collapse
|
22
|
Wang T, Teng B, Yao DR, Gao W, Oka Y. Organ-specific sympathetic innervation defines visceral functions. Nature 2025; 637:895-902. [PMID: 39604732 DOI: 10.1038/s41586-024-08269-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024]
Abstract
The autonomic nervous system orchestrates the functions of the brain and body through the sympathetic and parasympathetic pathways1. However, our understanding of the autonomic system, especially the sympathetic system, at the cellular and molecular levels is severely limited. Here we show topological representations of individual visceral organs in the major abdominal sympathetic ganglion complex. Using multi-modal transcriptomic analyses, we identified molecularly distinct sympathetic populations in the coeliac-superior mesenteric ganglia (CG-SMG). Of note, individual CG-SMG populations exhibit selective and mutually exclusive axonal projections to visceral organs, targeting either the gastrointestinal tract or secretory areas including the pancreas and bile tract. This combinatorial innervation pattern suggests functional segregation between different CG-SMG populations. Indeed, our neural perturbation experiments demonstrated that one class of neurons regulates gastrointestinal transit, and another class of neurons controls digestion and glucagon secretion independent of gut motility. These results reveal the molecularly diverse sympathetic system and suggest modular regulation of visceral organ functions by sympathetic populations.
Collapse
Affiliation(s)
- Tongtong Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Bochuan Teng
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Dickson R Yao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Yuki Oka
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
23
|
Bauer Ventura I, Goldberg ME, Schiffenbauer A, Shi M, Volochayev R, Jackson SH, Jansen A, Bayat N, Noroozi Farhadi P, Parks CG, Weinberg CR, Picardi A, Miller FW, Rider LG. Stressful life events are associated with the diagnosis of systemic autoimmune rheumatic diseases among adults. Clin Exp Rheumatol 2025; 43:21-27. [PMID: 39846368 PMCID: PMC11890514 DOI: 10.55563/clinexprheumatol/slj5sf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/02/2025] [Indexed: 01/24/2025]
Abstract
OBJECTIVES To assess the association between life events and subsequent diagnosis of systemic autoimmune rheumatic diseases (SARDs) by comparing siblings discordant for SARDs and unrelated controls. METHODS Life events 12 months prior to SARD diagnosis/reference date were queried using the Interview for Recent Life Events in 227 adults (96 probands with SARDs, 78 siblings, 53 controls). Probands were matched by age, sex, and race with their unaffected siblings or with unrelated controls. Logistic regression was used to calculate the relative odds of SARDs in relation to life events scores, adjusting for age, sex, race/ethnicity, education, and ever smoking. RESULTS The study identified consistent trends of probands reporting greater numbers of total and highly stressful events, and higher stress ratings than their unaffected siblings. Probands reported greater numbers and higher stress ratings of total, uncontrollable, and undesirable events compared to unrelated controls (p<0.001-0.024). The number of highly stressful events and the scores of weighted major events were also greater in probands and siblings compared to unrelated controls (p<0.001-0.046). The number of total, major, uncontrollable, undesirable, and highly stressful life events (OR range 1.31-1.64, p-value range 0.001-0.049), along with their corresponding stress ratings (OR range 1.22-1.51, p-value range <0.001-0.016), were associated with higher odds of SARD diagnosis, based on probands compared to controls. CONCLUSIONS This case-control study of life events preceding SARDs diagnosis using a validated life events questionnaire provides support for an aetiologic role of negative life events and psychological stress in SARDs among adults.
Collapse
Affiliation(s)
| | - Maya E Goldberg
- Environmental Autoimmunity Group, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, MD, and Research Triangle Park, NC, USA
| | - Adam Schiffenbauer
- Environmental Autoimmunity Group, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, MD, and Research Triangle Park, NC, USA
| | - Min Shi
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Rita Volochayev
- Environmental Autoimmunity Group, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, MD, and Research Triangle Park, NC, USA
| | - Sharon H Jackson
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Anna Jansen
- Environmental Autoimmunity Group, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, MD, and Research Triangle Park, NC, USA
| | - Nastaran Bayat
- Environmental Autoimmunity Group, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, MD, and Research Triangle Park, NC, USA, and Social Scientific System Inc, a DLH holding company
| | - Payam Noroozi Farhadi
- Environmental Autoimmunity Group, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, MD, and Research Triangle Park, NC, USA
| | - Christine G Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Clarice R Weinberg
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Angelo Picardi
- Centre for Behavioural Sciences and Mental Health, Italian National Institute of Health, Rome, Italy
| | - Frederick W Miller
- Environmental Autoimmunity Group, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, MD, and Research Triangle Park, NC, USA
| | - Lisa G Rider
- Environmental Autoimmunity Group, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, MD, and Research Triangle Park, NC, USA.
| |
Collapse
|
24
|
Xue KY, Yan MX, Zhu Z, Cui J. Adenosine signaling: a potential therapeutic target for psychogenic erectile dysfunction. Am J Transl Res 2024; 16:7248-7261. [PMID: 39822506 PMCID: PMC11733318 DOI: 10.62347/yzdz1428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/11/2024] [Indexed: 01/19/2025]
Abstract
Therapeutic modalities for psychogenic erectile dysfunction (PED) are poorly targeted because of the lack of specific pathological features. The common symptoms of PED include psychological stress-related negative emotions and erectile dysfunction. Exploring their common therapeutic targets is helpful in the development of effective PED treatment strategies. Adenosine locally acts as a vasodilator or neuromodulator in the penis and promotes erection. Recent studies have demonstrated that adenosine (ADO) signaling is also involved in psychological stress. Herein, we review the pathogenesis of PED and the interaction between ADO and the erection regulator nitric oxide (NO) in brain and penile tissues. In addition, we summarize the regulatory role of ADO signal transduction in penile erection, psychological stress and negative emotions. Through our study, we found that ADO is involved in psychological stress and erectile events by combining adenosine A1 receptors (A1R) and adenosine A2A receptors (A2AR). The application of A1R selective agonists may promote erection and improve psychological state.
Collapse
Affiliation(s)
- Kai-Yang Xue
- Department of Acupuncture and Tuina, Guizhou University of Traditional Chinese MedicineGuiyang 550025, Guizhou, China
| | - Ming-Xi Yan
- Department of Acupuncture and Tuina, Guizhou University of Traditional Chinese MedicineGuiyang 550025, Guizhou, China
| | - Zhou Zhu
- Department of Acupuncture and Tuina, Guizhou University of Traditional Chinese MedicineGuiyang 550025, Guizhou, China
| | - Jin Cui
- Department of Acupuncture and Tuina, Guizhou University of Traditional Chinese MedicineGuiyang 550025, Guizhou, China
- Department of Acupuncture and Moxibustion, The First Affiliated Hospital of Guizhou University of Traditional Chinese MedicineGuiyang 550001, Guizhou, China
| |
Collapse
|
25
|
Liang C, Wei S, Ji Y, Lin J, Jiao W, Li Z, Yan F, Jing X. The role of enteric nervous system and GDNF in depression: Conversation between the brain and the gut. Neurosci Biobehav Rev 2024; 167:105931. [PMID: 39447778 DOI: 10.1016/j.neubiorev.2024.105931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/14/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Depression is a debilitating mental disorder that causes a persistent feeling of sadness and loss of interest. Approximately 280 million individuals worldwide suffer from depression by 2023. Despite the heavy medical and social burden imposed by depression, pathophysiology remains incompletely understood. Emerging evidence indicates various bidirectional interplay enable communication between the gut and brain. These interplays provide a link between intestinal and central nervous system as well as feedback from cortical and sensory centers to enteric activities, which also influences physiology and behavior in depression. This review aims to overview the significant role of the enteric nervous system (ENS) in the pathophysiology of depression and gut-brain axis's contribution to depressive disorders. Additionally, we explore the alterations in enteric glia cells (EGCs) and glial cell line-derived neurotrophic factor (GDNF) in depression and their involvement in neuronal support, intestinal homeostasis maintains and immune response activation. Modulating ENS function, EGCs and GDNF level could serve as novel strategies for future antidepressant therapy.
Collapse
Affiliation(s)
- Chuoyi Liang
- School of Nursing, Jinan University, Guangzhou, China
| | - Sijia Wei
- School of Nursing, Jinan University, Guangzhou, China
| | - Yelin Ji
- School of Nursing, Jinan University, Guangzhou, China
| | - Jiayi Lin
- School of Nursing, Jinan University, Guangzhou, China
| | - Wenli Jiao
- School of Nursing, Jinan University, Guangzhou, China
| | - Zhiying Li
- School of Nursing, Jinan University, Guangzhou, China
| | - Fengxia Yan
- School of Nursing, Jinan University, Guangzhou, China.
| | - Xi Jing
- School of Nursing, Jinan University, Guangzhou, China; Guangdong-Hong Kong-Macau Great Bay Area Geoscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
26
|
Zhou Y, Lin X, Jiao Y, Yang D, Li Z, Zhu L, Li Y, Yin S, Li Q, Xu S, Tang D, Zhang S, Yu W, Gao P, Yang L. A brain-to-liver signal mediates the inhibition of liver regeneration under chronic stress in mice. Nat Commun 2024; 15:10361. [PMID: 39609433 PMCID: PMC11605118 DOI: 10.1038/s41467-024-54827-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024] Open
Abstract
As the ability of liver regeneration is pivotal for liver disease patients, it will be of high significance and importance to identify the missing piece of the jigsaw influencing the liver regeneration. Here, we report that chronic stress impairs the liver regeneration capacity after partial hepatectomy with increased mortality in male mice. Anatomical tracing and functional mapping identified a neural circuit from noradrenergic neurons in the locus coeruleus (LC) to serotonergic neurons in the rostral medullary raphe region (rMR), which critically contributes to the inhibition of liver regeneration under chronic stress. In addition, hepatic sympathetic nerves were shown to be critical for the inhibitory effects on liver regeneration by releasing norepinephrine (NE), which acts on adrenergic receptor β2 (ADRB2) to block the proinflammatory macrophage activation. Collectively, we reveal a "brain-to-liver" neural connection that mediates chronic stress-evoked deficits in liver regeneration, thus shedding important insights into hepatic disease therapy.
Collapse
Affiliation(s)
- Yanyu Zhou
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Xiaoqi Lin
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Yingfu Jiao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Dan Yang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Zhengyu Li
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Ling Zhu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Yixuan Li
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Suqing Yin
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Quanfu Li
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Saihong Xu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Dan Tang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Song Zhang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China.
| | - Po Gao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China.
| | - Liqun Yang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China.
| |
Collapse
|
27
|
Wang J, Wu C, Ye Z, Yin X, Li W, Zhang G, Jiang Z, Liang X, Wei Y, Ge L, Xu X, Wang T, Yang J. Cortisol suppresses lipopolysaccharide-induced in vitro inflammatory response of large yellow croaker (Larimichthys crocea) via the glucocorticoid receptor and p38 mitogen-activated protein kinase pathways. Comp Biochem Physiol B Biochem Mol Biol 2024; 275:111046. [PMID: 39542081 DOI: 10.1016/j.cbpb.2024.111046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/09/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
Glucocorticoids (GCs) are well-established anti-inflammatory agents, with cortisol, an endogenous GC, exerting pivotal regulatory effects on normal physiological processes. However, the immune regulatory role of cortisol in teleost fish, particularly in inflammation induced by pathogenic infection, remains largely unexplored. Here, we revealed that lipopolysaccharide (LPS) triggers a pro-inflammatory response in the large yellow croaker (Larimichthys crocea), as evidenced by increased expression of key pro-inflammatory cytokines and activation of the mitogen-activated protein kinase (MAPK) signaling pathway. We further explored the immunosuppressive capacity of cortisol in LPS-stimulated large yellow croaker kidney cells (PCK cells) and in vitro tissues of the large yellow croaker. Our findings indicated that cortisol effectively suppresses LPS-induced overexpression of pro-inflammatory cytokines and p38 MAPK pathway activation. Moreover, the immunosuppressive effects of cortisol were reversed by pretreatment with mifepristone, a glucocorticoid receptor (GR) antagonist. Collectively, this study delineated the inhibitory role of cortisol in the LPS-induced inflammatory cascade in large yellow croaker and underscores the significance of GR in mediating this response. These insights advance our comprehension of GCs-mediated immune modulation and provide a theoretical basis for the application of cortisol in disease prevention and the selective breeding of disease-resistant traits in aquaculture.
Collapse
Affiliation(s)
- Jixiu Wang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| | - Chenqian Wu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| | - Zhiqing Ye
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| | - Xiaolong Yin
- Zhoushan Fisheries Research Institute of Zhejiang Province, Zhoushan, Zhejiang 316022, PR China
| | - Weiye Li
- Zhoushan Fisheries Research Institute of Zhejiang Province, Zhoushan, Zhejiang 316022, PR China
| | - Guangbo Zhang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| | - Zhijing Jiang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| | - Xudong Liang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| | - Ying Wei
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| | - Lifei Ge
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| | - Xiuwen Xu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| | - Tianming Wang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China.
| | - Jingwen Yang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China.
| |
Collapse
|
28
|
Chen X, Geng Y, Wei G, He D, Lv J, Wen W, Xiang F, Tao K, Wu C. Neural Circuitries between the Brain and Peripheral Solid Tumors. Cancer Res 2024; 84:3509-3521. [PMID: 39226520 PMCID: PMC11532784 DOI: 10.1158/0008-5472.can-24-1779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/03/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024]
Abstract
The recent discovery of the pivotal role of the central nervous system in controlling tumor initiation and progression has opened a new field of research. Increasing evidence suggests a bidirectional interaction between the brain and tumors. The brain influences the biological behavior of tumor cells through complex neural networks involving the peripheral nervous system, the endocrine system, and the immune system, whereas tumors can establish local autonomic and sensory neural networks to transmit signals into the central nervous system, thereby affecting brain activity. This review aims to summarize the latest research in brain-tumor cross-talk, exploring neural circuitries between the brain and various peripheral solid tumors, analyzing the roles in tumor development and the related molecular mediators and pathologic mechanisms, and highlighting the critical impact on the understanding of cancer biology. Enhanced understanding of reciprocal communication between the brain and tumors will establish a solid theoretical basis for further research and could open avenues for repurposing psychiatric interventions in cancer treatment.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuli Geng
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guanxin Wei
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danzeng He
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jialong Lv
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenhao Wen
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Xiang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuanqing Wu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
29
|
Essouma M, Noubiap JJ. Lupus and other autoimmune diseases: Epidemiology in the population of African ancestry and diagnostic and management challenges in Africa. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100288. [PMID: 39282618 PMCID: PMC11399606 DOI: 10.1016/j.jacig.2024.100288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 09/19/2024]
Abstract
Autoimmune diseases are prevalent among people of African ancestry living outside Africa. However, the burden of autoimmune diseases in Africa is not well understood. This article provides a global overview of the current burden of autoimmune diseases in individuals of African descent. It also discusses the major factors contributing to autoimmune diseases in this population group, as well as the challenges involved in diagnosing and managing autoimmune diseases in Africa.
Collapse
Affiliation(s)
- Mickael Essouma
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Cameroon
| | - Jean Jacques Noubiap
- Division of Cardiology, Department of Medicine, University of California-San Francisco, San Francisco, Calif
| |
Collapse
|
30
|
Zhao K, Wang Y, Liu Q, Yu Z, Feng W. Efficacy comparison of five antidepressants in treating anxiety and depression in cancer and non-cancer patients. Front Neurosci 2024; 18:1485179. [PMID: 39539490 PMCID: PMC11557551 DOI: 10.3389/fnins.2024.1485179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Cancer patients have a heightened susceptibility to anxiety and depressive disorders, which significantly impact the effectiveness of cancer treatments and long-term quality of life. This study aimed to compare the efficacy of different antidepressants in cancer and non-cancer patients. Methods A total of 610 patients diagnosed with depressive episodes and/or anxiety disorders were retrospectively included and divided into a cancer group and a non-cancer control group. Antidepressants used included escitalopram, duloxetine, sertraline, venlafaxine, and vortioxetine, combined with trazodone or not. The Patient Health Questionnaire-9 (PHQ-9) and the Generalized Anxiety Disorder Questionnaire-7 (GAD-7) scores were used to evaluate the efficacy after 4 weeks and 8 weeks of systematic antidepressants treatment. Results Compared to the non-cancer group, the cancer group had higher proportions of females, older individuals, and patients with poor sleep quality, while reporting fewer somatic symptoms at baseline (all p < 0.05). PHQ-9 and GAD-7 scores in cancer patients treated with antidepressants were significantly lower than baseline at week 4 and week 8 (all p < 0.05). The sertraline group demonstrated significantly less improvement in GAD-7 scores at week 4 and in both GAD-7 and PHQ-9 scores at week 8 compared to the escitalopram group, while duloxetine, venlafaxine, and vortioxetine showed comparable efficacy to escitalopram. Antidepressants combined with trazodone showed significant improvement in PHQ-9 scores at week 4 compared to those without trazodone. The gynecological cancer group showed significantly more improvement in GAD-7 and PHQ-9 scores at week 4 and 8 compared to breast cancer patients. Conclusion Antidepressant treatment in cancer patients with anxiety and depression is as effective as in non-cancer patients. The efficacy of escitalopram is comparable to duloxetine, venlafaxine, and vortioxetine, all of which outperformed sertraline in cancer patients.
Collapse
Affiliation(s)
- Kuan Zhao
- Department of Psychological Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Youyang Wang
- Department of Psychological Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qun Liu
- Department of Psychological Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ze Yu
- Department of Psychological Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Feng
- Department of Psychological Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
31
|
Chaudhary R, Azam MA, Dowand B, Singh A, Rehman M, Agarwal V, Kumar A, Kaushik AS, Srivastava S, Srivastava S, Mishra V. Chronic stress-mediated dysregulations in inflammatory, immune and oxidative circuitry impairs the therapeutic response of methotrexate in experimental autoimmune disease models. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03529-2. [PMID: 39453502 DOI: 10.1007/s00210-024-03529-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Abstract
Chronic stress is significantly implicated in the worsening of autoimmune disorders, contributing to elevated inflammation and diminished therapeutic efficacy. Here, in this study, we investigated the detrimental impact of an 8-week chronic unpredictable stress (CUS) protocol on the progression of arthritis and psoriasis using collagen-induced arthritis (CIA) and imiquimod (IMQ)-induced psoriasis rat models, respectively. Our objective was to elucidate how prolonged stress exacerbates disease severity and impairs the effectiveness of treatment drug. Following the induction of CIA and IMQ, rats were subjected to an 8-week CUS paradigm designed to simulate chronic stress conditions. Moreover, after 5 weeks of CUS, methotrexate (MTX; 2 mg/kg, administered once weekly for 3 weeks, intraperitoneally) was introduced as a therapeutic intervention. The severity of CUS-induced effects and the therapeutic impairment of MTX in arthritis and psoriasis rats were assessed through pathological examination of joint and epidermal tissues, respectively. Additionally, we measured various pro-inflammatory cytokine levels, including NF-κB (nuclear factor kappa B), IFN-γ (interferon-gamma), TNF-α (tumour necrosis factor alpha), IL (interleukin)-1β, IL-6, IL-17 and IL-23 using enzyme-linked immunosorbent assay (ELISA), analysed immune cells through complete haematological profiling and evaluated oxidative stress markers. Our findings revealed that CUS significantly aggravated the pathological features of both arthritis and psoriasis. Prolonged stress exposure led to heightened inflammatory responses, increased oxidative stress and more severe tissue damage. Moreover, the therapeutic efficacy of MTX was notably reduced in stressed rats compared to non-stressed, underscoring the detrimental effects of chronic stress on treatment outcomes. Taken together, our results emphasize the importance of considering chronic stress as a critical factor in the management of autoimmune diseases.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, U.P., India
| | - Mohd Akhtar Azam
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, U.P., India
| | - Bhavana Dowand
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, U.P., India
| | - Alpana Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, U.P., India
| | - Mujeeba Rehman
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, U.P., India
| | - Vipul Agarwal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, U.P., India
| | - Anand Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, U.P., India
| | - Arjun Singh Kaushik
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, U.P., India
| | - Sukriti Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, U.P., India
| | - Siddhi Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, U.P., India
| | - Vikas Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, U.P., India.
| |
Collapse
|
32
|
Wang X, Wang X, Gao F, Yang S, Zhen Y, Wang X, Zhu G. Polysaccharides from Polygonatum cyrtonema Hua prevent depression-like behaviors in mice with chronic unpredictable mild stress through refining gut microbiota-lipopolysaccharide-paraventricular nucleus signal axis. Heliyon 2024; 10:e38554. [PMID: 39398073 PMCID: PMC11470423 DOI: 10.1016/j.heliyon.2024.e38554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/05/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024] Open
Abstract
As natural polysaccharide cannot directly pass the blood-brain barrier, it is of potential importance to investigate the systemic anti-depression mechanisms of polysaccharides (PSP) from Polygonatum cyrtonema Hua, a well-known herbal medicine with the anti-depressant activity. Here, we explored the underlying mechanisms of effects of PSP on chronic unpredictable mild stress (CUMS)-induced depression-like behavior in mice from the perspective of the microbiota-gut-brain axis. The results demonstrated that PSP intervention for 14 days significantly improved CUMS-induced depressive-like behaviors. Interestingly, PSP treatment increased the relative abundance of Muribaculaceae, Dubosiella and Lactobacillus and decreased the relative abundance of Akkermansia, Helicobacter and Clostridium_methylpentosum in the colon of CUMS mice. Meanwhile, PSP blocked CUMS-induced impairment of intestinal barrier function, inhibited the levels of corticosterone and lipopolysaccharide (LPS), and increased the level of 5-hydroxytryptamine in the serum. Importantly, PSP treatment prevented abnormal neuronal activation and altered local field potential (LFP) in the paraventricular nucleus of CUMS mice, especially the decrease of power spectral density in delta and theta frequency bands. Finally, the results of LFP and c-fos staining after multiple repetitions of LPS injection showed consistencies with CUMS. Taken together, our study indicates that PSP ameliorates depression-like behavior likely via modulating the gut microbiota-lipopolysaccharide-paraventricular nucleus signal axis.
Collapse
Affiliation(s)
- Xinya Wang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xueqing Wang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Feng Gao
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shaojie Yang
- Acupuncture and Moxibustion Clinical Medical Research Center of Anhui Province, The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei, 230061, China
| | - Yilan Zhen
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xuncui Wang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Guoqi Zhu
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| |
Collapse
|
33
|
Tian S, Liu Y, Liu P, Nomura S, Wei Y, Huang T. Development and Validation of a Comprehensive Prognostic and Depression Risk Index for Gastric Adenocarcinoma. Int J Mol Sci 2024; 25:10776. [PMID: 39409106 PMCID: PMC11476876 DOI: 10.3390/ijms251910776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Depressive disorder contributes to the initiation and prognosis of patients with cancer, but the interaction between cancer and depressive disorder remains unclear. We generated a gastric adenocarcinoma patient-derived xenograft mice model, treated with chronic unpredictable mild stimulation. Based on the RNA-sequence from the mouse model, patient data from TCGA, and MDD-related (major depressive disorder) genes from the GEO database, 56 hub genes were identified by the intersection of differential expression genes from the three datasets. Molecular subtypes and a prognostic signature were generated based on the 56 genes. A depressive mouse model was constructed to test the key changes in the signatures. The signature was constructed based on the NDUFA4L2, ANKRD45, and AQP3 genes. Patients with high risk-score had a worse overall survival than the patients with low scores, consistent with the results from the two GEO cohorts. The comprehensive results showed that a higher risk-score was correlated with higher levels of tumor immune exclusion, higher infiltration of M0 macrophages, M2 macrophages, and neutrophils, higher angiogenetic activities, and more enriched epithelial-mesenchymal transition signaling pathways. A higher risk score was correlated to a higher MDD score, elevated MDD-related cytokines, and the dysfunction of neurogenesis-related genes, and parts of these changes showed similar trends in the animal model. With the Genomics of Drug Sensitivity in Cancer database, we found that the gastric adenocarcinoma patients with high risk-score may be sensitive to Pazopanib, XMD8.85, Midostaurin, HG.6.64.1, Elesclomol, Linifanib, AP.24534, Roscovitine, Cytarabine, and Axitinib. The gene signature consisting of the NDUFA4L2, ANKRD45, and AQP3 genes is a promising biomarker to distinguish the prognosis, the molecular and immune characteristics, the depressive risk, and the therapy candidates for gastric adenocarcinoma patients.
Collapse
Affiliation(s)
- Sheng Tian
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; (S.T.); (Y.L.); (P.L.)
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yixin Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; (S.T.); (Y.L.); (P.L.)
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Pan Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; (S.T.); (Y.L.); (P.L.)
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Sachiyo Nomura
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan;
| | - Yongchang Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; (S.T.); (Y.L.); (P.L.)
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Tianhe Huang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; (S.T.); (Y.L.); (P.L.)
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| |
Collapse
|
34
|
Kelly C, Trumpff C, Acosta C, Assuras S, Baker J, Basarrate S, Behnke A, Bo K, Bobba-Alves N, Champagne FA, Conklin Q, Cross M, De Jager P, Engelstad K, Epel E, Franklin SG, Hirano M, Huang Q, Junker A, Juster RP, Kapri D, Kirschbaum C, Kurade M, Lauriola V, Li S, Liu CC, Liu G, McEwen B, McGill MA, McIntyre K, Monzel AS, Michelson J, Prather AA, Puterman E, Rosales XQ, Shapiro PA, Shire D, Slavich GM, Sloan RP, Smith JLM, Spann M, Spicer J, Sturm G, Tepler S, de Schotten MT, Wager TD, Picard M. A platform to map the mind-mitochondria connection and the hallmarks of psychobiology: the MiSBIE study. Trends Endocrinol Metab 2024; 35:884-901. [PMID: 39389809 PMCID: PMC11555495 DOI: 10.1016/j.tem.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 10/12/2024]
Abstract
Health emerges from coordinated psychobiological processes powered by mitochondrial energy transformation. But how do mitochondria regulate the multisystem responses that shape resilience and disease risk across the lifespan? The Mitochondrial Stress, Brain Imaging, and Epigenetics (MiSBIE) study was established to address this question and determine how mitochondria influence the interconnected neuroendocrine, immune, metabolic, cardiovascular, cognitive, and emotional systems among individuals spanning the spectrum of mitochondrial energy transformation capacity, including participants with rare mitochondrial DNA (mtDNA) lesions causing mitochondrial diseases (MitoDs). This interdisciplinary effort is expected to generate new insights into the pathophysiology of MitoDs, provide a foundation to develop novel biomarkers of human health, and integrate our fragmented knowledge of bioenergetic, brain-body, and mind-mitochondria processes relevant to medicine and public health.
Collapse
Affiliation(s)
- Catherine Kelly
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Caroline Trumpff
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Carlos Acosta
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Stephanie Assuras
- Department of Clinical Neuropsychology, Division of Cognitive Neuroscience, Columbia University Irving Medical Center, New York, NY, USA
| | - Jack Baker
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Sophia Basarrate
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Alexander Behnke
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA; Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Ke Bo
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Natalia Bobba-Alves
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Quinn Conklin
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Marissa Cross
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Philip De Jager
- Center for Translational and Computational Neuroimmunology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kris Engelstad
- H. Houston Merritt Center for Neuromuscular and Mitochondrial Disorders, Columbia Translational Neuroscience Initiative, Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Elissa Epel
- Weill Institute for Neurosciences, Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Soah G Franklin
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Michio Hirano
- H. Houston Merritt Center for Neuromuscular and Mitochondrial Disorders, Columbia Translational Neuroscience Initiative, Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Qiuhan Huang
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Alex Junker
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Robert-Paul Juster
- Department of Psychiatry and Addiction, University of Montreal, Montreal, Quebec, Canada
| | - Darshana Kapri
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Clemens Kirschbaum
- Faculty of Psychology, Institute of Biopsychology, Technical University Dresden, Dresden, Germany
| | - Mangesh Kurade
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Vincenzo Lauriola
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Shufang Li
- H. Houston Merritt Center for Neuromuscular and Mitochondrial Disorders, Columbia Translational Neuroscience Initiative, Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Cynthia C Liu
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Grace Liu
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Bruce McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Marlon A McGill
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Kathleen McIntyre
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna S Monzel
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Jeremy Michelson
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Aric A Prather
- Weill Institute for Neurosciences, Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Eli Puterman
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xiomara Q Rosales
- H. Houston Merritt Center for Neuromuscular and Mitochondrial Disorders, Columbia Translational Neuroscience Initiative, Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Peter A Shapiro
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA; Consultation-Liaison Psychiatry, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - David Shire
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - George M Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Richard P Sloan
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Janell L M Smith
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Marisa Spann
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Julie Spicer
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gabriel Sturm
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Sophia Tepler
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behavior Laboratory, Paris, France; Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France
| | - Tor D Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA; H. Houston Merritt Center for Neuromuscular and Mitochondrial Disorders, Columbia Translational Neuroscience Initiative, Department of Neurology, Columbia University Medical Center, New York, NY, USA; Robert N. Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
35
|
Liu D, Wei D. Relationship between the triglyceride-glucose index and depression in individuals with chronic kidney disease: A cross-sectional study from National Health and Nutrition Examination Survey 2005-2020. Medicine (Baltimore) 2024; 103:e39834. [PMID: 39331934 PMCID: PMC11441902 DOI: 10.1097/md.0000000000039834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/29/2024] Open
Abstract
Accumulating evidence indicates that individuals with chronic kidney disease (CKD) are at an increased risk of experiencing depressive disorders, which may accelerate its progression. However, the relationship between the triglyceride-glucose (TyG) index and depression in CKD individuals remains unclear. Therefore, this cross-sectional study aimed to assess whether such a relationship exists. To this end, the CKD cohort of the National Health and Nutrition Examination Survey from 2005 to 2020 was analyzed using multivariable logistic regression analyses and a generalized additive approach. A recursive algorithm was employed to pinpoint the turning point, constructing a dual-segment linear regression model. The study included 10,563 participants. After controlling for all variables, the odds ratios and 95% confidence intervals indicated a 1.24 (range, 1.09-1.42) relationship between the TyG index and depression in the CKD cohort. The findings underscored an asymmetrical association, with a pivotal value at a TyG index 9.29. Above this threshold, the adjusted odds ratio (95% confidence interval) was 1.10 (range, 0.93-1.31). This relationship was significant among the obese subgroups. The study results highlight the complex relationship between the TyG index and depression among American adults with CKD.
Collapse
Affiliation(s)
- Demin Liu
- The Third Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
- Yunnan University of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Danxia Wei
- The Third Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
- Yunnan University of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
36
|
Yang J, Yuan M, Zhang W. The major biogenic amine metabolites in mood disorders. Front Psychiatry 2024; 15:1460631. [PMID: 39381610 PMCID: PMC11458445 DOI: 10.3389/fpsyt.2024.1460631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
Mood disorders, including major depressive disorder and bipolar disorder, have a profound impact on more than 300 million people worldwide. It has been demonstrated mood disorders were closely associated with deviations in biogenic amine metabolites, which are involved in numerous critical physiological processes. The peripheral and central alteration of biogenic amine metabolites in patients may be one of the potential pathogeneses of mood disorders. This review provides a concise overview of the latest research on biogenic amine metabolites in mood disorders, such as histamine, kynurenine, and creatine. Further studies need larger sample sizes and multi-center collaboration. Investigating the changes of biogenic amine metabolites in mood disorders can provide biological foundation for diagnosis, offer guidance for more potent treatments, and aid in elucidating the biological mechanisms underlying mood disorders.
Collapse
Affiliation(s)
- Jingyi Yang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Big Data Center, Sichuan University, Chengdu, China
| |
Collapse
|
37
|
Wang T, Teng B, Yao DR, Gao W, Oka Y. Organ-specific Sympathetic Innervation Defines Visceral Functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613934. [PMID: 39345605 PMCID: PMC11430017 DOI: 10.1101/2024.09.19.613934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The autonomic nervous system orchestrates the brain and body functions through the sympathetic and parasympathetic pathways. However, our understanding of the autonomic system, especially the sympathetic system, at the cellular and molecular levels is severely limited. Here, we show unique topological representations of individual visceral organs in the major abdominal sympathetic ganglion complex. Using multi-modal transcriptomic analyses, we identified distinct sympathetic populations that are both molecularly and spatially separable in the celiac-superior mesenteric ganglia (CG-SMG). Notably, individual CG-SMG populations exhibit selective and mutually exclusive axonal projections to visceral organs, targeting either the gastrointestinal (GI) tract or secretory areas including the pancreas and bile tract. This combinatorial innervation pattern suggests functional segregation between different CG-SMG populations. Indeed, our neural perturbation experiments demonstrated that one class of neurons selectively regulates GI food transit. Another class of neurons controls digestion and glucagon secretion independent of gut motility. These results reveal the molecularly diverse sympathetic system and suggest modular regulations of visceral organ functions through distinct sympathetic populations.
Collapse
|
38
|
Okada N, Oshima K, Maruko A, Sekine M, Ito N, Wakasugi A, Mori E, Odaguchi H, Kobayashi Y. Intron retention as an excellent marker for diagnosing depression and for discovering new potential pathways for drug intervention. Front Psychiatry 2024; 15:1450708. [PMID: 39364384 PMCID: PMC11446786 DOI: 10.3389/fpsyt.2024.1450708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/20/2024] [Indexed: 10/05/2024] Open
Abstract
Background Peripheral inflammation is often associated with depressive disorders, and immunological biomarkers of depression remain a focus of investigation. Methods We performed RNA-seq analysis of RNA transcripts of human peripheral blood mononuclear cells from a case-control study including subjects with self-reported depression in the pre-symptomatic state of major depressive disorder and analyzed differentially expressed genes (DEGs) and the frequency of intron retention (IR) using rMATS. Results Among the statistically significant DEGs identified, the 651 upregulated DEGs were particularly enriched in the term "bacterial infection and phagocytosis", whereas the 820 downregulated DEGs were enriched in the terms "antigen presentation" and "T-cell proliferation and maturation". We also analyzed 158 genes for which the IR was increased (IncIR) and 211 genes for which the IR was decreased (DecIR) in the depressed subjects. Although the Gene Ontology terms associated with IncIR and DecIR were very similar to those of the up- and downregulated genes, respectively, IR genes appeared to be particularly enriched in genes with sensor functions, with a preponderance of the term "ciliary assembly and function". The observation that IR genes specifically interact with innate immunity genes suggests that immune-related genes, as well as cilia-related genes, may be excellent markers of depression. Re-analysis of previously published RNA-seq data from patients with MDD showed that common IR genes, particularly our predicted immune- and cilia-related genes, are commonly detected in populations with different levels of depression, providing validity for using IR to detect depression. Conclusion Depression was found to be associated with activation of the innate immune response and relative inactivation of T-cell signaling. The DEGs we identified reflect physiological demands that are controlled at the transcriptional level, whereas the IR results reflect a more direct mechanism for monitoring protein homeostasis. Accordingly, an alteration in IR, namely IncIR or DecIR, is a stress response, and intron-retained transcripts are sensors of the physiological state of the cytoplasm. The results demonstrate the potential of relative IR as a biomarker for the immunological stratification of depressed patients and the utility of IR for the discovery of novel pathways involved in recovery from depression.
Collapse
Affiliation(s)
- Norihiro Okada
- School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Kenshiro Oshima
- School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Akiko Maruko
- School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Mariko Sekine
- Kitasato University Kitasato Institute Hospital, Minato-ku, Tokyo, Japan
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Naoki Ito
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Akino Wakasugi
- Kitasato University Kitasato Institute Hospital, Minato-ku, Tokyo, Japan
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Eiko Mori
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Hiroshi Odaguchi
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Yoshinori Kobayashi
- School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| |
Collapse
|
39
|
Guo X, Chen Y, Huang H, Liu Y, Kong L, Chen L, Lyu H, Gao T, Lai J, Zhang D, Hu S. Serum signature of antibodies to Toxoplasma gondii, rubella virus, and cytomegalovirus in females with bipolar disorder: A cross-sectional study. J Affect Disord 2024; 361:82-90. [PMID: 38844171 DOI: 10.1016/j.jad.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND AND AIM Immunity alterations have been observed in bipolar disorder (BD). However, whether serum positivity of antibodies to Toxoplasma gondii (T gondii), rubella, and cytomegalovirus (CMV) shared clinical relevance with BD, remains controversial. This study aimed to investigate this association. METHODS Antibody seropositivity of IgM and IgG to T gondii, rubella virus, and CMV of females with BD and controls was extracted based on medical records from January 2018 to January 2023. Family history, type of BD, onset age, and psychotic symptom history were also collected. RESULTS 585 individuals with BD and 800 healthy controls were involved. Individuals with BD revealed a lower positive rate of T gondii IgG in the 10-20 aged group (OR = 0.10), and a higher positive rate of rubella IgG in the 10-20 (OR = 5.44) and 20-30 aged group (OR = 3.15). BD with family history preferred a higher positive rate of T gondii IgG (OR = 24.00). Type-I BD owned a decreased positive rate of rubella IgG (OR = 0.37) and an elevated positive rate of CMV IgG (OR = 2.12) compared to type-II BD, while BD with early onset showed contrast results compared to BD without early onset (Rubella IgG, OR = 2.54; CMV IgG, OR = 0.26). BD with psychotic symptom history displayed a lower positive rate of rubella IgG (OR = 0.50). LIMITATIONS Absence of male evidence and control of socioeconomic status and environmental exposure. CONCLUSIONS Differential antibody seropositive rates of T gondii, rubella, and cytomegalovirus in BD were observed.
Collapse
Affiliation(s)
- Xiaonan Guo
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Yiqing Chen
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Huimin Huang
- Department of Psychiatry, The Third Affiliated Hospital of Wenzhou Medical University, 325800, Wenzhou, Zhejiang, China.
| | - Yifeng Liu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Lingzhuo Kong
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Lizichen Chen
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Hailong Lyu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | | | - Jianbo Lai
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang Key Laboratory of Precision Psychiatry, Hangzhou 310003, China; Brain Research Institute of Zhejiang University, Hangzhou 310058, China; Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang Key Laboratory of Precision Psychiatry, Hangzhou 310003, China; Brain Research Institute of Zhejiang University, Hangzhou 310058, China; Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Psychology and Behavioral Sciences, Graduate School, Zhejiang University, Hangzhou 310058, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China.
| |
Collapse
|
40
|
Baune BT, Tremblay EM, Bechter K, Tian L. Editorial: The roles of peripheral immune cells and their circulatory effector molecules in neuropsychiatric disorders. Front Cell Neurosci 2024; 18:1471683. [PMID: 39285938 PMCID: PMC11402707 DOI: 10.3389/fncel.2024.1471683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Affiliation(s)
- Bernhard T Baune
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Eve-Marie Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Karl Bechter
- Department of Psychiatry and Psychotherapy II, Bezirkskrankenhaus Günzburg, University of Ulm, Ulm, Germany
| | - Li Tian
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
41
|
Zhao J, Chen R, Luo M, Gong H, Li K, Zhao Q. Inflammo-immune perspective on the association of eight migraine risk factors with migraine: a multi-omics Mendelian randomization study. Front Neurol 2024; 15:1440995. [PMID: 39170074 PMCID: PMC11335614 DOI: 10.3389/fneur.2024.1440995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Background Migraine risk factors are associated with migraine susceptibility, yet their mechanisms are unclear. Evidence suggests a role for inflammatory proteins and immune cells in migraine pathogenesis. This study aimed to examine the inflammo-immune association between eight migraine risk factors and the disorder. Methods This study utilized inverse variance weighted (IVW) method and colocalization analysis to explore potential causal relationships between eight migraine risk factors, migraine, 731 immune cells, and 91 circulating inflammatory proteins. Mediation Mendelian randomization (MR) was further used to confirm the mediating role of circulating inflammatory proteins and immune cells between the eight migraine risk factors and migraine. Results Migraine risk factors are linked to 276 immune cells and inflammatory proteins, with cigarettes smoked per day strongly co-localized with CD33-HLA DR+ cells. Despite no co-localization, 23 immune cells/inflammatory proteins relate to migraine. Depression, all anxiety disorders, and sleep apnea are correlated with migraine, and all anxiety disorders are supported by strong co-localization evidence. However, the mediating effect of inflammatory proteins and immune cells between eight migraine risk factors and migraine has not been confirmed. Conclusion We elucidate the potential causal relationships between eight migraine risk factors, migraine, immune cells, and inflammatory proteins, enhancing our understanding of the molecular etiology of migraine pathogenesis from an inflammatory-immune perspective.
Collapse
Affiliation(s)
- Jiaxi Zhao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rong Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mengqi Luo
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongping Gong
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kaixin Li
- Princess Alexandra Hospital, Metro South Hospital and Health Service, Brisbane, QLD, Australia
- Centre for Health Services Research, The University of Queensland, Brisbane, QLD, Australia
| | - Qian Zhao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
42
|
Yang L, Zhou Y, Huang Z, Li W, Lin J, Huang W, Sang Y, Wang F, Sun X, Song J, Wu H, Kong X. Electroacupuncture Promotes Liver Regeneration by Activating DMV Acetylcholinergic Neurons-Vagus-Macrophage Axis in 70% Partial Hepatectomy of Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402856. [PMID: 38923873 PMCID: PMC11348175 DOI: 10.1002/advs.202402856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Lack of liver regenerative capacity is the primary cause of hepatic failure and even mortality in patients undergoing hepatectomy, with no effective intervention strategies currently available. Therefore, identifying efficacious interventions to enhance liver regeneration is pivotal for optimizing clinical outcomes. Recent studies have demonstrated that vagotomy exerts an inhibitory effect on liver regeneration following partial hepatectomy, thereby substantiating the pivotal role played by the vagus nerve in the process of liver regeneration. In recent years, electroacupuncture (EA) has emerged as a non-invasive technique for stimulating the vagus nerve. However, EA on hepatic regeneration remains uncertain. In this study, a 70% partial hepatectomy (PH) mouse model is utilized to investigate the effects of EA on acute liver regeneration and elucidate its underlying molecular mechanisms. It is observed that EA at ST36 acutely activated cholinergic neurons in the dorsal motor nucleus of the vagus nerve (DMV), resulting in increased release of acetylcholine from hepatic vagal nerve endings and subsequent activation of IL-6 signaling in liver macrophages. Ultimately, these events promoted hepatocyte proliferation and facilitated liver regeneration. These findings provide insights into the fundamental brain-liver axis mechanism through which EA promotes liver regeneration, offering a novel therapeutic approach for post-hepatectomy liver regeneration disorders.
Collapse
Affiliation(s)
- Liu Yang
- Central LaboratoryShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai201203China
| | - Yanyu Zhou
- Central LaboratoryShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai201203China
| | - Zhaoshuai Huang
- Abdominal Transplantation CenterGeneral SurgeryRuijin HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai201203China
| | - Wenxuan Li
- Central LaboratoryShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai201203China
| | - Jiacheng Lin
- Central LaboratoryShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai201203China
| | - Weifan Huang
- Central LaboratoryShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai201203China
| | - Yali Sang
- Central LaboratoryShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai201203China
| | - Fang Wang
- Central LaboratoryShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai201203China
| | - Xuehua Sun
- Central LaboratoryShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai201203China
| | - Jiangang Song
- Department of anaesthesiologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai201203China
| | - Hailong Wu
- Shanghai Key Laboratory of Molecular ImagingCollaborative Innovation Center for BiomedicinesShanghai University of Medicine and Health SciencesShanghai201203China
| | - Xiaoni Kong
- Central LaboratoryShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai201203China
| |
Collapse
|
43
|
Nuszkiewicz J, Kukulska-Pawluczuk B, Piec K, Jarek DJ, Motolko K, Szewczyk-Golec K, Woźniak A. Intersecting Pathways: The Role of Metabolic Dysregulation, Gastrointestinal Microbiome, and Inflammation in Acute Ischemic Stroke Pathogenesis and Outcomes. J Clin Med 2024; 13:4258. [PMID: 39064298 PMCID: PMC11278353 DOI: 10.3390/jcm13144258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/13/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024] Open
Abstract
Acute ischemic stroke (AIS) remains a major cause of mortality and long-term disability worldwide, driven by complex and multifaceted etiological factors. Metabolic dysregulation, gastrointestinal microbiome alterations, and systemic inflammation are emerging as significant contributors to AIS pathogenesis. This review addresses the critical need to understand how these factors interact to influence AIS risk and outcomes. We aim to elucidate the roles of dysregulated adipokines in obesity, the impact of gut microbiota disruptions, and the neuroinflammatory cascade initiated by lipopolysaccharides (LPS) in AIS. Dysregulated adipokines in obesity exacerbate inflammatory responses, increasing AIS risk and severity. Disruptions in the gut microbiota and subsequent LPS-induced neuroinflammation further link systemic inflammation to AIS. Advances in neuroimaging and biomarker development have improved diagnostic precision. Here, we highlight the need for a multifaceted approach to AIS management, integrating metabolic, microbiota, and inflammatory insights. Potential therapeutic strategies targeting these pathways could significantly improve AIS prevention and treatment. Future research should focus on further elucidating these pathways and developing targeted interventions to mitigate the impacts of metabolic dysregulation, microbiome imbalances, and inflammation on AIS.
Collapse
Affiliation(s)
- Jarosław Nuszkiewicz
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| | - Beata Kukulska-Pawluczuk
- Department of Neurology, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 M. Skłodowskiej—Curie St., 85-094 Bydgoszcz, Poland; (B.K.-P.); (K.P.)
| | - Katarzyna Piec
- Department of Neurology, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 M. Skłodowskiej—Curie St., 85-094 Bydgoszcz, Poland; (B.K.-P.); (K.P.)
| | - Dorian Julian Jarek
- Student Research Club of Medical Biology and Biochemistry, Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| | - Karina Motolko
- Student Research Club of Neurology, Department of Neurology, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 M. Skłodowskiej—Curie St., 85-094 Bydgoszcz, Poland;
| | - Karolina Szewczyk-Golec
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| |
Collapse
|
44
|
Jiang R, Lu Z, Wang C, Xiao J, Liu Q, Xu X, Shi J, Shen J, Zhu X, Gong P, Zhuang QX, Shi K, Shi W. Beta2 adrenergic receptor-mediated abnormal myelopoiesis drives neuroinflammation in aged patients with traumatic brain injury. SCIENCE ADVANCES 2024; 10:eadp5239. [PMID: 39028822 PMCID: PMC11259178 DOI: 10.1126/sciadv.adp5239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/14/2024] [Indexed: 07/21/2024]
Abstract
Aged patients often suffer poorer neurological recovery than younger patients after traumatic brain injury (TBI), but the mechanisms underlying this difference remain unclear. Here, we demonstrate abnormal myelopoiesis characterized by increased neutrophil and classical monocyte output but impaired nonclassical patrolling monocyte population in aged patients with TBI as well as in an aged murine TBI model. Retrograde and anterograde nerve tracing indicated that increased adrenergic input through the central amygdaloid nucleus-bone marrow axis drives abnormal myelopoiesis after TBI in a β2-adrenergic receptor-dependent manner, which is notably enhanced in aged mice after injury. Selective blockade of β2-adrenergic receptors rebalances abnormal myelopoiesis and improves the outcomes of aged mice after TBI. We therefore demonstrate that increased β2-adrenergic input-driven abnormal myelopoiesis exacerbates post-TBI neuroinflammation in the aged, representing a mechanism underlying the poorer recovery of aged patients and that blockade of β2-adrenergic receptor is a potential approach to promote neurological recovery after TBI.
Collapse
Affiliation(s)
- Rui Jiang
- Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Zhichao Lu
- Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Chenxing Wang
- Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Jun Xiao
- Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qianqian Liu
- Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Neuro-Microscopy and Minimally Invasive Translational Medicine Innovation Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Xide Xu
- Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Neuro-Microscopy and Minimally Invasive Translational Medicine Innovation Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Jinlong Shi
- Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Neuro-Microscopy and Minimally Invasive Translational Medicine Innovation Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Jianhong Shen
- Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Neuro-Microscopy and Minimally Invasive Translational Medicine Innovation Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Xingjia Zhu
- Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Neuro-Microscopy and Minimally Invasive Translational Medicine Innovation Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Peipei Gong
- Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Neuro-Microscopy and Minimally Invasive Translational Medicine Innovation Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Qian-Xing Zhuang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Kaibin Shi
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Chinese Institutes for Medical Research, Beijing 100069, China
| | - Wei Shi
- Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Neuro-Microscopy and Minimally Invasive Translational Medicine Innovation Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
45
|
Kalisch R, Russo SJ, Müller MB. Neurobiology and systems biology of stress resilience. Physiol Rev 2024; 104:1205-1263. [PMID: 38483288 PMCID: PMC11381009 DOI: 10.1152/physrev.00042.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 05/16/2024] Open
Abstract
Stress resilience is the phenomenon that some people maintain their mental health despite exposure to adversity or show only temporary impairments followed by quick recovery. Resilience research attempts to unravel the factors and mechanisms that make resilience possible and to harness its insights for the development of preventative interventions in individuals at risk for acquiring stress-related dysfunctions. Biological resilience research has been lagging behind the psychological and social sciences but has seen a massive surge in recent years. At the same time, progress in this field has been hampered by methodological challenges related to finding suitable operationalizations and study designs, replicating findings, and modeling resilience in animals. We embed a review of behavioral, neuroimaging, neurobiological, and systems biological findings in adults in a critical methods discussion. We find preliminary evidence that hippocampus-based pattern separation and prefrontal-based cognitive control functions protect against the development of pathological fears in the aftermath of singular, event-type stressors [as found in fear-related disorders, including simpler forms of posttraumatic stress disorder (PTSD)] by facilitating the perception of safety. Reward system-based pursuit and savoring of positive reinforcers appear to protect against the development of more generalized dysfunctions of the anxious-depressive spectrum resulting from more severe or longer-lasting stressors (as in depression, generalized or comorbid anxiety, or severe PTSD). Links between preserved functioning of these neural systems under stress and neuroplasticity, immunoregulation, gut microbiome composition, and integrity of the gut barrier and the blood-brain barrier are beginning to emerge. On this basis, avenues for biological interventions are pointed out.
Collapse
Affiliation(s)
- Raffael Kalisch
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Scott J Russo
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Marianne B Müller
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
46
|
Zhang Y, Wang Y. The dual roles of serotonin in antitumor immunity. Pharmacol Res 2024; 205:107255. [PMID: 38862071 DOI: 10.1016/j.phrs.2024.107255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/14/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
Research has shown that a significant portion of cancer patients experience depressive symptoms, often accompanied by neuroendocrine hormone imbalances. Depression is frequently associated with decreased levels of serotonin with the alternate name 5-hydroxytryptamine (5-HT), leading to the common use of selective serotonin reuptake inhibitors (SSRIs) as antidepressants. However, the role of serotonin in tumor regulation remains unclear, with its expression levels displaying varied effects across different types of tumors. Tumor initiation and progression are closely intertwined with the immune function of the human body. Neuroimmunity, as an interdisciplinary subject, has played a unique role in the study of the relationship between psychosocial factors and tumors and their mechanisms in recent years. This article offers a comprehensive review of serotonin's regulatory roles in tumor onset and progression, as well as its impacts on immune cells in the tumor microenvironment. The aim is to stimulate further interdisciplinary research and discover novel targets for tumor treatment.
Collapse
Affiliation(s)
- Yingru Zhang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
47
|
Rawls A, Nyugen D, Dziabis J, Anbarci D, Clark M, Dzirasa K, Bilbo SD. Microglial MyD88-dependent pathways are regulated in a sex-specific manner in the context of HMGB1-induced anxiety. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590482. [PMID: 38712142 PMCID: PMC11071353 DOI: 10.1101/2024.04.22.590482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Chronic stress is a significant risk factor for the development and recurrence of anxiety disorders. Chronic stress impacts the immune system, causing microglial functional alterations in the medial prefrontal cortex (mPFC), a brain region involved in the pathogenesis of anxiety. High mobility group box 1 protein (HMGB1) is an established modulator of neuronal firing and a potent pro-inflammatory stimulus released from neuronal and non-neuronal cells following stress. HMGB1, in the context of stress, acts as a danger-associated molecular pattern (DAMP), instigating robust proinflammatory responses throughout the brain, so much so that localized drug delivery of HMGB1 alters behavior in the absence of any other forms of stress, i.e., social isolation, or behavioral stress models. Few studies have investigated the molecular mechanisms that underlie HMGB1-associated behavioral effects in a cell-specific manner. The aim of this study is to investigate cellular and molecular mechanisms underlying HMGB1-induced behavioral dysfunction with regard to cell-type specificity and potential sex differences. Here, we report that both male and female mice exhibited anxiety-like behavior following increased HMGB1 in the mPFC as well as changes in microglial morphology. Interestingly, our results demonstrate that HMGB1-induced anxiety may be mediated by distinct microglial MyD88-dependent mechanisms in females compared to males. This study supports the hypothesis that MyD88 signaling in microglia may be a crucial mediator of the stress response in adult female mice.
Collapse
Affiliation(s)
- Ashleigh Rawls
- Department of Pharmacology, Duke University, Durham, North Carolina, United States of America
| | - Dang Nyugen
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina, United States of America
| | - Julia Dziabis
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina, United States of America
| | - Dilara Anbarci
- Department of Cell Biology, Duke University, Durham, North Carolina, United States of America
| | - Madeline Clark
- Department of Neurobiology, Duke University, Durham, North Carolina, United States of America
| | - Kafui Dzirasa
- Department of Neurobiology, Duke University, Durham, North Carolina, United States of America
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Staci D Bilbo
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
48
|
Dai B, Li T, Cao J, Zhao X, Jiang Y, Shi L, Wei J. CD4 + T-cell subsets are associated with chronic stress effects in newly diagnosed anxiety disorders. Neurobiol Stress 2024; 31:100661. [PMID: 39070284 PMCID: PMC11279324 DOI: 10.1016/j.ynstr.2024.100661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/30/2024] Open
Abstract
Aim Prior research has indicated a connection between CD4+ T cells and the development of anxiety, but the specific CD4+ T cell subsets linked to anxiety disorders remain uncertain. Our study seeks to investigate the relationship between distinct CD4+ T cell subsets and anxiety, as well as to explore whether CD4+ T cell subsets mediate the effect of chronic psychological stress on anxiety. Methods 56 eligible matched participants were recruited in Peking Union Medical College Hospital. The diagnosis was made based on DSM-5 diagnostic criteria. The severity of anxiety and depression symptoms was assessed using the Hamilton Anxiety Rating Scale and Hamilton Depression Rating Scale, respectively. The Life Events Scale (LES) evaluated the chronic stress level. CD4+ T cell subsets were characterized using multiparametric flow cytometry. To assess the impact of CD4+ T cells on the effect of chronic psychological stress on anxiety, Partial Least Squares Structural Equation Modeling (PLS-SEM) analysis was employed. Results We discovered fifteen notably distinct CD4+ T-cell subsets in anxiety disorder patients compared to healthy controls. Multiple linear regression analysis unveiled an association between anxiety severity and CD27+CD45RA- Th cells, CD27+CD28+ Tregs, and the total Life Events Scale (LES) score. The PLS-SEM analysis demonstrated that CD4+ T cell subsets and LES could explain 80.2% of the variance in anxiety. Furthermore, it was observed that CD27+CD28+ Th/Treg cells acted as inverse mediators of the effects of LES on anxiety (P = 0.031). Conclusions Drug naïve anxiety disorder patients exhibited significant alterations in numerous CD4+ T-cell subsets. Specifically, the memory subset of CD27+CD45RA- Th cells and the naïve subset of CD27+CD28+ Treg cells were found to be independent factors associated with the severity of anxiety. Additionally, the CD27+CD28+ Th and Treg cell subsets played a significant mediating role in the influence of long-term psychological stress on anxiety.
Collapse
Affiliation(s)
- Bindong Dai
- Department of Psychological Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan1, Dongcheng District, Beijing, 100730, PR China
| | - Tao Li
- Department of Psychological Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan1, Dongcheng District, Beijing, 100730, PR China
| | - Jinya Cao
- Department of Psychological Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan1, Dongcheng District, Beijing, 100730, PR China
| | - Xiaohui Zhao
- Department of Psychological Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan1, Dongcheng District, Beijing, 100730, PR China
| | - Yinan Jiang
- Department of Psychological Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan1, Dongcheng District, Beijing, 100730, PR China
| | - Lili Shi
- Department of Psychological Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan1, Dongcheng District, Beijing, 100730, PR China
| | - Jing Wei
- Department of Psychological Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan1, Dongcheng District, Beijing, 100730, PR China
| |
Collapse
|
49
|
Nestler EJ, Russo SJ. Neurobiological basis of stress resilience. Neuron 2024; 112:1911-1929. [PMID: 38795707 PMCID: PMC11189737 DOI: 10.1016/j.neuron.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/21/2024] [Accepted: 05/01/2024] [Indexed: 05/28/2024]
Abstract
A majority of humans faced with severe stress maintain normal physiological and behavioral function, a process referred to as resilience. Such stress resilience has been modeled in laboratory animals and, over the past 15 years, has transformed our understanding of stress responses and how to approach the treatment of human stress disorders such as depression, post-traumatic stress disorder (PTSD), and anxiety disorders. Work in rodents has demonstrated that resilience to chronic stress is an active process that involves much more than simply avoiding the deleterious effects of the stress. Rather, resilience is mediated largely by the induction of adaptations that are associated uniquely with resilience. Such mechanisms of natural resilience in rodents are being characterized at the molecular, cellular, and circuit levels, with an increasing number being validated in human investigations. Such discoveries raise the novel possibility that treatments for human stress disorders, in addition to being geared toward reversing the damaging effects of stress, can also be based on inducing mechanisms of natural resilience in individuals who are inherently more susceptible. This review provides a progress report on this evolving field.
Collapse
Affiliation(s)
- Eric J Nestler
- Nash Family Department of Neuroscience and Department of Psychiatry, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Scott J Russo
- Nash Family Department of Neuroscience and Department of Psychiatry, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
50
|
Zhang H, Yang Y, Cao Y, Guan J. Effects of chronic stress on cancer development and the therapeutic prospects of adrenergic signaling regulation. Biomed Pharmacother 2024; 175:116609. [PMID: 38678960 DOI: 10.1016/j.biopha.2024.116609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
Long-term chronic stress is an important factor in the poor prognosis of cancer patients. Chronic stress reduces the tissue infiltration of immune cells in the tumor microenvironment (TME) by continuously activating the adrenergic signaling, inhibits antitumor immune response and tumor cell apoptosis while also inducing epithelial-mesenchymal transition (EMT) and tumor angiogenesis, promoting tumor invasion and metastasis. This review first summarizes how adrenergic signaling activates intracellular signaling by binding different adrenergic receptor (AR) heterodimers. Then, we focused on reviewing adrenergic signaling to regulate multiple functions of immune cells, including cell differentiation, migration, and cytokine secretion. In addition, the article discusses the mechanisms by which adrenergic signaling exerts pro-tumorigenic effects by acting directly on the tumor itself. It also highlights the use of adrenergic receptor modulators in cancer therapy, with particular emphasis on their potential role in immunotherapy. Finally, the article reviews the beneficial effects of stress intervention measures on cancer treatment. We think that enhancing the body's antitumor response by adjusting adrenergic signaling can enhance the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Oncology, The Eighth Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100091, China; Department of Oncology, The Fifth Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100071, China.
| | - Yuwei Yang
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing Key Laboratory of OTIR, Beijing, 100091, China.
| | - Yan Cao
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing Key Laboratory of OTIR, Beijing, 100091, China.
| | - Jingzhi Guan
- Department of Oncology, The Fifth Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100071, China.
| |
Collapse
|