1
|
Arnedo-Pac C, Aitken SJ. DNA lesions piece together impossible trees. Trends Genet 2025; 41:456-458. [PMID: 40180876 DOI: 10.1016/j.tig.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 04/05/2025]
Abstract
DNA lesions can persist through multiple cell cycles, resulting in mutational strand asymmetry, multiallelic variation, and somatic mosaicism. But for how long do these lesions persist? Recent work from Spencer Chapman et al. shows that they can last for months to years, even arising from endogenous exposures in utero.
Collapse
Affiliation(s)
- Claudia Arnedo-Pac
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Sarah J Aitken
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK; Center of Molecular and Cellular Oncology, Yale University, New Haven, CT, USA; Department of Pathology, Yale University, New Haven, CT, USA.
| |
Collapse
|
2
|
Tabrizi S, Martin-Alonso C, Xiong K, Bhatia SN, Adalsteinsson VA, Love JC. Modulating cell-free DNA biology as the next frontier in liquid biopsies. Trends Cell Biol 2025; 35:459-469. [PMID: 39730275 PMCID: PMC12145268 DOI: 10.1016/j.tcb.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 12/29/2024]
Abstract
Technical advances over the past two decades have enabled robust detection of cell-free DNA (cfDNA) in biological samples. Yet, higher clinical sensitivity is required to realize the full potential of liquid biopsies. This opinion article argues that to overcome current limitations, the abundance of informative cfDNA molecules - such as circulating tumor DNA (ctDNA) - collected in a sample needs to increase. To accomplish this, new methods to modulate the biological processes that govern cfDNA production, trafficking, and clearance in the body are needed, informed by a deeper understanding of cfDNA biology. Successful development of such methods could enable a major leap in the performance of liquid biopsies and vastly expand their utility across the spectrum of clinical care.
Collapse
Affiliation(s)
- Shervin Tabrizi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Radiation Oncology, Mass General Brigham, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Carmen Martin-Alonso
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kan Xiong
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sangeeta N Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Wyss Institute at Harvard University, Boston, MA, USA; Howard Hughes Medical Institute, Cambridge, MA, USA
| | | | - J Christopher Love
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
3
|
Lee-Six H, Treger TD, Dave M, Coorens TH, Anderson ND, Tiersma Y, Derakhshan S, de Haan S, van den Heuvel-Eibrink MM, Wang Y, Wenger A, Al-Saadi R, Lawford A, Letunovska A, Wegert J, Parks C, Morcrette G, Gessler M, Vujanic G, Chowdhury T, J O'Sullivan M, de Krijger RR, Stratton MR, Pritchard-Jones K, Hutchinson JC, Drost J, Behjati S. High resolution clonal architecture of hypomutated Wilms tumours. Nat Commun 2025; 16:4647. [PMID: 40442086 PMCID: PMC12122882 DOI: 10.1038/s41467-025-59854-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 05/02/2025] [Indexed: 06/02/2025] Open
Abstract
A paradigm of childhood cancers is that they have a low mutation burden, with some ostensibly bearing fewer mutations than the normal tissues from which they derive. We set out to resolve this paradox by examining paediatric renal cancers with exceptionally few mutations using high resolution, high depth sequencing approaches. We find that apparent hypomutation is the result of unusual clonal architecture due to a normal tissue-like mode of tumour evolution, raising the possibility that the mutation burden of some cancers has been systematically misjudged.
Collapse
Affiliation(s)
- Henry Lee-Six
- Wellcome Sanger Institute, Hinxton, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Taryn D Treger
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Manas Dave
- Wellcome Sanger Institute, Hinxton, UK
- Department of Biochemistry, The University of Cambridge, Cambridge, UK
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | | | | | - Yvonne Tiersma
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Sepide Derakhshan
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Sanne de Haan
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | | | | | | | - Reem Al-Saadi
- UCL Great Ormond Street Institute of Child Health, London, UK
- Great Ormond Street Hospital for Children, London, UK
| | - Alice Lawford
- Great Ormond Street Hospital for Children, London, UK
| | - Aleksandra Letunovska
- UCL Great Ormond Street Institute of Child Health, London, UK
- Great Ormond Street Hospital for Children, London, UK
| | - Jenny Wegert
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Würzburg University & Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | | | - Guillaume Morcrette
- UCL Great Ormond Street Institute of Child Health, London, UK
- Great Ormond Street Hospital for Children, London, UK
| | - Manfred Gessler
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Würzburg University & Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | | | - Tanzina Chowdhury
- UCL Great Ormond Street Institute of Child Health, London, UK
- Great Ormond Street Hospital for Children, London, UK
| | - Maureen J O'Sullivan
- Department of Pathology, Children's Health Ireland at Crumlin, Dublin, Ireland
- Histopathology Department, The University of Dublin, Trinity College, Dublin, Ireland
| | - Ronald R de Krijger
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| | - Sam Behjati
- Wellcome Sanger Institute, Hinxton, UK.
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
- Department of Paediatrics, University of Cambridge, Cambridge, UK.
| |
Collapse
|
4
|
Liu J, Zhang N, Teng G, Tse G, Bai J, Lip GYH, Liu T. Clonal hematopoiesis of indeterminate potential and atrial fibrillation. Heart Rhythm 2025:S1547-5271(25)02434-8. [PMID: 40368291 DOI: 10.1016/j.hrthm.2025.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/22/2025] [Accepted: 05/07/2025] [Indexed: 05/16/2025]
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia. Clonal hematopoiesis of indeterminate potential (CHIP), characterized by the clonal expansion of hematopoietic stem cells due to acquired mutations without hematologic malignancies, has emerged as a potential risk factor for AF. This narrative review summarizes the shared risk factors between CHIP and AF, including age, lifestyle behaviors and cardiometabolic conditions. It then explores the underlying mechanisms including inflammation, atrial fibrosis and abnormal red cell distribution width. Among these, inflammation is a central driver that promotes abnormal calcium handling, which further accelerates atrial remodeling. For specific mutations, TET2 mutations correlate strongest with AF, with other mutations in genes such as ASXL1, JAK2, TP53, PPM1D and spliceosomes, may also modulate AF susceptibility, though their precise roles require further investigation.
Collapse
Affiliation(s)
- Jie Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Nan Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Guangshuai Teng
- Department of Hematology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China; School of Nursing and Health Sciences, Hong Kong Metropolitan University, Hong Kong, People's Republic of China
| | - Jie Bai
- Department of Hematology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Gregory Y H Lip
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China; Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| |
Collapse
|
5
|
Sutherland CA, Stevens DM, Seong K, Wei W, Krasileva KV. The resistance awakens: Diversity at the DNA, RNA, and protein levels informs engineering of plant immune receptors from Arabidopsis to crops. THE PLANT CELL 2025; 37:koaf109. [PMID: 40344182 PMCID: PMC12118082 DOI: 10.1093/plcell/koaf109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 05/11/2025]
Abstract
Plants rely on germline-encoded, innate immune receptors to sense pathogens and initiate the defense response. The exponential increase in quality and quantity of genomes, RNA-seq datasets, and protein structures has underscored the incredible biodiversity of plant immunity. Arabidopsis continues to serve as a valuable model and theoretical foundation of our understanding of wild plant diversity of immune receptors, while expansion of study into agricultural crops has also revealed distinct evolutionary trajectories and challenges. Here, we provide the classical context for study of both intracellular nucleotide-binding, leucine-rich repeat receptors and surface-localized pattern recognition receptors at the levels of DNA sequences, transcriptional regulation, and protein structures. We then examine how recent technology has shaped our understanding of immune receptor evolution and informed our ability to efficiently engineer resistance. We summarize current literature and provide an outlook on how researchers take inspiration from natural diversity in bioengineering efforts for disease resistance from Arabidopsis and other model systems to crops.
Collapse
Affiliation(s)
- Chandler A Sutherland
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Danielle M Stevens
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Kyungyong Seong
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Wei Wei
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Ksenia V Krasileva
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
6
|
Cheng AP, Widman AJ, Arora A, Rusinek I, Sossin A, Rajagopalan S, Midler N, Hooper WF, Murray RM, Halmos D, Langanay T, Chu H, Inghirami G, Potenski C, Germer S, Marton M, Manaa D, Helland A, Furatero R, McClintock J, Winterkorn L, Steinsnyder Z, Wang Y, Alimohamed AI, Malbari MS, Saxena A, Callahan MK, Frederick DT, Spain L, Sigouros M, Manohar J, King A, Wilkes D, Otilano J, Elemento O, Mosquera JM, Jaimovich A, Lipson D, Turajlic S, Zody MC, Altorki NK, Wolchok JD, Postow MA, Robine N, Faltas BM, Boland G, Landau DA. Error-corrected flow-based sequencing at whole-genome scale and its application to circulating cell-free DNA profiling. Nat Methods 2025; 22:973-981. [PMID: 40217113 PMCID: PMC12077166 DOI: 10.1038/s41592-025-02648-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/04/2025] [Indexed: 05/15/2025]
Abstract
Differentiating sequencing errors from true variants is a central genomics challenge, calling for error suppression strategies that balance costs and sensitivity. For example, circulating cell-free DNA (ccfDNA) sequencing for cancer monitoring is limited by sparsity of circulating tumor DNA, abundance of genomic material in samples and preanalytical error rates. Whole-genome sequencing (WGS) can overcome the low abundance of ccfDNA by integrating signals across the mutation landscape, but higher costs limit its wide adoption. Here, we applied deep (~120×) lower-cost WGS (Ultima Genomics) for tumor-informed circulating tumor DNA detection within the part-per-million range. We further leveraged lower-cost sequencing by developing duplex error-corrected WGS of ccfDNA, achieving 7.7 × 10-7 error rates, allowing us to assess disease burden in individuals with melanoma and urothelial cancer without matched tumor sequencing. This error-corrected WGS approach will have broad applicability across genomics, allowing for accurate calling of low-abundance variants at efficient cost and enabling deeper mapping of somatic mosaicism as an emerging central aspect of aging and disease.
Collapse
Affiliation(s)
- Alexandre Pellan Cheng
- New York Genome Center, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA.
- Département de Génie des Systèmes, École de Technologie Supérieure, Montréal, Québec, Canada.
- Axe Cancer, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.
| | - Adam J Widman
- New York Genome Center, New York, NY, USA
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anushri Arora
- New York Genome Center, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | | | - Aaron Sossin
- New York Genome Center, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Srinivas Rajagopalan
- New York Genome Center, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Nicholas Midler
- New York Genome Center, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | | | - Rebecca M Murray
- New York Genome Center, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Daniel Halmos
- New York Genome Center, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Theophile Langanay
- New York Genome Center, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Hoyin Chu
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Giorgio Inghirami
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Catherine Potenski
- New York Genome Center, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | | | | | - Dina Manaa
- New York Genome Center, New York, NY, USA
| | | | | | | | | | | | - Yohyoh Wang
- New York Genome Center, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Asrar I Alimohamed
- Mass General Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Murtaza S Malbari
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Ashish Saxena
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | | | - Dennie T Frederick
- Mass General Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Lavinia Spain
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
- Renal and Skin Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | - Michael Sigouros
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jyothi Manohar
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Abigail King
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - David Wilkes
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - John Otilano
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Juan Miguel Mosquera
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | | | - Samra Turajlic
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
- Renal and Skin Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | | | - Nasser K Altorki
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Jedd D Wolchok
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Ludwig Institute for Cancer Research, New York, NY, USA
| | - Michael A Postow
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Bishoy M Faltas
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Genevieve Boland
- Mass General Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Dan A Landau
- New York Genome Center, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
7
|
Khan Y, Bisht AS, Ashique S, Khan G, Hussain MS. Innovative anti-aging strategies targeting WNT pathway epigenetics for gut function. HUMAN GENE 2025; 44:201397. [DOI: 10.1016/j.humgen.2025.201397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
|
8
|
Kapadia CD, Williams N, Dawson KJ, Watson C, Yousefzadeh MJ, Le D, Nyamondo K, Kodavali S, Cagan A, Waldvogel S, Zhang X, De La Fuente J, Leongamornlert D, Mitchell E, Florez MA, Sosnowski K, Aguilar R, Martell A, Guzman A, Harrison D, Niedernhofer LJ, King KY, Campbell PJ, Blundell J, Goodell MA, Nangalia J. Clonal dynamics and somatic evolution of haematopoiesis in mouse. Nature 2025; 641:681-689. [PMID: 40044850 PMCID: PMC12074984 DOI: 10.1038/s41586-025-08625-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/10/2025] [Indexed: 03/12/2025]
Abstract
Haematopoietic stem cells maintain blood production throughout life1. Although extensively characterized using the laboratory mouse, little is known about clonal selection and population dynamics of the haematopoietic stem cell pool during murine ageing. We isolated stem cells and progenitors from young and old mice, identifying 221,890 somatic mutations genome-wide in 1,845 single-cell-derived colonies. Mouse stem cells and progenitors accrue approximately 45 somatic mutations per year, a rate only approximately threefold greater than human progenitors despite the vastly different organismal sizes and lifespans. Phylogenetic patterns show that stem and multipotent progenitor cell pools are established during embryogenesis, after which they independently self-renew in parallel over life, evenly contributing to differentiated progenitors and peripheral blood. The stem cell pool grows steadily over the mouse lifespan to about 70,000 cells, self-renewing about every 6 weeks. Aged mice did not display the profound loss of clonal diversity characteristic of human haematopoietic ageing. However, targeted sequencing showed small, expanded clones in the context of murine ageing, which were larger and more numerous following haematological perturbations, exhibiting a selection landscape similar to humans. Our data illustrate both conserved features of population dynamics of blood and distinct patterns of age-associated somatic evolution in the short-lived mouse.
Collapse
Affiliation(s)
- Chiraag D Kapadia
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | | | - Kevin J Dawson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Caroline Watson
- Early Cancer Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Matthew J Yousefzadeh
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Columbia Center for Translational Immunology, Columbia Center for Human Longevity, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Duy Le
- Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Kudzai Nyamondo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Sreeya Kodavali
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Alex Cagan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Departments of Genetics, Pathology & Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Sarah Waldvogel
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Xiaoyan Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Josephine De La Fuente
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | | | - Emily Mitchell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Marcus A Florez
- Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Krzysztof Sosnowski
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Rogelio Aguilar
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Alejandra Martell
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Anna Guzman
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | | | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Katherine Y King
- Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Peter J Campbell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Jamie Blundell
- Early Cancer Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Margaret A Goodell
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| | - Jyoti Nangalia
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
9
|
Yokoyama A, Watanabe K, Inoue Y, Hirano T, Tamaoki M, Hirohashi K, Kawaguchi S, Ishida Y, Takeuchi Y, Kishimoto Y, Kim SK, Katada C, Nannya Y, Seno H, Ogawa S, Muto M, Kakiuchi N. Somatic mosaicism in the buccal mucosa reflects lifestyle and germline risk factors for esophageal squamous cell carcinoma. Sci Transl Med 2025; 17:eadq6740. [PMID: 40305574 DOI: 10.1126/scitranslmed.adq6740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/31/2024] [Accepted: 04/09/2025] [Indexed: 05/02/2025]
Abstract
Clones harboring cancer driver mutations can expand in normal tissues, known as somatic mosaicism, and can be influenced by age and environmental and germline factors. Somatic mosaicism in the blood predicts the risk of hematological malignancies; however, the relevance of somatic mosaicism to solid tumors remains unclear, in part because of limited sample availability. Lifestyle habits, including alcohol consumption and tobacco smoking, and pathogenic germline variants increase the risk of developing esophageal squamous cell carcinoma (ESCC). Because somatic mosaicism in the esophagus is known to be associated with aging and lifestyle habits and considering the contiguity of squamous epithelium from the esophagus to the oral cavity, we noninvasively collected buccal mucosa samples from patients with and without ESCC using swabs of different sizes and conducted deep error-corrected sequencing of 26 cancer driver genes to obtain comprehensive landscapes of tissue remodeling by driver-mutant clones. We found that the number of mutations increased with drinking, but only in individuals with germline risks. Moreover, across positively selected genes in the buccal mucosa, mutations increased with age and smoking regardless of germline risks, whereas drinking affected only those with germline risks. The buccal mucosa of patients with ESCC was extensively remodeled, and models predicting the presence of ESCC demonstrated high accuracy with smaller swab sizes, possibly because of their higher sensitivity in detecting small mutant clones. In conclusion, we showed that buccal mucosal remodeling reflects lifestyle and germline risks, as well as age, which might be exploited for noninvasive risk assessment of ESCC.
Collapse
Affiliation(s)
- Akira Yokoyama
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Koichi Watanabe
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yoshikage Inoue
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Tomonori Hirano
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Masashi Tamaoki
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Kenshiro Hirohashi
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Shun Kawaguchi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yoshihiro Ishida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yasuhide Takeuchi
- Department of Diagnostic Pathology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yo Kishimoto
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Soo Ki Kim
- Department of Gastroenterology, Kobe Asahi Hospital, Kobe 653-0801, Japan
| | - Chikatoshi Katada
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Yasuhito Nannya
- Division of Hematopoietic Disease Control, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan
- Department of Medicine, Centre for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm 171 77, Sweden
| | - Manabu Muto
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Nobuyuki Kakiuchi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
10
|
Shao DD, Kriz AJ, Snellings DA, Zhou Z, Zhao Y, Enyenihi L, Walsh C. Advances in single-cell DNA sequencing enable insights into human somatic mosaicism. Nat Rev Genet 2025:10.1038/s41576-025-00832-3. [PMID: 40281095 DOI: 10.1038/s41576-025-00832-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2025] [Indexed: 04/29/2025]
Abstract
DNA sequencing from bulk or clonal human tissues has shown that genetic mosaicism is common and contributes to both cancer and non-cancerous disorders. However, single-cell resolution is required to understand the full genetic heterogeneity that exists within a tissue and the mechanisms that lead to somatic mosaicism. Single-cell DNA-sequencing technologies have traditionally trailed behind those of single-cell transcriptomics and epigenomics, largely because most applications require whole-genome amplification before costly whole-genome sequencing. Now, recent technological and computational advances are enabling the use of single-cell DNA sequencing to tackle previously intractable problems, such as delineating the genetic landscape of tissues with complex clonal patterns, of samples where cellular material is scarce and of non-cycling, postmitotic cells. Single-cell genomes are also revealing the mutational patterns that arise from biological processes or disease states, and have made it possible to track cell lineage in human tissues. These advances in our understanding of tissue biology and our ability to identify disease mechanisms will ultimately transform how disease is diagnosed and monitored.
Collapse
Affiliation(s)
- Diane D Shao
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
- Division of Genetics and Genomics, Department of Paediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Andrea J Kriz
- Division of Genetics and Genomics, Department of Paediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Daniel A Snellings
- Division of Genetics and Genomics, Department of Paediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Zinan Zhou
- Division of Genetics and Genomics, Department of Paediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yifan Zhao
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Liz Enyenihi
- Division of Genetics and Genomics, Department of Paediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Biological and Biomedical Sciences Graduate Program, Harvard Medical School, Boston, MA, USA
| | - Christopher Walsh
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
- Division of Genetics and Genomics, Department of Paediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
11
|
Winter E, Emiliani F, Cook A, Abderrahim A, McKenna AH. BASELINE: A CRISPR Base Editing Platform for Mammalian-Scale Single-Cell Lineage Tracing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644238. [PMID: 40166145 PMCID: PMC11957144 DOI: 10.1101/2025.03.19.644238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
A cells fate is shaped by its inherited state, or lineage, and the ever-shifting context of its environment. CRISPR-based recording technologies are a promising solution to map the lineage of a developing system, yet challenges remain regarding single-cell recovery, engineering complexity, and scale. Here, we introduce BASELINE, which uses base editing to generate high-resolution lineage trees in conjunction with single-cell profiling. BASELINE uses the Cas12a adenine base editor to irreversibly edit nucleotides within 50 synthetic target sites, which are integrated multiple times into a cells genome. We show that BASELINE accumulates lineage-specific marks over a wide range of biologically relevant intervals, recording more than 4300 bits of information in a model of pancreatic cancer, a 50X increase over existing technologies. Single-cell sequencing reveals high-fidelity capture of these recorders, recovering lineage reconstructions up to 40 cell divisions deep, within the estimated range of mammalian development. We expect BASELINE to apply to a wide range of lineage-tracing projects in development and disease, especially in which cellular engineering makes small, more distributed systems challenging.
Collapse
|
12
|
Motyer A, Jackson S, Yang B, Harliwong I, Tian W, Shiu WIA, Shao Y, Wang B, McLean C, Barnett M, Kilpatrick TJ, Leslie S, Rubio JP. Neuronal somatic mutations are increased in multiple sclerosis lesions. Nat Neurosci 2025; 28:757-765. [PMID: 40038527 DOI: 10.1038/s41593-025-01895-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/09/2025] [Indexed: 03/06/2025]
Abstract
Neuroinflammation underpins neurodegeneration and clinical progression in multiple sclerosis (MS), but knowledge of processes linking these disease mechanisms remains incomplete. Here we investigated somatic single-nucleotide variants (sSNVs) in the genomes of 106 single neurons from post-mortem brain tissue of ten MS cases and 16 controls to determine whether somatic mutagenesis is involved. We observed an increase of 43.9 sSNVs per year in neurons from chronic MS lesions, a 2.5 times faster rate than in neurons from normal-appearing MS and control tissues. This difference was equivalent to 1,291 excess sSNVs in lesion neurons at 70 years of age compared to controls. We performed mutational signature analysis to investigate mechanisms underlying neuronal sSNVs and identified a signature characteristic of lesions with a strong, age-associated contribution to sSNV counts. This research suggests that neuroinflammation is mutagenic in the MS brain, potentially contributing to disease progression.
Collapse
Affiliation(s)
- Allan Motyer
- Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Victoria, Australia
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Stacey Jackson
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | | | | | - Wei Tian
- BGI-Australia, Herston, Queensland, Australia
| | | | | | - Bo Wang
- China National GeneBank, Shenzhen, China
- Shenzhen Key Laboratory of Environmental Microbial Genomics and Application, BGI Research, Shenzhen, China
| | - Catriona McLean
- Department of Anatomical Pathology, Alfred Health, Melbourne, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Michael Barnett
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- Department of Neurology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Trevor J Kilpatrick
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Stephen Leslie
- Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Victoria, Australia
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Justin P Rubio
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia.
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
13
|
Qiu GH, Fu M, Zheng X, Huang C. Protection of the genome and the central exome by peripheral non-coding DNA against DNA damage in health, ageing and age-related diseases. Biol Rev Camb Philos Soc 2025; 100:508-529. [PMID: 39327815 DOI: 10.1111/brv.13151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
DNA in eukaryotic genomes is under constant assault from both exogenous and endogenous sources, leading to DNA damage, which is considered a major molecular driver of ageing. Fortunately, the genome and the central exome are safeguarded against these attacks by abundant peripheral non-coding DNA. Non-coding DNA codes for small non-coding RNAs that inactivate foreign nucleic acids in the cytoplasm and physically blocks these attacks in the nucleus. Damage to non-coding DNA produced during such blockage is removed in the form of extrachromosomal circular DNA (eccDNA) through nucleic pore complexes. Consequently, non-coding DNA serves as a line of defence for the exome against DNA damage. The total amount of non-coding DNA/heterochromatin declines with age, resulting in a decrease in both physical blockage and eccDNA exclusion, and thus an increase in the accumulation of DNA damage in the nucleus during ageing and in age-related diseases. Here, we summarize recent evidence supporting a protective role of non-coding DNA in healthy and pathological states and argue that DNA damage is the proximate cause of ageing and age-related genetic diseases. Strategies aimed at strengthening the protective role of non-coding DNA/heterochromatin could potentially offer better systematic protection for the dynamic genome and the exome against diverse assaults, reduce the burden of DNA damage to the exome, and thus slow ageing, counteract age-related genetic diseases and promote a healthier life for individuals.
Collapse
Affiliation(s)
- Guo-Hua Qiu
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| | - Mingjun Fu
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| | - Xintian Zheng
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| | - Cuiqin Huang
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| |
Collapse
|
14
|
Coorens THH, Collord G, Jung H, Wang Y, Moore L, Hooks Y, Mahbubani K, Law SYK, Yan HHN, Yuen ST, Saeb-Parsy K, Campbell PJ, Martincorena I, Leung SY, Stratton MR. The somatic mutation landscape of normal gastric epithelium. Nature 2025; 640:418-426. [PMID: 40108450 PMCID: PMC11981919 DOI: 10.1038/s41586-025-08708-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 01/28/2025] [Indexed: 03/22/2025]
Abstract
The landscapes of somatic mutation in normal cells inform us about the processes of mutation and selection operative throughout life, providing insight into normal ageing and the earliest stages of cancer development1. Here, by whole-genome sequencing of 238 microdissections2 from 30 individuals, including 18 with gastric cancer, we elucidate the developmental trajectories of normal and malignant gastric epithelium. We find that gastric glands are units of monoclonal cell populations that accrue roughly 28 somatic single-nucleotide variants per year, predominantly attributable to endogenous mutational processes. In individuals with gastric cancer, metaplastic glands often show elevated mutation burdens due to acceleration of mutational processes linked to proliferation and oxidative damage. Unusually for normal cells, gastric epithelial cells often carry recurrent trisomies of specific chromosomes, which are highly enriched in a subset of individuals. Surveying 829 polyclonal gastric microbiopsies by targeted sequencing, we find somatic 'driver' mutations in a distinctive repertoire of known cancer genes, including ARID1A, ARID1B, ARID2, CTNNB1 and KDM6A. The prevalence of mutant clones increases with age to occupy roughly 8% of the gastric epithelial lining by age 60 years and is significantly increased by the presence of severe chronic inflammation. Our findings provide insights into intrinsic and extrinsic influences on somatic evolution in the gastric epithelium in healthy, precancerous and malignant states.
Collapse
Affiliation(s)
- Tim H H Coorens
- Wellcome Sanger Institute, Hinxton, UK.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Grace Collord
- Wellcome Sanger Institute, Hinxton, UK
- University College London Hospital, London, UK
| | | | | | | | | | - Krishnaa Mahbubani
- Department of Surgery, University of Cambridge, Cambridge, UK
- Cambridge NIHR Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Simon Y K Law
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, China
| | - Helen H N Yan
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong, China
| | - Siu Tsan Yuen
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, China
- Department of Pathology, St. Paul's Hospital, No. 2, Eastern Hospital Road, Causeway Bay, China
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge, UK
- Cambridge NIHR Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Peter J Campbell
- Wellcome Sanger Institute, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | | | - Suet Yi Leung
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, China.
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong, China.
| | | |
Collapse
|
15
|
Harris A, Burnham K, Pradhyumnan R, Jaishankar A, Häkkinen L, Góngora-Rosero RE, Piazza Y, Andl CD, Andl T. Human-Specific Organization of Proliferation and Stemness in Squamous Epithelia: A Comparative Study to Elucidate Differences in Stem Cell Organization. Int J Mol Sci 2025; 26:3144. [PMID: 40243939 PMCID: PMC11989042 DOI: 10.3390/ijms26073144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/19/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
The mechanisms that influence human longevity are complex and operate on cellular, tissue, and organismal levels. To better understand the tissue-level mechanisms, we compared the organization of cell proliferation, differentiation, and cytoprotective protein expression in the squamous epithelium of the esophagus between mammals with varying lifespans. Humans are the only species with a quiescent basal stem cell layer that is distinctly physically separated from parabasal transit-amplifying cells. In addition to these stark differences in the organization of proliferation, human squamous epithelial stem cells express DNA repair-related markers, such as MECP2 and XPC, which are absent or low in mouse basal cells. Furthermore, we investigated whether the transition from basal to suprabasal is different between species. In humans, the parabasal cells seem to originate from cells detaching from the basement membrane, and these can already begin to proliferate while delaminating. In most other species, delaminating cells have been rare or their proliferation rate is different from that of their human counterparts, indicating an alternative mode of how stem cells maintain the tissue. In humans, the combination of an elevated cytoprotective signature and novel tissue organization may enhance resistance to aging and prevent cancer. Our results point to enhanced cellular cytoprotection and a tissue architecture which separates stemness and proliferation. These are both potential factors contributing to the increased fitness of human squamous epithelia to support longevity by suppressing tumorigenesis. However, the organization of canine oral mucosa shows some similarities to that of human tissue and may provide a useful model to understand the relationship between tissue architecture, gene expression regulation, tumor suppression, and longevity.
Collapse
Affiliation(s)
- Ashlee Harris
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA (K.B.); (R.P.); (R.E.G.-R.)
| | - Kaylee Burnham
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA (K.B.); (R.P.); (R.E.G.-R.)
| | - Ram Pradhyumnan
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA (K.B.); (R.P.); (R.E.G.-R.)
| | - Arthi Jaishankar
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA (K.B.); (R.P.); (R.E.G.-R.)
| | - Lari Häkkinen
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada;
| | - Rafael E. Góngora-Rosero
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA (K.B.); (R.P.); (R.E.G.-R.)
| | - Yelena Piazza
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Claudia D. Andl
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA (K.B.); (R.P.); (R.E.G.-R.)
| | - Thomas Andl
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA (K.B.); (R.P.); (R.E.G.-R.)
| |
Collapse
|
16
|
Bartolomucci A, Nobrega M, Ferrier T, Dickinson K, Kaorey N, Nadeau A, Castillo A, Burnier JV. Circulating tumor DNA to monitor treatment response in solid tumors and advance precision oncology. NPJ Precis Oncol 2025; 9:84. [PMID: 40122951 PMCID: PMC11930993 DOI: 10.1038/s41698-025-00876-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/11/2025] [Indexed: 03/25/2025] Open
Abstract
Circulating tumor DNA (ctDNA) has emerged as a dynamic biomarker in cancer, as evidenced by its increasing integration into clinical practice. Carrying tumor specific characteristics, ctDNA can be used to inform treatment selection, monitor response, and identify drug resistance. In this review, we provide a comprehensive, up-to-date summary of ctDNA in monitoring treatment response with a focus on lung, colorectal, and breast cancers, and discuss current challenges and future directions.
Collapse
Affiliation(s)
- Alexandra Bartolomucci
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Monyse Nobrega
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Tadhg Ferrier
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Kyle Dickinson
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Nivedita Kaorey
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Amélie Nadeau
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Alberto Castillo
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Julia V Burnier
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
- Department of Pathology, McGill University, Montreal, QC, Canada.
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
17
|
Németh E, DeWeerd RA, Green AM, Szüts D. Defining the genome-wide mutagenic impact of APOBEC3 enzymes. Methods Enzymol 2025; 713:101-114. [PMID: 40250950 DOI: 10.1016/bs.mie.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
Somatic mutations drive cancer initiation and tumor evolution. Therefore, the etiology of mutagenesis in cancer is important to preventative and treatment strategies. Somatic mutagenesis in cancer is a multifactorial process and includes both endogenous and exogenous sources of mutations. One recently recognized source of mutagenesis in cancer is the innate immune APOBEC3 family of enzymes, which catalyze cytosine deamination to restrict viral infection but can aberrantly act on the cellular genome, resulting in mutations. Single base substitution (SBS) signatures, or mutational patterns, identified in cancer genomes have demonstrated widespread mutagenesis caused by APOBEC3 enzymes throughout human tumors. To comprehensively define the consequences of APOBEC3 mutagenesis, we developed an experimental pipeline for prospective analysis of genome-wide mutations caused by APOBEC3 activity. This pipeline can be adapted to analyze additional sources of mutagenesis across a spectrum of cells.
Collapse
Affiliation(s)
- Eszter Németh
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Rachel A DeWeerd
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States; Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Abby M Green
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States; Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, United States.
| | - Dávid Szüts
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
| |
Collapse
|
18
|
Oman M, Ness RW. Comparing the predictors of mutability among healthy human tissues inferred from mutations in single-cell genome data. Genetics 2025; 229:iyae215. [PMID: 39950507 DOI: 10.1093/genetics/iyae215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/03/2024] [Indexed: 03/19/2025] Open
Abstract
Studying mutation in healthy somatic tissues is the key for understanding the genesis of cancer and other genetic diseases. Mutation rate varies from site to site in the human genome by up to 100-fold and is influenced by numerous epigenetic and genetic factors including GC content, trinucleotide sequence context, and DNAse accessibility. These factors influence mutation at both local and regional scales and are often interrelated with one another, meaning that predicting mutability or uncovering its drivers requires modelling multiple factors and scales simultaneously. Historically, most investigations have focused either on analyzing the local sequence scale through triplet signatures or on examining the impact of epigenetic processes at larger scales, but not both concurrently. Additionally, sequencing technology limitations have restricted analyses of healthy mutations to coding regions (RNA-seq) or to those that have been influenced by selection (e.g. bulk samples from cancer tissue). Here, we leverage single-cell mutations and present a comprehensive analysis of epigenetic and genetic factors at multiple scales in the germline and 3 healthy somatic tissues. We create models that predict mutability with on average 2% error and find up to 63-fold variation among sites within the same tissue. We observe varying degrees of similarity between tissues: the mutability of genomic positions was 93.4% similar between liver and germline tissues, but sites in germline and skin were only 85.9% similar. We observe both universal and tissue-specific mutagenic processes in healthy tissues, with implications for understanding the maintenance of germline vs soma and the mechanisms underlying early tumorigenesis.
Collapse
Affiliation(s)
- Madeleine Oman
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, M5S 1A1, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, L5L1C6, Canada
| | - Rob W Ness
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, M5S 1A1, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, L5L1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, M5S 1A1, Canada
| |
Collapse
|
19
|
Shoag JE, Srinivasa A, Loh CA, Liu MH, Lassen E, Melanaphy S, Costa BM, Grońska-Pęski M, Jabara NT, Picciotto S, Choi U, Bohorquez AD, Barbieri CE, Callum P, Skytte AB, Evrony GD. Direct measurement of the male germline mutation rate in individuals using sequential sperm samples. Nat Commun 2025; 16:2546. [PMID: 40089484 PMCID: PMC11910575 DOI: 10.1038/s41467-025-57507-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 02/20/2025] [Indexed: 03/17/2025] Open
Abstract
Mutations that accumulate in the human male germline with age are a major driver of genetic diversity and contribute to genetic diseases. However, aging-related male germline mutation rates have not been measured directly in germline cells (sperm) at the level of individuals. We developed a study design in which we recalled 23 sperm donors with prior banked samples to provide new sperm samples. The old and new sequential sperm samples were separated by long timespans, ranging from 10 to 33 years. We profiled these samples by high-fidelity duplex sequencing and demonstrate that direct high-fidelity sequencing of sperm yields cohort-wide mutation rates and patterns consistent with prior family-based (trio) studies. In every individual, we detected an increase in sperm mutation burden between the two sequential samples, yielding individual-specific measurements of germline mutation rate. Deep whole-genome sequencing of sequential sperm samples from two individuals followed by targeted validation measured remarkably stable mosaicism of clonal mutations that likely arose during embryonic and germline development, suggesting that age did not substantially impact the diversity of spermatogonial stem cell pools in these individuals. Our application of high-fidelity and deep whole-genome sequencing to sequential sperm samples provides insight into aging-related mutation processes in the male germline.
Collapse
Affiliation(s)
- Jonathan E Shoag
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | - Amoolya Srinivasa
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
| | - Caitlin A Loh
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
| | - Mei Hong Liu
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
| | - Emilie Lassen
- Cryos International Sperm and Egg Bank, Aarhus, Denmark
| | | | - Benjamin M Costa
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
| | - Marta Grońska-Pęski
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
| | - Nisrine T Jabara
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
| | - Shany Picciotto
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Una Choi
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
| | - Anyull D Bohorquez
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | | | | | - Gilad D Evrony
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY, USA.
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY, USA.
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA.
| |
Collapse
|
20
|
Dong G, Ma CC, Mao S, Naik SM, Brown KSM, McDonough GA, Kim J, Kirkham SL, Cherry JD, Uretsky M, Spurlock E, McKee AC, Huang AY, Miller MB, Lee EA, Walsh CA. Diverse somatic genomic alterations in single neurons in chronic traumatic encephalopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.03.641217. [PMID: 40093089 PMCID: PMC11908173 DOI: 10.1101/2025.03.03.641217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease that is linked to exposure to repetitive head impacts (RHI), yet little is known about its pathogenesis. Applying two single-cell whole-genome sequencing methods to hundreds of neurons from prefrontal cortex of 15 individuals with CTE, and 4 with RHI without CTE, revealed increased somatic single-nucleotide variants in CTE, resembling a pattern previously reported in Alzheimer's disease (AD). Furthermore, we discovered remarkably high burdens of somatic small insertions and deletions in a subset of CTE individuals, resembling a known pattern, ID4, also found in AD. Our results suggest that neurons in CTE experience stereotyped mutational processes shared with AD; the absence of similar changes in RHI neurons without CTE suggests that CTE involves mechanisms beyond RHI alone.
Collapse
Affiliation(s)
- Guanlan Dong
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital; Boston, MA, USA
- Department of Pediatrics, Harvard Medical School; Boston, MA, USA
- Bioinformatics and Integrative Genomics Program, Harvard Medical School; Boston, MA, USA
| | - Chanthia C. Ma
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital; Boston, MA, USA
- Department of Pediatrics, Harvard Medical School; Boston, MA, USA
- Harvard-MIT MD-PhD Program, Harvard Medical School; Boston, MA, USA
| | - Shulin Mao
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital; Boston, MA, USA
- Department of Pediatrics, Harvard Medical School; Boston, MA, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School; Boston, MA, USA
| | - Samuel M. Naik
- Division of Neuropathology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School; Boston, MA, USA
| | - Katherine Sun-Mi Brown
- Division of Neuropathology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School; Boston, MA, USA
| | - Gannon A. McDonough
- Division of Neuropathology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School; Boston, MA, USA
| | - Junho Kim
- Department of Biological Sciences, Sungkyunkwan University; Suwon, South Korea
| | - Samantha L. Kirkham
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital; Boston, MA, USA
- Department of Pediatrics, Harvard Medical School; Boston, MA, USA
| | - Jonathan D. Cherry
- Veterans Affairs (VA) Boston Healthcare System, US Department of Veteran Affairs; Boston, MA, USA
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University; Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Chobanian and Avedisian School of Medicine, Boston University; Boston, MA, USA
| | - Madeline Uretsky
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University; Boston, MA, USA
| | - Elizabeth Spurlock
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University; Boston, MA, USA
| | - Ann C. McKee
- Veterans Affairs (VA) Boston Healthcare System, US Department of Veteran Affairs; Boston, MA, USA
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University; Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Chobanian and Avedisian School of Medicine, Boston University; Boston, MA, USA
- Department of Neurology, Chobanian and Avedisian School of Medicine, Boston University; Boston, MA, USA
| | - August Yue Huang
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital; Boston, MA, USA
- Department of Pediatrics, Harvard Medical School; Boston, MA, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, USA
| | - Michael B. Miller
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital; Boston, MA, USA
- Department of Pediatrics, Harvard Medical School; Boston, MA, USA
- Division of Neuropathology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School; Boston, MA, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, USA
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital; Boston, MA, USA
- Department of Pediatrics, Harvard Medical School; Boston, MA, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, USA
| | - Christopher A. Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital; Boston, MA, USA
- Department of Pediatrics, Harvard Medical School; Boston, MA, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, USA
- Howard Hughes Medical Institute; Boston, MA, USA
| |
Collapse
|
21
|
Cooper MA. Somatic mosaicism in genetic errors of immunity. J Allergy Clin Immunol 2025; 155:759-767. [PMID: 39724970 PMCID: PMC12020649 DOI: 10.1016/j.jaci.2024.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024]
Abstract
Genetic mosaicism in somatic cells can lead to the presence of pathogenic variants in a subset of immune cells causing genetic errors of immunity, often phenocopying germline inborn errors of immunity. Over the last 2 decades, significant progress has been made in the identification of these disorders in patients, including discovery of new diseases. Diagnosis of disease-causing somatic mosaicism provides a target for treatment and monitoring of patients and has implications for genetic counseling. However, there continue to be barriers in the identification of somatic mosaicism, particularly for the clinical diagnosis of patients, based on the limitations of current diagnostic sequencing and analysis approaches. This review focuses on how somatic mosaicism can lead to genetic errors of immunity, the genes known to be associated with somatic genetic errors of immunity, and challenges in the field for accurate diagnosis of patients.
Collapse
Affiliation(s)
- Megan A Cooper
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St Louis, St Louis, Mo.
| |
Collapse
|
22
|
Trastus LA, d'Adda di Fagagna F. The complex interplay between aging and cancer. NATURE AGING 2025; 5:350-365. [PMID: 40038418 DOI: 10.1038/s43587-025-00827-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/17/2025] [Indexed: 03/06/2025]
Abstract
Cancer is an age-related disease, but the interplay between cancer and aging is complex and their shared molecular drivers are deeply intertwined. This Review provides an overview of how different biological pathways affect cancer and aging, leveraging evidence mainly derived from animal studies. We discuss how genome maintenance and accumulation of DNA mutations affect tumorigenesis and tissue homeostasis during aging. We describe how age-related telomere dysfunction and cellular senescence intricately modulate tumor development through mechanisms involving genomic instability and inflammation. We examine how an aged immune system and chronic inflammation shape tumor immunosurveillance, fueling DNA damage and cellular senescence. Finally, as animal models are important to untangling the relative contributions of these aging-modulated pathways to cancer progression and to test interventions, we discuss some of the limitations of physiological and accelerated aging models, aiming to improve experimental designs and enhance translation.
Collapse
Affiliation(s)
| | - Fabrizio d'Adda di Fagagna
- IFOM ETS-the AIRC Institute of Molecular Oncology, Milan, Italy.
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, Italy.
| |
Collapse
|
23
|
Oliver TRW, Lawson ARJ, Lee-Six H, Tollit A, Jung H, Hooks Y, Sanghvi R, Young MD, Butler TM, Nicola PA, Treger TD, Lensing SV, Burke GAA, Aquilina K, Löbel U, Cortes-Ciriano I, Hargrave D, Jorgensen M, Jessop FA, Coorens THH, Flanagan AM, Allinson K, Martincorena I, Jacques TS, Behjati S. Cancer-independent somatic mutation of the wild-type NF1 allele in normal tissues in neurofibromatosis type 1. Nat Genet 2025; 57:515-521. [PMID: 40000831 PMCID: PMC11906363 DOI: 10.1038/s41588-025-02097-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/22/2025] [Indexed: 02/27/2025]
Abstract
Cancer predisposition syndromes mediated by recessive cancer genes generate tumors via somatic variants (second hits) in the unaffected allele. Second hits may or may not be sufficient for neoplastic transformation. Here we performed whole-genome and whole-exome sequencing on 479 tissue biopsies from a child with neurofibromatosis type 1, a multisystem cancer-predisposing syndrome mediated by constitutive monoallelic NF1 inactivation. We identified multiple independent NF1 driver variants in histologically normal tissues, but not in 610 biopsies from two nonpredisposed children. We corroborated this finding using targeted duplex sequencing, including a further nine adults with the same syndrome. Overall, truncating NF1 mutations were under positive selection in normal tissues from individuals with neurofibromatosis type 1. We demonstrate that normal tissues in neurofibromatosis type 1 commonly harbor second hits in NF1, the extent and pattern of which may underpin the syndrome's cancer phenotype.
Collapse
Affiliation(s)
- Thomas R W Oliver
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Henry Lee-Six
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Anna Tollit
- Research Department of Pathology, University College London, London, UK
| | | | | | | | | | | | | | - Taryn D Treger
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | | | - G A Amos Burke
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Kristian Aquilina
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Ulrike Löbel
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Isidro Cortes-Ciriano
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Darren Hargrave
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Mette Jorgensen
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Flora A Jessop
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Adrienne M Flanagan
- Research Department of Pathology, University College London, London, UK
- Department of Histopathology, Royal National Orthopaedic Hospital NHS Trust, Middlesex, UK
| | - Kieren Allinson
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | | | - Thomas S Jacques
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
- UCL Great Ormond Street Institute of Child Health, London, UK.
| | - Sam Behjati
- Wellcome Sanger Institute, Hinxton, UK.
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
- Department of Paediatrics, University of Cambridge, Cambridge, UK.
| |
Collapse
|
24
|
Blohmer M, Cheek DM, Hung WT, Kessler M, Chatzidimitriou F, Wang J, Hung W, Lee IH, Gorelick AN, Wassenaar EC, Yang CY, Yeh YC, Ho HL, Speiser D, Karsten MM, Lanuti M, Pai SI, Kranenburg O, Lennerz JK, Chou TY, Kloor M, Naxerova K. Quantifying cell divisions along evolutionary lineages in cancer. Nat Genet 2025; 57:706-717. [PMID: 39905260 DOI: 10.1038/s41588-025-02078-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 01/07/2025] [Indexed: 02/06/2025]
Abstract
Cell division drives somatic evolution but is challenging to quantify. We developed a framework to count cell divisions with DNA replication-related mutations in polyguanine homopolymers. Analyzing 505 samples from 37 patients, we studied the milestones of colorectal cancer evolution. Primary tumors diversify at ~250 divisions from the founder cell, while distant metastasis divergence occurs significantly later, at ~500 divisions. Notably, distant but not lymph node metastases originate from primary tumor regions that have undergone surplus divisions, tying subclonal expansion to metastatic capacity. Then, we analyzed a cohort of 73 multifocal lung cancers and showed that the cell division burden of the tumors' common ancestor distinguishes independent primary tumors from intrapulmonary metastases and correlates with patient survival. In lung cancer too, metastatic capacity is tied to more extensive proliferation. The cell division history of human cancers is easily accessible using our simple framework and contains valuable biological and clinical information.
Collapse
Affiliation(s)
- Martin Blohmer
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
- Department of Gynecology with Breast Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - David M Cheek
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Wei-Ting Hung
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - Maria Kessler
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Foivos Chatzidimitriou
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Jiahe Wang
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - William Hung
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - I-Hsiu Lee
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Alexander N Gorelick
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Emma Ce Wassenaar
- Department of Surgery, St. Antonius Hospital, Nieuwegein, the Netherlands
- Department of Surgical Oncology, Laboratory Translational Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ching-Yeuh Yang
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yi-Chen Yeh
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiang-Ling Ho
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Dorothee Speiser
- Department of Gynecology with Breast Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Maria M Karsten
- Department of Gynecology with Breast Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Lanuti
- Division of Thoracic Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Sara I Pai
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Onno Kranenburg
- Department of Surgical Oncology, Laboratory Translational Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jochen K Lennerz
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital, Boston, MA, USA
| | - Teh-Ying Chou
- Department of Pathology and Precision Medicine Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Kamila Naxerova
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Poon G, Vedi A, Sanders M, Laurenti E, Valk P, Blundell JR. Single-cell DNA sequencing reveals pervasive positive selection throughout preleukemic evolution. CELL GENOMICS 2025; 5:100744. [PMID: 39842433 PMCID: PMC11872528 DOI: 10.1016/j.xgen.2024.100744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/03/2024] [Accepted: 12/26/2024] [Indexed: 01/24/2025]
Abstract
The representation of driver mutations in preleukemic hematopoietic stem cells (pHSCs) provides a window into the somatic evolution that precedes acute myeloid leukemia (AML). Here, we isolate pHSCs from the bone marrow of 16 patients diagnosed with AML and perform single-cell DNA sequencing on thousands of cells to reconstruct phylogenetic trees of the major driver clones in each patient. We develop a computational framework that can infer levels of positive selection operating during preleukemic evolution from the statistical properties of these phylogenetic trees. Combining these data with 67 previously published phylogenetic trees, we find that the highly variable structures of preleukemic trees emerge naturally from a simple model of somatic evolution with pervasive positive selection typically in the range of 9%-24% per year. At these levels of positive selection, we show that the identification of early multiple-mutant clones could be used to identify individuals at risk of future AML.
Collapse
Affiliation(s)
- Gladys Poon
- Early Cancer Institute, University of Cambridge, Cambridge, UK.
| | - Aditi Vedi
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Mathijs Sanders
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Elisa Laurenti
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Peter Valk
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | |
Collapse
|
26
|
Spencer Chapman M, Mitchell E, Yoshida K, Williams N, Fabre MA, Ranzoni AM, Robinson PS, Kregar LD, Wilk M, Boettcher S, Mahbubani K, Saeb Parsy K, Gowers KHC, Janes SM, Ng SWK, Hoare M, Green AR, Vassiliou GS, Cvejic A, Manz MG, Laurenti E, Martincorena I, Stratton MR, Nangalia J, Coorens THH, Campbell PJ. Prolonged persistence of mutagenic DNA lesions in somatic cells. Nature 2025; 638:729-738. [PMID: 39814886 PMCID: PMC11839459 DOI: 10.1038/s41586-024-08423-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 11/19/2024] [Indexed: 01/18/2025]
Abstract
DNA is subject to continual damage, leaving each cell with thousands of individual DNA lesions at any given moment1-3. The efficiency of DNA repair means that most known classes of lesion have a half-life of minutes to hours3,4, but the extent to which DNA damage can persist for longer durations remains unknown. Here, using high-resolution phylogenetic trees from 89 donors, we identified mutations arising from 818 DNA lesions that persisted across multiple cell cycles in normal human stem cells from blood, liver and bronchial epithelium5-12. Persistent DNA lesions occurred at increased rates, with distinctive mutational signatures, in donors exposed to tobacco or chemotherapy, suggesting that they can arise from exogenous mutagens. In haematopoietic stem cells, persistent DNA lesions, probably from endogenous sources, generated the characteristic mutational signature SBS1913; occurred steadily throughout life, including in utero; and endured for 2.2 years on average, with 15-25% of lesions lasting at least 3 years. We estimate that on average, a haematopoietic stem cell has approximately eight such lesions at any moment in time, half of which will generate a mutation with each cell cycle. Overall, 16% of mutations in blood cells are attributable to SBS19, and similar proportions of driver mutations in blood cancers exhibit this signature. These data indicate the existence of a family of DNA lesions that arise from endogenous and exogenous mutagens, are present in low numbers per genome, persist for months to years, and can generate a substantial fraction of the mutation burden of somatic cells.
Collapse
Affiliation(s)
- Michael Spencer Chapman
- Wellcome Sanger Institute, Hinxton, UK
- Department of Haemato-oncology, Barts Cancer Institute, London, UK
| | - Emily Mitchell
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | | | | | - Margarete A Fabre
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | | | | | - Matthias Wilk
- Department of Medical Oncology and Hematology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Steffen Boettcher
- Department of Medical Oncology and Hematology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Krishnaa Mahbubani
- Department of Surgery, University of Cambridge, Cambridge, UK
- Cambridge Biorepository for Translational Medicine, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Kourosh Saeb Parsy
- Department of Surgery, University of Cambridge, Cambridge, UK
- Cambridge Biorepository for Translational Medicine, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Kate H C Gowers
- Lungs For Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Sam M Janes
- Lungs For Living Research Centre, UCL Respiratory, University College London, London, UK
| | | | - Matt Hoare
- Early Cancer Institute, University of Cambridge, Cambridge, UK
| | - Anthony R Green
- Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - George S Vassiliou
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Ana Cvejic
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Elisa Laurenti
- Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | | | | | - Jyoti Nangalia
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Tim H H Coorens
- Wellcome Sanger Institute, Hinxton, UK
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Peter J Campbell
- Wellcome Sanger Institute, Hinxton, UK.
- Cambridge Stem Cell Institute, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
27
|
Scherer J, Hinczewski M, Nelms B. Ultra-deep sequencing of somatic mutations induced by a maize transposon. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.634239. [PMID: 39896451 PMCID: PMC11785109 DOI: 10.1101/2025.01.22.634239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Cells accumulate mutations throughout development, contributing to cancer, aging, and evolution. Quantitative data on the abundance of de novo mutations within plants or animals are limited, as new mutations are often rare within a tissue and fall below the limits of current sequencing depths and error rates. Here, we show that mutations induced by the maize Mutator (Mu) transposon can be reliably quantified down to a detection limit of 1 part in 12,000. We measured the abundance of millions of de novo Mu insertions across four tissue types. Within a tissue, the distribution of de novo Mu allele frequencies was highly reproducible between plants, showing that, despite the stochastic nature of mutation, repeated statistical patterns of mutation abundance emerge. In contrast, there were significant differences in the allele frequency distribution between tissues. At the extremes, root was dominated by a small number of highly abundant de novo insertions, while endosperm was characterized by thousands of insertions at low allele frequencies. Finally, we used the measured pollen allele frequencies to reinterpret a classic genetic experiment, showing that evidence for late Mu activity in pollen are better explained by cell division statistics. These results provide insight into the complexity of mutation accumulation in multicellular organisms and a system to interrogate the factors that shape mutation abundance.
Collapse
Affiliation(s)
- Justin Scherer
- Department of Genetics, University of Georgia, Athens, GA 30602
- The Plant Center, University of Georgia, Athens, GA 30602
| | - Michael Hinczewski
- Department of Physics, Case Western Reserve University, Cleveland, OH 44106
| | - Brad Nelms
- Department of Genetics, University of Georgia, Athens, GA 30602
- The Plant Center, University of Georgia, Athens, GA 30602
- Department of Plant Biology, University of Georgia, Athens, GA 30602
| |
Collapse
|
28
|
Delint-Ramirez I, Madabhushi R. DNA damage and its links to neuronal aging and degeneration. Neuron 2025; 113:7-28. [PMID: 39788088 PMCID: PMC11832075 DOI: 10.1016/j.neuron.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/07/2024] [Accepted: 12/02/2024] [Indexed: 01/12/2025]
Abstract
DNA damage is a major risk factor for the decline of neuronal functions with age and in neurodegenerative diseases. While how DNA damage causes neurodegeneration is still being investigated, innovations over the past decade have provided significant insights into this issue. Breakthroughs in next-generation sequencing methods have begun to reveal the characteristics of neuronal DNA damage hotspots and the causes of DNA damage. Chromosome conformation capture-based approaches have shown that, while DNA damage and the ensuing cellular response alter chromatin topology, chromatin organization at damage sites also affects DNA repair outcomes in neurons. Additionally, neuronal activity results in the formation of programmed DNA breaks, which could burden DNA repair mechanisms and promote neuronal dysfunction. Finally, emerging evidence implicates DNA damage-induced inflammation as an important contributor to the age-related decline in neuronal functions. Together, these discoveries have ushered in a new understanding of the significance of genome maintenance for neuronal function.
Collapse
Affiliation(s)
- Ilse Delint-Ramirez
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Peter O' Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ram Madabhushi
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Peter O' Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
29
|
Boysen G, Alexandrov L, Rahbari R, Nookaew I, Ussery D, Chao MR, Hu CW, Cooke M. Investigating the origins of the mutational signatures in cancer. Nucleic Acids Res 2025; 53:gkae1303. [PMID: 39778866 PMCID: PMC11707540 DOI: 10.1093/nar/gkae1303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 12/17/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025] Open
Abstract
Most of the risk factors associated with chronic and complex diseases, such as cancer, stem from exogenous and endogenous exposures experienced throughout an individual's life, collectively known as the exposome. These exposures can modify DNA, which can subsequently lead to the somatic mutations found in all normal and tumor tissues. Understanding the precise origins of specific somatic mutations has been challenging due to multitude of DNA adducts (i.e. the DNA adductome) and their diverse positions within the genome. Thus far, this limitation has prevented researchers from precisely linking exposures to DNA adducts and DNA adducts to subsequent mutational outcomes. Indeed, many common mutations observed in human cancers appear to originate from error-prone endogenous processes. Consequently, it remains unclear whether these mutations result from exposure-induced DNA adducts, or arise indirectly from endogenous processes or are a combination of both. In this review, we summarize approaches that aim to bridge our understanding of the mechanism by which exposure leads to DNA damage and then to mutation and highlight some of the remaining challenges and shortcomings to fully supporting this paradigm. We emphasize the need to integrate cellular DNA adductomics, long read-based mapping, single-molecule duplex sequencing of native DNA molecules and advanced computational analysis. This proposed holistic approach aims to unveil the causal connections between key DNA modifications and the mutational landscape, whether they originate from external exposures, internal processes or a combination of both, thereby addressing key questions in cancer biology.
Collapse
Affiliation(s)
- Gunnar Boysen
- Department of Environmental Health Science, University of Arkansas for Medical Sciences, 4301 West Markham St, Little Rock, AR 72205, USA
- The Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 West Markham St, Little Rock, AR 72205, USA
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Raheleh Rahbari
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Intawat Nookaew
- Department of BioMedical Informatics, The University of Arkansas for Medical Sciences, 4301 West Markham St, Little Rock, AR 72205, USA
| | - Dave Ussery
- Department of BioMedical Informatics, The University of Arkansas for Medical Sciences, 4301 West Markham St, Little Rock, AR 72205, USA
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Jianguo N Rd, South District, Taichung 40201, Taiwan
- Department of Occupational Medicine, Chung Shan Medical University Hospital, Jianguo N Rd, South District, Taichung 40201, Taiwan
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Jianguo N Rd, South District, Taichung 40201, Taiwan
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, 4202 E. Fowler Avenue, Tampa, FL 33612, USA
| |
Collapse
|
30
|
Hwang T, Sitko L, Khoirunnisa R, Navarro-Aguad F, Samuel D, Park H, Cheon B, Mutsnaini L, Lee J, Otlu B, Takeda S, Lee S, Ivanov D, Gartner A. Comprehensive whole-genome sequencing reveals origins of mutational signatures associated with aging, mismatch repair deficiency and temozolomide chemotherapy. Nucleic Acids Res 2025; 53:gkae1122. [PMID: 39656916 PMCID: PMC11724276 DOI: 10.1093/nar/gkae1122] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 10/17/2024] [Accepted: 11/07/2024] [Indexed: 12/17/2024] Open
Abstract
In a comprehensive study to decipher the multi-layered response to the chemotherapeutic agent temozolomide (TMZ), we analyzed 427 genomes and determined mutational patterns in a collection of ∼40 isogenic DNA repair-deficient human TK6 lymphoblast cell lines. We first demonstrate that the spontaneous mutational background is very similar to the aging-associated mutational signature SBS40 and mainly caused by polymerase zeta-mediated translesion synthesis (TLS). MSH2-/- mismatch repair (MMR) knockout in conjunction with additional repair deficiencies uncovers cryptic mutational patterns. We next report how distinct mutational signatures are induced by TMZ upon sequential inactivation of DNA repair pathways, mirroring the acquisition of chemotherapy resistance by glioblastomas. The most toxic adduct induced by TMZ, O6-meG, is directly repaired by the O6-methylguanine-DNA methyltransferase (MGMT). In MGMT-/- cells, MMR leads to cell death and limits mutagenesis. MMR deficiency results in TMZ resistance, allowing the accumulation of ∼105 C > T substitutions corresponding to signature SBS11. Under these conditions, N3-methyladenine (3-meA), processed by base excision repair (BER), limits cell survival. Without BER, 3-meA is read through via error-prone TLS, causing T > A substitutions but not affecting survival. Blocking BER after abasic site formation results in large deletions and TMZ hypersensitization. Our findings reveal potential vulnerabilities of TMZ-resistant tumors.
Collapse
Affiliation(s)
- Taejoo Hwang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Lukasz Karol Sitko
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea
- Center for Genomic Integrity, Institute for Basic Science, UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Ratih Khoirunnisa
- Center for Genomic Integrity, Institute for Basic Science, UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Fernanda Navarro-Aguad
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea
- Center for Genomic Integrity, Institute for Basic Science, UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - David M Samuel
- Center for Genomic Integrity, Institute for Basic Science, UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Hajoong Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea
- Center for Genomic Integrity, Institute for Basic Science, UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Banyoon Cheon
- Center for Genomic Integrity, Institute for Basic Science, UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Luthfiyyah Mutsnaini
- Center for Genomic Integrity, Institute for Basic Science, UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Jaewoong Lee
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Burçak Otlu
- Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Shunichi Takeda
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University Medical School, 1066 Xueyuan Avenue, Shenzhen, Guangdong 518060, China
| | - Semin Lee
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Dmitri Ivanov
- Center for Genomic Integrity, Institute for Basic Science, UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Anton Gartner
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea
- Center for Genomic Integrity, Institute for Basic Science, UNIST-gil 50, Ulsan 44919, Republic of Korea
- Graduate School for Health Sciences and Technology, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| |
Collapse
|
31
|
Zhou W, Reizel Y. On correlative and causal links of replicative epimutations. Trends Genet 2025; 41:60-75. [PMID: 39289103 PMCID: PMC12048181 DOI: 10.1016/j.tig.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024]
Abstract
The mitotic inheritability of DNA methylation as an epigenetic marker in higher-order eukaryotes has been established for >40 years. The DNA methylome and mitotic division interplay is now considered bidirectional and highly intertwined. Various epigenetic writers, erasers, and modulators shape the perceived replicative methylation dynamics. This Review surveys the principles and complexity of mitotic transmission of DNA methylation, emphasizing the awareness of mitotic aging in analyzing DNA methylation dynamics in development and disease. We reviewed how DNA methylation changes alter mitotic proliferation capacity, implicating age-related diseases like cancer. We link replicative epimutation to stem cell dysfunction, inflammatory response, cancer risks, and epigenetic clocks, discussing the causative role of DNA methylation in health and disease.
Collapse
Affiliation(s)
- Wanding Zhou
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, PA, 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Yitzhak Reizel
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
32
|
Lissek T. Cancer memory as a mechanism to establish malignancy. Biosystems 2025; 247:105381. [PMID: 39701407 DOI: 10.1016/j.biosystems.2024.105381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/18/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
Cancers during oncogenic progression hold information in epigenetic memory which allows flexible encoding of malignant phenotypes and more rapid reaction to the environment when compared to purely mutation-based clonal evolution mechanisms. Cancer memory describes a proposed mechanism by which complex information such as metastasis phenotypes, therapy resistance and interaction patterns with the tumor environment might be encoded at multiple levels via mechanisms used in memory formation in the brain and immune system (e.g. single-cell epigenetic changes and distributed state modifications in cellular ensembles). Carcinogenesis might hence be the result of physiological multi-level learning mechanisms unleashed by defined heritable oncogenic changes which lead to tumor-specific loss of goal state integration into the whole organism. The formation of cancer memories would create and bind new levels of individuality within the host organism into the entity we call cancer. Translational implications of cancer memory are that cancers could be engaged at higher organizational levels (e.g. be "trained" for memory extinction) and that compounds that are known to interfere with memory processes could be investigated for their potential to block cancer memory formation or recall. It also suggests that diagnostic measures should extend beyond sequencing approaches to functional diagnosis of cancer physiology.
Collapse
Affiliation(s)
- Thomas Lissek
- Interdisciplinary Center for Neurosciences, Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany.
| |
Collapse
|
33
|
Santarsieri A, Mitchell E, Pham MH, Sanghvi R, Jablonski J, Lee-Six H, Sturgess K, Brice P, Menne TF, Osborne W, Creasey T, Ardeshna KM, Baxter J, Behan S, Bhuller K, Booth S, Chavda ND, Collins GP, Culligan DJ, Cwynarski K, Davies A, Downing A, Dutton D, Furtado M, Gallop-Evans E, Hodson A, Hopkins D, Hsu H, Iyengar S, Jones SG, Karanth M, Linton KM, Lomas OC, Martinez-Calle N, Mathur A, McKay P, Nagumantry SK, Phillips EH, Phillips N, Rudge JF, Shah NK, Stafford G, Sternberg A, Trickey R, Uttenthal BJ, Wetherall N, Zhang XY, McMillan AK, Coleman N, Stratton MR, Laurenti E, Borchmann P, Borchmann S, Campbell PJ, Rahbari R, Follows GA. The genomic and clinical consequences of replacing procarbazine with dacarbazine in escalated BEACOPP for Hodgkin lymphoma: a retrospective, observational study. Lancet Oncol 2025; 26:98-109. [PMID: 39674188 DOI: 10.1016/s1470-2045(24)00598-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/07/2024] [Accepted: 10/18/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND Procarbazine-containing chemotherapy regimens are associated with cytopenias and infertility, suggesting stem-cell toxicity. When treating Hodgkin lymphoma, procarbazine in escalated-dose bleomycin-etoposide-doxorubicin-cyclophosphamide-vincristine-procarbazine-prednisolone (eBEACOPP) is increasingly replaced with dacarbazine (eBEACOPDac) to reduce toxicity. We aimed to investigate the impact of this drug substitution on the mutation burden in stem cells, patient survival, and toxicity. METHODS In this two-part retrospective, observational study, we first compared mutational landscapes in haematopoietic stem and progenitor cells (HSPCs) from patients with advanced-stage Hodgkin lymphoma in remission for at least 6 months who had been treated with eBEACOPDac (eBEACOPDac cohort), eBEACOPP (real-world eBEACOPP cohort), or doxorubicin-bleomycin-vinblastine-dacarbazine (ABVD); in buccal DNA from five children of a female patient with classical Hodgkin lymphoma treated with eBEACOPP before conceiving the third child; in sperm DNA from a patient with mild oligospermia treated with eBEACOPP; and in caecal adenocarcinoma and healthy colon tissue from a survivor of Hodgkin lymphoma treated with chlorambucil-vinblastine-procarbazine-prednisolone. For the second part, we analysed efficacy and toxicity data from adult patients (aged >16 years) treated with first-line eBEACOPDac (eBEACOPDac cohort) at 25 centres across UK, Ireland, and France; efficacy was compared with the German HD18 eBEACOPP trial data and toxicity with a UK real-world dataset. Participants in the German HD18 and UK real-world datasets were adults (aged >16 years) with previously untreated Hodgkin lymphoma, treated with first-line eBEACOPP. We had two co-primary objectives: to define the comparative stem-cell mutation burden and mutational signatures after treatment with or without procarbazine-containing chemotherapy (first study part); and to determine progression-free survival of patients with Hodgkin lymphoma treated with eBEACOPP or eBEACOPDac (second study part). Secondary objectives included overall survival and explored differences in specific toxicity outcomes, including transfusion requirements and measures of reproductive health (second study part). FINDINGS In the first part of the study (mutational analysis), patients treated with eBEACOPP (n=5) exhibited a higher burden of point mutations in HSPCs compared with those treated with eBEACOPDac (n=4) or ABVD (n=3; excess mutations 1150 [95% CI 934-1366] vs 290 [241-339] vs 186 [116-254]). Two novel mutational signatures, SBSA (SBS25-like) and SBSB, were identified in HSPCs and in a single neoplastic and healthy colon sample from patients who received procarbazine-containing chemotherapy. SBSB was also identified in germline DNA of three children conceived after eBEACOPP and in sperm of a male patient treated with eBEACOPP. SBSC was detected in patients treated with either ABVD or eBEACOPDac. In the second part of the study (efficacy and toxicity analysis), dacarbazine substitution did not appear to compromise efficacy or safety. 312 patients treated with eBEACOPDac (eBEACOPDac cohort; treated 2017-22, 186 [60%] male, median follow-up 36·0 months [IQR 25·2-50·1]) had a 3-year progression-free survival of 93·3% (95% CI 90·3-96·4), which was similar to the 93·3% [95% CI 92·1-94·4]) progression-free survival seen in 1945 patients in the German HD18 eBEACOPP trial (treated 2008-14, 1183 [61%] male, median follow-up 57·0 months [35·4-64·7]). Patients treated with eBEACOPDac required fewer blood transfusions (mean 1·70 units [SD 2·77] vs 3·69 units [3·89]; p<0·0001), demonstrated higher post-chemotherapy sperm concentrations (median 23·4 million per mL [IQR 11·0-632·3] vs 0·0 million per mL [0·0-0·001]; p=0·0040), and had earlier resumption of menstrual periods (mean 5·04 months [SD 3·07] vs 8·77 months [5·57]; p=0·0036) compared with 73 patients treated with eBEACOPP in the UK real-world dataset. INTERPRETATION Procarbazine induces a higher mutation burden and novel mutational signatures in patients with Hodgkin lymphoma treated with eBEACOPP and their germline DNA, raising concerns for the genomic health of survivors of Hodgkin lymphoma and hereditary consequences for their offspring. However, replacing procarbazine with dacarbazine appears to mitigate gonadal and stem-cell toxicity while maintaining similar clinical efficacy. FUNDING Addenbrooke's Charitable Trust and Wellcome Trust.
Collapse
Affiliation(s)
- Anna Santarsieri
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; University of Cambridge, Wellcome-Medical Research Council Stem Cell Institute, Cambridge, UK; Faculty of Health, Medicine, and Social Care, Anglia Ruskin University, Cambridge, UK
| | - Emily Mitchell
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; University of Cambridge, Wellcome-Medical Research Council Stem Cell Institute, Cambridge, UK
| | - My H Pham
- Wellcome Sanger Institute, Cambridge, UK
| | | | - Janina Jablonski
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany; German Hodgkin Study Group, Cologne, Germany
| | - Henry Lee-Six
- Wellcome Sanger Institute, Cambridge, UK; Department of Pathology, University of Cambridge, Cambridge, UK
| | - Katherine Sturgess
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Pauline Brice
- APHP Hôpital Saint-Louis, Hemato-Oncologie, Paris, France
| | - Tobias F Menne
- Department of Haematology, Freeman Hospital, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Wendy Osborne
- Department of Haematology, Freeman Hospital, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK; Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Thomas Creasey
- Department of Haematology, Freeman Hospital, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Kirit M Ardeshna
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Joanna Baxter
- Cambridge Blood and Stem Cell Biobank, NHS-BT Cambridge Centre, Cambridge, UK
| | - Sarah Behan
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Kaljit Bhuller
- Department of Haematology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Stephen Booth
- Department of Haematology, Royal Berkshire Hospital, Reading, UK
| | - Nikesh D Chavda
- Department of Haematology, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Graham P Collins
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, UK
| | | | - Kate Cwynarski
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Andrew Davies
- Department of Haematology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Abigail Downing
- Department of Haematology, Velindre Cancer Centre, Cardiff, UK
| | - David Dutton
- Department of Haematology, Great Western Hospitals NHS Foundation Trust, Swindon, UK
| | | | | | - Andrew Hodson
- Department of Haematology, Ipswich Hospital NHS Trust, Ipswich, UK
| | - David Hopkins
- Department of Haematology, Beatson West of Scotland Cancer Centre, Glasgow, UK
| | - Hannah Hsu
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Sunil Iyengar
- Department of Haematology, Royal Marsden Hospital, London, UK
| | - Stephen G Jones
- Department of Haematology, Sherwood Forest Hospitals NHS Foundation Trust, Sutton-in-Ashfield, UK
| | - Mamatha Karanth
- Department of Haematology, West Suffolk NHS Foundation Trust, Bury St Edmunds, UK
| | - Kim M Linton
- Department of Haematology, University of Manchester and the Christie Hospital, Division of Cancer Sciences, Manchester, UK
| | - Oliver C Lomas
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, UK
| | | | - Abhinav Mathur
- Department of Haematology, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Pamela McKay
- Department of Haematology, Beatson West of Scotland Cancer Centre, Glasgow, UK
| | | | - Elizabeth H Phillips
- Department of Haematology, University of Manchester and the Christie Hospital, Division of Cancer Sciences, Manchester, UK
| | - Neil Phillips
- Department of Haematology, Royal Stoke University Hospital, Stoke-on-Trent, UK
| | - John F Rudge
- Bullard Laboratories, Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - Nimish K Shah
- Department of Haematology, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - Gwyneth Stafford
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Alex Sternberg
- Department of Haematology, Great Western Hospitals NHS Foundation Trust, Swindon, UK
| | - Rachel Trickey
- Department of Haematology, Velindre Cancer Centre, Cardiff, UK
| | - Benjamin J Uttenthal
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Natasha Wetherall
- Department of Haematology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Xiao-Yin Zhang
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, UK
| | - Andrew K McMillan
- Department of Haematology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | | | | | - Elisa Laurenti
- University of Cambridge, Wellcome-Medical Research Council Stem Cell Institute, Cambridge, UK
| | - Peter Borchmann
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany; German Hodgkin Study Group, Cologne, Germany
| | - Sven Borchmann
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany; German Hodgkin Study Group, Cologne, Germany
| | | | | | - George A Follows
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Faculty of Health, Medicine, and Social Care, Anglia Ruskin University, Cambridge, UK; Department of Haematology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
34
|
Gu L, Zhu Y, Nandi SP, Lee M, Watari K, Bareng B, Ohira M, Liu Y, Sakane S, Carlessi R, Sauceda C, Dhar D, Ganguly S, Hosseini M, Teneche MG, Adams PD, Gonzalez DJ, Kisseleva T, Liver Cancer Collaborative, Tirnitz-Parker JEE, Simon MC, Alexandrov LB, Karin M. FBP1 controls liver cancer evolution from senescent MASH hepatocytes. Nature 2025; 637:461-469. [PMID: 39743585 PMCID: PMC12168545 DOI: 10.1038/s41586-024-08317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Collaborators] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/30/2024] [Indexed: 01/04/2025]
Abstract
Hepatocellular carcinoma (HCC) originates from differentiated hepatocytes undergoing compensatory proliferation in livers damaged by viruses or metabolic-dysfunction-associated steatohepatitis (MASH)1. While increasing HCC risk2, MASH triggers p53-dependent hepatocyte senescence3, which we found to parallel hypernutrition-induced DNA breaks. How this tumour-suppressive response is bypassed to license oncogenic mutagenesis and enable HCC evolution was previously unclear. Here we identified the gluconeogenic enzyme fructose-1,6-bisphosphatase 1 (FBP1) as a p53 target that is elevated in senescent-like MASH hepatocytes but suppressed through promoter hypermethylation and proteasomal degradation in most human HCCs. FBP1 first declines in metabolically stressed premalignant disease-associated hepatocytes and HCC progenitor cells4,5, paralleling the protumorigenic activation of AKT and NRF2. By accelerating FBP1 and p53 degradation, AKT and NRF2 enhance the proliferation and metabolic activity of previously senescent HCC progenitors. The senescence-reversing and proliferation-supportive NRF2-FBP1-AKT-p53 metabolic switch, operative in mice and humans, also enhances the accumulation of DNA-damage-induced somatic mutations needed for MASH-to-HCC progression.
Collapse
Affiliation(s)
- Li Gu
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego (UCSD), La Jolla, CA, USA.
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
- Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Yahui Zhu
- School of Medicine, Chongqing University, Chongqing, China.
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Shuvro P Nandi
- Department of Cellular and Molecular Medicine, UCSD, La Jolla, CA, USA
- Department of Bioengineering, UCSD, La Jolla, CA, USA
- Moores Cancer Center, UCSD, La Jolla, CA, USA
| | - Maiya Lee
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego (UCSD), La Jolla, CA, USA
| | - Kosuke Watari
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego (UCSD), La Jolla, CA, USA
| | - Breanna Bareng
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego (UCSD), La Jolla, CA, USA
| | - Masafumi Ohira
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego (UCSD), La Jolla, CA, USA
| | - Yuxiao Liu
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego (UCSD), La Jolla, CA, USA
| | | | - Rodrigo Carlessi
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Consuelo Sauceda
- Department of Pharmacology, UCSD, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, CA, USA
| | | | | | | | - Marcos G Teneche
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Peter D Adams
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - David J Gonzalez
- Department of Pharmacology, UCSD, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, CA, USA
| | | | | | - Janina E E Tirnitz-Parker
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia, Australia
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, UCSD, La Jolla, CA, USA
- Department of Bioengineering, UCSD, La Jolla, CA, USA
- Moores Cancer Center, UCSD, La Jolla, CA, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego (UCSD), La Jolla, CA, USA.
| |
Collapse
Collaborators
Janina E E Tirnitz-Parker, Peter J Leedman, Michael C Wallace, Louise N Winteringham, Benjamin J Dwyer, Jonathan Tibballs, Kim W Carter, Alistair R R Forrest,
Collapse
|
35
|
Murat P, Guilbaud G, Sale JE. DNA replication initiation drives focal mutagenesis and rearrangements in human cancers. Nat Commun 2024; 15:10850. [PMID: 39738026 PMCID: PMC11685606 DOI: 10.1038/s41467-024-55148-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 12/03/2024] [Indexed: 01/01/2025] Open
Abstract
The rate and pattern of mutagenesis in cancer genomes is significantly influenced by DNA accessibility and active biological processes. Here we show that efficient sites of replication initiation drive and modulate specific mutational processes in cancer. Sites of replication initiation impede nucleotide excision repair in melanoma and are off-targets for activation-induced deaminase (AICDA) activity in lymphomas. Using ductal pancreatic adenocarcinoma as a cancer model, we demonstrate that the initiation of DNA synthesis is error-prone at G-quadruplex-forming sequences in tumours displaying markers of replication stress, resulting in a previously recognised but uncharacterised mutational signature. Finally, we demonstrate that replication origins serve as hotspots for genomic rearrangements, including structural and copy number variations. These findings reveal replication origins as functional determinants of tumour biology and demonstrate that replication initiation both passively and actively drives focal mutagenesis in cancer genomes.
Collapse
Affiliation(s)
- Pierre Murat
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
- Wellcome Sanger Institute, Hinxton, CB10 1RQ, UK.
| | - Guillaume Guilbaud
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Julian E Sale
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
36
|
Zhou W, Mumm C, Gan Y, Switzenberg JA, Wang J, De Oliveira P, Kathuria K, Losh SJ, McDonald TL, Bessell B, Van Deynze K, McConnell MJ, Boyle AP, Mills RE. A personalized multi-platform assessment of somatic mosaicism in the human frontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.18.629274. [PMID: 39763954 PMCID: PMC11702624 DOI: 10.1101/2024.12.18.629274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Somatic mutations in individual cells lead to genomic mosaicism, contributing to the intricate regulatory landscape of genetic disorders and cancers. To evaluate and refine the detection of somatic mosaicism across different technologies with personalized donor-specific assembly (DSA), we obtained tissue from the dorsolateral prefrontal cortex (DLPFC) of a post-mortem neurotypical 31-year-old individual. We sequenced bulk DLPFC tissue using Oxford Nanopore Technologies (~60X), NovaSeq (~30X), and linked-read sequencing (~28X). Additionally, we applied Cas9 capture methodology coupled with long-read sequencing (TEnCATS), targeting active transposable elements. We also isolated and amplified DNA from flow-sorted single DLPFC neurons using MALBAC, sequencing 115 of these MALBAC libraries on Nanopore and 94 on NovaSeq. We constructed a haplotype-resolved assembly with a total length of 5.77 Gb and a phase block length of 2.67 Mb (N50) to facilitate cross-platform analysis of somatic genetic variations. We observed an increase in the phasing rate from 11.6% to 38.0% between short-read and long-read technologies. By generating a catalog of phased germline SNVs, CNVs, and TEs from the assembled genome, we applied standard approaches to recall these variants across sequencing technologies. We achieved aggregated recall rates from 97.3% to 99.4% based on long-read bulk tissue data, setting an upper bound for detection limits. Moreover, utilizing haplotype-based analysis from DSA, we achieved a remarkable reduction in false positive somatic calls in bulk tissue, ranging from 14.9% to 72.4%. We developed pipelines leveraging DSA information to enhance somatic large genetic variant calling in long-read single cells. By examining somatic variation using long-reads in 115 individual neurons, we identified 468 candidate somatic heterozygous large deletions (1.5Mb - 20Mb), 137 of which intersected with short-read single-cell data. Additionally, we identified 61 putative somatic TEs (60 Alus, one LINE-1) in the single-cell data. Collectively, our analysis spans personalized assembly to single-cell somatic variant calling, providing a comprehensive ab initio ad finem approach and resource in real human tissue.
Collapse
Affiliation(s)
- Weichen Zhou
- Gilbert S Omenn Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Camille Mumm
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Yanming Gan
- Gilbert S Omenn Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jessica A. Switzenberg
- Gilbert S Omenn Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jinhao Wang
- Gilbert S Omenn Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | | | - Kunal Kathuria
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Steven J. Losh
- Gilbert S Omenn Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Torrin L. McDonald
- Gilbert S Omenn Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Brandt Bessell
- Gilbert S Omenn Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Kinsey Van Deynze
- Gilbert S Omenn Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | | | - Alan P. Boyle
- Gilbert S Omenn Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Ryan E. Mills
- Gilbert S Omenn Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
37
|
Mallawaarachchi AC, Hort Y, Wedd L, Lo K, Senum S, Toumari M, Chen W, Utsiwegota M, Mawson J, Leslie S, Laurence J, Anderson L, Snelling P, Salomon R, Rangan GK, Furlong T, Shine J, Cowley MJ. Somatic mutation in autosomal dominant polycystic kidney disease revealed by deep sequencing human kidney cysts. NPJ Genom Med 2024; 9:69. [PMID: 39702469 DOI: 10.1038/s41525-024-00452-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/02/2024] [Indexed: 12/21/2024] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) results in progressive cysts that lead to kidney failure, and is caused by heterozygous germline variants in PKD1 or PKD2. Cyst pathogenesis is not definitively understood. Somatic second-hit mutations have been implicated in cyst pathogenesis, though technical sequencing challenges have limited investigation. We used unique molecular identifiers, high-depth massively parallel sequencing and custom analysis techniques to identify somatic second-hit mutations in 24 whole cysts from disparate regions of six human ADPKD kidneys, utilising replicate samples and orthogonal confirmation. Average depth of coverage of 1166 error-corrected reads for PKD1 and 539 reads for PKD2 was obtained. 58% (14/24) of cysts had a detectable PKD1 somatic variant, with 5/6 participants having at least one cyst with a somatic variant. We demonstrate that low-frequency somatic mutations are detectable in a proportion of cysts from end-stage ADPKD human kidneys. Further studies are required to understand the drivers of this somatic mutation.
Collapse
Affiliation(s)
- Amali C Mallawaarachchi
- Molecular Genetics of Inherited Kidney Disorders Laboratory, Garvan Institute of Medical Research, Sydney, NSW, Australia.
- Clinical Genetics Service, Institute of Precision Medicine and Bioinformatics, Royal Prince Alfred Hospital, Sydney, NSW, Australia.
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, Sydney, NSW, Australia.
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
| | - Yvonne Hort
- Molecular Genetics of Inherited Kidney Disorders Laboratory, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Laura Wedd
- Molecular Genetics of Inherited Kidney Disorders Laboratory, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, NSW, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Kitty Lo
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Sarah Senum
- Department of Artificial Intelligence & Informatics, Mayo Clinic, Rochester, MN, USA
| | - Mojgan Toumari
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Wenhan Chen
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Mike Utsiwegota
- Department of Renal Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Jane Mawson
- Department of Renal Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Scott Leslie
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- RPA Institute of Academic Surgery, University of Sydney, Sydney, NSW, Australia
- Chris O'Brien Lifehouse, Sydney, NSW, Australia
| | - Jerome Laurence
- RPA Institute of Academic Surgery, University of Sydney, Sydney, NSW, Australia
| | - Lyndal Anderson
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- New South Wales Health Pathology, Sydney, NSW, Australia
| | - Paul Snelling
- Department of Renal Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Robert Salomon
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Gopala K Rangan
- Department of Renal Medicine, Westmead Hospital, Sydney, NSW, Australia
- Michael Stern Laboratory for Polycystic Kidney Disease, Centre for Transplant and Renal Research, Westmead Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Timothy Furlong
- Molecular Genetics of Inherited Kidney Disorders Laboratory, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - John Shine
- Molecular Genetics of Inherited Kidney Disorders Laboratory, Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, Sydney, NSW, Australia
| | - Mark J Cowley
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, Sydney, NSW, Australia.
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia.
| |
Collapse
|
38
|
Yoshida K. Clonal hematopoiesis in cancer predisposition syndromes. Int J Hematol 2024:10.1007/s12185-024-03878-x. [PMID: 39643764 DOI: 10.1007/s12185-024-03878-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 11/02/2024] [Accepted: 11/10/2024] [Indexed: 12/09/2024]
Abstract
After recent advances in sequencing technologies led to the discovery of novel genes associated with predisposition to hematological malignancies, studies have now shown that myeloid neoplasms associated with germline variants are more common than previously estimated. Based on these findings, myeloid neoplasms with germline predisposition have emerged as a unique category in the recent World Health Organization classification of Haematolymphoid Tumors. Clonal hematopoiesis is common in healthy individuals, particularly in older people. In patients with germline predisposition to hematological malignancies, clonal hematopoiesis is frequently observed at younger ages and is often associated with unique disease-specific driver mutations, some of which are hypothesized to compensate for the inherited defect. This review summarizes recent findings on clonal hematopoiesis in cancer predisposition syndromes.
Collapse
Affiliation(s)
- Kenichi Yoshida
- Division of Cancer Evolution, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
39
|
Pfeifer GP, Jin SG. Methods and applications of genome-wide profiling of DNA damage and rare mutations. Nat Rev Genet 2024; 25:846-863. [PMID: 38918545 PMCID: PMC11563917 DOI: 10.1038/s41576-024-00748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/27/2024]
Abstract
DNA damage is a threat to genome integrity and can be a cause of many human diseases, owing to either changes in the chemical structure of DNA or conversion of the damage into a mutation, that is, a permanent change in DNA sequence. Determining the exact positions of DNA damage and ensuing mutations in the genome are important for identifying mechanisms of disease aetiology when characteristic mutations are prevalent and probably causative in a particular disease. However, this approach is challenging particularly when levels of DNA damage are low, for example, as a result of chronic exposure to environmental agents or certain endogenous processes, such as the generation of reactive oxygen species. Over the past few years, a comprehensive toolbox of genome-wide methods has been developed for the detection of DNA damage and rare mutations at single-nucleotide resolution in mammalian cells. Here, we review and compare these methods, describe their current applications and discuss future research questions that can now be addressed.
Collapse
Affiliation(s)
- Gerd P Pfeifer
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA.
| | - Seung-Gi Jin
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| |
Collapse
|
40
|
Williams MJ, Oliphant MUJ, Au V, Liu C, Baril C, O'Flanagan C, Lai D, Beatty S, Van Vliet M, Yiu JC, O'Connor L, Goh WL, Pollaci A, Weiner AC, Grewal D, McPherson A, Norton K, Moore M, Prabhakar V, Agarwal S, Garber JE, Dillon DA, Shah SP, Brugge JS, Aparicio S. Luminal breast epithelial cells of BRCA1 or BRCA2 mutation carriers and noncarriers harbor common breast cancer copy number alterations. Nat Genet 2024; 56:2753-2762. [PMID: 39567747 PMCID: PMC11631757 DOI: 10.1038/s41588-024-01988-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/15/2024] [Indexed: 11/22/2024]
Abstract
The prevalence and nature of somatic copy number alterations (CNAs) in breast epithelium and their role in tumor initiation and evolution remain poorly understood. Using single-cell DNA sequencing (49,238 cells) of epithelium from BRCA1 and BRCA2 carriers or wild-type individuals, we identified recurrent CNAs (for example, 1q-gain and 7q, 10q, 16q and 22q-loss) that are present in a rare population of cells across almost all samples (n = 28). In BRCA1/BRCA2 carriers, these occur before loss of heterozygosity (LOH) of wild-type alleles. These CNAs, common in malignant tumors, are enriched in luminal cells but absent in basal myoepithelial cells. Allele-specific analysis of prevalent CNAs reveals that they arose by independent mutational events, consistent with convergent evolution. BRCA1/BRCA2 carriers contained a small percentage of cells with extreme aneuploidy, featuring loss of TP53, BRCA1/BRCA2 LOH and multiple breast cancer-associated CNAs. Our findings suggest that CNAs arising in normal luminal breast epithelium are precursors to clonally expanded tumor genomes.
Collapse
Affiliation(s)
- Marc J Williams
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- The Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Michael U J Oliphant
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School (HMS), Boston, MA, USA
| | - Vinci Au
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cathy Liu
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Caroline Baril
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ciara O'Flanagan
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel Lai
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sean Beatty
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael Van Vliet
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jacky Ch Yiu
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lauren O'Connor
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School (HMS), Boston, MA, USA
| | - Walter L Goh
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School (HMS), Boston, MA, USA
| | - Alicia Pollaci
- Department of Medical Oncology, Dana-Farber Cancer Institute (DFCI), Boston, MA, USA
| | - Adam C Weiner
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- The Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Diljot Grewal
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- The Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Andrew McPherson
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- The Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Klarisa Norton
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School (HMS), Boston, MA, USA
| | - McKenna Moore
- Department of Medical Oncology, Dana-Farber Cancer Institute (DFCI), Boston, MA, USA
| | - Vikas Prabhakar
- Department of Pathology, Brigham and Women's Hospital (BWH), Boston, MA, USA
| | - Shailesh Agarwal
- Department of Surgery, Brigham and Women's Hospital (BWH), Boston, MA, USA
| | - Judy E Garber
- Department of Medical Oncology, Dana-Farber Cancer Institute (DFCI), Boston, MA, USA
| | - Deborah A Dillon
- Department of Medical Oncology, Dana-Farber Cancer Institute (DFCI), Boston, MA, USA
| | - Sohrab P Shah
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA.
- The Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA.
| | - Joan S Brugge
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School (HMS), Boston, MA, USA.
| | - Samuel Aparicio
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
41
|
Izydorczyk MB, Kalef-Ezra E, Horner DW, Zheng X, Holmes N, Toffoli M, Sahin ZG, Han Y, Mehta HH, Muzny DM, Ameur A, Sedlazeck FJ, Proukakis C. Single cell long read whole genome sequencing reveals somatic transposon activity in human brain. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.11.24317113. [PMID: 39606404 PMCID: PMC11601780 DOI: 10.1101/2024.11.11.24317113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The advent of single cell DNA sequencing revealed astonishing dynamics of genomic variability, but failed at characterizing smaller to mid size variants that on the germline level have a profound impact. In this work we discover novel dynamics in three brains utilizing single cell long-read sequencing. This provides key insights into the dynamic of the genomes of individual cells and further highlights brain specific activity of transposable elements.
Collapse
Affiliation(s)
- Michal B Izydorczyk
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Ester Kalef-Ezra
- Department of Clinical and Movement Neurosciences, Royal Free Campus, Queen Square Institute of Neurology, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Dominic W Horner
- Department of Clinical and Movement Neurosciences, Royal Free Campus, Queen Square Institute of Neurology, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Xinchang Zheng
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | | | - Marco Toffoli
- Department of Clinical and Movement Neurosciences, Royal Free Campus, Queen Square Institute of Neurology, University College London, London, UK
| | - Zeliha Gozde Sahin
- Department of Clinical and Movement Neurosciences, Royal Free Campus, Queen Square Institute of Neurology, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Yi Han
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Heer H Mehta
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Adam Ameur
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Computer Science, Rice University, 6100 Main Street, Houston, TX, USA
| | - Christos Proukakis
- Department of Clinical and Movement Neurosciences, Royal Free Campus, Queen Square Institute of Neurology, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
42
|
Shojaeisaadi H, Schoenrock A, Meier MJ, Williams A, Norris JM, Palmer ND, Yauk CL, Marchetti F. Mutational signature analyses in multi-child families reveal sources of age-related increases in human germline mutations. Commun Biol 2024; 7:1451. [PMID: 39506086 PMCID: PMC11541588 DOI: 10.1038/s42003-024-07140-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
Whole-genome sequencing studies of parent-offspring trios have provided valuable insights into the potential impact of de novo mutations (DNMs) on human health and disease. However, the molecular mechanisms that drive DNMs are unclear. Studies with multi-child families can provide important insight into the causes of inter-family variability in DNM rates but they are highly limited. We characterized 2479 de novo single nucleotide variants (SNVs) in 13 multi-child families of Mexican-American ethnicity. We observed a strong paternal age effect on validated de novo SNVs with extensive inter-family variability in the yearly rate of increase. Children of older fathers showed more C > T transitions at CpG sites than children from younger fathers. Validated SNVs were examined against one cancer (COSMIC) and two non-cancer (human germline and CRISPR-Cas 9 knockout of human DNA repair genes) mutational signature databases. These analyses suggest that inaccurate DNA mismatch repair during repair initiation and excision processes, along with DNA damage and replication errors, are major sources of human germline de novo SNVs. Our findings provide important information for understanding the potential sources of human germline de novo SNVs and the critical role of DNA mismatch repair in their genesis.
Collapse
Affiliation(s)
| | - Andrew Schoenrock
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
- Research Computing Services, Carleton University, Ottawa, ON, Canada
| | - Matthew J Meier
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Jill M Norris
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Carole L Yauk
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| |
Collapse
|
43
|
Riessland M, Ximerakis M, Jarjour AA, Zhang B, Orr ME. Therapeutic targeting of senescent cells in the CNS. Nat Rev Drug Discov 2024; 23:817-837. [PMID: 39349637 PMCID: PMC11927922 DOI: 10.1038/s41573-024-01033-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 11/01/2024]
Abstract
Senescent cells accumulate throughout the body with advanced age, diseases and chronic conditions. They negatively impact health and function of multiple systems, including the central nervous system (CNS). Therapies that target senescent cells, broadly referred to as senotherapeutics, recently emerged as potentially important treatment strategies for the CNS. Promising therapeutic approaches involve clearing senescent cells by disarming their pro-survival pathways with 'senolytics'; or dampening their toxic senescence-associated secretory phenotype (SASP) using 'senomorphics'. Following the pioneering discovery of first-generation senolytics dasatinib and quercetin, dozens of additional therapies have been identified, and several promising targets are under investigation. Although potentially transformative, senotherapies are still in early stages and require thorough testing to ensure reliable target engagement, specificity, safety and efficacy. The limited brain penetrance and potential toxic side effects of CNS-acting senotherapeutics pose challenges for drug development and translation to the clinic. This Review assesses the potential impact of senotherapeutics for neurological conditions by summarizing preclinical evidence, innovative methods for target and biomarker identification, academic and industry drug development pipelines and progress in clinical trials.
Collapse
Affiliation(s)
- Markus Riessland
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, USA
| | | | | | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miranda E Orr
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
- Salisbury VA Medical Center, Salisbury, NC, USA.
| |
Collapse
|
44
|
Torreggiani S, Castellan FS, Aksentijevich I, Beck DB. Somatic mutations in autoinflammatory and autoimmune disease. Nat Rev Rheumatol 2024; 20:683-698. [PMID: 39394526 DOI: 10.1038/s41584-024-01168-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2024] [Indexed: 10/13/2024]
Abstract
Somatic mutations (also known as acquired mutations) are emerging as common, age-related processes that occur in all cells throughout the body. Somatic mutations are canonically linked to malignant processes but over the past decade have been increasingly causally connected to benign diseases including rheumatic conditions. Here we outline the contribution of somatic mutations to complex and monogenic immunological diseases with a detailed review of unique aspects associated with such causes. Somatic mutations can cause early- or late-onset rheumatic monogenic diseases but also contribute to the pathogenesis of complex inflammatory and immune-mediated diseases, affect disease progression and define new clinical subtypes. Although even variants with a low variant allele fraction can be pathogenic, clonal dynamics could lead to changes over time in the proportion of mutant cells, with possible phenotypic consequences for the individual. Thus, somatic mutagenesis and clonal expansion have relevant implications in genetic testing and counselling. On the basis of both increased recognition of somatic diseases in clinical practice and improved technical and bioinformatic processes, we hypothesize that there will be an ever-expanding list of somatic mutations in various genes leading to inflammatory conditions, particularly in late-onset disease.
Collapse
Affiliation(s)
- Sofia Torreggiani
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
- Epidemiology and Human Genetics, Graduate Program in Life Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Flore S Castellan
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - David B Beck
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
45
|
Tomkova M, McClellan MJ, Crevel G, Shahid AM, Mozumdar N, Tomek J, Shepherd E, Cotterill S, Schuster-Böckler B, Kriaucionis S. Human DNA polymerase ε is a source of C>T mutations at CpG dinucleotides. Nat Genet 2024; 56:2506-2516. [PMID: 39390083 PMCID: PMC11549043 DOI: 10.1038/s41588-024-01945-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/11/2024] [Indexed: 10/12/2024]
Abstract
C-to-T transitions in CpG dinucleotides are the most prevalent mutations in human cancers and genetic diseases. These mutations have been attributed to deamination of 5-methylcytosine (5mC), an epigenetic modification found on CpGs. We recently linked CpG>TpG mutations to replication and hypothesized that errors introduced by polymerase ε (Pol ε) may represent an alternative source of mutations. Here we present a new method called polymerase error rate sequencing (PER-seq) to measure the error spectrum of DNA polymerases in isolation. We find that the most common human cancer-associated Pol ε mutant (P286R) produces an excess of CpG>TpG errors, phenocopying the mutation spectrum of tumors carrying this mutation and deficiencies in mismatch repair. Notably, we also discover that wild-type Pol ε has a sevenfold higher error rate when replicating 5mCpG compared to C in other contexts. Together, our results from PER-seq and human cancers demonstrate that replication errors are a major contributor to CpG>TpG mutagenesis in replicating cells, fundamentally changing our understanding of this important disease-causing mutational mechanism.
Collapse
Affiliation(s)
- Marketa Tomkova
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK.
| | | | - Gilles Crevel
- Molecular and Cellular Sciences, St George's University London, London, UK
| | | | - Nandini Mozumdar
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Jakub Tomek
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Emelie Shepherd
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Sue Cotterill
- Molecular and Cellular Sciences, St George's University London, London, UK
| | | | | |
Collapse
|
46
|
Satake A, Imai R, Fujino T, Tomimoto S, Ohta K, Na'iem M, Indrioko S, Widiyatno W, Purnomo S, Morales AM, Nizhynska V, Tani N, Suyama Y, Sasaki E, Kasahara M. Somatic mutation rates scale with time not growth rate in long-lived tropical trees. eLife 2024; 12:RP88456. [PMID: 39441734 PMCID: PMC11498935 DOI: 10.7554/elife.88456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
The rates of appearance of new mutations play a central role in evolution. However, mutational processes in natural environments and their relationship with growth rates are largely unknown, particular in tropical ecosystems with high biodiversity. Here, we examined the somatic mutation landscapes of two tropical trees, Shorea laevis (slow-growing) and S. leprosula (fast-growing), in central Borneo, Indonesia. Using newly constructed genomes, we identified a greater number of somatic mutations in tropical trees than in temperate trees. In both species, we observed a linear increase in the number of somatic mutations with physical distance between branches. However, we found that the rate of somatic mutation accumulation per meter of growth was 3.7-fold higher in S. laevis than in S. leprosula. This difference in the somatic mutation rate was scaled with the slower growth rate of S. laevis compared to S. leprosula, resulting in a constant somatic mutation rate per year between the two species. We also found that somatic mutations are neutral within an individual, but those mutations transmitted to the next generation are subject to purifying selection. These findings suggest that somatic mutations accumulate with absolute time and older trees have a greater contribution towards generating genetic variation.
Collapse
Affiliation(s)
- Akiko Satake
- Department of Biology, Faculty of Science, Kyushu UniversityFukuokaJapan
| | - Ryosuke Imai
- Department of Biology, Faculty of Science, Kyushu UniversityFukuokaJapan
| | - Takeshi Fujino
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of TokyoChibaJapan
| | - Sou Tomimoto
- Department of Biology, Faculty of Science, Kyushu UniversityFukuokaJapan
| | - Kayoko Ohta
- Department of Biology, Faculty of Science, Kyushu UniversityFukuokaJapan
| | | | - Sapto Indrioko
- Faculty of Forestry, Universitas Gadjah MadaSlemanIndonesia
| | | | | | - Almudena Molla Morales
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of SciencesViennaAustria
| | - Viktoria Nizhynska
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of SciencesViennaAustria
| | - Naoki Tani
- Forestry Division, Japan International Research Center for Agricultural SciencesTsukubaJapan
- Faculty of Life and Environmental Sciences, University of TsukubaTsukubaJapan
| | - Yoshihisa Suyama
- Field Science Center, Graduate School of Agricultural Science, Tohoku UniversityOsakiJapan
| | - Eriko Sasaki
- Department of Biology, Faculty of Science, Kyushu UniversityFukuokaJapan
| | - Masahiro Kasahara
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of TokyoChibaJapan
| |
Collapse
|
47
|
Hosoi S, Hirose T, Matsumura S, Otsubo Y, Saito K, Miyazawa M, Suzuki T, Masumura K, Sugiyama KI. Effect of sequencing platforms on the sensitivity of chemical mutation detection using Hawk-Seq™. Genes Environ 2024; 46:20. [PMID: 39385252 PMCID: PMC11462924 DOI: 10.1186/s41021-024-00313-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Error-corrected next-generation sequencing (ecNGS) technologies have enabled the direct evaluation of genome-wide mutations after exposure to mutagens. Previously, we reported an ecNGS methodology, Hawk-Seq™, and demonstrated its utility in evaluating mutagenicity. The evaluation of technical transferability is essential to further evaluate the reliability of ecNGS-based assays. However, cutting-edge sequencing platforms are continually evolving, which can affect the sensitivity of ecNGS. Therefore, the effect of differences in sequencing instruments on mutation data quality should be evaluated. RESULTS We assessed the performance of four sequencing platforms (HiSeq2500, NovaSeq6000, NextSeq2000, and DNBSEQ-G400) with the Hawk-Seq™ protocol for mutagenicity evaluation using DNA samples from mouse bone marrow exposed to benzo[a]pyrene (BP). The overall mutation (OM) frequencies per 106 bp in vehicle-treated samples were 0.22, 0.36, 0.46, and 0.26 for HiSeq2500, NovaSeq6000, NextSeq2000, and DNBSEQ-G400, respectively. The OM frequency of NextSeq2000 was significantly higher than that of HiSeq2500, suggesting the difference to be based on the platform. The relatively higher value in NextSeq2000 was a consequence of the G:C to C:G mutations in NextSeq2000 data (0.67 per 106 G:C bp), which was higher than the mean of the four platforms by a ca. of 0.25 per 106 G:C bp. A clear dose-dependent increase in G:C to T:A mutation frequencies was observed in all four sequencing platforms after BP exposure. The cosine similarity values of the 96-dimensional trinucleotide mutation patterns between HiSeq and the three other platforms were 0.93, 0.95, and 0.92 for NovaSeq, NextSeq, and DNBSeq, respectively. These results suggest that all platforms can provide equivalent data that reflect the characteristics of the mutagens. CONCLUSIONS All platforms sensitively detected mutagen-induced mutations using the Hawk-Seq™ analysis. The substitution types and frequencies of the background errors differed depending on the platform. The effects of sequencing platforms on mutagenicity evaluation should be assessed before experimentation.
Collapse
Affiliation(s)
- Sayaka Hosoi
- R&D - Safety Science Research, Kao Corporation, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-0821, Japan
| | - Takako Hirose
- R&D - Safety Science Research, Kao Corporation, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-0821, Japan
| | - Shoji Matsumura
- R&D - Safety Science Research, Kao Corporation, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-0821, Japan.
| | - Yuki Otsubo
- R&D - Safety Science Research, Kao Corporation, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-0821, Japan
| | - Kazutoshi Saito
- R&D - Safety Science Research, Kao Corporation, 2606 Akabane, Ichikai-Machi, Haga-Gun, Tochigi, 321-3497, Japan
| | - Masaaki Miyazawa
- R&D - Safety Science Research, Kao Corporation, 2606 Akabane, Ichikai-Machi, Haga-Gun, Tochigi, 321-3497, Japan
| | - Takayoshi Suzuki
- Division of Genome Safety Science, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Kenichi Masumura
- Division of Risk Assessment, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Kei-Ichi Sugiyama
- Division of Genome Safety Science, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| |
Collapse
|
48
|
Axelsson J, LeBlanc D, Shojaeisaadi H, Meier MJ, Fitzgerald DM, Nachmanson D, Carlson J, Golubeva A, Higgins J, Smith T, Lo FY, Pilsner R, Williams A, Salk J, Marchetti F, Yauk C. Frequency and spectrum of mutations in human sperm measured using duplex sequencing correlate with trio-based de novo mutation analyses. Sci Rep 2024; 14:23134. [PMID: 39379474 PMCID: PMC11461794 DOI: 10.1038/s41598-024-73587-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024] Open
Abstract
De novo mutations (DNMs) are drivers of genetic disorders. However, the study of DNMs is hampered by technological limitations preventing accurate quantification of ultra-rare mutations. Duplex Sequencing (DS) theoretically has < 1 error/billion base-pairs (bp). To determine the DS utility to quantify and characterize DNMs, we analyzed DNA from blood and spermatozoa from six healthy, 18-year-old Swedish men using the TwinStrand DS mutagenesis panel (48 kb spanning 20 genic and intergenic loci). The mean single nucleotide variant mutation frequency (MF) was 1.2 × 10- 7 per bp in blood and 2.5 × 10- 8 per bp in sperm, with the most common base substitution being C > T. Blood MF and substitution spectrum were similar to those reported in blood cells with an orthogonal method. The sperm MF was in the same order of magnitude and had a strikingly similar spectrum to DNMs from publicly available whole genome sequencing data from human pedigrees (1.2 × 10- 8 per bp). DS revealed much larger numbers of insertions and deletions in sperm over blood, driven by an abundance of putative extra-chromosomal circular DNAs. The study indicates the strong potential of DS to characterize human DNMs to inform factors that contribute to disease susceptibility and heritable genetic risks.
Collapse
Affiliation(s)
- Jonatan Axelsson
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
- Reproductive Medicine Centre, Skåne University Hospital, Malmö, Sweden.
- Department of Translational Medicine, Lund University, Malmö, Sweden.
- Department of Laboratory Medicine, Lund University, Lund, Sweden.
| | - Danielle LeBlanc
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | | | - Matthew J Meier
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | | | | | | | | | | | | | - Fang Yin Lo
- TwinStrand Biosciences, Inc., Seattle, WA, USA
| | - Richard Pilsner
- Department of Obstetrics & Gynecology, Wayne State University, Detroit, MI, USA
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Jesse Salk
- TwinStrand Biosciences, Inc., Seattle, WA, USA
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Carole Yauk
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| |
Collapse
|
49
|
Renteln M. Toward Systemic Lipofuscin Removal. Rejuvenation Res 2024; 27:171-179. [PMID: 39041624 DOI: 10.1089/rej.2024.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
Lipofuscin is indigestible garbage that accumulates in the autophagic vesicles and cytosol of postmitotic cells with age. Drs. Brunk and Terman postulated that lipofuscin accumulation is the main or at least a major driving factor in aging. They even posited that the evolution of memory is the reason why we get lipofuscin at all, as stable synaptic connections must be maintained over time, meaning that the somas of neurons must also remain in the same locale. In other words, they cannot dilute out their garbage over time through cell division. Mechanistically, their position certainly makes sense given that rendering a large percentage of a postmitotic cell's lysosomes useless must almost certainly negatively affect that cell and the surrounding microenvironment. It may be the case that lipofuscin accumulation is the main issue with regard to current age-related disease. Degradation in situ may be an insurmountable task currently. However, a method of systemic lipofuscin removal is discussed herein.
Collapse
Affiliation(s)
- Michael Renteln
- Molecular Genetics and Biochemistry from USC, Los Angeles, California, USA
| |
Collapse
|
50
|
Ren P, Zhang J, Vijg J. Somatic mutations in aging and disease. GeroScience 2024; 46:5171-5189. [PMID: 38488948 PMCID: PMC11336144 DOI: 10.1007/s11357-024-01113-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
Time always leaves its mark, and our genome is no exception. Mutations in the genome of somatic cells were first hypothesized to be the cause of aging in the 1950s, shortly after the molecular structure of DNA had been described. Somatic mutation theories of aging are based on the fact that mutations in DNA as the ultimate template for all cellular functions are irreversible. However, it took until the 1990s to develop the methods to test if DNA mutations accumulate with age in different organs and tissues and estimate the severity of the problem. By now, numerous studies have documented the accumulation of somatic mutations with age in normal cells and tissues of mice, humans, and other animals, showing clock-like mutational signatures that provide information on the underlying causes of the mutations. In this review, we will first briefly discuss the recent advances in next-generation sequencing that now allow quantitative analysis of somatic mutations. Second, we will provide evidence that the mutation rate differs between cell types, with a focus on differences between germline and somatic mutation rate. Third, we will discuss somatic mutational signatures as measures of aging, environmental exposure, and activities of DNA repair processes. Fourth, we will explain the concept of clonally amplified somatic mutations, with a focus on clonal hematopoiesis. Fifth, we will briefly discuss somatic mutations in the transcriptome and in our other genome, i.e., the genome of mitochondria. We will end with a brief discussion of a possible causal contribution of somatic mutations to the aging process.
Collapse
Affiliation(s)
- Peijun Ren
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jie Zhang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jan Vijg
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|