1
|
Bastogne L, Gómez-Ortiz F, Anand S, Ghosez P. Dynamical Manipulation of Polar Topologies from Acoustic Phonon Excitations. NANO LETTERS 2024; 24:13783-13789. [PMID: 39412191 DOI: 10.1021/acs.nanolett.4c04125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Since the recent discovery of polar topologies, a recurrent question has been how to remotely tune them. Many efforts have focused on the pumping of polar optical phonons from optical methods, but with limited success, as only switching between specific phases has been achieved so far. Additionally, the correlation between optical pulse characteristics and the resulting phase is poorly understood. Here, we propose an alternative approach and demonstrate the deterministic and dynamical tailoring of polar topologies using acoustic phonon excitations. Our second-principles simulations reveal that by pumping specific longitudinal and transverse acoustic phonons, various topological textures can be induced in materials like BaTiO3 or PbTiO3. This method leverages the strong coupling between polarization and strain in these materials, enabling predictable and dynamic control of polar patterns. Our findings open up an alternative possibility for the manipulation of polar textures, suggesting a promising research direction.
Collapse
Affiliation(s)
- Louis Bastogne
- Theoretical Materials Physics, Q-MAT, Université de Liège, Allée du 6 août, 17, B-4000 Sart Tilman, Belgium
| | - Fernando Gómez-Ortiz
- Theoretical Materials Physics, Q-MAT, Université de Liège, Allée du 6 août, 17, B-4000 Sart Tilman, Belgium
| | - Sriram Anand
- Theoretical Materials Physics, Q-MAT, Université de Liège, Allée du 6 août, 17, B-4000 Sart Tilman, Belgium
| | - Philippe Ghosez
- Theoretical Materials Physics, Q-MAT, Université de Liège, Allée du 6 août, 17, B-4000 Sart Tilman, Belgium
| |
Collapse
|
2
|
Stoica VA, Yang T, Das S, Cao Y, Wang HH, Kubota Y, Dai C, Padma H, Sato Y, Mangu A, Nguyen QL, Zhang Z, Talreja D, Zajac ME, Walko DA, DiChiara AD, Owada S, Miyanishi K, Tamasaku K, Sato T, Glownia JM, Esposito V, Nelson S, Hoffmann MC, Schaller RD, Lindenberg AM, Martin LW, Ramesh R, Matsuda I, Zhu D, Chen LQ, Wen H, Gopalan V, Freeland JW. Non-equilibrium pathways to emergent polar supertextures. NATURE MATERIALS 2024; 23:1394-1401. [PMID: 39317816 DOI: 10.1038/s41563-024-01981-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/26/2024] [Indexed: 09/26/2024]
Abstract
Ultrafast stimuli can stabilize metastable states of matter inaccessible by equilibrium means. Establishing the spatiotemporal link between ultrafast excitation and metastability is crucial to understand these phenomena. Here we utilize single-shot optical pump-X-ray probe measurements to capture snapshots of the emergence of a persistent polar vortex supercrystal in a heterostructure that hosts a fine balance between built-in electrostatic and elastic frustrations by design. By perturbing this balance with photoinduced charges, an initially heterogeneous mixture of polar phase disorders within a few picoseconds, leading to a state composed of disordered ferroelectric and suppressed vortex orders. On the picosecond-nanosecond timescales, transient labyrinthine fluctuations develop, accompanied by the recovery of the vortex order. On longer timescales, these fluctuations are progressively quenched by dynamical strain modulations, which drive the collective emergence of a single vortex supercrystal phase. Our results, corroborated by dynamical phase-field modelling, reveal non-equilibrium pathways following the ultrafast excitation of designer systems to persistent metastability.
Collapse
Affiliation(s)
- Vladimir A Stoica
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, USA.
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA.
| | - Tiannan Yang
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, USA
- Interdisciplinary Research Centre, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Sujit Das
- Materials Research Centre, Indian Institute of Science, Bangalore, India
| | - Yue Cao
- Materials Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Huaiyu Hugo Wang
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, USA
| | - Yuya Kubota
- Japan Synchrotron Radiation Research Institute, Sayo, Japan
- RIKEN SPring-8 Center, Sayo, Japan
| | - Cheng Dai
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, USA
| | - Hari Padma
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, USA
| | - Yusuke Sato
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Japan
| | - Anudeep Mangu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Quynh L Nguyen
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory & Stanford University, Menlo Park, CA, USA
| | - Zhan Zhang
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Disha Talreja
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, USA
| | - Marc E Zajac
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Donald A Walko
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | | | - Shigeki Owada
- Japan Synchrotron Radiation Research Institute, Sayo, Japan
- RIKEN SPring-8 Center, Sayo, Japan
| | | | - Kenji Tamasaku
- Japan Synchrotron Radiation Research Institute, Sayo, Japan
- RIKEN SPring-8 Center, Sayo, Japan
| | - Takahiro Sato
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - James M Glownia
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Vincent Esposito
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Silke Nelson
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Matthias C Hoffmann
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Richard D Schaller
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA
| | - Aaron M Lindenberg
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory & Stanford University, Menlo Park, CA, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Lane W Martin
- Department of Materials Science and Engineering & Department of Physics, University of California, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Rice University, Houston, TX, USA
| | - Ramamoorthy Ramesh
- Department of Materials Science and Engineering & Department of Physics, University of California, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Rice University, Houston, TX, USA
| | - Iwao Matsuda
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Japan
| | - Diling Zhu
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Long-Q Chen
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, USA
| | - Haidan Wen
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA.
- Materials Science Division, Argonne National Laboratory, Lemont, IL, USA.
| | - Venkatraman Gopalan
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, USA.
| | - John W Freeland
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA.
| |
Collapse
|
3
|
Fan FR, Xiao C, Yao W. Intrinsic dipole Hall effect in twisted MoTe 2: magnetoelectricity and contact-free signatures of topological transitions. Nat Commun 2024; 15:7997. [PMID: 39266571 PMCID: PMC11393455 DOI: 10.1038/s41467-024-52314-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/30/2024] [Indexed: 09/14/2024] Open
Abstract
We discover an intrinsic dipole Hall effect in a variety of magnetic insulating states at integer fillings of twisted MoTe2 moiré superlattice, including topologically trivial and nontrivial ferro-, antiferro-, and ferri-magnetic configurations. The dipole Hall current, in linear response to in-plane electric field, generates an in-plane orbital magnetization M∥ along the field, through which an AC field can drive magnetization oscillation up to THz range. Upon the continuous topological phase transitions from trivial to quantum anomalous Hall states in both ferromagnetic and antiferromagnetic configurations, the dipole Hall current and M∥ have an abrupt sign change, enabling contact-free detection of the transitions through the magnetic stray field. In configurations where the linear response is forbidden by symmetry, the dipole Hall current and M∥ appear as a crossed nonlinear response to both in-plane and out-of-plane electric fields. These magnetoelectric phenomena showcase fascinating functionalities of insulators from the interplay between magnetism, topology, and electrical polarization.
Collapse
Affiliation(s)
- Feng-Ren Fan
- New Cornerstone Science Laboratory, Department of Physics, University of Hong Kong, Hong Kong, China
- HKU-UCAS Joint Institute of Theoretical and Computational Physics at Hong Kong, Hong Kong, China
| | - Cong Xiao
- HKU-UCAS Joint Institute of Theoretical and Computational Physics at Hong Kong, Hong Kong, China
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau, China
| | - Wang Yao
- New Cornerstone Science Laboratory, Department of Physics, University of Hong Kong, Hong Kong, China.
- HKU-UCAS Joint Institute of Theoretical and Computational Physics at Hong Kong, Hong Kong, China.
| |
Collapse
|
4
|
Rijal S, Nahas Y, Prokhorenko S, Bellaiche L. Dynamics of Polar Vortex Crystallization. PHYSICAL REVIEW LETTERS 2024; 133:096801. [PMID: 39270196 DOI: 10.1103/physrevlett.133.096801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/07/2023] [Accepted: 07/09/2024] [Indexed: 09/15/2024]
Abstract
Vortex crystals are commonly observed in ultrathin ferroelectrics. However, a clear physical picture of origin of this topological state is currently lacking. Here, we show that vortex crystallization in ultrathin Pb(Zr_{0.4},Ti_{0.6})O_{3} films stems from the softening of a phonon mode and can be described as a Z_{2}×SU(1) symmetry-breaking transition. This result sheds light on the topology of the polar vortex patterns and bridges polar vortices with smectic phases, spin spirals, and other modulated states. Finally, we predict a resonant switching of the vortex tube orientation driven by midinfrared laser light which could enable new technologies.
Collapse
Affiliation(s)
- S Rijal
- Smart Ferroic Materials Center, Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Y Nahas
- Smart Ferroic Materials Center, Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | | | - L Bellaiche
- Smart Ferroic Materials Center, Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
- Department of Materials Science and Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| |
Collapse
|
5
|
Han H, Li W, Zhang Q, Tang S, Wang Y, Xu Z, Liu Y, Chen H, Gu J, Wang J, Yi D, Gu L, Huang H, Nan CW, Li Q, Ma J. Electric Field-Manipulated Optical Chirality in Ferroelectric Vortex Domains. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2408400. [PMID: 39149784 DOI: 10.1002/adma.202408400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/26/2024] [Indexed: 08/17/2024]
Abstract
Manipulating optical chirality via electric fields has garnered considerable attention in the realm of both fundamental physics and practical applications. Chiral ferroelectrics, characterized by their inherent optical chirality and switchable spontaneous polarization, are emerging as a promising platform for electronic-photonic integrated circuits applications. Unlike organics with chiral carbon centers, integrating chirality into technologically mature inorganic ferroelectrics has posed a long-standing challenge. Here, the successful introduction of chirality is reported into self-assembly La-doped BiFeO3 nanoislands, which exhibit ferroelectric vortex domains. By employing synergistic experimental techniques with piezoresponse force microscopy and nonlinear optical second-harmonic generation probes, a clear correlation between chirality and polarization configuration within these ferroelectric nanoislands is established. Furthermore, the deterministic control of ferroelectric vortex domains and chirality is demonstrated by applying electric fields, enabling reversible and nonvolatile generation and elimination of optically chiral signals. These findings significantly expand the repertoire of field-controllable chiral systems and lay the groundwork for the development of innovative ferroelectric optoelectronic devices.
Collapse
Affiliation(s)
- Haojie Han
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Wei Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing, 100190, China
| | - Shiyu Tang
- Advanced Research Institute of Multidisciplinary Science, and School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yue Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Zongqi Xu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Yiqun Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Hetian Chen
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Jingkun Gu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Jing Wang
- Advanced Research Institute of Multidisciplinary Science, and School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Di Yi
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Lin Gu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Houbing Huang
- Advanced Research Institute of Multidisciplinary Science, and School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Ce-Wen Nan
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Qian Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Jing Ma
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
6
|
Zajac M, Zhou T, Yang T, Das S, Cao Y, Guzelturk B, Stoica V, Cherukara MJ, Freeland JW, Gopalan V, Ramesh R, Martin LW, Chen LQ, Holt MV, Hruszkewycz SO, Wen H. Optical Control of Adaptive Nanoscale Domain Networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405294. [PMID: 38984494 DOI: 10.1002/adma.202405294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/13/2024] [Indexed: 07/11/2024]
Abstract
Adaptive networks can sense and adjust to dynamic environments to optimize their performance. Understanding their nanoscale responses to external stimuli is essential for applications in nanodevices and neuromorphic computing. However, it is challenging to image such responses on the nanoscale with crystallographic sensitivity. Here, the evolution of nanodomain networks in (PbTiO3)n/(SrTiO3)n superlattices (SLs) is directly visualized in real space as the system adapts to ultrafast repetitive optical excitations that emulate controlled neural inputs. The adaptive response allows the system to explore a wealth of metastable states that are previously inaccessible. Their reconfiguration and competition are quantitatively measured by scanning x-ray nanodiffraction as a function of the number of applied pulses, in which crystallographic characteristics are quantitatively assessed by assorted diffraction patterns using unsupervised machine-learning methods. The corresponding domain boundaries and their connectivity are drastically altered by light, holding promise for light-programable nanocircuits in analogy to neuroplasticity. Phase-field simulations elucidate that the reconfiguration of the domain networks is a result of the interplay between photocarriers and transient lattice temperature. The demonstrated optical control scheme and the uncovered nanoscopic insights open opportunities for the remote control of adaptive nanoscale domain networks.
Collapse
Grants
- DE-AC02-06CH11357 U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division
- DE-SC0012375 U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division
- DE-AC02-05-CH11231 U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division
- DE-SC0020145 U.S. Department of Energy, Office of Science, Basic Energy Sciences, Computational Materials and Chemical Sciences
Collapse
Affiliation(s)
- Marc Zajac
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Tao Zhou
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Tiannan Yang
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, 16802, USA
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sujit Das
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Materials Research Centre, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Yue Cao
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Burak Guzelturk
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Vladimir Stoica
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Mathew J Cherukara
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - John W Freeland
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Venkatraman Gopalan
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Ramamoorthy Ramesh
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
- Department of Physics and Astronomy, Rice University, Houston, TX, 77005, USA
- Rice Advanced Materials Institute, Rice University, Houston, TX, 77005, USA
| | - Lane W Martin
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
- Department of Physics and Astronomy, Rice University, Houston, TX, 77005, USA
- Rice Advanced Materials Institute, Rice University, Houston, TX, 77005, USA
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Long-Qing Chen
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Martin V Holt
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, 60439, USA
| | | | - Haidan Wen
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| |
Collapse
|
7
|
Lee Y, Oang KY, Kim D, Ihee H. A comparative review of time-resolved x-ray and electron scattering to probe structural dynamics. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:031301. [PMID: 38706888 PMCID: PMC11065455 DOI: 10.1063/4.0000249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
The structure of molecules, particularly the dynamic changes in structure, plays an essential role in understanding physical and chemical phenomena. Time-resolved (TR) scattering techniques serve as crucial experimental tools for studying structural dynamics, offering direct sensitivity to molecular structures through scattering signals. Over the past decade, the advent of x-ray free-electron lasers (XFELs) and mega-electron-volt ultrafast electron diffraction (MeV-UED) facilities has ushered TR scattering experiments into a new era, garnering significant attention. In this review, we delve into the basic principles of TR scattering experiments, especially focusing on those that employ x-rays and electrons. We highlight the variations in experimental conditions when employing x-rays vs electrons and discuss their complementarity. Additionally, cutting-edge XFELs and MeV-UED facilities for TR x-ray and electron scattering experiments and the experiments performed at those facilities are reviewed. As new facilities are constructed and existing ones undergo upgrades, the landscape for TR x-ray and electron scattering experiments is poised for further expansion. Through this review, we aim to facilitate the effective utilization of these emerging opportunities, assisting researchers in delving deeper into the intricate dynamics of molecular structures.
Collapse
Affiliation(s)
| | - Key Young Oang
- Radiation Center for Ultrafast Science, Korea Atomic Energy Research Institute (KAERI), Daejeon 34057, South Korea
| | | | | |
Collapse
|
8
|
Li W, Liao L, Deng C, Lebudi C, Liu J, Wang S, Yi D, Wang L, Li JF, Li Q. Artificial Domain Patterning in Ultrathin Ferroelectric Films via Modifying the Surface Electrostatic Boundary Conditions. NANO LETTERS 2024. [PMID: 38619536 DOI: 10.1021/acs.nanolett.4c00479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Nanoscale spatially controlled modulation of the properties of ferroelectrics via artificial domain pattering is crucial to their emerging optoelectronics applications. New patterning strategies to achieve high precision and efficiency and to link the resultant domain structures with device functionalities are being sought. Here, we present an epitaxial heterostructure of SrRuO3/PbTiO3/SrRuO3, wherein the domain configuration is delicately determined by the charge screening conditions in the SrRuO3 layer and the substrate strains. Chemical etching of the top SrRuO3 layer leads to a transition from in-plane a domains to out-of-plane c domains, accompanied by a giant (>105) modification in the second harmonic generation response. The modulation effect, coupled with the plasmonic resonance effect from SrRuO3, enables a highly flexible design of nonlinear optical devices, as demonstrated by a simulated split-ring resonator metasurface. This domain patterning strategy may be extended to more thin-film ferroelectric systems with domain stabilities amenable to electrostatic boundary conditions.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Lei Liao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Chenguang Deng
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Collieus Lebudi
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Jingchun Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Sixu Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Di Yi
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Lifen Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jing-Feng Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Qian Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Li C, Lyu YY, Yue WC, Huang P, Li H, Li T, Wang CG, Yuan Z, Dong Y, Ma X, Tu X, Tao T, Dong S, He L, Jia X, Sun G, Kang L, Wang H, Peeters FM, Milošević MV, Wu P, Wang YL. Unconventional Superconducting Diode Effects via Antisymmetry and Antisymmetry Breaking. NANO LETTERS 2024; 24:4108-4116. [PMID: 38536003 DOI: 10.1021/acs.nanolett.3c05008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Symmetry breaking plays a pivotal role in unlocking intriguing properties and functionalities in material systems. For example, the breaking of spatial and temporal symmetries leads to a fascinating phenomenon: the superconducting diode effect. However, generating and precisely controlling the superconducting diode effect pose significant challenges. Here, we take a novel route with the deliberate manipulation of magnetic charge potentials to realize unconventional superconducting flux-quantum diode effects. We achieve this through suitably tailored nanoengineered arrays of nanobar magnets on top of a superconducting thin film. We demonstrate the vital roles of inversion antisymmetry and its breaking in evoking unconventional superconducting effects, namely a magnetically symmetric diode effect and an odd-parity magnetotransport effect. These effects are nonvolatilely controllable through in situ magnetization switching of the nanobar magnets. Our findings promote the use of antisymmetry (breaking) for initiating unconventional superconducting properties, paving the way for exciting prospects and innovative functionalities in superconducting electronics.
Collapse
Affiliation(s)
- Chong Li
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Purple Mountain Laboratories, Nanjing 211111, China
| | - Yang-Yang Lyu
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Purple Mountain Laboratories, Nanjing 211111, China
| | - Wen-Cheng Yue
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Purple Mountain Laboratories, Nanjing 211111, China
| | - Peiyuan Huang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Haojie Li
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Tianyu Li
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Chen-Guang Wang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Purple Mountain Laboratories, Nanjing 211111, China
| | - Zixiong Yuan
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Ying Dong
- College of Metrology & Measurement Engineering, China Jiliang University, Hangzhou 310018, China
| | - Xiaoyu Ma
- Microsoft, One Microsoft Way, Redmond, Washington 98052, United States
| | - Xuecou Tu
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Tao Tao
- National Key Laboratory of Spintronics, Nanjing University, Suzhou 215163, China
| | - Sining Dong
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- National Key Laboratory of Spintronics, Nanjing University, Suzhou 215163, China
| | - Liang He
- National Key Laboratory of Spintronics, Nanjing University, Suzhou 215163, China
| | - Xiaoqing Jia
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Guozhu Sun
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Purple Mountain Laboratories, Nanjing 211111, China
| | - Lin Kang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Huabing Wang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Purple Mountain Laboratories, Nanjing 211111, China
| | - Francois M Peeters
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
- Departamento de Física, Universidade Federal do Ceará́, Campus do Pici, 60455-900 Fortaleza, Ceará, Brazil
| | - Milorad V Milošević
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
- Instituto de Física, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso 78060-900, Brazil
| | - Peiheng Wu
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Purple Mountain Laboratories, Nanjing 211111, China
| | - Yong-Lei Wang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Purple Mountain Laboratories, Nanjing 211111, China
- National Key Laboratory of Spintronics, Nanjing University, Suzhou 215163, China
| |
Collapse
|
10
|
Aramberri H, Íñiguez-González J. Brownian Electric Bubble Quasiparticles. PHYSICAL REVIEW LETTERS 2024; 132:136801. [PMID: 38613274 DOI: 10.1103/physrevlett.132.136801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/27/2024] [Indexed: 04/14/2024]
Abstract
Recent works on electric bubbles (including the experimental demonstration of electric skyrmions) constitute a breakthrough akin to the discovery of magnetic skyrmions some 15 years ago. So far research has focused on obtaining and visualizing these objects, which often appear to be immobile (pinned) in experiments. Thus, critical aspects of magnetic skyrmions-e.g., their quasiparticle nature, Brownian motion-remain unexplored (unproven) for electric bubbles. Here we use predictive atomistic simulations to investigate the basic dynamical properties of these objects in pinning-free model systems. We show that it is possible to find regimes where the electric bubbles can present long lifetimes (∼ns) despite being relatively small (diameter <2 nm). Additionally, we find that they can display stochastic dynamics with large and highly tunable diffusion constants. We thus establish the quasiparticle nature of electric bubbles and put them forward for the physical effects and applications (e.g., in token-based probabilistic computing) considered for magnetic skyrmions.
Collapse
Affiliation(s)
- Hugo Aramberri
- Materials Research and Technology Department, Luxembourg Institute of Science and Technology (LIST), Avenue des Hauts-Fourneaux 5, L-4362 Esch/Alzette, Luxembourg
| | - Jorge Íñiguez-González
- Materials Research and Technology Department, Luxembourg Institute of Science and Technology (LIST), Avenue des Hauts-Fourneaux 5, L-4362 Esch/Alzette, Luxembourg
- Department of Physics and Materials Science, University of Luxembourg, Rue du Brill 41, L-4422 Belvaux, Luxembourg
| |
Collapse
|
11
|
Wang S, Li W, Deng C, Hong Z, Gao HB, Li X, Gu Y, Zheng Q, Wu Y, Evans PG, Li JF, Nan CW, Li Q. Giant electric field-induced second harmonic generation in polar skyrmions. Nat Commun 2024; 15:1374. [PMID: 38355699 PMCID: PMC10866987 DOI: 10.1038/s41467-024-45755-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/04/2024] [Indexed: 02/16/2024] Open
Abstract
Electric field-induced second harmonic generation allows electrically controlling nonlinear light-matter interactions crucial for emerging integrated photonics applications. Despite its wide presence in materials, the figures-of-merit of electric field-induced second harmonic generation are yet to be elevated to enable novel device functionalities. Here, we show that the polar skyrmions, a topological phase spontaneously formed in PbTiO3/SrTiO3 ferroelectric superlattices, exhibit a high comprehensive electric field-induced second harmonic generation performance. The second-order nonlinear susceptibility and modulation depth, measured under non-resonant 800 nm excitation, reach ~54.2 pm V-1 and ~664% V-1, respectively, and high response bandwidth (higher than 10 MHz), wide operating temperature range (up to ~400 K) and good fatigue resistance (>1010 cycles) are also demonstrated. Through combined in-situ experiments and phase-field simulations, we establish the microscopic links between the exotic polarization configuration and field-induced transition paths of the skyrmions and their electric field-induced second harmonic generation response. Our study not only presents a highly competitive thin-film material ready for constructing on-chip devices, but opens up new avenues of utilizing topological polar structures in the fields of photonics and optoelectronics.
Collapse
Affiliation(s)
- Sixu Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Wei Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Chenguang Deng
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Zijian Hong
- School of Materials Science and Engineering, Zhejiang University, 310027, Hangzhou, China.
- Research Institute of Zhejiang University-Taizhou, 318000, Taizhou, Zhejiang, China.
| | - Han-Bin Gao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China
| | - Xiaolong Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201204, Shanghai, China
| | - Yueliang Gu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201204, Shanghai, China
| | - Qiang Zheng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China.
| | - Yongjun Wu
- School of Materials Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Paul G Evans
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jing-Feng Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Ce-Wen Nan
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Qian Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
12
|
Moradifar P, Liu Y, Shi J, Siukola Thurston ML, Utzat H, van Driel TB, Lindenberg AM, Dionne JA. Accelerating Quantum Materials Development with Advances in Transmission Electron Microscopy. Chem Rev 2023. [PMID: 37979189 DOI: 10.1021/acs.chemrev.2c00917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
Quantum materials are driving a technology revolution in sensing, communication, and computing, while simultaneously testing many core theories of the past century. Materials such as topological insulators, complex oxides, superconductors, quantum dots, color center-hosting semiconductors, and other types of strongly correlated materials can exhibit exotic properties such as edge conductivity, multiferroicity, magnetoresistance, superconductivity, single photon emission, and optical-spin locking. These emergent properties arise and depend strongly on the material's detailed atomic-scale structure, including atomic defects, dopants, and lattice stacking. In this review, we describe how progress in the field of electron microscopy (EM), including in situ and in operando EM, can accelerate advances in quantum materials and quantum excitations. We begin by describing fundamental EM principles and operation modes. We then discuss various EM methods such as (i) EM spectroscopies, including electron energy loss spectroscopy (EELS), cathodoluminescence (CL), and electron energy gain spectroscopy (EEGS); (ii) four-dimensional scanning transmission electron microscopy (4D-STEM); (iii) dynamic and ultrafast EM (UEM); (iv) complementary ultrafast spectroscopies (UED, XFEL); and (v) atomic electron tomography (AET). We describe how these methods could inform structure-function relations in quantum materials down to the picometer scale and femtosecond time resolution, and how they enable precision positioning of atomic defects and high-resolution manipulation of quantum materials. For each method, we also describe existing limitations to solve open quantum mechanical questions, and how they might be addressed to accelerate progress. Among numerous notable results, our review highlights how EM is enabling identification of the 3D structure of quantum defects; measuring reversible and metastable dynamics of quantum excitations; mapping exciton states and single photon emission; measuring nanoscale thermal transport and coupled excitation dynamics; and measuring the internal electric field and charge density distribution of quantum heterointerfaces- all at the quantum materials' intrinsic atomic and near atomic-length scale. We conclude by describing open challenges for the future, including achieving stable sample holders for ultralow temperature (below 10K) atomic-scale spatial resolution, stable spectrometers that enable meV energy resolution, and high-resolution, dynamic mapping of magnetic and spin fields. With atomic manipulation and ultrafast characterization enabled by EM, quantum materials will be poised to integrate into many of the sustainable and energy-efficient technologies needed for the 21st century.
Collapse
Affiliation(s)
- Parivash Moradifar
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Yin Liu
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jiaojian Shi
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road MS69, Menlo Park, California 94025, United States
| | | | - Hendrik Utzat
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Tim B van Driel
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Aaron M Lindenberg
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road MS69, Menlo Park, California 94025, United States
| | - Jennifer A Dionne
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
13
|
Miyamoto T, Kondo A, Inaba T, Morimoto T, You S, Okamoto H. Terahertz radiation by quantum interference of excitons in a one-dimensional Mott insulator. Nat Commun 2023; 14:6229. [PMID: 37833316 PMCID: PMC10575914 DOI: 10.1038/s41467-023-41463-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 09/01/2023] [Indexed: 10/15/2023] Open
Abstract
Nearly monocyclic terahertz waves are used for investigating elementary excitations and for controlling electronic states in solids. They are usually generated via second-order optical nonlinearity by injecting a femtosecond laser pulse into a nonlinear optical crystal. In this framework, however, it is difficult to control phase and frequency of terahertz waves. Here, we show that in a one-dimensional Mott insulator of a nickel-bromine chain compound a terahertz wave is generated with high efficiency via strong electron modulations due to quantum interference between odd-parity and even-parity excitons produced by two-color femtosecond pulses. Using this method, one can control all of the phase, frequency, and amplitude of terahertz waves by adjusting the creation-time difference of two excitons with attosecond accuracy. This approach enables to evaluate the phase-relaxation time of excitons under strong electron correlations in Mott insulators. Moreover, phase- and frequency-controlled terahertz pulses are beneficial for coherent electronic-state controls with nearly monocyclic terahertz waves.
Collapse
Affiliation(s)
- Tatsuya Miyamoto
- Department of Advanced Materials Science, University of Tokyo, Chiba, 277-8561, Japan.
| | - Akihiro Kondo
- Department of Advanced Materials Science, University of Tokyo, Chiba, 277-8561, Japan
| | - Takeshi Inaba
- Department of Advanced Materials Science, University of Tokyo, Chiba, 277-8561, Japan
| | - Takeshi Morimoto
- Department of Advanced Materials Science, University of Tokyo, Chiba, 277-8561, Japan
| | - Shijia You
- Department of Advanced Materials Science, University of Tokyo, Chiba, 277-8561, Japan
| | - Hiroshi Okamoto
- Department of Advanced Materials Science, University of Tokyo, Chiba, 277-8561, Japan.
| |
Collapse
|
14
|
Wang J, Liang D, Ma J, Fan Y, Ma J, Jafri HM, Yang H, Zhang Q, Wang Y, Guo C, Dong S, Liu D, Wang X, Hong J, Zhang N, Gu L, Yi D, Zhang J, Lin Y, Chen LQ, Huang H, Nan CW. Polar Solomon rings in ferroelectric nanocrystals. Nat Commun 2023; 14:3941. [PMID: 37402744 DOI: 10.1038/s41467-023-39668-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/22/2023] [Indexed: 07/06/2023] Open
Abstract
Solomon rings, upholding the symbol of wisdom with profound historical roots, were widely used as decorations in ancient architecture and clothing. However, it was only recently discovered that such topological structures can be formed by self-organization in biological/chemical molecules, liquid crystals, etc. Here, we report the observation of polar Solomon rings in a ferroelectric nanocrystal, which consist of two intertwined vortices and are mathematically equivalent to a [Formula: see text] link in topology. By combining piezoresponse force microscopy observations and phase-field simulations, we demonstrate the reversible switching between polar Solomon rings and vertex textures by an electric field. The two types of topological polar textures exhibit distinct absorption of terahertz infrared waves, which can be exploited in infrared displays with a nanoscale resolution. Our study establishes, both experimentally and computationally, the existence and electrical manipulation of polar Solomon rings, a new form of topological polar structures that may provide a simple way for fast, robust, and high-resolution optoelectronic devices.
Collapse
Affiliation(s)
- Jing Wang
- Advanced Research Institute of Multidisciplinary Science, and School of Materials Science and Engineering, Beijing Institute of Technology, 100081, Beijing, China
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Deshan Liang
- Advanced Research Institute of Multidisciplinary Science, and School of Materials Science and Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Jing Ma
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Yuanyuan Fan
- Advanced Research Institute of Multidisciplinary Science, and School of Materials Science and Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Ji Ma
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
- School of Material Science and Engineering, Kunming University of Science and Technology, 650093, Kunming, Yunnan, China
| | - Hasnain Mehdi Jafri
- Advanced Research Institute of Multidisciplinary Science, and School of Materials Science and Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Huayu Yang
- Advanced Research Institute of Multidisciplinary Science, and School of Materials Science and Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, 100190, Beijing, China
| | - Yue Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Changqing Guo
- Advanced Research Institute of Multidisciplinary Science, and School of Materials Science and Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Shouzhe Dong
- Advanced Research Institute of Multidisciplinary Science, and School of Materials Science and Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Di Liu
- Advanced Research Institute of Multidisciplinary Science, and School of Materials Science and Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Xueyun Wang
- School of Aerospace Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Jiawang Hong
- School of Aerospace Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Nan Zhang
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, and School of Optics and Photonics, Beijing Institute of Technology, 100081, Beijing, China
| | - Lin Gu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, 100190, Beijing, China
| | - Di Yi
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Jinxing Zhang
- Department of Physics, and Key Laboratory of Multi-scale Spin Physics, Ministry of Education, Beijing Normal University, 100875, Beijing, China
| | - Yuanhua Lin
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Long-Qing Chen
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Houbing Huang
- Advanced Research Institute of Multidisciplinary Science, and School of Materials Science and Engineering, Beijing Institute of Technology, 100081, Beijing, China.
| | - Ce-Wen Nan
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
15
|
Wen Y, Giorgianni F, Ilyakov I, Quan B, Kovalev S, Wang C, Vicario C, Deinert JC, Xiong X, Bailey J, Chen M, Ponomaryov A, Awari N, Rovere A, Sun J, Morandotti R, Razzari L, Aeppli G, Li J, Zhou J. A universal route to efficient non-linear response via Thomson scattering in linear solids. Natl Sci Rev 2023; 10:nwad136. [PMID: 37396487 PMCID: PMC10313094 DOI: 10.1093/nsr/nwad136] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 07/04/2023] Open
Abstract
Non-linear materials are cornerstones of modern optics and electronics. Strong dependence on the intrinsic properties of particular materials, however, inhibits the at-will extension of demanding non-linear effects, especially those second-order ones, to widely adopted centrosymmetric materials (for example, silicon) and technologically important burgeoning spectral domains (for example, terahertz frequencies). Here we introduce a universal route to efficient non-linear responses enabled by exciting non-linear Thomson scattering, a fundamental process in electrodynamics that was known to occur only in relativistic electrons in metamaterial composed of linear materials. Such a mechanism modulates the trajectory of charges, either intrinsically or extrinsically provided in solids, at twice the driving frequency, allowing second-harmonic generation at terahertz frequencies on crystalline silicon with extremely large non-linear susceptibility in our proof-of-concept experiments. By offering a substantially material- and frequency-independent platform, our approach opens new possibilities in the fields of on-demand non-linear optics, terahertz sources, strong field light-solid interactions and integrated photonic circuits.
Collapse
Affiliation(s)
- Yongzheng Wen
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | | | - Igor Ilyakov
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany
| | - Baogang Quan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Sergey Kovalev
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany
| | - Chen Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Carlo Vicario
- Paul Scherrer Institut, Villigen PSI 5232, Switzerland
| | | | - Xiaoyu Xiong
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Joe Bailey
- Paul Scherrer Institut, Villigen PSI 5232, Switzerland
- Institut de Physique, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Min Chen
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany
| | | | - Nilesh Awari
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany
| | - Andrea Rovere
- Institut National de la Recherche Scientifique (INRS), Centre Énergie, Matériaux et Télécommunications (EMT), Varennes J3X1P7, Canada
| | - Jingbo Sun
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Roberto Morandotti
- Institut National de la Recherche Scientifique (INRS), Centre Énergie, Matériaux et Télécommunications (EMT), Varennes J3X1P7, Canada
| | - Luca Razzari
- Institut National de la Recherche Scientifique (INRS), Centre Énergie, Matériaux et Télécommunications (EMT), Varennes J3X1P7, Canada
| | - Gabriel Aeppli
- Paul Scherrer Institut, Villigen PSI 5232, Switzerland
- Institut de Physique, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
- Department of Physics and Quantum Center, ETH Zürich, Zürich CH-8093, Switzerland
| | - Junjie Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ji Zhou
- Corresponding author. E-mail:
| |
Collapse
|
16
|
Gong FH, Tang YL, Wang YJ, Chen YT, Wu B, Yang LX, Zhu YL, Ma XL. Absence of critical thickness for polar skyrmions with breaking the Kittel's law. Nat Commun 2023; 14:3376. [PMID: 37291226 PMCID: PMC10250330 DOI: 10.1038/s41467-023-39169-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 05/31/2023] [Indexed: 06/10/2023] Open
Abstract
The period of polar domain (d) in ferroics was commonly believed to scale with corresponding film thicknesses (h), following the classical Kittel's law of d ∝ [Formula: see text]. Here, we have not only observed that this relationship fails in the case of polar skyrmions, where the period shrinks nearly to a constant value, or even experiences a slight increase, but also discovered that skyrmions have further persisted in [(PbTiO3)2/(SrTiO3)2]10 ultrathin superlattices. Both experimental and theoretical results indicate that the skyrmion periods (d) and PbTiO3 layer thicknesses in superlattice (h) obey the hyperbolic function of d = Ah + [Formula: see text] other than previous believed, simple square root law. Phase-field analysis indicates that the relationship originates from the different energy competitions of the superlattices with PbTiO3 layer thicknesses. This work exemplified the critical size problems faced by nanoscale ferroelectric device designing in the post-Moore era.
Collapse
Affiliation(s)
- Feng-Hui Gong
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, Shenyang, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Wenhua Road 72, Shenyang, 110016, China
| | - Yun-Long Tang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, Shenyang, 110016, China
| | - Yu-Jia Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, Shenyang, 110016, China
| | - Yu-Ting Chen
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, Shenyang, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Wenhua Road 72, Shenyang, 110016, China
| | - Bo Wu
- Bay Area Center for Electron Microscopy, Songshan Lake Materials Laboratory, Dongguan, 523808, Guangdong, China
| | - Li-Xin Yang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, Shenyang, 110016, China
| | - Yin-Lian Zhu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, Shenyang, 110016, China.
- Bay Area Center for Electron Microscopy, Songshan Lake Materials Laboratory, Dongguan, 523808, Guangdong, China.
| | - Xiu-Liang Ma
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, Shenyang, 110016, China.
- Bay Area Center for Electron Microscopy, Songshan Lake Materials Laboratory, Dongguan, 523808, Guangdong, China.
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
17
|
Wu X, Kong D, Hao S, Zeng Y, Yu X, Zhang B, Dai M, Liu S, Wang J, Ren Z, Chen S, Sang J, Wang K, Zhang D, Liu Z, Gui J, Yang X, Xu Y, Leng Y, Li Y, Song L, Tian Y, Li R. Generation of 13.9-mJ Terahertz Radiation from Lithium Niobate Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208947. [PMID: 36932897 DOI: 10.1002/adma.202208947] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/12/2023] [Indexed: 06/09/2023]
Abstract
Extremely strong-field terahertz (THz) radiation in free space has compelling applications in nonequilibrium condensed matter state regulation, all-optical THz electron acceleration and manipulation, THz biological effects, etc. However, these practical applications are constrained by the absence of high-intensity, high-efficiency, high-beam-quality, and stable solid-state THz light sources. Here, the generation of single-cycle 13.9-mJ extreme THz pulses from cryogenically cooled lithium niobate crystals and a 1.2% energy conversion efficiency from 800 nm to THz are demonstrated experimentally using the tilted pulse-front technique driven by a home-built 30-fs, 1.2-Joule Ti:sapphire laser amplifier. The focused peak electric field strength is estimated to be 7.5 MV cm-1 . A record of 1.1-mJ THz single-pulse energy at a 450 mJ pump at room temperature is produced and observed that the self-phase modulation of the optical pump can induce THz saturation behavior from the crystals in the substantially nonlinear pump regime. This study lays the foundation for the generation of sub-Joule THz radiation from lithium niobate crystals and will inspire more innovations in extreme THz science and applications.
Collapse
Affiliation(s)
- Xiaojun Wu
- School of Electronic and Information Engineering, and School of Cyber Science and Technology, Beihang University, Beijing, 100191, China
- Zhangjiang Laboratory, 100 Haike Road, Shanghai, 201210, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Deyin Kong
- School of Electronic and Information Engineering, and School of Cyber Science and Technology, Beihang University, Beijing, 100191, China
- Zhangjiang Laboratory, 100 Haike Road, Shanghai, 201210, China
| | - Sibo Hao
- School of Electronic and Information Engineering, and School of Cyber Science and Technology, Beihang University, Beijing, 100191, China
| | - Yushan Zeng
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Xieqiu Yu
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Baolong Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Mingcong Dai
- School of Electronic and Information Engineering, and School of Cyber Science and Technology, Beihang University, Beijing, 100191, China
| | - Shaojie Liu
- School of Electronic and Information Engineering, and School of Cyber Science and Technology, Beihang University, Beijing, 100191, China
| | - Jiaqi Wang
- School of Electronic and Information Engineering, and School of Cyber Science and Technology, Beihang University, Beijing, 100191, China
| | - Zejun Ren
- School of Electronic and Information Engineering, and School of Cyber Science and Technology, Beihang University, Beijing, 100191, China
| | - Sai Chen
- School of Electronic and Information Engineering, and School of Cyber Science and Technology, Beihang University, Beijing, 100191, China
| | - Jianhua Sang
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Kang Wang
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Dongdong Zhang
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Zhongkai Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- ShanghaiTech Laboratory for Topological Physics, Shanghai, 201210, China
| | - Jiayan Gui
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Xiaojun Yang
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Yi Xu
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Yuxin Leng
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Yutong Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Liwei Song
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Ye Tian
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Ruxin Li
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| |
Collapse
|
18
|
Behera P, Parsonnet E, Gómez-Ortiz F, Srikrishna V, Meisenheimer P, Susarla S, Kavle P, Caretta L, Wu Y, Tian Z, Fernandez A, Martin LW, Das S, Junquera J, Hong Z, Ramesh R. Emergent Ferroelectric Switching Behavior from Polar Vortex Lattice. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208367. [PMID: 36930962 DOI: 10.1002/adma.202208367] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/08/2023] [Indexed: 06/09/2023]
Abstract
Topologically protected polar textures have provided a rich playground for the exploration of novel, emergent phenomena. Recent discoveries indicate that ferroelectric vortices and skyrmions not only host properties markedly different from traditional ferroelectrics, but also that these properties can be harnessed for unique memory devices. Using a combination of capacitor-based capacitance measurements and computational models, it is demonstrated that polar vortices in dielectric-ferroelectric-dielectric trilayers exhibit classical ferroelectric bi-stability together with the existence of low-field metastable polarization states. This behavior is directly tied to the in-plane vortex ordering, and it is shown that it can be used as a new method of non-destructive readout-out of the poled state.
Collapse
Affiliation(s)
- Piush Behera
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Eric Parsonnet
- Department of Physics, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Fernando Gómez-Ortiz
- Department of Earth Sciences and Condensed Matter Physics, Universidad de Cantabria, Cantabria Campus Internacional, 39005, Santander, Spain
| | - Vishantak Srikrishna
- Department of Physics, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Peter Meisenheimer
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Sandhya Susarla
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Pravin Kavle
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Lucas Caretta
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Yongjun Wu
- Cyrus Tang Center for Sensor Materials and Applications, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Zishen Tian
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Abel Fernandez
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Lane W Martin
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Sujit Das
- Materials Research Centre, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Javier Junquera
- Department of Earth Sciences and Condensed Matter Physics, Universidad de Cantabria, Cantabria Campus Internacional, 39005, Santander, Spain
| | - Zijian Hong
- Cyrus Tang Center for Sensor Materials and Applications, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Ramamoorthy Ramesh
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Physics, University of California Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
19
|
Yang T, Dai C, Chen LQ. Thermodynamics of Light-Induced Nanoscale Polar Structures in Ferroelectric Superlattices. NANO LETTERS 2023; 23:2551-2556. [PMID: 36971545 DOI: 10.1021/acs.nanolett.2c04586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We study the thermodynamics of nanoscale polar structures in PbTiO3/SrTiO3 ferroelectric superlattices induced by above-bandgap optical excitation using a phase-field model explicitly considering both structural and electronic processes. We demonstrate that the light-excited carriers provide the charge compensation of polarization bound charges and the lattice thermal energy, both of which are key to the thermodynamic stabilization of a previously observed supercrystal, a three-dimensionally periodic nanostructure, within a window of substrate strains, while different mechanical and electrical boundary conditions can stabilize a number of other nanoscale polar structures by balancing the competing short-range exchange interactions responsible for the domain wall energy and long-range electrostatic and elastic interactions. The insights into the light-induced formation and richness of nanoscale structures from this work offer theoretical guidance for exploring and manipulating the thermodynamic stability of nanoscale polar structures employing a combination of thermal, mechanical, and electrical stimuli as well as light.
Collapse
Affiliation(s)
- Tiannan Yang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Cheng Dai
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Long-Qing Chen
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
20
|
Li X, Zhong H, Lin T, Meng F, Gao A, Liu Z, Su D, Jin K, Ge C, Zhang Q, Gu L. Polarization Switching and Correlated Phase Transitions in Fluorite-Structure ZrO 2 Nanocrystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2207736. [PMID: 37044111 DOI: 10.1002/adma.202207736] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 04/09/2023] [Indexed: 06/04/2023]
Abstract
Unconventional ferroelectricity in fluorite-structure oxides enables tremendous opportunities in nanoelectronics owing to their superior scalability and silicon compatibility. However, their polarization order and switching process remain elusive due to the challenges of visualizing oxygen ions in nanocrystalline films. In this work, the oxygen shifting during polarization switching and correlated polar-nonpolar phase transitions are directly captured among multiple metastable phases in freestanding ZrO2 thin films by low-dose integrated differential phase-contrast scanning transmission electron microscopy (iDPC-STEM). Bidirectional transitions between antiferroelectric and ferroelectric orders and interfacial polarization relaxation are clarified at unit-cell scale. Meanwhile, polarization switching is strongly correlated with Zr-O displacement in reversible martensitic transformation between monoclinic and orthorhombic phases and two-step tetrahedral-to-orthorhombic phase transition. These findings provide atomic insights into the transition pathways between metastable polymorphs and unravel the evolution of polarization orders in (anti)ferroelectric fluorite oxides.
Collapse
Affiliation(s)
- Xinyan Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hai Zhong
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Science, Beijing, 100049, China
| | - Ting Lin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Science, Beijing, 100049, China
| | - Fanqi Meng
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Ang Gao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Science, Beijing, 100049, China
| | - Zhuohui Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong Su
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Kuijuan Jin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Science, Beijing, 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Chen Ge
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Science, Beijing, 100049, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Yangtze River Delta Physics Research Center Co. Ltd., Liyang, 213300, China
| | - Lin Gu
- Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
21
|
Li M, Yang T, Chen P, Wang Y, Zhu R, Li X, Shi R, Liu HJ, Huang YL, Ma X, Zhang J, Bai X, Chen LQ, Chu YH, Gao P. Electric-field control of the nucleation and motion of isolated three-fold polar vertices. Nat Commun 2022; 13:6340. [PMID: 36284138 PMCID: PMC9596422 DOI: 10.1038/s41467-022-33973-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/10/2022] [Indexed: 11/21/2022] Open
Abstract
Recently various topological polar structures have been discovered in oxide thin films. Despite the increasing evidence of their switchability under electrical and/or mechanical fields, the dynamic property of isolated ones, which is usually required for applications such as data storage, is still absent. Here, we show the controlled nucleation and motion of isolated three-fold vertices under an applied electric field. At the PbTiO3/SrRuO3 interface, a two-unit-cell thick SrTiO3 layer provides electrical boundary conditions for the formation of three-fold vertices. Utilizing the SrTiO3 layer and in situ electrical testing system, we find that isolated three-fold vertices can move in a controllable and reversible manner with a velocity up to ~629 nm s-1. Microstructural evolution of the nucleation and propagation of isolated three-fold vertices is further revealed by phase-field simulations. This work demonstrates the ability to electrically manipulate isolated three-fold vertices, shedding light on the dynamic property of isolated topological polar structures.
Collapse
Affiliation(s)
- Mingqiang Li
- Electron Microscopy Laboratory, and International Center for Quantum Materials, School of Physics, Peking University, 100871, Beijing, China
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON, M5S 3E4, Canada
| | - Tiannan Yang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Pan Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
| | - Yongjun Wang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC
| | - Ruixue Zhu
- Electron Microscopy Laboratory, and International Center for Quantum Materials, School of Physics, Peking University, 100871, Beijing, China
| | - Xiaomei Li
- Electron Microscopy Laboratory, and International Center for Quantum Materials, School of Physics, Peking University, 100871, Beijing, China
| | - Ruochen Shi
- Electron Microscopy Laboratory, and International Center for Quantum Materials, School of Physics, Peking University, 100871, Beijing, China
| | - Heng-Jui Liu
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung, 40227, Taiwan, ROC
| | - Yen-Lin Huang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC
| | - Xiumei Ma
- Electron Microscopy Laboratory, and International Center for Quantum Materials, School of Physics, Peking University, 100871, Beijing, China
| | - Jingmin Zhang
- Electron Microscopy Laboratory, and International Center for Quantum Materials, School of Physics, Peking University, 100871, Beijing, China
| | - Xuedong Bai
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
- Songshan Lake Materials Laboratory, 523808, Dongguan, Guangdong, China
| | - Long-Qing Chen
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ying-Hao Chu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC
- Institute of Physics, Academia Sinica, Taipei, 11529, Taiwan, ROC
| | - Peng Gao
- Electron Microscopy Laboratory, and International Center for Quantum Materials, School of Physics, Peking University, 100871, Beijing, China.
- Collaborative Innovation Centre of Quantum Matter, 100871, Beijing, China.
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, 100871, Beijing, China.
- Hefei National Laboratory, 230088, Hefei, China.
| |
Collapse
|
22
|
Zhu R, Jiang Z, Zhang X, Zhong X, Tan C, Liu M, Sun Y, Li X, Qi R, Qu K, Liu Z, Wu M, Li M, Huang B, Xu Z, Wang J, Liu K, Gao P, Wang J, Li J, Bai X. Dynamics of Polar Skyrmion Bubbles under Electric Fields. PHYSICAL REVIEW LETTERS 2022; 129:107601. [PMID: 36112449 DOI: 10.1103/physrevlett.129.107601] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 06/23/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Room-temperature polar skyrmions, which have been recently discovered in oxide superlattice, have received considerable attention for their potential applications in nanoelectronics owing to their nanometer size, emergent chirality, and negative capacitance. For practical applications, their manipulation using external stimuli is a prerequisite. Herein, we study the dynamics of individual polar skyrmions at the nanoscale via in situ scanning transmission electron microscopy. By monitoring the electric-field-driven creation, annihilation, shrinkage, and expansion of topological structures in real space, we demonstrate the reversible transformation among skyrmion bubbles, elongated skyrmions, and monodomains. The underlying mechanism and interactions are discussed in conjunction with phase-field simulations. The electrical manipulation of nanoscale polar skyrmions allows the tuning of their dielectric permittivity at the atomic scale, and the detailed knowledge of their phase transition behaviors provides fundamentals for their applications in nanoelectronics.
Collapse
Affiliation(s)
- Ruixue Zhu
- Electron Microscopy Laboratory and International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Zhexin Jiang
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Xinxin Zhang
- Electron Microscopy Laboratory and International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Xiangli Zhong
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Congbing Tan
- Hunan Provincial Key Laboratory of Intelligent Sensors and Advanced Sensor Materials, School of Physics and Electronics, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
| | - Mingwei Liu
- Hunan Provincial Key Laboratory of Intelligent Sensors and Advanced Sensor Materials, School of Physics and Electronics, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
| | - Yuanwei Sun
- Electron Microscopy Laboratory and International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Xiaomei Li
- Electron Microscopy Laboratory and International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ruishi Qi
- Electron Microscopy Laboratory and International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Ke Qu
- Electron Microscopy Laboratory and International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Zhetong Liu
- Electron Microscopy Laboratory and International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Mei Wu
- Electron Microscopy Laboratory and International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Mingqiang Li
- Electron Microscopy Laboratory and International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Boyuan Huang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Zhi Xu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jinbin Wang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Kaihui Liu
- State Key Laboratory for Artificial Microstructure & Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, 100871, China
| | - Peng Gao
- Electron Microscopy Laboratory and International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, 100871, China
| | - Jie Wang
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, Zhejiang, China
- Zhejiang Laboratory, Hangzhou 311100, Zhejiang, China
| | - Jiangyu Li
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Xuedong Bai
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Guo X, Zhou L, Roul B, Wu Y, Huang Y, Das S, Hong Z. Theoretical Understanding of Polar Topological Phase Transitions in Functional Oxide Heterostructures: A Review. SMALL METHODS 2022; 6:e2200486. [PMID: 35900067 DOI: 10.1002/smtd.202200486] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/15/2022] [Indexed: 06/15/2023]
Abstract
The exotic topological phase is attracting considerable attention in condensed matter physics and materials science over the past few decades due to intriguing physical insights. As a combination of "topology" and "ferroelectricity," the ferroelectric (polar) topological structures are a fertile playground for emergent phenomena and functionalities with various potential applications. Herein, the review starts with the universal concept of the polar topological phase and goes on to briefly discuss the important role of computational tools such as phase-field simulations in designing polar topological phases in oxide heterostructures. In particular, the history of the development of phase-field simulations for ferroelectric oxide heterostructures is highlighted. Then, the current research progress of polar topological phases and their emergent phenomena in ferroelectric functional oxide heterostructures is reviewed from a theoretical perspective, including the topological polar structures, the establishment of phase diagrams, their switching kinetics and interconnections, phonon dynamics, and various macroscopic properties. Finally, this review offers a perspective on the future directions for the discovery of novel topological phases in other ferroelectric systems and device design for next-generation electronic device applications.
Collapse
Affiliation(s)
- Xiangwei Guo
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- Institute of Advanced Semiconductors and Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices, Hangzhou Innovation Center, Zhejiang University, Hangzhou, Zhejiang, 311200, China
- Cyrus Tang Center for Sensor Materials and Applications, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Linming Zhou
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Basanta Roul
- Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India
- Central Research Laboratory, Bharat Electronics Limited, Bangalore, 560013, India
| | - Yongjun Wu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- Cyrus Tang Center for Sensor Materials and Applications, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Yuhui Huang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Sujit Das
- Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India
| | - Zijian Hong
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- Cyrus Tang Center for Sensor Materials and Applications, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
24
|
Aramberri H, Fedorova NS, Íñiguez J. Ferroelectric/paraelectric superlattices for energy storage. SCIENCE ADVANCES 2022; 8:eabn4880. [PMID: 35921413 PMCID: PMC9348786 DOI: 10.1126/sciadv.abn4880] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/16/2022] [Indexed: 06/09/2023]
Abstract
The polarization response of antiferroelectrics to electric fields is such that the materials can store large energy densities, which makes them promising candidates for energy storage applications in pulsed-power technologies. However, relatively few materials of this kind are known. Here, we consider ferroelectric/paraelectric superlattices as artificial electrostatically engineered antiferroelectrics. Specifically, using high-throughput second-principles calculations, we engineer PbTiO3/SrTiO3 superlattices to optimize their energy storage performance at room temperature (to maximize density and release efficiency) with respect to different design variables (layer thicknesses, epitaxial conditions, and stiffness of the dielectric layer). We obtain results competitive with the state-of-the-art antiferroelectric capacitors and reveal the mechanisms responsible for the optimal properties.
Collapse
Affiliation(s)
- Hugo Aramberri
- Materials Research and Technology Department, Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg
- Inter-Institutional Research Group Uni.lu-LIST on Ferroic Materials, 41 Rue du Brill, L-4422 Belvaux, Luxembourg
| | - Natalya S. Fedorova
- Materials Research and Technology Department, Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg
- Inter-Institutional Research Group Uni.lu-LIST on Ferroic Materials, 41 Rue du Brill, L-4422 Belvaux, Luxembourg
| | - Jorge Íñiguez
- Materials Research and Technology Department, Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg
- Inter-Institutional Research Group Uni.lu-LIST on Ferroic Materials, 41 Rue du Brill, L-4422 Belvaux, Luxembourg
- Department of Physics and Materials Science, University of Luxembourg, 41 Rue du Brill, L-4422 Belvaux, Luxembourg
| |
Collapse
|
25
|
Fernandez A, Acharya M, Lee HG, Schimpf J, Jiang Y, Lou D, Tian Z, Martin LW. Thin-Film Ferroelectrics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108841. [PMID: 35353395 DOI: 10.1002/adma.202108841] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Over the last 30 years, the study of ferroelectric oxides has been revolutionized by the implementation of epitaxial-thin-film-based studies, which have driven many advances in the understanding of ferroelectric physics and the realization of novel polar structures and functionalities. New questions have motivated the development of advanced synthesis, characterization, and simulations of epitaxial thin films and, in turn, have provided new insights and applications across the micro-, meso-, and macroscopic length scales. This review traces the evolution of ferroelectric thin-film research through the early days developing understanding of the roles of size and strain on ferroelectrics to the present day, where such understanding is used to create complex hierarchical domain structures, novel polar topologies, and controlled chemical and defect profiles. The extension of epitaxial techniques, coupled with advances in high-throughput simulations, now stands to accelerate the discovery and study of new ferroelectric materials. Coming hand-in-hand with these new materials is new understanding and control of ferroelectric functionalities. Today, researchers are actively working to apply these lessons in a number of applications, including novel memory and logic architectures, as well as a host of energy conversion devices.
Collapse
Affiliation(s)
- Abel Fernandez
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Megha Acharya
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Han-Gyeol Lee
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jesse Schimpf
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yizhe Jiang
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Djamila Lou
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Zishen Tian
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Lane W Martin
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
26
|
Li P, Liu S, Chen X, Geng C, Wu X. Spintronic terahertz emission with manipulated polarization (STEMP). FRONTIERS OF OPTOELECTRONICS 2022; 15:12. [PMID: 36637604 PMCID: PMC9756272 DOI: 10.1007/s12200-022-00011-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/11/2022] [Indexed: 06/17/2023]
Abstract
Highly efficient generation and arbitrary manipulation of spin-polarized terahertz (THz) radiation will enable chiral lightwave driven quantum nonequilibrium state regulation, induce new electronic structures, consequently provide a powerful experimental tool for investigation of nonlinear THz optics and extreme THz science and applications. THz circular dichromic spectroscopy, ultrafast electron bunch manipulation, as well as THz imaging, sensing, and telecommunication, also need chiral THz waves. Here we review optical generation of circularly-polarized THz radiation but focus on recently emerged polarization tunable spintronic THz emission techniques, which possess many advantages of ultra-broadband, high efficiency, low cost, easy for integration and so on. We believe that chiral THz sources based on the combination of electron spin, ultrafast optical techniques and material structure engineering will accelerate the development of THz science and applications.
Collapse
Affiliation(s)
- Peiyan Li
- School of Electronic and Information Engineering, Beihang University, Beijing, 100191, China
| | - Shaojie Liu
- School of Cyber Science and Technology, Beihang University, Beijing, 100191, China
| | - Xinhou Chen
- School of Electronic and Information Engineering, Beihang University, Beijing, 100191, China
| | - Chunyan Geng
- School of Electronic and Information Engineering, Beihang University, Beijing, 100191, China
| | - Xiaojun Wu
- School of Electronic and Information Engineering, Beihang University, Beijing, 100191, China.
- School of Cyber Science and Technology, Beihang University, Beijing, 100191, China.
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
27
|
Chiral structures of electric polarization vectors quantified by X-ray resonant scattering. Nat Commun 2022; 13:1769. [PMID: 35383159 PMCID: PMC8983710 DOI: 10.1038/s41467-022-29359-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 03/07/2022] [Indexed: 11/08/2022] Open
Abstract
Resonant elastic X-ray scattering (REXS) offers a unique tool to investigate solid-state systems providing spatial knowledge from diffraction combined with electronic information through the enhanced absorption process, allowing the probing of magnetic, charge, spin, and orbital degrees of spatial order together with electronic structure. A new promising application of REXS is to elucidate the chiral structure of electrical polarization emergent in a ferroelectric oxide superlattice in which the polarization vectors in the REXS amplitude are implicitly described through an anisotropic tensor corresponding to the quadrupole moment. Here, we present a detailed theoretical framework and analysis to quantitatively analyze the experimental results of Ti L-edge REXS of a polar vortex array formed in a PbTiO3/SrTiO3 superlattice. Based on this theoretical framework, REXS for polar chiral structures can become a useful tool similar to x-ray resonant magnetic scattering (XRMS), enabling a comprehensive study of both electric and magnetic REXS on the chiral structures. The polar chiral texture of the vortex or skyrmion structure in ferroelectric oxide PbTiO3/SrTiO3 superlattice attracts attention. Here, the authors report a theoretical framework to probe emergent chirality of electrical polarization textures.
Collapse
|
28
|
Luk'yanchuk I, Vinokur VM. Dynamics of polarization vortices revealed in a ferroelectric material. Nature 2021; 592:359-360. [PMID: 33854245 DOI: 10.1038/d41586-021-00887-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|