1
|
Jiang JN, Kong FH, Lei Q, Zhang XZ. Surface-functionalized bacteria: Frontier explorations in next-generation live biotherapeutics. Biomaterials 2025; 317:123029. [PMID: 39736217 DOI: 10.1016/j.biomaterials.2024.123029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/21/2024] [Accepted: 12/13/2024] [Indexed: 01/01/2025]
Abstract
Screening robust living bacteria to produce living biotherapeutic products (LBPs) represents a burgeoning research field in biomedical applications. Despite their natural abilities to colonize bio-interfaces and proliferate, harnessing bacteria for such applications is hindered by considerable challenges in unsatisfied functionalities and safety concerns. Leveraging the high degree of customization and adaptability on the surface of bacteria demonstrates significant potential to improve therapeutic outcomes and achieve tailored functionalities of LBPs. This review focuses on the recent laboratory strategies of bacterial surface functionalization, which aims to address these challenges and potentiate the therapeutic effects in biomedicine. Firstly, we introduce various functional materials that are used for bacterial surface functionalization involving organic, inorganic, and biological materials. Secondly, the methodologies for achieving bacterial surface functionalization are categorized into three primary approaches including covalent bonding, non-covalent interactions, and hybrid techniques, while various advantages and limitations of different modification strategies are compared from multiple perspectives. Subsequently, the current status of the applications of surface-functionalized bacteria in bioimaging and disease treatments, especially in the treatment of inflammatory bowel disease (IBD) and cancer is summarized. Finally, challenges and pressing issues in the development of surface-functionalized bacteria as LBPs are presented.
Collapse
Affiliation(s)
- Jia-Ni Jiang
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Fan-Hui Kong
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Guangzhou Medical University, Guangzhou, 510260, PR China; Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Qi Lei
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Guangzhou Medical University, Guangzhou, 510260, PR China.
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China.
| |
Collapse
|
2
|
Jiang F, Dang Y, Zhang Z, Yan Y, Wang Y, Chen Y, Chen L, Zhang J, Liu J, Wang J. Association of intratumoral microbiome diversity with hepatocellular carcinoma prognosis. mSystems 2025; 10:e0076524. [PMID: 39660866 PMCID: PMC11748501 DOI: 10.1128/msystems.00765-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/03/2024] [Indexed: 12/12/2024] Open
Abstract
The evidence that intratumoral microbiomes, as a rising hallmark of cancer, have a profound impact on cancer phenotypes is increasingly compelling. However, the impact of the composition and diversity of the intratumoral microbiome on the prognosis of patients undergoing surgical resection for hepatocellular carcinoma (HCC) remains incompletely understood. In this study, we revealed a high abundance of bacteria in the neoplastic tissues. The presence of bacterial lipopolysaccharide and lipoteichoic acid was detected alongside tumor-associated immune cells. By utilizing 16S rRNA gene sequencing, we identified a specific intratumoral microbiome signature that was highly predictive of the prognosis for HCC patients who underwent surgical resection. Specifically, the presence of Intestinimonas, Brachybacterium, and Rothia were identified as independent risk factors for the overall survival of HCC patients who underwent surgical resection.IMPORTANCEAlthough some studies have shown an abundance of bacteria in hepatocellular carcinoma (HCC), there is still limited understanding of the composition and diversity of the intratumoral microbiome that is favorable or adverse to the prognosis of HCC patients. Our results indicated that a greater abundance of bacteria could be observed in the neoplastic tissues than in nonneoplastic tissues. Bacterial cell wall components largely coincided with tumor-associated immune cells. The bacteria in the long overall survival (LOS) group were associated with metabolism and cytokine‒cytokine receptor interaction pathways, while bacteria in the short overall survival (SOS) group were associated with proinflammatory and cell proliferation pathways. Notably, specific taxa could independently predict HCC prognosis. Based on these findings, intratumoral microbiomes facilitate the use of precision medicine in clinical practice.
Collapse
Affiliation(s)
- Fengle Jiang
- Innovation Center for Cancer Research, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Yuan Dang
- Innovation Center for Cancer Research, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Zheting Zhang
- Innovation Center for Cancer Research, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Yanan Yan
- Innovation Center for Cancer Research, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Yingchao Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Yi Chen
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Lihong Chen
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Jialiang Zhang
- Innovation Center for Cancer Research, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Jingfeng Liu
- Innovation Center for Cancer Research, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
- Department of Hepatopancreatobiliary Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Jianmin Wang
- Innovation Center for Cancer Research, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| |
Collapse
|
3
|
Song Y, Tian S, Li Z, Miao J, Wu M, Xu T, Wu X, Qiao J, Zhang X, Zhao H, Kang L, Cao L, Zhu P, Miao M. Progress in the Study of Intratumoral Microorganisms in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2025; 12:59-76. [PMID: 39845367 PMCID: PMC11752873 DOI: 10.2147/jhc.s496964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/01/2025] [Indexed: 01/24/2025] Open
Abstract
The intratumoral microbiota, an integral part of liver tumors, has garnered significant attention from researchers due to its role in tumor development regulation and impact on cancer treatment. Intratumoral microorganism not only influences tumorigenesis and progression, but also serves as potential biomarkers and targets for tumor therapy. Targeted manipulation of these microorganisms holds great promise for personalized liver cancer treatment. However, there is a lack of systematic summaries and reports on the study of intratumoral microorganism in hepatocellular carcinoma. This comprehensive review aims to address this gap by summarizing research progress related to in the field of hepatocellular carcinoma intratumoral bacteria, including their sources, types, distribution characteristics within tumors, impact on tumor development, underlying mechanisms, and application prospects. Through the analysis, it is proposed that intratumor organisms can be used as markers for liver cancer diagnosis and treatment, drug carrier materials for targeting liver cancer tissues, and the research prospects of developing new combination therapies based on the in-depth understanding of the interactions between intratumor microorganisms and the tumor microenvironment, immune cells, liver cancer cells, etc. as well as exploring the prospects of developing new combination therapies based on these interactions. It is hoped that from the perspective of intratumoral microbiota, potential theoretical support can be provided for future research on targeted cancer therapy for liver cancer intratumoral microbiota, and new insights and ideas can be provided for targeting points and research methods in tumor research.
Collapse
Affiliation(s)
- Yagang Song
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
| | - Shuo Tian
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
| | - Zhanzhan Li
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
| | - Jinxin Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
| | - Mingming Wu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
| | - Tingli Xu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
| | - Xiangxiang Wu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
| | - Jingyi Qiao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
| | - Xialei Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
| | - Hui Zhao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
| | - Le Kang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
| | - Lihua Cao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
| | - Pingsheng Zhu
- College of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
| | - Mingsan Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
| |
Collapse
|
4
|
Zhang J, Lou K, Chi J, Wu J, Fan X, Cui Y. Research progress on intratumoral microorganisms in renal cancer. World J Urol 2025; 43:72. [PMID: 39812826 DOI: 10.1007/s00345-024-05403-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/27/2024] [Indexed: 01/16/2025] Open
Abstract
The human body harbors a vast array of microorganisms. Changes in the microbial ecosystem can potentially lead to diseases, including cancer. Traditionally, research has focused more on the gut microbiota and its influence on cancer. However, with the advancement of sequencing technologies, scholars have discovered that microorganisms within kidney tissues are significant components of tumor tissues. Intratumoral microorganisms may affect tumor growth and development through certain mechanisms, influence the function of immune cells, or impact the effectiveness of chemotherapy or immunotherapy in patients. This paper reviews the latest progress in the research on intratumoral microorganisms in renal cancer (RCa). It summarizes the types and distribution characteristics of these microorganisms, discusses the close association between specific viral infections (such as HPV and EBV) and RCa, and highlights the role of microorganisms in the pathogenesis of RCa. This review provides new perspectives for understanding the pathogenic mechanisms of RCa, thereby offering potential clinical applications.
Collapse
Affiliation(s)
- Jiankun Zhang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Keyuan Lou
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Junpeng Chi
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Jitao Wu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Xinying Fan
- Department of Blood Purification, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China.
| | - Yuanshan Cui
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China.
| |
Collapse
|
5
|
Bernhardt M, Rech A, Berthold M, Lappe M, Herbel JN, Erhard F, Paschen A, Schilling B, Schlosser A. SILAC-based quantification reveals modulation of the immunopeptidome in BRAF and MEK inhibitor sensitive and resistant melanoma cells. Front Immunol 2025; 15:1490821. [PMID: 39835134 PMCID: PMC11744270 DOI: 10.3389/fimmu.2024.1490821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/02/2024] [Indexed: 01/22/2025] Open
Abstract
Background The immunopeptidome is constantly monitored by T cells to detect foreign or aberrant HLA peptides. It is highly dynamic and reflects the current cellular state, enabling the immune system to recognize abnormal cellular conditions, such as those present in cancer cells. To precisely determine how changes in cellular processes, such as those induced by drug treatment, affect the immunopeptidome, quantitative immunopeptidomics approaches are essential. Methods To meet this need, we developed a pulsed SILAC-based method for quantitative immunopeptidomics. Metabolic labeling with lysine, arginine, and leucine enabled isotopic labeling of nearly all HLA peptides across all allotypes (> 90% on average). We established a data analysis workflow that integrates the de novo sequencing-based tool Peptide-PRISM for comprehensive HLA peptide identification with MaxQuant for accurate quantification. Results We employed this strategy to explore the modulation of the immunopeptidome upon MAPK pathway inhibition (MAPKi) and to investigate alterations associated with early cellular responses to inhibitor treatment and acquired resistance to MAPKi. Our analyses demonstrated significant changes in the immunopeptidome early during MAPKi treatment and in the resistant state. Moreover, we identified putative tumor-specific cryptic HLA peptides linked to these processes that might represent exploitable targets for cancer immunotherapy. Conclusions We have developed a new mass spectrometric approach that allowed us to investigate the effects of common MAPK inhibitors on the immunopeptidome of melanoma cells. This finally led to the discovery of new potential targets for cancer immunotherapy.
Collapse
Affiliation(s)
- Melissa Bernhardt
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität of Würzburg, Würzburg, Germany
| | - Anne Rech
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Marion Berthold
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Melina Lappe
- Institute for Pharmacology and Toxicology, Julius-Maximilians-Universität of Würzburg, Würzburg, Germany
| | - Jan-Niklas Herbel
- Institute for Pharmacology and Toxicology, Julius-Maximilians-Universität of Würzburg, Würzburg, Germany
| | - Florian Erhard
- Faculty for Informatics and Data Science, University of Regensburg, Regensburg, Germany
| | - Annette Paschen
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen and German Cancer Consortium (DKTK), Essen, Germany
| | - Bastian Schilling
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
- Department of Dermatology, Venerology and Allergology, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität of Würzburg, Würzburg, Germany
| |
Collapse
|
6
|
Li D, Cai Y, Liu K, Lv D, Zeng M, Wen L, Lv C, Guo J, Xu K, Ding N, Li Y, Xu J. MicroEpitope: an atlas of immune epitopes derived from cancer microbiomes. Nucleic Acids Res 2025; 53:D1435-D1442. [PMID: 39380496 PMCID: PMC11701614 DOI: 10.1093/nar/gkae877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024] Open
Abstract
The majority of human cancers harbor molecular evidence of intratumoral microbiota. Microbiota-derived epitopes as molecular mimics of tumor antigens can bind human leukocyte antigen (HLA), thereby modulating host immunity. However, many questions remain regarding the mechanisms underlying the interactions between microbiota and the host's immune system in cancer. Here, MicroEpitope (http://bio-bigdata.hrbmu.edu.cn/MicroEpitope) was developed to provide and analyze the atlas of microbiota-derived epitopes in cancer. We manually collected available mass spectrometry (MS)-based HLA immunopeptidomes of 1190 samples across 24 cancer types. Alignment was performed against an in-house constructed theoretical library of human and intratumor microbiome encoded proteins, including 1298 bacterial and 124 viral species. Currently, MicroEpitope contains 51 497 bacteria and 767 virus-derived epitopes, mainly originating from Bacillus subtilis, Buchnera aphidicola and human cytomegalovirus. The common immunogenic features of epitopes were calculated, as well as their biochemical properties and the clinical relevance of corresponding bacteria and viruses across cancers. MicroEpitope also provides five analytical tools, and multiple visualization methods to facilitate understanding of the roles of microbiota-derived epitopes in cancer immunity. In summary, MicroEpitope represents a vital resource for investigating HLA-presented immunopeptidomes derived from cancer microbiomes, and could further enable rich insight in tumor antigen prioritization strategies.
Collapse
Affiliation(s)
- Donghao Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Yangyang Cai
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Kefan Liu
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Dezhong Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Mengqian Zeng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Luan Wen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Chongwen Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Jiyu Guo
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Kang Xu
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Na Ding
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Yongsheng Li
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| |
Collapse
|
7
|
Ma X, Zhang J, Jiang Q, Li YX, Yang G. Human microbiome-derived peptide affects the development of experimental autoimmune encephalomyelitis via molecular mimicry. EBioMedicine 2025; 111:105516. [PMID: 39724786 PMCID: PMC11732510 DOI: 10.1016/j.ebiom.2024.105516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/08/2024] [Accepted: 12/08/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Gut commensal microbiota has been identified as a potential environmental risk factor for multiple sclerosis (MS), and numerous studies have linked the commensal microorganism with the onset of MS. However, little is known about the mechanisms underlying the gut microbiome and host-immune system interaction. METHODS We employed bioinformatics methodologies to identify human microbial-derived peptides by analyzing their similarity to the MHC II-TCR binding patterns of self-antigens. Subsequently, we conducted a range of in vitro and in vivo assays to assess the encephalitogenic potential of these microbial-derived peptides. FINDINGS We analyzed 304,246 human microbiome genomes and 103 metagenomes collected from the MS cohort and identified 731 nonredundant analogs of myelin oligodendrocyte glycoprotein peptide 35-55 (MOG35-55). Of note, half of these analogs could bind to MHC II and interact with TCR through structural modeling of the interaction using fine-tuned AlphaFold. Among the 8 selected peptides, the peptide (P3) shows the ability to activate MOG35-55-specific CD4+ T cells in vitro. Furthermore, P3 shows encephalitogenic capacity and has the potential to induce EAE in some animals. Notably, mice immunized with a combination of P3 and MOG35-55 develop severe EAE. Additionally, dendritic cells could process and present P3 to MOG35-55-specific CD4+ T cells and activate these cells. INTERPRETATION Our data suggests the potential involvement of a MOG35-55-mimic peptide derived from the gut microbiota as a molecular trigger of EAE pathogenesis. Our findings offer direct evidence of how microbes can initiate the development of EAE, suggesting a potential explanation for the correlation between certain gut microorganisms and MS prevalence. FUNDING National Natural Science Foundation of China (82371350 to GY).
Collapse
MESH Headings
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/etiology
- Encephalomyelitis, Autoimmune, Experimental/microbiology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Animals
- Humans
- Molecular Mimicry
- Mice
- Myelin-Oligodendrocyte Glycoprotein/immunology
- Gastrointestinal Microbiome
- Multiple Sclerosis/etiology
- Multiple Sclerosis/immunology
- Multiple Sclerosis/microbiology
- Multiple Sclerosis/metabolism
- Peptides/immunology
- Peptides/chemistry
- Disease Models, Animal
- Protein Binding
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Receptors, Antigen, T-Cell/metabolism
- Microbiota
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Histocompatibility Antigens Class II/metabolism
- Histocompatibility Antigens Class II/immunology
- Female
- Computational Biology/methods
Collapse
Affiliation(s)
- Xin Ma
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jian Zhang
- Department of Chemistry and the Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Qianling Jiang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Yong-Xin Li
- Department of Chemistry and the Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
| | - Guan Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China; Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China.
| |
Collapse
|
8
|
Lu BY, Lucca LE, Lewis W, Wang J, Nogueira CV, Heer S, Rayon-Estrada V, Axisa PP, Reeves SM, Buitrago-Pocasangre NC, Pham GH, Kojima ML, Wei W, Aizenbud L, Bacchiocchi A, Zhang L, Walewski JJ, Chiang V, Olino K, Clune J, Halaban R, Kluger Y, Coyle AJ, Kisielow J, Obermair FJ, Kluger HM, Hafler DA. Circulating tumor-reactive KIR +CD8 + T cells suppress anti-tumor immunity in patients with melanoma. Nat Immunol 2025; 26:82-91. [PMID: 39609626 DOI: 10.1038/s41590-024-02023-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/24/2024] [Indexed: 11/30/2024]
Abstract
Effective anti-tumor immunity is driven by cytotoxic CD8+ T cells with specificity for tumor antigens. However, the factors that control successful tumor rejection are not well understood. Here we identify a subpopulation of CD8+ T cells that are tumor-antigen-specific and can be identified by KIR expression but paradoxically impair anti-tumor immunity in patients with melanoma. These tumor-antigen-specific KIR+CD8+ regulatory T cells target other tumor-antigen-specific CD8+ T cells, can be detected in both the tumor and the blood, have a conserved transcriptional program and are associated with a poor overall survival. These findings broaden our understanding of the transcriptional and functional heterogeneity of human CD8+ T cells and implicate KIR+CD8+ regulatory T cells as a cellular mediator of immune evasion in human cancer.
Collapse
Affiliation(s)
- Benjamin Y Lu
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, CT, USA.
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| | - Liliana E Lucca
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- University of Toulouse, Inserm, CNRS, University Toulouse III-Paul Sabatier, Cancer Research Center of Toulouse, Toulouse, France
| | - Wesley Lewis
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Jiping Wang
- Applied Mathematics Program, Yale University, New Haven, CT, USA
| | | | | | | | - Pierre-Paul Axisa
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- University of Toulouse, Inserm, CNRS, University Toulouse III-Paul Sabatier, Cancer Research Center of Toulouse, Toulouse, France
| | - Sarah M Reeves
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | | | - Giang H Pham
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Mina L Kojima
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Wei Wei
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, CT, USA
| | - Lilach Aizenbud
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, CT, USA
| | | | - Lin Zhang
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, CT, USA
| | - Joseph J Walewski
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Veronica Chiang
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Kelly Olino
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - James Clune
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Ruth Halaban
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Yuval Kluger
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Applied Mathematics Program, Yale University, New Haven, CT, USA
| | | | - Jan Kisielow
- Repertoire Immune Medicines, Schlieren, Switzerland
| | | | - Harriet M Kluger
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, CT, USA
| | - David A Hafler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA.
| |
Collapse
|
9
|
Evans ST, Jani Y, Jansen CS, Yildirim A, Kalemoglu E, Bilen MA. Understanding and overcoming resistance to immunotherapy in genitourinary cancers. Cancer Biol Ther 2024; 25:2342599. [PMID: 38629578 PMCID: PMC11028033 DOI: 10.1080/15384047.2024.2342599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
The introduction of novel immunotherapies has significantly transformed the treatment landscape of genitourinary (GU) cancers, even becoming the standard of care in some settings. One such type of immunotherapy, immune checkpoint inhibitors (ICIs) like nivolumab, ipilimumab, pembrolizumab, and atezolizumab play a pivotal role by disturbing signaling pathways that limit the immune system's ability to fight tumor cells. Despite the profound impact of these treatments, not all tumors are responsive. Recent research efforts have been focused on understanding how cancer cells manage to evade the immune response and identifying the possible mechanisms behind resistance to immunotherapy. In response, ICIs are being combined with other treatments to reduce resistance and attack cancer cells through multiple cellular pathways. Additionally, novel, targeted strategies are currently being investigated to develop innovative methods of overcoming resistance and treatment failure. This article presents a comprehensive overview of the mechanisms of immunotherapy resistance in GU cancers as currently described in the literature. It explores studies that have identified genetic markers, cytokines, and proteins that may predict resistance or response to immunotherapy. Additionally, we review current efforts to overcome this resistance, which include combination ICIs and sequential therapies, novel insights into the host immune profile, and new targeted therapies. Various approaches that combine immunotherapy with chemotherapy, targeted therapy, vaccines, and radiation have been studied in an effort to more effectively overcome resistance to immunotherapy. While each of these combination therapies has shown some efficacy in clinical trials, a deeper understanding of the immune system's role underscores the potential of novel targeted therapies as a particularly promising area of current research. Currently, several targeted agents are in development, along with the identification of key immune mediators involved in immunotherapy resistance. Further research is necessary to identify predictors of response.
Collapse
Affiliation(s)
- Sean T Evans
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Yash Jani
- Undergraduate studies, Mercer University, Macon, GA, USA
| | - Caroline S Jansen
- Medical Scientist Training Program, Emory University School of Medicine, Atlanta, GA, USA
- Genitourinary Medical Oncology Program, Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Ahmet Yildirim
- Genitourinary Medical Oncology Program, Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ecem Kalemoglu
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Turkey
| | - Mehmet Asim Bilen
- Genitourinary Medical Oncology Program, Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
10
|
Zhang R, Zhang X, Lau HCH, Yu J. Gut microbiota in cancer initiation, development and therapy. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2831-x. [PMID: 39821827 DOI: 10.1007/s11427-024-2831-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/12/2024] [Indexed: 01/19/2025]
Abstract
Cancer has long been associated with genetic and environmental factors, but recent studies reveal the important role of gut microbiota in its initiation and progression. Around 13% of cancers are linked to infectious agents, highlighting the need to identify the specific microorganisms involved. Gut microbiota can either promote or inhibit cancer growth by influencing oncogenic signaling pathways and altering immune responses. Dysbiosis can lead to cancer, while certain probiotics and their metabolites may help reestablish micro-ecological balance and improve anti-tumor immune responses. Research into targeted approaches that enhance therapy with probiotics is promising. However, the effects of probiotics in humans are complex and not yet fully understood. Additionally, methods to counteract harmful bacteria are still in development. Early clinical trials also indicate that modifying gut microbiota may help manage side effects of cancer treatments. Ongoing research is crucial to understand better how gut microbiota can be used to improve cancer prevention and treatment outcomes.
Collapse
Affiliation(s)
- Ruyi Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiang Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Harry Cheuk Hay Lau
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
11
|
Nardo G, Pantziarka P, Conti M. Synergistic Potential of Antibiotics with Cancer Treatments. Cancers (Basel) 2024; 17:59. [PMID: 39796688 PMCID: PMC11718857 DOI: 10.3390/cancers17010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Intratumoral microbiota, the diverse community of microorganisms residing within tumor tissues, represent an emerging and intriguing field in cancer biology. These microbial populations are distinct from the well-studied gut microbiota, offering novel insights into tumor biology, cancer progression, and potential therapeutic interventions. Recent studies have explored the use of certain antibiotics to modulate intratumoral microbiota and enhance the efficacy of cancer therapies, showing promising results. Antibiotics can alter intratumoral microbiota's composition, which may have a major role in promoting cancer progression and immune evasion. Certain bacteria within tumors can promote immunosuppression and resistance to therapies. By targeting these bacteria, antibiotics can help create a more favorable environment for chemotherapy, targeted therapy, and immunotherapy to act effectively. Some bacteria within the tumor microenvironment produce immunosuppressive molecules that inhibit the activity of immune cells. The combination of antibiotics and other cancer therapies holds significant promise for creating a synergistic effect and enhancing the immune response against cancer. In this review, we analyze several preclinical studies that have been conducted to demonstrate the synergy between antibiotics and other cancer therapies and discuss possible clinical implications.
Collapse
Affiliation(s)
- Giuseppe Nardo
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milano, Italy
| | - Pan Pantziarka
- Anticancer Fund, 1860 Meise, Belgium;
- George Pantziarka TP53 Trust, London E1 8FA, UK
| | - Matteo Conti
- Dipartimento Sanità Pubblica, AUSL Imola, Viale Amendola 8, 40026 Imola, Italy;
| |
Collapse
|
12
|
Guan X, Bu F, Fu Y, Zhang H, Xiang H, Chen X, Chen T, Wu X, Wu K, Liu L, Dong X. Immunogenic peptides putatively from intratumor microbes: Opportunities for colorectal cancer treatment. iScience 2024; 27:111338. [PMID: 39640572 PMCID: PMC11617993 DOI: 10.1016/j.isci.2024.111338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/23/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Recent evidence has confirmed the presence of intratumor microbes, yet their impact on the immunopeptidome remains largely unexplored. Here we introduced an integrated strategy to identify the immunopeptidome originated from intratumor microbes. Analyzing 10 colorectal cancer (CRC) patients, we identified 154 putative microbe-derived human leukocyte antigen (HLA)-I ligands. Predominantly bacterial in origin, these peptides were notably abundant in Fusobacterium nucleatum, the most prevalent bacterium differentiating between normal and tumor tissues. We discovered 20 peptides originating from F. nucleatum, thirteen of which, including two peptides shared across multiple patients, were tumor specific. Validation experiments confirmed that the putative microbe-derived peptide could activate CD8+ T cell responses. Our findings indicate that HLA-I molecules are capable of presenting intratumor microbe-derived peptides in CRC, potentially contributing to CD8+ T cell-mediated immunity and suggesting potential strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Xiangyu Guan
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
| | - Fanyu Bu
- BGI Research, Hangzhou 310030, China
| | - Yunyun Fu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI Research, Hangzhou 310030, China
| | - Haibo Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI Research, Hangzhou 310030, China
| | | | - Xinle Chen
- BGI Research, Hangzhou 310030, China
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049, China
| | - Tai Chen
- BGI Research, Changzhou 213299, China
| | - Xiaojian Wu
- The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Kui Wu
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen 518083, China
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou 310022, China
| | - Longqi Liu
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
| | - Xuan Dong
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen 518083, China
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou 310022, China
| |
Collapse
|
13
|
He Y, Mohapatra G, Asokan S, Nobs SP, Elinav E. Microbiome modulation of antigen presentation in tolerance and inflammation. Curr Opin Immunol 2024; 91:102471. [PMID: 39277909 DOI: 10.1016/j.coi.2024.102471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024]
Abstract
The microbiome regulates mammalian immune responses from early life to adulthood. Antigen presentation, orchestrating these responses, integrates commensal and pathogenic signals. However, the temporal and spatial specificity of microbiome impacts on antigen presentation and downstream tolerance versus inflammation remain incompletely understood. Herein, we review the influences of antigen presentation of microbiome-related epitopes on immunity; impacts of microbiome-based modulation of antigen presentation on innate and adaptive immune responses; and their ramifications on homeostasis and immune-related disease, ranging from auto-inflammation to tumorigenesis. We highlight mechanisms driving these influences, such as 'molecular mimicry', in which microbiome auto-antigen presentation aberrantly triggers an immune response driving autoimmunity or influences conferred by microbiome-derived metabolites on antigen-presenting cells in inflammatory bowel disease. We discuss unknowns, controversies, and challenges associated with the study of microbiome regulation of antigen presentation while demonstrating how increasing knowledge may contribute to the development of microbiome-based therapeutics modulating immune responses in a variety of clinical contexts.
Collapse
Affiliation(s)
- Yiming He
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Gayatree Mohapatra
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Sahana Asokan
- Microbiome & Cancer Division, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Samuel Philip Nobs
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | - Eran Elinav
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel; Microbiome & Cancer Division, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
14
|
Li Q, Li Z, Chen B, Zhao J, Yu H, Hu J, Lai H, Zhang H, Li Y, Meng Z, Hu Z, Huang S. RNA splicing junction landscape reveals abundant tumor-specific transcripts in human cancer. Cell Rep 2024; 43:114893. [PMID: 39446586 DOI: 10.1016/j.celrep.2024.114893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/08/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
RNA splicing is a critical process governing gene expression and transcriptomic diversity. Despite its importance, a detailed examination of transcript variation at the splicing junction level remains scarce. Here, we perform a thorough analysis of RNA splicing junctions in 34,775 samples across multiple sample types. We identified 29,051 tumor-specific transcripts (TSTs) in pan-cancer, with a majority of these TSTs being unannotated. Our findings show that TSTs are positively correlated with tumor stemness and linked to unfavorable outcomes in cancer patients. Additionally, TSTs display mutual exclusivity with somatic mutations and are overrepresented in transposable-element-derived transcripts possessing oncogenic functions. Importantly, TSTs can generate putative neoantigens for immunotherapy. Moreover, TSTs can be detected in blood extracellular vesicles from cancer patients. Our results shed light on the intricacies of RNA splicing and offer promising avenues for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Qin Li
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Pathology, Fudan University Shanghai Cancer Center, and Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Ziteng Li
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Bing Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jingjing Zhao
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hongwu Yu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jia Hu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hongyan Lai
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hena Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yan Li
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhiqiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Zhixiang Hu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Shenglin Huang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
15
|
Liu CC, Grencewicz D, Chakravarthy K, Li L, Liepold R, Wolf M, Sangwan N, Tzeng A, Hoyd R, Jhawar SR, Grobmyer SR, Al-Hilli Z, Sciallis AP, Spakowicz D, Ni Y, Eng C. Breast tumor microbiome regulates anti-tumor immunity and T cell-associated metabolites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620864. [PMID: 39554133 PMCID: PMC11565759 DOI: 10.1101/2024.10.29.620864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Background Breast cancer, the most common cancer type among women, was recently found to contain a specific tumor microbiome, but its impact on host biology remains unclear. CD8+ tumor-infiltrating lymphocytes (TILs) are pivotal effectors of anti-tumor immunity that influence cancer prognosis and response to therapy. This study aims to elucidate interactions between CD8+ TILs and the breast tumor microbiome and metabolites, as well as how the breast tumor microbiome may affect the tumor metabolome. Methods We investigated the interplay among CD8+ TILs, the tumor microbiome, and the metabolome in a cohort of 46 breast cancer patients with mixed subtypes (Cohort A). We characterized the tumor metabolome by mass spectrometry and CD8+ TILs by immunohistochemistry. Microbiome composition and T cell gene transcript levels were obtained from data from our previous study, which utilized 16S rRNA gene sequencing and a targeted mRNA expression panel. To examine interactions between intratumoral Staphylococcus and specific breast cancer subtypes, we analyzed RNA sequencing data from an independent cohort of 370 breast cancer patients (Cohort B). We explored the functions of the tumor microbiome using mouse models of triple-negative breast cancer (TNBC). Results In tumors from Cohort A, the relative abundance of Staphylococcus positively correlated with the expression of T cell activation genes. The abundances of multiple metabolites exhibited significant correlations with CD8+ TILs, of which NADH, γ-glutamyltryptophan, and γ-glutamylglutamate displayed differential abundance in Staphylococcus-positive versus Staphylococcus-negative breast tumors. In a larger breast cancer cohort (Cohort B), we observed positive correlations between tumoral Staphylococcus and CD8+ TIL activity exclusively in TNBC. Preclinical experiments demonstrated that intratumoral administration of S. aureus, the predominant species of Staphylococcus in human breast tumors, resulted in a depletion of total NAD metabolites, and reduced the growth of TNBC tumors by activating CD8+ TILs. Conclusions We identified specific metabolites and microbial taxa associated with CD8+ TILs, delineated interactions between the breast tumor microbiome and metabolome, and demonstrated that intratumoral Staphylococcus influences anti-tumor immunity and TIL-associated metabolites. These findings highlight the role of low-biomass microbes in tumor tissues and provide potential biomarkers and therapeutic agents for breast cancer immunotherapy that merit further investigation.
Collapse
Affiliation(s)
- Chin-Chih Liu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Dennis Grencewicz
- The Ohio State University College of Medicine, Columbus, OH 43201, USA
| | - Karthik Chakravarthy
- Pelotonia Institute for Immuno-Oncology at The Ohio State University Comprehensive Cancer Center, 460 W12th Ave., BRT 480, Columbus, OH 43220, USA
| | - Lin Li
- Center for Immunotherapy and Precision Immuno-oncology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ruth Liepold
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Matthew Wolf
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Naseer Sangwan
- Microbiome Composition and Analytics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Alice Tzeng
- Department of Medical Oncology, Dana–Farber Cancer Institute, 450 Brookline Ave., Boston, MA 02215, USA
| | - Rebecca Hoyd
- Pelotonia Institute for Immuno-Oncology at The Ohio State University Comprehensive Cancer Center, 460 W12th Ave., BRT 480, Columbus, OH 43220, USA
| | - Sachin R. Jhawar
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Stephen R. Grobmyer
- Cleveland Clinic Abu Dhabi, Oncology Institute, Abu Dhabi, United Arab Emirates
| | - Zahraa Al-Hilli
- Department of General Surgery, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Andrew P. Sciallis
- Department of Anatomic Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Daniel Spakowicz
- Pelotonia Institute for Immuno-Oncology at The Ohio State University Comprehensive Cancer Center, 460 W12th Ave., BRT 480, Columbus, OH 43220, USA
| | - Ying Ni
- Center for Immunotherapy and Precision Immuno-oncology, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Center for Personalized Genetic Healthcare, Medical Specialties Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Germline High-Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
16
|
Khan M, Dong Y, Ullah R, Li M, Huang Q, Hu Y, Yang L, Luo Z. Recent Advances in Bacterium-Based Therapeutic Modalities for Melanoma Treatment. Adv Healthc Mater 2024; 13:e2401076. [PMID: 39375965 DOI: 10.1002/adhm.202401076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/16/2024] [Indexed: 10/09/2024]
Abstract
Melanoma is one of the most severe skin cancer indications with rapid progression and a high risk of metastasis. However, despite the accumulated advances in melanoma treatment including adjuvant radiation, chemotherapy, and immunotherapy, the overall melanoma treatment efficacy in the clinics is still not satisfactory. Interestingly, bacterial therapeutics have demonstrated unique properties for tumor-related therapeutic applications, such as tumor-targeted motility, tailorable cytotoxicity, and immunomodulatory capacity of the tumor microenvironment, which have emerged as a promising platform for melanoma therapy. Indeed, the recent advances in genetic engineering and nanotechnologies have boosted the application potential of bacterium-based therapeutics for treating melanoma by further enhancing their tumor-homing, cell-killing, drug delivery, and immunostimulatory capacities. This review provides a comprehensive summary of the state-of-the-art bacterium-based anti-melanoma modalities, which are categorized according to their unique functional merits, including tumor-specific cytotoxins, tumor-targeted drug delivery platforms, and immune-stimulatory agents. Furthermore, a perspective is provided discussing the potential challenges and breakthroughs in this area. The insights in this review may facilitate the development of more advanced bacterium-based therapeutic modalities for improved melanoma treatment efficacy.
Collapse
Affiliation(s)
- Mubassir Khan
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing, Chongqing, 400044, P. R. China
| | - Yilong Dong
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325016, P. R. China
| | - Razi Ullah
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Lab for Vascular Implants College of Bioengineering Chongqing University, Chongqing, 400030, P. R. China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing, 400044, P. R. China
| | - Qiping Huang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing, Chongqing, 400044, P. R. China
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing, Chongqing, 400044, P. R. China
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing, Chongqing, 400044, P. R. China
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing, 400044, P. R. China
| |
Collapse
|
17
|
Wang C, Feng Q, Shi S, Qin Y, Lu H, Zhang P, Liu J, Chen B. The Rational Engineered Bacteria Based Biohybrid Living System for Tumor Therapy. Adv Healthc Mater 2024; 13:e2401538. [PMID: 39051784 DOI: 10.1002/adhm.202401538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Living therapy based on bacterial cells has gained increasing attention for their applications in tumor treatments. Bacterial cells can naturally target to tumor sites and active the innate immunological responses. The intrinsic advantages of bacteria attribute to the development of biohybrid living carriers for targeting delivery toward hypoxic environments. The rationally engineered bacterial cells integrate various functions to enhance the tumor therapy and reduce toxic side effects. In this review, the antitumor effects of bacteria and their application are discussed as living therapeutic agents across multiple antitumor platforms. The various kinds of bacteria used for cancer therapy are first introduced and demonstrated the mechanism of antitumor effects as well as the immunological effects. Additionally, this study focused on the genetically modified bacteria for the production of antitumor agents as living delivery system to treat cancer. The combination of living bacterial cells with functional nanomaterials is then discussed in the cancer treatments. In brief, the rational design of living therapy based on bacterial cells highlighted a rapid development in tumor therapy and pointed out the potentials in clinical applications.
Collapse
Affiliation(s)
- Chen Wang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Qiliner Feng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Si Shi
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Yuxuan Qin
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Hongli Lu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Peng Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Jie Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Baizhu Chen
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
| |
Collapse
|
18
|
Bao P, Zhang XZ. Progress of tumor-resident intracellular bacteria for cancer therapy. Adv Drug Deliv Rev 2024; 214:115458. [PMID: 39383997 DOI: 10.1016/j.addr.2024.115458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/12/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
Emerging studies have disclosed the pivotal role of cancer-associated microbiota in supporting cancer development, progression and dissemination, with the in-depth comprehending of tumor microenvironment. In particular, certain invasive bacteria that hide in various cells within the tumor tissues can render assistance to tumor growth and invasion through intricate mechanisms implicated in multiple branches of cancer biology. Thus, tumor-resident intracellular microbes are anticipated as next-generation targets for oncotherapy. This review is intended to delve into these internalized bacteria-driven cancer-promoting mechanisms and explore diversified antimicrobial therapeutic strategies to counteract the detrimental impact caused by these intruders, thereby improving therapeutic benefit of antineoplastic therapy.
Collapse
Affiliation(s)
- Peng Bao
- Department of Orthopedic Trauma and Microsurgery of Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Xian-Zheng Zhang
- Department of Orthopedic Trauma and Microsurgery of Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
19
|
Redenti A, Im J, Redenti B, Li F, Rouanne M, Sheng Z, Sun W, Gurbatri CR, Huang S, Komaranchath M, Jang Y, Hahn J, Ballister ER, Vincent RL, Vardoshivilli A, Danino T, Arpaia N. Probiotic neoantigen delivery vectors for precision cancer immunotherapy. Nature 2024; 635:453-461. [PMID: 39415001 PMCID: PMC11560847 DOI: 10.1038/s41586-024-08033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 09/06/2024] [Indexed: 10/18/2024]
Abstract
Microbial systems have been synthetically engineered to deploy therapeutic payloads in vivo1,2. With emerging evidence that bacteria naturally home in on tumours3,4 and modulate antitumour immunity5,6, one promising application is the development of bacterial vectors as precision cancer vaccines2,7. Here we engineered probiotic Escherichia coli Nissle 1917 as an antitumour vaccination platform optimized for enhanced production and cytosolic delivery of neoepitope-containing peptide arrays, with increased susceptibility to blood clearance and phagocytosis. These features enhance both safety and immunogenicity, achieving a system that drives potent and specific T cell-mediated anticancer immunity that effectively controls or eliminates tumour growth and extends survival in advanced murine primary and metastatic solid tumours. We demonstrate that the elicited antitumour immune response involves recruitment and activation of dendritic cells, extensive priming and activation of neoantigen-specific CD4+ and CD8+ T cells, broader activation of both T and natural killer cells, and a reduction of tumour-infiltrating immunosuppressive myeloid and regulatory T and B cell populations. Taken together, this work leverages the advantages of living medicines to deliver arrays of tumour-specific neoantigen-derived epitopes within the optimal context to induce specific, effective and durable systemic antitumour immunity.
Collapse
Affiliation(s)
- Andrew Redenti
- Department of Microbiology & Immunology, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jongwon Im
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Benjamin Redenti
- Department of Microbiology & Immunology, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | - Fangda Li
- Department of Microbiology & Immunology, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | - Mathieu Rouanne
- Department of Microbiology & Immunology, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | - Zeren Sheng
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - William Sun
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Candice R Gurbatri
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Shunyu Huang
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Meghna Komaranchath
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - YoungUk Jang
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jaeseung Hahn
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Edward R Ballister
- Department of Microbiology & Immunology, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Rosa L Vincent
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Ana Vardoshivilli
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Tal Danino
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
- Data Science Institute, Columbia University, New York, NY, USA.
| | - Nicholas Arpaia
- Department of Microbiology & Immunology, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
| |
Collapse
|
20
|
Zhou Q, Zhou L, Chen X, Chen Q, Hao L. Crosstalk Between the Intratumoral Microbiota and the Tumor Microenvironment: New Frontiers in Solid Tumor Progression and Treatment. Cancer Rep (Hoboken) 2024; 7:e70063. [PMID: 39559964 PMCID: PMC11574561 DOI: 10.1002/cnr2.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/06/2024] [Accepted: 10/29/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND The microbiota plays a significant role in the tumor microenvironment, and its impact on tumor development and treatment outcome cannot be overlooked. Thus, it is essential to comprehend the interactions between the microbiota and the tumor microenvironment. RECENT FINDINGS With the advent of next-generation sequencing, microbiota research has advanced significantly in recent years. The interaction between the intratumoral microbiota and the tumor microenvironment is an emerging area of research that holds great promise for understanding and treating solid tumor progression. This crosstalk between the intratumoral microbiota and the tumor microenvironment is a complex process that involves a multitude of factors, including the immune system, cellular signaling pathways, and metabolic processes. The origin of the intratumoral microbiota differs between various solid tumor, and the quantity and diversity of intratumoral microbiota also fluctuate significantly within each solid tumor. CONCLUSION The aim of this review is to provide a detailed summary of the intratumoral microbiota in various types of solid tumors. This will include an analysis of their origins, differences, and how they impact the progression of solid tumors. Furthermore, we will emphasize the significant potential that the intratumoral microbiota holds for the diagnosis and treatment of solid tumors.
Collapse
Affiliation(s)
- Qing Zhou
- Central Laboratory, The People's Hospital of Baoan Shenzhen, Shenzhen, China
| | - Lijun Zhou
- Department of Urology, The People's Hospital of Baoan Shenzhen, Shenzhen, China
| | - Xi Chen
- Central Laboratory, The People's Hospital of Baoan Shenzhen, Shenzhen, China
| | - Qiuyan Chen
- Science and Education Department, Shenzhen Baoan Shiyan People's Hospital, Shenzhen, China
| | - Lu Hao
- Science and Education Department, Shenzhen Baoan Shiyan People's Hospital, Shenzhen, China
| |
Collapse
|
21
|
Liang P, Chen Q, Chen X, Zhang X, Xiao Y, Liang G, Liu M, He J, Liang W, Liang Y, Chen B. Microbiota modulate immune repertories in lung adenocarcinoma via microbiota-immunity interactive network. Transl Lung Cancer Res 2024; 13:2683-2697. [PMID: 39507044 PMCID: PMC11535827 DOI: 10.21037/tlcr-24-393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/14/2024] [Indexed: 11/08/2024]
Abstract
Background While the resident microbiome of tumors has been shown to be associated with the occurrence and progression of non-small cell lung cancer, there remains a significant knowledge gap in understanding the correlation between the microbial spectrum and immunity response to cancer therapy. In the case of lung adenocarcinoma (LUAD), the tumor microenvironment, encompassing a diverse array of microbes and immune cells, plays a crucial role in modulating therapeutic response. Towards comprehending the underlying mechanism, we present the microbe-immunity interactive networks to delineate the microbiota and immunity repertoires for two distinct molecular subtypes in LUAD. Methods We obtained multi-omics data of LUAD patients from the publicly available database. In this study, we conducted a systematic exploration of the microbial and immunological etiology of cancer prognosis, by integrating the microbiome, genome, transcriptome, and clinic data. The mutational signature analysis, transcriptome analysis, gene set enrichment analysis, and microbiota-immunity network analysis were performed. Results Based on the transcriptome repertories, we classified the patients into two molecular subtypes and observed that the overall survival of molecular subtype 2 (MS2) was notably shortened. We identified the microbial biomarkers in patients that distinguished between these molecular subtypes. The significant up-regulation of γδT and neutrophil in MS2, suggesting the inflammation augmentation and stimulation of γδT activation. What is more, the MS2 are characterized by a correlation network between microbiota biomarkers and γδT cell, which may contribute to suppression of anti-tumor immunity and poor overall survival. Conclusions Our findings not only display the repertoires of tumor microbiota and immune cells, but also elucidate the potential contribution of the microbiota-immunity correlation network to unfavorable overall survival and therapeutic resistance, thereby exerting profound implications on future LUAD therapy.
Collapse
Affiliation(s)
- Peng Liang
- Center for Medical Research, The First People’s Hospital of Yulin, The Sixth Affiliated Hospital of Guangxi Medical University, Yulin, China
| | - Qianxi Chen
- Center for Medical Research, The First People’s Hospital of Yulin, The Sixth Affiliated Hospital of Guangxi Medical University, Yulin, China
| | - Xiaoping Chen
- Center for Medical Research, The First People’s Hospital of Yulin, The Sixth Affiliated Hospital of Guangxi Medical University, Yulin, China
| | - Xiaolin Zhang
- Center for Medical Research, The First People’s Hospital of Yulin, The Sixth Affiliated Hospital of Guangxi Medical University, Yulin, China
| | - Yizhen Xiao
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yulin, The Sixth Affiliated Hospital of Guangxi Medical University, Yulin, China
| | - Guangni Liang
- Department of Thoracic Surgery, The First People’s Hospital of Yulin, The Sixth Affiliated Hospital of Guangxi Medical University, Yulin, China
| | - Ming Liu
- Center for Medical Research, The First People’s Hospital of Yulin, The Sixth Affiliated Hospital of Guangxi Medical University, Yulin, China
| | - Jianxing He
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Wenhua Liang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Yufeng Liang
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yulin, The Sixth Affiliated Hospital of Guangxi Medical University, Yulin, China
| | - Bo Chen
- Department of Thoracic Surgery, The First People’s Hospital of Yulin, The Sixth Affiliated Hospital of Guangxi Medical University, Yulin, China
| |
Collapse
|
22
|
Lombardo C, Fazio R, Sinagra M, Gattuso G, Longo F, Lombardo C, Salmeri M, Zanghì GN, Loreto CAE. Intratumoral Microbiota: Insights from Anatomical, Molecular, and Clinical Perspectives. J Pers Med 2024; 14:1083. [PMID: 39590575 PMCID: PMC11595780 DOI: 10.3390/jpm14111083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
The human microbiota represents a heterogeneous microbial community composed of several commensal, symbiotic, and even pathogenic microorganisms colonizing both the external and internal body surfaces. Despite the term "microbiota" being commonly used to identify microorganisms inhabiting the gut, several pieces of evidence suggest the presence of different microbiota physiologically colonizing other organs. In this context, several studies have also confirmed that microbes are integral components of tumor tissue in different types of cancer, constituting the so-called "intratumoral microbiota". The intratumoral microbiota is closely related to the occurrence and development of cancer as well as to the efficacy of anticancer treatments. Indeed, intratumoral microbiota can contribute to carcinogenesis and metastasis formation as some microbes can directly cause DNA damage, while others can induce the activation of proinflammatory responses or oncogenic pathways and alter the tumor microenvironment (TME). All these characteristics make the intratumoral microbiota an interesting topic to investigate for both diagnostic and prognostic purposes in order to improve the management of cancer patients. This review aims to gather the most recent data on the role of the intratumoral microbiota in cancer development, progression, and response to treatment, as well as its potential diagnostic and prognostic value.
Collapse
Affiliation(s)
- Claudia Lombardo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Rosanna Fazio
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Marta Sinagra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Federica Longo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Cinzia Lombardo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Mario Salmeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Guido Nicola Zanghì
- Department of General Surgery and Medical-Surgical Specialties, Policlinico-Vittorio Emanuele Hospital, University of Catania, 95123 Catania, Italy;
| | - Carla Agata Erika Loreto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| |
Collapse
|
23
|
Zhang H, Fu L, Leiliang X, Qu C, Wu W, Wen R, Huang N, He Q, Cheng Q, Liu G, Cheng Y. Beyond the Gut: The intratumoral microbiome's influence on tumorigenesis and treatment response. Cancer Commun (Lond) 2024; 44:1130-1167. [PMID: 39087354 PMCID: PMC11483591 DOI: 10.1002/cac2.12597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/25/2024] [Accepted: 07/13/2024] [Indexed: 08/02/2024] Open
Abstract
The intratumoral microbiome (TM) refers to the microorganisms in the tumor tissues, including bacteria, fungi, viruses, and so on, and is distinct from the gut microbiome and circulating microbiota. TM is strongly associated with tumorigenesis, progression, metastasis, and response to therapy. This paper highlights the current status of TM. Tract sources, adjacent normal tissue, circulatory system, and concomitant tumor co-metastasis are the main origin of TM. The advanced techniques in TM analysis are comprehensively summarized. Besides, TM is involved in tumor progression through several mechanisms, including DNA damage, activation of oncogenic signaling pathways (phosphoinositide 3-kinase [PI3K], signal transducer and activator of transcription [STAT], WNT/β-catenin, and extracellular regulated protein kinases [ERK]), influence of cytokines and induce inflammatory responses, and interaction with the tumor microenvironment (anti-tumor immunity, pro-tumor immunity, and microbial-derived metabolites). Moreover, promising directions of TM in tumor therapy include immunotherapy, chemotherapy, radiotherapy, the application of probiotics/prebiotics/synbiotics, fecal microbiome transplantation, engineered microbiota, phage therapy, and oncolytic virus therapy. The inherent challenges of clinical application are also summarized. This review provides a comprehensive landscape for analyzing TM, especially the TM-related mechanisms and TM-based treatment in cancer.
Collapse
Affiliation(s)
- Hao Zhang
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Li Fu
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
- Department of GastroenterologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Xinwen Leiliang
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Chunrun Qu
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanP. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Wantao Wu
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Rong Wen
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Ning Huang
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Qiuguang He
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Quan Cheng
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanP. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Guodong Liu
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Yuan Cheng
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| |
Collapse
|
24
|
Laplane L, Maley CC. The evolutionary theory of cancer: challenges and potential solutions. Nat Rev Cancer 2024; 24:718-733. [PMID: 39256635 PMCID: PMC11627115 DOI: 10.1038/s41568-024-00734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 09/12/2024]
Abstract
The clonal evolution model of cancer was developed in the 1950s-1970s and became central to cancer biology in the twenty-first century, largely through studies of cancer genetics. Although it has proven its worth, its structure has been challenged by observations of phenotypic plasticity, non-genetic forms of inheritance, non-genetic determinants of clone fitness and non-tree-like transmission of genes. There is even confusion about the definition of a clone, which we aim to resolve. The performance and value of the clonal evolution model depends on the empirical extent to which evolutionary processes are involved in cancer, and on its theoretical ability to account for those evolutionary processes. Here, we identify limits in the theoretical performance of the clonal evolution model and provide solutions to overcome those limits. Although we do not claim that clonal evolution can explain everything about cancer, we show how many of the complexities that have been identified in the dynamics of cancer can be integrated into the model to improve our current understanding of cancer.
Collapse
Affiliation(s)
- Lucie Laplane
- UMR 8590 Institut d'Histoire et Philosophie des Sciences et des Techniques, CNRS, University Paris I Pantheon-Sorbonne, Paris, France
- UMR 1287 Hematopoietic Tissue Aging, Gustave Roussy Cancer Campus, Villejuif, France
| | - Carlo C Maley
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA.
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, USA.
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
25
|
Guo M, Sun Y, Wang X, Wang Z, Yuan X, Chen X, Yuan X, Wang L. The MCIB Model: A Novel Theory for Describing the Spatial Heterogeneity of the Tumor Microenvironment. Int J Mol Sci 2024; 25:10486. [PMID: 39408814 PMCID: PMC11476373 DOI: 10.3390/ijms251910486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
The tumor microenvironment (TME) can be regarded as a complex and dynamic microecosystem generated by the interactions of tumor cells, interstitial cells, the extracellular matrix, and their products and plays an important role in the occurrence, progression and metastasis of tumors. In a previous study, we constructed an IEO model (prI-, prE-, and pOst-metastatic niche) according to the chronological sequence of TME development. In this paper, to fill the theoretical gap in spatial heterogeneity in the TME, we defined an MCIB model (Metabolic, Circulatory, Immune, and microBial microenvironment). The MCIB model divides the TME into four subtypes that interact with each other in terms of mechanism, corresponding to the four major links of metabolic reprogramming, vascular remodeling, immune response, and microbial action, providing a new way to assess the TME. The combination of the MCIB model and IEO model comprehensively depicts the spatiotemporal evolution of the TME and can provide a theoretical basis for the combination of clinical targeted therapy, immunotherapy, and other comprehensive treatment modalities for tumors according to the combination and crosstalk of different subtypes in the MCIB model and provide a powerful research paradigm for tumor drug-resistance mechanisms and tumor biological behavior.
Collapse
Affiliation(s)
- Minghao Guo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.Y.); (X.C.)
| | - Yinan Sun
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.S.)
| | - Xiaohui Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Zikun Wang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.S.)
| | - Xun Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.Y.); (X.C.)
| | - Xinyi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.Y.); (X.C.)
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.Y.); (X.C.)
| | - Lu Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.Y.); (X.C.)
| |
Collapse
|
26
|
Belaid A, Roméo B, Rignol G, Benzaquen J, Audoin T, Vouret-Craviari V, Brest P, Varraso R, von Bergen M, Hugo Marquette C, Leroy S, Mograbi B, Hofman P. Impact of the Lung Microbiota on Development and Progression of Lung Cancer. Cancers (Basel) 2024; 16:3342. [PMID: 39409962 PMCID: PMC11605235 DOI: 10.3390/cancers16193342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 12/01/2024] Open
Abstract
The past several years have provided a more profound understanding of the role of microbial species in the lung. The respiratory tract is a delicate ecosystem of bacteria, fungi, parasites, and viruses. Detecting microbial DNA, pathogen-associated molecular patterns (PAMPs), and metabolites in sputum is poised to revolutionize the early diagnosis of lung cancer. The longitudinal monitoring of the lung microbiome holds the potential to predict treatment response and side effects, enabling more personalized and effective treatment options. However, most studies into the lung microbiota have been observational and have not adequately considered the impact of dietary intake and air pollutants. This gap makes it challenging to establish a direct causal relationship between environmental exposure, changes in the composition of the microbiota, lung carcinogenesis, and tumor progression. A holistic understanding of the lung microbiota that considers both diet and air pollutants may pave the way to improved prevention and management strategies for lung cancer.
Collapse
Affiliation(s)
- Amine Belaid
- Université Côte d’Azur, Institute for Research on Ageing and Cancer, Nice (IRCAN), Institut Hospitalo Universitaire (IHU) RespirERA, Fédérations Hospitalo-Universitaires (FHU) OncoAge, Centre Antoine Lacassagne, Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), 06107 Nice, France; (A.B.); (B.R.); (G.R.); (J.B.); (T.A.); (V.V.-C.); (P.B.); (C.H.M.); (S.L.); (P.H.)
| | - Barnabé Roméo
- Université Côte d’Azur, Institute for Research on Ageing and Cancer, Nice (IRCAN), Institut Hospitalo Universitaire (IHU) RespirERA, Fédérations Hospitalo-Universitaires (FHU) OncoAge, Centre Antoine Lacassagne, Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), 06107 Nice, France; (A.B.); (B.R.); (G.R.); (J.B.); (T.A.); (V.V.-C.); (P.B.); (C.H.M.); (S.L.); (P.H.)
| | - Guylène Rignol
- Université Côte d’Azur, Institute for Research on Ageing and Cancer, Nice (IRCAN), Institut Hospitalo Universitaire (IHU) RespirERA, Fédérations Hospitalo-Universitaires (FHU) OncoAge, Centre Antoine Lacassagne, Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), 06107 Nice, France; (A.B.); (B.R.); (G.R.); (J.B.); (T.A.); (V.V.-C.); (P.B.); (C.H.M.); (S.L.); (P.H.)
- Laboratory of Clinical and Experimental Pathology (LPCE), Biobank (BB-0033-00025), Centre Hospitalier Universitaire (CHU) de Nice, FHU OncoAge, IHU RespirERA, 06000 Nice, France
| | - Jonathan Benzaquen
- Université Côte d’Azur, Institute for Research on Ageing and Cancer, Nice (IRCAN), Institut Hospitalo Universitaire (IHU) RespirERA, Fédérations Hospitalo-Universitaires (FHU) OncoAge, Centre Antoine Lacassagne, Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), 06107 Nice, France; (A.B.); (B.R.); (G.R.); (J.B.); (T.A.); (V.V.-C.); (P.B.); (C.H.M.); (S.L.); (P.H.)
- Centre Hospitalier Universitaire (CHU) de Nice, Department of Pulmonary Medicine and Thoracic Oncology, FHU OncoAge, IHU RespirERA, 06000 Nice, France
| | - Tanguy Audoin
- Université Côte d’Azur, Institute for Research on Ageing and Cancer, Nice (IRCAN), Institut Hospitalo Universitaire (IHU) RespirERA, Fédérations Hospitalo-Universitaires (FHU) OncoAge, Centre Antoine Lacassagne, Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), 06107 Nice, France; (A.B.); (B.R.); (G.R.); (J.B.); (T.A.); (V.V.-C.); (P.B.); (C.H.M.); (S.L.); (P.H.)
| | - Valérie Vouret-Craviari
- Université Côte d’Azur, Institute for Research on Ageing and Cancer, Nice (IRCAN), Institut Hospitalo Universitaire (IHU) RespirERA, Fédérations Hospitalo-Universitaires (FHU) OncoAge, Centre Antoine Lacassagne, Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), 06107 Nice, France; (A.B.); (B.R.); (G.R.); (J.B.); (T.A.); (V.V.-C.); (P.B.); (C.H.M.); (S.L.); (P.H.)
| | - Patrick Brest
- Université Côte d’Azur, Institute for Research on Ageing and Cancer, Nice (IRCAN), Institut Hospitalo Universitaire (IHU) RespirERA, Fédérations Hospitalo-Universitaires (FHU) OncoAge, Centre Antoine Lacassagne, Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), 06107 Nice, France; (A.B.); (B.R.); (G.R.); (J.B.); (T.A.); (V.V.-C.); (P.B.); (C.H.M.); (S.L.); (P.H.)
| | - Raphaëlle Varraso
- Université Paris-Saclay, Équipe d’Épidémiologie Respiratoire Intégrative, CESP, INSERM, 94800 Villejuif, France;
| | - Martin von Bergen
- Helmholtz Centre for Environmental Research GmbH—UFZ, Department of Molecular Systems Biology, Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, 04109 Leipzig, Germany;
| | - Charles Hugo Marquette
- Université Côte d’Azur, Institute for Research on Ageing and Cancer, Nice (IRCAN), Institut Hospitalo Universitaire (IHU) RespirERA, Fédérations Hospitalo-Universitaires (FHU) OncoAge, Centre Antoine Lacassagne, Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), 06107 Nice, France; (A.B.); (B.R.); (G.R.); (J.B.); (T.A.); (V.V.-C.); (P.B.); (C.H.M.); (S.L.); (P.H.)
- Centre Hospitalier Universitaire (CHU) de Nice, Department of Pulmonary Medicine and Thoracic Oncology, FHU OncoAge, IHU RespirERA, 06000 Nice, France
| | - Sylvie Leroy
- Université Côte d’Azur, Institute for Research on Ageing and Cancer, Nice (IRCAN), Institut Hospitalo Universitaire (IHU) RespirERA, Fédérations Hospitalo-Universitaires (FHU) OncoAge, Centre Antoine Lacassagne, Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), 06107 Nice, France; (A.B.); (B.R.); (G.R.); (J.B.); (T.A.); (V.V.-C.); (P.B.); (C.H.M.); (S.L.); (P.H.)
- Centre Hospitalier Universitaire (CHU) de Nice, Department of Pulmonary Medicine and Thoracic Oncology, FHU OncoAge, IHU RespirERA, 06000 Nice, France
| | - Baharia Mograbi
- Université Côte d’Azur, Institute for Research on Ageing and Cancer, Nice (IRCAN), Institut Hospitalo Universitaire (IHU) RespirERA, Fédérations Hospitalo-Universitaires (FHU) OncoAge, Centre Antoine Lacassagne, Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), 06107 Nice, France; (A.B.); (B.R.); (G.R.); (J.B.); (T.A.); (V.V.-C.); (P.B.); (C.H.M.); (S.L.); (P.H.)
| | - Paul Hofman
- Université Côte d’Azur, Institute for Research on Ageing and Cancer, Nice (IRCAN), Institut Hospitalo Universitaire (IHU) RespirERA, Fédérations Hospitalo-Universitaires (FHU) OncoAge, Centre Antoine Lacassagne, Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), 06107 Nice, France; (A.B.); (B.R.); (G.R.); (J.B.); (T.A.); (V.V.-C.); (P.B.); (C.H.M.); (S.L.); (P.H.)
- Laboratory of Clinical and Experimental Pathology (LPCE), Biobank (BB-0033-00025), Centre Hospitalier Universitaire (CHU) de Nice, FHU OncoAge, IHU RespirERA, 06000 Nice, France
| |
Collapse
|
27
|
Zheng J, Chen H. Effects of intratumoral microbiota on tumorigenesis, anti-tumor immunity, and microbe-based cancer therapy. Front Oncol 2024; 14:1429722. [PMID: 39391251 PMCID: PMC11464362 DOI: 10.3389/fonc.2024.1429722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/26/2024] [Indexed: 10/12/2024] Open
Abstract
Intratumoral microbiota (IM) has emerged as a significant component of the previously thought sterile tumor microenvironment (TME), exerting diverse functions in tumorigenesis and immune modulation. This review outlines the historical background, classification, and diversity of IM, elucidating its pivotal roles in oncogenicity, cancer development, and progression, alongside its influence on anti-tumor immunity. The signaling pathways through which IM impacts tumorigenesis and immunity, including reactive oxygen species (ROS), β-catenin, stimulator of interferon genes (STING), and other pathways [NF-κB, Toll-like receptor (TLR), complement, RhoA/ROCK, PKR-like ER kinase (PERK)], are discussed comprehensively. Furthermore, we briefly introduce the clinical implications of IM, emphasizing its potential as a target for novel cancer therapies, diagnostic biomarkers, and prognostic indicators. Notably, microbe-based therapeutic strategies such as fecal microbiome transplantation (FMT), probiotics regulation, bacteriotherapy, bacteriophage therapy, and oncolytic virotherapy are highlighted. These strategies hold promise for enhancing the efficacy of current cancer treatments and warrant further exploration in clinical settings.
Collapse
Affiliation(s)
| | - Hao Chen
- Department of Pathology, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| |
Collapse
|
28
|
Liu Y, Xu C, Zhang L, Xu G, Yang Z, Xiang L, Jiao K, Chen Z, Zhang X, Liu Y. Syndecan-1 inhibition promotes antitumor immune response and facilitates the efficacy of anti-PD1 checkpoint immunotherapy. SCIENCE ADVANCES 2024; 10:eadi7764. [PMID: 39259785 PMCID: PMC11389782 DOI: 10.1126/sciadv.adi7764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/02/2024] [Indexed: 09/13/2024]
Abstract
Tumor cell-originated events prevent efficient antitumor immune response and limit the application of anti-PD1 checkpoint immunotherapy. We show that syndecan-1 (SDC1) has a critical role in the regulation of T cell-mediated control of tumor growth. SDC1 inhibition increases the permeation of CD8+ T cells into tumors and triggers CD8+ T cell-mediated control of tumor growth, accompanied by increased proportions of progenitor-exhausted and effector-like CD8+ T cells. SDC1 deficiency alters multiple signaling events in tumor cells, including enhanced IFN-γ-STAT1 signaling, and augments antigen presentation and sensitivity to T cell-mediated cytotoxicity. Combinatory inhibition of SDC1 markedly potentiates the therapeutic effects of anti-PD1 in inhibiting tumor growth. Consistently, the findings are supported by the data from human tumors showing that SDC1 expression negatively correlates with T cell presence in tumor tissues and the response to immune checkpoint blockade therapy. Our findings suggest that SDC1 inhibits antitumor immunity, and that targeting SDC1 may promote anti-PD1 response for cancer treatment.
Collapse
Affiliation(s)
- Yun Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Chen Xu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Li Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Guiqin Xu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Zhaojuan Yang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Lvzhu Xiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Kun Jiao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Zehong Chen
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Xiaoren Zhang
- Affiliated Cancer Hospital and Institute, Guangzhou Medical University, Guangzhou, China
| | - Yongzhong Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| |
Collapse
|
29
|
Shi Z, Li Z, Zhang M. Emerging roles of intratumor microbiota in cancer: tumorigenesis and management strategies. J Transl Med 2024; 22:837. [PMID: 39261861 PMCID: PMC11391643 DOI: 10.1186/s12967-024-05640-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024] Open
Abstract
The intricate interplay between the host and its microbiota has garnered increasing attention in the past decade. Specifically, the emerging recognition of microorganisms within diverse cancer tissues, previously presumed sterile, has ignited a resurgence of enthusiasm and research endeavors. Four potential migratory routes have been identified as the sources of intratumoral microbial "dark matter," including direct invasion of mucosal barriers, spreading from normal adjacent tissue, hematogenous spread, and lymphatic drainage, which contribute to the highly heterogeneous features of intratumor microbiota. Importantly, multitudes of studies delineated the roles of intratumor microbiota in cancer initiation and progression, elucidating underlying mechanisms such as genetic alterations, epigenetic modifications, immune dysfunctions, activating oncogenic pathways, and inducing metastasis. With the deepening understanding of intratumoral microbial composition, novel microbiota-based strategies for early cancer diagnosis and prognostic stratification continue to emerge. Furthermore, intratumor microbiota exerts significant influence on the efficacy of cancer therapeutics, particularly immunotherapy, making it an enticing target for intervention in cancer treatment. In this review, we present a comprehensive discussion of the current understanding pertaining to the developmental history, heterogeneous profiles, underlying originations, and carcinogenic mechanisms of intratumor microbiota, and uncover its potential predictive and intervention values, as well as several inevitable challenges as a target for personalized cancer management strategies.
Collapse
Affiliation(s)
- Zhuangzhuang Shi
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, 450000, China
| | - Zhaoming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, 450000, China.
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, 450000, China.
| |
Collapse
|
30
|
Zitvogel L, Fidelle M, Kroemer G. Long-distance microbial mechanisms impacting cancer immunosurveillance. Immunity 2024; 57:2013-2029. [PMID: 39151425 DOI: 10.1016/j.immuni.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/13/2024] [Accepted: 07/21/2024] [Indexed: 08/19/2024]
Abstract
The intestinal microbiota determines immune responses against extraintestinal antigens, including tumor-associated antigens. Indeed, depletion or gross perturbation of the microbiota undermines the efficacy of cancer immunotherapy, thereby compromising the clinical outcome of cancer patients. In this review, we discuss the long-distance effects of the gut microbiota and the mechanisms governing antitumor immunity, such as the translocation of intestinal microbes into tumors, migration of leukocyte populations from the gut to the rest of the body, including tumors, as well as immunomodulatory microbial products and metabolites. The relationship between these pathways is incompletely understood, in particular the significance of the tumor microbiota with respect to the identification of host and/or microbial products that regulate the egress of bacteria and immunocytes toward tumor beds.
Collapse
Affiliation(s)
- Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France; Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, ClinicObiome, Équipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France; Université Paris-Saclay, Ile-de-France, France; Center of Clinical Investigations in Biotherapies of Cancer (BIOTHERIS), Villejuif, France.
| | - Marine Fidelle
- Gustave Roussy Cancer Campus, Villejuif, France; Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, ClinicObiome, Équipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France; Université Paris-Saclay, Ile-de-France, France
| | - Guido Kroemer
- Gustave Roussy Cancer Campus, Villejuif, France; Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
31
|
Giese MA, Ramakrishnan G, Steenberge LH, Dovan JX, Sauer JD, Huttenlocher A. Staphylococcus aureus lipid factors modulate melanoma cell clustering and invasion. Dis Model Mech 2024; 17:dmm050770. [PMID: 39284707 PMCID: PMC11423913 DOI: 10.1242/dmm.050770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/29/2024] [Indexed: 09/25/2024] Open
Abstract
The microbiome can influence cancer development and progression. However, less is known about the role of the skin microbiota in melanoma. Here, we took advantage of a zebrafish melanoma model to probe the effects of Staphylococcus aureus on melanoma invasion. We found that S. aureus produces factors that enhance melanoma invasion and dissemination in zebrafish larvae. We used a published in vitro 3D cluster formation assay that correlates increased clustering with tumor invasion. S. aureus supernatant increased clustering of melanoma cells and was abrogated by a Rho-Kinase inhibitor, implicating a role for Rho-GTPases. The melanoma clustering response was specific to S. aureus but not to other staphylococcal species, including S. epidermidis. Our findings suggest that S. aureus promotes melanoma clustering and invasion via lipids generated by the lipase Sal2 (officially known as GehB). Taken together, these findings suggest that specific bacterial products mediate melanoma invasive migration in zebrafish.
Collapse
Affiliation(s)
- Morgan A. Giese
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI 53706, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Gayathri Ramakrishnan
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI 53706, USA
- Cancer Biology Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Laura H. Steenberge
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Jerome X. Dovan
- University of Wisconsin Medical Scientist Training Program (MSTP) Summer Scholars, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI 53706, USA
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI 53706, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
32
|
Sheng D, Jin C, Yue K, Yue M, Liang Y, Xue X, Li P, Zhao G, Zhang L. Pan-cancer atlas of tumor-resident microbiome, immunity and prognosis. Cancer Lett 2024; 598:217077. [PMID: 38908541 DOI: 10.1016/j.canlet.2024.217077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/23/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
The existence of microbiome in human tumors has been determined widely, but evaluating the contribution of intratumoral bacteria and fungi to tumor immunity and prognosis from a pan-cancer perspective remains absent. We designed an improved microbial analysis pipeline to reduce interference from host sequences, complemented with integration analysis of intratumoral microbiota at species level with clinical indicators, tumor microenvironment, and prognosis across cancer types. We found that intratumoral microbiota is associated with immunophenotyping, with high-immunity subtypes showing greater bacterial and fungal richness compared to low-immunity groups. We also noted that the combination of fungi and bacteria demonstrated promising prognostic value across cancer types. We, thus, present The Cancer Microbiota (TCMbio), an interactive platform that provides the intratumoral bacteria and fungi data, and a comprehensive analysis module for 33 types of cancers. This led to the discovery of clinical and prognostic significance of intratumoral microbes.
Collapse
Affiliation(s)
- Dashuang Sheng
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Chuandi Jin
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kaile Yue
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Min Yue
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yijia Liang
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinxin Xue
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Pingfu Li
- Shandong Huxley Medical Technology Co.,Ltd., Jinan, China
| | - Guoping Zhao
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China; CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Lei Zhang
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
| |
Collapse
|
33
|
Fan S, Zhang W, Zhou L, Wang D, Tang D. Potential role of the intratumoral microbiota in colorectal cancer immunotherapy. Int Immunopharmacol 2024; 137:112537. [PMID: 38909493 DOI: 10.1016/j.intimp.2024.112537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Colorectal cancer (CRC) has been one of the most common malignancies worldwide. Despite the advances in current therapies, the mortality rate of CRC remains high. Among them, immunotherapy has achieved satisfactory results in some CRC patients, however, how to expand the use of immunotherapy in CRC patients remains an urgent challenge. Surprisingly, the intratumoral microbiota has been found in multiple tumor tissues, including CRC. It has been demonstrated that the intratumoral microbiota is associated with the progression and treatment of CRC, and is able to enhance or decrease anti-tumor immune responses via different mechanisms as well as influence the immunotherapy efficacy, providing new potential therapeutic targets for CRC immunotherapy. In this review, we focus on the characteristics of the intratumoral microbiota, its roles in the genesis and development of CRC, its modulation of anti-tumor immune responses and immunotherapy, and propose potential applications of the intratumoral microbiota in CRC immunotherapy. Additionally, we propose possible directions for future research on the intratumoral microbiota related to CRC immunotherapy.
Collapse
Affiliation(s)
- Shiying Fan
- Clinical Medical College, Yangzhou University, Yangzhou 225000, PR China.
| | - Wenjie Zhang
- School of Medicine, Chongqing University, Chongqing 400030, PR China.
| | - Lujia Zhou
- Clinical Medical College, Yangzhou University, Yangzhou 225000, PR China.
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225000, PR China.
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225000, PR China.
| |
Collapse
|
34
|
Lu YQ, Qiao H, Tan XR, Liu N. Broadening oncological boundaries: the intratumoral microbiota. Trends Microbiol 2024; 32:807-822. [PMID: 38310023 DOI: 10.1016/j.tim.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/07/2024] [Accepted: 01/18/2024] [Indexed: 02/05/2024]
Abstract
The microbiota of solid tumors was identified >100 years ago; however, heterogeneous composition and diversity have been revealed only recently. Growing evidence has suggested that several functional mechanisms of the intratumoral microbiota affect tumorigenesis and progression, suggesting that the intratumoral microbiota is a promising biomarker for multiple cancers. The low biomass of the intratumoral microbiota poses a major challenge to related research, thus necessitating the use of a multiple-modality integrated framework to resolve this dilemma. Advanced techniques such as single-cell sequencing provide significant clues, and the gradual optimization of functional experiments and culture-based methods enables deeper investigation of the underlying mechanisms involved. In this review, we outline the current state of research on the intratumoral microbiota and describe the challenges and comprehensive strategies for future research.
Collapse
Affiliation(s)
- Ying-Qi Lu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Han Qiao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Xi-Rong Tan
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Na Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China.
| |
Collapse
|
35
|
Wang M, Rousseau B, Qiu K, Huang G, Zhang Y, Su H, Le Bihan-Benjamin C, Khati I, Artz O, Foote MB, Cheng YY, Lee KH, Miao MZ, Sun Y, Bousquet PJ, Hilmi M, Dumas E, Hamy AS, Reyal F, Lin L, Armistead PM, Song W, Vargason A, Arthur JC, Liu Y, Guo J, Zhou X, Nguyen J, He Y, Ting JPY, Anselmo AC, Huang L. Killing tumor-associated bacteria with a liposomal antibiotic generates neoantigens that induce anti-tumor immune responses. Nat Biotechnol 2024; 42:1263-1274. [PMID: 37749267 DOI: 10.1038/s41587-023-01957-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/18/2023] [Indexed: 09/27/2023]
Abstract
Increasing evidence implicates the tumor microbiota as a factor that can influence cancer progression. In patients with colorectal cancer (CRC), we found that pre-resection antibiotics targeting anaerobic bacteria substantially improved disease-free survival by 25.5%. For mouse studies, we designed an antibiotic silver-tinidazole complex encapsulated in liposomes (LipoAgTNZ) to eliminate tumor-associated bacteria in the primary tumor and liver metastases without causing gut microbiome dysbiosis. Mouse CRC models colonized by tumor-promoting bacteria (Fusobacterium nucleatum spp.) or probiotics (Escherichia coli Nissle spp.) responded to LipoAgTNZ therapy, which enabled more than 70% long-term survival in two F. nucleatum-infected CRC models. The antibiotic treatment generated microbial neoantigens that elicited anti-tumor CD8+ T cells. Heterologous and homologous bacterial epitopes contributed to the immunogenicity, priming T cells to recognize both infected and uninfected tumors. Our strategy targets tumor-associated bacteria to elicit anti-tumoral immunity, paving the way for microbiome-immunotherapy interventions.
Collapse
Affiliation(s)
- Menglin Wang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Benoit Rousseau
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kunyu Qiu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Guannan Huang
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Yu Zhang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Hang Su
- Department of Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Christine Le Bihan-Benjamin
- Health Data and Assessment Department, Data Science and Assessment Division, French National Cancer Institute, Boulogne-Billancourt, France
| | - Ines Khati
- Health Data and Assessment Department, Data Science and Assessment Division, French National Cancer Institute, Boulogne-Billancourt, France
| | - Oliver Artz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael B Foote
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yung-Yi Cheng
- Natural Products Research Laboratories, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
- Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan
| | - Michael Z Miao
- Curriculum in Oral and Craniofacial Biomedicine, Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
- Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Yue Sun
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Philippe-Jean Bousquet
- Health Survey, Data Science and Assessment Division, French National Cancer Institute, Boulogne Billancourt, France
| | - Marc Hilmi
- GERCOR Group, Paris, France
- Medical Oncology Department, Curie Institute, Saint Cloud, France
| | - Elise Dumas
- Residual Tumor & Response to Treatment Laboratory, RT2Lab, Translational Research Department, INSERM, U932 Immunity and Cancer, Paris, France
- INSERM, U900, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | - Anne-Sophie Hamy
- Residual Tumor & Response to Treatment Laboratory, RT2Lab, Translational Research Department, INSERM, U932 Immunity and Cancer, Paris, France
- Department of Medical Oncology, Centre René Hughenin, Saint Cloud, France
| | - Fabien Reyal
- Residual Tumor & Response to Treatment Laboratory, RT2Lab, Translational Research Department, INSERM, U932 Immunity and Cancer, Paris, France
- Department of Surgery, Institut Jean Godinot, Reims, France
- Department of Surgical Oncology, Institut Curie, University of Paris, Paris, France
| | - Lin Lin
- BMTCT Program, Division of Hematology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Paul M Armistead
- BMTCT Program, Division of Hematology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Internal Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Wantong Song
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, China
| | - Ava Vargason
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Janelle C Arthur
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA
| | - Yun Liu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Jianfeng Guo
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Xuefei Zhou
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Juliane Nguyen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Yongqun He
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jenny P-Y Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
- Division of Craniofacial and Surgical Care, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Aaron C Anselmo
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
36
|
Han K, Cho YS, Moon JJ. Antibiotic nanoparticles boost antitumor immunity. Nat Biotechnol 2024; 42:1187-1188. [PMID: 37974012 PMCID: PMC11096259 DOI: 10.1038/s41587-023-02046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Liposomes loaded with antibiotics eliminate intracellular bacteria in a colorectal cancer model, unleashing antitumor T cell immunity.
Collapse
Affiliation(s)
- Kai Han
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Young Seok Cho
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
37
|
Dravillas CE, Coleman SS, Hoyd R, Caryotakis G, Denko L, Chan CH, Churchman ML, Denko N, Dodd RD, Eljilany I, Hardikar S, Husain M, Ikeguchi AP, Jin N, Ma Q, McCarter MD, Osman AE, Robinson LA, Singer EA, Tinoco G, Ulrich CM, Zakharia Y, Spakowicz D, Tarhini AA, Tan AC. The Tumor Microbiome as a Predictor of Outcomes in Patients with Metastatic Melanoma Treated with Immune Checkpoint Inhibitors. CANCER RESEARCH COMMUNICATIONS 2024; 4:1978-1990. [PMID: 39015091 PMCID: PMC11307144 DOI: 10.1158/2767-9764.crc-23-0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/21/2023] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
Emerging evidence supports the important role of the tumor microbiome in oncogenesis, cancer immune phenotype, cancer progression, and treatment outcomes in many malignancies. In this study, we investigated the metastatic melanoma tumor microbiome and its potential roles in association with clinical outcomes, such as survival, in patients with metastatic disease treated with immune checkpoint inhibitors (ICI). Baseline tumor samples were collected from 71 patients with metastatic melanoma before treatment with ICIs. Bulk RNA sequencing (RNA-seq) was conducted on the formalin-fixed, paraffin-embedded and fresh frozen tumor samples. Durable clinical benefit (primary clinical endpoint) following ICIs was defined as overall survival >24 months and no change to the primary drug regimen (responders). We processed RNA-seq reads to carefully identify exogenous sequences using the {exotic} tool. The age of the 71 patients with metastatic melanoma ranged from 24 to 83 years, 59% were male, and 55% survived >24 months following the initiation of ICI treatment. Exogenous taxa were identified in the tumor RNA-seq, including bacteria, fungi, and viruses. We found differences in gene expression and microbe abundances in immunotherapy-responsive versus nonresponsive tumors. Responders showed significant enrichment of bacteriophages in the phylum Uroviricota, and nonresponders showed enrichment of several bacteria, including Campylobacter jejuni. These microbes correlated with immune-related gene expression signatures. Finally, we found that models for predicting prolonged survival with immunotherapy using both microbe abundances and gene expression outperformed models using either dataset alone. Our findings warrant further investigation and potentially support therapeutic strategies to modify the tumor microbiome in order to improve treatment outcomes with ICIs. SIGNIFICANCE We analyzed the tumor microbiome and interactions with genes and pathways in metastatic melanoma treated with immunotherapy and identified several microbes associated with immunotherapy response and immune-related gene expression signatures. Machine learning models that combined microbe abundances and gene expression outperformed models using either dataset alone in predicting immunotherapy responses.
Collapse
Affiliation(s)
- Caroline E. Dravillas
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Samuel S. Coleman
- Department of Oncological Science, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
- Department of Biomedical Informatics, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
| | - Rebecca Hoyd
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Griffin Caryotakis
- Department of Oncological Science, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
- Department of Biomedical Informatics, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
| | - Louis Denko
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Carlos H.F. Chan
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa.
| | | | - Nicholas Denko
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Rebecca D. Dodd
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa.
| | - Islam Eljilany
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| | - Sheetal Hardikar
- Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
| | - Marium Husain
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Alexandra P. Ikeguchi
- Department of Hematology/Oncology, Stephenson Cancer Center of University of Oklahoma, Oklahoma City, Oklahoma.
| | - Ning Jin
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Qin Ma
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio.
| | - Martin D. McCarter
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado.
| | - Afaf E.G. Osman
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, Utah.
| | - Lary A. Robinson
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| | - Eric A. Singer
- Division of Urologic Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Gabriel Tinoco
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Cornelia M. Ulrich
- Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
| | - Yousef Zakharia
- Division of Oncology, Hematology and Blood and Marrow Transplantation, University of Iowa, Holden Comprehensive Cancer Center, Iowa City, Iowa.
| | - Daniel Spakowicz
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Ahmad A. Tarhini
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| | - Aik Choon Tan
- Department of Oncological Science, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
- Department of Biomedical Informatics, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
| | | |
Collapse
|
38
|
Zhou L, Fan S, Zhang W, Wang D, Tang D. Microbes in the tumor microenvironment: New additions to break the tumor immunotherapy dilemma. Microbiol Res 2024; 285:127777. [PMID: 38797111 DOI: 10.1016/j.micres.2024.127777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/26/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
Immunotherapies currently used in clinical practice are unsatisfactory in terms of therapeutic response and toxic side effects, and therefore new immunotherapies need to be explored. Intratumoral microbiota (ITM) exists in the tumor environment (TME) and reacts with its components. On the one hand, ITM promotes antigen delivery to tumor cells or provides cross-antigens to promote immune cells to attack tumors. On the other hand, ITM affects the activity of immune cells and stromal cells. We also summarize the dialog pathways by which ITM crosstalks with components within the TME, particularly the interferon pathway. This interaction between ITM and TME provides new ideas for tumor immunotherapy. By analyzing the bidirectional role of ITM in TME and combining it with its experimental and clinical status, we summarized the adjuvant role of ITM in immunotherapy. We explored the potential applications of using ITM as tumor immunotherapy, such as a healthy diet, fecal transplantation, targeted ITM, antibiotics, and probiotics, to provide a new perspective on the use of ITM in tumor immunotherapy.
Collapse
Affiliation(s)
- Lujia Zhou
- Clinical Medical college, Yangzhou University, Yangzhou, Jiangsu Province 225000, China.
| | - Shiying Fan
- Clinical Medical college, Yangzhou University, Yangzhou, Jiangsu Province 225000, China.
| | - Wenjie Zhang
- School of Medicine, Chongqing University, Chongqing 400030, China.
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, P. R. China.
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, P. R. China.
| |
Collapse
|
39
|
Kwon SY, Thi-Thu Ngo H, Son J, Hong Y, Min JJ. Exploiting bacteria for cancer immunotherapy. Nat Rev Clin Oncol 2024; 21:569-589. [PMID: 38840029 DOI: 10.1038/s41571-024-00908-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 06/07/2024]
Abstract
Immunotherapy has revolutionized the treatment of cancer but continues to be constrained by limited response rates, acquired resistance, toxicities and high costs, which necessitates the development of new, innovative strategies. The discovery of a connection between the human microbiota and cancer dates back 4,000 years, when local infection was observed to result in tumour eradication in some individuals. However, the true oncological relevance of the intratumoural microbiota was not recognized until the turn of the twentieth century. The intratumoural microbiota can have pivotal roles in both the pathogenesis and treatment of cancer. In particular, intratumoural bacteria can either promote or inhibit cancer growth via remodelling of the tumour microenvironment. Over the past two decades, remarkable progress has been made preclinically in engineering bacteria as agents for cancer immunotherapy; some of these bacterial products have successfully reached the clinical stages of development. In this Review, we discuss the characteristics of intratumoural bacteria and their intricate interactions with the tumour microenvironment. We also describe the many strategies used to engineer bacteria for use in the treatment of cancer, summarizing contemporary data from completed and ongoing clinical trials. The work described herein highlights the potential of bacteria to transform the landscape of cancer therapy, bridging ancient wisdom with modern scientific innovation.
Collapse
Affiliation(s)
- Seong-Young Kwon
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, Republic of Korea
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Jeonnam, Republic of Korea
| | - Hien Thi-Thu Ngo
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, Republic of Korea
- Department of Biomedical Sciences, Chonnam National University Medical School, Jeonnam, Republic of Korea
- Department of Biochemistry, Hanoi Medical University, Hanoi, Vietnam
| | - Jinbae Son
- CNCure Biotech, Jeonnam, Republic of Korea
| | - Yeongjin Hong
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, Republic of Korea
- CNCure Biotech, Jeonnam, Republic of Korea
- Department of Microbiology and Immunology, Chonnam National University Medical School, Jeonnam, Republic of Korea
- National Immunotherapy Innovation Center, Chonnam National University, Jeonnam, Republic of Korea
| | - Jung-Joon Min
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, Republic of Korea.
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Jeonnam, Republic of Korea.
- Department of Biomedical Sciences, Chonnam National University Medical School, Jeonnam, Republic of Korea.
- CNCure Biotech, Jeonnam, Republic of Korea.
- Department of Microbiology and Immunology, Chonnam National University Medical School, Jeonnam, Republic of Korea.
- National Immunotherapy Innovation Center, Chonnam National University, Jeonnam, Republic of Korea.
| |
Collapse
|
40
|
Zhang T, Zhang X, Chen J, Zhang X, Zhang Y. Harnessing microbial antigens as cancer antigens: a promising avenue for cancer immunotherapy. Front Immunol 2024; 15:1411490. [PMID: 39139570 PMCID: PMC11319170 DOI: 10.3389/fimmu.2024.1411490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Immunotherapy has revolutionized cancer treatment by leveraging the immune system's innate capabilities to combat malignancies. Despite the promise of tumor antigens in stimulating anti-tumor immune responses, their clinical utility is hampered by limitations in eliciting robust and durable immune reactions, exacerbated by tumor heterogeneity and immune evasion mechanisms. Recent insights into the immunogenic properties of host homologous microbial antigens have sparked interest in their potential for augmenting anti-tumor immunity while minimizing off-target effects. This review explores the therapeutic potential of microbial antigen peptides in tumor immunotherapy, beginning with an overview of tumor antigens and their challenges in clinical translation. We further explore the intricate relationship between microorganisms and tumor development, elucidating the concept of molecular mimicry and its implications for immune recognition of tumor-associated antigens. Finally, we discuss methodologies for identifying and characterizing microbial antigen peptides, highlighting their immunogenicity and prospects for therapeutic application.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Xilong Zhang
- Department of Burns and Plastic Surgery, First People’s Hospital of Xuzhou City, Xuzhou, China
| | - Jianquan Chen
- Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Xiuwei Zhang
- Department of Burns and Plastic Surgery, First People’s Hospital of Xuzhou City, Xuzhou, China
| | - Yunlei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
- Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
41
|
Kyriazi AA, Karaglani M, Agelaki S, Baritaki S. Intratumoral Microbiome: Foe or Friend in Reshaping the Tumor Microenvironment Landscape? Cells 2024; 13:1279. [PMID: 39120310 PMCID: PMC11312414 DOI: 10.3390/cells13151279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
The role of the microbiome in cancer and its crosstalk with the tumor microenvironment (TME) has been extensively studied and characterized. An emerging field in the cancer microbiome research is the concept of the intratumoral microbiome, which refers to the microbiome residing within the tumor. This microbiome primarily originates from the local microbiome of the tumor-bearing tissue or from translocating microbiome from distant sites, such as the gut. Despite the increasing number of studies on intratumoral microbiome, it remains unclear whether it is a driver or a bystander of oncogenesis and tumor progression. This review aims to elucidate the intricate role of the intratumoral microbiome in tumor development by exploring its effects on reshaping the multileveled ecosystem in which tumors thrive, the TME. To dissect the complexity and the multitude of layers within the TME, we distinguish six specialized tumor microenvironments, namely, the immune, metabolic, hypoxic, acidic, mechanical and innervated microenvironments. Accordingly, we attempt to decipher the effects of the intratumoral microbiome on each specialized microenvironment and ultimately decode its tumor-promoting or tumor-suppressive impact. Additionally, we portray the intratumoral microbiome as an orchestrator in the tumor milieu, fine-tuning the responses in distinct, specialized microenvironments and remodeling the TME in a multileveled and multifaceted manner.
Collapse
Affiliation(s)
- Athina A. Kyriazi
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Makrina Karaglani
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
- Laboratory of Hygiene and Environmental Protection, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Sofia Agelaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Stavroula Baritaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| |
Collapse
|
42
|
Liu W, Li Y, Wu P, Guo X, Xu Y, Jin L, Zhao D. The intratumoral microbiota: a new horizon in cancer immunology. Front Cell Infect Microbiol 2024; 14:1409464. [PMID: 39135638 PMCID: PMC11317474 DOI: 10.3389/fcimb.2024.1409464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/01/2024] [Indexed: 08/15/2024] Open
Abstract
Over the past decade, advancements in high-throughput sequencing technologies have led to a qualitative leap in our understanding of the role of the microbiota in human diseases, particularly in oncology. Despite the low biomass of the intratumoral microbiota, it remains a crucial component of the tumor immune microenvironment, displaying significant heterogeneity across different tumor tissues and individual patients. Although immunotherapy has emerged a major strategy for treating tumors, patient responses to these treatments vary widely. Increasing evidence suggests that interactions between the intratumoral microbiota and the immune system can modulate host tumor immune responses, thereby influencing the effectiveness of immunotherapy. Therefore, it is critical to gain a deep understanding of how the intratumoral microbiota shapes and regulates the tumor immune microenvironment. Here, we summarize the latest advancements on the role of the intratumoral microbiota in cancer immunity, exploring the potential mechanisms through which immune functions are influenced by intratumoral microbiota within and outside the gut barrier. We also discuss the impact of the intratumoral microbiota on the response to cancer immunotherapy and its clinical applications, highlighting future research directions and challenges in this field. We anticipate that the valuable insights into the interactions between cancer immunity and the intratumoral microbiota provided in this review will foster the development of microbiota-based tumor therapies.
Collapse
Affiliation(s)
- Wei Liu
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Yuming Li
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Ping Wu
- General Surgery Department of Liaoyuan Central Hospital, Jilin, China
| | - Xinyue Guo
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Yifei Xu
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Lianhai Jin
- Low Pressure and Low Oxygen Environment and Health Intervention Innovation Center, Jilin Medical University, Jilin, China
| | - Donghai Zhao
- College of Basic Medicine, Jilin Medical University, Jilin, China
| |
Collapse
|
43
|
Hering M, Madi A, Sandhoff R, Ma S, Wu J, Mieg A, Richter K, Mohr K, Knabe N, Stichling D, Poschet G, Bestvater F, Frank L, Utikal J, Umansky V, Cui G. Sphinganine recruits TLR4 adaptors in macrophages and promotes inflammation in murine models of sepsis and melanoma. Nat Commun 2024; 15:6067. [PMID: 39025856 PMCID: PMC11258287 DOI: 10.1038/s41467-024-50341-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 07/08/2024] [Indexed: 07/20/2024] Open
Abstract
After recognizing its ligand lipopolysaccharide, Toll-like receptor 4 (TLR4) recruits adaptor proteins to the cell membrane, thereby initiating downstream signaling and triggering inflammation. Whether this recruitment of adaptor proteins is dependent solely on protein-protein interactions is unknown. Here, we report that the sphingolipid sphinganine physically interacts with the adaptor proteins MyD88 and TIRAP and promotes MyD88 recruitment in macrophages. Myeloid cell-specific deficiency in serine palmitoyltransferase long chain base subunit 2, which encodes the key enzyme catalyzing sphingolipid biosynthesis, decreases the membrane recruitment of MyD88 and inhibits inflammatory responses in in vitro bone marrow-derived macrophage and in vivo sepsis models. In a melanoma mouse model, serine palmitoyltransferase long chain base subunit 2 deficiency decreases anti-tumor myeloid cell responses and increases tumor growth. Therefore, sphinganine biosynthesis is required for the initiation of TLR4 signal transduction and serves as a checkpoint for macrophage pattern recognition in sepsis and melanoma mouse models.
Collapse
Affiliation(s)
- Marvin Hering
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim (UMM), Ruprecht-Karls University of Heidelberg, Mannheim, Germany.
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.
| | - Alaa Madi
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roger Sandhoff
- Lipid Pathobiochemistry Group (A411), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sicong Ma
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230601, China
| | - Jingxia Wu
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230601, China
| | - Alessa Mieg
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karsten Richter
- Electron Microscopy Core Facility (W230), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kerstin Mohr
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nora Knabe
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Helmholtz Institute for Translational Oncology, Mainz (HI-TRON Mainz)-A Helmholtz Institute of the DKFZ, Mainz, Germany
| | - Diana Stichling
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gernot Poschet
- Metabolomics Core Technology Platform, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Felix Bestvater
- Light Microscopy Core Facility (W210), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Larissa Frank
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Division of Cellular Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim (UMM), Ruprecht-Karls University of Heidelberg, Mannheim, Germany
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim (UMM), Ruprecht-Karls University of Heidelberg, Mannheim, Germany
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Guoliang Cui
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230601, China.
- Helmholtz Institute for Translational Oncology, Mainz (HI-TRON Mainz)-A Helmholtz Institute of the DKFZ, Mainz, Germany.
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
44
|
Stevens P, Benidovskaya E, Llorens-Rico V, Raes J, Van Den Eynde M. Bacteria in metastatic sites: Unveiling hidden players in cancer progression. Cancer Cell 2024; 42:1142-1146. [PMID: 38876104 DOI: 10.1016/j.ccell.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/16/2024]
Abstract
Bacteria exhibit key features of cancer metastasis, such as motility, invasion, and modulation of the tumor microenvironment. They migrate through lymphatic and blood systems, invade metastatic tissues, and alter local microenvironments to support metastatic growth. Bacteria also shape the tumor microenvironment, affecting immune responses and inflammation, which influence tumor progression and therapy response. While they hold therapeutic potential, challenges like contamination and complex characterization persist, necessitating advanced sequencing and research for clinical application.
Collapse
Affiliation(s)
- Philippe Stevens
- Institut de Recherche Expérimental et Clinique, Université Catholique de Louvain, Brussels, Belgium.
| | - Elena Benidovskaya
- Institut de Recherche Expérimental et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Veronica Llorens-Rico
- Systems Biology of Host-Microbiome Interactions Lab, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Jeroen Raes
- Katholieke Universiteit Leuven, Laboratory of Molecular Bacteriology Department of Microbiology and Immunology, Rega Institute, Leuven, Belgium; Vlaams Instituut voor Biotechnologie, Center for Microbiology, Leuven, Belgium
| | - Marc Van Den Eynde
- Institut de Recherche Expérimental et Clinique, Université Catholique de Louvain, Brussels, Belgium; Department of Medical Oncology and Hepato-gastroenterology, Institut Roi Albert II, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
45
|
Robinson W, Stone JK, Schischlik F, Gasmi B, Kelly MC, Seibert C, Dadkhah K, Gertz EM, Lee JS, Zhu K, Ma L, Wang XW, Sahinalp SC, Patro R, Leiserson MDM, Harris CC, Schäffer AA, Ruppin E. Identification of intracellular bacteria from multiple single-cell RNA-seq platforms using CSI-Microbes. SCIENCE ADVANCES 2024; 10:eadj7402. [PMID: 38959321 PMCID: PMC11221508 DOI: 10.1126/sciadv.adj7402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 05/29/2024] [Indexed: 07/05/2024]
Abstract
The study of the tumor microbiome has been garnering increased attention. We developed a computational pipeline (CSI-Microbes) for identifying microbial reads from single-cell RNA sequencing (scRNA-seq) data and for analyzing differential abundance of taxa. Using a series of controlled experiments and analyses, we performed the first systematic evaluation of the efficacy of recovering microbial unique molecular identifiers by multiple scRNA-seq technologies, which identified the newer 10x chemistries (3' v3 and 5') as the best suited approach. We analyzed patient esophageal and colorectal carcinomas and found that reads from distinct genera tend to co-occur in the same host cells, testifying to possible intracellular polymicrobial interactions. Microbial reads are disproportionately abundant within myeloid cells that up-regulate proinflammatory cytokines like IL1Β and CXCL8, while infected tumor cells up-regulate antigen processing and presentation pathways. These results show that myeloid cells with bacteria engulfed are a major source of bacterial RNA within the tumor microenvironment (TME) and may inflame the TME and influence immunotherapy response.
Collapse
Affiliation(s)
- Welles Robinson
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20910, USA
- Department of Computer Science, University of Maryland, College Park, MD 20910, USA
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
- Tumour Immunogenomics and Immunosurveillance Laboratory, Department of Oncology, University College London, London, UK
| | - Joshua K. Stone
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Fiorella Schischlik
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Billel Gasmi
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Michael C. Kelly
- Center for Cancer Research Single Cell Analysis Facility, Frederick National Laboratory for Cancer Research, Bethesda, MD 20701, USA
| | - Charlie Seibert
- Center for Cancer Research Single Cell Analysis Facility, Frederick National Laboratory for Cancer Research, Bethesda, MD 20701, USA
| | - Kimia Dadkhah
- Center for Cancer Research Single Cell Analysis Facility, Frederick National Laboratory for Cancer Research, Bethesda, MD 20701, USA
| | - E. Michael Gertz
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Joo Sang Lee
- Department of Artificial Intelligence and Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kaiyuan Zhu
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
- Department of Computer Science, Indiana University, Bloomington, IN 47408, USA
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lichun Ma
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - S. Cenk Sahinalp
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Rob Patro
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20910, USA
- Department of Computer Science, University of Maryland, College Park, MD 20910, USA
| | - Mark D. M. Leiserson
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20910, USA
- Department of Computer Science, University of Maryland, College Park, MD 20910, USA
| | - Curtis C. Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Alejandro A. Schäffer
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
46
|
Cho YS, Han K, Xu J, Moon JJ. Novel strategies for modulating the gut microbiome for cancer therapy. Adv Drug Deliv Rev 2024; 210:115332. [PMID: 38759702 PMCID: PMC11268941 DOI: 10.1016/j.addr.2024.115332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Recent advancements in genomics, transcriptomics, and metabolomics have significantly advanced our understanding of the human gut microbiome and its impact on the efficacy and toxicity of anti-cancer therapeutics, including chemotherapy, immunotherapy, and radiotherapy. In particular, prebiotics, probiotics, and postbiotics are recognized for their unique properties in modulating the gut microbiota, maintaining the intestinal barrier, and regulating immune cells, thus emerging as new cancer treatment modalities. However, clinical translation of microbiome-based therapy is still in its early stages, facing challenges to overcome physicochemical and biological barriers of the gastrointestinal tract, enhance target-specific delivery, and improve drug bioavailability. This review aims to highlight the impact of prebiotics, probiotics, and postbiotics on the gut microbiome and their efficacy as cancer treatment modalities. Additionally, we summarize recent innovative engineering strategies designed to overcome challenges associated with oral administration of anti-cancer treatments. Moreover, we will explore the potential benefits of engineered gut microbiome-modulating approaches in ameliorating the side effects of immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Young Seok Cho
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kai Han
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 21009, China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 21009, China
| | - Jin Xu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
47
|
Rajagopal D, MacLeod E, Corogeanu D, Vessillier S. Immune-related adverse events of antibody-based biological medicines in cancer therapy. J Cell Mol Med 2024; 28:e18470. [PMID: 38963257 PMCID: PMC11223167 DOI: 10.1111/jcmm.18470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/03/2024] [Accepted: 05/22/2024] [Indexed: 07/05/2024] Open
Abstract
Recombinant antibodies (Abs) are an integral modality for the treatment of multiple tumour malignancies. Since the Food and Drug Administration (FDA) approval of rituximab as the first monoclonal antibody (mAb) for cancer treatment, several mAbs and antibody (Ab)-based therapies have been approved for the treatment of solid tumour malignancies and other cancers. These Abs function by either blocking oncogenic pathways or angiogenesis, modulating immune response, or by delivering a conjugated drug. The use of Ab-based therapy in cancer patients who could benefit from the treatment, however, is still limited by associated toxicity profiles which may stem from biological features and processes related to target binding, alongside biochemical and/or biophysical characteristics of the therapeutic Ab. A significant immune-related adverse event (irAE) associated with Ab-based therapies is cytokine release syndrome (CRS), characterized by the development of fever, rash and even marked, life-threatening hypotension, and acute inflammation with secondary to systemic uncontrolled increase in a range of pro-inflammatory cytokines. Here, we review irAEs associated with specific classes of approved, Ab-based novel cancer immunotherapeutics, namely immune checkpoint (IC)-targeting Abs, bispecific Abs (BsAbs) and Ab-drug-conjugates (ADCs), highlighting the significance of harmonization in preclinical assay development for safety assessment of Ab-based biotherapeutics as an approach to support and refine clinical translation.
Collapse
Affiliation(s)
- Deepa Rajagopal
- Immunotherapy, Biotherapeutics and Advanced Therapies Division, Science, Research, and Innovation Group, Medicines and Healthcare products Regulatory Agency (MHRA)HertfordshireUK
| | - Elliot MacLeod
- Immunotherapy, Biotherapeutics and Advanced Therapies Division, Science, Research, and Innovation Group, Medicines and Healthcare products Regulatory Agency (MHRA)HertfordshireUK
- Present address:
Gilead Sciences, Winchester HouseOxfordUK
| | - Diana Corogeanu
- Immunotherapy, Biotherapeutics and Advanced Therapies Division, Science, Research, and Innovation Group, Medicines and Healthcare products Regulatory Agency (MHRA)HertfordshireUK
- Present address:
East Sussex Healthcare NHS Trust, Conquest HospitalEast SussexUK
| | - Sandrine Vessillier
- Immunotherapy, Biotherapeutics and Advanced Therapies Division, Science, Research, and Innovation Group, Medicines and Healthcare products Regulatory Agency (MHRA)HertfordshireUK
| |
Collapse
|
48
|
Sugita Y, Muraoka D, Demachi-Okamura A, Komuro H, Masago K, Sasaki E, Fukushima Y, Matsui T, Shinohara S, Takahashi Y, Nishida R, Takashima C, Yamaguchi T, Horio Y, Hashimoto K, Tanaka I, Hamana H, Kishi H, Miura D, Tanaka Y, Onoue K, Onoguchi K, Yamashita Y, Stratford R, Clancy T, Yamaguchi R, Kuroda H, Ishibashi H, Okubo K, Matsushita H. Candidate tumor-specific CD8 + T cell subsets identified in the malignant pleural effusion of advanced lung cancer patients by single-cell analysis. Oncoimmunology 2024; 13:2371556. [PMID: 38952674 PMCID: PMC11216099 DOI: 10.1080/2162402x.2024.2371556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/19/2024] [Indexed: 07/03/2024] Open
Abstract
Isolation of tumor-specific T cells and their antigen receptors (TCRs) from malignant pleural effusions (MPE) may facilitate the development of TCR-transduced adoptive cellular immunotherapy products for advanced lung cancer patients. However, the characteristics and markers of tumor-specific T-cells in MPE are largely undefined. To this end, to establish the phenotypes and antigen specificities of CD8+ T cells, we performed single-cell RNA and TCR sequencing of samples from three advanced lung cancer patients. Dimensionality reduction on a total of 4,983 CD8+ T cells revealed 10 clusters including naïve, memory, and exhausted phenotypes. We focused particularly on exhausted T cell clusters and tested their TCR reactivity against neoantigens predicted from autologous cancer cell lines. Four different TCRs specific for the same neoantigen and one orphan TCR specific for the autologous cell line were identified from one of the patients. Differential gene expression analysis in tumor-specific T cells relative to the other T cells identified CXCL13, as a candidate gene expressed by tumor-specific T cells. In addition to expressing CXCL13, tumor-specific T cells were present in a higher proportion of T cells co-expressing PDCD1(PD-1)/TNFRSF9(4-1BB). Furthermore, flow cytometric analyses in advanced lung cancer patients with MPE documented that those with high PD-1/4-1BB expression have a better prognosis in the subset of 57 adenocarcinoma patients (p = .039). These data suggest that PD-1/4-1BB co-expression might identify tumor-specific CD8+ T cells in MPE, which are associated with patients' prognosis. (233 words).
Collapse
Affiliation(s)
- Yusuke Sugita
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Thoracic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daisuke Muraoka
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Ayako Demachi-Okamura
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Hiroyasu Komuro
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Katsuhiro Masago
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Eiichi Sasaki
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Yasunori Fukushima
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Takuya Matsui
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Shuichi Shinohara
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Yusuke Takahashi
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Reina Nishida
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Chieko Takashima
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Teppei Yamaguchi
- Department of Thoracic Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Yoshitsugu Horio
- Department of Thoracic Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Kana Hashimoto
- Department of Respiratory Internal Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Ichidai Tanaka
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Hamana
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Hiroyuki Kishi
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Daiki Miura
- AI Drug Development Division, NEC Corporation, Tokyo, Japan
| | - Yuki Tanaka
- AI Drug Development Division, NEC Corporation, Tokyo, Japan
| | - Kousuke Onoue
- AI Drug Development Division, NEC Corporation, Tokyo, Japan
| | | | | | | | - Trevor Clancy
- NEC OncoImmunity AS, Oslo Cancer Cluster, Oslo, Norway
| | - Rui Yamaguchi
- Division of Cancer System Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Cancer Informatics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Kuroda
- Department of Thoracic Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Hironori Ishibashi
- Department of Thoracic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenichi Okubo
- Department of Thoracic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hirokazu Matsushita
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Cancer Immunogenomics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
49
|
Hao Q, Long Y, Yang Y, Deng Y, Ding Z, Yang L, Shu Y, Xu H. Development and Clinical Applications of Therapeutic Cancer Vaccines with Individualized and Shared Neoantigens. Vaccines (Basel) 2024; 12:717. [PMID: 39066355 PMCID: PMC11281709 DOI: 10.3390/vaccines12070717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Neoantigens, presented as peptides on the surfaces of cancer cells, have recently been proposed as optimal targets for immunotherapy in clinical practice. The promising outcomes of neoantigen-based cancer vaccines have inspired enthusiasm for their broader clinical applications. However, the individualized tumor-specific antigens (TSA) entail considerable costs and time due to the variable immunogenicity and response rates of these neoantigens-based vaccines, influenced by factors such as neoantigen response, vaccine types, and combination therapy. Given the crucial role of neoantigen efficacy, a number of bioinformatics algorithms and pipelines have been developed to improve the accuracy rate of prediction through considering a series of factors involving in HLA-peptide-TCR complex formation, including peptide presentation, HLA-peptide affinity, and TCR recognition. On the other hand, shared neoantigens, originating from driver mutations at hot mutation spots (e.g., KRASG12D), offer a promising and ideal target for the development of therapeutic cancer vaccines. A series of clinical practices have established the efficacy of these vaccines in patients with distinct HLA haplotypes. Moreover, increasing evidence demonstrated that a combination of tumor associated antigens (TAAs) and neoantigens can also improve the prognosis, thus expand the repertoire of shared neoantigens for cancer vaccines. In this review, we provide an overview of the complex process involved in identifying personalized neoantigens, their clinical applications, advances in vaccine technology, and explore the therapeutic potential of shared neoantigen strategies.
Collapse
Affiliation(s)
- Qing Hao
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.L.); (Y.Y.); (Y.D.); (Z.D.); (L.Y.)
| | - Yuhang Long
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.L.); (Y.Y.); (Y.D.); (Z.D.); (L.Y.)
| | - Yi Yang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.L.); (Y.Y.); (Y.D.); (Z.D.); (L.Y.)
| | - Yiqi Deng
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.L.); (Y.Y.); (Y.D.); (Z.D.); (L.Y.)
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhenyu Ding
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.L.); (Y.Y.); (Y.D.); (Z.D.); (L.Y.)
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.L.); (Y.Y.); (Y.D.); (Z.D.); (L.Y.)
| | - Yang Shu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.L.); (Y.Y.); (Y.D.); (Z.D.); (L.Y.)
- Gastric Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Heng Xu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.L.); (Y.Y.); (Y.D.); (Z.D.); (L.Y.)
- Institute of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Center of Clinical Laboratory Medicine, Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
50
|
Che S, Yan Z, Feng Y, Zhao H. Unveiling the intratumoral microbiota within cancer landscapes. iScience 2024; 27:109893. [PMID: 38799560 PMCID: PMC11126819 DOI: 10.1016/j.isci.2024.109893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Recent advances in cancer research have unveiled a significant yet previously underappreciated aspect of oncology: the presence and role of intratumoral microbiota. These microbial residents, encompassing bacteria, fungi, and viruses within tumor tissues, have been found to exert considerable influence on tumor development, progression, and the efficacy of therapeutic interventions. This review aims to synthesize these groundbreaking discoveries, providing an integrated overview of the identification, characterization, and functional roles of intratumoral microbiota in cancer biology. We focus on elucidating the complex interactions between these microorganisms and the tumor microenvironment, highlighting their potential as novel biomarkers and therapeutic targets. The purpose of this review is to offer a comprehensive understanding of the microbial dimension in cancer, paving the way for innovative approaches in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Shusheng Che
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266005, Shandong, China
| | - Zhiyong Yan
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266005, Shandong, China
| | - Yugong Feng
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266005, Shandong, China
| | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266005, Shandong, China
| |
Collapse
|