1
|
Zeitzschel N, Lechner SG. The activation thresholds and inactivation kinetics of poking-evoked PIEZO1 and PIEZO2 currents are sensitive to subtle variations in mechanical stimulation parameters. Channels (Austin) 2024; 18:2355123. [PMID: 38754025 DOI: 10.1080/19336950.2024.2355123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
PIEZO1 and PIEZO2 are mechanically activated ion channels that confer mechanosensitivity to various cell types. PIEZO channels are commonly examined using the so-called poking technique, where currents are recorded in the whole-cell configuration of the patch-clamp technique, while the cell surface is mechanically stimulated with a small fire-polished patch pipette. Currently, there is no gold standard for mechanical stimulation, and therefore, stimulation protocols differ significantly between laboratories with regard to stimulation velocity, angle, and size of the stimulation probe. Here, we systematically examined the impact of variations in these three stimulation parameters on the outcomes of patch-clamp recordings of PIEZO1 and PIEZO2. We show that the inactivation kinetics of PIEZO1 and, to a lesser extent, of PIEZO2 change with the angle at which the probe that is used for mechanical stimulation is positioned and, even more prominently, with the size of its tip. Moreover, we found that the mechanical activation threshold of PIEZO2, but not PIEZO1, decreased with increasing stimulation speeds. Thus, our data show that two key outcome parameters of PIEZO-related patch-clamp studies are significantly affected by common variations in the mechanical stimulation protocols, which calls for caution when comparing data from different laboratories and highlights the need to establish a gold standard for mechanical stimulation to improve comparability and reproducibility of data obtained with the poking technique.
Collapse
Affiliation(s)
- Nadja Zeitzschel
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan G Lechner
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
Xiao B. Mechanisms of mechanotransduction and physiological roles of PIEZO channels. Nat Rev Mol Cell Biol 2024; 25:886-903. [PMID: 39251883 DOI: 10.1038/s41580-024-00773-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2024] [Indexed: 09/11/2024]
Abstract
Mechanical force is an essential physical element that contributes to the formation and function of life. The discovery of the evolutionarily conserved PIEZO family, including PIEZO1 and PIEZO2 in mammals, as bona fide mechanically activated cation channels has transformed our understanding of how mechanical forces are sensed and transduced into biological activities. In this Review, I discuss recent structure-function studies that have illustrated how PIEZO1 and PIEZO2 adopt their unique structural design and curvature-based gating dynamics, enabling their function as dedicated mechanotransduction channels with high mechanosensitivity and selective cation conductivity. I also discuss our current understanding of the physiological and pathophysiological roles mediated by PIEZO channels, including PIEZO1-dependent regulation of development and functional homeostasis and PIEZO2-dominated mechanosensation of touch, tactile pain, proprioception and interoception of mechanical states of internal organs. Despite the remarkable progress in PIEZO research, this Review also highlights outstanding questions in the field.
Collapse
Affiliation(s)
- Bailong Xiao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.
- Beijing Frontier Research Center of Biological Structure, Tsinghua University, Beijing, China.
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
N'Guetta PEY, McLarnon SR, Tassou A, Geron M, Shirvan S, Hill RZ, Scherrer G, O'Brien LL. Comprehensive mapping of sensory and sympathetic innervation of the developing kidney. Cell Rep 2024; 43:114860. [PMID: 39412983 DOI: 10.1016/j.celrep.2024.114860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/23/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024] Open
Abstract
The kidneys act as finely tuned sensors to maintain physiological homeostasis. Both sympathetic and sensory nerves modulate kidney function through precise neural control. However, how the kidneys are innervated during development to support function remains elusive. Using light-sheet and confocal microscopy, we generated anatomical maps of kidney innervation across development. Kidney innervation commences on embryonic day 13.5 (E13.5) as network growth aligns with arterial differentiation. Fibers are synapsin I+, highlighting ongoing axonogenesis and potential signaling crosstalk. By E17.5, axons associate with nephrons, and the network continues to expand postnatally. CGRP+, substance P+, TRPV1+, and PIEZO2+ sensory fibers and TH+ sympathetic fibers innervate the developing kidney. TH+ and PIEZO2+ axons similarly innervate the human kidney, following the arterial tree to reach targets. Retrograde tracing revealed the primary dorsal root ganglia, T10-L2, from which sensory neurons project to the kidneys. Together, our findings elucidate the temporality and neuronal diversity of kidney innervation.
Collapse
Affiliation(s)
- Pierre-Emmanuel Y N'Guetta
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sarah R McLarnon
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Adrien Tassou
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matan Geron
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sepenta Shirvan
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rose Z Hill
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lori L O'Brien
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Kidney Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
4
|
Sammons M, Popescu MC, Chi J, Liberles SD, Gogolla N, Rolls A. Brain-body physiology: Local, reflex, and central communication. Cell 2024; 187:5877-5890. [PMID: 39423806 DOI: 10.1016/j.cell.2024.08.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/25/2024] [Accepted: 08/26/2024] [Indexed: 10/21/2024]
Abstract
Behavior is tightly synchronized with bodily physiology. Internal needs from the body drive behavior selection, while optimal behavior performance requires a coordinated physiological response. Internal state is dynamically represented by the nervous system to influence mood and emotion, and body-brain signals also direct responses to external sensory cues, enabling the organism to adapt and pursue its goals within an ever-changing environment. In this review, we examine the anatomy and function of the brain-body connection, manifested across local, reflex, and central regulation levels. We explore these hierarchical loops in the context of the immune system, specifically through the lens of immunoception, and discuss the impact of its dysregulation on human health.
Collapse
Affiliation(s)
- Megan Sammons
- Rappaport School of Medicine, Technion, Haifa, Israel
| | - Miranda C Popescu
- Emotion Research Department, Max Planck Institute of Psychiatry, Munich, Germany; International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Jingyi Chi
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Stephen D Liberles
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Nadine Gogolla
- Emotion Research Department, Max Planck Institute of Psychiatry, Munich, Germany
| | - Asya Rolls
- Rappaport School of Medicine, Technion, Haifa, Israel.
| |
Collapse
|
5
|
Wang Z, Song K, Kim BS, Manion J. Sensory neuroimmune interactions at the barrier. Mucosal Immunol 2024:S1933-0219(24)00104-1. [PMID: 39374664 DOI: 10.1016/j.mucimm.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Epithelial barriers such as the skin, lung, and gut, in addition to having unique physiologic functions, are designed to preserve tissue homeostasis upon challenge with a variety of allergens, irritants, or pathogens. Both the innate and adaptive immune systems play a critical role in responding to epithelial cues triggered by environmental stimuli. However, the mechanisms by which organs sense and coordinate complex epithelial, stromal, and immune responses have remained a mystery. Our increasing understanding of the anatomic and functional characteristics of the sensory nervous system is greatly advancing a new field of peripheral neuroimmunology and subsequently changing our understanding of mucosal immunology. Herein, we detail how sensory biology is informing mucosal neuroimmunology, even beyond neuroimmune interactions seen within the central and autonomic nervous systems.
Collapse
Affiliation(s)
- Zhen Wang
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA; Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Allen Discovery Center for Neuroimmune Interactions, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
| | - Keaton Song
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Allen Discovery Center for Neuroimmune Interactions, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brian S Kim
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA; Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Allen Discovery Center for Neuroimmune Interactions, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA.
| | - John Manion
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Department of Urology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Surgery, Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Nagase T, Nagase M. Piezo ion channels: long-sought-after mechanosensors mediating hypertension and hypertensive nephropathy. Hypertens Res 2024; 47:2786-2799. [PMID: 39103520 DOI: 10.1038/s41440-024-01820-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 08/07/2024]
Abstract
Recent advances in mechanobiology and the discovery of mechanosensitive ion channels have opened a new era of research on hypertension and related diseases. Piezo1 and Piezo2, first reported in 2010, are regarded as bona fide mechanochannels that mediate various biological and pathophysiological phenomena in multiple tissues and organs. For example, Piezo channels have pivotal roles in blood pressure control, triggering shear stress-induced nitric oxide synthesis and vasodilation, regulating baroreflex in the carotid sinus and aorta, and releasing renin from renal juxtaglomerular cells. Herein, we provide an overview of recent literature on the roles of Piezo channels in the pathogenesis of hypertension and related kidney damage, including our experimental data on the involvement of Piezo1 in podocyte injury and that of Piezo2 in renin expression and renal fibrosis in animal models of hypertensive nephropathy. The mechanosensitive ion channels Piezo1 and Piezo2 play various roles in the pathogenesis of systemic hypertension by acting on vascular endothelial cells, baroreceptors in the carotid artery and aorta, and the juxtaglomerular apparatus. Piezo channels also contribute to hypertensive nephropathy by acting on mesangial cells, podocytes, and perivascular mesenchymal cells.
Collapse
Affiliation(s)
- Takashi Nagase
- Kunitachi Aoyagien Tachikawa Geriatric Health Services Facility, Tokyo, Japan
| | - Miki Nagase
- Department of Anatomy, Kyorin University School of Medicine, Tokyo, Japan.
| |
Collapse
|
7
|
Hamed YMF, Ghosh B, Marshall KL. PIEZO ion channels: force sensors of the interoceptive nervous system. J Physiol 2024; 602:4777-4788. [PMID: 38456626 DOI: 10.1113/jp284077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/08/2024] [Indexed: 03/09/2024] Open
Abstract
Many organs are designed to move: the heart pumps each second, the gastrointestinal tract squeezes and churns to digest food, and we contract and relax skeletal muscles to move our bodies. Sensory neurons of the peripheral nervous system detect signals from bodily tissues, including the forces generated by these movements, to control physiology. The processing of these internal signals is called interoception, but this is a broad term that includes a wide variety of both chemical and mechanical sensory processes. Mechanical senses are understudied, but rapid progress has been made in the last decade, thanks in part to the discovery of the mechanosensory PIEZO ion channels (Coste et al., 2010). The role of these mechanosensors within the interoceptive nervous system is the focus of this review. In defining the transduction molecules that govern mechanical interoception, we will have a better grasp of how these signals drive physiology.
Collapse
Affiliation(s)
- Yasmeen M F Hamed
- Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, Texas, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Britya Ghosh
- Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, Texas, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Kara L Marshall
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, USA
- Lead contact
| |
Collapse
|
8
|
Zhao X, Cai Z, Luo Y, Lin Z, Wang J. Overexpression of CGRP receptor attenuates tendon graft degeneration in anterior cruciate ligament reconstruction. J Orthop Res 2024. [PMID: 39318262 DOI: 10.1002/jor.25978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
Cell apoptosis or necrosis, extracellular matrix loss, and excessive inflammation may induce tendon graft degeneration. The impairment in the regeneration capability of nerve fibers and blood vessels may be the critical cause. Calcitonin gene-related peptide (CGRP), exhibiting a short half-life, favors cell proliferation, nerve fiber regeneration and angiogenesis. We aimed to investigate the effects of CGRP receptor-mediated signaling on tendon graft integrity and study if the modulation pathways are ascribed to cell proliferation, nerve fiber and blood vessel regeneration. A total of three groups in mice with ACL reconstruction were established: the control group (PBS treatment), the adenovirus vectors expressing CGRP receptor (CALCRL) treated group (Adv-Calcrl treatment), and the adenovirus vectors carrying shRNA targeting Calcrl treated group (Adv-shCalcrl treatment). The histological assessment indicated the Adv-Calcrl treatment was favored while the Adv-shCalcrl significantly impaired tendon graft integrity. TUNEL staining revealed a significant decreased number of apoptotic cells in the Adv-Calcrl group relative to the control group and the adv-shCalcrl group. Compared to the control group and the Adv-shCalcrl group, the Adv-Calcrl group showed significantly enhanced proliferation of nestin positive cells. Of note, the Adv-Calcrl treatment significantly increased EMCN expression at the tendon graft relative to the control and the Adv-shCalcrl groups, which may be ascribed to attenuation of the Hippo signaling pathway. Importantly, the Adv-Calcrl treatment significantly increased sensory nerve fibers and also PIEZO2 levels. Our results demonstrate the activation of CGRP receptor-mediated signaling attenuated tendon graft degeneration, which was ascribed to enhanced proliferation of Nestin positive cells, angiogenesis, and nerve fiber outgrowth.
Collapse
Affiliation(s)
- Xibang Zhao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Zhaoji Cai
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Ying Luo
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Zhousheng Lin
- Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Jiali Wang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
9
|
Zhang T, Bi C, Li Y, Zhao L, Cui Y, Ouyang K, Xiao B. Phosphorylation of Piezo1 at a single residue, serine-1612, regulates its mechanosensitivity and in vivo mechanotransduction function. Neuron 2024:S0896-6273(24)00581-6. [PMID: 39270653 DOI: 10.1016/j.neuron.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024]
Abstract
Piezo1 is a mechanically activated cation channel that converts mechanical force into diverse physiological processes. Owing to its large protein size of more than 2,500 amino acids and complex 38-transmembrane helix topology, how Piezo1 is post-translationally modified for regulating its in vivo mechanotransduction functions remains largely unexplored. Here, we show that PKA activation potentiates the mechanosensitivity and slows the inactivation kinetics of mouse Piezo1 and identify the major phosphorylation site, serine-1612 (S1612), that also responds to PKC activation and shear stress. Mutating S1612 abolishes PKA and PKC regulation of Piezo1 activities. Primary endothelial cells derived from the Piezo1-S1612A knockin mice lost PKA- and PKC-dependent phosphorylation and functional potentiation of Piezo1. The mutant mice show activity-dependent elevation of blood pressure and compromised exercise endurance, resembling endothelial-specific Piezo1 knockout mice. Taken together, we identify the major PKA and PKC phosphorylation site in Piezo1 and demonstrate its contribution to Piezo1-mediated physiological functions.
Collapse
Affiliation(s)
- Tingxin Zhang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Beijing Frontier Research Center of Biological, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Cheng Bi
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Beijing Frontier Research Center of Biological, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yiran Li
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Beijing Frontier Research Center of Biological, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Lingyun Zhao
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yaxiong Cui
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Beijing Frontier Research Center of Biological, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China.
| | - Bailong Xiao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Beijing Frontier Research Center of Biological, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
10
|
Bellucci CHS, Hemerly TS, Albuquerque LRTD, Pimenta R, Schreiter VG, Reis STD, Jr JDB, Leite KRM, Antunes A, Boopathi E, Nahas WC, Gomes CM. Downregulation of PIEZO2 in the Detrusor of Men With Bladder Outlet Obstruction and Its Association With Urinary Retention and Decreased Bladder Compliance. Int Neurourol J 2024; 28:225-231. [PMID: 39363413 PMCID: PMC11450243 DOI: 10.5213/inj.2448298.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/26/2024] [Indexed: 10/05/2024] Open
Abstract
PURPOSE Recent research has highlighted the mechanotransducer PIEZO2 as a crucial factor in lower urinary tract function, demonstrating associations with bladder compliance (BC), bladder wall thickening, and elevated bladder pressure. We explored the hypothesis that PIEZO2 expression may be associated with lower urinary tract dysfunction in men with bladder outlet obstruction (BOO) due to benign prostatic hyperplasia (BPH). METHODS The study included a consecutive series of patients undergoing open prostatectomy for BPH at our hospital between September 2014 and January 2016. All participants underwent comprehensive preoperative evaluations, including urodynamic assessments. During prostatectomy, a full-thickness fragment of the bladder wall was obtained for subsequent PIEZO2 gene expression analysis. Cadaveric organ donors served as the control group. RESULTS PIEZO2 expression was downregulated in the detrusor muscle of men with BPH compared to the control group. Among patients with BPH, those experiencing urinary retention and requiring an indwelling catheter exhibited significantly lower PIEZO2 messenger RNA (mRNA) expression than patients capable of spontaneous voiding. PIEZO2 mRNA expression was similar in men with and without detrusor overactivity. Additionally, a positive correlation was found between PIEZO2 mRNA expression levels and BC. CONCLUSION Our findings indicate that PIEZO2 is downregulated in the detrusor muscle of men with BPH, particularly in those experiencing urinary retention and those with reduced BC. These results suggest a potential role for PIEZO2 in BOOinduced bladder dysfunction. Further research is required to clarify the role of PIEZO mechanotransducers in the bladder and to explore their therapeutic implications.
Collapse
Affiliation(s)
| | - Thiago Souto Hemerly
- Division of Urology, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | | | - Ruan Pimenta
- Laboratory of Medical Investigation (LIM55), University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | | | - Sabrina Thalita Dos Reis
- Laboratory of Medical Investigation (LIM55), University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Jose de Bessa Jr
- Division of Urology, State University of Feira de Santana, Feira de Santana, Brazil
| | - Katia Ramos Moreira Leite
- Laboratory of Medical Investigation (LIM55), University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Alberto Antunes
- Division of Urology, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Ettickan Boopathi
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - William C Nahas
- Division of Urology, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | | |
Collapse
|
11
|
Ren S, Wang K, Jia X, Wang J, Xu J, Yang B, Tian Z, Xia R, Yu D, Jia Y, Yan X. Fibrous MXene Synapse-Based Biomimetic Tactile Nervous System for Multimodal Perception and Memory. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400165. [PMID: 38329189 DOI: 10.1002/smll.202400165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/19/2024] [Indexed: 02/09/2024]
Abstract
Biomimetic tactile nervous system (BTNS) inspired by organisms has motivated extensive attention in wearable fields due to its biological similarity, low power consumption, and perception-memory integration. Though many works about planar-shape BTNS are developed, few researches could be found in the field of fibrous BTNS (FBTNS) which is superior in terms of strong flexibility, weavability, and high-density integration. Herein, a FBTNS with multimodal sensibility and memory is proposed, by fusing the fibrous poly lactic acid (PLA)/Ag/MXene/Pt artificial synapse and MXene/EMIMBF4 ionic conductive elastomer. The proposed FBTNS can successfully perceive external stimuli and generate synaptic responses. It also exhibits a short response time (23 ms) and low set power consumption (17 nW). Additionally, the proposed device demonstrates outstanding synaptic plasticity under both mechanical and electrical stimuli, which can simulate the memory function. Simultaneously, the fibrous devices are embedded into textiles to construct tactile arrays, by which biomimetic tactile perception and temporary memory functions are successfully implemented. This work demonstrates the as-prepared FBTNS can generate biomimetic synaptic signals to serve as artificial feeling signals, it is thought that it could offer a fabric electronic unit integrating with perception and memory for Human-Computer interaction, and has great potential to build lightweight and comfortable Brain-Computer interfaces.
Collapse
Affiliation(s)
- Shuhui Ren
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, P. R. China
| | - Kaiyang Wang
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, P. R. China
| | - Xiaotong Jia
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, P. R. China
| | - Jiuyang Wang
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, P. R. China
| | - Jikang Xu
- Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, College of Electron and Information Engineering, Hebei University, Baoding, 071002, P. R. China
| | - Biao Yang
- Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, College of Electron and Information Engineering, Hebei University, Baoding, 071002, P. R. China
| | - Ziwei Tian
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, P. R. China
| | - Ruoxuan Xia
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, P. R. China
| | - Ding Yu
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, P. R. China
| | - Yunfang Jia
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, P. R. China
| | - Xiaobing Yan
- Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, College of Electron and Information Engineering, Hebei University, Baoding, 071002, P. R. China
| |
Collapse
|
12
|
Liu J, Wang C, Wang W, Ding N, Liu J, Liu H, Wen J, Sun W, Zu S, Zhang X, Yan J. Activation of Piezo1 or TRPV2 channels inhibits human ureteral contractions via NO release from the mucosa. Front Pharmacol 2024; 15:1410565. [PMID: 38989142 PMCID: PMC11233528 DOI: 10.3389/fphar.2024.1410565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/28/2024] [Indexed: 07/12/2024] Open
Abstract
We aimed to investigate the expression and motor modulatory roles of several mechano-sensitive channels (MSCs) in human ureter. Human proximal ureters were obtained from eighty patients subjected to nephrectomy. Expression of MSCs at mRNA, protein and functional levels were examined. Contractions of longitudinal ureter strips were recorded in organ bath. A fluorescent probe Diaminofluoresceins was used to measure nitric oxide (NO). RT-PCR analyses revealed predominant expression of Piezo1 and TRPV2 mRNA in intact ureter and mucosa. Immunofluorescence assays indicate proteins of MSCs (Piezo1/Piezo2, TRPV2 and TRPV4) were mainly distributed in the urothelium. Ca2+ imaging confirmed functional expression of TRPV2, TRPV4 and Piezo1 in cultured urothelial cells. Specific agonists of Piezo1 (Yoda1, 3-300 μM) and TRPV2 (cannabidiol, 3-300 μM) attenuated the frequency of ureteral contractions in a dose-dependent manner while the TRPV4 agonist GSK1016790A (100 nM-1 μM) exerted no effect. The inhibitory effects of Piezo1 and TRPV2 agonists were significantly blocked by the selective antagonists (Dooku 1 for Piezo1, Tranilast for TRPV2), removal of the mucosa, and pretreatment with NO synthase inhibitor L-NAME (10 μM). Yoda1 (30 μM) and cannabidiol (50 μM) increased production of NO in cultured urothelial cells. Our results suggest that activation of Piezo1 or TRPV2 evokes NO production and release from mucosa that may mediate mechanical stimulus-induced reduction of ureter contractions. Our findings support the idea that targeting Piezo1 and TRPV2 channels may be a promising pharmacological strategy for ureter stone passage or colic pain relief.
Collapse
Affiliation(s)
- Jianing Liu
- Department of Kidney Transplantation, Multidisciplinary Innovation Center for Nephrology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Cong Wang
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Wenyu Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ning Ding
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Jiaxin Liu
- Department of Kidney Transplantation, Multidisciplinary Innovation Center for Nephrology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Hanwen Liu
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Jiliang Wen
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Wendong Sun
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Shulu Zu
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Xiulin Zhang
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Jieke Yan
- Department of Kidney Transplantation, Multidisciplinary Innovation Center for Nephrology, The Second Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
13
|
Bhuiyan SA, Xu M, Yang L, Semizoglou E, Bhatia P, Pantaleo KI, Tochitsky I, Jain A, Erdogan B, Blair S, Cat V, Mwirigi JM, Sankaranarayanan I, Tavares-Ferreira D, Green U, McIlvried LA, Copits BA, Bertels Z, Del Rosario JS, Widman AJ, Slivicki RA, Yi J, Sharif-Naeini R, Woolf CJ, Lennerz JK, Whited JL, Price TJ, Robert W Gereau Iv, Renthal W. Harmonized cross-species cell atlases of trigeminal and dorsal root ganglia. SCIENCE ADVANCES 2024; 10:eadj9173. [PMID: 38905344 DOI: 10.1126/sciadv.adj9173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 05/16/2024] [Indexed: 06/23/2024]
Abstract
Sensory neurons in the dorsal root ganglion (DRG) and trigeminal ganglion (TG) are specialized to detect and transduce diverse environmental stimuli to the central nervous system. Single-cell RNA sequencing has provided insights into the diversity of sensory ganglia cell types in rodents, nonhuman primates, and humans, but it remains difficult to compare cell types across studies and species. We thus constructed harmonized atlases of the DRG and TG that describe and facilitate comparison of 18 neuronal and 11 non-neuronal cell types across six species and 31 datasets. We then performed single-cell/nucleus RNA sequencing of DRG from both human and the highly regenerative axolotl and found that the harmonized atlas also improves cell type annotation, particularly of sparse neuronal subtypes. We observed that the transcriptomes of sensory neuron subtypes are broadly similar across vertebrates, but the expression of functionally important neuropeptides and channels can vary notably. The resources presented here can guide future studies in comparative transcriptomics, simplify cell-type nomenclature differences across studies, and help prioritize targets for future analgesic development.
Collapse
Affiliation(s)
- Shamsuddin A Bhuiyan
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Mengyi Xu
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Alan Edwards Center for Research on Pain and Department of Physiology, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Lite Yang
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Evangelia Semizoglou
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Parth Bhatia
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Katerina I Pantaleo
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ivan Tochitsky
- F.M. Kirby Neurobiology Center and Department of Neurobiology, Boston Children's Hospital and Harvard Medical School, 3 Blackfan Cir., Boston, MA 02115, USA
| | - Aakanksha Jain
- F.M. Kirby Neurobiology Center and Department of Neurobiology, Boston Children's Hospital and Harvard Medical School, 3 Blackfan Cir., Boston, MA 02115, USA
| | - Burcu Erdogan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Steven Blair
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Victor Cat
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Juliet M Mwirigi
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Ishwarya Sankaranarayanan
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Diana Tavares-Ferreira
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Ursula Green
- Department of Pathology, Center for Integrated Diagnostics, Massachussetts General Hospital and Havard Medical School, Boston, MA 02114, USA
| | - Lisa A McIlvried
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Bryan A Copits
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Zachariah Bertels
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - John S Del Rosario
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Allie J Widman
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Richard A Slivicki
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Jiwon Yi
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Reza Sharif-Naeini
- Alan Edwards Center for Research on Pain and Department of Physiology, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center and Department of Neurobiology, Boston Children's Hospital and Harvard Medical School, 3 Blackfan Cir., Boston, MA 02115, USA
| | - Jochen K Lennerz
- Department of Pathology, Center for Integrated Diagnostics, Massachussetts General Hospital and Havard Medical School, Boston, MA 02114, USA
| | - Jessica L Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Robert W Gereau Iv
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - William Renthal
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
14
|
Chen ZL, Lin J, Li Q, Zhang X, Song Y, Li H, Huang WH, Xu J. Microelectrochemical Sensor Reveals Tunneling Nanotube-Mediated Intercellular Communication of Endothelial Mechanotransduction. Anal Chem 2024; 96:9659-9665. [PMID: 38798234 DOI: 10.1021/acs.analchem.4c01542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The intercellular communication of mechanotransduction has a significant impact on various cellular processes. Tunneling nanotubes (TNTs) have been documented to possess the capability of transmitting mechanical stimulation between cells, thereby triggering an influx of Ca2+ ions. However, the related kinetic information on the TNT-mediated intercellular mechanotransduction communication is still poorly explored. Herein, we developed a classic and sensitive Pt-functionalized carbon fiber microelectrochemical sensor (Pt/CF) to study the intercellular communication of endothelial mechanotransduction through TNTs. The experimental findings demonstrate that the transmission of mechanical stimulation from stimulated human umbilical vein endothelial cells (HUVECs) to recipient HUVECs connected by TNTs occurred quickly (<100 ms) and effectively promoted nitric oxide (NO) production in the recipient HUVECs. The kinetic profile of NO release exhibited remarkable similarity in stimulated and recipient HUVECs. But the production of NO in the recipient cell is significantly attenuated (16.3%) compared to that in the stimulated cell, indicating a transfer efficiency of approximately 16.3% for TNTs. This study unveils insights into the TNT-mediated intercellular communication of mechanotransduction.
Collapse
Affiliation(s)
- Zhi-Liang Chen
- School of Pharmacy, Shaoyang University, Shaoyang 422000, P. R China
| | - Jiamei Lin
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, P. R. China
| | - Qianming Li
- Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, P. R. China
| | - Xinglei Zhang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, P. R. China
| | - Yonggui Song
- Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, P. R. China
| | - Hui Li
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, P. R. China
| | - Wei-Hua Huang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Jiaquan Xu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, P. R. China
| |
Collapse
|
15
|
Yuan X, Zhao X, Wang W, Li C. Mechanosensing by Piezo1 and its implications in the kidney. Acta Physiol (Oxf) 2024; 240:e14152. [PMID: 38682304 DOI: 10.1111/apha.14152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/27/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
Piezo1 is an essential mechanosensitive transduction ion channel in mammals. Its unique structure makes it capable of converting mechanical cues into electrical and biological signals, modulating biological and (patho)physiological processes in a wide variety of cells. There is increasing evidence demonstrating that the piezo1 channel plays a vital role in renal physiology and disease conditions. This review summarizes the current evidence on the structure and properties of Piezo1, gating modulation, and pharmacological characteristics, with special focus on the distribution and (patho)physiological significance of Piezo1 in the kidney, which may provide insights into potential treatment targets for renal diseases involving this ion channel.
Collapse
Affiliation(s)
- Xi Yuan
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaoduo Zhao
- Department of Pathology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Weidong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chunling Li
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
16
|
Pratt SJP, Plunkett CM, Kuzu G, Trinh T, Barbara J, Choconta P, Quackenbush D, Huynh T, Smith A, Barnes SW, New J, Pierce J, Walker JR, Mainquist J, King FJ, Elliott J, Hammack S, Decker RS. A high throughput cell stretch device for investigating mechanobiology in vitro. APL Bioeng 2024; 8:026129. [PMID: 38938688 PMCID: PMC11210978 DOI: 10.1063/5.0206852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024] Open
Abstract
Mechanobiology is a rapidly advancing field, with growing evidence that mechanical signaling plays key roles in health and disease. To accelerate mechanobiology-based drug discovery, novel in vitro systems are needed that enable mechanical perturbation of cells in a format amenable to high throughput screening. Here, both a mechanical stretch device and 192-well silicone flexible linear stretch plate were designed and fabricated to meet high throughput technology needs for cell stretch-based applications. To demonstrate the utility of the stretch plate in automation and screening, cell dispensing, liquid handling, high content imaging, and high throughput sequencing platforms were employed. Using this system, an assay was developed as a biological validation and proof-of-concept readout for screening. A mechano-transcriptional stretch response was characterized using focused gene expression profiling measured by RNA-mediated oligonucleotide Annealing, Selection, and Ligation with Next-Gen sequencing. Using articular chondrocytes, a gene expression signature containing stretch responsive genes relevant to cartilage homeostasis and disease was identified. The possibility for integration of other stretch sensitive cell types (e.g., cardiovascular, airway, bladder, gut, and musculoskeletal), in combination with alternative phenotypic readouts (e.g., protein expression, proliferation, or spatial alignment), broadens the scope of high throughput stretch and allows for wider adoption by the research community. This high throughput mechanical stress device fills an unmet need in phenotypic screening technology to support drug discovery in mechanobiology-based disease areas.
Collapse
Affiliation(s)
- Stephen J. P. Pratt
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | | | - Guray Kuzu
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Ton Trinh
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Joshua Barbara
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Paula Choconta
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Doug Quackenbush
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Truc Huynh
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Anders Smith
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - S. Whitney Barnes
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Joel New
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - James Pierce
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - John R. Walker
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - James Mainquist
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Frederick J. King
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Jimmy Elliott
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Scott Hammack
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Rebekah S. Decker
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| |
Collapse
|
17
|
Toma K, Zhao M, Zhang S, Wang F, Graham HK, Zou J, Modgil S, Shang WH, Tsai NY, Cai Z, Liu L, Hong G, Kriegstein AR, Hu Y, Körbelin J, Zhang R, Liao YJ, Kim TN, Ye X, Duan X. Perivascular neurons instruct 3D vascular lattice formation via neurovascular contact. Cell 2024; 187:2767-2784.e23. [PMID: 38733989 PMCID: PMC11223890 DOI: 10.1016/j.cell.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/15/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024]
Abstract
The vasculature of the central nervous system is a 3D lattice composed of laminar vascular beds interconnected by penetrating vessels. The mechanisms controlling 3D lattice network formation remain largely unknown. Combining viral labeling, genetic marking, and single-cell profiling in the mouse retina, we discovered a perivascular neuronal subset, annotated as Fam19a4/Nts-positive retinal ganglion cells (Fam19a4/Nts-RGCs), directly contacting the vasculature with perisomatic endfeet. Developmental ablation of Fam19a4/Nts-RGCs led to disoriented growth of penetrating vessels near the ganglion cell layer (GCL), leading to a disorganized 3D vascular lattice. We identified enriched PIEZO2 expression in Fam19a4/Nts-RGCs. Piezo2 loss from all retinal neurons or Fam19a4/Nts-RGCs abolished the direct neurovascular contacts and phenocopied the Fam19a4/Nts-RGC ablation deficits. The defective vascular structure led to reduced capillary perfusion and sensitized the retina to ischemic insults. Furthermore, we uncovered a Piezo2-dependent perivascular granule cell subset for cerebellar vascular patterning, indicating neuronal Piezo2-dependent 3D vascular patterning in the brain.
Collapse
Affiliation(s)
- Kenichi Toma
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Mengya Zhao
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Shaobo Zhang
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Fei Wang
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Hannah K Graham
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Jun Zou
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA, USA
| | - Shweta Modgil
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Wenhao H Shang
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Nicole Y Tsai
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Zhishun Cai
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Liping Liu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Guiying Hong
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Arnold R Kriegstein
- Department of Neurology and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Jakob Körbelin
- ENDomics Lab, Department of Oncology, Hematology and Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ruobing Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Yaping Joyce Liao
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Tyson N Kim
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Xin Ye
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA, USA.
| | - Xin Duan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA; Department of Physiology and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
18
|
Zhang Z, Liu X, Hu B, Chen K, Yu Y, Sun C, Zhu D, Bai H, Palli SR, Tan A. The mechanoreceptor Piezo is required for spermatogenesis in Bombyx mori. BMC Biol 2024; 22:118. [PMID: 38769528 PMCID: PMC11106986 DOI: 10.1186/s12915-024-01916-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/10/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND The animal sperm shows high diversity in morphology, components, and motility. In the lepidopteran model insect, the silkworm Bombyx mori, two types of sperm, including nucleate fertile eupyrene sperm and anucleate unfertile apyrene sperm, are generated. Apyrene sperm assists fertilization by facilitating the migration of eupyrene spermatozoa from the bursa copulatrix to the spermatheca. During spermatogenesis, eupyrene sperm bundles extrude the cytoplasm by peristaltic squeezing, while the nuclei of the apyrene sperm bundles are discarded with the same process, forming matured sperm. RESULTS In this study, we describe that a mechanoreceptor BmPiezo, the sole Piezo ortholog in B. mori, plays key roles in larval feeding behavior and, more importantly, is essential for eupyrene spermatogenesis and male fertility. CRISPR/Cas9-mediated loss of BmPiezo function decreases larval appetite and subsequent body size and weight. Immunofluorescence analyses reveal that BmPiezo is intensely localized in the inflatable point of eupyrene sperm bundle induced by peristaltic squeezing. BmPiezo is also enriched in the middle region of apyrene sperm bundle before peristaltic squeezing. Cytological analyses of dimorphic sperm reveal developmental arrest of eupyrene sperm bundles in BmPiezo mutants, while the apyrene spermatogenesis is not affected. RNA-seq analysis and q-RT-PCR analyses demonstrate that eupyrene spermatogenic arrest is associated with the dysregulation of the actin cytoskeleton. Moreover, we show that the deformed eupyrene sperm bundles fail to migrate from the testes, resulting in male infertility due to the absence of eupyrene sperm in the bursa copulatrix and spermatheca. CONCLUSIONS In conclusion, our studies thus uncover a new role for Piezo in regulating spermatogenesis and male fertility in insects.
Collapse
Affiliation(s)
- Zhongjie Zhang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China.
| | - Xiaojing Liu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Bo Hu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Kai Chen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Ye Yu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Chenxin Sun
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Dalin Zhu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Subba Reddy Palli
- Department of Entomology, University of Kentucky, Lexington, KY, 40546-0091, USA
| | - Anjiang Tan
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China.
| |
Collapse
|
19
|
Zeng XX, Wu Y. Strategies of Bladder Reconstruction after Partial or Radical Cystectomy for Bladder Cancer. Mol Biotechnol 2024:10.1007/s12033-024-01163-0. [PMID: 38761327 DOI: 10.1007/s12033-024-01163-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/03/2024] [Indexed: 05/20/2024]
Abstract
The standard strategy is to reconstruct bladder by use of bowel segments as material in bladder cancer with radical cystectomy clinically. Both natural derived and non natural derived materials are investigated in bladder reconstruction. Studies on mechanical bladder, bladder transplantation and bladder xenotransplantation are currently limited although heart and kidney transplantation or xenotransplantation are successful to a certain extent, and bone prostheses are applied in clinical contexts. Earlier limited number of studies associated with bladder xenograft from animals to humans were not particular promising in results. Although there have been investigations on pig to human cardiac xenotransplantation with CRISPR Cas9 gene editing, the CRISPR Cas technique is not yet widely researched in porcine bladder related gene editing for the potential of human bladder replacement for bladder cancer. The advancement of technologies such as gene editing, bioprinting and induced pluripotent stem cells allow further research into partial or whole bladder replacement strategies. Porcine bladder is suggested as a potential source material for bladder reconstruction due to its alikeness to human bladder. Challenges that exist with all these approaches need to be overcome. This paper aims to review gene editing technology such as the CRISPR Cas systems as tools in bladder reconstruction, bladder xenotransplantation and hybrid bladder with technologies of induced pluripotent stem cells and genome editing, bioprinting for bladder replacement for bladder reconstruction and to restore normal bladder control function after cystectomy for bladder cancer.
Collapse
Affiliation(s)
- Xiao Xue Zeng
- Department of Health Management, Centre of General Practice, The Seventh Affiliated Hospital, Southern Medical University, No. 28, Desheng Road Section, Liguan Road, Lishui Town, Nanhai District, Foshan City, 528000, Guangdong Province, People's Republic of China.
- Benjoe Institute of Systems Bio-Engineering, High Technology Park, Changzhou, 213022, Jiangsu Province, People's Republic of China.
| | - Yuyan Wu
- Department of Health Management, Centre of General Practice, The Seventh Affiliated Hospital, Southern Medical University, No. 28, Desheng Road Section, Liguan Road, Lishui Town, Nanhai District, Foshan City, 528000, Guangdong Province, People's Republic of China
| |
Collapse
|
20
|
Yang B, Ma D, Zhu X, Wu Z, An Q, Zhao J, Gao X, Zhang L. Roles of TRP and PIEZO receptors in autoimmune diseases. Expert Rev Mol Med 2024; 26:e10. [PMID: 38659380 PMCID: PMC11140548 DOI: 10.1017/erm.2023.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/15/2023] [Accepted: 08/21/2023] [Indexed: 04/26/2024]
Abstract
Autoimmune diseases are pathological autoimmune reactions in the body caused by various factors, which can lead to tissue damage and organ dysfunction. They can be divided into organ-specific and systemic autoimmune diseases. These diseases usually involve various body systems, including the blood, muscles, bones, joints and soft tissues. The transient receptor potential (TRP) and PIEZO receptors, which resulted in David Julius and Ardem Patapoutian winning the Nobel Prize in Physiology or Medicine in 2021, attracted people's attention. Most current studies on TRP and PIEZO receptors in autoimmune diseases have been carried out on animal model, only few clinical studies have been conducted. Therefore, this study aimed to review existing studies on TRP and PIEZO to understand the roles of these receptors in autoimmune diseases, which may help elucidate novel treatment strategies.
Collapse
Affiliation(s)
- Baoqi Yang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Dan Ma
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Xueqing Zhu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Zewen Wu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Qi An
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Jingwen Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Xinnan Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| |
Collapse
|
21
|
Zhang X, Shao J, Wang C, Liu C, Hao H, Li X, An Y, He J, Zhao W, Zhao Y, Kong Y, Jia Z, Wan S, Yuan Y, Zhang H, Zhang H, Du X. TMC7 functions as a suppressor of Piezo2 in primary sensory neurons blunting peripheral mechanotransduction. Cell Rep 2024; 43:114014. [PMID: 38568807 DOI: 10.1016/j.celrep.2024.114014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 02/20/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024] Open
Abstract
The transmembrane channel-like (TMC) protein family comprises eight members, with TMC1 and TMC2 being extensively studied. This study demonstrates substantial co-expression of TMC7 with the mechanosensitive channel Piezo2 in somatosensory neurons. Genetic deletion of TMC7 in primary sensory ganglia neurons in vivo enhances sensitivity in both physiological and pathological mechanosensory transduction. This deletion leads to an increase in proportion of rapidly adapting (RA) currents conducted by Piezo2 in dorsal root ganglion (DRG) neurons and accelerates RA deactivation kinetics. In HEK293 cells expressing both proteins, TMC7 significantly suppresses the current amplitudes of co-expressed Piezo2. Our findings reveal that TMC7 and Piezo2 exhibit physical interactions, and both proteins also physically interact with cytoskeletal β-actin. We hypothesize that TMC7 functions as an inhibitory modulator of Piezo2 in DRG neurons, either through direct inhibition or by disrupting the transmission of mechanical forces from the cytoskeleton to the channel.
Collapse
Affiliation(s)
- Xiaoxue Zhang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jichen Shao
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Caixue Wang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China; The Forth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chao Liu
- Department of Animal Care, The Key Laboratory of Experimental Animal, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Han Hao
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xinmeng Li
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yating An
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jinsha He
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Weixin Zhao
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yiwen Zhao
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Youzhen Kong
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhanfeng Jia
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shaopo Wan
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei, China
| | - Yi Yuan
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei, China
| | - Huiran Zhang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hailin Zhang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaona Du
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
22
|
Kashlan OB, Wang XP, Sheng S, Kleyman TR. Epithelial Na + Channels Function as Extracellular Sensors. Compr Physiol 2024; 14:1-41. [PMID: 39109974 PMCID: PMC11309579 DOI: 10.1002/cphy.c230015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The epithelial Na + channel (ENaC) resides on the apical surfaces of specific epithelia in vertebrates and plays a critical role in extracellular fluid homeostasis. Evidence that ENaC senses the external environment emerged well before the molecular identity of the channel was reported three decades ago. This article discusses progress toward elucidating the mechanisms through which specific external factors regulate ENaC function, highlighting insights gained from structural studies of ENaC and related family members. It also reviews our understanding of the role of ENaC regulation by the extracellular environment in physiology and disease. After familiarizing the reader with the channel's physiological roles and structure, we describe the central role protein allostery plays in ENaC's sensitivity to the external environment. We then discuss each of the extracellular factors that directly regulate the channel: proteases, cations and anions, shear stress, and other regulators specific to particular extracellular compartments. For each regulator, we discuss the initial observations that led to discovery, studies investigating molecular mechanism, and the physiological and pathophysiological implications of regulation. © 2024 American Physiological Society. Compr Physiol 14:5407-5447, 2024.
Collapse
Affiliation(s)
- Ossama B. Kashlan
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Computational and Systems Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xue-Ping Wang
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shaohu Sheng
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Thomas R. Kleyman
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Cell Biology, University of Pittsburgh,
Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
23
|
N’Guetta PEY, McLarnon SR, Tassou A, Geron M, Shirvan S, Hill RZ, Scherrer G, O’Brien LL. Comprehensive mapping of sensory and sympathetic innervation of the developing kidney. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.15.567276. [PMID: 38496522 PMCID: PMC10942422 DOI: 10.1101/2023.11.15.567276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The kidney functions as a finely tuned sensor to balance body fluid composition and filter out waste through complex coordinated mechanisms. This versatility requires tight neural control, with innervating efferent nerves playing a crucial role in regulating blood flow, glomerular filtration rate, water and sodium reabsorption, and renin release. In turn sensory afferents provide feedback to the central nervous system for the modulation of cardiovascular function. However, the cells targeted by sensory afferents and the physiological sensing mechanisms remain poorly characterized. Moreover, how the kidney is innervated during development to establish these functions remains elusive. Here, we utilized a combination of light-sheet and confocal microscopy to generate anatomical maps of kidney sensory and sympathetic nerves throughout development and resolve the establishment of functional crosstalk. Our analyses revealed that kidney innervation initiates at embryonic day (E)13.5 as the nerves associate with vascular smooth muscle cells and follow arterial differentiation. By E17.5 axonal projections associate with kidney structures such as glomeruli and tubules and the network continues to expand postnatally. These nerves are synapsin I-positive, highlighting ongoing axonogenesis and the potential for functional crosstalk. We show that sensory and sympathetic nerves innervate the kidney concomitantly and classify the sensory fibers as calcitonin gene related peptide (CGRP)+, substance P+, TRPV1+, and PIEZO2+, establishing the presence of PIEZO2 mechanosensory fibers in the kidney. Using retrograde tracing, we identified the primary dorsal root ganglia, T10-L2, from which PIEZO2+ sensory afferents project to the kidney. Taken together our findings elucidate the temporality of kidney innervation and resolve the identity of kidney sympathetic and sensory nerves.
Collapse
Affiliation(s)
- Pierre-Emmanuel Y. N’Guetta
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sarah R. McLarnon
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Adrien Tassou
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matan Geron
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sepenta Shirvan
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA 92037
| | - Rose Z. Hill
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA 92037
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; New York Stem Cell Foundation – Robertson Investigator, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lori L. O’Brien
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
24
|
Cao R, Tian H, Tian Y, Fu X. A Hierarchical Mechanotransduction System: From Macro to Micro. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302327. [PMID: 38145330 PMCID: PMC10953595 DOI: 10.1002/advs.202302327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/27/2023] [Indexed: 12/26/2023]
Abstract
Mechanotransduction is a strictly regulated process whereby mechanical stimuli, including mechanical forces and properties, are sensed and translated into biochemical signals. Increasing data demonstrate that mechanotransduction is crucial for regulating macroscopic and microscopic dynamics and functionalities. However, the actions and mechanisms of mechanotransduction across multiple hierarchies, from molecules, subcellular structures, cells, tissues/organs, to the whole-body level, have not been yet comprehensively documented. Herein, the biological roles and operational mechanisms of mechanotransduction from macro to micro are revisited, with a focus on the orchestrations across diverse hierarchies. The implications, applications, and challenges of mechanotransduction in human diseases are also summarized and discussed. Together, this knowledge from a hierarchical perspective has the potential to refresh insights into mechanotransduction regulation and disease pathogenesis and therapy, and ultimately revolutionize the prevention, diagnosis, and treatment of human diseases.
Collapse
Affiliation(s)
- Rong Cao
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Huimin Tian
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Yan Tian
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Xianghui Fu
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| |
Collapse
|
25
|
Carrisoza-Gaytan R, Mutchler SM, Carattino F, Soong J, Dalghi MG, Wu P, Wang W, Apodaca G, Satlin LM, Kleyman TR. PIEZO1 is a distal nephron mechanosensor and is required for flow-induced K+ secretion. J Clin Invest 2024; 134:e174806. [PMID: 38426496 PMCID: PMC10904061 DOI: 10.1172/jci174806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/02/2024] [Indexed: 03/02/2024] Open
Abstract
Ca2+-activated BK channels in renal intercalated cells (ICs) mediate luminal flow-induced K+ secretion (FIKS), but how ICs sense increased flow remains uncertain. We examined whether PIEZO1, a mechanosensitive Ca2+-permeable channel expressed in the basolateral membranes of ICs, is required for FIKS. In isolated cortical collecting ducts (CCDs), the mechanosensitive cation-selective channel inhibitor GsMTx4 dampened flow-induced increases in intracellular Ca2+ concentration ([Ca2+]i), whereas the PIEZO1 activator Yoda1 increased [Ca2+]i and BK channel activity. CCDs from mice fed a high-K+ (HK) diet exhibited a greater Yoda1-dependent increase in [Ca2+]i than CCDs from mice fed a control K+ diet. ICs in CCDs isolated from mice with a targeted gene deletion of Piezo1 in ICs (IC-Piezo1-KO) exhibited a blunted [Ca2+]i response to Yoda1 or increased flow, with an associated loss of FIKS in CCDs. Male IC-Piezo1-KO mice selectively exhibited an increased blood [K+] in response to an oral K+ bolus and blunted urinary K+ excretion following a volume challenge. Whole-cell expression of BKα subunit was reduced in ICs of IC-Piezo1-KO mice fed an HK diet. We conclude that PIEZO1 mediates flow-induced basolateral Ca2+ entry into ICs, is upregulated in the CCD in response to an HK diet, and is necessary for FIKS.
Collapse
Affiliation(s)
| | | | - Francisco Carattino
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Joanne Soong
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Marianela G. Dalghi
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Peng Wu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - WenHui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Gerard Apodaca
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Cell Biology and
| | - Lisa M. Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Thomas R. Kleyman
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Cell Biology and
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
26
|
Coste B, Delmas P. PIEZO Ion Channels in Cardiovascular Functions and Diseases. Circ Res 2024; 134:572-591. [PMID: 38422173 DOI: 10.1161/circresaha.123.322798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The cardiovascular system provides blood supply throughout the body and as such is perpetually applying mechanical forces to cells and tissues. Thus, this system is primed with mechanosensory structures that respond and adapt to changes in mechanical stimuli. Since their discovery in 2010, PIEZO ion channels have dominated the field of mechanobiology. These have been proposed as the long-sought-after mechanosensitive excitatory channels involved in touch and proprioception in mammals. However, more and more pieces of evidence point to the importance of PIEZO channels in cardiovascular activities and disease development. PIEZO channel-related cardiac functions include transducing hemodynamic forces in endothelial and vascular cells, red blood cell homeostasis, platelet aggregation, and arterial blood pressure regulation, among others. PIEZO channels contribute to pathological conditions including cardiac hypertrophy and pulmonary hypertension and congenital syndromes such as generalized lymphatic dysplasia and xerocytosis. In this review, we highlight recent advances in understanding the role of PIEZO channels in cardiovascular functions and diseases. Achievements in this quickly expanding field should open a new road for efficient control of PIEZO-related diseases in cardiovascular functions.
Collapse
Affiliation(s)
- Bertrand Coste
- Centre de Recherche en CardioVasculaire et Nutrition, Aix-Marseille Université - INSERM 1263 - INRAE 1260, Marseille, France
| | - Patrick Delmas
- Centre de Recherche en CardioVasculaire et Nutrition, Aix-Marseille Université - INSERM 1263 - INRAE 1260, Marseille, France
| |
Collapse
|
27
|
Amado NG, Nosyreva ED, Thompson D, Egeland TJ, Ogujiofor OW, Yang M, Fusco AN, Passoni N, Mathews J, Cantarel B, Baker LA, Syeda R. PIEZO1 loss-of-function compound heterozygous mutations in the rare congenital human disorder Prune Belly Syndrome. Nat Commun 2024; 15:339. [PMID: 38184690 PMCID: PMC10771463 DOI: 10.1038/s41467-023-44594-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024] Open
Abstract
Prune belly syndrome (PBS), also known as Eagle-Barret syndrome, is a rare, multi-system congenital myopathy primarily affecting males. Phenotypically, PBS cases manifest three cardinal pathological features: urinary tract dilation with poorly contractile smooth muscle, wrinkled flaccid ventral abdominal wall with skeletal muscle deficiency, and intra-abdominal undescended testes. Genetically, PBS is poorly understood. After performing whole exome sequencing in PBS patients, we identify one compound heterozygous variant in the PIEZO1 gene. PIEZO1 is a cation-selective channel activated by various mechanical forces and widely expressed throughout the lower urinary tract. Here we conduct an extensive functional analysis of the PIEZO1 PBS variants that reveal loss-of-function characteristics in the pressure-induced normalized open probability (NPo) of the channel, while no change is observed in single-channel currents. Furthermore, Yoda1, a PIEZO1 activator, can rescue the NPo defect of the PBS mutant channels. Thus, PIEZO1 mutations may be causal for PBS and the in vitro cellular pathophysiological phenotype could be rescued by the small molecule, Yoda1. Activation of PIEZO1 might provide a promising means of treating PBS and other related bladder dysfunctional states.
Collapse
Affiliation(s)
- Nathalia G Amado
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Elena D Nosyreva
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David Thompson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas J Egeland
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Osita W Ogujiofor
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michelle Yang
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alexandria N Fusco
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Niccolo Passoni
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeremy Mathews
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Brandi Cantarel
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Linda A Baker
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
| | - Ruhma Syeda
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
28
|
Liang T, Wang J, Zhu C, Hu Y, Gao Z, Da M. Prognosis and Clinical Significance of Piezo2 in Tumor: A Meta-analysis and Database Validation. Comb Chem High Throughput Screen 2024; 27:2912-2920. [PMID: 38347800 DOI: 10.2174/0113862073251440231025111358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 10/24/2024]
Abstract
OBJECTIVE The objective of this study is to assess the correlation between Piezo2 and tumors through a comprehensive meta-analysis and database validation. METHODS Case-control studies investigating the association between Piezo2 and tumors were obtained from various databases, including China National Knowledge Infrastructure (CNKI), SinoMed, Embase, Web of Science, The Cochrane Library, and PubMed. The search was performed from the inception of each database up until May 2023. Two researchers independently screened the literature, extracted data, and assessed the quality of the included studies. Metaanalysis of the included literature was conducted using Stata 12.0 software. Additionally, the Gene Expression Profiling Interactive Analysis (GEPIA) database predicted a correlation between Piezo2 expression and prognostic value in tumor patients. RESULTS A total of three studies, involving a combined sample size of 392 participants, were included in the meta-analysis. The findings revealed that the expression level of Piezo2 in tumor patients was not significantly associated with age, gender, or tumor size. However, it was found to be positively correlated with lymphatic invasion (OR = 7.89, 95%CI: 3.96-15.73) and negatively correlated with invasion depth (OR = 0.17, 95%CI: 0.06-0.47), TNM stage (OR = 0.48, 95%CI: 0.27-0.87), and histological grade (OR = 0.40, 95%CI: 0.21-0.77). Confirming these findings, the GEPIA database indicated that high expression of Piezo2 was associated with poor prognosis of disease-free survival in patients with colon adenocarcinoma (HR = 1.6, P = 0.049) and gastric cancer (HR = 1.6, P = 0.017). CONCLUSION Piezo2 may be associated with poor prognosis and clinicopathological parameters in tumor patients.
Collapse
Affiliation(s)
- Tong Liang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu 730000, China
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China
| | - Junhong Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu 730000, China
- Hepatobiliary and Pancreatic Surgery, The First People's Hospital of Baiyin, Baiyin, Gansu 730900, China
| | - Chenglou Zhu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yongli Hu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zhenhua Gao
- Hepatobiliary and Pancreatic Surgery, The First People's Hospital of Baiyin, Baiyin, Gansu 730900, China
| | - Mingxu Da
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu 730000, China
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China
| |
Collapse
|
29
|
Wiedmann NM, Fuller-Jackson JP, Osborne PB, Keast JR. An adeno-associated viral labeling approach to visualize the meso- and microanatomy of mechanosensory afferents and autonomic innervation of the rat urinary bladder. FASEB J 2024; 38:e23380. [PMID: 38102980 PMCID: PMC10789495 DOI: 10.1096/fj.202301113r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/04/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
The urinary bladder is supplied by a rich network of sensory and autonomic axons, commonly visualized by immunolabeling for neural markers. This approach demonstrates overall network patterning but is less suited to understanding the structure of individual motor and sensory terminals within these complex plexuses. There is a further limitation visualizing the lightly myelinated (A-delta) class of sensory axons that provides the primary mechanosensory drive for initiation of voiding. Whereas most unmyelinated sensory axons can be revealed by immunolabeling for specific neuropeptides, to date no unique neural marker has been identified to immunohistochemically label myelinated visceral afferents. We aimed to establish a non-surgical method to visualize and map myelinated afferents in the bladder in rats. We found that in rats, the adeno-associated virus (AAV), AAV-PHP.S, which shows a high tropism for the peripheral nervous system, primarily transduced myelinated dorsal root ganglion neurons, enabling us to identify the structure and regional distribution of myelinated (mechanosensory) axon endings within the muscle and lamina propria of the bladder. We further identified the projection of myelinated afferents within the pelvic nerve and lumbosacral spinal cord. A minority of noradrenergic and cholinergic neurons in pelvic ganglia were transduced, enabling visualization and regional mapping of both autonomic and sensory axon endings within the bladder. Our study identified a sparse labeling approach for investigating myelinated sensory and autonomic axon endings within the bladder and provides new insights into the nerve-bladder interface.
Collapse
Affiliation(s)
- Nicole M Wiedmann
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| | | | - Peregrine B Osborne
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Janet R Keast
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
30
|
Bai X, Golden A. Transmembrane protein 120A (TMEM-120A/TACAN) coordinates with PIEZO channel during Caenorhabditis elegans reproductive regulation. G3 (BETHESDA, MD.) 2023; 14:jkad251. [PMID: 38051962 PMCID: PMC10755168 DOI: 10.1093/g3journal/jkad251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 10/22/2023] [Indexed: 12/07/2023]
Abstract
Membrane protein TMEM120A (also known as TACAN) was presumed to be both a mechanically activated molecule and a lipid-modifying enzyme. TMEM120A has been identified as a negative regulator of the essential excitatory mechanosensitive protein PIEZO2. However, the extent to which TMEM120A mediates PIEZO2's activity during physiological processes remains largely unknown. In this study, we used the Caenorhabditis elegans reproductive tract to explore the functional contribution of tmem-120, the sole TMEM120A/B ortholog, and its genetic interaction with pezo-1 in vivo. tmem-120 was expressed throughout the C. elegans development, particularly in the germline, embryos, and spermatheca. A tmem-120 mutant with a full-length deletion (tmem-120Δ) displayed deformed germline, maternal sterility, and a reduced brood size. In vivo live imaging revealed that pinched zygotes were frequently observed in the uterus of tmem-120Δ mutant animals, suggesting damage during spermathecal contraction. We then employed the auxin-inducible degradation system to degrade TMEM-120 protein in all somatic tissues or the germline, both of which resulted in reduced brood sizes. These findings suggested that multiple inputs of tmem-120 from different tissues regulate reproduction. Lastly, the loss of tmem-120 alleviated the brood size reduction and defective sperm navigation behavior in the pezo-1Δ mutant. Overall, our findings reveal a role for tmem-120 in regulating reproductive physiology in C. elegans, and suggest an epistatic interaction between pezo-1 and tmem-120 when governing proper reproduction.
Collapse
Affiliation(s)
- Xiaofei Bai
- Department of Biology, University of Florida, Gainesville, FL 32610, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andy Golden
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
31
|
Hu S, Yao X. Piezo channels in the urinary system: Correspondence. Exp Mol Med 2023; 55:2608. [PMID: 38036732 PMCID: PMC10767112 DOI: 10.1038/s12276-023-01124-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/11/2023] [Indexed: 12/02/2023] Open
Affiliation(s)
- Shuaishuai Hu
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
32
|
abiff M, Alshebremi M, Bonner M, Myers JT, Kim BG, Tomchuck SL, Santin A, Kingsley D, Choi SH, Huang AY. Piezo1 facilitates optimal T cell activation during tumor challenge. Oncoimmunology 2023; 12:2281179. [PMID: 38126029 PMCID: PMC10732680 DOI: 10.1080/2162402x.2023.2281179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 11/03/2023] [Indexed: 12/23/2023] Open
Abstract
Functional effector T cells in the tumor microenvironment (TME) are critical for successful anti-tumor responses. T cell anti-tumor function is dependent on their ability to differentiate from a naïve state, infiltrate into the tumor site, and exert cytotoxic functions. The factors dictating whether a particular T cell can successfully undergo these processes during tumor challenge are not yet completely understood. Piezo1 is a mechanosensitive cation channel with high expression on both CD4+ and CD8+ T cells. Previous studies have demonstrated that Piezo1 optimizes T cell activation and restrains the CD4+ regulatory T cell (Treg) pool in vitro and under inflammatory conditions in vivo. However, little is known about the role Piezo1 plays on CD4+ and CD8+ T cells in cancer. We hypothesized that disruption of Piezo1 on T cells impairs anti-tumor immunity in vivo by hindering inflammatory T cell responses. We challenged mice with T cell Piezo1 deletion (P1KO) with tumor models dependent on T cells for immune rejection. P1KO mice had the more aggressive tumors, higher tumor growth rates and were unresponsive to immune-mediated therapeutic interventions. We observed a decreased CD4:CD8 ratio in both the secondary lymphoid organs and TME of P1KO mice that correlated inversely with tumor size. Poor CD4+ helper T cell responses underpinned the immunodeficient phenotype of P1KO mice. Wild type CD8+ T cells are sub-optimally activated in vivo with P1KO CD4+ T cells, taking on a CD25loPD-1hi phenotype. Together, our results suggest that Piezo1 optimizes T cell activation in the context of a tumor response.
Collapse
Affiliation(s)
- muta abiff
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Mohammad Alshebremi
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Melissa Bonner
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jay T. Myers
- Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Byung-Gyu Kim
- Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Suzanne L. Tomchuck
- Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Alicia Santin
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Daniel Kingsley
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Sung Hee Choi
- Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Alex Y. Huang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Center for Pediatric Immunotherapy, Angie Fowler AYA Cancer Institute, UH Rainbow Babies & Children’s Hospital, Cleveland, OH, USA
| |
Collapse
|
33
|
Zhu Y, Garcia-Sanchez J, Dalal R, Sun Y, Kapiloff MS, Goldberg JL, Liu WW. Differential expression of PIEZO1 and PIEZO2 mechanosensitive channels in ocular tissues implicates diverse functional roles. Exp Eye Res 2023; 236:109675. [PMID: 37820892 PMCID: PMC10843266 DOI: 10.1016/j.exer.2023.109675] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/08/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
PIEZO1 and PIEZO2 are mechanosensitive ion channels that regulate many important physiological processes including vascular blood flow, touch, and proprioception. As the eye is subject to mechanical stress and is highly perfused, these channels may play important roles in ocular function and intraocular pressure regulation. PIEZO channel expression in the eye has not been well defined, in part due to difficulties in validating available antibodies against PIEZO1 and PIEZO2 in ocular tissues. It is also unclear if PIEZO1 and PIEZO2 are differentially expressed. To address these questions, we used single-molecule fluorescence in situ hybridization (smFISH) together with transgenic reporter mice expressing PIEZO fusion proteins under the control of their endogenous promoters to compare the expression and localization of PIEZO1 and PIEZO2 in mouse ocular tissues relevant to glaucoma. We detected both PIEZO1 and PIEZO2 expression in the trabecular meshwork, ciliary body, and in the ganglion cell layer (GCL) of the retina. Piezo1 mRNA was more abundantly expressed than Piezo2 mRNA in these ocular tissues. Piezo1 but not Piezo2 mRNA was detected in the inner nuclear layer and outer nuclear layer of the retina. Our results suggest that PIEZO1 and PIEZO2 are differentially expressed and may have distinct roles as mechanosensors in glaucoma-relevant ocular tissues.
Collapse
Affiliation(s)
- Ying Zhu
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Julian Garcia-Sanchez
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Roopa Dalal
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Yang Sun
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Michael S Kapiloff
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Wendy W Liu
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
34
|
Li Z, Lin D, Luo C, Wei P, Deng B, Li K, Cheng L, Chen Z. The Expression and Function of Piezo Channels in Bladder. Bladder (San Franc) 2023; 10:e21200008. [PMID: 38022708 PMCID: PMC10668602 DOI: 10.14440/bladder.2023.870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/15/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
The ability for bladder to perceive and analyze mechanical stimuli, such as stretch and filling, is crucial for its functions, such as urinary storage and voiding. The Piezo channel family, including Piezo1 and Piezo2, represents one of the most essential mechanosensitive ion channels in mammals and is involved in a wide array of physiological and pathological processes. It has been demonstrated in numerous investigations that Piezo channels play a key role in mechanical transduction in various types of cells in bladder by converting mechanical stimuli into biological signals. Notably, mounting evidence suggests that Piezo channels are functionally significant for bladder and are related to several bladder disorders. This review systematically summarizes the importance/role and features of Piezo channels in bladder, including their biophysical properties, location, and functions, with attention specifically paid to their association with the physiology and pathophysiology of bladder. This review aims to provide a novel perspective for the future clinical treatment of bladder dysfunction.
Collapse
Affiliation(s)
- Zhipeng Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Dongxu Lin
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Changcheng Luo
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Pengyu Wei
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Bolang Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Kang Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Langqing Cheng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Zhong Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| |
Collapse
|
35
|
Yu H, Usoskin D, Nagi SS, Hu Y, Kupari J, Bouchatta O, Cranfill SL, Gautam M, Su Y, Lu Y, Wymer J, Glanz M, Albrecht P, Song H, Ming GL, Prouty S, Seykora J, Wu H, Ma M, Rice FL, Olausson H, Ernfors P, Luo W. Single-Soma Deep RNA sequencing of Human DRG Neurons Reveals Novel Molecular and Cellular Mechanisms Underlying Somatosensation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533207. [PMID: 36993480 PMCID: PMC10055202 DOI: 10.1101/2023.03.17.533207] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The versatility of somatosensation arises from heterogeneous dorsal root ganglion (DRG) neurons. However, soma transcriptomes of individual human DRG (hDRG) neurons-critical in-formation to decipher their functions-are lacking due to technical difficulties. Here, we developed a novel approach to isolate individual hDRG neuron somas for deep RNA sequencing (RNA-seq). On average, >9,000 unique genes per neuron were detected, and 16 neuronal types were identified. Cross-species analyses revealed remarkable divergence among pain-sensing neurons and the existence of human-specific nociceptor types. Our deep RNA-seq dataset was especially powerful for providing insight into the molecular mechanisms underlying human somatosensation and identifying high potential novel drug targets. Our dataset also guided the selection of molecular markers to visualize different types of human afferents and the discovery of novel functional properties using single-cell in vivo electrophysiological recordings. In summary, by employing a novel soma sequencing method, we generated an unprecedented hDRG neuron atlas, providing new insights into human somatosensation, establishing a critical foundation for translational work, and clarifying human species-species properties.
Collapse
|
36
|
Santiago C, Sharma N, Africawala N, Siegrist J, Handler A, Tasnim A, Anjum R, Turecek J, Lehnert BP, Renauld S, Nolan-Tamariz M, Iskols M, Magee AR, Paradis S, Ginty DD. Activity-dependent development of the body's touch receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.23.559109. [PMID: 37790437 PMCID: PMC10542488 DOI: 10.1101/2023.09.23.559109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
We report a role for activity in the development of the primary sensory neurons that detect touch. Genetic deletion of Piezo2, the principal mechanosensitive ion channel in somatosensory neurons, caused profound changes in the formation of mechanosensory end organ structures and altered somatosensory neuron central targeting. Single cell RNA sequencing of Piezo2 conditional mutants revealed changes in gene expression in the sensory neurons activated by light mechanical forces, whereas other neuronal classes were less affected. To further test the role of activity in mechanosensory end organ development, we genetically deleted the voltage-gated sodium channel Nav1.6 (Scn8a) in somatosensory neurons throughout development and found that Scn8a mutants also have disrupted somatosensory neuron morphologies and altered electrophysiological responses to mechanical stimuli. Together, these findings indicate that mechanically evoked neuronal activity acts early in life to shape the maturation of the mechanosensory end organs that underlie our sense of gentle touch.
Collapse
Affiliation(s)
- Celine Santiago
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Nikhil Sharma
- Department of Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Nusrat Africawala
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Julianna Siegrist
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Annie Handler
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Aniqa Tasnim
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Rabia Anjum
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA, 02453, USA
| | - Josef Turecek
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Brendan P. Lehnert
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Sophia Renauld
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Michael Nolan-Tamariz
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Michael Iskols
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Alexandra R. Magee
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Suzanne Paradis
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA, 02453, USA
| | - David D. Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
- Lead Contact
| |
Collapse
|
37
|
Ly T, Knight ZA. Interoception: Spinal sensory neurons that innervate the intestines. Curr Biol 2023; 33:R945-R947. [PMID: 37751704 DOI: 10.1016/j.cub.2023.07.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
The gut is innervated by sensory neurons that relay mechanical and chemical signals to the brain. Two new studies characterize the spinal sensory neurons that innervate the intestines and reveal a role for Piezo2 in these cells in sensing colonic distension and regulating gastrointestinal motility.
Collapse
Affiliation(s)
- Truong Ly
- Department of Physiology, Kavli Institute for Fundamental Neuroscience, Neuroscience Graduate Program, Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | - Zachary A Knight
- Department of Physiology, Kavli Institute for Fundamental Neuroscience, Neuroscience Graduate Program, Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
38
|
Liu L, Zhao Y, An W, Zhao M, Ding N, Liu H, Ge N, Wen J, Zhang X, Zu S, Sun W. Piezo2 Channel Upregulation is Involved in Mechanical Allodynia in CYP-Induced Cystitis Rats. Mol Neurobiol 2023; 60:5000-5012. [PMID: 37227654 PMCID: PMC10415424 DOI: 10.1007/s12035-023-03386-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/13/2023] [Indexed: 05/26/2023]
Abstract
Mechanical sensing Piezo2 channel in primary sensory neurons has been shown contribute to mechanical allodynia in somatic chronic pain conditions. Interstitial cystitis (IC)-associated pain is often triggered by bladder filling, a presentation that mimics the mechanical allodynia. In the present study, we aimed to examine the involvement of sensory Piezo2 channel in IC-associated mechanical allodynia using a commonly employed cyclophosphamide (CYP)-induced IC model rat. Piezo2 channels in dorsal root ganglia (DRGs) was knocked down by intrathecal injections of Piezo2 anti-sense oligodeoxynucleotides (ODNs) in CYP-induced cystitis rats, and mechanical stimulation-evoked referred bladder pain was measured in the lower abdomen overlying the bladder using von Frey filaments. Piezo2 expression at the mRNA, protein, and functional levels in DRG neurons innervating the bladder was detected by RNA-fluorescence in situ hybridization, western blotting, immunofluorescence, and Ca2+ imaging, respectively. We found that Piezo2 channels were expressed on most (> 90%) of the bladder primary afferents, including afferents that express CGRP, TRPV1 and stained with isolectin B4. CYP-induced cystitis was associated with Piezo2 upregulation in bladder afferent neurons at the mRNA, protein, and functional levels. Knockdown of Piezo2 expression in DRG neurons significantly suppressed mechanical stimulation-evoked referred bladder pain as well as bladder hyperactivity in CYP rats compared to CYP rats treated with mismatched ODNs. Our results suggest upregulation of Piezo2 channels is involved in the development of bladder mechanical allodynia and bladder hyperactivity in CYP-induced cystitis. Targeting Piezo2 might be an attractive therapeutic approach for IC-related bladder pain.
Collapse
Affiliation(s)
- Lei Liu
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, 250032, P. R. China
| | - Yan Zhao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P. R. China
| | - Wenhan An
- Department of Rehabilitation, The Second Hospital of Shandong University, Jinan, Shandong, P. R. China
| | - Mengmeng Zhao
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, 250032, P. R. China
| | - Ning Ding
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, 250032, P. R. China
| | - Hanwen Liu
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, 250032, P. R. China
| | - Nan Ge
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, 250032, P. R. China
| | - Jiliang Wen
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, 250032, P. R. China
| | - Xiulin Zhang
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, 250032, P. R. China
| | - Shulu Zu
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, 250032, P. R. China
| | - Wendong Sun
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, 250032, P. R. China.
| |
Collapse
|
39
|
Li X, Hu J, Yin P, Liu L, Chen Y. Mechanotransduction in the urothelium: ATP signalling and mechanoreceptors. Heliyon 2023; 9:e19427. [PMID: 37674847 PMCID: PMC10477517 DOI: 10.1016/j.heliyon.2023.e19427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
The urothelium, which covers the inner surface of the bladder, is continuously exposed to a complex physical environment where it is stimulated by, and responds to, a wide range of mechanical cues. Mechanically activated ion channels endow the urothelium with functioning in the conversion of mechanical stimuli into biochemical events that influence the surface of the urothelium itself as well as suburothelial tissues, including afferent nerve fibres, interstitial cells of Cajal and detrusor smooth muscle cells, to ensure normal urinary function during the cycle of filling and voiding. However, under prolonged and abnormal loading conditions, the urothelial sensory system can become maladaptive, leading to the development of bladder dysfunction. In this review, we summarize developments in the understanding of urothelial mechanotransduction from two perspectives: first, with regard to the functions of urothelial mechanotransduction, particularly stretch-mediated ATP signalling and the regulation of urothelial surface area; and secondly, with regard to the mechanoreceptors present in the urothelium, primarily transient receptor potential channels and mechanosensitive Piezo channels, and the potential pathophysiological role of these channels in the bladder. A more thorough understanding of urothelial mechanotransduction function may inspire the development of new therapeutic strategies for lower urinary tract diseases.
Collapse
Affiliation(s)
| | | | - Ping Yin
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Lumin Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yuelai Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| |
Collapse
|
40
|
Song Y, Fothergill LJ, Lee KS, Liu BY, Koo A, Perelis M, Diwakarla S, Callaghan B, Huang J, Wykosky J, Furness JB, Yeo GW. Stratification of enterochromaffin cells by single-cell expression analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554649. [PMID: 37662229 PMCID: PMC10473706 DOI: 10.1101/2023.08.24.554649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Dynamic interactions between gut mucosal cells and the external environment are essential to maintain gut homeostasis. Enterochromaffin (EC) cells transduce both chemical and mechanical signals and produce 5-hydroxytryptamine (5-HT) to mediate disparate physiological responses. However, the molecular and cellular basis for functional diversity of ECs remains to be adequately defined. Here, we integrated single-cell transcriptomics with spatial image analysis to identify fourteen EC clusters that are topographically organized along the gut. Subtypes predicted to be sensitive to the chemical environment and mechanical forces were identified that express distinct transcription factors and hormones. A Piezo2+ population in the distal colon was endowed with a distinctive neuronal signature. Using a combination of genetic, chemogenetic and pharmacological approaches, we demonstrated Piezo2+ ECs are required for normal colon motility. Our study constructs a molecular map for ECs and offers a framework for deconvoluting EC cells with pleiotropic functions.
Collapse
Affiliation(s)
- Yan Song
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, United States
- Stem Cell Program, University of California San Diego, La Jolla, CA 92093, United States
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, United States
| | - Linda J. Fothergill
- Department of Anatomy & Physiology, University of Melbourne, Parkville, Victoria 3010, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3010, Australia
| | - Kari S. Lee
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, United States
- Stem Cell Program, University of California San Diego, La Jolla, CA 92093, United States
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, United States
| | - Brandon Y. Liu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, United States
- Stem Cell Program, University of California San Diego, La Jolla, CA 92093, United States
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, United States
| | - Ada Koo
- Department of Anatomy & Physiology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Mark Perelis
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, United States
- Stem Cell Program, University of California San Diego, La Jolla, CA 92093, United States
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, United States
| | - Shanti Diwakarla
- Department of Anatomy & Physiology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Brid Callaghan
- Department of Anatomy & Physiology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jie Huang
- Takeda Pharmaceuticals, San Diego, CA 92121, United States
| | - Jill Wykosky
- Takeda Pharmaceuticals, San Diego, CA 92121, United States
| | - John B. Furness
- Department of Anatomy & Physiology, University of Melbourne, Parkville, Victoria 3010, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3010, Australia
| | - Gene W. Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, United States
- Stem Cell Program, University of California San Diego, La Jolla, CA 92093, United States
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, United States
| |
Collapse
|
41
|
Lam RM, von Buchholtz LJ, Falgairolle M, Osborne J, Frangos E, Rocio Servin-Vences M, Nagel M, Nguyen MQ, Jayabalan M, Saade D, Patapoutian A, Bönnemann CG, Ryba NJP, Chesler AT. PIEZO2 and perineal mechanosensation are essential for sexual function. Science 2023; 381:906-910. [PMID: 37616369 PMCID: PMC11418610 DOI: 10.1126/science.adg0144] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 07/13/2023] [Indexed: 08/26/2023]
Abstract
Despite the potential importance of genital mechanosensation for sexual reproduction, little is known about how perineal touch influences mating. We explored how mechanosensation affords exquisite awareness of the genitals and controls reproduction in mice and humans. Using genetic strategies and in vivo functional imaging, we demonstrated that the mechanosensitive ion channel PIEZO2 (piezo-type mechanosensitive ion channel component 2) is necessary for behavioral sensitivity to perineal touch. PIEZO2 function is needed for triggering a touch-evoked erection reflex and successful mating in both male and female mice. Humans with complete loss of PIEZO2 function have genital hyposensitivity and experience no direct pleasure from gentle touch or vibration. Together, our results help explain how perineal mechanoreceptors detect the gentlest of stimuli and trigger physiologically important sexual responses, thus providing a platform for exploring the sensory basis of sexual pleasure and its relationship to affective touch.
Collapse
Affiliation(s)
- Ruby M. Lam
- National Center for Complementary and Integrative Health (NCCIH), Bethesda, MD 20892, USA
- Brown-National Institutes of Health Graduate Partnerships Program, Brown University, Providence, RI 02912, USA
| | | | - Melanie Falgairolle
- National Center for Complementary and Integrative Health (NCCIH), Bethesda, MD 20892, USA
| | - Jennifer Osborne
- National Center for Complementary and Integrative Health (NCCIH), Bethesda, MD 20892, USA
| | - Eleni Frangos
- National Center for Complementary and Integrative Health (NCCIH), Bethesda, MD 20892, USA
| | - M. Rocio Servin-Vences
- Howard Hughes Medical Institute, Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Maximilian Nagel
- National Center for Complementary and Integrative Health (NCCIH), Bethesda, MD 20892, USA
| | - Minh Q. Nguyen
- National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA
| | - Monessha Jayabalan
- National Center for Complementary and Integrative Health (NCCIH), Bethesda, MD 20892, USA
| | - Dimah Saade
- National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Ardem Patapoutian
- Howard Hughes Medical Institute, Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Carsten G. Bönnemann
- National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Nicholas J. P. Ryba
- National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA
| | - Alexander T. Chesler
- National Center for Complementary and Integrative Health (NCCIH), Bethesda, MD 20892, USA
- National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| |
Collapse
|
42
|
Villarino NW, Hamed YMF, Ghosh B, Dubin AE, Lewis AH, Odem MA, Loud MC, Wang Y, Servin-Vences MR, Patapoutian A, Marshall KL. Labeling PIEZO2 activity in the peripheral nervous system. Neuron 2023; 111:2488-2501.e8. [PMID: 37321223 PMCID: PMC10527906 DOI: 10.1016/j.neuron.2023.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 03/24/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Sensory neurons detect mechanical forces from both the environment and internal organs to regulate physiology. PIEZO2 is a mechanosensory ion channel critical for touch, proprioception, and bladder stretch sensation, yet its broad expression in sensory neurons suggests it has undiscovered physiological roles. To fully understand mechanosensory physiology, we must know where and when PIEZO2-expressing neurons detect force. The fluorescent styryl dye FM 1-43 was previously shown to label sensory neurons. Surprisingly, we find that the vast majority of FM 1-43 somatosensory neuron labeling in mice in vivo is dependent on PIEZO2 activity within the peripheral nerve endings. We illustrate the potential of FM 1-43 by using it to identify novel PIEZO2-expressing urethral neurons that are engaged by urination. These data reveal that FM 1-43 is a functional probe for mechanosensitivity via PIEZO2 activation in vivo and will facilitate the characterization of known and novel mechanosensory processes in multiple organ systems.
Collapse
Affiliation(s)
- Nicholas W Villarino
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Howard Hughes Medical Institute, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yasmeen M F Hamed
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Development, Disease Models, and Therapeutics, Baylor College of Medicine, Houston, TX 77030
| | - Britya Ghosh
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adrienne E Dubin
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Amanda H Lewis
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Max A Odem
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meaghan C Loud
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Howard Hughes Medical Institute, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yu Wang
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - M Rocio Servin-Vences
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ardem Patapoutian
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Howard Hughes Medical Institute, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Kara L Marshall
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Howard Hughes Medical Institute, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
43
|
Servin-Vences MR, Lam RM, Koolen A, Wang Y, Saade DN, Loud M, Kacmaz H, Frausto S, Zhang Y, Beyder A, Marshall KL, Bönnemann CG, Chesler AT, Patapoutian A. PIEZO2 in somatosensory neurons controls gastrointestinal transit. Cell 2023; 186:3386-3399.e15. [PMID: 37541196 PMCID: PMC10501318 DOI: 10.1016/j.cell.2023.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/24/2023] [Accepted: 07/06/2023] [Indexed: 08/06/2023]
Abstract
The gastrointestinal tract is in a state of constant motion. These movements are tightly regulated by the presence of food and help digestion by mechanically breaking down and propelling gut content. Mechanical sensing in the gut is thought to be essential for regulating motility; however, the identity of the neuronal populations, the molecules involved, and the functional consequences of this sensation are unknown. Here, we show that humans lacking PIEZO2 exhibit impaired bowel sensation and motility. Piezo2 in mouse dorsal root, but not nodose ganglia is required to sense gut content, and this activity slows down food transit rates in the stomach, small intestine, and colon. Indeed, Piezo2 is directly required to detect colon distension in vivo. Our study unveils the mechanosensory mechanisms that regulate the transit of luminal contents throughout the gut, which is a critical process to ensure proper digestion, nutrient absorption, and waste removal.
Collapse
Affiliation(s)
- M Rocio Servin-Vences
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Ruby M Lam
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; NIH-Brown University Graduate Program in Neuroscience, Providence, RI, USA; National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
| | - Alize Koolen
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Yu Wang
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Dimah N Saade
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Meaghan Loud
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Halil Kacmaz
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Suzanne Frausto
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Yunxiao Zhang
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Arthur Beyder
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Kara L Marshall
- Department of Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Houston, TX, USA
| | - Carsten G Bönnemann
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Alexander T Chesler
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA.
| | - Ardem Patapoutian
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
44
|
Di X, Gao X, Peng L, Ai J, Jin X, Qi S, Li H, Wang K, Luo D. Cellular mechanotransduction in health and diseases: from molecular mechanism to therapeutic targets. Signal Transduct Target Ther 2023; 8:282. [PMID: 37518181 PMCID: PMC10387486 DOI: 10.1038/s41392-023-01501-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 08/01/2023] Open
Abstract
Cellular mechanotransduction, a critical regulator of numerous biological processes, is the conversion from mechanical signals to biochemical signals regarding cell activities and metabolism. Typical mechanical cues in organisms include hydrostatic pressure, fluid shear stress, tensile force, extracellular matrix stiffness or tissue elasticity, and extracellular fluid viscosity. Mechanotransduction has been expected to trigger multiple biological processes, such as embryonic development, tissue repair and regeneration. However, prolonged excessive mechanical stimulation can result in pathological processes, such as multi-organ fibrosis, tumorigenesis, and cancer immunotherapy resistance. Although the associations between mechanical cues and normal tissue homeostasis or diseases have been identified, the regulatory mechanisms among different mechanical cues are not yet comprehensively illustrated, and no effective therapies are currently available targeting mechanical cue-related signaling. This review systematically summarizes the characteristics and regulatory mechanisms of typical mechanical cues in normal conditions and diseases with the updated evidence. The key effectors responding to mechanical stimulations are listed, such as Piezo channels, integrins, Yes-associated protein (YAP) /transcriptional coactivator with PDZ-binding motif (TAZ), and transient receptor potential vanilloid 4 (TRPV4). We also reviewed the key signaling pathways, therapeutic targets and cutting-edge clinical applications of diseases related to mechanical cues.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xiaoshuai Gao
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Liao Peng
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jianzhong Ai
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xi Jin
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Shiqian Qi
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Hong Li
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Kunjie Wang
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China.
| | - Deyi Luo
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China.
| |
Collapse
|
45
|
Yang WS, Chuang GT, Che TPH, Chueh LY, Li WY, Hsu CN, Hsiung CN, Ku HC, Lin YC, Chen YS, Hee SW, Chang TJ, Chen SM, Hsieh ML, Lee HL, Liao KCW, Shen CY, Chang YC. Genome-Wide Association Studies for Albuminuria of Nondiabetic Taiwanese Population. Am J Nephrol 2023; 54:359-369. [PMID: 37437553 DOI: 10.1159/000531783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/26/2023] [Indexed: 07/14/2023]
Abstract
INTRODUCTION Chronic kidney disease, which is defined by a reduced estimated glomerular filtration rate and albuminuria, imposes a large health burden worldwide. Ethnicity-specific associations are frequently observed in genome-wide association studies (GWAS). This study conducts a GWAS of albuminuria in the nondiabetic population of Taiwan. METHODS Nondiabetic individuals aged 30-70 years without a history of cancer were enrolled from the Taiwan Biobank. A total of 6,768 subjects were subjected to a spot urine examination. After quality control using PLINK and imputation using SHAPEIT and IMPUTE2, a total of 3,638,350 single-nucleotide polymorphisms (SNPs) remained for testing. SNPs with a minor allele frequency of less than 0.1% were excluded. Linear regression was used to determine the relationship between SNPs and log urine albumin-to-creatinine ratio. RESULTS Six suggestive loci are identified in or near the FCRL3 (p = 2.56 × 10-6), TMEM161 (p = 4.43 × 10-6), EFCAB1 (p = 2.03 × 10-6), ELMOD1 (p = 2.97 × 10-6), RYR3 (p = 1.34 × 10-6), and PIEZO2 (p = 2.19 × 10-7). Genetic variants in the FCRL3 gene that encode a secretory IgA receptor are found to be associated with IgA nephropathy, which can manifest as proteinuria. The PIEZO2 gene encodes a sensor for mechanical forces in mesangial cells and renin-producing cells. Five SNPs with a p-value between 5 × 10-6 and 5 × 10-5 are also identified in five genes that may have a biological role in the development of albuminuria. CONCLUSION Five new loci and one known suggestive locus for albuminuria are identified in the nondiabetic Taiwanese population.
Collapse
Affiliation(s)
- Wei-Shun Yang
- Department of Internal Medicine, Division of Nephrology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan,
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan,
| | - Gwo-Tsann Chuang
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
- Division of Nephrology, Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Tony Pan-Hou Che
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - Li-Yun Chueh
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - Wen-Yi Li
- Department of Internal Medicine, Division of Nephrology, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Chih-Neng Hsu
- Cardiovascular Center, National Taiwan University Hospital Yun-Lin Branch, Yunlin, Taiwan
| | - Chia-Ni Hsiung
- Data Science Statistical Cooperation Center, Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Hsiao-Chia Ku
- Department of Laboratory Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Yi-Ching Lin
- Department of Laboratory Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Yi-Shun Chen
- Department of Laboratory Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Siow-Wey Hee
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tien-Jyun Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medicine, College of Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shiau-Mei Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Meng-Lun Hsieh
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Hsiao-Lin Lee
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | | | - Chen-Yang Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Cheng Chang
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medicine, College of Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
46
|
Bhuiyan SA, Xu M, Yang L, Semizoglou E, Bhatia P, Pantaleo KI, Tochitsky I, Jain A, Erdogan B, Blair S, Cat V, Mwirigi JM, Sankaranarayanan I, Tavares-Ferreira D, Green U, McIlvried LA, Copits BA, Bertels Z, Del Rosario JS, Widman AJ, Slivicki RA, Yi J, Woolf CJ, Lennerz JK, Whited JL, Price TJ, Gereau RW, Renthal W. Harmonized cross-species cell atlases of trigeminal and dorsal root ganglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.04.547740. [PMID: 37461736 PMCID: PMC10350076 DOI: 10.1101/2023.07.04.547740] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Peripheral sensory neurons in the dorsal root ganglion (DRG) and trigeminal ganglion (TG) are specialized to detect and transduce diverse environmental stimuli including touch, temperature, and pain to the central nervous system. Recent advances in single-cell RNA-sequencing (scRNA-seq) have provided new insights into the diversity of sensory ganglia cell types in rodents, non-human primates, and humans, but it remains difficult to compare transcriptomically defined cell types across studies and species. Here, we built cross-species harmonized atlases of DRG and TG cell types that describe 18 neuronal and 11 non-neuronal cell types across 6 species and 19 studies. We then demonstrate the utility of this harmonized reference atlas by using it to annotate newly profiled DRG nuclei/cells from both human and the highly regenerative axolotl. We observe that the transcriptomic profiles of sensory neuron subtypes are broadly similar across vertebrates, but the expression of functionally important neuropeptides and channels can vary notably. The new resources and data presented here can guide future studies in comparative transcriptomics, simplify cell type nomenclature differences across studies, and help prioritize targets for future pain therapy development.
Collapse
Affiliation(s)
- Shamsuddin A Bhuiyan
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Mengyi Xu
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Alan Edwards Center for Research on Pain and Department of Physiology, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Lite Yang
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Evangelia Semizoglou
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Parth Bhatia
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Katerina I Pantaleo
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ivan Tochitsky
- F.M. Kirby Neurobiology Center and Department of Neurobiology, Boston Children's Hospital and Harvard Medical School, 3 Blackfan Cir. Boston, MA 02115
| | - Aakanksha Jain
- F.M. Kirby Neurobiology Center and Department of Neurobiology, Boston Children's Hospital and Harvard Medical School, 3 Blackfan Cir. Boston, MA 02115
| | - Burcu Erdogan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, 02138
| | - Steven Blair
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, 02138
| | - Victor Cat
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, 02138
| | - Juliet M Mwirigi
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080
| | - Ishwarya Sankaranarayanan
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080
| | - Diana Tavares-Ferreira
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080
| | - Ursula Green
- Department of Pathology, Center for Integrated Diagnostics, Massachussetts General Hospital and Havard Medical School, Boston, MA 02114
| | - Lisa A McIlvried
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Bryan A Copits
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Zachariah Bertels
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - John S Del Rosario
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Allie J Widman
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Richard A Slivicki
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Jiwon Yi
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center and Department of Neurobiology, Boston Children's Hospital and Harvard Medical School, 3 Blackfan Cir. Boston, MA 02115
| | - Jochen K Lennerz
- Department of Pathology, Center for Integrated Diagnostics, Massachussetts General Hospital and Havard Medical School, Boston, MA 02114
| | - Jessica L Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, 02138
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080
| | - Robert W Gereau
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - William Renthal
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
47
|
Jiang M, Zhang YX, Bu WJ, Li P, Chen JH, Cao M, Dong YC, Sun ZJ, Dong DL. Piezo1 channel activation stimulates ATP production through enhancing mitochondrial respiration and glycolysis in vascular endothelial cells. Br J Pharmacol 2023; 180:1862-1877. [PMID: 36740831 DOI: 10.1111/bph.16050] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Piezo1 channels are mechanosensitive cationic channels that are activated by mechanical stretch or shear stress. Endothelial Piezo1 activation by shear stress caused by blood flow induces ATP release from endothelial cells; however, the link between shear stress and endothelial ATP production is unclear. EXPERIMENTAL APPROACH The mitochondrial respiratory function of cells was measured by using high-resolution respirometry system Oxygraph-2k. The intracellular Ca2+ concentration was evaluated by using Fluo-4/AM and mitochondrial Ca2+ concentration by Rhod-2/AM. KEY RESULTS The specific Piezo1 channel activator Yoda1 or its analogue Dooku1 increased [Ca2+ ]i in human umbilical vein endothelial cells (HUVECs), and both Yoda1 and Dooku1 increased mitochondrial oxygen consumption rates (OCRs) and mitochondrial ATP production in HUVECs and primary cultured rat aortic endothelial cells (RAECs). Knockdown of Piezo1 inhibited Yoda1- and Dooku1-induced increases of mitochondrial OCRs and mitochondrial ATP production in HUVECs. The shear stress mimetics, Yoda1 and Dooku1, and the Piezo1 knock-down technique also demonstrated that Piezo1 activation increased glycolysis in HUVECs. Chelating extracellular Ca2+ with EGTA or chelating cytosolic Ca2+ with BAPTA-AM did not affect Yoda1- and Dooku1-induced increases of mitochondrial OCRs and ATP production, but chelating cytosolic Ca2+ inhibited Yoda1- and Dooku1-induced increase of glycolysis. Confocal microscopy showed that Piezo1 channels are present in mitochondria of endothelial cells, and Yoda1 and Dooku1 increased mitochondrial Ca2+ in endothelial cells. CONCLUSION AND IMPLICATIONS Piezo1 channel activation stimulates ATP production through enhancing mitochondrial respiration and glycolysis in vascular endothelial cells, suggesting a novel role of Piezo1 channel in endothelial ATP production.
Collapse
Affiliation(s)
- Man Jiang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Yi-Xin Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Wen-Jie Bu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Ping Li
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Jia-Hui Chen
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Ming Cao
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Yan-Chao Dong
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Zhi-Jie Sun
- Department of Pharmacology, China Pharmaceutical University, Nanjing, PR China
| | - De-Li Dong
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
- Department of Pharmacology, China Pharmaceutical University, Nanjing, PR China
| |
Collapse
|
48
|
Murthy SE. Deciphering mechanically activated ion channels at the single-channel level in dorsal root ganglion neurons. J Gen Physiol 2023; 155:e202213099. [PMID: 37102984 PMCID: PMC10140383 DOI: 10.1085/jgp.202213099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/22/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023] Open
Abstract
Mechanically activated (MA) ion channels confer somatosensory neurons with the ability to sense a wide range of mechanical stimuli. MA ion channel activity in somatosensory neurons is best described by the electrophysiological recordings of MA currents in cultured dorsal root ganglion (DRG) neurons. Biophysical and pharmacological characterization of DRG MA currents has guided the field in screening/confirming channel candidates that induce the currents and facilitate the mechanosensory response. But studies on DRG MA currents have relied mostly on whole-cell macroscopic current properties obtained by membrane indentation, and little is known about the underlying MA ion channels at the single-channel level. Here, by acquiring indentation-induced macroscopic currents as well as stretch-activated single-channel currents from the same cell, we associate macroscopic current properties with single-channel conductance. This analysis reveals the nature of the MA channel responsible for the ensemble response. We observe four different conductances in DRG neurons with no association with a specific type of macroscopic current. Applying this methodology to a Piezo2 expressing DRG neuronal subpopulation allows us to identify PIEZO2-dependent stretch-activated currents and conductance. Moreover, we demonstrate that upon Piezo2 deletion, the remaining macroscopic responses are predominantly mediated by three different single-channel conductances. Collectively, our data predict that at least two other MA ion channels exist in DRG neurons that remain to be discovered.
Collapse
Affiliation(s)
- Swetha E. Murthy
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
49
|
Wang Y, Ye L. Somatosensory innervation of adipose tissues. Physiol Behav 2023; 265:114174. [PMID: 36965573 DOI: 10.1016/j.physbeh.2023.114174] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023]
Abstract
The increasing prevalence of obesity and type 2 diabetes has led to a greater interest in adipose tissue physiology. Adipose tissue is now understood as an organ with endocrine and thermogenic capacities in addition to its role in fat storage. It plays a critical role in systemic metabolism and energy regulation, and its activity is tightly regulated by the nervous system. Fat is now recognized to receive sympathetic innervation, which transmits information from the brain, as well as sensory innervation, which sends information into the brain. The role of sympathetic innervation in adipose tissue has been extensively studied. However, the extent and the functional significance of sensory innervation have long been unclear. Recent studies have started to reveal that sensory neurons robustly innervate adipose tissue and play an important role in regulating fat activity. This brief review will discuss both historical evidence and recent advances, as well as important remaining questions about the sensory innervation of adipose tissue.
Collapse
Affiliation(s)
- Yu Wang
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Li Ye
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
50
|
Schaefer I, Verkest C, Vespermann L, Mair T, Voß H, Zeitzschel N, Lechner SG. Protein kinase A mediates modality-specific modulation of the mechanically-gated ion channel PIEZO2. J Biol Chem 2023:104782. [PMID: 37146970 DOI: 10.1016/j.jbc.2023.104782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/07/2023] Open
Abstract
Protein kinase A is a downstream effector of many inflammatory mediators that induce pain hypersensitivity by increasing the mechanosensitivity of nociceptive sensory afferent. Here we examine the molecular mechanism underlying protein kinase-A-dependent modulation of the mechanically-activated ion channel PIEZO2, which confers mechanosensitivity to many nociceptors. Using phosphorylation site prediction algorithms, we identified multiple putative and highly conserved PKA phosphorylation sites located on intracellular intrinsically disordered regions of PIEZO2. Site-directed mutagenesis and patch-clamp recordings showed that substitution of one or multiple putative PKA sites within a single intracellular domain does not alter PKA-induced PIEZO2 sensitization, whereas mutation of a combination of nine putative sites located on four different intracellular regions completely abolishes PKA-dependent PIEZO2 modulation, though it remains unclear whether all or just some of these nine sites are required. By demonstrating that PIEZO1 is not modulated by PKA, our data also reveals a previously unrecognized functional difference between PIEZO1 and PIEZO2. Moreover, by demonstrating that PKA only modulates PIEZO2 currents evoked by focal mechanical indentation of the cell, but not currents evoked by pressure-induced membrane stretch, we provide evidence suggesting that PIEZO2 is a polymodal mechanosensor that engages different protein domains for detecting different types of mechanical stimuli.
Collapse
Affiliation(s)
- Irina Schaefer
- Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Clement Verkest
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Lucas Vespermann
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Thomas Mair
- Section for Mass-Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Hannah Voß
- Section for Mass-Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Nadja Zeitzschel
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Stefan G Lechner
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| |
Collapse
|