1
|
Deng F, Yang D, Qing L, Chen Y, Zou J, Jia M, Wang Q, Jiang R, Huang L. Exploring the interaction between the gut microbiota and cyclic adenosine monophosphate-protein kinase A signaling pathway: a potential therapeutic approach for neurodegenerative diseases. Neural Regen Res 2025; 20:3095-3112. [PMID: 39589173 PMCID: PMC11881707 DOI: 10.4103/nrr.nrr-d-24-00607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/07/2024] [Accepted: 09/10/2024] [Indexed: 11/27/2024] Open
Abstract
The interaction between the gut microbiota and cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enhances communication along the gut-brain axis. The gut microbiota influences the cAMP-PKA signaling pathway through its metabolites, which activates the vagus nerve and modulates the immune and neuroendocrine systems. Conversely, alterations in the cAMP-PKA signaling pathway can affect the composition of the gut microbiota, creating a dynamic network of microbial-host interactions. This reciprocal regulation affects neurodevelopment, neurotransmitter control, and behavioral traits, thus playing a role in the modulation of neurological diseases. The coordinated activity of the gut microbiota and the cAMP-PKA signaling pathway regulates processes such as amyloid-β protein aggregation, mitochondrial dysfunction, abnormal energy metabolism, microglial activation, oxidative stress, and neurotransmitter release, which collectively influence the onset and progression of neurological diseases. This study explores the complex interplay between the gut microbiota and cAMP-PKA signaling pathway, along with its implications for potential therapeutic interventions in neurological diseases. Recent pharmacological research has shown that restoring the balance between gut flora and cAMP-PKA signaling pathway may improve outcomes in neurodegenerative diseases and emotional disorders. This can be achieved through various methods such as dietary modifications, probiotic supplements, Chinese herbal extracts, combinations of Chinese herbs, and innovative dosage forms. These findings suggest that regulating the gut microbiota and cAMP-PKA signaling pathway may provide valuable evidence for developing novel therapeutic approaches for neurodegenerative diseases.
Collapse
Affiliation(s)
- Fengcheng Deng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Dan Yang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Lingxi Qing
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Yifei Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Jilian Zou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Meiling Jia
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Qian Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Runda Jiang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Lihua Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| |
Collapse
|
2
|
Luo Y, Sun L, Peng Y. The structural basis of the G protein-coupled receptor and ion channel axis. Curr Res Struct Biol 2025; 9:100165. [PMID: 40083915 PMCID: PMC11904507 DOI: 10.1016/j.crstbi.2025.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/25/2025] [Accepted: 02/17/2025] [Indexed: 03/16/2025] Open
Abstract
Sensory neurons play an essential role in recognizing and responding to detrimental, irritating, and inflammatory stimuli from our surroundings, such as pain, itch, cough, and neurogenic inflammation. The transduction of these physiological signals is chiefly mediated by G protein-coupled receptors (GPCRs) and ion channels. The binding of ligands to GPCRs triggers a signaling cascade, recruiting G proteins or β-arrestins, which subsequently interact with ion channels (e.g., GIRK and TRP channels). This interaction leads to the sensitization and activation of these channels, initiating the neuron's protective mechanisms. This review delves into the complex interplay between GPCRs and ion channels that underpin these physiological processes, with a particular focus on the role of structural biology in enhancing our comprehension. Through unraveling the intricacies of the GPCR-ion channel axis, we aim to shed light on the sophisticated intermolecular dynamics within these pivotal membrane protein families, ultimately guiding the development of precise therapeutic interventions.
Collapse
Affiliation(s)
- Yulin Luo
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, L Building, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| | - Liping Sun
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| | - Yao Peng
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| |
Collapse
|
3
|
Chen KYM, Lai JK, Rudden LSP, Wang J, Russell AM, Conners K, Rutter ME, Condon B, Tung F, Kodandapani L, Chau B, Zhao X, Benach J, Baker K, Hembre EJ, Barth P. Computational design of highly signalling-active membrane receptors through solvent-mediated allosteric networks. Nat Chem 2025; 17:429-438. [PMID: 39849110 PMCID: PMC11882447 DOI: 10.1038/s41557-024-01719-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/11/2024] [Indexed: 01/25/2025]
Abstract
Protein catalysis and allostery require the atomic-level orchestration and motion of residues and ligand, solvent and protein effector molecules. However, the ability to design protein activity through precise protein-solvent cooperative interactions has not yet been demonstrated. Here we report the design of 14 membrane receptors that catalyse G protein nucleotide exchange through diverse engineered allosteric pathways mediated by cooperative networks of intraprotein, protein-ligand and -solvent molecule interactions. Consistent with predictions, the designed protein activities correlated well with the level of plasticity of the networks at flexible transmembrane helical interfaces. Several designs displayed considerably enhanced thermostability and activity compared with related natural receptors. The most stable and active variant crystallized in an unforeseen signalling-active conformation, in excellent agreement with the design models. The allosteric network topologies of the best designs bear limited similarity to those of natural receptors and reveal an allosteric interaction space larger than previously inferred from natural proteins. The approach should prove useful for engineering proteins with novel complex protein binding, catalytic and signalling activities.
Collapse
Affiliation(s)
- K-Y M Chen
- Institute of Bioengineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Cell Biology and Human Anatomy, University of California at Davis, Davis, CA, USA
| | - J K Lai
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA
- Tessella, Houston, TX, USA
| | - L S P Rudden
- Institute of Bioengineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - J Wang
- Lilly Biotechnology Center San Diego, San Diego, CA, USA
| | - A M Russell
- Lilly Biotechnology Center San Diego, San Diego, CA, USA
| | - K Conners
- Lilly Biotechnology Center San Diego, San Diego, CA, USA
| | - M E Rutter
- Lilly Biotechnology Center San Diego, San Diego, CA, USA
| | - B Condon
- Lilly Biotechnology Center San Diego, San Diego, CA, USA
| | - F Tung
- Lilly Biotechnology Center San Diego, San Diego, CA, USA
| | - L Kodandapani
- Lilly Biotechnology Center San Diego, San Diego, CA, USA
| | - B Chau
- Lilly Biotechnology Center San Diego, San Diego, CA, USA
| | - X Zhao
- Lilly Biotechnology Center San Diego, San Diego, CA, USA
| | - J Benach
- Lilly Biotechnology Center San Diego, San Diego, CA, USA
| | - K Baker
- Lilly Biotechnology Center San Diego, San Diego, CA, USA
- AbbVie, North Chicago, IL, USA
| | - E J Hembre
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN, USA
| | - P Barth
- Institute of Bioengineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
| |
Collapse
|
4
|
Li H, Qiao Z, Xiao X, Cao X, Li Z, Liu M, Jiao Q, Chen X, Du X, Jiang H. G protein-coupled receptors: A golden key to the treasure-trove of neurodegenerative diseases. Clin Nutr 2025; 46:155-168. [PMID: 39933302 DOI: 10.1016/j.clnu.2025.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 02/13/2025]
Abstract
G protein-coupled receptors (GPCRs) are a class of transmembrane proteins that distribute in various organs extensively. They can regulate physiological functions such as perception, neurotransmission and endocrinology through the synergies of signaling pathways. At present, Food and Drug Administration (FDA) have approved more than 500 drugs targeting GPCRs to treat a variety of conditions, including neurological diseases, gastrointestinal diseases and tumors. Conformational diversity and dynamic changes make GPCRs a star target for the treatment of neurodegenerative diseases. Moreover, GPCRs can also open biased signaling pathways for G protein and β-arrestin, which has unique functional selectivity and the possibility of overcoming side effects. Some studies believe that biased drugs will be the mainstream direction of drug innovation in the future. To disclose the essential role and research process of GPCRs in neurodegenerative diseases, we firstly reviewed several pivotal GPCRs and their mediated signaling pathways in Alzheimer's disease (AD), Parkinson's disease (PD) and Amyotrophic lateral sclerosis (ALS). Then we focused on the biased signaling pathway of GPCRs in these diseases. Finally, we updated the GPCR drugs under research for the treatment of neurodegenerative diseases in the clinical trials or approval. This review could provide valuable targets for precision therapy to cope with the dysfunction of neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Huanhuan Li
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Zhen Qiao
- Shandong Provincial Key Laboratory of Neurorehabilitation, School of Life Sciences and Health, University of Health and Rehabilitation Sciences, Qingdao, 266113, China
| | - Xue Xiao
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Xiu Cao
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Zhaodong Li
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Mengru Liu
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Qian Jiao
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Xi Chen
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Xixun Du
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China.
| | - Hong Jiang
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China; Shandong Provincial Key Laboratory of Neurorehabilitation, School of Life Sciences and Health, University of Health and Rehabilitation Sciences, Qingdao, 266113, China.
| |
Collapse
|
5
|
Dahleh MMM, Muller SG, Klann IP, Marques LS, da Rosa JL, Fontoura MB, Burger ME, Nogueira CW, Prigol M, Boeira SP, Segat HJ. Chemistry to cognition: Therapeutic potential of (m-CF 3-PhSe) 2 targeting rats' striatum dopamine proteins in amphetamine dependence. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111238. [PMID: 39732316 DOI: 10.1016/j.pnpbp.2024.111238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/09/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Amphetamine (AMPH) abuse represents a major global public health issue, highlighting the urgent need for effective therapeutic interventions to manage addiction caused by this psychostimulant. This study aimed to assess the potential of m-trifluoromethyl-diphenyldiselenide [(m-CF3-PhSe)2] in preventing the addictive effects induced by AMPH through targeting dopamine metabolism proteins. (m-CF3-PhSe)2 is of interest due to its demonstrated efficacy in mitigating opioid abuse, establishing it as a promising candidate for addiction treatment research. Initially, in silico studies examined the affinity of AMPH and (m-CF3-PhSe)2 for dopamine 1, 2, and 3 receptors (D1R, D2R, D3R), and dopamine transporter (DAT). In our experimental design, male Wistar rats were divided into four groups: I) Control; II) (m-CF3-PhSe)2; III) AMPH; IV) (m-CF3-PhSe)2 + AMPH. Animals were administered (m-CF3-PhSe)2 (0.1 mg/kg, by gavage) or canola oil (vehicle) 30 min before AMPH (4.0 mg/kg, i.p.) administration. Drug administration occurred for 8 days in the conditioned place preference (CPP) paradigm. Twenty-four hours after the last CPP conditioning section, preference for the drug-compartment was assessed, with anxiety-related effects and working memory were evaluated using the Y-maze test. Finally, animals were euthanized for striatal dissection to quantify D1R, D2R, D3R, and DAT levels in western blot. In silico findings suggest that (m-CF3-PhSe)2 may prevent AMPH activation in DAT, interacting with Asp46 and Phe319, preventing possible addictive effects of AMPH in DAT. In vivo results showed that (m-CF3-PhSe)2 attenuated AMPH effects, reducing preference for the drug-compartment in CPP test. Furthermore, (m-CF3-PhSe)2 prevented AMPH-induced anxiogenic effects in the elevated plus maze (EPM) test, similarly to light/dark test. No differences in locomotion or working memory were observed among the experimental groups in the Y-maze test. Ex vivo western blot analyses of the entire striatum indicates that (m-CF3-PhSe)2 prevented the AMPH-induced increase in D1R levels and decrease in D2R and DAT levels, with no changes in D3R levels. Overall, our study suggests that (m-CF3-PhSe)2 may interact with DAT sites similarly to AMPH, reducing drug-compartment preference and anxiogenic behaviors while maintaining dopaminergic metabolism proteins in the striatum, a key region involved in the onset and perpetuation of addiction.
Collapse
Affiliation(s)
- Mustafa Munir Mustafa Dahleh
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas (LaftamBio Pampa), Universidade Federal do Pampa, Itaqui, RS, Brazil
| | - Sabrina Grendene Muller
- Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), RS, Brazil
| | | | - Luiza Souza Marques
- Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), RS, Brazil
| | | | | | | | - Cristina Wayne Nogueira
- Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), RS, Brazil
| | - Marina Prigol
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas (LaftamBio Pampa), Universidade Federal do Pampa, Itaqui, RS, Brazil
| | - Silvana Peterini Boeira
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas (LaftamBio Pampa), Universidade Federal do Pampa, Itaqui, RS, Brazil
| | - Hecson Jesser Segat
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas (LaftamBio Pampa), Universidade Federal do Pampa, Itaqui, RS, Brazil.
| |
Collapse
|
6
|
Conflitti P, Lyman E, Sansom MSP, Hildebrand PW, Gutiérrez-de-Terán H, Carloni P, Ansell TB, Yuan S, Barth P, Robinson AS, Tate CG, Gloriam D, Grzesiek S, Eddy MT, Prosser S, Limongelli V. Functional dynamics of G protein-coupled receptors reveal new routes for drug discovery. Nat Rev Drug Discov 2025:10.1038/s41573-024-01083-3. [PMID: 39747671 DOI: 10.1038/s41573-024-01083-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 01/04/2025]
Abstract
G protein-coupled receptors (GPCRs) are the largest human membrane protein family that transduce extracellular signals into cellular responses. They are major pharmacological targets, with approximately 26% of marketed drugs targeting GPCRs, primarily at their orthosteric binding site. Despite their prominence, predicting the pharmacological effects of novel GPCR-targeting drugs remains challenging due to the complex functional dynamics of these receptors. Recent advances in X-ray crystallography, cryo-electron microscopy, spectroscopic techniques and molecular simulations have enhanced our understanding of receptor conformational dynamics and ligand interactions with GPCRs. These developments have revealed novel ligand-binding modes, mechanisms of action and druggable pockets. In this Review, we highlight such aspects for recently discovered small-molecule drugs and drug candidates targeting GPCRs, focusing on three categories: allosteric modulators, biased ligands, and bivalent and bitopic compounds. Although studies so far have largely been retrospective, integrating structural data on ligand-induced receptor functional dynamics into the drug discovery pipeline has the potential to guide the identification of drug candidates with specific abilities to modulate GPCR interactions with intracellular effector proteins such as G proteins and β-arrestins, enabling more tailored selectivity and efficacy profiles.
Collapse
Affiliation(s)
- Paolo Conflitti
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Lugano, Switzerland
| | - Edward Lyman
- Department of Physics and Astronomy, University of Delaware, Newark, DE, USA
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Peter W Hildebrand
- Institute of Medical Physics and Biophysics, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Hugo Gutiérrez-de-Terán
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | - Paolo Carloni
- INM-9/IAS-5 Computational Biomedicine, Forschungszentrum Jülich, Jülich, Germany
- Department of Physics, RWTH Aachen University, Aachen, Germany
| | - T Bertie Ansell
- Department of Biochemistry, University of Oxford, Oxford, UK
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Shuguang Yuan
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Patrick Barth
- Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Anne S Robinson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | - David Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark
| | - Stephan Grzesiek
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, Basel, Switzerland
| | - Matthew T Eddy
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL, USA
| | - Scott Prosser
- Department of Chemistry, University of Toronto, Mississauga, Ontario, Canada
| | - Vittorio Limongelli
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Lugano, Switzerland.
| |
Collapse
|
7
|
Kim H, Park G, Shin HG, Kwon D, Kim H, Baek IY, Nam MH, Cho IJ, Kim J, Seong J. Optogenetic Control of Dopamine Receptor 2 Reveals a Novel Aspect of Dopaminergic Neurotransmission in Motor Function. J Neurosci 2025; 45:e1473242024. [PMID: 39562043 DOI: 10.1523/jneurosci.1473-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024] Open
Abstract
Dopaminergic neurotransmission plays a crucial role in motor function through the coordination of dopamine receptor (DRD) subtypes, such as DRD1 and DRD2, thus the functional imbalance of these receptors can lead to Parkinson's disease. However, due to the complexity of dopaminergic circuits in the brain, it is limited to investigating the individual functions of each DRD subtype in specific brain regions. Here, we developed a light-responsive chimeric DRD2, OptoDRD2, which can selectively activate DRD2-like signaling pathways with spatiotemporal resolution. OptoDRD2 was designed to include the light-sensitive component of rhodopsin and the intracellular signaling domain of DRD2. Upon illumination with blue light, OptoDRD2 triggered DRD2-like signaling pathways, such as Gαi/o subtype recruitment, a decrease in cAMP levels, and ERK phosphorylation. To explore unknown roles of DRD2 in glutamatergic cell populations of basal ganglia circuitry, OptoDRD2 was genetically expressed in excitatory neurons in lateral globus pallidus (LGP) of the male mouse brain. The optogenetic stimulation of OptoDRD2 in the LGP region affected a wide range of locomotion-related parameters, such as increased frequency of movement and decreased immobility time, resulting in the facilitation of motor function of living male mice. Therefore, our findings indicate a potentially novel role for DRD2 in the excitatory neurons of the LGP region, suggesting that OptoDRD2 can be a valuable tool enabling the investigation of unknown roles of DRD2 at specific cell types or brain regions.
Collapse
Affiliation(s)
- Hyunbin Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Neuroscience Research Institute, Medical Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Geunhong Park
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Hyo Geun Shin
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Duwan Kwon
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Heejung Kim
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Neuroscience Research Institute, Medical Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - In-Yeop Baek
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of KHU-KIST Convergence Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of KHU-KIST Convergence Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Il-Joo Cho
- Departments of Convergence Medicine, Korea University, Seoul 02841, Republic of Korea
- Anatomy, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Jeongjin Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jihye Seong
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Neuroscience Research Institute, Medical Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
8
|
Zhu K, Meng L, Luo J, Wen T, Dan L, Wang Z, Cao X, Zhang Z, Chen G. Taltirelin induces TH expression by regulating TRHR and RARα in medium spiny neurons. J Transl Med 2024; 22:1158. [PMID: 39736794 DOI: 10.1186/s12967-024-06020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/20/2024] [Indexed: 01/01/2025] Open
Abstract
Taltirelin, an orally effective thyrotropin-releasing hormone analog, significantly improves motor impairments in rat models of Parkinson's disease (PD) and enhances dopamine release within the striatum. However, the underlying mechanism remains unclear. In this study, a variety of in vivo and in vitro methods, including transcriptomic analysis, were employed to elucidate the effects of Taltirelin on cellular composition and signaling pathways in the striatum of hemi-PD rats. We demonstrated that Taltirelin upregulates the expression of TRHR on striatal GABAergic neurons, which is accompanied by activation of the TRHR-MAPK-RARα-DRD2 pathway. Consequently, Taltirelin induces medium spiny neurons in the striatum to express TH. This discovery provides valuable insights into the potential application of Taltirelin in neurological disorders and offers new directions for drug development.
Collapse
Affiliation(s)
- Kedong Zhu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jiaying Luo
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Tingting Wen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Liang Dan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Zhihao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, , Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Guiqin Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
9
|
Seyedabadi M, Gurevich VV. Flavors of GPCR signaling bias. Neuropharmacology 2024; 261:110167. [PMID: 39306191 DOI: 10.1016/j.neuropharm.2024.110167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/06/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
GPCRs are inherently flexible molecules existing in an equilibrium of multiple conformations. Binding of GPCR agonists shifts this equilibrium. Certain agonists can increase the fraction of active-like conformations that predispose the receptor to coupling to a particular signal transducer or a select group of transducers. Such agonists are called biased, in contrast to balanced agonists that facilitate signaling via all transducers the receptor couples to. These biased agonists preferentially channel the signaling of a GPCR to particular G proteins, GRKs, or arrestins. Preferential activation of particular G protein or arrestin subtypes can be beneficial, as it would reduce unwanted on-target side effects, widening the therapeutic window. However, biasing GPCRs has two important limitations: a) complete bias is impossible due to inherent flexibility of GPCRs; b) receptor-independent functions of signal transducer proteins cannot be directly affected by GPCR ligands or differential receptor barcoding by GRK phosphorylation. This article is part of the Special Issue on "Ligand Bias".
Collapse
Affiliation(s)
- Mohammad Seyedabadi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Ave South, PRB, Rm. 417D, Nashville, TN, 37232, USA.
| |
Collapse
|
10
|
Reinhardt JK, Schertler L, Bussmann H, Sellner M, Smiesko M, Boonen G, Potterat O, Hamburger M, Butterweck V. Vitex agnus castus Extract Ze 440: Diterpene and Triterpene's Interactions with Dopamine D2 Receptor. Int J Mol Sci 2024; 25:11456. [PMID: 39519010 PMCID: PMC11547015 DOI: 10.3390/ijms252111456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Pre-clinical studies suggest that extracts prepared from the fruits of Vitex agnus castus (VAC) interact with dopamine D2 receptors, leading to reduced prolactin secretion. In previous experiments, dopaminergic activity was mostly evaluated using radioligand binding assays or via the inhibition of prolactin release from rat pituitary cells. Diterpenes featuring a clerodadienol scaffold were identified as major active compounds, but no conclusive data regarding their potency and intrinsic activity are available. Utilising advances in chromatography, we re-examined this topic using HPLC-based tracking of bioactivity via microfractionation of the VAC extract Ze 440. Using a cAMP-based assay, we measured dopaminergic activity in CHO-K1 cells that overexpress the human D2 receptor. Six diterpenes were isolated from two active HPLC microfractions. Viteagnusin I emerged as the most potent diterpene (EC50: 6.6 µM), followed by rotundifuran (EC50: 12.8 µM), whereas vitexilactone was inactive (EC50: >50 µM). Interestingly, triterpenes were also identified as active, with 3-epi-maslinic acid being the most active compound (EC50: 5.1 µM). To better understand these interactions at the molecular level, selected diterpenes and triterpenes were analysed through molecular docking against D2 receptor structures. Our data show that the dopaminergic activity of VAC diterpenes seems to depend on the configuration and on ring substitution in the side chain. This study also highlights for the first time the dopaminergic contribution of triterpenes such as 3-epi-maslinic acid.
Collapse
Affiliation(s)
- Jakob K. Reinhardt
- Department of Pharmaceutical Sciences, Pharmaceutical Biology, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland (O.P.)
| | - Lukas Schertler
- Medical Department, Max Zeller Soehne AG, Seeblickstrasse 4, 8590 Romanshorn, Switzerland (H.B.); (G.B.)
| | - Hendrik Bussmann
- Medical Department, Max Zeller Soehne AG, Seeblickstrasse 4, 8590 Romanshorn, Switzerland (H.B.); (G.B.)
| | - Manuel Sellner
- Department of Pharmaceutical Sciences, Computational Pharmacy, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland (M.S.)
| | - Martin Smiesko
- Department of Pharmaceutical Sciences, Computational Pharmacy, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland (M.S.)
| | - Georg Boonen
- Medical Department, Max Zeller Soehne AG, Seeblickstrasse 4, 8590 Romanshorn, Switzerland (H.B.); (G.B.)
| | - Olivier Potterat
- Department of Pharmaceutical Sciences, Pharmaceutical Biology, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland (O.P.)
| | - Matthias Hamburger
- Department of Pharmaceutical Sciences, Pharmaceutical Biology, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland (O.P.)
| | - Veronika Butterweck
- Medical Department, Max Zeller Soehne AG, Seeblickstrasse 4, 8590 Romanshorn, Switzerland (H.B.); (G.B.)
| |
Collapse
|
11
|
Ray AP, Jin B, Eddy MT. The conformational equilibria of a human GPCR compared between lipid vesicles and aqueous solutions by integrative 19F-NMR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618237. [PMID: 39464034 PMCID: PMC11507675 DOI: 10.1101/2024.10.14.618237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Endogenous phospholipids influence the conformational equilibria of G protein-coupled receptors, regulating their ability to bind drugs and form signaling complexes. However, most studies of GPCR-lipid interactions have been carried out in mixed micelles or lipid nanodiscs. Though useful, these membrane mimetics do not fully replicate the physical properties of native cellular membranes associated with large assemblies of lipids. We investigated the conformational equilibria of the human A2A adenosine receptor (A2AAR) in phospholipid vesicles using 19F solid-state magic angle spinning NMR (SSNMR). By applying an optimized sample preparation workflow and experimental conditions, we were able to obtain 19F-SSNMR spectra for both antagonist- and agonist-bound complexes with sensitivity and linewidths closely comparable to those achieved using solution NMR. This facilitated a direct comparison of the A2AAR conformational equilibria across detergent micelle, lipid nanodisc, and lipid vesicle preparations. While antagonist-bound A2AAR showed a similar conformational equilibria across all membrane and membrane mimetic systems, the conformational equilibria of agonist-bound A2AAR exhibited differences among different environments. This suggests that the conformational equilibria of GPCRs may be influenced not only by specific receptor-lipid interactions but also by the membrane properties found in larger lipid assemblies.
Collapse
Affiliation(s)
- Arka Prabha Ray
- Department of Chemistry; University of Florida; Gainesville, FL, 32611; USA
| | - Beining Jin
- Department of Chemistry; University of Florida; Gainesville, FL, 32611; USA
| | - Matthew T Eddy
- Department of Chemistry; University of Florida; Gainesville, FL, 32611; USA
| |
Collapse
|
12
|
Rodriguez-Contreras D, García-Nafría J, Chan AE, Shinde U, Neve KA. Comparison of the function of two novel human dopamine D2 receptor variants identifies a likely mechanism for their pathogenicity. Biochem Pharmacol 2024; 228:116228. [PMID: 38643909 PMCID: PMC11410538 DOI: 10.1016/j.bcp.2024.116228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/29/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Two recently discovered DRD2 mutations, c.634A > T, p.Ile212Phe and c.1121T > G, p.Met374Arg, cause hyperkinetic movement disorders that have overlapping features but apparently differ in severity. The two known carriers of the Met374Arg variant had early childhood disease onset and more severe motor, cognitive, and neuropsychiatric deficits than any known carriers of the Ile212Phe variant, whose symptoms were first apparent in adolescence. Here, we evaluated if differences in the function of the two variants in cultured cells could explain differing pathogenicity. Both variants were expressed less abundantly than the wild type receptor and exhibited loss of agonist-induced arrestin binding, but differences in expression and arrestin binding between the variants were minor. Basal and agonist-induced activation of heterotrimeric Gi/o/z proteins, however, showed clear differences; agonists were generally more potent at Met374Arg than at the Ile212Phe or wild type variants. Furthermore, all Gα subtypes tested were constitutively activated more by Met374Arg than by Ile212Phe. Met374Arg produced greater constitutive inhibition of cyclic AMP accumulation than Ile212Phe or the wild type D2 receptor. Met374Arg and Ile212Phe were more sensitive to thermal inactivation than the wild type D2 receptor, as reported for other constitutively active receptors, but Ile212Phe was affected more than Met374Arg. Additional pharmacological characterization suggested that the mutations differentially affect the shape of the agonist binding pocket and the potency of dopamine, norepinephrine, and tyramine. Molecular dynamics simulations provided a structural rationale for enhanced constitutive activation and agonist potency. Enhanced constitutive and agonist-induced G protein-mediated signaling likely contributes to the pathogenicity of these novel variants.
Collapse
Affiliation(s)
- Dayana Rodriguez-Contreras
- Research Service, Veterans Affairs Portland Health Care System, and Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | - Javier García-Nafría
- Institute for Biocomputation and Physics of Complex Systems (BIFI) and Laboratory of Advanced Microscopy (LMA), University of Zaragoza, 50018, Zaragoza, Spain
| | - Amy E Chan
- Research Service, Veterans Affairs Portland Health Care System, and Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ujwal Shinde
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Kim A Neve
- Research Service, Veterans Affairs Portland Health Care System, and Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
13
|
Arroyo-Urea S, Nazarova AL, Carrión-Antolí Á, Bonifazi A, Battiti FO, Lam JH, Newman AH, Katritch V, García-Nafría J. A bitopic agonist bound to the dopamine 3 receptor reveals a selectivity site. Nat Commun 2024; 15:7759. [PMID: 39237617 PMCID: PMC11377762 DOI: 10.1038/s41467-024-51993-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 08/20/2024] [Indexed: 09/07/2024] Open
Abstract
Although aminergic GPCRs are the target for ~25% of approved drugs, developing subtype selective drugs is a major challenge due to the high sequence conservation at their orthosteric binding site. Bitopic ligands are covalently joined orthosteric and allosteric pharmacophores with the potential to boost receptor selectivity and improve current medications by reducing off-target side effects. However, the lack of structural information on their binding mode impedes rational design. Here we determine the cryo-EM structure of the hD3R:GαOβγ complex bound to the D3R selective bitopic agonist FOB02-04A. Structural, functional and computational analyses provide insights into its binding mode and point to a new TM2-ECL1-TM1 region, which requires the N-terminal ordering of TM1, as a major determinant of subtype selectivity in aminergic GPCRs. This region is underexploited in drug development, expands the established secondary binding pocket in aminergic GPCRs and could potentially be used to design novel and subtype selective drugs.
Collapse
Affiliation(s)
- Sandra Arroyo-Urea
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain
- Laboratory of Advanced Microscopy (LMA), University of Zaragoza, Zaragoza, Spain
| | - Antonina L Nazarova
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
- Center for New Technologies in Drug Discovery and Development, Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
| | - Ángela Carrión-Antolí
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain
- Laboratory of Advanced Microscopy (LMA), University of Zaragoza, Zaragoza, Spain
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland, USA
| | - Francisco O Battiti
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland, USA
| | - Jordy Homing Lam
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
- Center for New Technologies in Drug Discovery and Development, Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland, USA
| | - Vsevolod Katritch
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
- Center for New Technologies in Drug Discovery and Development, Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Javier García-Nafría
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain.
- Laboratory of Advanced Microscopy (LMA), University of Zaragoza, Zaragoza, Spain.
| |
Collapse
|
14
|
Wang XX, Ji X, Lin J, Wong IN, Lo HH, Wang J, Qu L, Wong VKW, Chung SK, Law BYK. GPCR-mediated natural products and compounds: Potential therapeutic targets for the treatment of neurological diseases. Pharmacol Res 2024; 208:107395. [PMID: 39241934 DOI: 10.1016/j.phrs.2024.107395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/01/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
G protein-coupled receptors (GPCRs), widely expressed in the human central nervous system (CNS), perform numerous physiological functions and play a significant role in the pathogenesis of diseases. Consequently, identifying key therapeutic GPCRs targets for CNS-related diseases is garnering immense interest in research labs and pharmaceutical companies. However, using GPCRs drugs for treating neurodegenerative diseases has limitations, including side effects and uncertain effective time frame. Recognizing the rich history of herbal treatments for neurological disorders like stroke, Alzheimer's disease (AD), and Parkinson's disease (PD), modern pharmacological research is now focusing on the understanding of the efficacy of traditional Chinese medicinal herbs and compounds in modulating GPCRs and treatment of neurodegenerative conditions. This paper will offer a comprehensive, critical review of how certain natural products and compounds target GPCRs to treat neurological diseases. Conducting an in-depth study of herbal remedies and their efficacies against CNS-related disorders through GPCRs targeting will augment our strategies for treating neurological disorders. This will not only broaden our understanding of effective therapeutic methodologies but also identify the root causes of altered GPCRs signaling in the context of pathophysiological mechanisms in neurological diseases. Moreover, it would be informative for the creation of safer and more effective GPCR-mediated drugs, thereby establishing a foundation for future treatment of various neurological diseases.
Collapse
Affiliation(s)
- Xing Xia Wang
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China; Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiang Ji
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China
| | - Jing Lin
- Department of Endocrinology, Luzhou Hospital of Traditional Chinese Medicine, Luzhou, Sichuan, China
| | - Io Nam Wong
- Faculty of Medicine, Macau University of Science and Technology, Macau SAR China
| | - Hang Hong Lo
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China
| | - Jian Wang
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Liqun Qu
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China
| | - Vincent Kam Wai Wong
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China
| | - Sookja Kim Chung
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China; Faculty of Medicine, Macau University of Science and Technology, Macau SAR China.
| | - Betty Yuen Kwan Law
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China.
| |
Collapse
|
15
|
Tian L, Andrews C, Yan Q, Yang JJ. Molecular regulation of calcium-sensing receptor (CaSR)-mediated signaling. Chronic Dis Transl Med 2024; 10:167-194. [PMID: 39027195 PMCID: PMC11252437 DOI: 10.1002/cdt3.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 07/20/2024] Open
Abstract
Calcium-sensing receptor (CaSR), a family C G-protein-coupled receptor, plays a crucial role in regulating calcium homeostasis by sensing small concentration changes of extracellular Ca2+, Mg2+, amino acids (e.g., L-Trp and L-Phe), small peptides, anions (e.g., HCO3 - and PO4 3-), and pH. CaSR-mediated intracellular Ca2+ signaling regulates a diverse set of cellular processes including gene transcription, cell proliferation, differentiation, apoptosis, muscle contraction, and neuronal transmission. Dysfunction of CaSR with mutations results in diseases such as autosomal dominant hypocalcemia, familial hypocalciuric hypercalcemia, and neonatal severe hyperparathyroidism. CaSR also influences calciotropic disorders, such as osteoporosis, and noncalciotropic disorders, such as cancer, Alzheimer's disease, and pulmonary arterial hypertension. This study first reviews recent advances in biochemical and structural determination of the framework of CaSR and its interaction sites with natural ligands, as well as exogenous positive allosteric modulators and negative allosteric modulators. The establishment of the first CaSR protein-protein interactome network revealed 94 novel players involved in protein processing in endoplasmic reticulum, trafficking, cell surface expression, endocytosis, degradation, and signaling pathways. The roles of these proteins in Ca2+-dependent cellular physiological processes and in CaSR-dependent cellular signaling provide new insights into the molecular basis of diseases caused by CaSR mutations and dysregulated CaSR activity caused by its protein interactors and facilitate the design of therapeutic agents that target CaSR and other family C G-protein-coupled receptors.
Collapse
Affiliation(s)
- Li Tian
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging FacilityGeorgia State UniversityAtlantaGeorgiaUSA
| | - Corey Andrews
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging FacilityGeorgia State UniversityAtlantaGeorgiaUSA
| | - Qiuyun Yan
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging FacilityGeorgia State UniversityAtlantaGeorgiaUSA
| | - Jenny J. Yang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging FacilityGeorgia State UniversityAtlantaGeorgiaUSA
| |
Collapse
|
16
|
Kogut-Günthel MM, Zara Z, Nicoli A, Steuer A, Lopez-Balastegui M, Selent J, Karanth S, Koehler M, Ciancetta A, Abiko LA, Hagn F, Di Pizio A. The path to the G protein-coupled receptor structural landscape: Major milestones and future directions. Br J Pharmacol 2024. [PMID: 39209310 DOI: 10.1111/bph.17314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/14/2024] [Accepted: 06/28/2024] [Indexed: 09/04/2024] Open
Abstract
G protein-coupled receptors (GPCRs) play a crucial role in cell function by transducing signals from the extracellular environment to the inside of the cell. They mediate the effects of various stimuli, including hormones, neurotransmitters, ions, photons, food tastants and odorants, and are renowned drug targets. Advancements in structural biology techniques, including X-ray crystallography and cryo-electron microscopy (cryo-EM), have driven the elucidation of an increasing number of GPCR structures. These structures reveal novel features that shed light on receptor activation, dimerization and oligomerization, dichotomy between orthosteric and allosteric modulation, and the intricate interactions underlying signal transduction, providing insights into diverse ligand-binding modes and signalling pathways. However, a substantial portion of the GPCR repertoire and their activation states remain structurally unexplored. Future efforts should prioritize capturing the full structural diversity of GPCRs across multiple dimensions. To do so, the integration of structural biology with biophysical and computational techniques will be essential. We describe in this review the progress of nuclear magnetic resonance (NMR) to examine GPCR plasticity and conformational dynamics, of atomic force microscopy (AFM) to explore the spatial-temporal dynamics and kinetic aspects of GPCRs, and the recent breakthroughs in artificial intelligence for protein structure prediction to characterize the structures of the entire GPCRome. In summary, the journey through GPCR structural biology provided in this review illustrates how far we have come in decoding these essential proteins architecture and function. Looking ahead, integrating cutting-edge biophysics and computational tools offers a path to navigating the GPCR structural landscape, ultimately advancing GPCR-based applications.
Collapse
Affiliation(s)
| | - Zeenat Zara
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Faculty of Science, University of South Bohemia in Ceske Budejovice, České Budějovice, Czech Republic
| | - Alessandro Nicoli
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Professorship for Chemoinformatics and Protein Modelling, Department of Molecular Life Science, School of Life Science, Technical University of Munich, Freising, Germany
| | - Alexandra Steuer
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Professorship for Chemoinformatics and Protein Modelling, Department of Molecular Life Science, School of Life Science, Technical University of Munich, Freising, Germany
| | - Marta Lopez-Balastegui
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute & Pompeu Fabra University, Barcelona, Spain
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute & Pompeu Fabra University, Barcelona, Spain
| | - Sanjai Karanth
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Melanie Koehler
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- TUM Junior Fellow at the Chair of Nutritional Systems Biology, Technical University of Munich, Freising, Germany
| | - Antonella Ciancetta
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Layara Akemi Abiko
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, Basel, Switzerland
| | - Franz Hagn
- Structural Membrane Biochemistry, Bavarian NMR Center, Dept. Bioscience, School of Natural Sciences, Technical University of Munich, Munich, Germany
- Institute of Structural Biology (STB), Helmholtz Munich, Neuherberg, Germany
| | - Antonella Di Pizio
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Professorship for Chemoinformatics and Protein Modelling, Department of Molecular Life Science, School of Life Science, Technical University of Munich, Freising, Germany
| |
Collapse
|
17
|
Mo C, Li H, Yan M, Xu S, Wu J, Li J, Yang X, Li Y, Yang J, Su X, Liu J, Wu C, Wang Y, Dong H, Chen L, Dai L, Zhang M, Pu Q, Yang L, Ye T, Cao Z, Ding BS. Dopaminylation of endothelial TPI1 suppresses ferroptotic angiocrine signals to promote lung regeneration over fibrosis. Cell Metab 2024; 36:1839-1857.e12. [PMID: 39111287 DOI: 10.1016/j.cmet.2024.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/30/2024] [Accepted: 07/09/2024] [Indexed: 03/17/2025]
Abstract
Lungs can undergo facultative regeneration, but handicapped regeneration often leads to fibrosis. How microenvironmental cues coordinate lung regeneration via modulating cell death remains unknown. Here, we reveal that the neurotransmitter dopamine modifies the endothelial niche to suppress ferroptosis, promoting lung regeneration over fibrosis. A chemoproteomic approach shows that dopamine blocks ferroptosis in endothelial cells (ECs) via dopaminylating triosephosphate isomerase 1 (TPI1). Suppressing TPI1 dopaminylation in ECs triggers ferroptotic angiocrine signaling to aberrantly activate fibroblasts, leading to a transition from lung regeneration to fibrosis. Mechanistically, dopaminylation of glutamine (Q) 65 residue in TPI1 directionally enhances TPI1's activity to convert dihydroxyacetone phosphate (DHAP) to glyceraldehyde 3-phosphate (GAP), directing ether phospholipid synthesis to glucose metabolism in regenerating lung ECs. This metabolic shift attenuates lipid peroxidation and blocks ferroptosis. Restoring TPI1 Q65 dopaminylation in an injured endothelial niche overturns ferroptosis to normalize pro-regenerative angiocrine function and alleviate lung fibrosis. Overall, dopaminylation of TPI1 balances lipid/glucose metabolism and suppresses pro-fibrotic ferroptosis in regenerating lungs.
Collapse
Affiliation(s)
- Chunheng Mo
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hui Li
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mengli Yan
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Shiyu Xu
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jinyan Wu
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiachen Li
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xinchun Yang
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yuanyuan Li
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jian Yang
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xingping Su
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jie Liu
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Chuan Wu
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yuan Wang
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Haohao Dong
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lu Chen
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lunzhi Dai
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ming Zhang
- Department of General Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China.
| | - Qiang Pu
- Department of General Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China.
| | - Liming Yang
- Department of Pathophysiology, Harbin Medical University, Harbin, China.
| | - Tinghong Ye
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China; Department of General Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China.
| | - Zhongwei Cao
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China.
| | - Bi-Sen Ding
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
18
|
Szwabowski GL, Griffing M, Mugabe EJ, O’Malley D, Baker LN, Baker DL, Parrill AL. G Protein-Coupled Receptor-Ligand Pose and Functional Class Prediction. Int J Mol Sci 2024; 25:6876. [PMID: 38999982 PMCID: PMC11241240 DOI: 10.3390/ijms25136876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
G protein-coupled receptor (GPCR) transmembrane protein family members play essential roles in physiology. Numerous pharmaceuticals target GPCRs, and many drug discovery programs utilize virtual screening (VS) against GPCR targets. Improvements in the accuracy of predicting new molecules that bind to and either activate or inhibit GPCR function would accelerate such drug discovery programs. This work addresses two significant research questions. First, do ligand interaction fingerprints provide a substantial advantage over automated methods of binding site selection for classical docking? Second, can the functional status of prospective screening candidates be predicted from ligand interaction fingerprints using a random forest classifier? Ligand interaction fingerprints were found to offer modest advantages in sampling accurate poses, but no substantial advantage in the final set of top-ranked poses after scoring, and, thus, were not used in the generation of the ligand-receptor complexes used to train and test the random forest classifier. A binary classifier which treated agonists, antagonists, and inverse agonists as active and all other ligands as inactive proved highly effective in ligand function prediction in an external test set of GPR31 and TAAR2 candidate ligands with a hit rate of 82.6% actual actives within the set of predicted actives.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniel L. Baker
- Department of Chemistry, University of Memphis, Memphis, TN 38152, USA; (G.L.S.); (M.G.); (E.J.M.); (D.O.); (L.N.B.)
| | - Abby L. Parrill
- Department of Chemistry, University of Memphis, Memphis, TN 38152, USA; (G.L.S.); (M.G.); (E.J.M.); (D.O.); (L.N.B.)
| |
Collapse
|
19
|
Peng Y, Li Z, Zhang Z, Chen Y, Wang R, Xu N, Cao Y, Jiang C, Chen Z, Lin H. Bromocriptine protects perilesional spinal cord neurons from lipotoxicity after spinal cord injury. Neural Regen Res 2024; 19:1142-1149. [PMID: 37862220 PMCID: PMC10749608 DOI: 10.4103/1673-5374.385308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/28/2023] [Accepted: 07/13/2023] [Indexed: 10/22/2023] Open
Abstract
Recent studies have revealed that lipid droplets accumulate in neurons after brain injury and evoke lipotoxicity, damaging the neurons. However, how lipids are metabolized by spinal cord neurons after spinal cord injury remains unclear. Herein, we investigated lipid metabolism by spinal cord neurons after spinal cord injury and identified lipid-lowering compounds to treat spinal cord injury. We found that lipid droplets accumulated in perilesional spinal cord neurons after spinal cord injury in mice. Lipid droplet accumulation could be induced by myelin debris in HT22 cells. Myelin debris degradation by phospholipase led to massive free fatty acid production, which increased lipid droplet synthesis, β-oxidation, and oxidative phosphorylation. Excessive oxidative phosphorylation increased reactive oxygen species generation, which led to increased lipid peroxidation and HT22 cell apoptosis. Bromocriptine was identified as a lipid-lowering compound that inhibited phosphorylation of cytosolic phospholipase A2 by reducing the phosphorylation of extracellular signal-regulated kinases 1/2 in the mitogen-activated protein kinase pathway, thereby inhibiting myelin debris degradation by cytosolic phospholipase A2 and alleviating lipid droplet accumulation in myelin debris-treated HT22 cells. Motor function, lipid droplet accumulation in spinal cord neurons and neuronal survival were all improved in bromocriptine-treated mice after spinal cord injury. The results suggest that bromocriptine can protect neurons from lipotoxic damage after spinal cord injury via the extracellular signal-regulated kinases 1/2-cytosolic phospholipase A2 pathway.
Collapse
Affiliation(s)
- Ying Peng
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuoxuan Li
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyang Zhang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yinglun Chen
- Department of Rehabilitation Medicine, Shanghai Geriatric Medical Center, Shanghai, China
| | - Renyuan Wang
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nixi Xu
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuanwu Cao
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chang Jiang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zixian Chen
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haodong Lin
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Khorn PA, Luginina AP, Pospelov VA, Dashevsky DE, Khnykin AN, Moiseeva OV, Safronova NA, Belousov AS, Mishin AV, Borshchevsky VI. Rational Design of Drugs Targeting G-Protein-Coupled Receptors: A Structural Biology Perspective. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:747-764. [PMID: 38831510 DOI: 10.1134/s0006297924040138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 06/05/2024]
Abstract
G protein-coupled receptors (GPCRs) play a key role in the transduction of extracellular signals to cells and regulation of many biological processes, which makes these membrane proteins one of the most important targets for pharmacological agents. A significant increase in the number of resolved atomic structures of GPCRs has opened the possibility of developing pharmaceuticals targeting these receptors via structure-based drug design (SBDD). SBDD employs information on the structure of receptor-ligand complexes to search for selective ligands without the need for an extensive high-throughput experimental ligand screening and can significantly expand the chemical space for ligand search. In this review, we describe the process of deciphering GPCR structures using X-ray diffraction analysis and cryoelectron microscopy as an important stage in the rational design of drugs targeting this receptor class. Our main goal was to present modern developments and key features of experimental methods used in SBDD of GPCR-targeting agents to a wide range of specialists.
Collapse
Affiliation(s)
- Polina A Khorn
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Aleksandra P Luginina
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Vladimir A Pospelov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Dmitrii E Dashevsky
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Andrey N Khnykin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Olga V Moiseeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
- Scryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Nadezhda A Safronova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Anatolii S Belousov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Alexey V Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.
| | - Valentin I Borshchevsky
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.
- Joint Institute for Nuclear Research, Frank Laboratory of Neutron Physics, Dubna, Moscow Region, 141980, Russia
| |
Collapse
|
21
|
Villalobos-Escobedo FS, Jijón-Lorenzo R, Avalos-Fuentes JA, Paz-Bermúdez F, Recillas-Morales S, Rojas IC, Leyva-Gómez G, Cortés H, Florán B. Dopamine D3 receptor modulates D2 receptor effects on cAMP and GABA release at striatopallidal terminals-Modulation by the Ca 2+-Calmodulin-CaMKII system. Eur J Neurosci 2024; 59:1441-1459. [PMID: 38151481 DOI: 10.1111/ejn.16237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 12/29/2023]
Abstract
Dopamine D2 receptor (D2R) is expressed in striatopallidal neurons and decreases forskolin-stimulated cyclic adenine monophosphate (cAMP) accumulation and gamma-aminobutyric acid (GABA) release. Dopamine D3 receptor (D3R) mRNA is expressed in a population of striatal D2R-expressing neurons. Also, D3R protein and binding have been reported in the neuropil of globus pallidus. We explore whether D2R and D3R colocalize in striatopallidal terminals and whether D3R modulates the D2R effect on forskolin-stimulated [3H]cAMP accumulation in pallidal synaptosomes and high K+ stimulated-[3H]GABA release in pallidal slices. Previous reports in heterologous systems indicate that calmodulin (CaM) and CaMKII modulate D2R and D3R functions; thus, we study whether this system regulates its functional interaction. D2R immunoprecipitates with CaM, and pretreatment with ophiobolin A or depolarization of synaptosomes with 15 mM of K+ decreases it. Both treatments increase the D2R inhibition of forskolin-stimulated [3H]cAMP accumulation when activated with quinpirole, indicating a negative modulation of CaM on D2R function. Quinpirole also activates D3R, potentiating D2R inhibition of cAMP accumulation in the ophiobolin A-treated synaptosomes. D2R and D3R immunoprecipitate in pallidal synaptosomes and decrease after the kainic acid striatal lesion, indicating the striatal origin of the presynaptic receptors. CaM-kinase II alfa (CaMKIIα) immunoprecipitates with D3R and increases after high K+ depolarization. In the presence of KN62, a CaMKIIα blocker, D3R potentiates D2R effects on cAMP accumulation in depolarized synaptosomes and GABA release in pallidal slices, indicating D3R function regulation by CaMKIIα. Our data indicate that D3R potentiates the D2R effect on cAMP accumulation and GABA release at pallidal terminals, an interaction regulated by the CaM-CaMKIIα system.
Collapse
Affiliation(s)
- Flor Selene Villalobos-Escobedo
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rafael Jijón-Lorenzo
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - José Arturo Avalos-Fuentes
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Francisco Paz-Bermúdez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Israel Conde Rojas
- Neurobiology of Eating, FES-Iztacala, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Benjamín Florán
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
22
|
Zhuo Y, Luo B, Yi X, Dong H, Miao X, Wan J, Williams JT, Campbell MG, Cai R, Qian T, Li F, Weber SJ, Wang L, Li B, Wei Y, Li G, Wang H, Zheng Y, Zhao Y, Wolf ME, Zhu Y, Watabe-Uchida M, Li Y. Improved green and red GRAB sensors for monitoring dopaminergic activity in vivo. Nat Methods 2024; 21:680-691. [PMID: 38036855 PMCID: PMC11009088 DOI: 10.1038/s41592-023-02100-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023]
Abstract
Dopamine (DA) plays multiple roles in a wide range of physiological and pathological processes via a large network of dopaminergic projections. To dissect the spatiotemporal dynamics of DA release in both dense and sparsely innervated brain regions, we developed a series of green and red fluorescent G-protein-coupled receptor activation-based DA (GRABDA) sensors using a variety of DA receptor subtypes. These sensors have high sensitivity, selectivity and signal-to-noise ratio with subsecond response kinetics and the ability to detect a wide range of DA concentrations. We then used these sensors in mice to measure both optogenetically evoked and behaviorally relevant DA release while measuring neurochemical signaling in the nucleus accumbens, amygdala and cortex. Using these sensors, we also detected spatially resolved heterogeneous cortical DA release in mice performing various behaviors. These next-generation GRABDA sensors provide a robust set of tools for imaging dopaminergic activity under a variety of physiological and pathological conditions.
Collapse
Affiliation(s)
- Yizhou Zhuo
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Bin Luo
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, Academy for Advanced Interdisciplinary Studies, Beijing, China
| | - Xinyang Yi
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Hui Dong
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, Academy for Advanced Interdisciplinary Studies, Beijing, China
| | - Xiaolei Miao
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jinxia Wan
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, Academy for Advanced Interdisciplinary Studies, Beijing, China
| | - John T Williams
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Malcolm G Campbell
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Ruyi Cai
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Tongrui Qian
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Fengling Li
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Sophia J Weber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Lei Wang
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Peking University, Beijing, China
| | - Bozhi Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yu Wei
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Guochuan Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Huan Wang
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Yu Zheng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Yulin Zhao
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Marina E Wolf
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Yingjie Zhu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Mitsuko Watabe-Uchida
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China.
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, Academy for Advanced Interdisciplinary Studies, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China.
- National Biomedical Imaging Center, Peking University, Beijing, China.
| |
Collapse
|
23
|
Lee KH, Shi L. Unraveling Activation-Related Rearrangements and Intrinsic Divergence from Ligand-Specific Conformational Changes of the Dopamine D3 and D2 Receptors. J Chem Inf Model 2024; 64:1778-1793. [PMID: 38454785 PMCID: PMC11929531 DOI: 10.1021/acs.jcim.3c01956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Effective rational drug discovery hinges on understanding the functional states of the target protein and distinguishing it from homologues. However, for the G protein coupled receptors, both activation-related conformational changes (ACCs) and intrinsic divergence among receptors can be misled or obscured by ligand-specific conformational changes (LCCs). Here, we unraveled ACCs and intrinsic divergence from LCCs of the dopamine D3 and D2 receptors (D3R and D2R), by analyzing their experimentally determined structures and the molecular dynamics (MD) simulation results of the receptors bound with various ligands. In addition to the ACCs common to other aminergic receptors, we revealed unique ACCs for these two receptors, including the extracellular portion of TM5 (TM5e) and TM6e shifting away from TM2e and TM3e, with a subtle rotation of TM5e. In identifying intrinsic divergence, we found more outward tilting of TM6e in the D2R compared to the D3R in both the experimental structures and simulations bound with ligands in different scaffolds. However, this difference was drastically reduced in the simulations bound with nonselective agonist quinpirole, suggesting a misleading effect of LCCs. Further, in the quinpirole-bound simulations, TM1 showed a greater disparity between these receptors, indicating that LCCs may also obscure intrinsic divergence. Importantly, our MD simulations revealed divergence in the dynamics of these receptors. Specifically, the D2R exhibited heightened flexibility compared to the D3R in the extracellular loops and TMs 5e, 6e, and 7e, associated with its greater ligand binding site plasticity. Our results lay the groundwork for crafting ligands specifically targeting the D2R and D3R with more precise pharmacological profiles.
Collapse
Affiliation(s)
- Kuo Hao Lee
- Computational Chemistry and Molecular Biophysics Section, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
24
|
Suno R. Exploring Diverse Signaling Mechanisms of G Protein-Coupled Receptors through Structural Biology. J Biochem 2024; 175:357-365. [PMID: 38382646 DOI: 10.1093/jb/mvae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024] Open
Abstract
Recent advancements in structural biology have facilitated the elucidation of complexes involving G protein-coupled receptors (GPCRs) and their associated signal transducers, including G proteins and arrestins. A comprehensive analysis of these structures provides profound insights into the dynamics of signaling mechanisms. These structural revelations can potentially guide the development of drugs to minimize side effects through targeted and selective signaling. Understanding the binding modes of different signal-selective ligands is imperative for future drug research and development. Here, we conduct a comparative examination of the structural details of various GPCR-signal transducer complexes and delve into the molecular basis of the currently proposed signal selectivity.
Collapse
Affiliation(s)
- Ryoji Suno
- Department of Medical Chemistry, Kansai Medical University, Hirakata, 573-1010, Japan
| |
Collapse
|
25
|
Köck Z, Schnelle K, Persechino M, Umbach S, Schihada H, Januliene D, Parey K, Pockes S, Kolb P, Dötsch V, Möller A, Hilger D, Bernhard F. Cryo-EM structure of cell-free synthesized human histamine 2 receptor/G s complex in nanodisc environment. Nat Commun 2024; 15:1831. [PMID: 38418462 PMCID: PMC10901899 DOI: 10.1038/s41467-024-46096-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/14/2024] [Indexed: 03/01/2024] Open
Abstract
Here we describe the cryo-electron microscopy structure of the human histamine 2 receptor (H2R) in an active conformation with bound histamine and in complex with Gs heterotrimeric protein at an overall resolution of 3.4 Å. The complex was generated by cotranslational insertion of the receptor into preformed nanodisc membranes using cell-free synthesis in E. coli lysates. Structural comparison with the inactive conformation of H2R and the inactive and Gq-coupled active state of H1R together with structure-guided functional experiments reveal molecular insights into the specificity of ligand binding and G protein coupling for this receptor family. We demonstrate lipid-modulated folding of cell-free synthesized H2R, its agonist-dependent internalization and its interaction with endogenously synthesized H1R and H2R in HEK293 cells by applying a recently developed nanotransfer technique.
Collapse
Affiliation(s)
- Zoe Köck
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe-University of Frankfurt/Main, Frankfurt, Germany
| | - Kilian Schnelle
- Department of Biology/Chemistry, Structural Biology section, University of Osnabrück, Osnabrück, Germany
- Center of Cellular Nanoanalytic Osnabrück (CellNanOs), University of Osnabrück, Osnabrück, Germany
| | | | - Simon Umbach
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe-University of Frankfurt/Main, Frankfurt, Germany
| | - Hannes Schihada
- Department of Pharmaceutical Chemistry, University of Marburg, Marburg, Germany
| | - Dovile Januliene
- Department of Biology/Chemistry, Structural Biology section, University of Osnabrück, Osnabrück, Germany
- Center of Cellular Nanoanalytic Osnabrück (CellNanOs), University of Osnabrück, Osnabrück, Germany
| | - Kristian Parey
- Department of Biology/Chemistry, Structural Biology section, University of Osnabrück, Osnabrück, Germany
- Center of Cellular Nanoanalytic Osnabrück (CellNanOs), University of Osnabrück, Osnabrück, Germany
| | - Steffen Pockes
- Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | - Peter Kolb
- Department of Pharmaceutical Chemistry, University of Marburg, Marburg, Germany
| | - Volker Dötsch
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe-University of Frankfurt/Main, Frankfurt, Germany
| | - Arne Möller
- Department of Biology/Chemistry, Structural Biology section, University of Osnabrück, Osnabrück, Germany.
- Center of Cellular Nanoanalytic Osnabrück (CellNanOs), University of Osnabrück, Osnabrück, Germany.
| | - Daniel Hilger
- Department of Pharmaceutical Chemistry, University of Marburg, Marburg, Germany.
| | - Frank Bernhard
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe-University of Frankfurt/Main, Frankfurt, Germany.
| |
Collapse
|
26
|
Śliwa P, Dziurzyńska M, Kurczab R, Kucwaj-Brysz K. The Pivotal Distinction between Antagonists' and Agonists' Binding into Dopamine D4 Receptor-MD and FMO/PIEDA Studies. Int J Mol Sci 2024; 25:746. [PMID: 38255820 PMCID: PMC10815553 DOI: 10.3390/ijms25020746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
The dopamine D4 receptor (D4R) is a promising therapeutic target in widespread diseases, and the search for novel agonists and antagonists appears to be clinically relevant. The mechanism of binding to the receptor (R) for antagonists and agonists varies. In the present study, we conducted an in-depth computational study, teasing out key similarities and differences in binding modes, complex dynamics, and binding energies for D4R agonists and antagonists. The dynamic network method was applied to investigate the communication paths between the ligand (L) and G-protein binding site (GBS) of human D4R. Finally, the fragment molecular orbitals with pair interaction energy decomposition analysis (FMO/PIEDA) scheme was used to estimate the binding energies of L-R complexes. We found that a strong salt bridge with D3.32 initiates the inhibition of the dopamine D4 receptor. This interaction also occurs in the binding of agonists, but the change in the receptor conformation to the active state starts with interaction with cysteine C3.36. Such a mechanism may arise in the case of agonists unable to form a hydrogen bond with the serine S5.46, considered, so far, to be crucial in the activation of GPCRs. The energy calculations using the FMO/PIEDA method indicate that antagonists show higher residue occupancy of the receptor binding site than agonists, suggesting they could form relatively more stable complexes. Additionally, antagonists were characterized by repulsive interactions with S5.46 distinguishing them from agonists.
Collapse
Affiliation(s)
- Paweł Śliwa
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland;
| | - Magdalena Dziurzyńska
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
| | - Rafał Kurczab
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland;
| | - Katarzyna Kucwaj-Brysz
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland;
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
27
|
Arroyo-Urea S, Nazarova AL, Carrión-Antolí Á, Bonifazi A, Battiti FO, Lam JH, Newman AH, Katritch V, García-Nafría J. Structure of the dopamine D3 receptor bound to a bitopic agonist reveals a new specificity site in an expanded allosteric pocket. RESEARCH SQUARE 2023:rs.3.rs-3433207. [PMID: 38196573 PMCID: PMC10775388 DOI: 10.21203/rs.3.rs-3433207/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Although aminergic GPCRs are the target for ~25% of approved drugs, developing subtype selective drugs is a major challenge due to the high sequence conservation at their orthosteric binding site. Bitopic ligands are covalently joined orthosteric and allosteric pharmacophores with the potential to boost receptor selectivity, driven by the binding of the secondary pharmacophore to non-conserved regions of the receptor. Although bitopic ligands have great potential to improve current medications by reducing off-target side effects, the lack of structural information on their binding mode impedes rational design. Here we determine the cryo-EM structure of the hD3R coupled to a GO heterotrimer and bound to the D3R selective bitopic agonist FOB02-04A. Structural, functional and computational analyses provide new insights into its binding mode and point to a new TM2-ECL1-TM1 region, which requires the N-terminal ordering of TM1, as a major determinant of subtype selectivity in aminergic GPCRs. This region is underexploited in drug development, expands the established secondary binding pocket in aminergic GPCRs and could potentially be used to design novel and subtype selective drugs.
Collapse
Affiliation(s)
- Sandra Arroyo-Urea
- Institute for Biocomputation and Physics of Complex Systems (BIFI) and Laboratorio de Microscopías Avanzadas (LMA), University of Zaragoza, 50018, Zaragoza, Spain
| | - Antonina L. Nazarova
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089
- Center for New Technologies in Drug Discovery and Development, Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
| | - Ángela Carrión-Antolí
- Institute for Biocomputation and Physics of Complex Systems (BIFI) and Laboratorio de Microscopías Avanzadas (LMA), University of Zaragoza, 50018, Zaragoza, Spain
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Francisco O. Battiti
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Jordy Homing Lam
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089
- Center for New Technologies in Drug Discovery and Development, Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Vsevolod Katritch
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089
- Center for New Technologies in Drug Discovery and Development, Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Javier García-Nafría
- Institute for Biocomputation and Physics of Complex Systems (BIFI) and Laboratorio de Microscopías Avanzadas (LMA), University of Zaragoza, 50018, Zaragoza, Spain
| |
Collapse
|
28
|
Zhu S, Yuan Q, Li X, He X, Shen S, Wang D, Li J, Cheng X, Duan X, Xu HE, Duan J. Molecular recognition of niacin and lipid-lowering drugs by the human hydroxycarboxylic acid receptor 2. Cell Rep 2023; 42:113406. [PMID: 37952153 DOI: 10.1016/j.celrep.2023.113406] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/26/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023] Open
Abstract
Niacin, an age-old lipid-lowering drug, acts through the hydroxycarboxylic acid receptor 2 (HCAR2), a G-protein-coupled receptor (GPCR). Yet, its use is hindered by side effects like skin flushing. To address this, specific HCAR2 agonists, like MK-6892 and GSK256073, with fewer adverse effects have been created. However, the activation mechanism of HCAR2 by niacin and these new agonists is not well understood. Here, we present three cryoelectron microscopy structures of Gi-coupled HCAR2 bound to niacin, MK-6892, and GSK256073. Our findings show that different ligands induce varying binding pockets in HCAR2, influenced by aromatic amino acid clusters (W91ECL1, H1614.59, W1885.38, H1895.39, and F1935.43) from receptors ECL1, TM4, and TM5. Additionally, conserved residues R1113.36 and Y2847.43, unique to the HCA receptor family, likely initiate activation signal propagation in HCAR2. This study provides insights into ligand recognition, receptor activation, and G protein coupling mediated by HCAR2, laying the groundwork for developing HCAR2-targeted drugs.
Collapse
Affiliation(s)
- Shengnan Zhu
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Department of Pharmacology, Guilin Medical University, Guilin 541004, China
| | - Qingning Yuan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xinzhu Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xinheng He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shiyi Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dongxue Wang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Junrui Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xi Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, China
| | - Xiaoqun Duan
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China; Department of Pharmacology, Guilin Medical University, Guilin 541004, China.
| | - H Eric Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Jia Duan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China.
| |
Collapse
|
29
|
Lee KH, Shi L. Unraveling activation-related rearrangements and intrinsic divergence from ligand-induced conformational changes of the dopamine D3 and D2 receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.11.566699. [PMID: 38014309 PMCID: PMC10680602 DOI: 10.1101/2023.11.11.566699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Effective rational drug discovery targeting a specific protein hinges on understanding their functional states and distinguishing it from homologs. However, for the G protein coupled receptors, both the activation-related conformational changes (ACCs) and the intrinsic divergence among receptors can be misled or obscured by ligand-induced conformational changes (LCCs). Here, we unraveled ACCs and intrinsic divergence from LCCs of the dopamine D3 and D2 receptors (D3R and D2R), by analyzing their experimentally determined structures and the molecular dynamics simulation results of the receptors bound with different ligands. In addition to the ACCs common to other aminergic receptors, we revealed unique ACCs for these two receptors including TM5e and TM6e shifting away from TM2e and TM3e, with a subtle rotation of TM5e. In identifying intrinsic divergence, we found pronounced outward tilting of TM6e in the D2R compared to the D3R in both experimental structures and simulations with ligands in different scaffolds. This tilting was drastically reduced in the simulations of the receptors bound with nonselective full agonist quinpirole, suggesting a misleading impact of LCCs. Further, in the quinpirole-bound simulations, TM1 showed a greater disparity between these receptors, indicating that LCCs may obscure intrinsic divergence. In addition, our analysis showed that the impact of the nonconserved TM1 propagated to conserved Trp7.40 and Glu2.65, both are ligand binding residues. We also found that the D2R exhibited heightened flexibility compared to the D3R in the extracellular portions of TMs 5, 6, and 7, potentially associated with its greater ligand binding site plasticity. Our results lay the groundwork for crafting ligands specifically targeting D2R or D3R with more precise pharmacological profiles.
Collapse
Affiliation(s)
- Kuo Hao Lee
- Computational Chemistry and Molecular Biophysics Section, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
30
|
Sibley DR, Nilson AN, Moritz AE, Shi L. Dopamine receptor divergence revealed using a common ligand. Trends Pharmacol Sci 2023; 44:637-639. [PMID: 37599183 PMCID: PMC10530097 DOI: 10.1016/j.tips.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023]
Abstract
Rational drug design for G protein-coupled receptors (GPCRs) remains a challenging area. A new study from the Xu, Roth, and Zhang groups provides a complete set of active structures for the entire dopamine receptor family bound with rotigotine that will aid in designing selective agonists for these important therapeutic targets.
Collapse
Affiliation(s)
- David R Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20892, USA.
| | - Ashley N Nilson
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20892, USA
| | - Amy E Moritz
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20892, USA
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA.
| |
Collapse
|
31
|
Cheng L, Sun S, Wang H, Zhao C, Tian X, Liu Y, Fu P, Shao Z, Chai R, Yan W. Orthosteric ligand selectivity and allosteric probe dependence at Hydroxycarboxylic acid receptor HCAR2. Signal Transduct Target Ther 2023; 8:364. [PMID: 37743365 PMCID: PMC10518311 DOI: 10.1038/s41392-023-01625-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/24/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Hydroxycarboxylic acid receptor 2 (HCAR2), a member of Class A G-protein-coupled receptor (GPCR) family, plays a pivotal role in anti-lipolytic and anti-inflammatory effects, establishing it as a significant therapeutic target for treating dyslipidemia and inflammatory diseases. However, the mechanism underlying the signaling of HCAR2 induced by various types of ligands remains elusive. In this study, we elucidate the cryo-electron microscopy (cryo-EM) structure of Gi-coupled HCAR2 in complex with a selective agonist, MK-6892, resolved to a resolution of 2.60 Å. Our structural analysis reveals that MK-6892 occupies not only the orthosteric binding pocket (OBP) but also an extended binding pocket (EBP) within HCAR2. Pharmacological assays conducted in this study demonstrate that the OBP is a critical determinant for ligand selectivity among the HCARs subfamily. Moreover, we investigate the pharmacological properties of the allosteric modulator compound 9n, revealing its probe-dependent behavior on HCAR2 in response to varying orthosteric agonists. Collectively, our findings provide invaluable structural insights that contribute to a deeper understanding of the regulatory mechanisms governing HCAR2 signaling transduction mediated by both orthosteric and allosteric ligands.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Suyue Sun
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Heli Wang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chang Zhao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaowen Tian
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ying Liu
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ping Fu
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China.
| | - Renjie Chai
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610000, China.
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Wei Yan
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
32
|
Gu S, Huang M, Handel TM. On-bead purification and nanodisc reconstitution of human chemokine receptor complexes for structural and biophysical studies. STAR Protoc 2023; 4:102460. [PMID: 37516969 PMCID: PMC10407235 DOI: 10.1016/j.xpro.2023.102460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/02/2023] [Accepted: 06/23/2023] [Indexed: 08/01/2023] Open
Abstract
Chemokine receptors, a subfamily of G-protein-coupled receptors (GPCRs), are responsible for cell migration during physiological processes as well as in diseases like inflammation and cancers. Here, we present a protocol for solubilizing, purifying, and reconstituting complexes of chemokine receptors with their ligands in "nanodiscs," soluble lipid bilayers that mimic the native environment of membrane receptors. The protocol yields chemokine receptor complexes with sufficient purity and yield for structural and biophysical studies and should be applicable to other GPCRs.
Collapse
Affiliation(s)
- Siyi Gu
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, CA 92093, USA.
| | - Mian Huang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
33
|
Bueschbell B, Magalhães PR, Barreto CA, Melo R, Schiedel AC, Machuqueiro M, Moreira IS. The World of GPCR dimers - Mapping dopamine receptor D 2 homodimers in different activation states and configuration arrangements. Comput Struct Biotechnol J 2023; 21:4336-4353. [PMID: 37711187 PMCID: PMC10497915 DOI: 10.1016/j.csbj.2023.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are known to dimerize, but the molecular and structural basis of GPCR dimers is not well understood. In this study, we developed a computational framework to generate models of symmetric and asymmetric GPCR dimers using different monomer activation states and identified their most likely interfaces with molecular details. We chose the dopamine receptor D2 (D2R) homodimer as a case study because of its biological relevance and the availability of structural information. Our results showed that transmembrane domains 4 and 5 (TM4 and TM5) are mostly found at the dimer interface of the D2R dimer and that these interfaces have a subset of key residues that are mostly nonpolar from TM4 and TM5, which was in line with experimental studies. In addition, TM2 and TM3 appear to be relevant for D2R dimers. In some cases, the inactive configuration is unaffected by the partnered protomer, whereas in others, the active protomer adopts the properties of an inactive receptor. Additionally, the β-arrestin configuration displayed the properties of an active receptor in the absence of an agonist, suggesting that a switch to another meta-state during dimerization occurred. Our findings are consistent with the experimental data, and this method can be adapted to study heterodimers and potentially extended to include additional proteins such as G proteins or β-arrestins. In summary, this approach provides insight into the impact of the conformational status of partnered protomers on the overall quaternary GPCR macromolecular structure and dynamics.
Collapse
Affiliation(s)
- Beatriz Bueschbell
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-456 Coimbra, Portugal
- IIIs-Institute for Interdisciplinary Research, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Pedro R. Magalhães
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande C8 bdg, 1749-016 Lisboa, Portugal
| | - Carlos A.V. Barreto
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-456 Coimbra, Portugal
- IIIs-Institute for Interdisciplinary Research, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Rita Melo
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-456 Coimbra, Portugal
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, University of Coimbra, Coimbra, Portugal
| | - Anke C. Schiedel
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany
| | - Miguel Machuqueiro
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande C8 bdg, 1749-016 Lisboa, Portugal
| | - Irina S. Moreira
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
34
|
Lee KH, Manning JJ, Javitch J, Shi L. A Novel "Activation Switch" Motif Common to All Aminergic Receptors. J Chem Inf Model 2023; 63:5001-5017. [PMID: 37540602 PMCID: PMC10695015 DOI: 10.1021/acs.jcim.3c00732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Aminergic receptors are G protein-coupled receptors (GPCRs) that transduce signals from small endogenous biogenic amines to regulate intracellular signaling pathways. Agonist binding in the ligand binding pocket on the extracellular side opens and prepares a cavity on the intracellular face of the receptors to interact with and activate G proteins and β-arrestins. Here, by reviewing and analyzing all available aminergic receptor structures, we seek to identify activation-related conformational changes that are independent of the specific scaffold of the bound agonist, which we define as "activation conformational changes" (ACCs). While some common intracellular ACCs have been well-documented, identifying common extracellular ACCs, including those in the ligand binding pocket, is complicated by local adjustments to different ligand scaffolds. Our analysis shows no common ACCs at the extracellular ends of the transmembrane helices. Furthermore, the restricted access to the ligand binding pocket identified previously in some receptors is not universal. Notably, the Trp6.48 toggle switch and the Pro5.50-Ile3.40-Phe6.44 (PIF) motif at the bottom of the ligand binding pocket have previously been proposed to mediate the conformational consequences of ligand binding to the intracellular side of the receptors. Our analysis shows that common ACCs in the ligand binding pocket are associated with the PIF motif and nearby residues, including Trp6.48, but fails to support a shared rotamer toggle associated with activation. However, we identify two common rearrangements between the extracellular and middle subsegments, and propose a novel "activation switch" motif common to all aminergic receptors. This motif includes the middle subsegments of transmembrane helices 3, 5, and 6 and integrates both the PIF motif and Trp6.48.
Collapse
Affiliation(s)
- Kuo Hao Lee
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jamie J. Manning
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Jonathan Javitch
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
35
|
Zhuo Y, Luo B, Yi X, Dong H, Wan J, Cai R, Williams JT, Qian T, Campbell MG, Miao X, Li B, Wei Y, Li G, Wang H, Zheng Y, Watabe-Uchida M, Li Y. Improved dual-color GRAB sensors for monitoring dopaminergic activity in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554559. [PMID: 37662187 PMCID: PMC10473776 DOI: 10.1101/2023.08.24.554559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Dopamine (DA) plays multiple roles in a wide range of physiological and pathological processes via a vast network of dopaminergic projections. To fully dissect the spatiotemporal dynamics of DA release in both dense and sparsely innervated brain regions, we developed a series of green and red fluorescent GPCR activation-based DA (GRABDA) sensors using a variety of DA receptor subtypes. These sensors have high sensitivity, selectivity, and signal-to-noise properties with subsecond response kinetics and the ability to detect a wide range of DA concentrations. We then used these sensors in freely moving mice to measure both optogenetically evoked and behaviorally relevant DA release while measuring neurochemical signaling in the nucleus accumbens, amygdala, and cortex. Using these sensors, we also detected spatially resolved heterogeneous cortical DA release in mice performing various behaviors. These next-generation GRABDA sensors provide a robust set of tools for imaging dopaminergic activity under a variety of physiological and pathological conditions.
Collapse
Affiliation(s)
- Yizhou Zhuo
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- These authors contributed equally
| | - Bin Luo
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
- These authors contributed equally
| | - Xinyang Yi
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Hui Dong
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Jinxia Wan
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Ruyi Cai
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - John T. Williams
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Tongrui Qian
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Malcolm G. Campbell
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Xiaolei Miao
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Bozhi Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing 100853, China
| | - Yu Wei
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Guochuan Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Huan Wang
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Yu Zheng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Mitsuko Watabe-Uchida
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
- Chinese Institute for Brain Research, Beijing 102206, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
- National Biomedical Imaging Center, Peking University, Beijing 100871, China
| |
Collapse
|
36
|
Ma J, Tang L, Peng P, Wang T, Gui H, Ren X. Shifting as an executive function separate from updating and inhibition in old age: Behavioral and genetic evidence. Behav Brain Res 2023; 452:114604. [PMID: 37516210 DOI: 10.1016/j.bbr.2023.114604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/09/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
This study aimed to examine the organization of executive functions (EFs), specifically working memory updating, prepotent response inhibition, and mental-set shifting in old age, with a particular focus on determining whether the shifting function was behaviorally and genetically separated from the other functions. A total of 248 healthy older Chinese individuals participated, and multiple measures of executive functions were collected. Additionally, measures of fluid intelligence were included to explore the varying relationships between the three executive functions and this higher-order cognitive ability. Furthermore, genetic data were gathered and analyzed to investigate the associations between EFs and six candidate single-nucleotide polymorphisms (SNPs) mapped to dopaminergic, serotonergic, or glutamatergic genes. The results indicated that both the three-factor model and the two-factor model, which combined updating and inhibition, demonstrated a good fit. Furthermore, shifting was found to be behaviorally separated from the other two functions, and the correlation between shifting and fluid intelligence was smaller compared to the correlations between updating and inhibition with fluid intelligence. Moreover, the DRD2 SNPs showed significant associations with shifting, rather than with updating and inhibition. These findings provide evidence that shifting is distinct and separate from updating and inhibition, highlighting the diversity of EFs among older adults.
Collapse
Affiliation(s)
- Juanjuan Ma
- School of Education, Huazhong University of Science & Technology, Wuhan, China
| | - Lixu Tang
- School of Wushu, Wuhan Sports University, Wuhan 430079, China
| | - Peng Peng
- Department of Special Education, University of Texas at Austin, Austin, USA
| | - Tengfei Wang
- Department of Psychology, Zhejiang University, Hangzhou, China
| | - Hongsheng Gui
- Behavioral Health Services and Psychiatry Research, Henry Ford Health, USA; Department of Psychiatry, Michigan State University, USA
| | - Xuezhu Ren
- School of Education, Huazhong University of Science & Technology, Wuhan, China.
| |
Collapse
|
37
|
Nieoczym D, Banono NS, Stępnik K, Kaczor AA, Szybkowski P, Esguerra CV, Kukula-Koch W, Gawel K. In Silico Analysis, Anticonvulsant Activity, and Toxicity Evaluation of Schisandrin B in Zebrafish Larvae and Mice. Int J Mol Sci 2023; 24:12949. [PMID: 37629132 PMCID: PMC10455331 DOI: 10.3390/ijms241612949] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The aim of this study is to evaluate the anticonvulsant potential of schisandrin B, a main ingredient of Schisandra chinensis extracts. Schisandrin B showed anticonvulsant activity in the zebrafish larva pentylenetetrazole acute seizure assay but did not alter seizure thresholds in the intravenous pentylenetetrazole test in mice. Schisandrin B crosses the blood-brain barrier, which we confirmed in our in silico and in vivo analyses; however, the low level of its unbound fraction in the mouse brain tissue may explain the observed lack of anticonvulsant activity. Molecular docking revealed that the anticonvulsant activity of the compound in larval zebrafish might have been due to its binding to a benzodiazepine site within the GABAA receptor and/or the inhibition of the glutamate NMDA receptor. Although schisandrin B showed a beneficial anticonvulsant effect, toxicological studies revealed that it caused serious developmental impairment in zebrafish larvae, underscoring its teratogenic properties. Further detailed studies are needed to precisely identify the properties, pharmacological effects, and safety of schisandrin B.
Collapse
Affiliation(s)
- Dorota Nieoczym
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Nancy Saana Banono
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalleen 21, Forskningsparken, 0349 Oslo, Norway; (N.S.B.); (C.V.E.)
| | - Katarzyna Stępnik
- Department of Physical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 3/243, 20-031 Lublin, Poland;
| | - Agnieszka A. Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland;
| | - Przemysław Szybkowski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego St. 8b, 20-090 Lublin, Poland;
- Clinical Provincial Hospital No. 2 St. Jadwiga Krolowej in Rzeszow, Lwowska St. 60, 35-301 Rzeszow, Poland
| | - Camila Vicencio Esguerra
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalleen 21, Forskningsparken, 0349 Oslo, Norway; (N.S.B.); (C.V.E.)
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, Chodźki St. 1, 20-093 Lublin, Poland;
| | - Kinga Gawel
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego St. 8b, 20-090 Lublin, Poland;
| |
Collapse
|
38
|
Nguyen TM, Ngoc DTM, Choi JH, Lee CH. Unveiling the Neural Environment in Cancer: Exploring the Role of Neural Circuit Players and Potential Therapeutic Strategies. Cells 2023; 12:1996. [PMID: 37566075 PMCID: PMC10417274 DOI: 10.3390/cells12151996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023] Open
Abstract
The regulation of the immune environment within the tumor microenvironment has provided new opportunities for cancer treatment. However, an important microenvironment surrounding cancer that is often overlooked despite its significance in cancer progression is the neural environment surrounding the tumor. The release of neurotrophic factors from cancer cells is implicated in cancer growth and metastasis by facilitating the infiltration of nerve cells into the tumor microenvironment. This nerve-tumor interplay can elicit cancer cell proliferation, migration, and invasion in response to neurotransmitters. Moreover, it is possible that cancer cells could establish a network resembling that of neurons, allowing them to communicate with one another through neurotransmitters. The expression levels of players in the neural circuits of cancers could serve as potential biomarkers for cancer aggressiveness. Notably, the upregulation of certain players in the neural circuit has been linked to poor prognosis in specific cancer types such as breast cancer, pancreatic cancer, basal cell carcinoma, and stomach cancer. Targeting these players with inhibitors holds great potential for reducing the morbidity and mortality of these carcinomas. However, the efficacy of anti-neurogenic agents in cancer therapy remains underexplored, and further research is necessary to evaluate their effectiveness as a novel approach for cancer treatment. This review summarizes the current knowledge on the role of players in the neural circuits of cancers and the potential of anti-neurogenic agents for cancer therapy.
Collapse
Affiliation(s)
- Tuan Minh Nguyen
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (T.M.N.); (D.T.M.N.)
| | - Dinh Thi Minh Ngoc
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (T.M.N.); (D.T.M.N.)
| | - Jung-Hye Choi
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chang-Hoon Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (T.M.N.); (D.T.M.N.)
| |
Collapse
|
39
|
Li H, Gao M, Chen Z, Zhou Z, Li W, Zhang X, Jiang X, Luo L, Li F, Wang G, Zhang Y, Huang X, Zhu J, Fan S, Wu X, Huang C. Hordenine improves Parkinsonian-like motor deficits in mice and nematodes by activating dopamine D2 receptor-mediated signaling. Phytother Res 2023; 37:3296-3308. [PMID: 36883794 DOI: 10.1002/ptr.7790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/12/2023] [Accepted: 02/17/2023] [Indexed: 03/09/2023]
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative disease characterized by selective loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the striatum, leading to dopamine (DA) deficiency in the striatum and typical motor symptoms. A small molecule as a dietary supplement for PD would be ideal for practical reasons. Hordenine (HOR) is a phenolic phytochemical marketed as a dietary supplement found in cereals and germinated barley, as well as in beer, a widely consumed beverage. This study was aimed to identify HOR as a dopamine D2 receptor (DRD2) agonist in living cells, and investigate the alleviative effect and mechanism of HOR on PD-like motor deficits in mice and nematodes. Our results firstly showed that HOR is an agonist of DRD2, but not DRD1, in living cells. Moreover, HOR could improve the locomotor dysfunction, gait, and postural imbalance in MPTP- or 6-OHDA-induced mice or Caenorhabditis elegans, and prevent α-synuclein accumulation via the DRD2 pathway in C. elegans. Our results suggested that HOR could activate DRD2 to attenuate the PD-like motor deficits, and provide scientific evidence for the safety and reliability of HOR as a dietary supplement.
Collapse
Affiliation(s)
- Hongli Li
- Drug Discovery Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Gao
- Drug Discovery Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ziyu Chen
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhenyu Zhou
- Drug Discovery Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Li
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Physiology, and Institute for Brain Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiaoyang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Physiology, and Institute for Brain Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xi Jiang
- Drug Discovery Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingling Luo
- Drug Discovery Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Li
- Drug Discovery Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gaorui Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jingning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Physiology, and Institute for Brain Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shengjie Fan
- Drug Discovery Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Huang
- Drug Discovery Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
40
|
Xu P, Huang S, Krumm BE, Zhuang Y, Mao C, Zhang Y, Wang Y, Huang XP, Liu YF, He X, Li H, Yin W, Jiang Y, Zhang Y, Roth BL, Xu HE. Structural genomics of the human dopamine receptor system. Cell Res 2023; 33:604-616. [PMID: 37221270 PMCID: PMC10397222 DOI: 10.1038/s41422-023-00808-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/30/2023] [Indexed: 05/25/2023] Open
Abstract
The dopaminergic system, including five dopamine receptors (D1R to D5R), plays essential roles in the central nervous system (CNS); and ligands that activate dopamine receptors have been used to treat many neuropsychiatric disorders, including Parkinson's Disease (PD) and schizophrenia. Here, we report cryo-EM structures of all five subtypes of human dopamine receptors in complex with G protein and bound to the pan-agonist, rotigotine, which is used to treat PD and restless legs syndrome. The structures reveal the basis of rotigotine recognition in different dopamine receptors. Structural analysis together with functional assays illuminate determinants of ligand polypharmacology and selectivity. The structures also uncover the mechanisms of dopamine receptor activation, unique structural features among the five receptor subtypes, and the basis of G protein coupling specificity. Our work provides a comprehensive set of structural templates for the rational design of specific ligands to treat CNS diseases targeting the dopaminergic system.
Collapse
Affiliation(s)
- Peiyu Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sijie Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Brian E Krumm
- Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, NC, USA
| | - Youwen Zhuang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chunyou Mao
- Center for Structural Pharmacology and Therapeutics Development, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yumu Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yue Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xi-Ping Huang
- Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, NC, USA
| | - Yong-Feng Liu
- Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, NC, USA
| | - Xinheng He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huadong Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wanchao Yin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yi Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yan Zhang
- Center for Structural Pharmacology and Therapeutics Development, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China.
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, NC, USA.
| | - H Eric Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
41
|
Guo C, Yang L, Liu Z, Liu D, Wüthrich K. Two-Dimensional NMR Spectroscopy of the G Protein-Coupled Receptor A 2AAR in Lipid Nanodiscs. Molecules 2023; 28:5419. [PMID: 37513291 PMCID: PMC10383251 DOI: 10.3390/molecules28145419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Eight hundred and twenty-six human G protein-coupled receptors (GPCRs) mediate the actions of two-thirds of the human hormones and neurotransmitters and over one-third of clinically used drugs. Studying the structure and dynamics of human GPCRs in lipid bilayer environments resembling the native cell membrane milieu is of great interest as a basis for understanding structure-function relationships and thus benefits continued drug development. Here, we incorporate the human A2A adenosine receptor (A2AAR) into lipid nanodiscs, which represent a detergent-free environment for structural studies using nuclear magnetic resonance (NMR) in solution. The [15N,1H]-TROSY correlation spectra confirmed that the complex of [u-15N, ~70% 2H]-A2AAR with an inverse agonist adopts its global fold in lipid nanodiscs in solution at physiological temperature. The global assessment led to two observations of practical interest. First, A2AAR in nanodiscs can be stored for at least one month at 4 °C in an aqueous solvent. Second, LMNG/CHS micelles are a very close mimic of the environment of A2AAR in nanodiscs. The NMR signal of five individually assigned tryptophan indole 15N-1H moieties located in different regions of the receptor structure further enabled a detailed assessment of the impact of nanodiscs and LMNG/CHS micelles on the local structure and dynamics of A2AAR. As expected, the largest effects were observed near the lipid-water interface along the intra- and extracellular surfaces, indicating possible roles of tryptophan side chains in stabilizing GPCRs in lipid bilayer membranes.
Collapse
Affiliation(s)
- Canyong Guo
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lingyun Yang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Zhijun Liu
- National Facility for Protein Science in Shanghai, ZhangJiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Dongsheng Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Kurt Wüthrich
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
42
|
Zheng Y, Li Y. Past, present, and future of tools for dopamine detection. Neuroscience 2023:S0306-4522(23)00295-6. [PMID: 37419404 DOI: 10.1016/j.neuroscience.2023.06.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Dopamine (DA) is a critical neuromodulator involved in various brain functions. To understand how DA regulates neural circuits and behaviors in the physiological and pathological conditions, it is essential to have tools that enable the direct detection of DA dynamics in vivo. Recently, genetically encoded DA sensors based on G protein-coupled receptors revolutionized this field, as it allows us to track in vivo DA dynamic with unprecedented spatial-temporal resolution, high molecular specificity, and sub-second kinetics. In this review, we first summarize traditional DA detection methods. Then we focus on the development of genetically encoded DA sensors and feature its significance to understanding dopaminergic neuromodulation across diverse behaviors and species. Finally, we present our perspectives about the future direction of the next-generation DA sensors and extend their potential applications. Overall, this review offers a comprehensive perspective on the past, present, and future of DA detection tools, with important implications for the study of DA functions in health and disease.
Collapse
Affiliation(s)
- Yu Zheng
- Peking-Tsinghua Center for Life Sciences, 100871 Beijing, China
| | - Yulong Li
- Peking-Tsinghua Center for Life Sciences, 100871 Beijing, China; State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, 100871 Beijing, China; PKU-IDG/McGovern Institute for Brain Research, 100871 Beijing, China; National Biomedical Imaging Center, Peking University, 100871 Beijing, China.
| |
Collapse
|
43
|
Liu H, Ma H, Zeng X, Wu C, Acharya S, Sudan SK, Zhang X. Ubiquitination of GRK2 Is Required for the β-Arrestin-Biased Signaling Pathway of Dopamine D2 Receptors to Activate ERK Kinases. Int J Mol Sci 2023; 24:10031. [PMID: 37373182 DOI: 10.3390/ijms241210031] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
A class-A GPCR dopamine D2 receptor (D2R) plays a critical role in the proper functioning of neuronal circuits through the downstream activation of both G-protein- and β-arrestin-dependent signaling pathways. Understanding the signaling pathways downstream of D2R is critical for developing effective therapies with which to treat dopamine (DA)-related disorders such as Parkinson's disease and schizophrenia. Extensive studies have focused on the regulation of D2R-mediated extracellular-signal-regulated kinase (ERK) 1/2 signaling; however, the manner in which ERKs are activated upon the stimulation of a specific signaling pathway of D2R remains unclear. The present study conducted a variety of experimental techniques, including loss-of-function experiments, site-directed mutagenesis, and the determination of protein interactions, in order to investigate the mechanisms underlying β-arrestin-biased signaling-pathway-mediated ERK activation. We found that the stimulation of the D2R β-arrestin signaling pathway caused Mdm2, an E3 ubiquitin ligase, to move from the nucleus to the cytoplasm and interact with tyrosine phosphorylated G-protein-coupled receptor kinase 2 (GRK2), which was facilitated by Src, a non-receptor tyrosine kinase. This interaction led to the ubiquitination of GRK2, which then moved to the plasma membrane and interacted with activated D2R, followed by the phosphorylation of D2R as well as the mediation of ERK activation. In conclusion, Mdm2-mediated GRK2 ubiquitination, which is selectively triggered by the stimulation of the D2R β-arrestin signaling pathway, is necessary for GRK2 membrane translocation and its interaction with D2R, which in turn mediates downstream ERK signaling. This study is primarily novel and provides essential information with which to better understand the detailed mechanisms of D2R-dependent signaling.
Collapse
Affiliation(s)
- Haiping Liu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Haixiang Ma
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Xingyue Zeng
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Chengyan Wu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Srijan Acharya
- Mitchell Cancer Institute, School of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Sarabjeet Kour Sudan
- Mitchell Cancer Institute, School of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Xiaohan Zhang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| |
Collapse
|
44
|
Woitalla D, Buhmann C, Hilker-Roggendorf R, Höglinger G, Koschel J, Müller T, Weise D. Role of dopamine agonists in Parkinson's disease therapy. J Neural Transm (Vienna) 2023; 130:863-873. [PMID: 37165120 DOI: 10.1007/s00702-023-02647-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/27/2023] [Indexed: 05/12/2023]
Abstract
Dopamine agonists are an important component of Parkinson's therapy. When weighing up the various therapy options, therapy with levodopa has recently been increasingly preferred due to its stronger efficacy and the ostensibly lower rate of side effects. The advantage of the lower incidence of motor complications during therapy with dopamine agonists was neglected. The occurrence of side effects can be explained by the different receptor affinity to the individual dopaminergic and non-dopaminergic receptors of the individual dopamine agonists. However, the different affinity to individual receptors also explains the different effect on individual Parkinson symptoms and can, therefore, contribute to a targeted use of the different dopamine agonists. Since comparative studies on the differential effect of dopamine agonists have only been conducted for individual substances, empirical knowledge of the differential effect is of great importance. Therefore, the guidelines for the treatment of Parkinson's disease do not consider the differential effect of the dopamine agonists. The historical consideration of dopamine agonists within Parkinson's therapy deserves special attention to be able to classify the current discussion about the significance of dopamine agonists.
Collapse
Affiliation(s)
- D Woitalla
- Department of Neurology, Katholische Kliniken Der Ruhrhalbinsel, Essen, Germany.
| | - C Buhmann
- Department of Neurology, Universitätsklinikum Hamburg, Hamburg, Germany
| | | | - G Höglinger
- Department of Neurology, Medizinische Hochschule Hannover, Hannover, Germany
| | - J Koschel
- Department of Neurology Parkinson-Klinik Ortenau, Wolfach, Germany
| | - T Müller
- Department of Neurology, Alexianer St. Joseph Krankenhaus, Berlin, Germany
| | - D Weise
- Department of Neurology, Asklepios Fachklinikum Stadtroda, Stadtroda, Germany
| |
Collapse
|
45
|
Kumari P, Inoue A, Chapman K, Lian P, Rosenbaum DM. Molecular mechanism of fatty acid activation of FFAR1. Proc Natl Acad Sci U S A 2023; 120:e2219569120. [PMID: 37216523 PMCID: PMC10235965 DOI: 10.1073/pnas.2219569120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/03/2023] [Indexed: 05/24/2023] Open
Abstract
FFAR1 is a G-protein-coupled receptor (GPCR) that responds to circulating free fatty acids to enhance glucose-stimulated insulin secretion and release of incretin hormones. Due to the glucose-lowering effect of FFAR1 activation, potent agonists for this receptor have been developed for the treatment of diabetes. Previous structural and biochemical studies of FFAR1 showed multiple sites of ligand binding to the inactive state but left the mechanism of fatty acid interaction and receptor activation unknown. We used cryo-electron microscopy to elucidate structures of activated FFAR1 bound to a Gq mimetic, which were induced either by the endogenous FFA ligand docosahexaenoic acid or γ-linolenic acid and the agonist drug TAK-875. Our data identify the orthosteric pocket for fatty acids and show how both endogenous hormones and synthetic agonists induce changes in helical packing along the outside of the receptor that propagate to exposure of the G-protein-coupling site. These structures show how FFAR1 functions without the highly conserved "DRY" and "NPXXY" motifs of class A GPCRs and also illustrate how the orthosteric site of a receptor can be bypassed by membrane-embedded drugs to confer full activation of G protein signaling.
Collapse
Affiliation(s)
- Punita Kumari
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Asuka Inoue
- Department of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Karen Chapman
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Peng Lian
- BioHPC at the Lyda Hill Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Daniel M. Rosenbaum
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
46
|
Niu YM, Zhang J, Tang H, Cao LH, Jiang TY, Hu YY. Association between DRD2/ANKK1 rs1800497 C > T polymorphism and post-traumatic stress disorder susceptibility: a multivariate meta-analysis. Front Neurosci 2023; 17:1102573. [PMID: 37274216 PMCID: PMC10232825 DOI: 10.3389/fnins.2023.1102573] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/10/2023] [Indexed: 06/06/2023] Open
Abstract
Background Previous studies have suggested that the DRD2/ANKK1 rs1800497 C > T polymorphism plays a critical role in the risk of post-traumatic stress disorder (PTSD). However, published data are inconsistent or even contradictory. Therefore, we conducted a meta-analysis to explore the underlying correlation between the rs1800497 C > T polymorphism and PTSD risk. Materials and methods A total of five online databases were searched, and all related studies were reviewed up to 1 October 2022. Critical information was extracted, and quality assessment was conducted for all included studies. Multivariate meta-analyses were performed for the genetic model choice, and the odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were calculated to examine the statistical power of the genetic models. In addition, heterogeneity, sensitivity, cumulative analysis, and publication bias were analyzed to guarantee statistical power. Result Overall, 12 observational studies involving 5,515 subjects were included and analyzed in this meta-analysis. Multivariate analysis indicated that a co-dominant genetic model was most likely the best choice. Pooled results revealed an elevated PTSD risk in mutated homozygote TT carriers in the general population (TT vs. CC: OR = 1.73, 95% CI = 1.14-2.62, P = 0.01, I2 = 58.9%) and other specific subgroups. Moreover, similar results were observed in other genetic models using univariate analysis. Conclusion Current evidence suggests that the DRD2/ANKK1 rs1800497 C > T polymorphism may contribute to PTSD susceptibility.
Collapse
Affiliation(s)
- Yu-Ming Niu
- Department of Stomatology and Center for Evidence-Based Medicine and Clinical Research, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
- Department of Psychiatry and Joint Laboratory of Psychiatric Genetic Research, The Third People's Hospital of Zhongshan, Zhongshan, Guangdong Province, China
- Department of Psychiatry, Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Jie Zhang
- Department of Psychiatry and Joint Laboratory of Psychiatric Genetic Research, The Third People's Hospital of Zhongshan, Zhongshan, Guangdong Province, China
- Department of Psychiatry, Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Hong Tang
- Department of Psychiatry, Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Lu-Hua Cao
- Information Department, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Ting-Yun Jiang
- Department of Psychiatry and Joint Laboratory of Psychiatric Genetic Research, The Third People's Hospital of Zhongshan, Zhongshan, Guangdong Province, China
| | - Yuan-Yuan Hu
- Department of Stomatology and Center for Evidence-Based Medicine and Clinical Research, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| |
Collapse
|
47
|
Ferré G, Gomes AAS, Louet M, Damian M, Bisch PM, Saurel O, Floquet N, Milon A, Banères JL. Sodium is a negative allosteric regulator of the ghrelin receptor. Cell Rep 2023; 42:112320. [PMID: 37027306 DOI: 10.1016/j.celrep.2023.112320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/09/2022] [Accepted: 03/14/2023] [Indexed: 04/08/2023] Open
Abstract
The functional properties of G protein-coupled receptors (GPCRs) are intimately associated with the different components in their cellular environment. Among them, sodium ions have been proposed to play a substantial role as endogenous allosteric modulators of GPCR-mediated signaling. However, this sodium effect and the underlying mechanisms are still unclear for most GPCRs. Here, we identified sodium as a negative allosteric modulator of the ghrelin receptor GHSR (growth hormone secretagogue receptor). Combining 23Na-nuclear magnetic resonance (NMR), molecular dynamics, and mutagenesis, we provide evidence that, in GHSR, sodium binds to the allosteric site conserved in class A GPCRs. We further leveraged spectroscopic and functional assays to show that sodium binding shifts the conformational equilibrium toward the GHSR-inactive ensemble, thereby decreasing basal and agonist-induced receptor-catalyzed G protein activation. All together, these data point to sodium as an allosteric modulator of GHSR, making this ion an integral component of the ghrelin signaling machinery.
Collapse
Affiliation(s)
- Guillaume Ferré
- Institut de Pharmacologie et de Biologie Structurale IPBS, Université de Toulouse UPS, CNRS, Toulouse, France
| | - Antoniel A S Gomes
- Institut des Biomolécules Max Mousseron IBMM, UMR-5247, University Montpellier, CNRS, ENSCM, Montpellier, France; Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Maxime Louet
- Institut des Biomolécules Max Mousseron IBMM, UMR-5247, University Montpellier, CNRS, ENSCM, Montpellier, France
| | - Marjorie Damian
- Institut des Biomolécules Max Mousseron IBMM, UMR-5247, University Montpellier, CNRS, ENSCM, Montpellier, France
| | - Paulo M Bisch
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Olivier Saurel
- Institut de Pharmacologie et de Biologie Structurale IPBS, Université de Toulouse UPS, CNRS, Toulouse, France
| | - Nicolas Floquet
- Institut des Biomolécules Max Mousseron IBMM, UMR-5247, University Montpellier, CNRS, ENSCM, Montpellier, France
| | - Alain Milon
- Institut de Pharmacologie et de Biologie Structurale IPBS, Université de Toulouse UPS, CNRS, Toulouse, France.
| | - Jean-Louis Banères
- Institut des Biomolécules Max Mousseron IBMM, UMR-5247, University Montpellier, CNRS, ENSCM, Montpellier, France.
| |
Collapse
|
48
|
Kim KM. Unveiling the Differences in Signaling and Regulatory Mechanisms between Dopamine D2 and D3 Receptors and Their Impact on Behavioral Sensitization. Int J Mol Sci 2023; 24:ijms24076742. [PMID: 37047716 PMCID: PMC10095578 DOI: 10.3390/ijms24076742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/09/2023] Open
Abstract
Dopamine receptors are classified into five subtypes, with D2R and D3R playing a crucial role in regulating mood, motivation, reward, and movement. Whereas D2R are distributed widely across the brain, including regions responsible for motor functions, D3R are primarily found in specific areas related to cognitive and emotional functions, such as the nucleus accumbens, limbic system, and prefrontal cortex. Despite their high sequence homology and similar signaling pathways, D2R and D3R have distinct regulatory properties involving desensitization, endocytosis, posttranslational modification, and interactions with other cellular components. In vivo, D3R is closely associated with behavioral sensitization, which leads to increased dopaminergic responses. Behavioral sensitization is believed to result from D3R desensitization, which removes the inhibitory effect of D3R on related behaviors. Whereas D2R maintains continuous signal transduction through agonist-induced receptor phosphorylation, arrestin recruitment, and endocytosis, which recycle and resensitize desensitized receptors, D3R rarely undergoes agonist-induced endocytosis and instead is desensitized after repeated agonist exposure. In addition, D3R undergoes more extensive posttranslational modifications, such as glycosylation and palmitoylation, which are needed for its desensitization. Overall, a series of biochemical settings more closely related to D3R could be linked to D3R-mediated behavioral sensitization.
Collapse
Affiliation(s)
- Kyeong-Man Kim
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju 61186, Republic of Korea
| |
Collapse
|
49
|
Valle-León M, Casajuana-Martin N, Del Torrent CL, Argerich J, Gómez-Acero L, Sahlholm K, Ferré S, Pardo L, Ciruela F. Unique effect of clozapine on adenosine A 2A-dopamine D 2 receptor heteromerization. Biomed Pharmacother 2023; 160:114327. [PMID: 36736280 PMCID: PMC11959194 DOI: 10.1016/j.biopha.2023.114327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/21/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
The striatal dopamine D2 receptor (D2R) is generally accepted to be involved in positive symptoms of schizophrenia and is a main target for clinically used antipsychotics. D2R are highly expressed in the striatum, where they form heteromers with the adenosine A2A receptor (A2AR). Changes in the density of A2AR-D2R heteromers have been reported in postmortem tissue from patients with schizophrenia, but the degree to which A2R are involved in schizophrenia and the effect of antipsychotic drugs is unknown. Here, we examine the effect of exposure to three prototypical antipsychotic drugs on A2AR-D2R heteromerization in mammalian cells using a NanoBiT assay. After 16 h of exposure, a significant increase in the density of A2AR-D2R heteromers was found with haloperidol and aripiprazole, but not with clozapine. On the other hand, clozapine, but not haloperidol or aripiprazole, was associated with a significant decrease in A2AR-D2R heteromerization after 2 h of treatment. Computational binding models of these compounds revealed distinctive molecular signatures that explain their different influence on heteromerization. The bulky tricyclic moiety of clozapine displaces TM 5 of D2R, inducing a clash with A2AR, while the extended binding mode of haloperidol and aripiprazole stabilizes a specific conformation of the second extracellular loop of D2R that enhances the interaction with A2AR. It is proposed that an increase in A2AR-D2R heteromerization is involved in the extrapyramidal side effects (EPS) of antipsychotics and that the specific clozapine-mediated destabilization of A2AR-D2R heteromerization can explain its low EPS liability.
Collapse
Affiliation(s)
- Marta Valle-León
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907 L'Hospitalet de Llobregat, Spain; Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, 08907 L'Hospitalet de Llobregat, Spain
| | - Nil Casajuana-Martin
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Universitat Autònoma Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Claudia Llinas Del Torrent
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Universitat Autònoma Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Josep Argerich
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907 L'Hospitalet de Llobregat, Spain; Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, 08907 L'Hospitalet de Llobregat, Spain
| | - Laura Gómez-Acero
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907 L'Hospitalet de Llobregat, Spain; Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, 08907 L'Hospitalet de Llobregat, Spain
| | - Kristoffer Sahlholm
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907 L'Hospitalet de Llobregat, Spain; Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, 08907 L'Hospitalet de Llobregat, Spain; Department of Integrative Medical Biology, Wallenberg Centre for Molecular Medicine, Umeå University, 907 87 Umeå, Sweden; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.
| | - Leonardo Pardo
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Universitat Autònoma Barcelona, Bellaterra, 08193 Barcelona, Spain.
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907 L'Hospitalet de Llobregat, Spain; Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, 08907 L'Hospitalet de Llobregat, Spain.
| |
Collapse
|
50
|
Huang SK, Picard LP, Rahmatullah RSM, Pandey A, Van Eps N, Sunahara RK, Ernst OP, Sljoka A, Prosser RS. Mapping the conformational landscape of the stimulatory heterotrimeric G protein. Nat Struct Mol Biol 2023; 30:502-511. [PMID: 36997760 DOI: 10.1038/s41594-023-00957-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 02/24/2023] [Indexed: 04/01/2023]
Abstract
Heterotrimeric G proteins serve as membrane-associated signaling hubs, in concert with their cognate G-protein-coupled receptors. Fluorine nuclear magnetic resonance spectroscopy was employed to monitor the conformational equilibria of the human stimulatory G-protein α subunit (Gsα) alone, in the intact Gsαβ1γ2 heterotrimer or in complex with membrane-embedded human adenosine A2A receptor (A2AR). The results reveal a concerted equilibrium that is strongly affected by nucleotide and interactions with the βγ subunit, the lipid bilayer and A2AR. The α1 helix of Gsα exhibits significant intermediate timescale dynamics. The α4β6 loop and α5 helix undergo membrane/receptor interactions and order-disorder transitions respectively, associated with G-protein activation. The αN helix adopts a key functional state that serves as an allosteric conduit between the βγ subunit and receptor, while a significant fraction of the ensemble remains tethered to the membrane and receptor upon activation.
Collapse
Affiliation(s)
- Shuya Kate Huang
- Department of Chemistry, University of Toronto, UTM, Mississauga, Ontario, Canada
| | | | - Rima S M Rahmatullah
- Department of Chemistry, University of Toronto, UTM, Mississauga, Ontario, Canada
| | - Aditya Pandey
- Department of Chemistry, University of Toronto, UTM, Mississauga, Ontario, Canada
| | - Ned Van Eps
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Roger K Sunahara
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Adnan Sljoka
- RIKEN Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan.
| | - R Scott Prosser
- Department of Chemistry, University of Toronto, UTM, Mississauga, Ontario, Canada.
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|