1
|
Champagne J, Nielsen MM, Feng X, Montenegro Navarro J, Pataskar A, Voogd R, Giebel L, Nagel R, Berenst N, Fumagalli A, Kochavi A, Lovecchio D, Valcanover L, Malka Y, Yang W, Laos M, Li Y, Proost N, van de Ven M, van Tellingen O, Bleijerveld OB, Haanen JBAG, Olweus J, Agami R. Adoptive T cell therapy targeting an inducible and broadly shared product of aberrant mRNA translation. Immunity 2025; 58:247-262.e9. [PMID: 39755122 DOI: 10.1016/j.immuni.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/14/2024] [Accepted: 12/09/2024] [Indexed: 01/06/2025]
Abstract
Prolonged exposure to interferon-gamma (IFNγ) and the associated increased expression of the enzyme indoleamine 2,3-dioxygenase 1 (IDO1) create an intracellular shortage of tryptophan in the cancer cells, which stimulates ribosomal frameshifting and tryptophan to phenylalanine (W>F) codon reassignments during protein synthesis. Here, we investigated whether such neoepitopes can be useful targets of adoptive T cell therapy. Immunopeptidomic analyses uncovered hundreds of W>F neoepitopes mainly presented by the HLA-A∗24:02 allele. We identified a T cell receptor (TCRTMBIM6W>F.1) possessing high affinity and specificity toward TMBIM6W>F/HLA-A∗24:02, the inducible W>F neoepitope with the broadest expression across cancer cell lines. TCRTMBIM6W>F.1 T cells are activated by tryptophan-depleted cancer cells but not by non-cancer cells. Finally, we provide in vivo proof of concept for clinical application, whereby TCRMART1 T cells promote cancer cell killing by TCRTMBIM6W>F.1 T cells through the generation of W>F neoepitopes. Thus, neoepitopes arising from W>F substitution present shared and highly expressed immunogenic targets with the potential to overcome current limitations in adoptive T cell therapy.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/methods
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes/immunology
- Animals
- Protein Biosynthesis/immunology
- Cell Line, Tumor
- Mice
- HLA-A Antigens/immunology
- HLA-A Antigens/genetics
- HLA-A Antigens/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Tryptophan/metabolism
- Neoplasms/immunology
- Neoplasms/therapy
- Neoplasms/genetics
- Interferon-gamma/metabolism
- Interferon-gamma/immunology
- Epitopes, T-Lymphocyte/immunology
Collapse
Affiliation(s)
- Julien Champagne
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Morten M Nielsen
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Xiaodong Feng
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jasmine Montenegro Navarro
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Abhijeet Pataskar
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Rhianne Voogd
- Department of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Lisanne Giebel
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Remco Nagel
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Nadine Berenst
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Amos Fumagalli
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Adva Kochavi
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Domenica Lovecchio
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Lorenzo Valcanover
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Yuval Malka
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Weiwen Yang
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Maarja Laos
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Yingqian Li
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Natalie Proost
- Preclinical Intervention Unit and Pharmacology Unit of the Mouse Clinic for Cancer and Ageing (MCCA), the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marieke van de Ven
- Preclinical Intervention Unit and Pharmacology Unit of the Mouse Clinic for Cancer and Ageing (MCCA), the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Olaf van Tellingen
- Division of Pharmacology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Onno B Bleijerveld
- NKI Proteomics facility, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - John B A G Haanen
- Department of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Medical Oncology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Johanna Olweus
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway.
| | - Reuven Agami
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands; Erasmus MC, Department of Genetics, Rotterdam University, Rotterdam, the Netherlands.
| |
Collapse
|
2
|
Tan CL, Lindner K, Boschert T, Meng Z, Rodriguez Ehrenfried A, De Roia A, Haltenhof G, Faenza A, Imperatore F, Bunse L, Lindner JM, Harbottle RP, Ratliff M, Offringa R, Poschke I, Platten M, Green EW. Prediction of tumor-reactive T cell receptors from scRNA-seq data for personalized T cell therapy. Nat Biotechnol 2025; 43:134-142. [PMID: 38454173 PMCID: PMC11738991 DOI: 10.1038/s41587-024-02161-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 02/01/2024] [Indexed: 03/09/2024]
Abstract
The identification of patient-derived, tumor-reactive T cell receptors (TCRs) as a basis for personalized transgenic T cell therapies remains a time- and cost-intensive endeavor. Current approaches to identify tumor-reactive TCRs analyze tumor mutations to predict T cell activating (neo)antigens and use these to either enrich tumor infiltrating lymphocyte (TIL) cultures or validate individual TCRs for transgenic autologous therapies. Here we combined high-throughput TCR cloning and reactivity validation to train predicTCR, a machine learning classifier that identifies individual tumor-reactive TILs in an antigen-agnostic manner based on single-TIL RNA sequencing. PredicTCR identifies tumor-reactive TCRs in TILs from diverse cancers better than previous gene set enrichment-based approaches, increasing specificity and sensitivity (geometric mean) from 0.38 to 0.74. By predicting tumor-reactive TCRs in a matter of days, TCR clonotypes can be prioritized to accelerate the manufacture of personalized T cell therapies.
Collapse
Affiliation(s)
- C L Tan
- CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, Core Center Heidelberg, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neuroscience, Heidelberg University, Mannheim, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - K Lindner
- CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, Core Center Heidelberg, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neuroscience, Heidelberg University, Mannheim, Germany
- Immune Monitoring Unit, National Center for Tumor Diseases, Heidelberg, Germany
| | - T Boschert
- CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, Core Center Heidelberg, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neuroscience, Heidelberg University, Mannheim, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Helmholtz Institute for Translational Oncology, Mainz, Germany
| | - Z Meng
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, Heidelberg, Germany
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - A Rodriguez Ehrenfried
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Helmholtz Institute for Translational Oncology, Mainz, Germany
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, Heidelberg, Germany
| | - A De Roia
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- DNA Vector Laboratory, German Cancer Research Center, Heidelberg, Germany
| | - G Haltenhof
- CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neuroscience, Heidelberg University, Mannheim, Germany
| | | | | | - L Bunse
- CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, Core Center Heidelberg, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neuroscience, Heidelberg University, Mannheim, Germany
| | | | - R P Harbottle
- DNA Vector Laboratory, German Cancer Research Center, Heidelberg, Germany
| | - M Ratliff
- Department of Neurosurgery, University Hospital Mannheim, Mannheim, Germany
| | - R Offringa
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, Heidelberg, Germany
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - I Poschke
- CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, Core Center Heidelberg, Heidelberg, Germany
- Immune Monitoring Unit, National Center for Tumor Diseases, Heidelberg, Germany
| | - M Platten
- CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany.
- German Cancer Consortium, Core Center Heidelberg, Heidelberg, Germany.
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neuroscience, Heidelberg University, Mannheim, Germany.
- Immune Monitoring Unit, National Center for Tumor Diseases, Heidelberg, Germany.
- Helmholtz Institute for Translational Oncology, Mainz, Germany.
- German Cancer Research Center-Hector Cancer Institute at the Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| | - E W Green
- CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany.
- German Cancer Consortium, Core Center Heidelberg, Heidelberg, Germany.
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neuroscience, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
3
|
Aparicio B, Theunissen P, Hervas-Stubbs S, Fortes P, Sarobe P. Relevance of mutation-derived neoantigens and non-classical antigens for anticancer therapies. Hum Vaccin Immunother 2024; 20:2303799. [PMID: 38346926 PMCID: PMC10863374 DOI: 10.1080/21645515.2024.2303799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/06/2024] [Indexed: 02/15/2024] Open
Abstract
Efficacy of cancer immunotherapies relies on correct recognition of tumor antigens by lymphocytes, eliciting thus functional responses capable of eliminating tumor cells. Therefore, important efforts have been carried out in antigen identification, with the aim of understanding mechanisms of response to immunotherapy and to design safer and more efficient strategies. In addition to classical tumor-associated antigens identified during the last decades, implementation of next-generation sequencing methodologies is enabling the identification of neoantigens (neoAgs) arising from mutations, leading to the development of new neoAg-directed therapies. Moreover, there are numerous non-classical tumor antigens originated from other sources and identified by new methodologies. Here, we review the relevance of neoAgs in different immunotherapies and the results obtained by applying neoAg-based strategies. In addition, the different types of non-classical tumor antigens and the best approaches for their identification are described. This will help to increase the spectrum of targetable molecules useful in cancer immunotherapies.
Collapse
Affiliation(s)
- Belen Aparicio
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA) University of Navarra, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
| | - Patrick Theunissen
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
- DNA and RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Sandra Hervas-Stubbs
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA) University of Navarra, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
| | - Puri Fortes
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
- DNA and RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Spanish Network for Advanced Therapies (TERAV ISCIII), Spain
| | - Pablo Sarobe
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA) University of Navarra, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
| |
Collapse
|
4
|
Kochavi A, Nagel R, Körner PR, Bleijerveld OB, Lin CP, Huinen Z, Malka Y, Proost N, van de Ven M, Feng X, Navarro JM, Pataskar A, Peeper DS, Champagne J, Agami R. Chemotherapeutic agents and leucine deprivation induce codon-biased aberrant protein production in cancer. Nucleic Acids Res 2024; 52:13964-13979. [PMID: 39588782 DOI: 10.1093/nar/gkae1110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/01/2024] [Accepted: 11/25/2024] [Indexed: 11/27/2024] Open
Abstract
Messenger RNA (mRNA) translation is a tightly controlled process frequently deregulated in cancer. Key to this deregulation are transfer RNAs (tRNAs), whose expression, processing and post-transcriptional modifications are often altered in cancer to support cellular transformation. In conditions of limiting levels of amino acids, this deregulated control of protein synthesis leads to aberrant protein production in the form of ribosomal frameshifting or misincorporation of non-cognate amino acids. Here, we studied leucine, an essential amino acid coded by six different codons. Surprisingly, we found that leucine deprivation leads to ribosomal stalling and aberrant protein production in various cancer cell types, predominantly at one codon, UUA. Similar effects were observed after treatment with chemotherapeutic agents, implying a shared mechanism controlling the downstream effects on mRNA translation. In both conditions, a limitation in the availability of tRNALeu(UAA) for protein production was shown to be the cause for this dominant effect on UUA codons. The induced aberrant proteins can be processed and immune-presented as neoepitopes and can direct T-cell killing. Altogether, we uncovered a novel mode of interplay between DNA damage, regulation of tRNA availability for mRNA translation and aberrant protein production in cancer that could be exploited for anti-cancer therapy.
Collapse
Affiliation(s)
- Adva Kochavi
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, the Netherlands
| | - Remco Nagel
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, the Netherlands
| | - Pierre-Rene Körner
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, the Netherlands
| | - Onno B Bleijerveld
- NKI Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Chun-Pu Lin
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Zowi Huinen
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Yuval Malka
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, the Netherlands
| | - Natalie Proost
- Preclinical Intervention Unit and Pharmacology Unit of the Mouse Clinic for Cancer and Ageing (MCCA), The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Marieke van de Ven
- Preclinical Intervention Unit and Pharmacology Unit of the Mouse Clinic for Cancer and Ageing (MCCA), The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Xiaodong Feng
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, the Netherlands
| | - Jasmine Montenegro Navarro
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, the Netherlands
| | - Abhijeet Pataskar
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, the Netherlands
| | - Daniel S Peeper
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Julien Champagne
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, the Netherlands
| | - Reuven Agami
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, the Netherlands
- Erasmus MC, Rotterdam University, Dr. Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
| |
Collapse
|
5
|
Wang M, Liu Y, Li Y, Lu T, Wang M, Cheng Z, Chen L, Wen T, Pan M, Hu G. Tumor Microenvironment-Responsive Nanoparticles Enhance IDO1 Blockade Immunotherapy by Remodeling Metabolic Immunosuppression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2405845. [PMID: 39661740 DOI: 10.1002/advs.202405845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/25/2024] [Indexed: 12/13/2024]
Abstract
The clinical efficacy of immune checkpoint blockade (ICB) therapy is significantly compromised in the metabolically disordered tumor microenvironment (TME), posing a formidable challenge that cannot be ignored in current antitumor strategies. In this study, TME-responsive nanoparticles (HMP1G NPs) loaded with 1-methyltryptophan (1-MT; an indoleamine 2,3-dioxygenase 1 [IDO1] inhibitor,) and S-nitrosoglutathione (GSNO; a nitric oxide donor) is developed to enhance the therapeutic efficacy of 1-MT-mediated ICB. The HMP1G NPs responded to H+ and glutathione in the TME, releasing Mn2+, GSNO, and 1-MT. The released Mn2+ catalyzed the production of abundant reactive oxygen species and nitric oxide from hydrogen peroxide and GSNO, and the generated nitric oxide, synergistically with 1-MT, inhibited the accumulation of kynurenine mediated by IDO1 in the tumor. Mechanistically, HMP1G NPs downregulated tumor cell-derived IDO1 via the aryl hydrocarbon receptor/signal transducer and activator of transcription 3/interleukin signaling axis to improve kynurenine/tryptophan metabolism and immunosuppression. In a murine breast cancer model, treatment with HMP1G NPs elicited effective antitumor immunity and enhanced survival outcomes. This study highlights a novel nano-platform that simultaneously improves metabolism and enhances ICB efficacy to achieve a new and efficient antitumor strategy.
Collapse
Affiliation(s)
- Mengna Wang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- The First Clinical College, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Yuhong Liu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- The First Clinical College, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Yanshi Li
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Tao Lu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Min Wang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Zhaobo Cheng
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- The First Clinical College, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Lin Chen
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Tongling Wen
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- The First Clinical College, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Min Pan
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Guohua Hu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| |
Collapse
|
6
|
Zhang WJ, Shi QM, Li TZ, Huang YW. G protein coupled P2Y2 receptor as a regulatory molecule in cancer progression. Arch Biochem Biophys 2024; 762:110194. [PMID: 39486566 DOI: 10.1016/j.abb.2024.110194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/01/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
The occurrence and development of cancer involves the participation of many factors, its pathological mechanism is far more complicated than other diseases, and the treatment is also extremely difficult. Although the treatment of cancer adopts diversified methods to improve the survival rate and quality of life of patients, but the drug resistance, metastasis and recurrence of cancer cause most patients to fail in treatment. Therefore, exploring new molecular targets in cancer pathology is of great value for improving and preventing the treatment of cancer. Fortunately, the P2Y2 purinergic receptor (P2Y2 receptor) in the G protein-coupled receptor family has been recognized for regulating cancer progression. Agonist activated P2Y2 receptor has a certain contribution to the growth and metastasis of tumor cells. P2Y2 receptor activation participates in cancer progression by regulating calcium ion channels and classical signaling pathways (such as PLC-PKC and PI3K/AKT). It has the effect of anti-tumor therapy by inhibiting the activation of P2Y2 receptor (the use of antagonist) and reducing its expression. Therefore, in this article, we focus on the expression patterns of P2Y2 receptor in cancer and potential pharmacological targets as anti-cancer treatments.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- Rehabilitation Medicine Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, China
| | - Qing-Ming Shi
- Orthopedic Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, China
| | - Teng-Zheng Li
- Orthopedic Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, China
| | - Ya-Wei Huang
- Urology Department, The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang City, China.
| |
Collapse
|
7
|
Tang X, Li K, Wang Y, Rocchi S, Shen S, Cerezo M. Metabolism and mRNA translation: a nexus of cancer plasticity. Trends Cell Biol 2024:S0962-8924(24)00225-3. [PMID: 39603916 DOI: 10.1016/j.tcb.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
Tumors often face energy deprivation due to mutations, hypoxia, and nutritional deficiencies within the harsh tumor microenvironment (TME), and as an effect of anticancer treatments. This metabolic stress triggers adaptive reprogramming of mRNA translation, which in turn adjusts metabolic plasticity and associated signaling pathways to ensure tumor cell survival. Emerging evidence is beginning to reveal the complex interplay between metabolism and mRNA translation, shedding light on the mechanisms that synchronize ribosome assembly and reconfigure translation programs under metabolic stress. This review explores recent advances in our understanding of the coordination between metabolism and mRNA translation, offering insights that could inform therapeutic strategies targeting both cancer metabolism and translation, with the aim of disrupting cancer cell plasticity and survival.
Collapse
Affiliation(s)
- Xinpu Tang
- Institute of Thoracic Oncology and Department of Thoracic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Kaixiu Li
- Institute of Thoracic Oncology and Department of Thoracic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqing Wang
- Institute of Thoracic Oncology and Department of Thoracic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Stéphane Rocchi
- INSERM, U1065, Equipe 12, Centre Méditerranéen de Médecine Moléculaire (C3M), Bâtiment ARCHIMED, 151 route de saint Antoine de Ginestière, 06204, Nice cedex 3, France; Université Côte d'Azur, Nice, France
| | - Shensi Shen
- Institute of Thoracic Oncology and Department of Thoracic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| | - Michael Cerezo
- INSERM, U1065, Equipe 12, Centre Méditerranéen de Médecine Moléculaire (C3M), Bâtiment ARCHIMED, 151 route de saint Antoine de Ginestière, 06204, Nice cedex 3, France; Université Côte d'Azur, Nice, France.
| |
Collapse
|
8
|
Xu R, He X, Xu J, Yu G, Wu Y. Immunometabolism: signaling pathways, homeostasis, and therapeutic targets. MedComm (Beijing) 2024; 5:e789. [PMID: 39492834 PMCID: PMC11531657 DOI: 10.1002/mco2.789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 11/05/2024] Open
Abstract
Immunometabolism plays a central role in sustaining immune system functionality and preserving physiological homeostasis within the organism. During the differentiation and activation, immune cells undergo metabolic reprogramming mediated by complex signaling pathways. Immune cells maintain homeostasis and are influenced by metabolic microenvironmental cues. A series of immunometabolic enzymes modulate immune cell function by metabolizing nutrients and accumulating metabolic products. These enzymes reverse immune cells' differentiation, disrupt intracellular signaling pathways, and regulate immune responses, thereby influencing disease progression. The huge population of immune metabolic enzymes, the ubiquity, and the complexity of metabolic regulation have kept the immune metabolic mechanisms related to many diseases from being discovered, and what has been revealed so far is only the tip of the iceberg. This review comprehensively summarized the immune metabolic enzymes' role in multiple immune cells such as T cells, macrophages, natural killer cells, and dendritic cells. By classifying and dissecting the immunometabolism mechanisms and the implications in diseases, summarizing and analyzing advancements in research and clinical applications of the inhibitors targeting these enzymes, this review is intended to provide a new perspective concerning immune metabolic enzymes for understanding the immune system, and offer novel insight into future therapeutic interventions.
Collapse
Affiliation(s)
- Rongrong Xu
- National Key Laboratory of Immunity and Inflammation & Institute of ImmunologyCollege of Basic Medical SciencesNaval Medical UniversityShanghaiChina
- School of Life SciencesFudan UniversityShanghaiChina
| | - Xiaobo He
- National Key Laboratory of Immunity and Inflammation & Institute of ImmunologyCollege of Basic Medical SciencesNaval Medical UniversityShanghaiChina
| | - Jia Xu
- National Key Laboratory of Immunity and Inflammation & Institute of ImmunologyCollege of Basic Medical SciencesNaval Medical UniversityShanghaiChina
| | - Ganjun Yu
- National Key Laboratory of Immunity and Inflammation & Institute of ImmunologyCollege of Basic Medical SciencesNaval Medical UniversityShanghaiChina
| | - Yanfeng Wu
- National Key Laboratory of Immunity and Inflammation & Institute of ImmunologyCollege of Basic Medical SciencesNaval Medical UniversityShanghaiChina
| |
Collapse
|
9
|
Yan J, Chen D, Ye Z, Zhu X, Li X, Jiao H, Duan M, Zhang C, Cheng J, Xu L, Li H, Yan D. Molecular mechanisms and therapeutic significance of Tryptophan Metabolism and signaling in cancer. Mol Cancer 2024; 23:241. [PMID: 39472902 PMCID: PMC11523861 DOI: 10.1186/s12943-024-02164-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024] Open
Abstract
Tryptophan (Trp) metabolism involves three primary pathways: the kynurenine (Kyn) pathway (KP), the 5-hydroxytryptamine (serotonin, 5-HT) pathway, and the indole pathway. Under normal physiological conditions, Trp metabolism plays crucial roles in regulating inflammation, immunity, and neuronal function. Key rate-limiting enzymes such as indoleamine-2,3-dioxygenase (IDO), Trp-2,3-dioxygenase (TDO), and kynurenine monooxygenase (KMO) drive these metabolic processes. Imbalances in Trp metabolism are linked to various cancers and often correlate with poor prognosis and adverse clinical characteristics. Dysregulated Trp metabolism fosters tumor growth and immune evasion primarily by creating an immunosuppressive tumor microenvironment (TME). Activation of the KP results in the production of immunosuppressive metabolites like Kyn, which modulate immune responses and promote oncogenesis mainly through interaction with the aryl hydrocarbon receptor (AHR). Targeting Trp metabolism therapeutically has shown significant potential, especially with the development of small-molecule inhibitors for IDO1, TDO, and other key enzymes. These inhibitors disrupt the immunosuppressive signals within the TME, potentially restoring effective anti-tumor immune responses. Recently, IDO1 inhibitors have been tested in clinical trials, showing the potential to enhance the effects of existing cancer therapies. However, mixed results in later-stage trials underscore the need for a deeper understanding of Trp metabolism and its complex role in cancer. Recent advancements have also explored combining Trp metabolism inhibitors with other treatments, such as immune checkpoint inhibitors, chemotherapy, and radiotherapy, to enhance therapeutic efficacy and overcome resistance mechanisms. This review summarizes the current understanding of Trp metabolism and signaling in cancer, detailing the oncogenic mechanisms and clinical significance of dysregulated Trp metabolism. Additionally, it provides insights into the challenges in developing Trp-targeted therapies and future research directions aimed at optimizing these therapeutic strategies and improving patient outcomes.
Collapse
Affiliation(s)
- Jing Yan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Di Chen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Zi Ye
- Department of Scientific Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xuqiang Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Xueyuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Henan Jiao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Mengjiao Duan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Chaoli Zhang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Lixia Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Hongjiang Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| | - Dongming Yan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
10
|
Cognet G, Muir A. Identifying metabolic limitations in the tumor microenvironment. SCIENCE ADVANCES 2024; 10:eadq7305. [PMID: 39356752 PMCID: PMC11446263 DOI: 10.1126/sciadv.adq7305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024]
Abstract
Solid tumors are characterized by dysfunctional vasculature that limits perfusion and delivery of nutrients to the tumor microenvironment. Limited perfusion coupled with the high metabolic demand of growing tumors has led to the hypothesis that many tumors experience metabolic stress driven by limited availability of nutrients such as glucose, oxygen, and amino acids in the tumor. Such metabolic stress has important implications for the biology of cells in the microenvironment, affecting both disease progression and response to therapies. Recently, techniques have been developed to identify limiting nutrients and resulting metabolic stresses in solid tumors. These techniques have greatly expanded our understanding of the metabolic limitations in tumors. This review will discuss these experimental tools and the emerging picture of metabolic limitations in tumors arising from recent studies using these approaches.
Collapse
Affiliation(s)
- Guillaume Cognet
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Alexander Muir
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| |
Collapse
|
11
|
Tsour S, Machne R, Leduc A, Widmer S, Guez J, Karczewski K, Slavov N. Alternate RNA decoding results in stable and abundant proteins in mammals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609665. [PMID: 39253435 PMCID: PMC11383030 DOI: 10.1101/2024.08.26.609665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Amino acid substitutions may substantially alter protein stability and function, but the contribution of substitutions arising from alternate translation (deviations from the genetic code) is unknown. To explore it, we analyzed deep proteomic and transcriptomic data from over 1,000 human samples, including 6 cancer types and 26 healthy human tissues. This global analysis identified 60,024 high confidence substitutions corresponding to 8,801 unique sites in proteins derived from 1,990 genes. Some substitutions are shared across samples, while others exhibit strong tissue-type and cancer specificity. Surprisingly, products of alternate translation are more abundant than their canonical counterparts for hundreds of proteins, suggesting sense codon recoding. Recoded proteins include transcription factors, proteases, signaling proteins, and proteins associated with neurodegeneration. Mechanisms contributing to substitution abundance include protein stability, codon frequency, codon-anticodon mismatches, and RNA modifications. We characterize sequence motifs around alternatively translated amino acids and how substitution ratios vary across protein domains, tissue types and cancers. The substitution ratios are positively associated with intrinsically disordered regions and genetic polymorphisms in gnomAD, though the polymorphisms cannot account for the substitutions. Both the sequence and the tissue-specificity of alternatively translated proteins are conserved between human and mouse. These results demonstrate the contribution of alternate translation to diversifying mammalian proteomes, and its association with protein stability, tissue-specific proteomes, and diseases.
Collapse
Affiliation(s)
- Shira Tsour
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, Northeastern University, Boston, MA 02115, USA
- Alnylam Pharmaceuticals, Cambridge, MA, USA
| | - Rainer Machne
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, Northeastern University, Boston, MA 02115, USA
| | - Andrew Leduc
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, Northeastern University, Boston, MA 02115, USA
| | - Simon Widmer
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, Northeastern University, Boston, MA 02115, USA
| | - Jeremy Guez
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Konrad Karczewski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Nikolai Slavov
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, Northeastern University, Boston, MA 02115, USA
- Parallel Squared Technology Institute, Watertown, MA, USA
| |
Collapse
|
12
|
Cui C, Ott PA, Wu CJ. Advances in Vaccines for Melanoma. Hematol Oncol Clin North Am 2024; 38:1045-1060. [PMID: 39079791 PMCID: PMC11524149 DOI: 10.1016/j.hoc.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2024]
Abstract
Personalized neoantigen vaccines have achieved major advancements in recent years, with studies in melanoma leading progress in the field. Early clinical trials have demonstrated their feasibility, safety, immunogenicity, and potential efficacy. Advances in sequencing technologies and neoantigen prediction algorithms have substantively improved the identification and prioritization of neoantigens. Innovative delivery platforms now support the rapid and flexible production of vaccines. Several ongoing efforts in the field are aimed at improving the integration of large datasets, refining the training of prediction models, and ensuring the functional validation of vaccine immunogenicity.
Collapse
Affiliation(s)
- Can Cui
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Patrick A Ott
- Harvard Medical School, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Catherine J Wu
- Harvard Medical School, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
13
|
Zheng ZQ, Zhong CR, Wei CZ, Chen XJ, Chen GM, Nie RC, Chen ZW, Zhang FY, Li YF, Zhou ZW, Chen YM, Liang YL. Hyperactivation of mTOR/eIF4E Signaling Pathway Promotes the Production of Tryptophan-To-Phenylalanine Substitutants in EBV-Positive Gastric Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402284. [PMID: 38994917 PMCID: PMC11425274 DOI: 10.1002/advs.202402284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/26/2024] [Indexed: 07/13/2024]
Abstract
Although messenger RNA translation is tightly regulated to preserve protein synthesis and cellular homeostasis, chronic exposure to interferon-γ (IFN-γ) in several cancers can lead to tryptophan (Trp) shortage via the indoleamine-2,3-dioxygenase (IDO)- kynurenine pathway and therefore promotes the production of aberrant peptides by ribosomal frameshifting and tryptophan-to-phenylalanine (W>F) codon reassignment events (substitutants) specifically at Trp codons. However, the effect of Trp depletion on the generation of aberrant peptides by ribosomal mistranslation in gastric cancer (GC) is still obscure. Here, it is shows that the abundant infiltrating lymphocytes in EBV-positive GC continuously secreted IFN-γ, upregulated IDO1 expression, leading to Trp shortage and the induction of W>F substitutants. Intriguingly, the production of W>F substitutants in EBV-positive GC is linked to antigen presentation and the activation of the mTOR/eIF4E signaling pathway. Inhibiting either the mTOR/eIF4E pathway or EIF4E expression counteracted the production and antigen presentation of W>F substitutants. Thus, the mTOR/eIF4E pathway exposed the vulnerability of gastric cancer by accelerating the production of aberrant peptides and boosting immune activation through W>F substitutant events. This work proposes that EBV-positive GC patients with mTOR/eIF4E hyperactivation may benefit from anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Zi-Qi Zheng
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Cheng-Rui Zhong
- Department of General Surgery, Hepatobiliary Pancreatic and Splenic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, P. R. China
| | - Cheng-Zhi Wei
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Xiao-Jiang Chen
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Guo-Ming Chen
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Run-Cong Nie
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Ze-Wei Chen
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Fei-Yang Zhang
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Yuan-Fang Li
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Zhi-Wei Zhou
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Yong-Ming Chen
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Ye-Lin Liang
- Department of Radiology Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| |
Collapse
|
14
|
Xue Q, Yu W, Li JP, He C, Guo Z. Revealing the nature of Pt-based immunotherapy through the lens of neoantigens in cancer. Sci Bull (Beijing) 2024; 69:2314-2318. [PMID: 38670854 DOI: 10.1016/j.scib.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Affiliation(s)
- Qi Xue
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenhao Yu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jie P Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Chuan He
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA; Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
15
|
Grobben Y. Targeting amino acid-metabolizing enzymes for cancer immunotherapy. Front Immunol 2024; 15:1440269. [PMID: 39211039 PMCID: PMC11359565 DOI: 10.3389/fimmu.2024.1440269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Despite the immune system's role in the detection and eradication of abnormal cells, cancer cells often evade elimination by exploitation of various immune escape mechanisms. Among these mechanisms is the ability of cancer cells to upregulate amino acid-metabolizing enzymes, or to induce these enzymes in tumor-infiltrating immunosuppressive cells. Amino acids are fundamental cellular nutrients required for a variety of physiological processes, and their inadequacy can severely impact immune cell function. Amino acid-derived metabolites can additionally dampen the anti-tumor immune response by means of their immunosuppressive activities, whilst some can also promote tumor growth directly. Based on their evident role in tumor immune escape, the amino acid-metabolizing enzymes glutaminase 1 (GLS1), arginase 1 (ARG1), inducible nitric oxide synthase (iNOS), indoleamine 2,3-dioxygenase 1 (IDO1), tryptophan 2,3-dioxygenase (TDO) and interleukin 4 induced 1 (IL4I1) each serve as a promising target for immunotherapeutic intervention. This review summarizes and discusses the involvement of these enzymes in cancer, their effect on the anti-tumor immune response and the recent progress made in the preclinical and clinical evaluation of inhibitors targeting these enzymes.
Collapse
|
16
|
Cai Y, Li D, Lv D, Yu J, Ma Y, Jiang T, Ding N, Liu Z, Li Y, Xu J. MHC-I-presented non-canonical antigens expand the cancer immunotherapy targets in acute myeloid leukemia. Sci Data 2024; 11:831. [PMID: 39090129 PMCID: PMC11294462 DOI: 10.1038/s41597-024-03660-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024] Open
Abstract
Identification of tumor neoantigens is indispensable for the development of cancer immunotherapies. However, we are still lacking knowledge about the potential neoantigens derived from sequences outside protein-coding regions. Here, we comprehensively characterized the immunopeptidome landscape by integrating multi-omics data in acute myeloid leukemia (AML). Both canonical and non-canonical MHC-associated peptides (MAPs) in AML were identified. We found that the quality and characteristics of ncMAPs are comparable or superior to cMAPs, suggesting ncMAPs are indispensable sources for tumor neoantigens. We further proposed a computational framework to prioritize the neoantigens by integrating additional transcriptome and immunopeptidome in normal tissues. Notably, 6 of prioritized 13 neoantigens were derived from ncMAPs. The expressions of corresponding source genes are highly related to infiltrations of immune cells. Finally, a risk model was developed, which exhibited good performance for clinical prognosis in AML. Our findings expand potential cancer immunotherapy targets and provide in-depth insights into AML treatment, laying a new foundation for precision therapies in AML.
Collapse
Affiliation(s)
- Yangyang Cai
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
| | - Donghao Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
| | - Dezhong Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
| | - Jiaxin Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
| | - Yingying Ma
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
| | - Tiantongfei Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
| | - Na Ding
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
| | - Zhigang Liu
- Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Guangzhou, China.
| | - Yongsheng Li
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, 150081, China.
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, 150001, China.
| |
Collapse
|
17
|
Wu Y, He H, Zheng K, Qin Z, Cai N, Zuo S, Zhu X. RNA M6A modification shaping cutaneous melanoma tumor microenvironment and predicting immunotherapy response. Pigment Cell Melanoma Res 2024; 37:496-509. [PMID: 38624045 DOI: 10.1111/pcmr.13170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/13/2024] [Accepted: 04/04/2024] [Indexed: 04/17/2024]
Abstract
Recent years have seen rising mortality rates linked to cutaneous melanoma (SKCM), despite advances in immunotherapy. Understanding RNA N6-methyladenosine (M6A) significance in SKCM is crucial for prognosis, tumor microenvironment (TME), immune cell presence, and immunotherapy efficacy. We analyzed 23 M6A regulators using SKCM samples from TCGA and GEO databases, identifying three M6A modification patterns linked to TME cell infiltration. Principal component analysis (PCA) yielded an M6A score for individual tumors, utilizing patient gene expression profiles and CNV data from TCGA. M6A modification patterns play a crucial role in SKCM development and progression, influencing tumor attributes such as inflammatory stage, subtype, TME interstitial activity, and genetic mutations. The M6A score independently predicts patient outcomes and correlates with improved response to immunotherapy, validated across anti-PD-1 and anti-PD-L1 therapy cohorts. M6A modifications significantly impact the TME landscape, with the M6A score serving as a predictive marker for immunotherapy response. Integrating M6A-related information into clinical practice could revolutionize SKCM management and treatment strategies.
Collapse
Affiliation(s)
- Yanhong Wu
- School of Ocean and Tropical Medicine, The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Hongying He
- Liuzhou Key Laboratory of Molecular Diagnosis, Guangxi Health Commission Key Laboratory of Molecular Diagnosis and Application, Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, China
| | - Kairong Zheng
- School of Ocean and Tropical Medicine, The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Zhenxin Qin
- School of Ocean and Tropical Medicine, The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Naikun Cai
- School of Ocean and Tropical Medicine, The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Shuguang Zuo
- Liuzhou Key Laboratory of Molecular Diagnosis, Guangxi Health Commission Key Laboratory of Molecular Diagnosis and Application, Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, China
| | - Xiao Zhu
- School of Ocean and Tropical Medicine, The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
18
|
Bonnet C, Dian AL, Espie-Caullet T, Fabbri L, Lagadec L, Pivron T, Dutertre M, Luco R, Navickas A, Vagner S, Verga D, Uguen P. Post-transcriptional gene regulation: From mechanisms to RNA chemistry and therapeutics. Bull Cancer 2024; 111:782-790. [PMID: 38824069 DOI: 10.1016/j.bulcan.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/22/2024] [Accepted: 04/03/2024] [Indexed: 06/03/2024]
Abstract
A better understanding of the RNA biology and chemistry is necessary to then develop new RNA therapeutic strategies. This review is the synthesis of a series of conferences that took place during the 6th international course on post-transcriptional gene regulation at Institut Curie. This year, the course made a special focus on RNA chemistry.
Collapse
Affiliation(s)
- Clara Bonnet
- CNRS UMR3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Ana Luisa Dian
- CNRS UMR3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Tristan Espie-Caullet
- CNRS UMR3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Lucilla Fabbri
- CNRS UMR3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Lucie Lagadec
- CNRS UMR3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Thibaud Pivron
- CNRS UMR3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Martin Dutertre
- CNRS UMR3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Reini Luco
- CNRS UMR3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Albertas Navickas
- CNRS UMR3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Stephan Vagner
- CNRS UMR3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Daniela Verga
- CNRS UMR9187, Inserm U1196, Chemistry and Modelling for the Biology of Cancer, Institut Curie, université Paris-Saclay, 91405 Orsay, France
| | - Patricia Uguen
- CNRS UMR3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France.
| |
Collapse
|
19
|
Zhou Z, Wang J, Wang J, Yang S, Wang R, Zhang G, Li Z, Shi R, Wang Z, Lu Q. Deciphering the tumor immune microenvironment from a multidimensional omics perspective: insight into next-generation CAR-T cell immunotherapy and beyond. Mol Cancer 2024; 23:131. [PMID: 38918817 PMCID: PMC11201788 DOI: 10.1186/s12943-024-02047-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Tumor immune microenvironment (TIME) consists of intra-tumor immunological components and plays a significant role in tumor initiation, progression, metastasis, and response to therapy. Chimeric antigen receptor (CAR)-T cell immunotherapy has revolutionized the cancer treatment paradigm. Although CAR-T cell immunotherapy has emerged as a successful treatment for hematologic malignancies, it remains a conundrum for solid tumors. The heterogeneity of TIME is responsible for poor outcomes in CAR-T cell immunotherapy against solid tumors. The advancement of highly sophisticated technology enhances our exploration in TIME from a multi-omics perspective. In the era of machine learning, multi-omics studies could reveal the characteristics of TIME and its immune resistance mechanism. Therefore, the clinical efficacy of CAR-T cell immunotherapy in solid tumors could be further improved with strategies that target unfavorable conditions in TIME. Herein, this review seeks to investigate the factors influencing TIME formation and propose strategies for improving the effectiveness of CAR-T cell immunotherapy through a multi-omics perspective, with the ultimate goal of developing personalized therapeutic approaches.
Collapse
Affiliation(s)
- Zhaokai Zhou
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jiahui Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Department of Nephrology, Union Medical College Hospital, Chinese Academy of Medical Sciences, PekingBeijing, 100730, China
| | - Jiaojiao Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Shuai Yang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ruizhi Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ge Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Run Shi
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhan Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Qiong Lu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
20
|
Wakasugi K, Yokosawa T. The high-affinity tryptophan uptake transport system in human cells. Biochem Soc Trans 2024; 52:1149-1158. [PMID: 38813870 PMCID: PMC11346423 DOI: 10.1042/bst20230742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
The L-tryptophan (Trp) transport system is highly selective for Trp with affinity in the nanomolar range. This transport system is augmented in human interferon (IFN)-γ-treated and indoleamine 2,3-dioxygenase 1 (IDO1)-expressing cells. Up-regulated cellular uptake of Trp causes a reduction in extracellular Trp and initiates immune suppression. Recent studies demonstrate that both IDO1 and tryptophanyl-tRNA synthetase (TrpRS), whose expression levels are up-regulated by IFN-γ, play a pivotal role in high-affinity Trp uptake into human cells. Furthermore, overexpression of tryptophan 2,3-dioxygenase (TDO2) elicits a similar effect as IDO1 on TrpRS-mediated high-affinity Trp uptake. In this review, we summarize recent findings regarding this Trp uptake system and put forward a possible molecular mechanism based on Trp deficiency induced by IDO1 or TDO2 and tryptophanyl-AMP production by TrpRS.
Collapse
Affiliation(s)
- Keisuke Wakasugi
- Komaba Organization for Educational Excellence, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takumi Yokosawa
- Komaba Organization for Educational Excellence, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
21
|
Miao Y, Zhong C, Bao S, Wei K, Wang W, Li N, Bai C, Chen W, Tang H. Impaired tryptophan metabolism by type 2 inflammation in epithelium worsening asthma. iScience 2024; 27:109923. [PMID: 38799558 PMCID: PMC11126962 DOI: 10.1016/j.isci.2024.109923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/16/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
Previous researches indicate that tryptophan metabolism is critical to allergic inflammation and that indoleamine 2,3-dioxygenase 1 (IDO1), as a key enzyme, is known for its immunosuppressive properties. Therefore, we are aimed to explore whether tryptophan metabolism, especially IDO1, influences allergic asthma and clarify specific mechanism. With the analysis of clinical data, exploration in cell experiments, and verifying in HDM-induced asthma mice models, we finally found that in allergic asthma, low level of T1 cytokines along with high level of T2 cytokines inhibited the expression of IDO1 in airway epithelium, hampering the kynurenine pathway in tryptophan metabolism and decreasing the level of intracellular kynurenine (Kyn). As an endogenous ligand of aryl hydrocarbon receptor, Kyn regulated the expression of cystathionine-γ-lyase (CTH). Notably, in asthma models, enhancing either IDO1 or H2S relieved asthma, while inhibiting the activity of CTH exacerbated it. IDO1-Kyn-CTH pathway could be a potential target for treatment for allergic asthma.
Collapse
Affiliation(s)
- Yushan Miao
- Department of Respiratory and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Caiming Zhong
- Department of Respiratory and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Shujun Bao
- Department of Respiratory and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Kunchen Wei
- Department of Respiratory and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Wei Wang
- Department of Respiratory and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Na Li
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Chong Bai
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Wei Chen
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Hao Tang
- Department of Respiratory and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| |
Collapse
|
22
|
Wernaart D, Fumagalli A, Agami R. Molecular mechanisms of non-genetic aberrant peptide production in cancer. Oncogene 2024; 43:2053-2062. [PMID: 38802646 DOI: 10.1038/s41388-024-03069-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
The cancer peptidome has long been known to be altered by genetic mutations. However, more recently, non-genetic polypeptide mutations have also been related to cancer cells. These non-genetic mutations occur post-t30ranscriptionally, leading to the modification of the peptide primary structure, while the corresponding genes remain unchanged. Three main processes participate in the production of these aberrant proteins: mRNA alternative splicing, mRNA editing, and mRNA aberrant translation. In this review, we summarize the molecular mechanisms underlying these processes and the recent findings on the functions of the aberrant proteins, as well as their exploitability as new therapeutic targets due to their specific enrichment in cancer cells. These non-genetic aberrant polypeptides represent a source of novel cancer cell targets independent from their level of mutational burden, still to be exhaustively explored.
Collapse
Affiliation(s)
- Demi Wernaart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Amos Fumagalli
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Reuven Agami
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Erasmus MC, Department of Genetics, Rotterdam University, Rotterdam, The Netherlands.
| |
Collapse
|
23
|
Miliotis C, Ma Y, Katopodi XL, Karagkouni D, Kanata E, Mattioli K, Kalavros N, Pita-Juárez YH, Batalini F, Ramnarine VR, Nanda S, Slack FJ, Vlachos IS. Determinants of gastric cancer immune escape identified from non-coding immune-landscape quantitative trait loci. Nat Commun 2024; 15:4319. [PMID: 38773080 PMCID: PMC11109163 DOI: 10.1038/s41467-024-48436-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/01/2024] [Indexed: 05/23/2024] Open
Abstract
The landscape of non-coding mutations in cancer progression and immune evasion is largely unexplored. Here, we identify transcrptome-wide somatic and germline 3' untranslated region (3'-UTR) variants from 375 gastric cancer patients from The Cancer Genome Atlas. By performing gene expression quantitative trait loci (eQTL) and immune landscape QTL (ilQTL) analysis, we discover 3'-UTR variants with cis effects on expression and immune landscape phenotypes, such as immune cell infiltration and T cell receptor diversity. Using a massively parallel reporter assay, we distinguish between causal and correlative effects of 3'-UTR eQTLs in immune-related genes. Our approach identifies numerous 3'-UTR eQTLs and ilQTLs, providing a unique resource for the identification of immunotherapeutic targets and biomarkers. A prioritized ilQTL variant signature predicts response to immunotherapy better than standard-of-care PD-L1 expression in independent patient cohorts, showcasing the untapped potential of non-coding mutations in cancer.
Collapse
Affiliation(s)
- Christos Miliotis
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Harvard Program in Virology, Harvard University Graduate School of Arts and Sciences, Boston, MA, USA
| | - Yuling Ma
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xanthi-Lida Katopodi
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Dimitra Karagkouni
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cancer Center & Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Eleni Kanata
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kaia Mattioli
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Nikolas Kalavros
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Spatial Technologies Unit, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Yered H Pita-Juárez
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Felipe Batalini
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Division of Oncology, Department of Medicine, Mayo Clinic, Phoenix, AZ, USA
| | - Varune R Ramnarine
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shivani Nanda
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cancer Center & Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Frank J Slack
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Cancer Center & Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Ioannis S Vlachos
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Cancer Center & Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Spatial Technologies Unit, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
24
|
Boon NJ, Oliveira RA, Körner PR, Kochavi A, Mertens S, Malka Y, Voogd R, van der Horst SEM, Huismans MA, Smabers LP, Draper JM, Wessels LFA, Haahr P, Roodhart JML, Schumacher TNM, Snippert HJ, Agami R, Brummelkamp TR. DNA damage induces p53-independent apoptosis through ribosome stalling. Science 2024; 384:785-792. [PMID: 38753784 DOI: 10.1126/science.adh7950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/11/2024] [Indexed: 05/18/2024]
Abstract
In response to excessive DNA damage, human cells can activate p53 to induce apoptosis. Cells lacking p53 can still undergo apoptosis upon DNA damage, yet the responsible pathways are unknown. We observed that p53-independent apoptosis in response to DNA damage coincided with translation inhibition, which was characterized by ribosome stalling on rare leucine-encoding UUA codons and globally curtailed translation initiation. A genetic screen identified the transfer RNAse SLFN11 and the kinase GCN2 as factors required for UUA stalling and global translation inhibition, respectively. Stalled ribosomes activated a ribotoxic stress signal conveyed by the ribosome sensor ZAKα to the apoptosis machinery. These results provide an explanation for the frequent inactivation of SLFN11 in chemotherapy-unresponsive tumors and highlight ribosome stalling as a signaling event affecting cell fate in response to DNA damage.
Collapse
Affiliation(s)
- Nicolaas J Boon
- Oncode Institute, Utrecht, Netherlands
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Rafaela A Oliveira
- Oncode Institute, Utrecht, Netherlands
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Pierré-René Körner
- Oncode Institute, Utrecht, Netherlands
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Adva Kochavi
- Oncode Institute, Utrecht, Netherlands
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Sander Mertens
- Oncode Institute, Utrecht, Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Yuval Malka
- Oncode Institute, Utrecht, Netherlands
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Rhianne Voogd
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Suzanne E M van der Horst
- Oncode Institute, Utrecht, Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Maarten A Huismans
- Oncode Institute, Utrecht, Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Lidwien P Smabers
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jonne M Draper
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Lodewyk F A Wessels
- Oncode Institute, Utrecht, Netherlands
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Peter Haahr
- Oncode Institute, Utrecht, Netherlands
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
- Center for Gene Expression, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jeanine M L Roodhart
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Ton N M Schumacher
- Oncode Institute, Utrecht, Netherlands
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Hugo J Snippert
- Oncode Institute, Utrecht, Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Reuven Agami
- Oncode Institute, Utrecht, Netherlands
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Thijn R Brummelkamp
- Oncode Institute, Utrecht, Netherlands
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
25
|
Yang C, Pataskar A, Feng X, Montenegro Navarro J, Paniagua I, Jacobs JJL, Zaal EA, Berkers CR, Bleijerveld OB, Agami R. Arginine deprivation enriches lung cancer proteomes with cysteine by inducing arginine-to-cysteine substitutants. Mol Cell 2024; 84:1904-1916.e7. [PMID: 38759626 PMCID: PMC11129317 DOI: 10.1016/j.molcel.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/30/2024] [Accepted: 04/18/2024] [Indexed: 05/19/2024]
Abstract
Many types of human cancers suppress the expression of argininosuccinate synthase 1 (ASS1), a rate-limiting enzyme for arginine production. Although dependency on exogenous arginine can be harnessed by arginine-deprivation therapies, the impact of ASS1 suppression on the quality of the tumor proteome is unknown. We therefore interrogated proteomes of cancer patients for arginine codon reassignments (substitutants) and surprisingly identified a strong enrichment for cysteine (R>C) in lung tumors specifically. Most R>C events did not coincide with genetically encoded R>C mutations but were likely products of tRNA misalignments. The expression of R>C substitutants was highly associated with oncogenic kelch-like epichlorohydrin (ECH)-associated protein 1 (KEAP1)-pathway mutations and suppressed by intact-KEAP1 in KEAP1-mutated cancer cells. Finally, functional interrogation indicated a key role for R>C substitutants in cell survival to cisplatin, suggesting that regulatory codon reassignments endow cancer cells with more resilience to stress. Thus, we present a mechanism for enriching lung cancer proteomes with cysteines that may affect therapeutic decisions.
Collapse
Affiliation(s)
- Chao Yang
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Abhijeet Pataskar
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Xiaodong Feng
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jasmine Montenegro Navarro
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Inés Paniagua
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jacqueline J L Jacobs
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Esther A Zaal
- Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Celia R Berkers
- Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Onno B Bleijerveld
- NKI Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Reuven Agami
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Erasmus MC, Department of Genetics, Rotterdam University, Rotterdam, the Netherlands.
| |
Collapse
|
26
|
Rubio-Casillas A, Cowley D, Raszek M, Uversky VN, Redwan EM. Review: N1-methyl-pseudouridine (m1Ψ): Friend or foe of cancer? Int J Biol Macromol 2024; 267:131427. [PMID: 38583833 DOI: 10.1016/j.ijbiomac.2024.131427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/09/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Due to the health emergency created by SARS-CoV-2, the virus that causes the COVID-19 disease, the rapid implementation of a new vaccine technology was necessary. mRNA vaccines, being one of the cutting-edge new technologies, attracted significant interest and offered a lot of hope. The potential of these vaccines in preventing admission to hospitals and serious illness in people with comorbidities has recently been called into question due to the vaccines' rapidly waning immunity. Mounting evidence indicates that these vaccines, like many others, do not generate sterilizing immunity, leaving people vulnerable to recurrent infections. Additionally, it has been discovered that the mRNA vaccines inhibit essential immunological pathways, thus impairing early interferon signaling. Within the framework of COVID-19 vaccination, this inhibition ensures an appropriate spike protein synthesis and a reduced immune activation. Evidence is provided that adding 100 % of N1-methyl-pseudouridine (m1Ψ) to the mRNA vaccine in a melanoma model stimulated cancer growth and metastasis, while non-modified mRNA vaccines induced opposite results, thus suggesting that COVID-19 mRNA vaccines could aid cancer development. Based on this compelling evidence, we suggest that future clinical trials for cancers or infectious diseases should not use mRNA vaccines with a 100 % m1Ψ modification, but rather ones with the lower percentage of m1Ψ modification to avoid immune suppression.
Collapse
Affiliation(s)
- Alberto Rubio-Casillas
- Autlan Regional Hospital, Health Secretariat, Autlan 48900, Jalisco, Mexico; Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan 48900, Jalisco, Mexico.
| | - David Cowley
- University of Lincoln, Brayford Pool, Lincoln, Lincolnshire LN6 7TS, United Kingdom
| | - Mikolaj Raszek
- Merogenomics (Genomic Sequencing Consulting), Edmonton, AB T5J 3R8, Canada
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia.
| | - Elrashdy M Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria 21934, Egypt.
| |
Collapse
|
27
|
Emilius L, Bremm F, Binder AK, Schaft N, Dörrie J. Tumor Antigens beyond the Human Exome. Int J Mol Sci 2024; 25:4673. [PMID: 38731892 PMCID: PMC11083240 DOI: 10.3390/ijms25094673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
With the advent of immunotherapeutics, a new era in the combat against cancer has begun. Particularly promising are neo-epitope-targeted therapies as the expression of neo-antigens is tumor-specific. In turn, this allows the selective targeting and killing of cancer cells whilst healthy cells remain largely unaffected. So far, many advances have been made in the development of treatment options which are tailored to the individual neo-epitope repertoire. The next big step is the achievement of efficacious "off-the-shelf" immunotherapies. For this, shared neo-epitopes propose an optimal target. Given the tremendous potential, a thorough understanding of the underlying mechanisms which lead to the formation of neo-antigens is of fundamental importance. Here, we review the various processes which result in the formation of neo-epitopes. Broadly, the origin of neo-epitopes can be categorized into three groups: canonical, noncanonical, and viral neo-epitopes. For the canonical neo-antigens that arise in direct consequence of somatic mutations, we summarize past and recent findings. Beyond that, our main focus is put on the discussion of noncanonical and viral neo-epitopes as we believe that targeting those provides an encouraging perspective to shape the future of cancer immunotherapeutics.
Collapse
Affiliation(s)
- Lisabeth Emilius
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Franziska Bremm
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Amanda Katharina Binder
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| |
Collapse
|
28
|
Minegishi Y, Haga Y, Ueda K. Emerging potential of immunopeptidomics by mass spectrometry in cancer immunotherapy. Cancer Sci 2024; 115:1048-1059. [PMID: 38382459 PMCID: PMC11007014 DOI: 10.1111/cas.16118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
With significant advances in analytical technologies, research in the field of cancer immunotherapy, such as adoptive T cell therapy, cancer vaccine, and immune checkpoint blockade (ICB), is currently gaining tremendous momentum. Since the efficacy of cancer immunotherapy is recognized only by a minority of patients, more potent tumor-specific antigens (TSAs, also known as neoantigens) and predictive markers for treatment response are of great interest. In cancer immunity, immunopeptides, presented by human leukocyte antigen (HLA) class I, play a role as initiating mediators of immunogenicity. The latest advancement in the interdisciplinary multiomics approach has rapidly enlightened us about the identity of the "dark matter" of cancer and the associated immunopeptides. In this field, mass spectrometry (MS) is a viable option to select because of the naturally processed and actually presented TSA candidates in order to grasp the whole picture of the immunopeptidome. In the past few years the search space has been enlarged by the multiomics approach, the sensitivity of mass spectrometers has been improved, and deep/machine-learning-supported peptide search algorithms have taken immunopeptidomics to the next level. In this review, along with the introduction of key technical advancements in immunopeptidomics, the potential and further directions of immunopeptidomics will be reviewed from the perspective of cancer immunotherapy.
Collapse
Affiliation(s)
- Yuriko Minegishi
- Cancer Proteomics Group, Cancer Precision Medicine CenterJapanese Foundation for Cancer ResearchTokyoJapan
| | - Yoshimi Haga
- Cancer Proteomics Group, Cancer Precision Medicine CenterJapanese Foundation for Cancer ResearchTokyoJapan
| | - Koji Ueda
- Cancer Proteomics Group, Cancer Precision Medicine CenterJapanese Foundation for Cancer ResearchTokyoJapan
| |
Collapse
|
29
|
Zeng Z, Du W, Yang F, Hui Z, Wang Y, Zhang P, Zhang X, Yu W, Ren X, Wei F. The spatial landscape of T cells in the microenvironment of stage III lung adenocarcinoma. J Pathol 2024; 262:517-528. [PMID: 38361487 DOI: 10.1002/path.6254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 02/17/2024]
Abstract
This study aimed to provide more information for prognostic stratification for patients through an analysis of the T-cell spatial landscape. It involved analyzing stained tissue sections of 80 patients with stage III lung adenocarcinoma (LUAD) using multiplex immunofluorescence and exploring the spatial landscape of T cells and their relationship with prognosis in the center of the tumor (CT) and invasive margin (IM). In this study, multivariate regression suggested that the relative clustering of CT CD4+ conventional T cell (Tconv) to inducible Treg (iTreg), natural regulatory T cell (nTreg) to Tconv, terminal CD8+ T cell (tCD8) to helper T cell (Th), and IM Treg to tCD8 and the relative dispersion of CT nTreg to iTreg, IM nTreg to nTreg were independent risk factors for DFS. Finally, we constructed a spatial immunological score named the GT score, which had stronger prognostic correlation than IMMUNOSCORE® based on CD3/CD8 cell densities. The spatial layout of T cells in the tumor microenvironment and the proposed GT score can reflect the prognosis of patients with stage III LUAD more effectively than T-cell density. The exploration of the T-cell spatial landscape may suggest potential cell-cell interactions and therapeutic targets and better guide clinical decision-making. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Ziqing Zeng
- Department of Nuclear Medicine, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, PR China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, PR China
- National Clinical Research Center for Cancer, Tianjin, PR China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
- Tianjin's Clinical Research Center for Cancer, Tianjin, PR China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, PR China
| | - Weijiao Du
- National Clinical Research Center for Cancer, Tianjin, PR China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
- Tianjin's Clinical Research Center for Cancer, Tianjin, PR China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, PR China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, PR China
| | - Fan Yang
- National Clinical Research Center for Cancer, Tianjin, PR China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
- Tianjin's Clinical Research Center for Cancer, Tianjin, PR China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, PR China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, PR China
| | - Zhenzhen Hui
- National Clinical Research Center for Cancer, Tianjin, PR China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
- Tianjin's Clinical Research Center for Cancer, Tianjin, PR China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, PR China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, PR China
| | - Yunliang Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, PR China
- National Clinical Research Center for Cancer, Tianjin, PR China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
- Tianjin's Clinical Research Center for Cancer, Tianjin, PR China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, PR China
- Department of Oncology, First Central Hospital of Baoding of Hebei Province, Baoding, PR China
| | - Peng Zhang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, PR China
- National Clinical Research Center for Cancer, Tianjin, PR China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
- Tianjin's Clinical Research Center for Cancer, Tianjin, PR China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, PR China
| | - Xiying Zhang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, PR China
- National Clinical Research Center for Cancer, Tianjin, PR China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
- Tianjin's Clinical Research Center for Cancer, Tianjin, PR China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, PR China
| | - Wenwen Yu
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, PR China
- National Clinical Research Center for Cancer, Tianjin, PR China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
- Tianjin's Clinical Research Center for Cancer, Tianjin, PR China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, PR China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, PR China
- National Clinical Research Center for Cancer, Tianjin, PR China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
- Tianjin's Clinical Research Center for Cancer, Tianjin, PR China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, PR China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, PR China
- Haihe Laboratory of Cell Ecosystem, Tianjin, PR China
| | - Feng Wei
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, PR China
- National Clinical Research Center for Cancer, Tianjin, PR China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
- Tianjin's Clinical Research Center for Cancer, Tianjin, PR China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, PR China
- Haihe Laboratory of Cell Ecosystem, Tianjin, PR China
| |
Collapse
|
30
|
Ren G, Gu X, Zhang L, Gong S, Song S, Chen S, Chen Z, Wang X, Li Z, Zhou Y, Li L, Yang J, Lai F, Dang Y. Ribosomal frameshifting at normal codon repeats recodes functional chimeric proteins in human. Nucleic Acids Res 2024; 52:2463-2479. [PMID: 38281188 PMCID: PMC10954444 DOI: 10.1093/nar/gkae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/30/2024] Open
Abstract
Ribosomal frameshifting refers to the process that ribosomes slip into +1 or -1 reading frame, thus produce chimeric trans-frame proteins. In viruses and bacteria, programmed ribosomal frameshifting can produce essential trans-frame proteins for viral replication or regulation of other biological processes. In humans, however, functional trans-frame protein derived from ribosomal frameshifting is scarcely documented. Combining multiple assays, we show that short codon repeats could act as cis-acting elements that stimulate ribosomal frameshifting in humans, abbreviated as CRFS hereafter. Using proteomic analyses, we identified many putative CRFS events from 32 normal human tissues supported by trans-frame peptides positioned at codon repeats. Finally, we show a CRFS-derived trans-frame protein (HDAC1-FS) functions by antagonizing the activities of HDAC1, thus affecting cell migration and apoptosis. These data suggest a novel type of translational recoding associated with codon repeats, which may expand the coding capacity of mRNA and diversify the regulation in human.
Collapse
Affiliation(s)
- Guiping Ren
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Xiaoqian Gu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Lu Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Shimin Gong
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Shuang Song
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Shunkai Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Zhenjing Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Xiaoyan Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Zhanbiao Li
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Yingshui Zhou
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Longxi Li
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Jiao Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Fan Lai
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Yunkun Dang
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| |
Collapse
|
31
|
Mao Y, Qian SB. Making sense of mRNA translational "noise". Semin Cell Dev Biol 2024; 154:114-122. [PMID: 36925447 PMCID: PMC10500040 DOI: 10.1016/j.semcdb.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023]
Abstract
The importance of translation fidelity has been apparent since the discovery of genetic code. It is commonly believed that translation deviating from the main coding region is to be avoided at all times inside cells. However, ribosome profiling and mass spectrometry have revealed pervasive noncanonical translation. Both the scope and origin of translational "noise" are just beginning to be appreciated. Although largely overlooked, those translational "noises" are associated with a wide range of cellular functions, such as producing unannotated protein products. Furthermore, the dynamic nature of translational "noise" is responsive to stress conditions, highlighting the beneficial effect of translational "noise" in stress adaptation. Mechanistic investigation of translational "noise" will provide better insight into the mechanisms of translational regulation. Ultimately, they are not "noise" at all but represent a signature of cellular activities under pathophysiological conditions. Deciphering translational "noise" holds the therapeutic and diagnostic potential in a wide spectrum of human diseases.
Collapse
Affiliation(s)
- Yuanhui Mao
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
32
|
Su D, Ding C, Qiu J, Yang G, Wang R, Liu Y, Tao J, Luo W, Weng G, Zhang T. Ribosome profiling: a powerful tool in oncological research. Biomark Res 2024; 12:11. [PMID: 38273337 PMCID: PMC10809610 DOI: 10.1186/s40364-024-00562-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
Neoplastic cells need to adapt their gene expression pattern to survive in an ever-changing or unfavorable tumor microenvironment. Protein synthesis (or mRNA translation), an essential part of gene expression, is dysregulated in cancer. The emergence of distinct translatomic technologies has revolutionized oncological studies to elucidate translational regulatory mechanisms. Ribosome profiling can provide adequate information on diverse aspects of translation by aiding in quantitatively analyzing the intensity of translating ribosome-protected fragments. Here, we review the primary currently used translatomics techniques and highlight their advantages and disadvantages as tools for translatomics studies. Subsequently, we clarified the areas in which ribosome profiling could be applied to better understand translational control. Finally, we summarized the latest advances in cancer studies using ribosome profiling to highlight the extensive application of this powerful and promising translatomic tool.
Collapse
Affiliation(s)
- Dan Su
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R. China
| | - Chen Ding
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R. China
| | - Jiangdong Qiu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R. China
| | - Gang Yang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R. China
| | - Ruobing Wang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R. China
| | - Yueze Liu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R. China
| | - Jinxin Tao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R. China
| | - Wenhao Luo
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R. China
| | - Guihu Weng
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China
| | - Taiping Zhang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China.
| |
Collapse
|
33
|
Mulroney TE, Pöyry T, Yam-Puc JC, Rust M, Harvey RF, Kalmar L, Horner E, Booth L, Ferreira AP, Stoneley M, Sawarkar R, Mentzer AJ, Lilley KS, Smales CM, von der Haar T, Turtle L, Dunachie S, Klenerman P, Thaventhiran JED, Willis AE. N 1-methylpseudouridylation of mRNA causes +1 ribosomal frameshifting. Nature 2024; 625:189-194. [PMID: 38057663 PMCID: PMC10764286 DOI: 10.1038/s41586-023-06800-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 10/31/2023] [Indexed: 12/08/2023]
Abstract
In vitro-transcribed (IVT) mRNAs are modalities that can combat human disease, exemplified by their use as vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). IVT mRNAs are transfected into target cells, where they are translated into recombinant protein, and the biological activity or immunogenicity of the encoded protein exerts an intended therapeutic effect1,2. Modified ribonucleotides are commonly incorporated into therapeutic IVT mRNAs to decrease their innate immunogenicity3-5, but their effects on mRNA translation fidelity have not been fully explored. Here we demonstrate that incorporation of N1-methylpseudouridine into mRNA results in +1 ribosomal frameshifting in vitro and that cellular immunity in mice and humans to +1 frameshifted products from BNT162b2 vaccine mRNA translation occurs after vaccination. The +1 ribosome frameshifting observed is probably a consequence of N1-methylpseudouridine-induced ribosome stalling during IVT mRNA translation, with frameshifting occurring at ribosome slippery sequences. However, we demonstrate that synonymous targeting of such slippery sequences provides an effective strategy to reduce the production of frameshifted products. Overall, these data increase our understanding of how modified ribonucleotides affect the fidelity of mRNA translation, and although there are no adverse outcomes reported from mistranslation of mRNA-based SARS-CoV-2 vaccines in humans, these data highlight potential off-target effects for future mRNA-based therapeutics and demonstrate the requirement for sequence optimization.
Collapse
Affiliation(s)
| | - Tuija Pöyry
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | | | - Maria Rust
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | | | - Lajos Kalmar
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Emily Horner
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Lucy Booth
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | | | - Mark Stoneley
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | | | | | - Kathryn S Lilley
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - C Mark Smales
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, UK
- National Institute for Bioprocessing Research and Training, University College Dublin, Foster Avenue, Mount Merrion, Dublin, Ireland
| | - Tobias von der Haar
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, UK
| | - Lance Turtle
- NIHR Health Protection Research Unit for Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Susanna Dunachie
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NDM Centre for Global Health Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Paul Klenerman
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Anne E Willis
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
34
|
Dallmann J, Freitag J, Jung C, Khinvasara K, Merz L, Peters D, Schork M, Beck J. CIMT 2023: report on the 20th Annual Meeting of the Association for Cancer Immunotherapy. IMMUNO-ONCOLOGY TECHNOLOGY 2023; 20:100397. [PMID: 37876518 PMCID: PMC10590812 DOI: 10.1016/j.iotech.2023.100397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
The Association for Cancer Immunotherapy (CIMT) celebrated the 20th anniversary of the CIMT Annual Meeting. CIMT2023 was held 3-5 May 2023 in Mainz, Germany. 1051 academic and clinical professionals from over 30 countries attended the meeting and discussed the latest advances in cancer immunology and immunotherapy research. This report summarizes the highlights of CIMT2023.
Collapse
Affiliation(s)
- J. Dallmann
- Immunotherapies & Preclinical Research, BioNTech SE, Mainz
| | - J. Freitag
- TRON-Translational Oncology, University Medical Center of the Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - C. Jung
- BioNTech Cell & Gene Therapies GmbH, Mainz
| | - K. Khinvasara
- TRON-Translational Oncology, University Medical Center of the Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - L. Merz
- TRON-Translational Oncology, University Medical Center of the Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - D. Peters
- Immunotherapies & Preclinical Research, BioNTech SE, Mainz
| | - M. Schork
- TRON-Translational Oncology, University Medical Center of the Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - J.D. Beck
- Immunotherapies & Preclinical Research, BioNTech SE, Mainz
| |
Collapse
|
35
|
Meng W, Schreiber RD, Lichti CF. Recent advances in immunopeptidomic-based tumor neoantigen discovery. Adv Immunol 2023; 160:1-36. [PMID: 38042584 DOI: 10.1016/bs.ai.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
Abstract
The role of aberrantly expressed proteins in tumors in driving immune-mediated control of cancer has been well documented for more than five decades. Today, we know that both aberrantly expressed normal proteins as well as mutant proteins (neoantigens) can function as tumor antigens in both humans and mice. Next-generation sequencing (NGS) and high-resolution mass spectrometry (MS) technologies have made significant advances since the early 2010s, enabling detection of rare but clinically relevant neoantigens recognized by T cells. MS profiling of tumor-specific immunopeptidomes remains the most direct method to identify mutant peptides bound to cellular MHC. However, the need for use of large numbers of cells or significant amounts of tumor tissue to achieve neoantigen detection has historically limited the application of MS. Newer, more sensitive MS technologies have recently demonstrated the capacities to detect neoantigens from fewer cells. Here, we highlight recent advancements in immunopeptidomics-based characterization of tumor-specific neoantigens. Various tumor antigen categories and neoantigen identification approaches are also discussed. Furthermore, we summarize recent reports that achieved successful tumor neoantigen detection by MS using a variety of starting materials, MS acquisition modes, and novel ion mobility devices.
Collapse
Affiliation(s)
- Wei Meng
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, United States
| | - Robert D Schreiber
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, United States.
| | - Cheryl F Lichti
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, United States.
| |
Collapse
|
36
|
Yokosawa T, Wakasugi K. Tryptophan-Starved Human Cells Overexpressing Tryptophanyl-tRNA Synthetase Enhance High-Affinity Tryptophan Uptake via Enzymatic Production of Tryptophanyl-AMP. Int J Mol Sci 2023; 24:15453. [PMID: 37895133 PMCID: PMC10607379 DOI: 10.3390/ijms242015453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
Our previous study demonstrated that L-tryptophan (Trp)-depleted cells display a marked enhancement in Trp uptake facilitated by extracellular tryptophanyl-tRNA synthetase (TrpRS). Here, we show that Trp uptake into TrpRS-overexpressing cells is also markedly elevated upon Trp starvation. These findings indicate that a Trp-deficient condition is critical for Trp uptake, not only into cells to which TrpRS protein has been added but also into TrpRS-overexpressing cells. We also show that overexpression of TrpRS mutants, which cannot synthesize tryptophanyl-AMP, does not promote Trp uptake, and that inhibition of tryptophanyl-AMP synthesis suppresses this uptake. Overall, these data suggest that tryptophanyl-AMP production by TrpRS is critical for high-affinity Trp uptake.
Collapse
Affiliation(s)
- Takumi Yokosawa
- Komaba Organization for Educational Excellence, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Keisuke Wakasugi
- Komaba Organization for Educational Excellence, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
37
|
Zhang B, Bassani-Sternberg M. Current perspectives on mass spectrometry-based immunopeptidomics: the computational angle to tumor antigen discovery. J Immunother Cancer 2023; 11:e007073. [PMID: 37899131 PMCID: PMC10619091 DOI: 10.1136/jitc-2023-007073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2023] [Indexed: 10/31/2023] Open
Abstract
Identification of tumor antigens presented by the human leucocyte antigen (HLA) molecules is essential for the design of effective and safe cancer immunotherapies that rely on T cell recognition and killing of tumor cells. Mass spectrometry (MS)-based immunopeptidomics enables high-throughput, direct identification of HLA-bound peptides from a variety of cell lines, tumor tissues, and healthy tissues. It involves immunoaffinity purification of HLA complexes followed by MS profiling of the extracted peptides using data-dependent acquisition, data-independent acquisition, or targeted approaches. By incorporating DNA, RNA, and ribosome sequencing data into immunopeptidomics data analysis, the proteogenomic approach provides a powerful means for identifying tumor antigens encoded within the canonical open reading frames of annotated coding genes and non-canonical tumor antigens derived from presumably non-coding regions of our genome. We discuss emerging computational challenges in immunopeptidomics data analysis and tumor antigen identification, highlighting key considerations in the proteogenomics-based approach, including accurate DNA, RNA and ribosomal sequencing data analysis, careful incorporation of predicted novel protein sequences into reference protein database, special quality control in MS data analysis due to the expanded and heterogeneous search space, cancer-specificity determination, and immunogenicity prediction. The advancements in technology and computation is continually enabling us to identify tumor antigens with higher sensitivity and accuracy, paving the way toward the development of more effective cancer immunotherapies.
Collapse
Affiliation(s)
- Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
| |
Collapse
|
38
|
Jin X, Zhou YF, Ma D, Zhao S, Lin CJ, Xiao Y, Fu T, Liu CL, Chen YY, Xiao WX, Liu YQ, Chen QW, Yu Y, Shi LM, Shi JX, Huang W, Robertson JFR, Jiang YZ, Shao ZM. Molecular classification of hormone receptor-positive HER2-negative breast cancer. Nat Genet 2023; 55:1696-1708. [PMID: 37770634 DOI: 10.1038/s41588-023-01507-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/21/2023] [Indexed: 09/30/2023]
Abstract
Hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2-) breast cancer is the most prevalent type of breast cancer, in which endocrine therapy resistance and distant relapse remain unmet challenges. Accurate molecular classification is urgently required for guiding precision treatment. We established a large-scale multi-omics cohort of 579 patients with HR+/HER2- breast cancer and identified the following four molecular subtypes: canonical luminal, immunogenic, proliferative and receptor tyrosine kinase (RTK)-driven. Tumors of these four subtypes showed distinct biological and clinical features, suggesting subtype-specific therapeutic strategies. The RTK-driven subtype was characterized by the activation of the RTK pathways and associated with poor outcomes. The immunogenic subtype had enriched immune cells and could benefit from immune checkpoint therapy. In addition, we developed convolutional neural network models to discriminate these subtypes based on digital pathology for potential clinical translation. The molecular classification provides insights into molecular heterogeneity and highlights the potential for precision treatment of HR+/HER2- breast cancer.
Collapse
Affiliation(s)
- Xi Jin
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yi-Fan Zhou
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ding Ma
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Shen Zhao
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Cai-Jin Lin
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yi Xiao
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Tong Fu
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Cheng-Lin Liu
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yi-Yu Chen
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Wen-Xuan Xiao
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ya-Qing Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Qing-Wang Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Ying Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Le-Ming Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
- International Human Phenome Institutes (Shanghai), Shanghai, China
| | - Jin-Xiu Shi
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai, China
| | - Wei Huang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai, China
| | | | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
| |
Collapse
|
39
|
Tang L, Huang Z, Mei H, Hu Y. Immunotherapy in hematologic malignancies: achievements, challenges and future prospects. Signal Transduct Target Ther 2023; 8:306. [PMID: 37591844 PMCID: PMC10435569 DOI: 10.1038/s41392-023-01521-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 08/19/2023] Open
Abstract
The immune-cell origin of hematologic malignancies provides a unique avenue for the understanding of both the mechanisms of immune responsiveness and immune escape, which has accelerated the progress of immunotherapy. Several categories of immunotherapies have been developed and are being further evaluated in clinical trials for the treatment of blood cancers, including stem cell transplantation, immune checkpoint inhibitors, antigen-targeted antibodies, antibody-drug conjugates, tumor vaccines, and adoptive cell therapies. These immunotherapies have shown the potential to induce long-term remission in refractory or relapsed patients and have led to a paradigm shift in cancer treatment with great clinical success. Different immunotherapeutic approaches have their advantages but also shortcomings that need to be addressed. To provide clinicians with timely information on these revolutionary therapeutic approaches, the comprehensive review provides historical perspectives on the applications and clinical considerations of the immunotherapy. Here, we first outline the recent advances that have been made in the understanding of the various categories of immunotherapies in the treatment of hematologic malignancies. We further discuss the specific mechanisms of action, summarize the clinical trials and outcomes of immunotherapies in hematologic malignancies, as well as the adverse effects and toxicity management and then provide novel insights into challenges and future directions.
Collapse
Affiliation(s)
- Lu Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, 430022, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 430022, Wuhan, China
| | - Zhongpei Huang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, 430022, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 430022, Wuhan, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, 430022, Wuhan, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 430022, Wuhan, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, 430022, Wuhan, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 430022, Wuhan, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| |
Collapse
|
40
|
Holly J, Yewdell JW. Game of Omes: ribosome profiling expands the MHC-I immunopeptidome. Curr Opin Immunol 2023; 83:102342. [PMID: 37247567 PMCID: PMC10524008 DOI: 10.1016/j.coi.2023.102342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023]
Abstract
Peptide ligands presented by cell-surface MHC class-I molecules enable T cells to eradicate intracellular pathogens and cancers. The presented peptide repertoire, the class-I immunopeptidome, is generated from each cell's translatome in a highly biased manner to avoid overrepresenting highly abundant translation products. The immunopeptidome can only be defined by mass spectrometry (MS). Here, we review recent advances in immunopeptidomics, focusing on using ribosome profiling as the optimal MS database to optimize the false- and failed-discovery rates and relate these findings to the contribution of defective ribosomal products and cellular quality control mechanisms to MHC class-I antigen processing and presentation.
Collapse
Affiliation(s)
- Jaroslav Holly
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan W Yewdell
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
41
|
Poulis P, Peske F, Rodnina MV. The many faces of ribosome translocation along the mRNA: reading frame maintenance, ribosome frameshifting and translational bypassing. Biol Chem 2023; 404:755-767. [PMID: 37077160 DOI: 10.1515/hsz-2023-0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/22/2023] [Indexed: 04/21/2023]
Abstract
In each round of translation elongation, the ribosome translocates along the mRNA by precisely one codon. Translocation is promoted by elongation factor G (EF-G) in bacteria (eEF2 in eukaryotes) and entails a number of precisely-timed large-scale structural rearrangements. As a rule, the movements of the ribosome, tRNAs, mRNA and EF-G are orchestrated to maintain the exact codon-wise step size. However, signals in the mRNA, as well as environmental cues, can change the timing and dynamics of the key rearrangements leading to recoding of the mRNA into production of trans-frame peptides from the same mRNA. In this review, we discuss recent advances on the mechanics of translocation and reading frame maintenance. Furthermore, we describe the mechanisms and biological relevance of non-canonical translocation pathways, such as hungry and programmed frameshifting and translational bypassing, and their link to disease and infection.
Collapse
Affiliation(s)
- Panagiotis Poulis
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Frank Peske
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany
| |
Collapse
|
42
|
Zou W, Green DR. Beggars banquet: Metabolism in the tumor immune microenvironment and cancer therapy. Cell Metab 2023; 35:1101-1113. [PMID: 37390822 PMCID: PMC10527949 DOI: 10.1016/j.cmet.2023.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 07/02/2023]
Abstract
Metabolic programming in the tumor microenvironment (TME) alters tumor immunity and immunotherapeutic response in tumor-bearing mice and patients with cancer. Here, we review immune-related functions of core metabolic pathways, key metabolites, and crucial nutrient transporters in the TME, discuss their metabolic, signaling, and epigenetic impact on tumor immunity and immunotherapy, and explore how these insights can be applied to the development of more effective modalities to potentiate the function of T cells and sensitize tumor cell receptivity to immune attack, thereby overcoming therapeutic resistance.
Collapse
Affiliation(s)
- Weiping Zou
- Departments of Surgery and Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Graduate Programs in Immunology and Cancer Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
43
|
Peri A, Salomon N, Wolf Y, Kreiter S, Diken M, Samuels Y. The landscape of T cell antigens for cancer immunotherapy. NATURE CANCER 2023:10.1038/s43018-023-00588-x. [PMID: 37415076 DOI: 10.1038/s43018-023-00588-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/18/2023] [Indexed: 07/08/2023]
Abstract
The remarkable capacity of immunotherapies to induce durable regression in some patients with metastatic cancer relies heavily on T cell recognition of tumor-presented antigens. As checkpoint-blockade therapy has limited efficacy, tumor antigens have the potential to be exploited for complementary treatments, many of which are already in clinical trials. The surge of interest in this topic has led to the expansion of the tumor antigen landscape with the emergence of new antigen categories. Nonetheless, how different antigens compare in their ability to elicit efficient and safe clinical responses remains largely unknown. Here, we review known cancer peptide antigens, their attributes and the relevant clinical data and discuss future directions.
Collapse
Affiliation(s)
- Aviyah Peri
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Nadja Salomon
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - Yochai Wolf
- Ella Lemelbaum Institute for Immuno-oncology and Skin Cancer, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Sebastian Kreiter
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH, Mainz, Germany.
| | - Mustafa Diken
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH, Mainz, Germany.
| | - Yardena Samuels
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
44
|
Wang X, Wang B, Li F, Li X, Guo T, Gao Y, Wang D, Huang W. The c-Src/LIST Positive Feedback Loop Sustains Tumor Progression and Chemoresistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300115. [PMID: 37156751 PMCID: PMC10369257 DOI: 10.1002/advs.202300115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/03/2023] [Indexed: 05/10/2023]
Abstract
Chemotherapy resistance and treatment failure hinder clinical cancer treatment. Src, the first mammalian proto-oncogene to be discovered, is a valuable anti-cancer therapeutic target. Although several c-Src inhibitors have reached the clinical stage, drug resistance remains a challenge during treatment. Herein, a positive feedback loop between a previously uncharacterized long non-coding RNA (lncRNA), which the authors renamed lncRNA-inducing c-Src tumor-promoting function (LIST), and c-Src is uncovered. LIST directly binds to and regulates the Y530 phosphorylation activity of c-Src. As a c-Src agonist, LIST promotes tumor chemoresistance and progression in vitro and in vivo in multiple cancer types. c-Src can positively regulate LIST transcription by activating the NF-κB signaling pathway and then recruiting the P65 transcription factor to the LIST promoter. Interestingly, the LIST/c-Src interaction is associated with evolutionary new variations of c-Src. It is proposed that the human-specific LIST/c-Src axis renders an extra layer of control over c-Src activity. Additionally, the LIST/c-Src axis is of high physiological relevance in cancer and may be a valuable prognostic biomarker and potential therapeutic target.
Collapse
Affiliation(s)
- Xianteng Wang
- Department of UrologyShenzhen Institute of Translational MedicineShenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityGuangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringShenzhen University Medical schoolShenzhen518060China
- Shenzhen Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital TumorsShenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityShenzhen518035China
| | - Bing Wang
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Fang Li
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Xingkai Li
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Hebei Cancer HospitalChinese Academy of Medical SciencesLangfang065001China
| | - Ting Guo
- Department of UrologyShenzhen Institute of Translational MedicineShenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityGuangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringShenzhen University Medical schoolShenzhen518060China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital TumorsShenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityShenzhen518035China
| | - Yushun Gao
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Hebei Cancer HospitalChinese Academy of Medical SciencesLangfang065001China
| | - Dawei Wang
- Department of Thoracic SurgeryChifeng Municipal HospitalChifeng024000China
| | - Weiren Huang
- Department of UrologyShenzhen Institute of Translational MedicineShenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityGuangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringShenzhen University Medical schoolShenzhen518060China
- Shenzhen Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital TumorsShenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityShenzhen518035China
| |
Collapse
|
45
|
Lozano-Rabella M, Garcia-Garijo A, Palomero J, Yuste-Estevanez A, Erhard F, Farriol-Duran R, Martín-Liberal J, Ochoa-de-Olza M, Matos I, Gartner JJ, Ghosh M, Canals F, Vidal A, Piulats JM, Matías-Guiu X, Brana I, Muñoz-Couselo E, Garralda E, Schlosser A, Gros A. Exploring the Immunogenicity of Noncanonical HLA-I Tumor Ligands Identified through Proteogenomics. Clin Cancer Res 2023; 29:2250-2265. [PMID: 36749875 PMCID: PMC10261919 DOI: 10.1158/1078-0432.ccr-22-3298] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/20/2022] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
PURPOSE Tumor antigens are central to antitumor immunity. Recent evidence suggests that peptides from noncanonical (nonC) aberrantly translated proteins can be presented on HLA-I by tumor cells. Here, we investigated the immunogenicity of nonC tumor HLA-I ligands (nonC-TL) to better understand their contribution to cancer immunosurveillance and their therapeutic applicability. EXPERIMENTAL DESIGN Peptides presented on HLA-I were identified in 9 patient-derived tumor cell lines from melanoma, gynecologic, and head and neck cancer through proteogenomics. A total of 507 candidate tumor antigens, including nonC-TL, neoantigens, cancer-germline, or melanocyte differentiation antigens, were tested for T-cell recognition of preexisting responses in patients with cancer. Donor peripheral blood lymphocytes (PBL) were in vitro sensitized against 170 selected nonC-TL to isolate antigen-specific T-cell receptors (TCR) and evaluate their therapeutic potential. RESULTS We found no recognition of the 507 nonC-TL tested by autologous ex vivo expanded tumor-reactive T-cell cultures while the same cultures demonstrated reactivity to mutated, cancer-germline, or melanocyte differentiation antigens. However, in vitro sensitization of donor PBL against 170 selected nonC-TL, led to the identification of TCRs specific to three nonC-TL, two of which mapped to the 5' UTR regions of HOXC13 and ZKSCAN1, and one mapping to a noncoding spliced variant of C5orf22C. T cells targeting these nonC-TL recognized cancer cell lines naturally presenting their corresponding antigens. Expression of the three immunogenic nonC-TL was shared across tumor types and barely or not detected in normal cells. CONCLUSIONS Our findings predict a limited contribution of nonC-TL to cancer immunosurveillance but demonstrate they may be attractive novel targets for widely applicable immunotherapies. See related commentary by Fox et al., p. 2173.
Collapse
Affiliation(s)
- Maria Lozano-Rabella
- Tumor Immunology and Immunotherapy, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Andrea Garcia-Garijo
- Tumor Immunology and Immunotherapy, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Jara Palomero
- Tumor Immunology and Immunotherapy, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Anna Yuste-Estevanez
- Tumor Immunology and Immunotherapy, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Florian Erhard
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Roc Farriol-Duran
- Tumor Immunology and Immunotherapy, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Juan Martín-Liberal
- Early Drug Development Unit (UITM) Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital, Barcelona, Spain
| | - Maria Ochoa-de-Olza
- Early Drug Development Unit (UITM) Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital, Barcelona, Spain
| | - Ignacio Matos
- Early Drug Development Unit (UITM) Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital, Barcelona, Spain
| | - Jared J. Gartner
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, Maryland
| | - Michael Ghosh
- Institute for Cell Biology Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Francesc Canals
- Proteomics, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital, Barcelona, Spain
| | - August Vidal
- Department of Pathology. Hospital Universitari de Bellvitge-IDIBELL, CIBERONC, Barcelona, Spain
| | - Josep Maria Piulats
- Medical Oncology, Catalan Institute of Cancer (ICO), IDIBELL-Oncobell, Hospitalet de Llobregat, Spain
| | - Xavier Matías-Guiu
- Department of Pathology. Hospital Universitari de Bellvitge-IDIBELL, CIBERONC, Barcelona, Spain
| | - Irene Brana
- Early Drug Development Unit (UITM) Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital, Barcelona, Spain
| | - Eva Muñoz-Couselo
- Melanoma and other skin tumors unit, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital, Barcelona, Spain
| | - Elena Garralda
- Early Drug Development Unit (UITM) Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital, Barcelona, Spain
| | - Andreas Schlosser
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Alena Gros
- Tumor Immunology and Immunotherapy, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| |
Collapse
|
46
|
Luke JJ, Fakih M, Schneider C, Chiorean EG, Bendell J, Kristeleit R, Kurzrock R, Blagden SP, Brana I, Goff LW, O'Hayer K, Geschwindt R, Smith M, Zhou F, Naing A. Phase I/II sequencing study of azacitidine, epacadostat, and pembrolizumab in advanced solid tumors. Br J Cancer 2023; 128:2227-2235. [PMID: 37087488 PMCID: PMC10241827 DOI: 10.1038/s41416-023-02267-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/24/2023] Open
Abstract
BACKGROUND Indoleamine 2,3-dioxygenase 1 (IDO1), an interferon-inducible enzyme, contributes to tumor immune intolerance. Immune checkpoint inhibition may increase interferon levels; combining IDO1 inhibition with immune checkpoint blockade represents an attractive strategy. Epigenetic agents trigger interferon responses and may serve as an immunotherapy priming method. We evaluated whether epigenetic therapy plus IDO1 inhibition and immune checkpoint blockade confers clinical benefit to patients with advanced solid tumors. METHODS ECHO-206 was a Phase I/II study where treatment-experienced patients with advanced solid tumors (N = 70) received azacitidine plus an immunotherapy doublet (epacadostat [IDO1 inhibitor] and pembrolizumab). Sequencing of treatment was also assessed. Primary endpoints were safety/tolerability (Phase I), maximum tolerated dose (MTD) or pharmacologically active dose (PAD; Phase I), and investigator-assessed objective response rate (ORR; Phase II). RESULTS In Phase I, no dose-limiting toxicities were reported, the MTD was not reached; a PAD was not determined. ORR was 5.7%, with four partial responses. The most common treatment-related adverse events (AEs) were fatigue (42.9%) and nausea (42.9%). Twelve (17.1%) patients experienced ≥1 fatal AE, one of which (asthenia) was treatment-related. CONCLUSIONS Although the azacitidine-epacadostat-pembrolizumab regimen was well tolerated, it was not associated with substantial clinical response in patients with advanced solid tumors previously exposed to immunotherapy.
Collapse
Affiliation(s)
- Jason J Luke
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| | - Marwan Fakih
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Charles Schneider
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - E Gabriela Chiorean
- University of Washington School of Medicine, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Johanna Bendell
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN, USA
| | | | - Razelle Kurzrock
- University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Sarah P Blagden
- Early Phase Clinical Trials Unit, University of Oxford, Oxford, England, UK
| | - Irene Brana
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Laura W Goff
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | - Feng Zhou
- Incyte Corporation, Wilmington, DE, USA
| | - Aung Naing
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
47
|
Rodnina MV. Decoding and Recoding of mRNA Sequences by the Ribosome. Annu Rev Biophys 2023; 52:161-182. [PMID: 37159300 DOI: 10.1146/annurev-biophys-101922-072452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Faithful translation of messenger RNA (mRNA) into protein is essential to maintain protein homeostasis in the cell. Spontaneous translation errors are very rare due to stringent selection of cognate aminoacyl transfer RNAs (tRNAs) and the tight control of the mRNA reading frame by the ribosome. Recoding events, such as stop codon readthrough, frameshifting, and translational bypassing, reprogram the ribosome to make intentional mistakes and produce alternative proteins from the same mRNA. The hallmark of recoding is the change of ribosome dynamics. The signals for recoding are built into the mRNA, but their reading depends on the genetic makeup of the cell, resulting in cell-specific changes in expression programs. In this review, I discuss the mechanisms of canonical decoding and tRNA-mRNA translocation; describe alternative pathways leading to recoding; and identify the links among mRNA signals, ribosome dynamics, and recoding.
Collapse
Affiliation(s)
- Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany;
| |
Collapse
|
48
|
Admon A. The biogenesis of the immunopeptidome. Semin Immunol 2023; 67:101766. [PMID: 37141766 DOI: 10.1016/j.smim.2023.101766] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
The immunopeptidome is the repertoire of peptides bound and presented by the MHC class I, class II, and non-classical molecules. The peptides are produced by the degradation of most cellular proteins, and in some cases, peptides are produced from extracellular proteins taken up by the cells. This review attempts to first describe some of its known and well-accepted concepts, and next, raise some questions about a few of the established dogmas in this field: The production of novel peptides by splicing is questioned, suggesting here that spliced peptides are extremely rare, if existent at all. The degree of the contribution to the immunopeptidome by degradation of cellular protein by the proteasome is doubted, therefore this review attempts to explain why it is likely that this contribution to the immunopeptidome is possibly overstated. The contribution of defective ribosome products (DRiPs) and non-canonical peptides to the immunopeptidome is noted and methods are suggested to quantify them. In addition, the common misconception that the MHC class II peptidome is mostly derived from extracellular proteins is noted, and corrected. It is stressed that the confirmation of sequence assignments of non-canonical and spliced peptides should rely on targeted mass spectrometry using spiking-in of heavy isotope-labeled peptides. Finally, the new methodologies and modern instrumentation currently available for high throughput kinetics and quantitative immunopeptidomics are described. These advanced methods open up new possibilities for utilizing the big data generated and taking a fresh look at the established dogmas and reevaluating them critically.
Collapse
Affiliation(s)
- Arie Admon
- Faculty of Biology, Technion-Israel Institute of Technology, Israel.
| |
Collapse
|
49
|
Oreper D, Klaeger S, Jhunjhunwala S, Delamarre L. The peptide woods are lovely, dark and deep: Hunting for novel cancer antigens. Semin Immunol 2023; 67:101758. [PMID: 37027981 DOI: 10.1016/j.smim.2023.101758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023]
Abstract
Harnessing the patient's immune system to control a tumor is a proven avenue for cancer therapy. T cell therapies as well as therapeutic vaccines, which target specific antigens of interest, are being explored as treatments in conjunction with immune checkpoint blockade. For these therapies, selecting the best suited antigens is crucial. Most of the focus has thus far been on neoantigens that arise from tumor-specific somatic mutations. Although there is clear evidence that T-cell responses against mutated neoantigens are protective, the large majority of these mutations are not immunogenic. In addition, most somatic mutations are unique to each individual patient and their targeting requires the development of individualized approaches. Therefore, novel antigen types are needed to broaden the scope of such treatments. We review high throughput approaches for discovering novel tumor antigens and some of the key challenges associated with their detection, and discuss considerations when selecting tumor antigens to target in the clinic.
Collapse
Affiliation(s)
- Daniel Oreper
- Genentech, 1 DNA way, South San Francisco, 94080 CA, USA.
| | - Susan Klaeger
- Genentech, 1 DNA way, South San Francisco, 94080 CA, USA.
| | | | | |
Collapse
|
50
|
Charehjoo A, Majidpoor J, Mortezaee K. Indoleamine 2,3-dioxygenase 1 in circumventing checkpoint inhibitor responses: Updated. Int Immunopharmacol 2023; 118:110032. [PMID: 36933494 DOI: 10.1016/j.intimp.2023.110032] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 03/18/2023]
Abstract
Metabolic alterations occur commonly in tumor cells as a way to adapt available energetic sources for their proliferation, survival and resistance. Indoleamine 2,3-dioxygenase 1 (IDO1) is an intracellular enzyme catalyzing tryptophan degradation into kynurenine. IDO1 expression shows a rise in the stroma of many types of human cancers, and it provides a negative feedback mechanism for cancer evasion from immunosurveillance. Upregulation of IDO1 correlates with cancer aggression, poor prognosis and shortened patient survival. The increased activity of this endogenous checkpoint impairs effector T cell function, increases regulatory T cell (Treg) population and induces immune tolerance, so its inhibition potentiates anti-tumor immune responses and reshapes immunogenic state of tumor microenvironment (TME) presumably through normalizing effector T cell activity. A point is that the expression of this immunoregulatory marker is upregulated after immune checkpoint inhibitor (ICI) therapy, and that it has inducible effect on expression of other checkpoints. These are indicative of the importance of IDO1 as an attractive immunotherapeutic target and rationalizing combination of IDO1 inhibitors with ICI drugs in patients with advanced solid cancers. In this review, we aimed to discuss about the impact of IDO1 on tumor immune ecosystem, and the IDO1-mediated bypass of ICI therapy. The efficacy of IDO1 inhibitor therapy in combination with ICIs in advanced/metastatic solid tumors is also a focus of this paper.
Collapse
Affiliation(s)
- Arian Charehjoo
- Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Keywan Mortezaee
- Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran; Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|