1
|
Ferrare JT, Good BH. Evolution of evolvability in rapidly adapting populations. Nat Ecol Evol 2024; 8:2085-2096. [PMID: 39261599 DOI: 10.1038/s41559-024-02527-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/29/2024] [Indexed: 09/13/2024]
Abstract
Mutations can alter the short-term fitness of an organism, as well as the rates and benefits of future mutations. While numerous examples of these evolvability modifiers have been observed in rapidly adapting microbial populations, existing theory struggles to predict when they will be favoured by natural selection. Here we develop a mathematical framework for predicting the fates of genetic variants that modify the rates and benefits of future mutations in linked genomic regions. We derive analytical expressions showing how the fixation probabilities of these variants depend on the size of the population and the diversity of competing mutations. We find that competition between linked mutations can dramatically enhance selection for modifiers that increase the benefits of future mutations, even when they impose a strong direct cost on fitness. However, we also find that modest direct benefits can be sufficient to drive evolutionary dead ends to fixation. Our results suggest that subtle differences in evolvability could play an important role in shaping the long-term success of genetic variants in rapidly evolving microbial populations.
Collapse
Affiliation(s)
| | - Benjamin H Good
- Department of Applied Physics, Stanford University, Stanford, CA, USA.
- Department of Biology, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Moreno A, Manning K, Azeem MI, Nooka AK, Ellis M, Manalo RJ, Switchenko JM, Wali B, Kaufman JL, Hofmeister CC, Joseph NS, Lonial S, Dhodapkar KM, Dhodapkar MV, Suthar MS. Divergence of variant antibodies following SARS-CoV-2 booster vaccines in myeloma and impact of hybrid immunity. NPJ Vaccines 2024; 9:201. [PMID: 39465249 PMCID: PMC11514147 DOI: 10.1038/s41541-024-00999-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/17/2024] [Indexed: 10/29/2024] Open
Abstract
Hematological malignancies are associated with an increased risk of complications during SARS-CoV-2 infections. Primary series or monovalent booster vaccines reduce disease severity, hospitalization, and death among multiple myeloma patients. We characterized virus-neutralizing and spike-binding antibody profiles following monovalent (WA1) or bivalent (WA1/BA.5) SARS-CoV-2 booster vaccination in MM patients. Bivalent vaccination improved the breadth of binding antibodies but not neutralization activity against contemporary variants. Hybrid immunity and immune imprinting impact vaccine-elicited immunity.
Collapse
Affiliation(s)
- Alberto Moreno
- Emory Vaccine Center, Emory University, Atlanta, Georgia
- Emory National Primate Research Center, Atlanta, Georgia
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Kelly Manning
- Emory Vaccine Center, Emory University, Atlanta, Georgia
- Emory National Primate Research Center, Atlanta, Georgia
| | - Maryam I Azeem
- Department of Hematology/Medical Oncology, Emory University, Atlanta, Georgia
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia
| | - Ajay K Nooka
- Department of Hematology/Medical Oncology, Emory University, Atlanta, Georgia
- Winship Cancer Institute, Atlanta, Georgia
| | - Madison Ellis
- Emory Vaccine Center, Emory University, Atlanta, Georgia
- Emory National Primate Research Center, Atlanta, Georgia
| | - Renee Julia Manalo
- Department of Hematology/Medical Oncology, Emory University, Atlanta, Georgia
| | | | - Bushra Wali
- Emory Vaccine Center, Emory University, Atlanta, Georgia
- Emory National Primate Research Center, Atlanta, Georgia
| | - Jonathan L Kaufman
- Department of Hematology/Medical Oncology, Emory University, Atlanta, Georgia
- Winship Cancer Institute, Atlanta, Georgia
| | - Craig C Hofmeister
- Department of Hematology/Medical Oncology, Emory University, Atlanta, Georgia
- Winship Cancer Institute, Atlanta, Georgia
| | - Nisha S Joseph
- Department of Hematology/Medical Oncology, Emory University, Atlanta, Georgia
- Winship Cancer Institute, Atlanta, Georgia
| | - Sagar Lonial
- Department of Hematology/Medical Oncology, Emory University, Atlanta, Georgia
- Winship Cancer Institute, Atlanta, Georgia
| | - Kavita M Dhodapkar
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia
- Winship Cancer Institute, Atlanta, Georgia
| | - Madhav V Dhodapkar
- Department of Hematology/Medical Oncology, Emory University, Atlanta, Georgia.
- Winship Cancer Institute, Atlanta, Georgia.
| | - Mehul S Suthar
- Emory Vaccine Center, Emory University, Atlanta, Georgia.
- Emory National Primate Research Center, Atlanta, Georgia.
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
3
|
Sivasubramanian BP, Joshi S, Ravkumar DB, Madhumithaa Jagannathan, Babu S, Sripathi SR, Javvaji A, Jain P, Kumar Shanmugam D, Swami Kannan BD, Tirupathi R, Dalal R. COVID-19 in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS): a propensity matched analysis (2020-2021). Front Oncol 2024; 14:1446482. [PMID: 39484031 PMCID: PMC11524996 DOI: 10.3389/fonc.2024.1446482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Background By 2023, COVID-19 had caused 6.8 million deaths in the United States. COVID-19 presents more severely in leukemia compared to solid tumors (OR 1.6, p<0.05). However, data on Acute Myeloid Leukemia (AML) and Myelodysplastic Syndrome (MDS) are limited. We investigated the mortality in AML and MDS patients with COVID-19. Methods Data from the 2020-2021 National Inpatient Sample was used to conduct a cross-sectional analysis. We identified AML and MDS patients with COVID-19 hospitalizations through ICD-10 codes. Analysis was done by propensity matching and multivariate regression with a p-value of ≤0.05. Results Of 28,028 AML admissions, 336 (1.2%) were admitted for COVID-19. AML-COVID-19 cohort had a lower hospitalization risk (aOR 0.3, p=0.000) and higher mortality (21.7% vs 8.7%; aOR 1.6, p=0.023) than AML patients admitted for other causes. AML patients post-HSCT (Hematopoietic Stem Cell Transplantation) had a higher risk of COVID-19 (20.2% vs 9.8%; aOR 2.6, p=0.000) and increased mortality (19.1% vs 6.7%; aOR 4.1, p=0.000) compared to other causes. Similarly, of 28,148 MDS patients, 769 (2.7%) were admitted for COVID-19. The MDS-COVID-19 cohort had a lower hospitalization risk (aOR 0.59, p=0.000) and higher mortality (19.6% vs 6.6%; aOR 2.2, p=0.000) compared to other causes. In MDS, HSCT did not alter the risk of COVID-19 hospitalizations (3% vs 3.9%; aOR 0.9, p=0.662), but these patients had higher mortality (17.4% vs 5.1%; aOR 4.0, p=0.032). Conclusion COVID-19 hospitalization was low in AML and MDS but carried a high mortality risk. Post-HSCT, the mortality is high, warranting research into understanding the underlying factors.
Collapse
Affiliation(s)
| | - Shashvat Joshi
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Diviya Bharathi Ravkumar
- ESIC Medical College and Postgraduate Institute of Medical Science and Research, Chennai, Tamil Nadu, India
| | - Madhumithaa Jagannathan
- Maharashtra Institute of Medical Education and Research (M.I.M.E.R) Medical College, Talegaon Dabhade, Pune, Maharashtra, India
| | - Sonia Babu
- M.S Ramaiah Medical College, Bangalore, Karnataka, India
| | | | - Avinash Javvaji
- Chalmeda Anandrao Institute of Medical Sciences, Karimnagar, Telangana, India
| | - Priyanshu Jain
- Kasturba Medical College, Manipal, Udupi, Karnataka, India
| | - Dinesh Kumar Shanmugam
- PSG Institute of Medical Sciences and Research, Peelamedu, Coimbatore, Tamil Nadu, India
| | | | | | - Rutul Dalal
- Medical Director, Infectious Diseases, Penn State Health (Eastern Region), Penn State Health St. Joseph Medical Center, Reading, PA, United States
| |
Collapse
|
4
|
Vergouwe M, Biemond JJ, van der Straten K, van Pul L, Kerster G, Claireaux M, Burger JA, van Dort KA, Kootstra NA, Jonges M, Welkers MRA, Hazenberg MD, Peters-Sengers H, van Gils MJ, Wiersinga WJ, Birnie E, de Bree GJ. A Robust Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)-Specific T- and B-Cell Response Is Associated With Early Viral Clearance in SARS-CoV-2 Omicron-Infected Immunocompromised Individuals. J Infect Dis 2024; 230:e860-e871. [PMID: 38843052 PMCID: PMC11481360 DOI: 10.1093/infdis/jiae306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/05/2024] [Indexed: 10/17/2024] Open
Abstract
BACKGROUND The immunological determinants of delayed viral clearance and intrahost viral evolution that drive the development of new pathogenic virus strains in immunocompromised individuals are unknown. Therefore, we longitudinally studied severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific immune responses in relation to viral clearance and evolution in immunocompromised individuals. METHODS Among Omicron-infected immunocompromised individuals, we determined SARS-CoV-2-specific T- and B-cell responses, anti-spike immunoglobulin G (IgG) and IgG3 titers, neutralization titers, and monoclonal antibody (mAb) resistance-associated mutations. The 28-day post-enrollment nasopharyngeal specimen defined early (reverse-transcription polymerase chain reaction [RT-PCR] negative ≤28 days) or late (RT-PCR positive >28 days) viral clearance. RESULTS Of 30 patients included (median age, 61.9 [interquartile range, 47.4-72.3] years; 50% females), 20 (66.7%) received mAb therapy. Thirteen (43.3%) demonstrated early and 17 (56.7%) late viral clearance. Patients with early viral clearance and patients without resistance-associated mutations had significantly higher baseline interferon-γ release, and patients with early viral clearance had a higher frequency of SARS-CoV-2-specific B cells at baseline. In non-mAb-treated patients, day 7 IgG and neutralization titers were significantly higher in those with early versus late viral clearance. CONCLUSIONS An early robust adaptive immune response is vital for efficient viral clearance and associated with less emergence of mAb resistance-associated mutations in Omicron-infected immunocompromised patients. This emphasizes the importance of early SARS-CoV-2-specific T- and B-cell responses and thereby provides a rationale for development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Magda Vergouwe
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, The Netherlans
- Amsterdam institute for Infection and Immunity, Infectious Diseases
| | - Jason J Biemond
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, The Netherlans
- Amsterdam institute for Infection and Immunity, Infectious Diseases
| | - Karlijn van der Straten
- Amsterdam institute for Infection and Immunity, Infectious Diseases
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Division of Infectious Diseases, Department of Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Lisa van Pul
- Amsterdam institute for Infection and Immunity, Infectious Diseases
- Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Gius Kerster
- Amsterdam institute for Infection and Immunity, Infectious Diseases
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mathieu Claireaux
- Amsterdam institute for Infection and Immunity, Infectious Diseases
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Judith A Burger
- Amsterdam institute for Infection and Immunity, Infectious Diseases
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Karel A van Dort
- Amsterdam institute for Infection and Immunity, Infectious Diseases
- Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Neeltje A Kootstra
- Amsterdam institute for Infection and Immunity, Infectious Diseases
- Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Marcel Jonges
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Matthijs R A Welkers
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mette D Hazenberg
- Amsterdam institute for Infection and Immunity, Infectious Diseases
- Department of Hematology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Hematopoiesis, Sanquin Research, Amsterdam, The Netherlands
| | - Hessel Peters-Sengers
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, The Netherlans
| | - Marit J van Gils
- Amsterdam institute for Infection and Immunity, Infectious Diseases
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - W Joost Wiersinga
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, The Netherlans
- Amsterdam institute for Infection and Immunity, Infectious Diseases
- Division of Infectious Diseases, Department of Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Emma Birnie
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, The Netherlans
- Amsterdam institute for Infection and Immunity, Infectious Diseases
- Division of Infectious Diseases, Department of Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Godelieve J de Bree
- Amsterdam institute for Infection and Immunity, Infectious Diseases
- Division of Infectious Diseases, Department of Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Misasi J, Wei RR, Wang L, Pegu A, Wei CJ, Oloniniyi OK, Zhou T, Moliva JI, Zhao B, Choe M, Yang ES, Zhang Y, Boruszczak M, Chen M, Leung K, Li J, Yang ZY, Andersen H, Carlton K, Godbole S, Harris DR, Henry AR, Ivleva VB, Lei QP, Liu C, Longobardi L, Merriam JS, Nase D, Olia AS, Pessaint L, Porto M, Shi W, Wallace SM, Wolff JJ, Douek DC, Suthar MS, Gall JG, Koup RA, Kwong PD, Mascola JR, Nabel GJ, Sullivan NJ. A multispecific antibody against SARS-CoV-2 prevents immune escape in vitro and confers prophylactic protection in vivo. Sci Transl Med 2024; 16:eado9026. [PMID: 39383243 DOI: 10.1126/scitranslmed.ado9026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/11/2024] [Indexed: 10/11/2024]
Abstract
Despite effective countermeasures, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) persists worldwide because of its ability to diversify and evade human immunity. This evasion stems from amino acid substitutions, particularly in the receptor binding domain (RBD) of the spike protein that confers resistance to vaccine-induced antibodies and antibody therapeutics. To constrain viral escape through resistance mutations, we combined antibody variable regions that recognize different RBD sites into multispecific antibodies. Here, we describe multispecific antibodies, including a trivalent trispecific antibody that potently neutralized diverse SARS-CoV-2 variants and prevented virus escape more effectively than single antibodies or mixtures of the parental antibodies. Despite being generated before the appearance of Omicron, this trispecific antibody neutralized all major Omicron variants through BA.4/BA.5 at nanomolar concentrations. Negative stain electron microscopy suggested that synergistic neutralization was achieved by engaging different epitopes in specific orientations that facilitated binding across more than one spike protein. Moreover, a tetravalent trispecific antibody containing the same variable regions as the trivalent trispecific antibody also protected Syrian hamsters against Omicron variants BA.1, BA.2, and BA.5 challenge, each of which uses different amino acid substitutions to mediate escape from therapeutic antibodies. These results demonstrated that multispecific antibodies have the potential to provide broad SARS-CoV-2 coverage, decrease the likelihood of escape, simplify treatment, and provide a strategy for antibody therapies that could help eliminate pandemic spread for this and other pathogens.
Collapse
Affiliation(s)
- John Misasi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ronnie R Wei
- ModeX Therapeutics Inc., an OPKO Health Company, Weston, MA 02493, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chih-Jen Wei
- ModeX Therapeutics Inc., an OPKO Health Company, Weston, MA 02493, USA
| | - Olamide K Oloniniyi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juan I Moliva
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bingchun Zhao
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Misook Choe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yi Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marika Boruszczak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Man Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kwanyee Leung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juan Li
- ModeX Therapeutics Inc., an OPKO Health Company, Weston, MA 02493, USA
| | - Zhi-Yong Yang
- ModeX Therapeutics Inc., an OPKO Health Company, Weston, MA 02493, USA
| | | | - Kevin Carlton
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sucheta Godbole
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Darcy R Harris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amy R Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vera B Ivleva
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Q Paula Lei
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cuiping Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lindsay Longobardi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jonah S Merriam
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Jeremy J Wolff
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mehul S Suthar
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jason G Gall
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gary J Nabel
- ModeX Therapeutics Inc., an OPKO Health Company, Weston, MA 02493, USA
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Huang J, Ma Q, Su Z, Cheng X. Advancements in the Development of Anti-SARS-CoV-2 Therapeutics. Int J Mol Sci 2024; 25:10820. [PMID: 39409149 PMCID: PMC11477007 DOI: 10.3390/ijms251910820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 09/29/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus that causes COVID-19, and so far, it has occurred five noteworthy variants of concern (VOC). SARS-CoV-2 invades cells by contacting its Spike (S) protein to its receptor on the host cell, angiotensin-converting enzyme 2 (ACE2). However, the high frequency of mutations in the S protein has limited the effectiveness of existing drugs against SARS-CoV-2 variants, particularly the Omicron variant. Therefore, it is critical to develop drugs that have highly effective antiviral activity against both SARS-CoV-2 and its variants in the future. This review provides an overview of the mechanism of SARS-CoV-2 infection and the current progress on anti-SARS-CoV-2 drugs.
Collapse
Affiliation(s)
- Junjie Huang
- Institute of Modern Fermentation Engineering and Future Foods, School of Light Industry and Food Engineering, Guangxi University, No. 100, Daxuedong Road, Nanning 530004, China;
| | - Qianqian Ma
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China;
| | - Zhengding Su
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China;
| | - Xiyao Cheng
- Institute of Modern Fermentation Engineering and Future Foods, School of Light Industry and Food Engineering, Guangxi University, No. 100, Daxuedong Road, Nanning 530004, China;
| |
Collapse
|
7
|
Rodríguez-Horta E, Strahan J, Dinner AR, Barton JP. Chronic infections can generate SARS-CoV-2-like bursts of viral evolution without epistasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.06.616878. [PMID: 39416020 PMCID: PMC11482859 DOI: 10.1101/2024.10.06.616878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Multiple SARS-CoV-2 variants have arisen during the first years of the pandemic, often bearing many new mutations. Several explanations have been offered for the surprisingly sudden emergence of multiple mutations that enhance viral fitness, including cryptic transmission, spillover from animal reservoirs, epistasis between mutations, and chronic infections. Here, we simulated pathogen evolution combining within-host replication and between-host transmission. We found that, under certain conditions, chronic infections can lead to SARS-CoV-2-like bursts of mutations even without epistasis. Chronic infections can also increase the global evolutionary rate of a pathogen even in the absence of clear mutational bursts. Overall, our study supports chronic infections as a plausible origin for highly mutated SARS-CoV-2 variants. More generally, we also describe how chronic infections can influence pathogen evolution under different scenarios.
Collapse
Affiliation(s)
- Edwin Rodríguez-Horta
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, USA
- Group of Complex Systems and Statistical Physics, Department of Theoretical Physics, Physics Faculty, University of Havana, Cuba
| | - John Strahan
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA
| | - Aaron R. Dinner
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA
| | - John P. Barton
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, USA
| |
Collapse
|
8
|
Rella SA, Kulikova YA, Minnegalieva AR, Kondrashov FA. Complex vaccination strategies prevent the emergence of vaccine resistance. Evolution 2024; 78:1722-1738. [PMID: 38990788 DOI: 10.1093/evolut/qpae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/22/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024]
Abstract
Vaccination is the most effective tool to control infectious diseases. However, the evolution of vaccine resistance, exemplified by vaccine resistance in SARS-CoV-2, remains a concern. Here, we model complex vaccination strategies against a pathogen with multiple epitopes-molecules targeted by the vaccine. We found that a vaccine targeting one epitope was ineffective in preventing vaccine escape. Vaccine resistance in highly infectious pathogens was prevented by the full-epitope vaccine, that is, one targeting all available epitopes, but only when the rate of pathogen evolution was low. Strikingly, a bet-hedging strategy of random administration of vaccines targeting different epitopes was the most effective in preventing vaccine resistance in pathogens with the low rate of infection and high rate of evolution. Thus, complex vaccination strategies, when biologically feasible, may be preferable to the currently used single-vaccine approaches for long-term control of disease outbreaks, especially when applied to livestock with near 100% vaccination rates.
Collapse
Affiliation(s)
- Simon A Rella
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Yuliya A Kulikova
- International Institute for Applied Systems Analysis, Laxenburg, Austria
- Okinawa Institute of Science and Technology, Okinawa, Japan
| | | | | |
Collapse
|
9
|
Dyrdak R, Stamouli S, Ganeshappa Aralaguppe S, Ekman M, Safari H, Berg C, Movert E, Latorre-Margalef N, Andersson E, Gisslén M, Nederby-Öhd J, Leufvén ÅS, Schoenmakers J, Broddesson S, Murrell B, Albert J. A novel SARS-CoV-2 recombinant transmitted from a patient with an acute co-infection. THE LANCET. MICROBE 2024:100998. [PMID: 39366391 DOI: 10.1016/j.lanmic.2024.100998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 10/06/2024]
Affiliation(s)
- Robert Dyrdak
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm 17176, Sweden; Department of Microbiology, Tumor and Cell Biology Karolinska Institutet, Stockholm, Sweden.
| | - Sofia Stamouli
- Department of Microbiology, Tumor and Cell Biology Karolinska Institutet, Stockholm, Sweden
| | | | - Martin Ekman
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm 17176, Sweden
| | - Hamzah Safari
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm 17176, Sweden
| | - Carlo Berg
- Public Health Institute of Sweden, Solna, Sweden
| | - Elin Movert
- Public Health Institute of Sweden, Solna, Sweden
| | | | - Emmi Andersson
- Department of Medicine, Huddinge Karolinska Institutet, Stockholm, Sweden; Public Health Institute of Sweden, Solna, Sweden
| | - Magnus Gisslén
- Public Health Institute of Sweden, Solna, Sweden; Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg Sahlgrenska Academy, Gothenburg, Sweden; Department of Infectious Diseases, Sahlgrenska University Hospital, Västra Götaland Region, Gothenburg, Sweden
| | - Joanna Nederby-Öhd
- Department of Global Public Health Karolinska Institutet, Stockholm, Sweden; Department of Communicable Disease Control and Prevention, Stockholm Region, Stockholm, Sweden
| | - Åsa Sjödin Leufvén
- Department of Global Public Health Karolinska Institutet, Stockholm, Sweden; Department of Communicable Disease Control and Prevention, Stockholm Region, Stockholm, Sweden
| | | | - Sandra Broddesson
- Department of Microbiology, Tumor and Cell Biology Karolinska Institutet, Stockholm, Sweden
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology Karolinska Institutet, Stockholm, Sweden
| | - Jan Albert
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm 17176, Sweden; Department of Microbiology, Tumor and Cell Biology Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Singh K, Rocco JM, Nussenblatt V. The winding road: Infectious disease considerations for CAR-T and other novel adoptive cellular therapies in the era of COVID-19. Semin Hematol 2024; 61:321-332. [PMID: 39379249 DOI: 10.1053/j.seminhematol.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 10/10/2024]
Abstract
Adoptive cellular therapies (ACT) are novel, promising treatments for life-threatening malignancies. In addition to the better known chimeric antigen receptor (CAR) T cells, ACTs include tumor infiltrating lymphocytes (TIL), cancer antigen-specific T cell receptors (TCRs), and CAR-NK (natural killer) cells. In key historic milestones, several adoptive therapies recently received FDA approvals, including 6 CAR-T products for the treatment of hematologic malignancies and the first TIL therapy for the treatment for metastatic melanoma. The rapid pace of clinical trials in the field and the discoveries they provide are ushering in a new era of cancer immunotherapy. However, the potential complications of these therapies are still not fully understood. In particular, patients receiving ACT may be at increased risk for severe infections due to immunocompromise resulting from their underlying malignancies, which are further compounded by the immune derangements that develop in the setting of cellular immunotherapy and/or the preconditioning treatment needed to enhance ACT efficacy. Moreover, these treatments are being readily implemented at a time following the height of the COVID-19 pandemic, and it remains unclear what additional risks these patients may face from SARS-CoV-2 and similar infections. Here, we examine the evidence for infectious complications with emerging adoptive therapies, and provide a focused review of the epidemiology, complications, and clinical management for COVID-19 in CAR-T recipients to understand the risk this disease may pose to recipients of other forms of ACT.
Collapse
Affiliation(s)
- Kanal Singh
- Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.
| | - Joseph M Rocco
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Veronique Nussenblatt
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
11
|
Schoefbaenker M, Günther T, Lorentzen EU, Romberg ML, Hennies MT, Neddermeyer R, Müller MM, Mellmann A, Bojarzyn CR, Lenz G, Stelljes M, Hrincius ER, Vollenberg R, Ludwig S, Tepasse PR, Kühn JE. Characterisation of the antibody-mediated selective pressure driving intra-host evolution of SARS-CoV-2 in prolonged infection. PLoS Pathog 2024; 20:e1012624. [PMID: 39405332 PMCID: PMC11508484 DOI: 10.1371/journal.ppat.1012624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/25/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024] Open
Abstract
Neutralising antibodies against the SARS-CoV-2 spike (S) protein are major determinants of protective immunity, though insufficient antibody responses may cause the emergence of escape mutants. We studied the humoral immune response causing intra-host evolution in a B-cell depleted, haemato-oncologic patient experiencing clinically severe, prolonged SARS-CoV-2 infection with a virus of lineage B.1.177.81. Following bamlanivimab treatment at an early stage of infection, the patient developed a bamlanivimab-resistant mutation, S:S494P. After five weeks of apparent genetic stability, the emergence of additional substitutions and deletions within the N-terminal domain (NTD) and the receptor binding domain (RBD) of S was observed. Notably, the composition and frequency of escape mutations changed in a short period with an unprecedented dynamic. The triple mutant S:Delta141-4 E484K S494P became dominant until virus elimination. Routine serology revealed no evidence of an antibody response in the patient. A detailed analysis of the variant-specific immune response by pseudotyped virus neutralisation test, surrogate virus neutralisation test, and immunoglobulin-capture enzyme immunoassay showed that the onset of an IgM-dominated antibody response coincided with the appearance of escape mutations. The formation of neutralising antibodies against S:Delta141-4 E484K S494P correlated with virus elimination. One year later, the patient experienced clinically mild re-infection with Omicron BA.1.18, which was treated with sotrovimab and resulted in an increase in Omicron-reactive antibodies. In conclusion, the onset of an IgM-dominated endogenous immune response in an immunocompromised patient coincided with the appearance of additional mutations in the NTD and RBD of S in a bamlanivimab-resistant virus. Although virus elimination was ultimately achieved, this humoral immune response escaped detection by routine diagnosis and created a situation temporarily favouring the rapid emergence of various antibody escape mutants with known epidemiological relevance.
Collapse
Affiliation(s)
| | - Theresa Günther
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | - Eva Ulla Lorentzen
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | | | - Marc Tim Hennies
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | - Rieke Neddermeyer
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | | | - Alexander Mellmann
- Institute of Hygiene, University Hospital Muenster, University of Muenster, Muenster, Germany
| | | | - Georg Lenz
- Department of Medicine A, Haematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Matthias Stelljes
- Department of Medicine A, Haematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | | | - Richard Vollenberg
- Department of Medicine B for Gastroenterology, Hepatology, Endocrinology and Clinical Infectiology, University Hospital Muenster, Muenster, Germany
| | - Stephan Ludwig
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | - Phil-Robin Tepasse
- Department of Medicine B for Gastroenterology, Hepatology, Endocrinology and Clinical Infectiology, University Hospital Muenster, Muenster, Germany
| | - Joachim Ewald Kühn
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| |
Collapse
|
12
|
Wildenbeest JG, Lowe DM, Standing JF, Butler CC. Respiratory syncytial virus infections in adults: a narrative review. THE LANCET. RESPIRATORY MEDICINE 2024; 12:822-836. [PMID: 39265602 DOI: 10.1016/s2213-2600(24)00255-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/14/2024]
Abstract
Respiratory syncytial virus (RSV), an RNA virus spread by droplet infection that affects all ages, is increasingly recognised as an important pathogen in adults, especially among older people living with comorbidities. Distinguishing RSV from other acute viral infections on clinical grounds alone, with sufficient precision to be clinically useful, is not possible. The reference standard diagnosis is by PCR: point-of-care tests perform less well with lower viral loads. Testing samples from a single respiratory tract site could result in underdetection. RSV is identified in 6-11% of outpatient respiratory tract infection (RTI) consultations in older adults (≥60 years, or ≥65 years, depending on the study) and accounts for 4-11% of adults (≥18 years) hospitalised with RTI, with 6-15% of those hospitalised admitted to intensive care, and 1-12% of all adults hospitalised with RSV respiratory tract infection dying. Community-based studies estimate the yearly incidence of RSV infection at around 3-7% in adults aged 60 years and older in high-income countries. Although RSV accounts for a similar disease burden as influenza in adults, those hospitalised with severe RSV disease are typically older (most ≥60 years) and have more comorbidities, more respiratory symptoms, and are frequently without fever. Long-term sequelae are common and include deterioration of underlying disease (typically heart failure and COPD). There are few evidence-based RSV-specific treatments currently available, with supportive care being the main modality. Two protein subunit vaccines for protection from severe RSV in adults aged 60 years and older were licensed in 2023, and a third-an mRNA-based vaccine-recently gained market approval in the USA. The phase 3 studies in these three vaccines showed good protection against severe disease. Data on real-world vaccine effectiveness in older adults, including subgroups at high risk for RSV-associated hospitalisation, are needed to establish the best use of these newly approved RSV vaccines. New diagnostics and therapeutics are being developed, which will also need rigorous evaluation within their target populations to ensure they are used only for those in whom there is evidence of improved outcomes. There is an urgent need to reconceptualise this illness from one that is serious in children, but far less important than influenza in older people, to thinking of RSV as also a major risk to health for older people that needs targeted prevention and treatment.
Collapse
Affiliation(s)
- Joanne G Wildenbeest
- Department of Paediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, Netherlands
| | - David M Lowe
- Institute of Immunity and Transplantation, University College London, London, UK; Department of Clinical Immunology, Royal Free London NHS Foundation Trust, London, UK
| | - Joseph F Standing
- Infection, Inflammation and Immunology, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Christopher C Butler
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
13
|
Fonager J, Nytofte NJS, Schouw CH, Poulsen CB, Wiese L, Fomsgaard A, Bennedbæk M, Rasmussen M, Nielsen XC. Emergence and fixation of SARS-CoV-2 minority variants in a chronically infected patient receiving therapy in Denmark. APMIS 2024; 132:734-740. [PMID: 38961316 DOI: 10.1111/apm.13454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
SARS-CoV-2 variants of concern (VOC), such as Delta and Omicron have harbored mutations, which increased viral infectivity or ability to evade neutralizing antibodies. Immunocompromised patients might be a source of some of these emerging variants. In this study, we sequenced 17 consecutive samples from an immunocompromised patient with a long-term SARS-CoV-2 infection with the pre-VOC era lineage B.1.177.35. We here describe the emergence of 73 nonsynonymous minority variants in this patient and show that 10 of these mutations became dominant in the viral population during the treatment period. Four of these were seen throughout the infection period and had a very low global prevalence, although three of them were also observed later in the Alpha, Delta, and Omicron lineages. We also found that two adjacent nsp12 variants (M785I and S786P) belonged to different quasi-species and competed during the early stages of infection and remdesivir administration. This emphasizes the importance of ongoing genome surveillance of SARS-CoV-2 among immunocpromised patients.
Collapse
Affiliation(s)
- Jannik Fonager
- Virus Research and Development Laboratory, Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Nikolaj Julian Skrøder Nytofte
- Department of Medicine, Zealand University Hospital, Køge, Denmark
- Centre for Thrombosis and Anticoagulation, NSR Hospitals, Næstved, Denmark
| | | | | | - Lothar Wiese
- Department of Infectious Diseases, Zealand University Hospital, Roskilde, Denmark
| | - Anders Fomsgaard
- Virus Research and Development Laboratory, Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Marc Bennedbæk
- Virus Research and Development Laboratory, Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Morten Rasmussen
- Virus Research and Development Laboratory, Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | | |
Collapse
|
14
|
Nooruzzaman M, Johnson KEE, Rani R, Finkelsztein EJ, Caserta LC, Kodiyanplakkal RP, Wang W, Hsu J, Salpietro MT, Banakis S, Albert J, Westblade LF, Zanettini C, Marchionni L, Soave R, Ghedin E, Diel DG, Salvatore M. Emergence of transmissible SARS-CoV-2 variants with decreased sensitivity to antivirals in immunocompromised patients with persistent infections. Nat Commun 2024; 15:7999. [PMID: 39294134 PMCID: PMC11411086 DOI: 10.1038/s41467-024-51924-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024] Open
Abstract
We investigated the impact of antiviral treatment on the emergence of SARS-CoV-2 resistance during persistent infections in immunocompromised patients (n = 15). All patients received remdesivir and some also received nirmatrelvir-ritonavir (n = 3) or therapeutic monoclonal antibodies (n = 4). Sequence analysis showed that nine patients carried viruses with mutations in the nsp12 (RNA dependent RNA polymerase), while four had viruses with nsp5 (3C protease) mutations. Infectious SARS-CoV-2 with a double mutation in nsp5 (T169I) and nsp12 (V792I) was recovered from respiratory secretions 77 days after initial COVID-19 diagnosis from a patient sequentially treated with nirmatrelvir-ritonavir and remdesivir. In vitro characterization confirmed its decreased sensitivity to remdesivir and nirmatrelvir, which was overcome by combined antiviral treatment. Studies in golden Syrian hamsters demonstrated efficient transmission to contact animals. This study documents the isolation of SARS-CoV-2 carrying resistance mutations to both nirmatrelvir and remdesivir from a patient and demonstrates its transmissibility in vivo.
Collapse
Affiliation(s)
- Mohammed Nooruzzaman
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | | | - Ruchi Rani
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | | | - Leonardo C Caserta
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | | | - Wei Wang
- Systems Genomics Section, NIH/NIAID/DIR/LPD, Bethesda, MD, USA
| | - Jingmei Hsu
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Transplantation and Cellular Therapy Program, Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Maria T Salpietro
- Institutional Biorepository Core, Weill Cornell Medicine, New York, NY, USA
| | | | - Joshua Albert
- Systems Genomics Section, NIH/NIAID/DIR/LPD, Bethesda, MD, USA
| | - Lars F Westblade
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Claudio Zanettini
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Luigi Marchionni
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Rosemary Soave
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Elodie Ghedin
- Systems Genomics Section, NIH/NIAID/DIR/LPD, Bethesda, MD, USA.
| | - Diego G Diel
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| | - Mirella Salvatore
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
- Department of Population Health Science, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
15
|
Kinoshita S, Takemoto M, Asaoka M, Haraguchi Y, Adachi T, Iida S, Komatsu H. COVID-19 in patients receiving treatment at an outpatient chemotherapy unit. Jpn J Clin Oncol 2024:hyae129. [PMID: 39286869 DOI: 10.1093/jjco/hyae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
During the COVID-19 pandemic period, many patients who required outpatient chemotherapy developed COVID-19, requiring chemotherapy interruption. However, there are no clear guidelines regarding the safe timing for restarting chemotherapy. We conducted a retrospective study to assess when such patients can safely recommence chemotherapy. Of the 40 patients included in this study, 34 restarted anticancer drug therapy after COVID-19 infection. Six patients, four with multiple myeloma, and one each with follicular lymphoma and glioma, remained SARS-CoV-2 antigen positive >20 days after COVID-19 onset. Multiple myeloma patients recorded significantly higher frequencies of SARS-CoV-2 antigen positivity >20 days after COVID-19 onset compared with solid tumor patients, with no significant differences in the frequency of SARS-CoV-2 positivity during 5-20 days from COVID-19 onset between them. According to our data, most solid tumor patients achieved SARS-CoV-2 antigen negativity after 20 days from COVID-19 onset. On the other hand, multiple myeloma patients might need serial antigen tests before restarting anticancer therapy in the outpatient chemotherapy setting.
Collapse
Affiliation(s)
- Shiori Kinoshita
- Department of Clinical Oncology, Nagoya City University, Nagoya, Japan
- Department of Hematology and Oncology, Nagoya City University, Nagoya, Japan
| | | | - Minami Asaoka
- Department of Clinical Oncology, Nagoya City University, Nagoya, Japan
- Department of Pharmacy, Nagoya City University, Nagoya, Japan
| | - Yoko Haraguchi
- Department of Nursing, Nagoya City University, Nagoya, Japan
| | - Tamami Adachi
- Department of Nursing, Nagoya City University, Nagoya, Japan
| | - Shinsuke Iida
- Department of Hematology and Oncology, Nagoya City University, Nagoya, Japan
| | - Hirokazu Komatsu
- Department of Clinical Oncology, Nagoya City University, Nagoya, Japan
- Department of Hematology and Oncology, Nagoya City University, Nagoya, Japan
| |
Collapse
|
16
|
Wouters C, Sachithanandham J, Akin E, Pieterse L, Fall A, Truong TT, Bard JD, Yee R, Sullivan DJ, Mostafa HH, Pekosz A. SARS-CoV-2 Variants from Long-Term, Persistently Infected Immunocompromised Patients Have Altered Syncytia Formation, Temperature-Dependent Replication, and Serum Neutralizing Antibody Escape. Viruses 2024; 16:1436. [PMID: 39339912 PMCID: PMC11437501 DOI: 10.3390/v16091436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
SARS-CoV-2 infection of immunocompromised individuals often leads to prolonged detection of viral RNA and infectious virus in nasal specimens, presumably due to the lack of induction of an appropriate adaptive immune response. Mutations identified in virus sequences obtained from persistently infected patients bear signatures of immune evasion and have some overlap with sequences present in variants of concern. We characterized virus isolates obtained greater than 100 days after the initial COVID-19 diagnosis from two COVID-19 patients undergoing immunosuppressive cancer therapy, wand compared them to an isolate from the start of the infection. Isolates from an individual who never mounted an antibody response specific to SARS-CoV-2 despite the administration of convalescent plasma showed slight reductions in plaque size and some showed temperature-dependent replication attenuation on human nasal epithelial cell culture compared to the virus that initiated infection. An isolate from another patient-who did mount a SARS-CoV-2 IgM response-showed temperature-dependent changes in plaque size as well as increased syncytia formation and escape from serum-neutralizing antibodies. Our results indicate that not all virus isolates from immunocompromised COVID-19 patients display clear signs of phenotypic change, but increased attention should be paid to monitoring virus evolution in this patient population.
Collapse
Affiliation(s)
- Camille Wouters
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Jaiprasath Sachithanandham
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Elgin Akin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Lisa Pieterse
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Amary Fall
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thao T Truong
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Jennifer Dien Bard
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Rebecca Yee
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Department of Pathology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| | - David J Sullivan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Heba H Mostafa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
17
|
Ip JD, Chu WM, Chan WM, Chu AWH, Leung RCY, Peng Q, Tam AR, Chan BPC, Cai JP, Yuen KY, Kok KH, Shi Y, Hung IFN, To KKW. The significance of recurrent de novo amino acid substitutions that emerged during chronic SARS-CoV-2 infection: an observational study. EBioMedicine 2024; 107:105273. [PMID: 39146693 PMCID: PMC11379563 DOI: 10.1016/j.ebiom.2024.105273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND De novo amino acid substitutions (DNS) frequently emerge among immunocompromised patients with chronic SARS-CoV-2 infection. While previous studies have reported these DNS, their significance has not been systematically studied. METHODS We performed a review of DNS that emerged during chronic SARS-CoV-2 infection. We searched PubMed until June 2023 using the keywords "(SARS-CoV-2 or COVID-19) and (mutation or sequencing) and ((prolonged infection) or (chronic infection) or (long term))". We included patients with chronic SARS-CoV-2 infection who had SARS-CoV-2 sequencing performed for at least 3 time points over at least 60 days. We also included 4 additional SARS-CoV-2 patients with chronic infection of our hospital not reported previously. We determined recurrent DNS that has appeared in multiple patients and determined the significance of these mutations among epidemiologically-significant variants. FINDINGS A total of 34 cases were analyzed, including 30 that were published previously and 4 from our hospital. Twenty two DNS appeared in ≥3 patients, with 14 (64%) belonging to lineage-defining mutations (LDMs) of epidemiologically-significant variants and 10 (45%) emerging among chronically-infected patients before the appearance of the corresponding variant. Notably, nsp9-T35I substitution (Orf1a T4175I) emerged in all three patients with BA.2.2 infection in 2022 before the appearance of Variants of Interest that carry nsp9-T35I as LDM (EG.5 and BA.2.86/JN.1). Structural analysis suggests that nsp9-T35I substitution may affect nsp9-nsp12 interaction, which could be critical for the function of the replication and transcription complex. INTERPRETATION DNS that emerges recurrently in different chronically-infected patients may be used as a marker for potential epidemiologically-significant variants. FUNDING Theme-Based Research Scheme [T11/709/21-N] of the Research Grants Council (See acknowledgements for full list).
Collapse
Affiliation(s)
- Jonathan Daniel Ip
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Wing-Ming Chu
- Division of Infectious Diseases, Department of Medicine, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - Wan-Mui Chan
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Allen Wing-Ho Chu
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Rhoda Cheuk-Ying Leung
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Qi Peng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Anthony Raymond Tam
- Division of Infectious Diseases, Department of Medicine, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - Brian Pui-Chun Chan
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jian-Piao Cai
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China; Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, China; Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Kin-Hang Kok
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Yi Shi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ivan Fan-Ngai Hung
- Division of Infectious Diseases, Department of Medicine, Queen Mary Hospital, Hong Kong Special Administrative Region, China; Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China; Infectious Diseases Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kelvin Kai-Wang To
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China; Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, China; Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
18
|
El Moussaoui M, Bontems S, Meex C, Hayette MP, Lejeune M, Hong SL, Dellicour S, Moutschen M, Cambisano N, Renotte N, Bours V, Darcis G, Artesi M, Durkin K. Intrahost evolution leading to distinct lineages in the upper and lower respiratory tracts during SARS-CoV-2 prolonged infection. Virus Evol 2024; 10:veae073. [PMID: 39399151 PMCID: PMC11470753 DOI: 10.1093/ve/veae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/18/2024] [Accepted: 08/29/2024] [Indexed: 10/15/2024] Open
Abstract
Accumulating evidence points to persistent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in immunocompromised individuals as a source of novel lineages. While intrahost evolution of the virus in chronically infected patients has previously been reported, existing knowledge is primarily based on samples from the nasopharynx. In this study, we investigate the intrahost evolution and genetic diversity that accumulated during a prolonged SARS-CoV-2 infection with the Omicron BF.7 sublineage, which is estimated to have persisted for >1 year in an immunosuppressed patient. Based on the sequencing of eight samples collected at six time points, we identified 87 intrahost single-nucleotide variants, 2 indels, and a 362-bp deletion. Our analysis revealed distinct viral genotypes in the nasopharyngeal (NP), endotracheal aspirate, and bronchoalveolar lavage samples. This suggests that NP samples may not offer a comprehensive representation of the overall intrahost viral diversity. Our findings not only demonstrate that the Omicron BF.7 sublineage can further diverge from its already exceptionally mutated state but also highlight that patients chronically infected with SARS-CoV-2 can develop genetically specific viral populations across distinct anatomic compartments. This provides novel insights into the intricate nature of viral diversity and evolution dynamics in persistent infections.
Collapse
Affiliation(s)
- Majdouline El Moussaoui
- Department of Infectious Diseases and General Internal Medicine, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Sebastien Bontems
- Department of Microbiology, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Cecile Meex
- Department of Microbiology, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Marie-Pierre Hayette
- Department of Microbiology, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Marie Lejeune
- Department of Hematology, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Samuel L Hong
- Department of Microbiology, Immunology and Transplantation, Laboratory for Clinical and Epidemiological Virology, Rega Institute, KU Leuven, 49 Herestraat, Leuven 3000, Belgium
| | - Simon Dellicour
- Department of Microbiology, Immunology and Transplantation, Laboratory for Clinical and Epidemiological Virology, Rega Institute, KU Leuven, 49 Herestraat, Leuven 3000, Belgium
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, 50 Avenue Franklin Roosevelt, Bruxelles 1050, Belgium
| | - Michel Moutschen
- Department of Infectious Diseases and General Internal Medicine, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Nadine Cambisano
- Department of Human Genetics, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
- Laboratory of Human Genetics, GIGA Institute, University of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Nathalie Renotte
- Department of Human Genetics, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
- Laboratory of Human Genetics, GIGA Institute, University of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Vincent Bours
- Department of Human Genetics, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
- Laboratory of Human Genetics, GIGA Institute, University of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Gilles Darcis
- Department of Infectious Diseases and General Internal Medicine, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Maria Artesi
- Department of Human Genetics, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
- Laboratory of Human Genetics, GIGA Institute, University of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Keith Durkin
- Department of Human Genetics, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
- Laboratory of Human Genetics, GIGA Institute, University of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| |
Collapse
|
19
|
Yazawa S, Fukuyama K, Kawakami R, Itamochi M, Higashi D, Tsuji N, Nakamura M, Oishi K, Kaya H, Tani H. Characteristics of virus and antibody response in an immunocompromised patient with persistent SARS-CoV-2 infection. J Infect Chemother 2024:S1341-321X(24)00241-1. [PMID: 39216594 DOI: 10.1016/j.jiac.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
We have previously reported a clinical case in which a hospitalized patient with a history of hematopoietic stem cell transplantation for acute myeloid leukemia was persistently infected with SARS-CoV-2. This study investigated the neutralizing activity of patient sera against cultured viruses isolated at each time point. We also continued to decipher and analyze the whole-genome sequence of the virus. The results showed that the neutralizing activity against the cultured virus at each time point was higher in the sera collected in the late stage of infection. However, the cultured virus collected in the late stage of infection was less likely to be neutralized not only by the sera collected in the early stage of infection but also by the sera collected in the late stage. Moreover, the virus mutated in a manner that allowed it to escape neutralizing antibodies in a host vulnerable to prolonged infection, such as immunocompromised patients.
Collapse
Affiliation(s)
- Shunsuke Yazawa
- Department of Virology, Toyama Institute of Health, Toyama, Japan
| | - Kei Fukuyama
- Department of Virology, Toyama Institute of Health, Toyama, Japan
| | - Rie Kawakami
- Department of Virology, Toyama Institute of Health, Toyama, Japan
| | - Masae Itamochi
- Department of Virology, Toyama Institute of Health, Toyama, Japan
| | | | | | | | | | | | - Hideki Tani
- Department of Virology, Toyama Institute of Health, Toyama, Japan.
| |
Collapse
|
20
|
Ko SH, Radecki P, Belinky F, Bhiman JN, Meiring S, Kleynhans J, Amoako D, Guerra Canedo V, Lucas M, Kekana D, Martinson N, Lebina L, Everatt J, Tempia S, Bylund T, Rawi R, Kwong PD, Wolter N, von Gottberg A, Cohen C, Boritz EA. Rapid intra-host diversification and evolution of SARS-CoV-2 in advanced HIV infection. Nat Commun 2024; 15:7240. [PMID: 39174553 PMCID: PMC11341811 DOI: 10.1038/s41467-024-51539-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 08/12/2024] [Indexed: 08/24/2024] Open
Abstract
Previous studies have linked the evolution of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genetic variants to persistent infections in people with immunocompromising conditions, but the processes responsible for these observations are incompletely understood. Here we use high-throughput, single-genome amplification and sequencing (HT-SGS) to sequence SARS-CoV-2 spike genes from people with HIV (PWH, n = 22) and people without HIV (PWOH, n = 25). In PWOH and PWH with CD4 T cell counts (i.e., CD4 counts) ≥ 200 cells/μL, we find that most SARS-CoV-2 genomes sampled in each person share one spike sequence. By contrast, in people with advanced HIV infection (i.e., CD4 counts < 200 cells/μL), HT-SGS reveals a median of 46 distinct linked groupings of spike mutations per person. Elevated intra-host spike diversity in people with advanced HIV infection is detected immediately after COVID-19 symptom onset, and early intra-host spike diversity predicts SARS-CoV-2 shedding duration among PWH. Analysis of longitudinal timepoints reveals rapid fluctuations in spike sequence populations, replacement of founder sequences by groups of new haplotypes, and positive selection at functionally important residues. These findings demonstrate remarkable intra-host genetic diversity of SARS-CoV-2 in advanced HIV infection and suggest that adaptive intra-host SARS-CoV-2 evolution in this setting may contribute to the emergence of new variants of concern.
Collapse
Affiliation(s)
- Sung Hee Ko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pierce Radecki
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Frida Belinky
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jinal N Bhiman
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- SAMRC Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Susan Meiring
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Jackie Kleynhans
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Daniel Amoako
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- Department of Integrative Biology and Bioinformatics, College of Biological Sciences, University of Guelph, Ontario, Canada
| | - Vanessa Guerra Canedo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Margaret Lucas
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dikeledi Kekana
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Neil Martinson
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
- Johns Hopkins University, Center for TB Research, Baltimore, MD, USA
| | - Limakatso Lebina
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Josie Everatt
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Stefano Tempia
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tatsiana Bylund
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicole Wolter
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Anne von Gottberg
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Cheryl Cohen
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Eli A Boritz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
21
|
Choudhary MC, Deo R, Evering TH, Chew KW, Giganti MJ, Moser C, Ritz J, Regan J, Flynn JP, Crain CR, Wohl DA, Currier JS, Eron JJ, Margolis D, Zhu Q, Zhon L, Ya L, Greninger AL, Hughes MD, Smith D, Daar ES, Li JZ. Characterization of Treatment Resistance and Viral Kinetics in the Setting of Single-Active Versus Dual-Active Monoclonal Antibodies Against Severe Acute Respiratory Syndrome Coronavirus 2. J Infect Dis 2024; 230:394-402. [PMID: 38716969 PMCID: PMC11326811 DOI: 10.1093/infdis/jiae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/11/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Monoclonal antibodies (mAbs) represent a crucial antiviral strategy for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, but it is unclear whether combination mAbs offer a benefit over single-active mAb treatment. Amubarvimab and romlusevimab significantly reduced the risk of hospitalizations or death in the ACTIV-2/A5401 trial. Certain SARS-CoV-2 variants are intrinsically resistant against romlusevimab, leading to only single-active mAb therapy with amubarvimab in these variants. We evaluated virologic outcomes in individuals treated with single- versus dual-active mAbs. METHODS Participants were nonhospitalized adults at higher risk of clinical progression randomized to amubarvimab plus romlusevimab or placebo. Quantitative SARS-CoV-2 RNA levels and targeted S-gene next-generation sequencing was performed on anterior nasal samples. We compared viral load kinetics and resistance emergence between individuals treated with effective single- versus dual-active mAbs depending on the infecting variant. RESULTS Study participants receiving single- or dual-active mAbs had similar demographics, baseline nasal viral load, symptom score, and symptom duration. Compared with single-active mAb treatment, treatment with dual-active mAbs led to faster viral load decline at study days 3 (P < .001) and 7 (P < .01). Treatment-emergent resistance mutations were more likely to be detected after amubarvimab plus romlusevimab treatment than with placebo (2.6% vs 0%; P < .001) and were more frequently detected in the setting of single-active compared with dual-active mAb treatment (7.3% vs 1.1%; P < .01). Single-active and dual-active mAb treatment resulted in similar decrease in rates of hospitalizations or death. CONCLUSIONS Compared with single-active mAb therapy, dual-active mAbs led to similar clinical outcomes but significantly faster viral load decline and a lower risk of emergent resistance.
Collapse
Affiliation(s)
- Manish C Choudhary
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rinki Deo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Teresa H Evering
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Kara W Chew
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Mark J Giganti
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Carlee Moser
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Justin Ritz
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - James Regan
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - James P Flynn
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Charles R Crain
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David Alain Wohl
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Judith S Currier
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Joseph J Eron
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | | | - Qing Zhu
- Brii Biosciences, Durham, North Carolina, USA
| | - Lijie Zhon
- Brii Biosciences, Durham, North Carolina, USA
| | - Li Ya
- Brii Biosciences, Durham, North Carolina, USA
| | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Michael D Hughes
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Davey Smith
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Eric S Daar
- Department of Medicine, Lundquist Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Jonathan Z Li
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Jenkins F, Mapulanga T, Thapa G, da Costa KAS, Temperton NJ. Conference Report: LPMHealthcare Emerging Viruses 2023 (EVOX23): Pandemics-Learning from the Past and Present to Prepare for the Future. Pathogens 2024; 13:679. [PMID: 39204279 PMCID: PMC11357271 DOI: 10.3390/pathogens13080679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
The emergence of SARS-CoV-2 has meant that pandemic preparedness has become a major focus of the global scientific community. Gathered in the historic St Edmund Hall college in Oxford, the one-day LPMHealthcare conference on emerging viruses (6 September 2023) sought to review and learn from past pandemics-the current SARS-CoV-2 pandemic and the Mpox outbreak-and then look towards potential future pandemics. This includes an emphasis on monitoring the "traditional" reservoirs of viruses with zoonotic potential, as well as possible new sources of spillover events, e.g., bats, which we are coming into closer contact with due to climate change and the impacts of human activities on habitats. Continued vigilance and investment into creative scientific solutions is required for issues including the long-term physical and psychological effects of COVID-19, i.e., long COVID. The evaluation of current systems, including environmental monitoring, communication (with the public, regulatory authorities, and governments), and training; assessment of the effectiveness of the technologies/assays we have in place currently; and lobbying of the government and the public to work with scientists are all required in order to build trust moving forward. Overall, the SARS-CoV-2 pandemic has shown how many sectors can work together to achieve a global impact in times of crisis.
Collapse
Affiliation(s)
| | - Tobias Mapulanga
- Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham ME4 4BF, UK; (T.M.); (G.T.)
| | - Gauri Thapa
- Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham ME4 4BF, UK; (T.M.); (G.T.)
| | - Kelly A. S. da Costa
- Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham ME4 4BF, UK; (T.M.); (G.T.)
| | - Nigel J. Temperton
- Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham ME4 4BF, UK; (T.M.); (G.T.)
| |
Collapse
|
23
|
Gai X, Sun X, Liu B, Yan W, Sheng Z, Zhou Q, Sun Y. Efficacy of Combination of Antiviral Therapy With Neutralizing Monoclonal Antibodies for Recurrent Persistent SARS-CoV-2 Pneumonia in Patients With Lymphoma. BIOMED RESEARCH INTERNATIONAL 2024; 2024:8182887. [PMID: 39140001 PMCID: PMC11321881 DOI: 10.1155/2024/8182887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 05/18/2024] [Accepted: 06/25/2024] [Indexed: 08/15/2024]
Abstract
Despite the potential of neutralizing antibodies in the management of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), clinical research on its efficacy in Chinese patients remains limited. This study is aimed at investigating the therapeutic effect of combination of antiviral therapy with neutralizing monoclonal antibodies for recurrent persistent SARS-CoV-2 pneumonia in patients with lymphoma complicated by B cell depletion. A prospective study was conducted on Chinese patients who were treated with antiviral nirmatrelvir/ritonavir therapy and the neutralizing antibody tixagevimab-cilgavimab (tix-cil). The primary outcome was the rate of recurrent SARS-CoV-2 infection. Five patients with lymphoma experienced recurrent SARS-CoV-2 pneumonia and received tix-cil treatment. All patients had a history of CD20 monoclonal antibody use within the year preceding SARS-CoV-2 infection, and two patients also had a history of Bruton's tyrosine kinase (BTK) inhibitor use. These patients had notably low lymphocyte counts and exhibited near depletion of B cells. All five patients tested negative for serum SARS-CoV-2 IgG and IgM antibodies. None of the patients developed reinfection with SARS-CoV-2 pneumonia after antiviral and tix-cil treatment during the 6-month follow-up period. In conclusion, the administration of antiviral and SARS-CoV-2-neutralizing antibodies showed encouraging therapeutic efficacy against SARS-CoV-2 pneumonia in patients with lymphoma complicated by B cell depletion, along with the potential preventive effect of neutralizing antibodies for up to 6 months.
Collapse
Affiliation(s)
- Xiaoyan Gai
- Department of Pulmonary and Critical Care Medicine Peking University Third Hospital, Beijing 100083, China
| | - Xiaoyan Sun
- Department of Pulmonary and Critical Care Medicine Peking University Third Hospital, Beijing 100083, China
| | - Beibei Liu
- Department of Pulmonary and Critical Care Medicine Peking University Third Hospital, Beijing 100083, China
| | - Wei Yan
- Department of Pulmonary and Critical Care Medicine Peking University Third Hospital, Beijing 100083, China
| | - Zikang Sheng
- Department of Pulmonary and Critical Care Medicine Peking University Third Hospital, Beijing 100083, China
| | - Qingtao Zhou
- Department of Pulmonary and Critical Care Medicine Peking University Third Hospital, Beijing 100083, China
| | - Yongchang Sun
- Department of Pulmonary and Critical Care Medicine Peking University Third Hospital, Beijing 100083, China
| |
Collapse
|
24
|
Focosi D, Spezia PG, Maggi F. Subsequent Waves of Convergent Evolution in SARS-CoV-2 Genes and Proteins. Vaccines (Basel) 2024; 12:887. [PMID: 39204013 PMCID: PMC11358953 DOI: 10.3390/vaccines12080887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 09/03/2024] Open
Abstract
Beginning in 2022, following widespread infection and vaccination among the global population, the SARS-CoV-2 virus mainly evolved to evade immunity derived from vaccines and past infections. This review covers the convergent evolution of structural, nonstructural, and accessory proteins in SARS-CoV-2, with a specific look at common mutations found in long-lasting infections that hint at the virus potentially reverting to an enteric sarbecovirus type.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy;
| | - Pietro Giorgio Spezia
- Laboratory of Virology and Laboratory of Biosecurity, National Institute of Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy;
| | - Fabrizio Maggi
- Laboratory of Virology and Laboratory of Biosecurity, National Institute of Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy;
| |
Collapse
|
25
|
Manuelpillai B, Zendt M, Chang-Rabley E, Ricotta EE. Stuck in pandemic uncertainty: a review of the persistent effects of COVID-19 infection in immune-deficient people. Clin Microbiol Infect 2024; 30:1007-1011. [PMID: 38552795 PMCID: PMC11254561 DOI: 10.1016/j.cmi.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/04/2024] [Accepted: 03/23/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND People who are immune-deficient/disordered (IDP) are underrepresented in COVID-19 studies. Specifically, there is limited research on post-SARS-CoV-2 infection outcomes, including viral persistence and long-term sequelae in these populations. OBJECTIVES This review aimed to examine the published literature on the occurrence of persistent SARS-CoV-2 positivity, relapse, reinfections, variant coinfection, and post-acute sequelae of COVID-19 in IDP. Although the available literature largely centred on those with secondary immunodeficiencies, studies on people with inborn errors of immunity are also included. SOURCES PubMed was searched using medical subject headings terms to identify relevant articles from the last 4 years. Articles on primary and secondary immunodeficiencies were chosen, and a special emphasis was placed on including articles that studied people with inborn errors of immunity. The absence of extensive cohort studies including these individuals has limited most articles in this review to case reports, whereas the articles focusing on secondary immunodeficiencies include larger cohort, case-control, and cross-sectional studies. Articles focusing solely on HIV/AIDS were excluded. CONTENT Scientific literature suggests that IDP of any age are more likely to experience persistent SARS-CoV-2 infections. Although adult IDP exhibits a higher rate of post-acute sequelae of COVID-19, milder COVID-19 infections in children may reduce their risk of experiencing post-acute sequelae of COVID-19. Reinfections and coinfections may occur at a slightly higher rate in IDP than in the general population. IMPLICATIONS Although IDP experience increased viral persistence and inter-host evolution, it is unlikely that enough evidence can be generated at the population-level to support or refute the hypothesis that infections in IDP are significantly more likely to result in variants of concern than infections in the general population. Additional research on the relationship between viral persistence and the rate of long-term sequelae in IDP could inform the understanding of the immune response to SARS-CoV-2 in IDP and the general population.
Collapse
Affiliation(s)
- Bevin Manuelpillai
- Rollins School of Public Health, Emory University, Atlanta, GA, USA; Epidemiology and Data Management Unit, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mackenzie Zendt
- Epidemiology and Data Management Unit, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Emma Chang-Rabley
- Epidemiology and Data Management Unit, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Emily E Ricotta
- Epidemiology and Data Management Unit, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
26
|
Izadi A, Nordenfelt P. Protective non-neutralizing SARS-CoV-2 monoclonal antibodies. Trends Immunol 2024; 45:609-624. [PMID: 39034185 DOI: 10.1016/j.it.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024]
Abstract
Recent studies show an important role for non-neutralizing anti-spike antibodies, including monoclonal antibodies (mAbs), in robustly protecting against SARS-CoV-2 infection. These mAbs use Fc-mediated functions such as complement activation, phagocytosis, and cellular cytotoxicity. There is an untapped potential for using non-neutralizing mAbs in durable antibody treatments; because of their available conserved epitopes, they may not be as sensitive to virus mutations as neutralizing mAbs. Here, we discuss evidence of non-neutralizing mAb-mediated protection against SARS-CoV-2 infection. We explore how non-neutralizing mAb Fc-mediated functions can be enhanced via novel antibody-engineering techniques. Important questions remain to be answered regarding the characteristics of protective non-neutralizing mAbs, including the models and assays used for study, the risks of ensuing detrimental inflammation, as well as the durability and mechanisms of protection.
Collapse
Affiliation(s)
- Arman Izadi
- Department of Clinical Sciences Lund, Division of Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden; Karolinska University Hospital, Stockholm, Sweden
| | - Pontus Nordenfelt
- Department of Clinical Sciences Lund, Division of Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden; Department of Laboratory Medicine, Clinical Microbiology, Skåne University Hospital Lund, Lund University, Lund, Sweden.
| |
Collapse
|
27
|
Meijer SE, Paran Y, Belkin A, Ben-Ami R, Maor Y, Nesher L, Hussein K, Rahav G, Brosh-Nissimov T. Persistent COVID-19 in immunocompromised patients-Israeli society of infectious diseases consensus statement on diagnosis and management. Clin Microbiol Infect 2024; 30:1012-1017. [PMID: 38642895 DOI: 10.1016/j.cmi.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Immunocompromised patients with impaired humoral immunity are at risk for persistent COVID-19 (pCOVID), a protracted symptomatic disease with active viral replication. OBJECTIVES To establish a national consensus statement on the diagnosis, treatment, management, isolation, and prevention of pCOVID in adults. SOURCES We base our suggestions on the available literature, our own experience, and clinical reasoning. CONTENT Literature on the treatment of pCOVID is scarce and consists of few case reports and case series. The available studies provide low-quality evidence for monoclonal antibodies, convalescent plasma, antiviral drugs, and immunomodulators. Different combination therapies are described. Continuous viral replication and antiviral treatment may lead to the development of mutations that confer resistance to therapy. IMPLICATIONS To reduce the risk of resistance and improve outcomes, we suggest treating pCOVID with a combination of antibody-based therapy and two antiviral drugs for duration of 5-10 days. Immunomodulatory therapy can be added in patients with an inflammatory clinical picture. In cases of treatment failure or relapse, prolonged antiviral treatment can be considered. For the prevention of pCOVID, we suggest active and passive vaccination and early initiation of treatment for acute COVID-19. Additional research on pCOVID treatment is urgently needed.
Collapse
Affiliation(s)
- Suzy E Meijer
- Infectious Disease Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Yael Paran
- Infectious Disease Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ana Belkin
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sheba Medical Center, Tel Hashomer, Israel
| | - Ronen Ben-Ami
- Infectious Disease Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yasmin Maor
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Infectious Disease Unit, Edith Wolfson Medical Center, Holon, Israel
| | - Lior Nesher
- Infectious Disease Institute, Soroka University Medical Center, Beer Sheba, Israel; Faculty of Health Sciences, Ben Gurion University in the Negev, Beer Sheba, Israel
| | | | - Galia Rahav
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sheba Medical Center, Tel Hashomer, Israel
| | - Tal Brosh-Nissimov
- Infectious Diseases Unit, Samson Assuta Ashdod University Hospital, Ashdod, Israel; Faculty of Health Sciences, Ben Gurion University in the Negev, Beer Sheba, Israel
| |
Collapse
|
28
|
Bonetti Franceschi V, Volz E. Phylogenetic signatures reveal multilevel selection and fitness costs in SARS-CoV-2. Wellcome Open Res 2024; 9:85. [PMID: 39132669 PMCID: PMC11316176 DOI: 10.12688/wellcomeopenres.20704.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 08/13/2024] Open
Abstract
Background Large-scale sequencing of SARS-CoV-2 has enabled the study of viral evolution during the COVID-19 pandemic. Some viral mutations may be advantageous to viral replication within hosts but detrimental to transmission, thus carrying a transient fitness advantage. By affecting the number of descendants, persistence times and growth rates of associated clades, these mutations generate localised imbalance in phylogenies. Quantifying these features in closely-related clades with and without recurring mutations can elucidate the tradeoffs between within-host replication and between-host transmission. Methods We implemented a novel phylogenetic clustering algorithm ( mlscluster, https://github.com/mrc-ide/mlscluster) to systematically explore time-scaled phylogenies for mutations under transient/multilevel selection. We applied this method to a SARS-CoV-2 time-calibrated phylogeny with >1.2 million sequences from England, and characterised these recurrent mutations that may influence transmission fitness across PANGO-lineages and genomic regions using Poisson regressions and summary statistics. Results We found no major differences across two epidemic stages (before and after Omicron), PANGO-lineages, and genomic regions. However, spike, nucleocapsid, and ORF3a were proportionally more enriched for transmission fitness polymorphisms (TFP)-homoplasies than other proteins. We provide a catalog of SARS-CoV-2 sites under multilevel selection, which can guide experimental investigations within and beyond the spike protein. Conclusions This study provides empirical evidence for the existence of important tradeoffs between within-host replication and between-host transmission shaping the fitness landscape of SARS-CoV-2. This method may be used as a fast and scalable means to shortlist large sequence databases for sites under putative multilevel selection which may warrant subsequent confirmatory analyses and experimental confirmation.
Collapse
Affiliation(s)
- Vinicius Bonetti Franceschi
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, England, W2 1PG, UK
| | - Erik Volz
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, England, W2 1PG, UK
| |
Collapse
|
29
|
Goldswain H, Penrice-Randal R, Donovan-Banfield I, Duffy CW, Dong X, Randle N, Ryan Y, Rzeszutek AM, Pilgrim J, Keyser E, Weller SA, Hutley EJ, Hartley C, Prince T, Darby AC, Aye Maung N, Nwume H, Hiscox JA, Emmett SR. SARS-CoV-2 population dynamics in immunocompetent individuals in a closed transmission chain shows genomic diversity over the course of infection. Genome Med 2024; 16:89. [PMID: 39014481 PMCID: PMC11251137 DOI: 10.1186/s13073-024-01360-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 07/04/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND SARS-CoV-2 remains rapidly evolving, and many biologically important genomic substitutions/indels have characterised novel SARS-CoV-2 lineages, which have emerged during successive global waves of the pandemic. Worldwide genomic sequencing has been able to monitor these waves, track transmission clusters, and examine viral evolution in real time to help inform healthcare policy. One school of thought is that an apparent greater than average divergence in an emerging lineage from contemporary variants may require persistent infection, for example in an immunocompromised host. Due to the nature of the COVID-19 pandemic and sampling, there were few studies that examined the evolutionary trajectory of SARS-CoV-2 in healthy individuals. METHODS We investigated viral evolutionary trends and participant symptomatology within a cluster of 16 SARS-CoV-2 infected, immunocompetent individuals with no co-morbidities in a closed transmission chain. Longitudinal nasopharyngeal swab sampling allowed characterisation of SARS-CoV-2 intra-host variation over time at both the dominant and minor genomic variant levels through Nimagen-Illumina sequencing. RESULTS A change in viral lineage assignment was observed in individual infections; however, there was only one indel and no evidence of recombination over the period of an acute infection. Minor and dominant genomic modifications varied between participants, with some minor genomic modifications increasing in abundance to become the dominant viral sequence during infection. CONCLUSIONS Data from this cohort of SARS-CoV-2-infected participants demonstrated that long-term persistent infection in an immunocompromised host was not necessarily a prerequisite for generating a greater than average frequency of amino acid substitutions. Amino acid substitutions at both the dominant and minor genomic sequence level were observed in immunocompetent individuals during infection showing that viral lineage changes can occur generating viral diversity.
Collapse
Affiliation(s)
- Hannah Goldswain
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Rebekah Penrice-Randal
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - I'ah Donovan-Banfield
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Craig W Duffy
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Xiaofeng Dong
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Nadine Randle
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Yan Ryan
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | | | - Jack Pilgrim
- Centre for Genomic Research, University of Liverpool, Liverpool, L69 3BX, UK
| | - Emma Keyser
- Defence Science Technology Laboratory, Porton Down, Salisbury, SP4 0JQ, UK
| | - Simon A Weller
- Defence Science Technology Laboratory, Porton Down, Salisbury, SP4 0JQ, UK
| | - Emma J Hutley
- Centre for Defence Pathology, Royal Centre for Defence Medicine, OCT Centre, Birmingham, B15 2WB, UK
| | - Catherine Hartley
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Tessa Prince
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Alistair C Darby
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Niall Aye Maung
- British Army, Hunter House, St Omer Barracks, Aldershot, Hampshire, GU11 2BG, UK
| | - Henry Nwume
- Defence Science Technology Laboratory, Porton Down, Salisbury, SP4 0JQ, UK
| | - Julian A Hiscox
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK.
- A*STAR Infectious Diseases Laboratories (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Connexis North Tower, 1 Fusionopolis Way, Singapore, #20-10138632, Singapore.
| | - Stevan R Emmett
- Defence Science Technology Laboratory, Porton Down, Salisbury, SP4 0JQ, UK.
| |
Collapse
|
30
|
Machkovech HM, Hahn AM, Garonzik Wang J, Grubaugh ND, Halfmann PJ, Johnson MC, Lemieux JE, O'Connor DH, Piantadosi A, Wei W, Friedrich TC. Persistent SARS-CoV-2 infection: significance and implications. THE LANCET. INFECTIOUS DISEASES 2024; 24:e453-e462. [PMID: 38340735 DOI: 10.1016/s1473-3099(23)00815-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 02/12/2024]
Abstract
SARS-CoV-2 causes persistent infections in a subset of individuals, which is a major clinical and public health problem that should be prioritised for further investigation for several reasons. First, persistent SARS-CoV-2 infection often goes unrecognised, and therefore might affect a substantial number of people, particularly immunocompromised individuals. Second, the formation of tissue reservoirs (including in non-respiratory tissues) might underlie the pathophysiology of the persistent SARS-CoV-2 infection and require new strategies for diagnosis and treatment. Finally, persistent SARS-CoV-2 replication, particularly in the setting of suboptimal immune responses, is a possible source of new, divergent virus variants that escape pre-existing immunity on the individual and population levels. Defining optimal diagnostic and treatment strategies for patients with persistent virus replication and monitoring viral evolution are therefore urgent medical and public health priorities.
Collapse
Affiliation(s)
- Heather M Machkovech
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Anne M Hahn
- Department of Epidemiology of Microbial Diseases, School of Public Health, Yale University, New Haven, CT, USA
| | | | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, School of Public Health, Yale University, New Haven, CT, USA
| | - Peter J Halfmann
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Marc C Johnson
- Department of Molecular Microbiology and Immunology, University of Missouri-School of Medicine, Columbia, MO, USA
| | - Jacob E Lemieux
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - David H O'Connor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Anne Piantadosi
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Wanting Wei
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Thomas C Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
31
|
Kavikondala S, Haeussler K, Wang X, Spellman A, Bausch-Jurken MT, Sharma P, Amiri M, Krivelyova A, Vats S, Nassim M, Kumar N, Van de Velde N. Immunogenicity of mRNA-1273 and BNT162b2 in Immunocompromised Patients: Systematic Review and Meta-analysis Using GRADE. Infect Dis Ther 2024; 13:1419-1438. [PMID: 38802704 PMCID: PMC11219657 DOI: 10.1007/s40121-024-00987-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
INTRODUCTION Immunocompromised (IC) patients mount poor immune responses to vaccination. Higher-dose coronavirus disease 2019 (COVID-19) vaccines may offer increased immunogenicity. METHODS A pairwise meta-analysis of 98 studies reporting comparisons of mRNA-1273 (50 or 100 mcg/dose) and BNT162b2 (30 mcg/dose) in IC adults was performed. Outcomes were seroconversion, total and neutralizing antibody titers, and cellular immune responses. RESULTS mRNA-1273 was associated with a significantly higher seroconversion likelihood [relative risk, 1.11 (95% CI, 1.08, 1.14); P < 0.0001; I2 = 66.8%] and higher total antibody titers [relative increase, 50.45% (95% CI, 34.63%, 66.28%); P < 0.0001; I2 = 89.5%] versus BNT162b2. mRNA-1273 elicited higher but statistically nonsignificant relative increases in neutralizing antibody titers and cellular immune responses versus BNT162b2. CONCLUSION Higher-dose mRNA-1273 had increased immunogenicity versus BNT162b2 in IC patients.
Collapse
|
32
|
De Grazia S, Pollicino F, Giannettino C, Errera CM, Veronese N, Giammanco GM, Cacioppo F, Sanfilippo GL, Barbagallo M. Factors Associated with Prolonged SARS-CoV-2 Viral Positivity in an Italian Cohort of Hospitalized Patients. Diseases 2024; 12:138. [PMID: 39057109 PMCID: PMC11275323 DOI: 10.3390/diseases12070138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Clinical or microbiological factors potentially associated with prolonged COVID-19 PCR positivity are still poorly underexplored, but they could be of importance for public-health and clinical reasons. The objective of our analysis is to explore demographic, clinical, and microbiological factors potentially associated with a prolonged positivity to SARS-CoV-2 among 222 hospitalized patients. Prolonged detection positivity for SARS-CoV-2 RNA in swap samples, defined as positivity more than 21 days, was the outcome of interest. The 56 cases with a prolonged positivity to SARS-CoV-2 were matched for age and sex with 156 controls. The cases reported a significantly higher presence of diabetes mellitus, autoimmune diseases, chronic kidney diseases, and acute coronary syndrome. Moreover, the viral load was significantly higher in a period of prolonged positivity compared to a normal period. In the multivariable analysis, the presence of autoimmune diseases and chronic kidney disease were significantly associated with an increased risk of prolonged positivity as well as medium viral load or high viral load, i.e., low Ct value ≤ 30 indicating high viral load. The results of this study confirmed that in a large population of hospitalized patients with COVID-19 manifestations, the prolonged positivity of SARS-CoV-2 detection with nasopharyngeal swab was mainly related to autoimmune diseases, chronic kidney disease, and to baseline viral load.
Collapse
Affiliation(s)
| | | | | | | | - Nicola Veronese
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (S.D.G.); (F.P.); (C.G.); (C.M.E.); (G.M.G.); (F.C.); (G.L.S.); (M.B.)
| | | | | | | | | | | |
Collapse
|
33
|
Nooruzzaman M, Johnson KEE, Rani R, Finkelsztein EJ, Caserta LC, Kodiyanplakkal RP, Wang W, Hsu J, Salpietro MT, Banakis S, Albert J, Westblade L, Zanettini C, Marchionni L, Soave R, Ghedin E, Diel DG, Salvatore M. Emergence of transmissible SARS-CoV-2 variants with decreased sensitivity to antivirals in immunocompromised patients with persistent infections. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.14.24308523. [PMID: 38946967 PMCID: PMC11213110 DOI: 10.1101/2024.06.14.24308523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
We investigated the impact of antiviral treatment on the emergence of SARS-CoV-2 resistance during persistent infections in immunocompromised patients (n=15). All patients received remdesivir and some also received nirmatrelvir-ritonavir or monoclonal antibodies. Sequence analysis showed that nine patients carried viruses with mutations in the nsp12 (RNA dependent RNA polymerase), while four had viruses with nsp5 (3C protease) mutations. Infectious SARS-CoV-2 with a double mutation in nsp5 (T169I) and nsp12 (V792I) was recovered from respiratory secretions 77 days after initial COVID-19 diagnosis from a patient treated with remdesivir and nirmatrelvir-ritonavir. In vitro characterization confirmed its decreased sensitivity to remdesivir and nirmatrelvir, which was overcome by combined antiviral treatment. Studies in golden Syrian hamsters demonstrated efficient transmission to contact animals. This study documents the isolation of SARS-CoV-2 carrying resistance mutations to both nirmatrelvir and remdesivir from a patient and demonstrates its transmissibility in vivo.
Collapse
Affiliation(s)
- Mohammed Nooruzzaman
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University
| | | | - Ruchi Rani
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University
| | | | - Leonardo C Caserta
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University
| | | | - Wei Wang
- Systems Genomics Section, NIH/NIAID/DIR/LPD
| | - Jingmei Hsu
- Department of Medicine, Weill Cornell Medicine
| | | | | | | | - Lars Westblade
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine
| | - Claudio Zanettini
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine
| | - Luigi Marchionni
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine
| | | | | | - Diego G Diel
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University
| | - Mirella Salvatore
- Department of Medicine, Weill Cornell Medicine
- Department of Population Health Science, Weill Cornell Medicine
| |
Collapse
|
34
|
Huygens S, GeurtsvanKessel C, Gharbharan A, Bogers S, Worp N, Boter M, Bax HI, Kampschreur LM, Hassing RJ, Fiets RB, Levenga H, Afonso PM, Koopmans M, Rijnders BJA, Oude Munnink BB. Clinical and Virological Outcome of Monoclonal Antibody Therapies Across SARS-CoV-2 Variants in 245 Immunocompromised Patients: A Multicenter Prospective Cohort Study. Clin Infect Dis 2024; 78:1514-1521. [PMID: 38445721 PMCID: PMC11175671 DOI: 10.1093/cid/ciae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Immunocompromised patients (ICPs) have an increased risk for a severe and prolonged COVID-19. SARS-CoV-2 monoclonal antibodies (mAbs) were extensively used in these patients, but data from randomized trials that focus on ICPs are lacking. We evaluated the clinical and virological outcome of COVID-19 in ICPs treated with mAbs across SARS-CoV-2 variants. METHODS In this multicenter prospective cohort study, we enrolled B-cell- and/or T-cell-deficient patients treated with casirivimab/imdevimab, sotrovimab, or tixagevimab/cilgavimab. SARS-CoV-2 RNA was quantified and sequenced weekly, and time to viral clearance, viral genome mutations, hospitalization, and death rates were registered. RESULTS Two hundred and forty five patients infected with the Delta (50%) or Omicron BA.1, 2, or 5 (50%) variant were enrolled. Sixty-seven percent were vaccinated; 78 treated as outpatients, of whom 2 required hospital admission, but both survived. Of the 159 patients hospitalized at time of treatment, 43 (27%) required mechanical ventilation or died. The median time to viral clearance was 14 days (interquartile range, 7-22); however, it took >30 days in 15%. Resistance-associated spike mutations emerged in 9 patients in whom the median time to viral clearance was 63 days (95% confidence interval, 57-69; P < .001). Spike mutations were observed in 1 of 42 (2.4%) patients after treatment with 2 active mAbs, in 5 of 34 (14.7%) treated with actual monotherapy (sotrovimab), and 3 of 20 (12%) treated with functional monotherapy (ie, tixagevimab/cilgavimab against tixagevimab-resistant variant). CONCLUSIONS Despite treatment with mAbs, morbidity and mortality of COVID-19 in ICPs remained substantial. Combination antiviral therapy should be further explored and may be preferred in severely ICPs.
Collapse
Affiliation(s)
- Sammy Huygens
- Department of Internal Medicine, Section of Infectious Diseases and Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Corine GeurtsvanKessel
- Department of Viroscience, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Arvind Gharbharan
- Department of Internal Medicine, Section of Infectious Diseases and Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Susanne Bogers
- Department of Viroscience, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Nathalie Worp
- Department of Viroscience, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Marjan Boter
- Department of Viroscience, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Hannelore I Bax
- Department of Internal Medicine, Section of Infectious Diseases and Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Linda M Kampschreur
- Department of Internal Medicine, Medical Center Leeuwarden, Leeuwarden, The Netherlands
| | - Robert-Jan Hassing
- Department of Internal Medicine, Rijnstate Hospital, Arnhem, The Netherlands
| | - Roel B Fiets
- Department of Internal Medicine, Amphia Hospital, Breda, The Netherlands
| | - Henriette Levenga
- Department of Internal Medicine, Groene Hart Gouda, Gouda, The Netherlands
| | - Pedro Miranda Afonso
- Department of Biostatistics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Marion Koopmans
- Department of Viroscience, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Bart J A Rijnders
- Department of Internal Medicine, Section of Infectious Diseases and Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Bas B Oude Munnink
- Department of Viroscience, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
35
|
Zhang Y, Zhou Y, Chen J, Wu J, Wang X, Zhang Y, Wang S, Cui P, Xu Y, Li Y, Shen Z, Xu T, Zhang Q, Cai J, Zhang H, Wang P, Ai J, Jiang N, Qiu C, Zhang W. Vaccination Shapes Within-Host SARS-CoV-2 Diversity of Omicron BA.2.2 Breakthrough Infection. J Infect Dis 2024; 229:1711-1721. [PMID: 38149984 DOI: 10.1093/infdis/jiad572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND Low-frequency intrahost single-nucleotide variants of SARS-CoV-2 have been recognized as predictive indicators of selection. However, the impact of vaccination on the intrahost evolution of SARS-CoV-2 remains uncertain at present. METHODS We investigated the genetic variation of SARS-CoV-2 in individuals who were unvaccinated, partially vaccinated, or fully vaccinated during Shanghai's Omicron BA.2.2 wave. We substantiated the connection between particular amino acid substitutions and immune-mediated selection through a pseudovirus neutralization assay or by cross-verification with the human leukocyte antigen-associated T-cell epitopes. RESULTS In contrast to those with immunologic naivety or partial vaccination, participants who were fully vaccinated had intrahost variant spectra characterized by reduced diversity. Nevertheless, the distribution of mutations in the fully vaccinated group was enriched in the spike protein. The distribution of intrahost single-nucleotide variants in individuals who were immunocompetent did not demonstrate notable signs of positive selection, in contrast to the observed adaptation in 2 participants who were immunocompromised who had an extended period of viral shedding. CONCLUSIONS In SARS-CoV-2 infections, vaccine-induced immunity was associated with decreased diversity of within-host variant spectra, with milder inflammatory pathophysiology. The enrichment of mutations in the spike protein gene indicates selection pressure exerted by vaccination on the evolution of SARS-CoV-2.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Zhou
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
| | - Jiazhen Chen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
| | - Jing Wu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
| | - Xun Wang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yumeng Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
| | - Shiyong Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peng Cui
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
| | - Yuanyuan Xu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhongliang Shen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tao Xu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
| | - Qiran Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianpeng Cai
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haocheng Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Pengfei Wang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Jingwen Ai
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
| | - Ning Jiang
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Chao Qiu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
- School of Life Sciences, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Kinsella PM, Moso MA, Morrissey CO, Dendle C, Guy S, Bond K, Sasadeusz J, Slavin MA. Antiviral therapies for the management of persistent coronavirus disease 2019 in immunocompromised hosts: A narrative review. Transpl Infect Dis 2024; 26:e14301. [PMID: 38809102 DOI: 10.1111/tid.14301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/11/2024] [Accepted: 05/08/2024] [Indexed: 05/30/2024]
Abstract
Antiviral agents with activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have played a critical role in disease management; however, little is known regarding the efficacy of these medications in the treatment of SARS-CoV-2 infection in immunocompromised patients, particularly in the management of persistent SARS-CoV-2 positivity. This narrative review discusses the management of persistent coronavirus disease 2019 in immunocompromised hosts, with a focus on antiviral therapies. We identified 84 cases from the literature describing a variety of approaches, including prolonged antiviral therapy (n = 11), combination antivirals (n = 13), and mixed therapy with antiviral and antibody treatments (n = 60). A high proportion had an underlying haematologic malignancy (n = 67, 80%), and were in receipt of anti-CD20 agents (n = 51, 60%). Success was reported in 70 cases (83%) which varied according to the therapy type. Combination therapies with antivirals may be an effective approach for individuals with persistent SARS-CoV-2 positivity, particularly those that incorporate treatments aimed at increasing neutralizing antibody levels. Any novel approaches taken to this difficult management dilemma should be mindful of the emergence of antiviral resistance.
Collapse
Affiliation(s)
- Paul M Kinsella
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Infectious Diseases, University of Melbourne at the Doherty Institute of Infection and Immunity, Melbourne, Australia
| | - Michael A Moso
- Department of Infectious Diseases, University of Melbourne at the Doherty Institute of Infection and Immunity, Melbourne, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Doherty Institute of Infection and Immunity, Melbourne, Australia
| | | | - Claire Dendle
- Monash Infectious Diseases, Monash Health, Melbourne, Australia
- School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Stephen Guy
- Department of Infectious Diseases, Eastern Health, Melbourne, Australia
- Eastern Health Clinical School, Monash University, Melbourne, Australia
| | - Katherine Bond
- Department of Microbiology, Royal Melbourne Hospital, Melbourne, Australia
- Victorian Infectious Diseases Reference Laboratory (VIDRL) at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute of Infection and Immunity, Melbourne, Australia
| | - Joseph Sasadeusz
- Department of Infectious Diseases, University of Melbourne at the Doherty Institute of Infection and Immunity, Melbourne, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Doherty Institute of Infection and Immunity, Melbourne, Australia
| | - Monica A Slavin
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Doherty Institute of Infection and Immunity, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
37
|
Pavia G, Quirino A, Marascio N, Veneziano C, Longhini F, Bruni A, Garofalo E, Pantanella M, Manno M, Gigliotti S, Giancotti A, Barreca GS, Branda F, Torti C, Rotundo S, Lionello R, La Gamba V, Berardelli L, Gullì SP, Trecarichi EM, Russo A, Palmieri C, De Marco C, Viglietto G, Casu M, Sanna D, Ciccozzi M, Scarpa F, Matera G. Persistence of SARS-CoV-2 infection and viral intra- and inter-host evolution in COVID-19 hospitalized patients. J Med Virol 2024; 96:e29708. [PMID: 38804179 DOI: 10.1002/jmv.29708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) persistence in COVID-19 patients could play a key role in the emergence of variants of concern. The rapid intra-host evolution of SARS-CoV-2 may result in an increased transmissibility, immune and therapeutic escape which could be a direct consequence of COVID-19 epidemic currents. In this context, a longitudinal retrospective study on eight consecutive COVID-19 patients with persistent SARS-CoV-2 infection, from January 2022 to March 2023, was conducted. To characterize the intra- and inter-host viral evolution, whole genome sequencing and phylogenetic analysis were performed on nasopharyngeal samples collected at different time points. Phylogenetic reconstruction revealed an accelerated SARS-CoV-2 intra-host evolution and emergence of antigenically divergent variants. The Bayesian inference and principal coordinate analysis analysis showed a host-based genomic structuring among antigenically divergent variants, that might reflect the positive effect of containment practices, within the critical hospital area. All longitudinal antigenically divergent isolates shared a wide range of amino acidic (aa) changes, particularly in the Spike (S) glycoprotein, that increased viral transmissibility (K417N, S477N, N501Y and Q498R), enhanced infectivity (R346T, S373P, R408S, T478K, Q498R, Y505H, D614G, H655Y, N679K and P681H), caused host immune escape (S371L, S375F, T376A, K417N, and K444T/R) and displayed partial or complete resistance to treatments (G339D, R346K/T, S371F/L, S375F, T376A, D405N, N440K, G446S, N460K, E484A, F486V, Q493R, G496S and Q498R). These results suggest that multiple novel variants which emerge in the patient during persistent infection, might spread to another individual and continue to evolve. A pro-active genomic surveillance of persistent SARS-CoV-2 infected patients is recommended to identify genetically divergent lineages before their diffusion.
Collapse
Affiliation(s)
- Grazia Pavia
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Angela Quirino
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Nadia Marascio
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Claudia Veneziano
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
- Interdepartmental Center of Services (CIS), Molecular Genomics and Pathology, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Federico Longhini
- Unit of Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Andrea Bruni
- Unit of Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Eugenio Garofalo
- Unit of Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Marta Pantanella
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Michele Manno
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Simona Gigliotti
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Aida Giancotti
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Giorgio Settimo Barreca
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Francesco Branda
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Carlo Torti
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Dipartimento di Sicurezza e Bioetica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Salvatore Rotundo
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Rosaria Lionello
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Valentina La Gamba
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Lavinia Berardelli
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Sara Palma Gullì
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Enrico Maria Trecarichi
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Alessandro Russo
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Camillo Palmieri
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Carmela De Marco
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
- Interdepartmental Center of Services (CIS), Molecular Genomics and Pathology, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
- Interdepartmental Center of Services (CIS), Molecular Genomics and Pathology, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Marco Casu
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Daria Sanna
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Giovanni Matera
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| |
Collapse
|
38
|
Xue S, Han Y, Wu F, Wang Q. Mutations in the SARS-CoV-2 spike receptor binding domain and their delicate balance between ACE2 affinity and antibody evasion. Protein Cell 2024; 15:403-418. [PMID: 38442025 PMCID: PMC11131022 DOI: 10.1093/procel/pwae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
Intensive selection pressure constrains the evolutionary trajectory of SARS-CoV-2 genomes and results in various novel variants with distinct mutation profiles. Point mutations, particularly those within the receptor binding domain (RBD) of SARS-CoV-2 spike (S) protein, lead to the functional alteration in both receptor engagement and monoclonal antibody (mAb) recognition. Here, we review the data of the RBD point mutations possessed by major SARS-CoV-2 variants and discuss their individual effects on ACE2 affinity and immune evasion. Many single amino acid substitutions within RBD epitopes crucial for the antibody evasion capacity may conversely weaken ACE2 binding affinity. However, this weakened effect could be largely compensated by specific epistatic mutations, such as N501Y, thus maintaining the overall ACE2 affinity for the spike protein of all major variants. The predominant direction of SARS-CoV-2 evolution lies neither in promoting ACE2 affinity nor evading mAb neutralization but in maintaining a delicate balance between these two dimensions. Together, this review interprets how RBD mutations efficiently resist antibody neutralization and meanwhile how the affinity between ACE2 and spike protein is maintained, emphasizing the significance of comprehensive assessment of spike mutations.
Collapse
Affiliation(s)
- Song Xue
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuru Han
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fan Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qiao Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
39
|
Liu C, Zhou D, Dijokaite-Guraliuc A, Supasa P, Duyvesteyn HME, Ginn HM, Selvaraj M, Mentzer AJ, Das R, de Silva TI, Ritter TG, Plowright M, Newman TAH, Stafford L, Kronsteiner B, Temperton N, Lui Y, Fellermeyer M, Goulder P, Klenerman P, Dunachie SJ, Barton MI, Kutuzov MA, Dushek O, Fry EE, Mongkolsapaya J, Ren J, Stuart DI, Screaton GR. A structure-function analysis shows SARS-CoV-2 BA.2.86 balances antibody escape and ACE2 affinity. Cell Rep Med 2024; 5:101553. [PMID: 38723626 PMCID: PMC11148769 DOI: 10.1016/j.xcrm.2024.101553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/10/2024] [Accepted: 04/11/2024] [Indexed: 05/24/2024]
Abstract
BA.2.86, a recently described sublineage of SARS-CoV-2 Omicron, contains many mutations in the spike gene. It appears to have originated from BA.2 and is distinct from the XBB variants responsible for many infections in 2023. The global spread and plethora of mutations in BA.2.86 has caused concern that it may possess greater immune-evasive potential, leading to a new wave of infection. Here, we examine the ability of BA.2.86 to evade the antibody response to infection using a panel of vaccinated or naturally infected sera and find that it shows marginally less immune evasion than XBB.1.5. We locate BA.2.86 in the antigenic landscape of recent variants and look at its ability to escape panels of potent monoclonal antibodies generated against contemporary SARS-CoV-2 infections. We demonstrate, and provide a structural explanation for, increased affinity of BA.2.86 to ACE2, which may increase transmissibility.
Collapse
Affiliation(s)
- Chang Liu
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK; Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Daming Zhou
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK; Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Centre for Human Genetics, Oxford, UK
| | | | - Piyada Supasa
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Helen M E Duyvesteyn
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Centre for Human Genetics, Oxford, UK
| | - Helen M Ginn
- Centre for Free Electron Laser Science, Hamburg, Germany
| | - Muneeswaran Selvaraj
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Alexander J Mentzer
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Raksha Das
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Thushan I de Silva
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK; Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Thomas G Ritter
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Megan Plowright
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | | | - Lizzie Stafford
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Barbara Kronsteiner
- NDM Centre for Global Health Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent and University of Greenwich Chatham Maritime, Kent ME4 4TB, UK
| | - Yuan Lui
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Martin Fellermeyer
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Philip Goulder
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK; Department of Paediatrics, University of Oxford, Oxford, UK
| | - Paul Klenerman
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK; Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Susanna J Dunachie
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; NDM Centre for Global Health Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Michael I Barton
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK
| | - Mikhail A Kutuzov
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK
| | - Omer Dushek
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK
| | - Elizabeth E Fry
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Centre for Human Genetics, Oxford, UK.
| | - Juthathip Mongkolsapaya
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK; Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.
| | - Jingshan Ren
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Centre for Human Genetics, Oxford, UK.
| | - David I Stuart
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK; Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Centre for Human Genetics, Oxford, UK; Sir William Dunn School of Pathology, Oxford, UK.
| | - Gavin R Screaton
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK; Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
40
|
Yu Y, Zhang M, Huang L, Chen Y, Wu X, Li T, Li Y, Wang Y, Huang W. COVID-19 Serum Drives Spike-Mediated SARS-CoV-2 Variation. Viruses 2024; 16:763. [PMID: 38793644 PMCID: PMC11126028 DOI: 10.3390/v16050763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Neutralizing antibodies targeting the spike (S) protein of SARS-CoV-2, elicited either by natural infection or vaccination, are crucial for protection against the virus. Nonetheless, the emergence of viral escape mutants presents ongoing challenges by contributing to breakthrough infections. To define the evolution trajectory of SARS-CoV-2 within the immune population, we co-incubated replication-competent rVSV/SARS-CoV-2/GFP chimeric viruses with sera from COVID-19 convalescents. Our findings revealed that the E484D mutation contributes to increased viral resistant against both convalescent and vaccinated sera, while the L1265R/H1271Y double mutation enhanced viral infectivity in 293T-hACE2 and Vero cells. These findings suggest that under the selective pressure of polyclonal antibodies, SARS-CoV-2 has the potential to accumulate mutations that facilitate either immune evasion or greater infectivity, facilitating its adaption to neutralizing antibody responses. Although the mutations identified in this study currently exhibit low prevalence in the circulating SARS-CoV-2 populations, the continuous and meticulous surveillance of viral mutations remains crucial. Moreover, there is an urgent necessity to develop next-generation antibody therapeutics and vaccines that target diverse, less mutation-prone antigenic sites to ensure more comprehensive and durable immune protection against SARS-CoV-2.
Collapse
Affiliation(s)
- Yuanling Yu
- Changping Laboratory, Beijing 102206, China; (Y.Y.); (L.H.)
| | - Mengyi Zhang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China; (M.Z.)
- National Institutes for Food and Drug Control, Chinese Academy of Medical Science & Peking Union Medical College, No. 9 Dongdan Santiao, Dongcheng District, Beijing 100730, China
| | - Lan Huang
- Changping Laboratory, Beijing 102206, China; (Y.Y.); (L.H.)
| | - Yanhong Chen
- Changping Laboratory, Beijing 102206, China; (Y.Y.); (L.H.)
| | - Xi Wu
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China; (M.Z.)
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Tao Li
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China; (M.Z.)
| | - Yanbo Li
- Beijing Yunling Biotechnology Co., Ltd., Beijing 100176, China
| | - Youchun Wang
- Changping Laboratory, Beijing 102206, China; (Y.Y.); (L.H.)
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming 650118, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China; (M.Z.)
| |
Collapse
|
41
|
Ose NJ, Campitelli P, Modi T, Kazan IC, Kumar S, Ozkan SB. Some mechanistic underpinnings of molecular adaptations of SARS-COV-2 spike protein by integrating candidate adaptive polymorphisms with protein dynamics. eLife 2024; 12:RP92063. [PMID: 38713502 PMCID: PMC11076047 DOI: 10.7554/elife.92063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024] Open
Abstract
We integrate evolutionary predictions based on the neutral theory of molecular evolution with protein dynamics to generate mechanistic insight into the molecular adaptations of the SARS-COV-2 spike (S) protein. With this approach, we first identified candidate adaptive polymorphisms (CAPs) of the SARS-CoV-2 S protein and assessed the impact of these CAPs through dynamics analysis. Not only have we found that CAPs frequently overlap with well-known functional sites, but also, using several different dynamics-based metrics, we reveal the critical allosteric interplay between SARS-CoV-2 CAPs and the S protein binding sites with the human ACE2 (hACE2) protein. CAPs interact far differently with the hACE2 binding site residues in the open conformation of the S protein compared to the closed form. In particular, the CAP sites control the dynamics of binding residues in the open state, suggesting an allosteric control of hACE2 binding. We also explored the characteristic mutations of different SARS-CoV-2 strains to find dynamic hallmarks and potential effects of future mutations. Our analyses reveal that Delta strain-specific variants have non-additive (i.e., epistatic) interactions with CAP sites, whereas the less pathogenic Omicron strains have mostly additive mutations. Finally, our dynamics-based analysis suggests that the novel mutations observed in the Omicron strain epistatically interact with the CAP sites to help escape antibody binding.
Collapse
Affiliation(s)
- Nicholas James Ose
- Department of Physics and Center for Biological Physics, Arizona State UniversityTempeUnited States
| | - Paul Campitelli
- Department of Physics and Center for Biological Physics, Arizona State UniversityTempeUnited States
| | - Tushar Modi
- Department of Physics and Center for Biological Physics, Arizona State UniversityTempeUnited States
| | - I Can Kazan
- Department of Physics and Center for Biological Physics, Arizona State UniversityTempeUnited States
| | - Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple UniversityPhiladelphiaUnited States
- Department of Biology, Temple UniversityPhiladelphiaUnited States
- Center for Genomic Medicine Research, King Abdulaziz UniversityJeddahSaudi Arabia
| | - Sefika Banu Ozkan
- Department of Physics and Center for Biological Physics, Arizona State UniversityTempeUnited States
| |
Collapse
|
42
|
Feng S, Reid GE, Clark NM, Harrington A, Uprichard SL, Baker SC. Evidence of SARS-CoV-2 convergent evolution in immunosuppressed patients treated with antiviral therapies. Virol J 2024; 21:105. [PMID: 38715113 PMCID: PMC11075269 DOI: 10.1186/s12985-024-02378-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND The factors contributing to the accelerated convergent evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are not fully understood. Unraveling the contribution of viral replication in immunocompromised patients is important for the early detection of novel mutations and developing approaches to limit COVID-19. METHODS We deep sequenced SARS-CoV-2 RNA from 192 patients (64% hospitalized, 39% immunosuppressed) and compared the viral genetic diversity within the patient groups of different immunity and hospitalization status. Serial sampling of 14 patients was evaluated for viral evolution in response to antiviral treatments. RESULTS We identified hospitalized and immunosuppressed patients with significantly higher levels of viral genetic diversity and variability. Further evaluation of serial samples revealed accumulated mutations associated with escape from neutralizing antibodies in a subset of the immunosuppressed patients treated with antiviral therapies. Interestingly, the accumulated viral mutations that arose in this early Omicron wave, which were not common in the patient viral lineages, represent convergent mutations that are prevalent in the later Omicron sublineages, including the XBB, BA.2.86.1 and its descendent JN sublineages. CONCLUSIONS Our results illustrate the importance of identifying convergent mutations generated during antiviral therapy in immunosuppressed patients, as they may contribute to the future evolutionary landscape of SARS-CoV-2. Our study also provides evidence of a correlation between SARS-CoV-2 convergent mutations and specific antiviral treatments. Evaluating high-confidence genomes from distinct waves in the pandemic with detailed patient metadata allows for discerning of convergent mutations that contribute to the ongoing evolution of SARS-CoV-2.
Collapse
Affiliation(s)
- Shuchen Feng
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Gail E Reid
- Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
- Infectious Disease and Immunology Research Institute, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Nina M Clark
- Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
- Infectious Disease and Immunology Research Institute, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Amanda Harrington
- Infectious Disease and Immunology Research Institute, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
- Department of Pathology and Laboratory Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Susan L Uprichard
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
- Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
- Infectious Disease and Immunology Research Institute, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Susan C Baker
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA.
- Infectious Disease and Immunology Research Institute, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA.
| |
Collapse
|
43
|
Igari H, Sakao S, Ishige T, Saito K, Murata S, Yahaba M, Taniguchi T, Suganami A, Matsushita K, Tamura Y, Suzuki T, Ido E. Dynamic diversity of SARS-CoV-2 genetic mutations in a lung transplantation patient with persistent COVID-19. Nat Commun 2024; 15:3604. [PMID: 38684722 PMCID: PMC11058237 DOI: 10.1038/s41467-024-47941-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Numerous SARS-CoV-2 variant strains with altered characteristics have emerged since the onset of the COVID-19 pandemic. Remdesivir (RDV), a ribonucleotide analogue inhibitor of viral RNA polymerase, has become a valuable therapeutic agent. However, immunosuppressed hosts may respond inadequately to RDV and develop chronic persistent infections. A patient with respiratory failure caused by interstitial pneumonia, who had undergone transplantation of the left lung, developed COVID-19 caused by Omicron BA.5 strain with persistent chronic viral shedding, showing viral fusogenicity. Genome-wide sequencing analyses revealed the occurrence of several viral mutations after RDV treatment, followed by dynamic changes in the viral populations. The C799F mutation in nsp12 was found to play a pivotal role in conferring RDV resistance, preventing RDV-triphosphate from entering the active site of RNA-dependent RNA polymerase. The occurrence of diverse mutations is a characteristic of SARS-CoV-2, which mutates frequently. Herein, we describe the clinical case of an immunosuppressed host in whom inadequate treatment resulted in highly diverse SARS-CoV-2 mutations that threatened the patient's health due to the development of drug-resistant variants.
Collapse
Affiliation(s)
- Hidetoshi Igari
- Department of Infectious Diseases, Chiba University Hospital, Chiba, Chiba, Japan.
- Future Mucosal Vaccine Research and Development Center, Chiba University Hospital, Chiba, Chiba, Japan.
- COVID-19 Vaccine Center, Chiba University Hospital, Chiba, Chiba, Japan.
- Research Institute of Disaster Medicine, Chiba University, Chiba, Chiba, Japan.
| | - Seiichiro Sakao
- Department of Respiratory Medicine, Chiba University Hospital, Chiba, Chiba, Japan
- Department of Pulmonary Medicine, School of Medicine, International University of Health and Welfare, Narita, Chiba, Japan
| | - Takayuki Ishige
- Division of Laboratory Medicine, Chiba University Hospital, Chiba, Chiba, Japan.
| | - Kengo Saito
- Department of Molecular Virology, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan
| | - Shota Murata
- Division of Laboratory Medicine, Chiba University Hospital, Chiba, Chiba, Japan
| | - Misuzu Yahaba
- Department of Infectious Diseases, Chiba University Hospital, Chiba, Chiba, Japan
| | - Toshibumi Taniguchi
- Department of Infectious Diseases, Chiba University Hospital, Chiba, Chiba, Japan
- Research Institute of Disaster Medicine, Chiba University, Chiba, Chiba, Japan
| | - Akiko Suganami
- Department of Bioinformatics, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan
| | - Kazuyuki Matsushita
- Division of Laboratory Medicine, Chiba University Hospital, Chiba, Chiba, Japan
| | - Yutaka Tamura
- Department of Bioinformatics, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan
| | - Takuji Suzuki
- Future Mucosal Vaccine Research and Development Center, Chiba University Hospital, Chiba, Chiba, Japan
- Department of Respiratory Medicine, Chiba University Hospital, Chiba, Chiba, Japan
- Synergy Institute for Futuristic Mucosal Vaccine Research and Development, Chiba University, Chiba, Chiba, Japan
| | - Eiji Ido
- Department of Infectious Diseases, Chiba University Hospital, Chiba, Chiba, Japan.
- Department of Molecular Virology, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan.
| |
Collapse
|
44
|
Iketani S, Ho DD. SARS-CoV-2 resistance to monoclonal antibodies and small-molecule drugs. Cell Chem Biol 2024; 31:632-657. [PMID: 38640902 PMCID: PMC11084874 DOI: 10.1016/j.chembiol.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/21/2024]
Abstract
Over four years have passed since the beginning of the COVID-19 pandemic. The scientific response has been rapid and effective, with many therapeutic monoclonal antibodies and small molecules developed for clinical use. However, given the ability for viruses to become resistant to antivirals, it is perhaps no surprise that the field has identified resistance to nearly all of these compounds. Here, we provide a comprehensive review of the resistance profile for each of these therapeutics. We hope that this resource provides an atlas for mutations to be aware of for each agent, particularly as a springboard for considerations for the next generation of antivirals. Finally, we discuss the outlook and thoughts for moving forward in how we continue to manage this, and the next, pandemic.
Collapse
Affiliation(s)
- Sho Iketani
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
45
|
Sarkar A, Ghosh TA, Bandyopadhyay B, Maiti S, Panja AS. Prediction of Prospective Mutational Landscape of SARS-CoV-2 Spike ssRNA and Evolutionary Basis of Its Host Interaction. Mol Biotechnol 2024:10.1007/s12033-024-01146-1. [PMID: 38619800 DOI: 10.1007/s12033-024-01146-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/14/2024] [Indexed: 04/16/2024]
Abstract
Booster doses are crucial against severe COVID-19, as rapid virus mutations and variant emergence prolong the pandemic crisis. The virus's quick evolution, short generation-time, and adaptive changes impact virulence and evolvability, helping predictions about variant of concerns' (VOCs') landscapes. Here, in this study, we used a new computational algorithm, to predict the mutational pattern in SARS-CoV-2 ssRNA, proteomics, structural identification, mutation stability, and functional correlation, as well as immune escape mechanisms. Interestingly, the sequence diversity of SARS Coronavirus-2 has demonstrated a predominance of G- > A and C- > U substitutions. The best validation statistics are explored here in seven homologous models of the expected mutant SARS-CoV-2 spike ssRNA and employed for hACE2 and IgG interactions. The interactome profile of SARS-CoV-2 spike with hACE2 and IgG revealed a strong correlation between phylogeny and divergence time. The systematic adaptation of SARS-CoV-2 spike ssRNA influences infectivity and immune escape. Data suggest higher propensity of Adenine rich sequence promotes MHC system avoidance, preferred by A-rich codons. Phylogenetic data revealed the evolution of SARS-CoV-2 lineages' epidemiology. Our findings may unveil processes governing the genesis of immune-resistant variants, prompting a critical reassessment of the coronavirus mutation rate and exploration of hypotheses beyond mechanical aspects.
Collapse
Affiliation(s)
- Aniket Sarkar
- Post Graduate Department of Biotechnology, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Trijit Arka Ghosh
- Department of Computer Application, Burdwan Institute of Management and Computer Science, The University of Burdwan, Dewandighi, Burdwan, West Bengal, 713102, India
| | - Bidyut Bandyopadhyay
- Post Graduate Department of Biotechnology, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Smarajit Maiti
- Department of Medical Laboratory Technology, Haldia Institute of Health Sciences, ICARE Complex, Haldia, West Bengal, 721657, India
| | - Anindya Sundar Panja
- Post Graduate Department of Biotechnology, Molecular Informatics Laboratory, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, West Bengal, 721102, India.
| |
Collapse
|
46
|
Guilbaud R, Franco Yusti AM, Leducq V, Zafilaza K, Bridier-Nahmias A, Todesco E, Soulie C, Fauchois A, Le Hingrat Q, Kramer L, Goulenok T, Salpin M, Daugas E, Dorent R, Ottaviani S, Zalcman G, Ghosn J, Choquet S, Cacoub P, Amoura Z, Barroux B, Pourcher V, Spano JP, Louet M, Marcelin AG, Calvez V, Charpentier C, Descamps D, Marot S, Ferré VM, Coppée R. Higher Levels of SARS-CoV-2 Genetic Variation in Immunocompromised Patients: A Retrospective Case-Control Study. J Infect Dis 2024; 229:1041-1049. [PMID: 37956413 DOI: 10.1093/infdis/jiad499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND A severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection lasts longer in immunocompromised hosts than in immunocompetent patients. Prolonged infection is associated with a higher probability of selection for novel SARS-CoV-2 mutations, particularly in the spike protein, a critical target for vaccines and therapeutics. METHODS From December 2020 to September 2022, respiratory samples from 444 immunocompromised patients and 234 health care workers positive for SARS-CoV-2, diagnosed at 2 hospitals in Paris, France, were analyzed using whole-genome sequencing using Nanopore technology. Custom scripts were developed to assess the SARS-CoV-2 genetic diversity between the 2 groups and within the host. RESULTS Most infections were SARS-CoV-2 Delta or Omicron lineages. Viral genetic diversity was significantly higher in infections of immunocompromised patients than those of controls. Minor mutations were identified in viruses sequenced from immunocompromised individuals, which became signature mutations for newer SARS-CoV-2 variants as the epidemic progressed. Two patients were coinfected with Delta and Omicron variants. The follow-up of immunocompromised patients revealed that the SARS-CoV-2 genome evolution differed in the upper and lower respiratory tracts. CONCLUSIONS This study found that SARS-CoV-2 infection in immunocompromised patients is associated with higher genetic diversity, which could lead to the emergence of new SARS-CoV-2 variants with possible immune evasion or different virulence characteristics.
Collapse
Affiliation(s)
- Romane Guilbaud
- Infection, Antimicrobials, Modelling, Evolution, Université Paris Cité and Sorbonne Paris Nord, Inserm, Paris, France
| | - Anna-Maria Franco Yusti
- Infection, Antimicrobials, Modelling, Evolution, Université Paris Cité and Sorbonne Paris Nord, Inserm, Paris, France
| | - Valentin Leducq
- Service de Virologie, Sorbonne Université, Inserm, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Karen Zafilaza
- Service de Virologie, Sorbonne Université, Inserm, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Antoine Bridier-Nahmias
- Infection, Antimicrobials, Modelling, Evolution, Université Paris Cité and Sorbonne Paris Nord, Inserm, Paris, France
| | - Eve Todesco
- Service de Virologie, Sorbonne Université, Inserm, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Cathia Soulie
- Service de Virologie, Sorbonne Université, Inserm, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Antoine Fauchois
- Service de Virologie, Sorbonne Université, Inserm, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Quentin Le Hingrat
- Infection, Antimicrobials, Modelling, Evolution, Université Paris Cité and Sorbonne Paris Nord, Inserm, Paris, France
| | - Laura Kramer
- Service de Pharmacie, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat-Claude-Bernard, Paris, France
| | - Tiphaine Goulenok
- Service de Médecine Interne, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat-Claude-Bernard, Paris, France
| | - Mathilde Salpin
- Service de Pneumologie, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat-Claude-Bernard, Paris, France
| | - Eric Daugas
- Service de Néphrologie, Université Paris Cité, Inserm U1149, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat-Claude-Bernard, Paris, France
| | - Richard Dorent
- Service de Cardiologie, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat-Claude-Bernard, Paris, France
| | - Sébastien Ottaviani
- Service de Rhumatologie, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat-Claude-Bernard, Paris, France
| | - Gérard Zalcman
- Service d'Oncologie Thoracique, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat-Claude-Bernard, Paris, France
| | - Jade Ghosn
- Infection, Antimicrobials, Modelling, Evolution, Université Paris Cité and Sorbonne Paris Nord, Inserm, Paris, France
- Service de Maladies Infectieuses, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat-Claude-Bernard, Paris, France
| | - Sylvain Choquet
- Service d'Hématologie Clinique, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Patrice Cacoub
- Service de Médecine Interne et Immunologie Clinique, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Zahir Amoura
- Service de Médecine Interne 2, Centre National de Référence des Histiocytoses, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Benoit Barroux
- Service d'Urologie et de Transplantation Rénale, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Valérie Pourcher
- Service de Virologie, Sorbonne Université, Inserm, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
- Service de Maladies Infectieuses et Tropicales, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Pitié-Salpêtrière, Paris, France
| | - Jean-Philippe Spano
- Service de Virologie, Sorbonne Université, Inserm, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
- Service d'Oncologie Médicale, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Martine Louet
- Service de Santé au Travail, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Anne-Geneviève Marcelin
- Service de Virologie, Sorbonne Université, Inserm, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Vincent Calvez
- Service de Virologie, Sorbonne Université, Inserm, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Charlotte Charpentier
- Infection, Antimicrobials, Modelling, Evolution, Université Paris Cité and Sorbonne Paris Nord, Inserm, Paris, France
| | - Diane Descamps
- Infection, Antimicrobials, Modelling, Evolution, Université Paris Cité and Sorbonne Paris Nord, Inserm, Paris, France
| | - Stéphane Marot
- Service de Virologie, Sorbonne Université, Inserm, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Valentine Marie Ferré
- Infection, Antimicrobials, Modelling, Evolution, Université Paris Cité and Sorbonne Paris Nord, Inserm, Paris, France
| | - Romain Coppée
- Infection, Antimicrobials, Modelling, Evolution, Université Paris Cité and Sorbonne Paris Nord, Inserm, Paris, France
| |
Collapse
|
47
|
Tan TJC, Verma AK, Odle A, Lei R, Meyerholz DK, Matreyek KA, Perlman S, Wong LYR, Wu NC. Evidence of antigenic drift in the fusion machinery core of SARS-CoV-2 spike. Proc Natl Acad Sci U S A 2024; 121:e2317222121. [PMID: 38557175 PMCID: PMC11009667 DOI: 10.1073/pnas.2317222121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/23/2024] [Indexed: 04/04/2024] Open
Abstract
Antigenic drift of SARS-CoV-2 is typically defined by mutations in the N-terminal domain and receptor binding domain of spike protein. In contrast, whether antigenic drift occurs in the S2 domain remains largely elusive. Here, we perform a deep mutational scanning experiment to identify S2 mutations that affect binding of SARS-CoV-2 spike to three S2 apex public antibodies. Our results indicate that spatially diverse mutations, including D950N and Q954H, which are observed in Delta and Omicron variants, respectively, weaken the binding of spike to these antibodies. Although S2 apex antibodies are known to be nonneutralizing, we show that they confer protection in vivo through Fc-mediated effector functions. Overall, this study indicates that the S2 domain of SARS-CoV-2 spike can undergo antigenic drift, which represents a potential challenge for the development of more universal coronavirus vaccines.
Collapse
Affiliation(s)
- Timothy J. C. Tan
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Abhishek K. Verma
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA52242
| | - Abby Odle
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA52242
| | - Ruipeng Lei
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
| | | | - Kenneth A. Matreyek
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH44106
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA52242
- Department of Pediatrics, University of Iowa, Iowa City, IA52242
| | - Lok-Yin Roy Wong
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA52242
- Center for Virus-Host-Innate Immunity, Rutgers New Jersey Medical School, Newark, NJ07103
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ07103
| | - Nicholas C. Wu
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL61801
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL61801
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL61801
| |
Collapse
|
48
|
Qian J, Zhang S, Wang F, Li J, Zhang J. What makes SARS-CoV-2 unique? Focusing on the spike protein. Cell Biol Int 2024; 48:404-430. [PMID: 38263600 DOI: 10.1002/cbin.12130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/25/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024]
Abstract
Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) seriously threatens public health and safety. Genetic variants determine the expression of SARS-CoV-2 structural proteins, which are associated with enhanced transmissibility, enhanced virulence, and immune escape. Vaccination is encouraged as a public health intervention, and different types of vaccines are used worldwide. However, new variants continue to emerge, especially the Omicron complex, and the neutralizing antibody responses are diminished significantly. In this review, we outlined the uniqueness of SARS-CoV-2 from three perspectives. First, we described the detailed structure of the spike (S) protein, which is highly susceptible to mutations and contributes to the distinct infection cycle of the virus. Second, we systematically summarized the immunoglobulin G epitopes of SARS-CoV-2 and highlighted the central role of the nonconserved regions of the S protein in adaptive immune escape. Third, we provided an overview of the vaccines targeting the S protein and discussed the impact of the nonconserved regions on vaccine effectiveness. The characterization and identification of the structure and genomic organization of SARS-CoV-2 will help elucidate its mechanisms of viral mutation and infection and provide a basis for the selection of optimal treatments. The leaps in advancements regarding improved diagnosis, targeted vaccines and therapeutic remedies provide sound evidence showing that scientific understanding, research, and technology evolved at the pace of the pandemic.
Collapse
Affiliation(s)
- Jingbo Qian
- Department of Laboratory Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Shichang Zhang
- Department of Clinical Laboratory Medicine, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Fang Wang
- Department of Laboratory Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Jinming Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Jiexin Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| |
Collapse
|
49
|
Lim T, Rajoriya S, Kim B, Natasha A, Im H, Shim HS, Yoo J, Kim JW, Lee EW, Shin HJ, Kim SH, Kim WK. In vitro broad-spectrum antiviral activity of MIT-001, a mitochondria-targeted reactive oxygen species scavenger, against severe acute respiratory syndrome coronavirus 2 and multiple zoonotic viruses. Virus Res 2024; 342:199325. [PMID: 38309472 PMCID: PMC10851010 DOI: 10.1016/j.virusres.2024.199325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/31/2023] [Accepted: 01/17/2024] [Indexed: 02/05/2024]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 becomes a serious threat to global health and requires the development of effective antiviral therapies. Current therapies that target viral proteins have limited efficacy with side effects. In this study, we investigated the antiviral activity of MIT-001, a small molecule reactive oxygen species (ROS) scavenger targeting mitochondria, against SARS-CoV-2 and other zoonotic viruses in vitro. The antiviral activity of MIT-001 was quantified by RT-qPCR and plaque assay. We also evaluated the functional analysis of MIT-001 by JC-1 staining to measure mitochondrial depolarization, total RNA sequencing to investigate gene expression changes, and immunoblot to quantify protein expression levels. The results showed that MIT-001 effectively inhibited the replication of B.1.617.2 and BA.1 strains, Zika virus, Seoul virus, and Vaccinia virus. Treatment with MIT-001 restored the expression of heme oxygenase-1 (HMOX1) and NAD(P)H: quinone oxidoreductase 1 (NqO1) genes, anti-oxidant enzymes reduced by SARS-CoV-2, to normal levels. The presence of MIT-001 also alleviated mitochondrial depolarization caused by SARS-CoV-2 infection. These findings highlight the potential of MIT-001 as a broad-spectrum antiviral compound that targets for zoonotic RNA and DNA viruses, providing a promising therapeutic approach to combat viral infection.
Collapse
Affiliation(s)
- Taehun Lim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Shivani Rajoriya
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Bohyeon Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Augustine Natasha
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Hyeonjoo Im
- Laboratory of Regenerative Medicine For Neurodegenerative Disease, Stand Up Therapeutics, Hannamdaero 98, Seoul 04418, Republic of Korea
| | - Hyun Soo Shim
- Laboratory of Regenerative Medicine For Neurodegenerative Disease, Stand Up Therapeutics, Hannamdaero 98, Seoul 04418, Republic of Korea
| | - Junsang Yoo
- Laboratory of Regenerative Medicine For Neurodegenerative Disease, Stand Up Therapeutics, Hannamdaero 98, Seoul 04418, Republic of Korea
| | - Jong Woo Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34141, Republic of Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34141, Republic of Korea; School of pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hye Jin Shin
- College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Soon Ha Kim
- Mitoimmune Therapeutics Inc., Gangnam-gu, Seoul 06253, Republic of Korea
| | - Won-Keun Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea; Institute of Medical Science, College of Medicine, Hallym University, Chuncheon, Republic of Korea.
| |
Collapse
|
50
|
Feuth E, Nieminen V, Palomäki A, Ranti J, Sucksdorff M, Finnilä T, Oksi J, Vuorinen T, Feuth T. Prolonged viral pneumonia and high mortality in COVID-19 patients on anti-CD20 monoclonal antibody therapy. Eur J Clin Microbiol Infect Dis 2024; 43:723-734. [PMID: 38358552 DOI: 10.1007/s10096-024-04776-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
PURPOSE In clinical practice, we observed an apparent overrepresentation of COVID-19 patients on anti-CD20 monoclonal antibody therapy. The aim of this study was to characterize the clinical picture of COVID-19 in these patients. METHODS All adult patients from Turku University Hospital, Turku, Finland, with COVID-19 diagnosis and/or positive SARS-CoV-2 PCR test result up to March 2023, and with anti-CD20 therapy within 12 months before COVID-19 were included. Data was retrospectively obtained from electronic patient records. RESULTS Ninety-eight patients were identified. 44/93 patients (47.3%) were hospitalized due to COVID-19. Patients with demyelinating disorder (n = 20) were youngest (median age 36.5 years, interquartile range 33-45 years), had less comorbidities, and were least likely to be hospitalized (2/20; 10.0%) or die (n = 0). COVID-19 mortality was 13.3% in the whole group, with age and male sex as independent risk factors. Persistent symptoms were documented in 33/94 patients (35.1%) alive by day 30, in 21/89 patients (23.6%) after 60 days, and in 15/85 after 90 days (17.6%), mostly in patients with haematological malignancy or connective tissue disease. Prolonged symptoms after 60 days predisposed to persistent radiological findings (odds ratio 64.0; 95% confidence interval 6.3-711; p < 0.0001) and persistently positive PCR (odds ratio 45.5, 95% confidence interval 4.0-535; p < 0.0001). Several patients displayed rapid response to late antiviral therapy. CONCLUSION Anti-CD20 monoclonal antibody therapy is associated with high COVID-19 mortality and with a phenotype consistent with prolonged viral pneumonia. Our study provides rationale for retesting of immunocompromised patients with prolonged COVID-19 symptoms and considering antiviral therapy.
Collapse
Affiliation(s)
- Eeva Feuth
- Department of Infectious Diseases, Turku University Hospital and University of Turku, Turku, Finland
| | - Valtteri Nieminen
- Department of Pulmonary Diseases and Clinical Allergology, Turku University Hospital and University of Turku, Turku, Finland
| | - Antti Palomäki
- Centre for Rheumatology and Clinical Immunology, and Department of Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Juha Ranti
- Department of Haematology, Turku University Hospital, Turku, Finland
| | - Marcus Sucksdorff
- Turku PET Centre, and Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Taru Finnilä
- Department of Hospital Hygiene & Infection Control, Turku University Hospital, Turku, Finland
| | - Jarmo Oksi
- Department of Infectious Diseases, Turku University Hospital and University of Turku, Turku, Finland
| | - Tytti Vuorinen
- Department of Clinical Microbiology, Turku University Hospital and Institute of Biomedicine, University of Turku, Turku, Finland
| | - Thijs Feuth
- Department of Pulmonary Diseases and Clinical Allergology, Turku University Hospital and University of Turku, Turku, Finland.
| |
Collapse
|