1
|
Zhang Y, Chen Z, Zhang W, Sarwar R, Wang Z, Tan X. Genome-wide analysis of the NYN domain gene family in Brassica napus and its function role in plant growth and development. Gene 2024; 930:148864. [PMID: 39151674 DOI: 10.1016/j.gene.2024.148864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/21/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
The NYN domain gene family consists of genes that encode ribonucleases that are characterized by a newly identified NYN domain. Members of the family were widely distributed in all life kingdoms and play a crucial role in various RNA regulation processes, although the wide genome overview of the NYN domain gene family is not yet available in any species. Rapeseed (Brassica napus L.), a polyploid model species, is an important oilseed crop. Here, the phylogenetic analysis of these BnaNYNs revealed five distinct groups strongly supported by gene structure, conserved domains, and conserved motifs. The survey of the expansion of the gene family showed that the birth of BnaNYNs is explained by various duplication events. Furthermore, tissue-specific expression analysis, protein-protein interaction prediction, and cis-element prediction suggested a role for BnaNYNs in plant growth and development. Interestingly, the data showed that three tandem duplicated BnaNYNs (TDBs) exhibited distinct expression patterns from those other BnaNYNs and had a high similarity in protein sequence level. Furthermore, the analysis of one of these TDBs, BnaNYN57, showed that overexpression of BnaNYN57 in Arabidopsis thaliana and B. napus accelerated plant growth and significantly increased silique length, while RNA interference resulted in the opposite growth pattern. It suggesting a key role for the TDBs in processes related to plant growth and development.
Collapse
Affiliation(s)
- Yijie Zhang
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, PR China.
| | - Zhuo Chen
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, PR China
| | - Wenhua Zhang
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, PR China
| | - Rehman Sarwar
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, PR China
| | - Zheng Wang
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, PR China.
| | - Xiaoli Tan
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, PR China.
| |
Collapse
|
2
|
Walia A, Carter R, Wightman R, Meyerowitz EM, Jönsson H, Jones AM. Differential growth is an emergent property of mechanochemical feedback mechanisms in curved plant organs. Dev Cell 2024:S1534-5807(24)00570-7. [PMID: 39378877 DOI: 10.1016/j.devcel.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/21/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024]
Abstract
Differential growth is central to eukaryotic morphogenesis. We showed using cellular imaging, simulations, and perturbations that light-induced differential growth in a curved organ, the Arabidopsis thaliana apical hook, emerges from the longitudinal expansion of subepidermal cells, acting in parallel with a differential in the material properties of epidermal cell walls that resist expansion. The greater expansion of inner hook cells that results in apical hook opening is gated by wall alkalinity and auxin, both of which are depleted upon illumination. We further identified mechanochemical feedback from wall mechanics to light stimulated auxin depletion, which may contribute to gating hook opening under mechanical restraint. These results highlight how plant cells coordinate growth among tissue layers by linking mechanics and hormonal gradients with the cell wall remodeling required for differential growth.
Collapse
Affiliation(s)
- Ankit Walia
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Ross Carter
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Raymond Wightman
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Elliot M Meyerowitz
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK; Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Henrik Jönsson
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK; Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK; Centre for Environmental and Climate Science, Lund University, 223 62 Lund, Sweden.
| | - Alexander M Jones
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK.
| |
Collapse
|
3
|
Wang R, Zhong Y, Han J, Huang L, Wang Y, Shi X, Li M, Zhuang Y, Ren W, Liu X, Cao H, Xin B, Lai J, Chen L, Chen F, Yuan L, Wang Y, Li X. NIN-LIKE PROTEIN3.2 inhibits repressor Aux/IAA14 expression and enhances root biomass in maize seedlings under low nitrogen. THE PLANT CELL 2024; 36:4388-4403. [PMID: 38917216 PMCID: PMC11448906 DOI: 10.1093/plcell/koae184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/29/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
Plants generally enhance their root growth in the form of greater biomass and/or root length to boost nutrient uptake in response to short-term low nitrogen (LN). However, the underlying mechanisms of short-term LN-mediated root growth remain largely elusive. Our genome-wide association study, haplotype analysis, and phenotyping of transgenic plants showed that the crucial nitrate signaling component NIN-LIKE PROTEIN3.2 (ZmNLP3.2), a positive regulator of root biomass, is associated with natural variations in root biomass of maize (Zea mays L.) seedlings under LN. The monocot-specific gene AUXIN/INDOLE-3-ACETIC ACID14 (ZmAux/IAA14) exhibited opposite expression patterns to ZmNLP3.2 in ZmNLP3.2 knockout and overexpression lines, suggesting that ZmNLP3.2 hampers ZmAux/IAA14 transcription. Importantly, ZmAux/IAA14 knockout seedlings showed a greater root dry weight (RDW), whereas ZmAux/IAA14 overexpression reduced RDW under LN compared with wild-type plants, indicating that ZmAux/IAA14 negatively regulates the RDW of LN-grown seedlings. Moreover, in vitro and vivo assays indicated that AUXIN RESPONSE FACTOR19 (ZmARF19) binds to and transcriptionally activates ZmAux/IAA14, which was weakened by the ZmNLP3.2-ZmARF19 interaction. The zmnlp3.2 ZmAux/IAA14-OE seedlings exhibited further reduced RDW compared with ZmAux/IAA14 overexpression lines when subjected to LN treatment, corroborating the ZmNLP3.2-ZmAux/IAA14 interaction. Thus, our study reveals a ZmNLP3.2-ZmARF19-ZmAux/IAA14 module regulating root biomass in response to nitrogen limitation in maize.
Collapse
Affiliation(s)
- Ruifeng Wang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yanting Zhong
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jienan Han
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liangliang Huang
- Department of Plant Genetics and Breeding, State Key Laboratory of Maize Bio-Breeding, National Maize Improvement Center, China Agricultural University, Beijing 100193, China
| | - Yongqi Wang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xionggao Shi
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Mengfei Li
- State Key Laboratory of Plant Environmental Resilience, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yao Zhuang
- State Key Laboratory of Plant Environmental Resilience, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Wei Ren
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaoting Liu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Huairong Cao
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Beibei Xin
- Department of Plant Genetics and Breeding, State Key Laboratory of Maize Bio-Breeding, National Maize Improvement Center, China Agricultural University, Beijing 100193, China
| | - Jinsheng Lai
- Department of Plant Genetics and Breeding, State Key Laboratory of Maize Bio-Breeding, National Maize Improvement Center, China Agricultural University, Beijing 100193, China
| | - Limei Chen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Fanjun Chen
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Lixing Yuan
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yi Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Xuexian Li
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Abstract
Expansins comprise an ancient group of cell wall proteins ubiquitous in land plants and their algal ancestors. During cell growth, they facilitate passive yielding of the wall's cellulose networks to turgor-generated tensile stresses, without evidence of enzymatic activity. Expansins are also implicated in fruit softening and other developmental processes and in adaptive responses to environmental stresses and pathogens. The major expansin families in plants include α-expansins (EXPAs), which act on cellulose-cellulose junctions, and β-expansins, which can act on xylans. EXPAs mediate acid growth, which contributes to wall enlargement by auxin and other growth agents. The genomes of diverse microbes, including many plant pathogens, also encode expansins designated expansin-like X. Expansins are proposed to disrupt noncovalent bonding between laterally aligned polysaccharides (notably cellulose), facilitating wall loosening for a variety of biological roles.
Collapse
Affiliation(s)
- Daniel J Cosgrove
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA;
| |
Collapse
|
5
|
Zhang Z, Chen H, Peng S, Han H. Slow and rapid auxin responses in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5471-5476. [PMID: 38794966 PMCID: PMC11427834 DOI: 10.1093/jxb/erae246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/23/2024] [Indexed: 05/27/2024]
Affiliation(s)
- Zilin Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi, Nanchang, 330045, China
| | - Huihuang Chen
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Shuaiying Peng
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi, Nanchang, 330045, China
| | - Huibin Han
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi, Nanchang, 330045, China
| |
Collapse
|
6
|
Notaguchi M, Ichita M, Kawasoe T, Monda K, Kurotani KI, Higaki T, Iba K, Hashimoto-Sugimoto M. The PATROL1 function in roots contributes to the increase in shoot biomass. PLANTA 2024; 260:105. [PMID: 39325207 PMCID: PMC11427605 DOI: 10.1007/s00425-024-04526-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024]
Abstract
MAIN CONCLUSION PATOL1 contributes to increasing biomass not only by effective stomatal movement but also by root meristematic activity. PATROL1 (PROTON ATPase TRANSLOCATION CONTROL 1), a protein with a MUN domain, is involved in the intercellular trafficking of AHA1 H+-ATPase to the plasma membrane in guard cells. This allows for larger stomatal opening and more efficient photosynthesis, leading to increased biomass. Although PATROL1 is expressed not only in stomata but also in other tissues of the shoot and root, the role in other tissues than stomata has not been determined yet. Here, we investigated PATROL1 functions in roots using a loss-of-function mutant and an overexpressor. Cytological observations revealed that root meristematic size was significantly smaller in the mutant resulting in the short primary root. Grafting experiments showed that the shoot biomass of the mutant scion was increased when it grafted onto wild-type or overexpressor rootstocks. Conversely, grafting of the overexpressor scion shoot enhanced the growth of the mutant rootstock. The leaf temperatures of the grafted plants were consistent with those of their respective genotypes, indicating cell-autonomous behavior of stomatal movement and independent roles of PATROL1 in plant growth. Moreover, plasma membrane localization of AHA1 was not altered in root epidermal cells in the patrol1 mutant implying existence of a different mode of PATROL1 action in roots. Thus PATROL1 plays a role in root meristem and contributes to increase shoot biomass.
Collapse
Affiliation(s)
- Michitaka Notaguchi
- Department of Botany, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-Cho, Kyoto, 606-8502, Japan.
- Bioscience and Biotechnology Center, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, 464-8601, Japan.
| | - Manami Ichita
- Graduate School of Science and Technology, Kumamoto University, Kurokami, Chuo-Ku, Kumamoto, 860-8555, Japan
| | - Takaya Kawasoe
- Graduate School of Science and Technology, Kumamoto University, Kurokami, Chuo-Ku, Kumamoto, 860-8555, Japan
| | - Keina Monda
- Department of Biology, Faculty of Science, Kyushu University, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ken-Ichi Kurotani
- Bioscience and Biotechnology Center, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, 464-8601, Japan
| | - Takumi Higaki
- Graduate School of Science and Technology, Kumamoto University, Kurokami, Chuo-Ku, Kumamoto, 860-8555, Japan
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kurokami, Chuo-Ku, Kumamoto, 860-8555, Japan
- International Research Center for Agricultural and Environmental Biology, Kumamoto University, Kurokami, Chuo-Ku, Kumamoto, 860-8555, Japan
| | - Koh Iba
- Department of Biology, Faculty of Science, Kyushu University, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Mimi Hashimoto-Sugimoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, 464-8601, Japan.
| |
Collapse
|
7
|
Moss BL. AuxSynBio: synthetic biology tools to understand and engineer auxin. Curr Opin Biotechnol 2024; 90:103194. [PMID: 39255527 DOI: 10.1016/j.copbio.2024.103194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/12/2024]
Abstract
The plant hormone auxin is a crucial coordinator of nearly all plant growth and development processes. Because of its centrality to plant physiology and the modular nature of the signaling pathway, auxin has played a critical role at the forefront of plant synthetic biology. This review will highlight how auxin is both a subject and an object of synthetic biology. Engineering biology approaches are deepening our understanding of how auxin pathways are wired and tuned, particularly through the creative use of signaling pathway recapitulation in yeast and engineered orthogonal auxin-receptor pairs. Auxin biology has also been mined for parts by synthetic biologists, with components being used for inducible protein degradation systems (auxin-inducible degron), auxin biosensors, synthetic cell-cell communication, and plant engineering.
Collapse
Affiliation(s)
- Britney L Moss
- Department of Biology, Whitman College, Walla Walla, WA 99362, USA.
| |
Collapse
|
8
|
Huang J, Xuan X, Xu D, Wen Y. Dual-Mediated Roles of H +-ATPase in Alleviating the Phytotoxicity of Imazethapyr to Nontarget Wheat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19333-19341. [PMID: 39183467 DOI: 10.1021/acs.jafc.4c06062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
The regulation solutions and mechanisms of reducing pesticide phytotoxicity to nontarget plants are not well-defined and detailed. Here, we have proposed a new detoxification strategy to control the toxic effects of herbicide imazethapyr (IM) induced in wheat seedlings from the perspective of the plasma membrane (PM) H+-ATPase. We found that the changes in PM H+-ATPase activity have a regulatory effect on the phytotoxic effects induced by IM in plants. Treatment with PM H+-ATPase activators restored the reduced auxin content and photosynthetic efficiency caused by IM, thereby promoting plant growth. Application of a PM H+-ATPase inhibitor further reduced phosphorus content and significantly increased 2,4-dihydroxy-7-methoxy-2H,1,4-benzoxazin-3(4H)one (DIMBOA) and jasmonic acid levels. These effects indicate that auxin and DIMBOA may regulate plant growth trends and detoxification effects mediated by PM H+-ATPase. This work opens a new strategy for regulating herbicide toxicity to nontarget plants from the PM H+-ATPase.
Collapse
Affiliation(s)
- Jinye Huang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xuan Xuan
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Dongmei Xu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yuezhong Wen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
Deng R, Huang S, Du J, Luo D, Liu J, Zhao Y, Zheng C, Lei T, Li Q, Zhang S, Jiang M, Jin T, Liu D, Wang S, Zhang Y, Wang X. The brassinosteroid receptor StBRI1 promotes tuber development by enhancing plasma membrane H+-ATPase activity in potato. THE PLANT CELL 2024; 36:3498-3520. [PMID: 38819320 PMCID: PMC11371173 DOI: 10.1093/plcell/koae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 06/01/2024]
Abstract
The brassinosteroid (BR) receptor BRASSINOSTEROID-INSENSITIVE 1 (BRI1) plays a critical role in plant growth and development. Although much is known about how BR signaling regulates growth and development in many crop species, the role of StBRI1 in regulating potato (Solanum tuberosum) tuber development is not well understood. To address this question, a series of comprehensive genetic and biochemical methods were applied in this investigation. It was determined that StBRI1 and Solanum tuberosum PLASMA MEMBRANE (PM) PROTON ATPASE2 (PHA2), a PM-localized proton ATPase, play important roles in potato tuber development. The individual overexpression of StBRI1 and PHA2 led to a 22% and 25% increase in tuber yield per plant, respectively. Consistent with the genetic evidence, in vivo interaction analysis using double transgenic lines and PM H+-ATPase activity assays indicated that StBRI1 interacts with the C-terminus of PHA2, which restrains the intramolecular interaction of the PHA2 C-terminus with the PHA2 central loop to attenuate autoinhibition of PM H+-ATPase activity, resulting in increased PHA2 activity. Furthermore, the extent of PM H+-ATPase autoinhibition involving phosphorylation-dependent mechanisms corresponds to phosphorylation of the penultimate Thr residue (Thr-951) in PHA2. These results suggest that StBRI1 phosphorylates PHA2 and enhances its activity, which subsequently promotes tuber development. Altogether, our results uncover a BR-StBRI1-PHA2 module that regulates tuber development and suggest a prospective strategy for improving tuberous crop growth and increasing yield via the cell surface-based BR signaling pathway.
Collapse
Affiliation(s)
- Rui Deng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuhua Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Department of Science and Technology of Shaanxi Province, Hybrid Rapeseed Research Center of Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Jia Du
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Dan Luo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianwei Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yan Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chongyang Zheng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tiantian Lei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qi Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Siwei Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Meng Jiang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tong Jin
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Dehai Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shufen Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shaanxi Engineering Research Center for Vegetables, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yanfeng Zhang
- Department of Science and Technology of Shaanxi Province, Hybrid Rapeseed Research Center of Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Xiaofeng Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shaanxi Engineering Research Center for Vegetables, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
10
|
Chen L, Zhang Y, Hao Q, Fu J, Bao Z, Bu Y, Sun N, Wu X, Lu L, Kong Z, Qin L, Zhou Y, Jing Y, Wang X. Enhancement of in situ detection and imaging of phytohormones in plant tissues by MALDI-MSI using 2,4-dihydroxy-5-nitrobenzoic acid as a novel matrix. THE NEW PHYTOLOGIST 2024; 243:2021-2036. [PMID: 39014531 DOI: 10.1111/nph.19964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/27/2024] [Indexed: 07/18/2024]
Abstract
Phytohormones possess unique chemical structures, and their physiological effects are regulated through intricate interactions or crosstalk among multiple phytohormones. MALDI-MSI enables the simultaneous detection and imaging of multiple hormones. However, its application for tracing phytohormones is currently restricted by low abundance of hormone in plant and suboptimal matrix selection. 2,4-Dihydroxy-5-nitrobenzoic acid (DHNBA) was reported as a new MALDI matrix for the enhanced detection and imaging of multiple phytohormones in plant tissues. DHNBA demonstrates remarkable sensitivity improvement when compared to the commonly used matrix, 2,5-dihydroxybenzoic acid (DHB), in the detection of isoprenoid cytokinins (trans-zeatin (tZ), dihy-drozeatin (DHZ), meta-topolin (mT), and N6-(Δ2-isopentenyl) adenine (iP)), jasmonic acid (JA), abscisic acid (ABA), and 1-aminocyclo-propane-1-carboxylic acid (ACC) standards. The distinctive properties of DHNBA (i.e. robust UV absorption, uniform matrix deposition, negligible background interference, and high ionization efficiency of phytohormones) make it as an ideal matrix for enhanced detection and imaging of phytohormones, including tZ, DHZ, ABA, indole-3-acetic acid (IAA), and ACC, by MALDI-MSI in various plant tissues, for example germinating seeds, primary/lateral roots, and nodules. Employing DHNBA significantly enhances our capability to concurrently track complex phytohormone biosynthesis pathways while providing precise differentiation of the specific roles played by individual phytohormones within the same category. This will propel forward the comprehensive exploration of phytohormonal functions in plant science.
Collapse
Affiliation(s)
- Lulu Chen
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Yue Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Qichen Hao
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing, 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing, 100081, China
| | - Jinxiang Fu
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing, 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing, 100081, China
| | - Zhibin Bao
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing, 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing, 100081, China
| | - Yufen Bu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Na Sun
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Xinyuan Wu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Liang Lu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Liang Qin
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing, 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing, 100081, China
| | - Yijun Zhou
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing, 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing, 100081, China
| | - Yanping Jing
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Xiaodong Wang
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing, 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing, 100081, China
| |
Collapse
|
11
|
Shang E, Wei K, Lv B, Zhang X, Lin X, Ding Z, Leng J, Tian H, Ding Z. VIK-Mediated Auxin Signaling Regulates Lateral Root Development in Arabidopsis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402442. [PMID: 38958531 PMCID: PMC11434109 DOI: 10.1002/advs.202402442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/31/2024] [Indexed: 07/04/2024]
Abstract
The crucial role of TIR1-receptor-mediated gene transcription regulation in auxin signaling has long been established. In recent years, the significant role of protein phosphorylation modifications in auxin signal transduction has gradually emerged. To further elucidate the significant role of protein phosphorylation modifications in auxin signaling, a phosphoproteomic analysis in conjunction with auxin treatment has identified an auxin activated Mitogen-activated Protein Kinase Kinase Kinase (MAPKKK) VH1-INTERACTING Kinase (VIK), which plays an important role in auxin-induced lateral root (LR) development. In the vik mutant, auxin-induced LR development is significantly attenuated. Further investigations show that VIK interacts separately with the positive regulator of LR development, LATERAL ORGAN BOUNDARIES-DOMAIN18 (LBD18), and the negative regulator of LR emergence, Ethylene Responsive Factor 13 (ERF13). VIK directly phosphorylates and stabilizes the positive transcription factor LBD18 in LR formation. In the meantime, VIK directly phosphorylates the negative regulator ERF13 at Ser168 and Ser172 sites, causing its degradation and releasing the repression by ERF13 on LR emergence. In summary, VIK-mediated auxin signaling regulates LR development by enhancing the protein stability of LBD18 and inducing the degradation of ERF13, respectively.
Collapse
Affiliation(s)
- Erlei Shang
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoShandong266237China
| | - Kaijing Wei
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoShandong266237China
| | - Bingsheng Lv
- College of HorticultureQingdao Agricultural UniversityQingdaoShandong266109China
| | - Xueli Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoShandong266237China
| | - Xuefeng Lin
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoShandong266237China
| | - Zhihui Ding
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoShandong266237China
| | - Junchen Leng
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoShandong266237China
| | - Huiyu Tian
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoShandong266237China
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoShandong266237China
| |
Collapse
|
12
|
Zeng H, Chen H, Zhang M, Ding M, Xu F, Yan F, Kinoshita T, Zhu Y. Plasma membrane H +-ATPases in mineral nutrition and crop improvement. TRENDS IN PLANT SCIENCE 2024; 29:978-994. [PMID: 38582687 DOI: 10.1016/j.tplants.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 04/08/2024]
Abstract
Plasma membrane H+-ATPases (PMAs) pump H+ out of the cytoplasm by consuming ATP to generate a membrane potential and proton motive force for the transmembrane transport of nutrients into and out of plant cells. PMAs are involved in nutrient acquisition by regulating root growth, nutrient uptake, and translocation, as well as the establishment of symbiosis with arbuscular mycorrhizas. Under nutrient stresses, PMAs are activated to pump more H+ and promote organic anion excretion, thus improving nutrient availability in the rhizosphere. Herein we review recent progress in the physiological functions and the underlying molecular mechanisms of PMAs in the efficient acquisition and utilization of various nutrients in plants. We also discuss perspectives for the application of PMAs in improving crop production and quality.
Collapse
Affiliation(s)
- Houqing Zeng
- College of Life and Environmental Sciences, Kharkiv Institute at Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China.
| | - Huiying Chen
- College of Life and Environmental Sciences, Kharkiv Institute at Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Maoxing Zhang
- International Research Centre for Environmental Membrane Biology, Department of Horticulture, Foshan University, Foshan 528000, China
| | - Ming Ding
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Feiyun Xu
- Center for Plant Water-Use and Nutrition Regulation, College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feng Yan
- Institute of Agronomy and Plant Breeding, Justus Liebig University of Giessen, Giessen, Germany
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 4660824, Japan.
| | - Yiyong Zhu
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
13
|
Chen Z, Wang W, Zhou S, Ding L, Xu Z, Sun X, Huo H, Liu L. Single-cell RNA sequencing reveals dynamics of gene expression for 2D elongation and 3D growth in Physcomitrium patens. Cell Rep 2024; 43:114524. [PMID: 39046878 DOI: 10.1016/j.celrep.2024.114524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/09/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
The transition from two-dimensional (2D) to 3D growth likely facilitated plants to colonize land, but its heterogeneity is not well understood. In this study, we utilized single-cell RNA sequencing to analyze the moss Physcomitrium patens, whose morphogenesis involves a transition from 2D to 3D growth. We profiled over 17,000 single cells covering all major vegetative tissues, including 2D filaments (chloronema and caulonema) and 3D structures (bud and gametophore). Pseudotime analyses revealed larger numbers of candidate genes that determine cell fates for 2D tip elongation or 3D bud differentiation. Using weighted gene co-expression network analysis, we identified a module that connects β-type carbonic anhydrases (βCAs) with auxin. We further validated the cellular expression patterns of βCAs and demonstrated their roles in 3D gametophore development. Overall, our study provides insights into cellular heterogeneity in a moss and identifies molecular signatures that underpin the 2D-to-3D growth transition at single-cell resolution.
Collapse
Affiliation(s)
- Zexi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Wenbo Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Shizhao Zhou
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Lulu Ding
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zhanwu Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xuwu Sun
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Heqiang Huo
- Mid-Florida Research and Education Center, Department of Environmental Horticulture, University of Florida, 2725 South Binion Road, Apopka, FL 32703, USA
| | - Li Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
14
|
Sun Y, Yang Z, Zhang C, Xia J, Li Y, Liu X, Sun L, Tan S. Indole-3-propionic acid regulates lateral root development by targeting auxin signaling in Arabidopsis. iScience 2024; 27:110363. [PMID: 39071891 PMCID: PMC11278081 DOI: 10.1016/j.isci.2024.110363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/30/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024] Open
Abstract
Indole-3-propionic acid (IPA) is known to be a microbe-derived compound with a similar structure to the phytohormone auxin (indole-3-acetic acid, IAA). Previous studies reported that IPA exhibited auxin-like bioactivities in plants. However, the underlying molecular mechanism is not totally understood. Here, we revealed that IPA modulated lateral root (LR) development via auxin signaling in the model plant Arabidopsis thaliana. Genetic analysis indicated that deficiency of the TIR1/AFB-Aux/IAA-ARF auxin signaling pathway abolished the effects of IPA on regulating LR development. Further biochemical, transcriptomic profiling and cell biological analyses revealed that IPA directly bound to the TIR1/AFB-Aux/IAA coreceptor complex and thus activated downstream gene expression. Therefore, our work revealed that IPA is a potential signaling molecule that modulates plant growth and development by targeting the TIR1/AFB-Aux/IAA-mediated auxin signaling pathway, providing potential insights into root growth regulation in plants.
Collapse
Affiliation(s)
- Yue Sun
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Zhisen Yang
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Caoli Zhang
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jing Xia
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yawen Li
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Xin Liu
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Linfeng Sun
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Shutang Tan
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
15
|
Li XH, Kang XJ, Zhang XY, Su LN, Bi X, Wang RL, Xing SY, Sun LM. Formation mechanism and regulation analysis of trumpet leaf in Ginkgo biloba L. FRONTIERS IN PLANT SCIENCE 2024; 15:1367121. [PMID: 39086912 PMCID: PMC11288918 DOI: 10.3389/fpls.2024.1367121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024]
Abstract
Introduction The research on plant leaf morphology is of great significance for understanding the development and evolution of plant organ morphology. As a relict plant, the G. biloba leaf morphology typically exhibits bifoliate and peltate forms. However, throughout its long evolutionary history, Ginkgo leaves have undergone diverse changes. Methods This study focuses on the distinct "trumpet" leaves and normal fan-shaped leaves of G. biloba for analysis of their phenotypes, photosynthetic activity, anatomical observations, as well as transcriptomic and metabolomic analyses. Results The results showed that trumpet-shaped G. biloba leaves have fewer cells, significant morphological differences between dorsal and abaxial epidermal cells, leading to a significantly lower net photosynthetic rate. Additionally, this study found that endogenous plant hormones such as GA, auxin, and JA as well as metabolites such as flavonoids and phenolic acids play roles in the formation of trumpet-shaped G. biloba leaves. Moreover, the experiments revealed the regulatory mechanisms of various key biological processes and gene expressions in the trumpet-shaped leaves of G. biloba. Discussion Differences in the dorsal and abdominal cells of G. biloba leaves can cause the leaf to curl, thus reducing the overall photosynthetic efficiency of the leaves. However, the morphology of plant leaves is determined during the primordia leaf stage. In the early stages of leaf development, the shoot apical meristem (SAM) determines the developmental morphology of dicotyledonous plant leaves. This process involves the activity of multiple gene families and small RNAs. The establishment of leaf morphology is complexly regulated by various endogenous hormones, including the effect of auxin on cell walls. Additionally, changes in intracellular ion concentrations, such as fluctuations in Ca2+ concentration, also affect cell wall rigidity, thereby influencing leaf growth morphology.
Collapse
Affiliation(s)
- Xin-hui Li
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Forestry College of Shandong Agricultural University, Tai’an, Shandong, China
| | - Xiao-jing Kang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Forestry College of Shandong Agricultural University, Tai’an, Shandong, China
| | - Xin-yue Zhang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Forestry College of Shandong Agricultural University, Tai’an, Shandong, China
| | - Li-ning Su
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Forestry College of Shandong Agricultural University, Tai’an, Shandong, China
| | - Xing Bi
- Department of Publicity, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Rui-long Wang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Forestry College of Shandong Agricultural University, Tai’an, Shandong, China
| | - Shi-yan Xing
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Forestry College of Shandong Agricultural University, Tai’an, Shandong, China
| | - Li-min Sun
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Forestry College of Shandong Agricultural University, Tai’an, Shandong, China
| |
Collapse
|
16
|
Wang JJ, Gao J, Li W, Liu JX. CCaP1/CCaP2/CCaP3 interact with plasma membrane H +-ATPases and promote thermo-responsive growth by regulating cell wall modification in Arabidopsis. PLANT COMMUNICATIONS 2024; 5:100880. [PMID: 38486455 PMCID: PMC11287188 DOI: 10.1016/j.xplc.2024.100880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/22/2024] [Accepted: 03/11/2024] [Indexed: 04/20/2024]
Abstract
Arabidopsis plants adapt to warm temperatures by promoting hypocotyl growth primarily through the basic helix-loop-helix transcription factor PIF4 and its downstream genes involved in auxin responses, which enhance cell division. In the current study, we discovered that cell wall-related calcium-binding protein 2 (CCaP2) and its paralogs CCaP1 and CCaP3 function as positive regulators of thermo-responsive hypocotyl growth by promoting cell elongation in Arabidopsis. Interestingly, mutations in CCaP1/CCaP2/CCaP3 do not affect the expression of PIF4-regulated classic downstream genes. However, they do noticeably reduce the expression of xyloglucan endotransglucosylase/hydrolase genes, which are involved in cell wall modification. We also found that CCaP1/CCaP2/CCaP3 are predominantly localized to the plasma membrane, where they interact with the plasma membrane H+-ATPases AHA1/AHA2. Furthermore, we observed that vanadate-sensitive H+-ATPase activity and cell wall pectin and hemicellulose contents are significantly increased in wild-type plants grown at warm temperatures compared with those grown at normal growth temperatures, but these changes are not evident in the ccap1-1 ccap2-1 ccap3-1 triple mutant. Overall, our findings demonstrate that CCaP1/CCaP2/CCaP3 play an important role in controlling thermo-responsive hypocotyl growth and provide new insights into the alternative pathway regulating hypocotyl growth at warm temperatures through cell wall modification mediated by CCaP1/CCaP2/CCaP3.
Collapse
Affiliation(s)
- Jing-Jing Wang
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Juan Gao
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Wei Li
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310027, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310027, China
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
17
|
Tang W, Yu Y, Xu T. The interplay between extracellular and intracellular auxin signaling in plants. J Genet Genomics 2024:S1673-8527(24)00162-0. [PMID: 38969259 DOI: 10.1016/j.jgg.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024]
Abstract
The phytohormone auxin exerts control over remarkable developmental processes in plants. It moves from cell to cell, resulting in the creation of both extracellular auxin and intracellular auxin, which are recognized by distinct auxin receptors. These two auxin signaling systems govern different auxin responses while working together to regulate plant development. In this review, we outline the latest research advancements in unraveling these auxin signaling pathways, encompassing auxin perception and signaling transductions. We emphasize the interaction between extracellular auxin and intracellular auxin, which contributes to the intricate role of auxin in plant development.
Collapse
Affiliation(s)
- Wenxin Tang
- Haixia Institute of Science and Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yongqiang Yu
- Haixia Institute of Science and Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Tongda Xu
- Haixia Institute of Science and Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
18
|
Pérez-Henríquez P, Li H, Zhou X, Pan X, Lin W, Tang W, Nagawa S, Lin D, Xu T, Michniewicz M, Prigge MJ, Strader LC, Estelle M, Hayashi KI, Friml J, Qi L, Liu Z, Van Norman J, Yang Z. Hierarchical global and local auxin signals coordinate cellular interdigitation in Arabidopsis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599171. [PMID: 38948792 PMCID: PMC11212924 DOI: 10.1101/2024.06.17.599171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The development of multicellular tissues requires both local and global coordination of cell polarization, however, the mechanisms underlying their interplay are poorly understood. In Arabidopsis, leaf epidermal pavement cells (PC) develop a puzzle-piece shape locally coordinated through apoplastic auxin signaling. Here we show auxin also globally coordinates interdigitation by activating the TIR1/AFB-dependent nuclear signaling pathway. This pathway promotes a transient maximum of auxin at the cotyledon tip, which then moves across the leaf activating local PC polarization, as demonstrated by locally uncaged auxin globally rescuing defects in tir1;afb1;afb2;afb4;afb5 mutant but not in tmk1;tmk2;tmk3;tmk4 mutants. Our findings show that hierarchically integrated global and local auxin signaling systems, which respectively depend on TIR1/AFB-dependent gene transcription in the nucleus and TMK-mediated rapid activation of ROP GTPases at the cell surface, control PC interdigitation patterns in Arabidopsis cotyledons, revealing a mechanism for coordinating a local cellular process with the development of whole tissues.
Collapse
Affiliation(s)
- Patricio Pérez-Henríquez
- Institute of Integrated Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hongjiang Li
- Institute of Integrated Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Xiang Zhou
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen, Guangdong, China
- National Key Laboratory for Quantitative Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Xue Pan
- Department of Biological Sciences, University of Toronto-Scarborough, Toronto, ON M1C 1A4, Canada
| | - Wenwei Lin
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Wenxin Tang
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shingo Nagawa
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Deshu Lin
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Tongda Xu
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | | | - Michael J. Prigge
- Section of Cell and Developmental Biology and Howard Hughes Medical Institute, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | - Mark Estelle
- Section of Cell and Developmental Biology and Howard Hughes Medical Institute, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Ken-ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005, Japan
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Linlin Qi
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen, Guangdong, China
| | - Zhongchi Liu
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen, Guangdong, China
| | - Jaimie Van Norman
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhenbiao Yang
- Institute of Integrated Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen, Guangdong, China
- National Key Laboratory for Quantitative Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Lead Contact
| |
Collapse
|
19
|
Tyagi A, Mir ZA, Ali S. Revisiting the Role of Sensors for Shaping Plant Research: Applications and Future Perspectives. SENSORS (BASEL, SWITZERLAND) 2024; 24:3261. [PMID: 38894052 PMCID: PMC11174810 DOI: 10.3390/s24113261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024]
Abstract
Plant health monitoring is essential for understanding the impact of environmental stressors (biotic and abiotic) on crop production, and for tailoring plant developmental and adaptive responses accordingly. Plants are constantly exposed to different stressors like pathogens and soil pollutants (heavy metals and pesticides) which pose a serious threat to their survival and to human health. Plants have the ability to respond to environmental stressors by undergoing rapid transcriptional, translational, and metabolic reprogramming at different cellular compartments in order to balance growth and adaptive responses. However, plants' exceptional responsiveness to environmental cues is highly complex, which is driven by diverse signaling molecules such as calcium Ca2+, reactive oxygen species (ROS), hormones, small peptides and metabolites. Additionally, other factors like pH also influence these responses. The regulation and occurrence of these plant signaling molecules are often undetectable, necessitating nondestructive, live research approaches to understand their molecular complexity and functional traits during growth and stress conditions. With the advent of sensors, in vivo and in vitro understanding of some of these processes associated with plant physiology, signaling, metabolism, and development has provided a novel platform not only for decoding the biochemical complexity of signaling pathways but also for targeted engineering to improve diverse plant traits. The application of sensors in detecting pathogens and soil pollutants like heavy metal and pesticides plays a key role in protecting plant and human health. In this review, we provide an update on sensors used in plant biology for the detection of diverse signaling molecules and their functional attributes. We also discuss different types of sensors (biosensors and nanosensors) used in agriculture for detecting pesticides, pathogens and pollutants.
Collapse
Affiliation(s)
- Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Zahoor Ahmad Mir
- Department of Plant Science and Agriculture, University of Manitoba, Winnipeg, MB R2M0TB, Canada;
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
20
|
Lu B, Wang S, Feng H, Wang J, Zhang K, Li Y, Wu P, Zhang M, Xia Y, Peng C, Li C. FERONIA-mediated TIR1/AFB2 oxidation stimulates auxin signaling in Arabidopsis. MOLECULAR PLANT 2024; 17:772-787. [PMID: 38581129 DOI: 10.1016/j.molp.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/13/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
The phytohormone auxin plays a pivotal role in governing plant growth and development. Although the TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX (TIR1/AFB) receptors function in both the nucleus and cytoplasm, the mechanism governing the distribution of TIR1/AFBs between these cellular compartments remains unknown. In this study, we demonstrate that auxin-mediated oxidation of TIR1/AFB2 is essential for their targeting to the nucleus. We showed that small active molecules, reactive oxygen species (ROS) and nitric oxide (NO), are indispensable for the nucleo-cytoplasmic distribution of TIR1/AFB2 in trichoblasts and root hairs. Further studies revealed that this process is regulated by the FERONIA receptor kinase-NADPH oxidase signaling pathway. Interestingly, ROS and NO initiate oxidative modifications in TIR1C140/516 and AFB2C135/511, facilitating their subsequent nuclear import. The oxidized forms of TIR1C140/516 and AFB2C135/511 play a crucial role in enhancing the function of TIR1 and AFB2 in transcriptional auxin responses. Collectively, our study reveals a novel mechanism by which auxin stimulates the transport of TIR1/AFB2 from the cytoplasm to the nucleus, orchestrated by the FERONIA-ROS signaling pathway.
Collapse
Affiliation(s)
- Baiyan Lu
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Shengnan Wang
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Hanqian Feng
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jing Wang
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Kaixing Zhang
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yilin Li
- National Facility for Protein Science Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Ping Wu
- National Facility for Protein Science Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Minmin Zhang
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yanshu Xia
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Chao Peng
- National Facility for Protein Science Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Chao Li
- School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
21
|
Delmer D, Dixon RA, Keegstra K, Mohnen D. The plant cell wall-dynamic, strong, and adaptable-is a natural shapeshifter. THE PLANT CELL 2024; 36:1257-1311. [PMID: 38301734 PMCID: PMC11062476 DOI: 10.1093/plcell/koad325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024]
Abstract
Mythology is replete with good and evil shapeshifters, who, by definition, display great adaptability and assume many different forms-with several even turning themselves into trees. Cell walls certainly fit this definition as they can undergo subtle or dramatic changes in structure, assume many shapes, and perform many functions. In this review, we cover the evolution of knowledge of the structures, biosynthesis, and functions of the 5 major cell wall polymer types that range from deceptively simple to fiendishly complex. Along the way, we recognize some of the colorful historical figures who shaped cell wall research over the past 100 years. The shapeshifter analogy emerges more clearly as we examine the evolving proposals for how cell walls are constructed to allow growth while remaining strong, the complex signaling involved in maintaining cell wall integrity and defense against disease, and the ways cell walls adapt as they progress from birth, through growth to maturation, and in the end, often function long after cell death. We predict the next century of progress will include deciphering cell type-specific wall polymers; regulation at all levels of polymer production, crosslinks, and architecture; and how walls respond to developmental and environmental signals to drive plant success in diverse environments.
Collapse
Affiliation(s)
- Deborah Delmer
- Section of Plant Biology, University of California Davis, Davis, CA 95616, USA
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Kenneth Keegstra
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA
| | - Debra Mohnen
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
22
|
Cosgrove DJ. Structure and growth of plant cell walls. Nat Rev Mol Cell Biol 2024; 25:340-358. [PMID: 38102449 DOI: 10.1038/s41580-023-00691-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
Plant cells build nanofibrillar walls that are central to plant growth, morphogenesis and mechanics. Starting from simple sugars, three groups of polysaccharides, namely, cellulose, hemicelluloses and pectins, with very different physical properties are assembled by the cell to make a strong yet extensible wall. This Review describes the physics of wall growth and its regulation by cellular processes such as cellulose production by cellulose synthase, modulation of wall pH by plasma membrane H+-ATPase, wall loosening by expansin and signalling by plant hormones such as auxin and brassinosteroid. In addition, this Review discusses the nuanced roles, properties and interactions of cellulose, matrix polysaccharides and cell wall proteins and describes how wall stress and wall loosening cooperatively result in cell wall growth.
Collapse
Affiliation(s)
- Daniel J Cosgrove
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
23
|
Sheen J. The new horizon of plant auxin signaling via cell-surface co-receptors. Cell Res 2024; 34:343-344. [PMID: 38182889 PMCID: PMC11061107 DOI: 10.1038/s41422-023-00921-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024] Open
Affiliation(s)
- Jen Sheen
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
Wang JL, Wang M, Zhang L, Li YX, Li JJ, Li YY, Pu ZX, Li DY, Liu XN, Guo W, Di DW, Li XF, Guo GQ, Wu L. WAV E3 ubiquitin ligases mediate degradation of IAA32/34 in the TMK1-mediated auxin signaling pathway during apical hook development. Proc Natl Acad Sci U S A 2024; 121:e2314353121. [PMID: 38635634 PMCID: PMC11047095 DOI: 10.1073/pnas.2314353121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 03/04/2024] [Indexed: 04/20/2024] Open
Abstract
Auxin regulates plant growth and development through downstream signaling pathways, including the best-known SCFTIR1/AFB-Aux/IAA-ARF pathway and several other less characterized "noncanonical" pathways. Recently, one SCFTIR1/AFB-independent noncanonical pathway, mediated by Transmembrane Kinase 1 (TMK1), was discovered through the analyses of its functions in Arabidopsis apical hook development. Asymmetric accumulation of auxin on the concave side of the apical hook triggers DAR1-catalyzed release of the C-terminal of TMK1, which migrates into the nucleus, where it phosphorylates and stabilizes IAA32/34 to inhibit cell elongation, which is essential for full apical hook formation. However, the molecular factors mediating IAA32/34 degradation have not been identified. Here, we show that proteins in the CYTOKININ INDUCED ROOT WAVING 1 (CKRW1)/WAVY GROWTH 3 (WAV3) subfamily act as E3 ubiquitin ligases to target IAA32/34 for ubiquitination and degradation, which is inhibited by TMK1c-mediated phosphorylation. This antagonistic interaction between TMK1c and CKRW1/WAV3 subfamily E3 ubiquitin ligases regulates IAA32/34 levels to control differential cell elongation along opposite sides of the apical hook.
Collapse
Affiliation(s)
- Jun-Li Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
| | - Ming Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing210008, People’s Republic of China
| | - Li Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
- Basic Forestry and Proteomics Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou350002, People’s Republic of China
| | - You-Xia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
| | - Jing-Jing Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
| | - Yu-Yang Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
| | - Zuo-Xian Pu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
| | - Dan-Yang Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
| | - Xing-Nan Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
| | - Wang Guo
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
| | - Dong-Wei Di
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing210008, People’s Republic of China
| | - Xiao-Feng Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
| | - Guang-Qin Guo
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
| | - Lei Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
| |
Collapse
|
25
|
Zhu Z, Krall L, Li Z, Xi L, Luo H, Li S, He M, Yang X, Zan H, Gilbert M, Gombos S, Wang T, Neuhäuser B, Jacquot A, Lejay L, Zhang J, Liu J, Schulze WX, Wu XN. Transceptor NRT1.1 and receptor-kinase QSK1 complex controls PM H +-ATPase activity under low nitrate. Curr Biol 2024; 34:1479-1491.e6. [PMID: 38490203 DOI: 10.1016/j.cub.2024.02.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/09/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024]
Abstract
NRT1.1, a nitrate transceptor, plays an important role in nitrate binding, sensing, and nitrate-dependent lateral root (LR) morphology. However, little is known about NRT1.1-mediated nitrate signaling transduction through plasma membrane (PM)-localized proteins. Through in-depth phosphoproteome profiling using membranes of Arabidopsis roots, we identified receptor kinase QSK1 and plasma membrane H+-ATPase AHA2 as potential downstream components of NRT1.1 signaling in a mild low-nitrate (LN)-dependent manner. QSK1, as a functional kinase and molecular link, physically interacts with NRT1.1 and AHA2 at LN and specifically phosphorylates AHA2 at S899. Importantly, we found that LN, not high nitrate (HN), induces formation of the NRT1.1-QSK1-AHA2 complex in order to repress the proton efflux into the apoplast by increased phosphorylation of AHA2 at S899. Loss of either NRT1.1 or QSK1 thus results in a higher T947/S899 phosphorylation ratio on AHA2, leading to enhanced pump activity and longer LRs under LN. Our results uncover a regulatory mechanism in which NRT1.1, under LN conditions, promotes coreceptor QSK1 phosphorylation and enhances the NRT1.1-QSK1 complex formation to transduce LN sensing to the PM H+-ATPase AHA2, controlling the phosphorylation ratio of activating and inhibitory phosphorylation sites on AHA2. This then results in altered proton pump activity, apoplast acidification, and regulation of NRT1.1-mediated LR growth.
Collapse
Affiliation(s)
- Zhe Zhu
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science and School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Leonard Krall
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science and School of Life Sciences, Yunnan University, Kunming 650500, China.
| | - Zhi Li
- Department of Plant Systems Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Lin Xi
- Department of Plant Systems Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Hongxiu Luo
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science and School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Shalan Li
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science and School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Mingjie He
- Department of Plant Systems Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Xiaolin Yang
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science and School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Haitao Zan
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science and School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Max Gilbert
- Department of Plant Systems Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Sven Gombos
- Department of Plant Systems Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Ting Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Benjamin Neuhäuser
- Nutritional Crop Physiology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Aurore Jacquot
- IPSiM, University Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| | - Laurence Lejay
- IPSiM, University Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| | - Jingbo Zhang
- National Academy of Agriculture Green Development, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Junzhong Liu
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science and School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, 70599 Stuttgart, Germany.
| | - Xu Na Wu
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science and School of Life Sciences, Yunnan University, Kunming 650500, China.
| |
Collapse
|
26
|
Zhu J, Chen R, Feng Q, Huang C, Huang F, Du J, Wang J, Zhan X. Mechanistic insights into auxin-enhancing polycyclic aromatic hydrocarbon uptake by wheat roots: Evidence from in situ intracellular pH and root-surface H + flux. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133077. [PMID: 38035525 DOI: 10.1016/j.jhazmat.2023.133077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/17/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a group of extremely carcinogenic organic pollutants. Our previous findings have demonstrated that plant roots actively take up PAHs through co-transport with H+ ions. Auxin serves as a pivotal regulator of plant growth and development. However, it remains unclear whether the hormone can enhance the uptake of PAHs by plant roots. Hence, the wheat root exposed to PAHs with/without auxins was set to investigate how the auxin promotes the PAHs uptake by roots. In our study, auxin could significantly enhance the uptake of PAHs after 4 h of exposure. After the addition of auxin, the root tissue cytoplasmic pH value was decreased and the H+ influx was observed, indicating that the extracellular space was alkalinized in a short time. The increased H+ influx rate enhanced the uptake of PAHs. In addition, the H+-ATPase activity was also increased, suggesting that auxin activated two distinct and antagonistic H+ flux pathways, and the H+ influx pathway was dominant. Our findings offer important information for exploring the mechanism underlying auxin regulation of PAHs uptake and the phytoremediation of PAH-contaminated soil and water.
Collapse
Affiliation(s)
- Jiahui Zhu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Ruonan Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Qiurun Feng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Chenghao Huang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Fei Huang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Jiani Du
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Jiawei Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Xinhua Zhan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China.
| |
Collapse
|
27
|
Kubalová M, Müller K, Dobrev PI, Rizza A, Jones AM, Fendrych M. Auxin co-receptor IAA17/AXR3 controls cell elongation in Arabidopsis thaliana root solely by modulation of nuclear auxin pathway. THE NEW PHYTOLOGIST 2024; 241:2448-2463. [PMID: 38308183 DOI: 10.1111/nph.19557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/06/2024] [Indexed: 02/04/2024]
Abstract
The nuclear TIR1/AFB-Aux/IAA auxin pathway plays a crucial role in regulating plant growth and development. Specifically, the IAA17/AXR3 protein participates in Arabidopsis thaliana root development, response to auxin and gravitropism. However, the mechanism by which AXR3 regulates cell elongation is not fully understood. We combined genetical and cell biological tools with transcriptomics and determination of auxin levels and employed live cell imaging and image analysis to address how the auxin response pathways influence the dynamics of root growth. We revealed that manipulations of the TIR1/AFB-Aux/IAA pathway rapidly modulate root cell elongation. While inducible overexpression of the AXR3-1 transcriptional inhibitor accelerated growth, overexpression of the dominant activator form of ARF5/MONOPTEROS inhibited growth. In parallel, AXR3-1 expression caused loss of auxin sensitivity, leading to transcriptional reprogramming, phytohormone signaling imbalance and increased levels of auxin. Furthermore, we demonstrated that AXR3-1 specifically perturbs nuclear auxin signaling, while the rapid auxin response remains functional. Our results shed light on the interplay between the nuclear and cytoplasmic auxin pathways in roots, revealing their partial independence but also the dominant role of the nuclear auxin pathway during the gravitropic response of Arabidopsis thaliana roots.
Collapse
Affiliation(s)
- Monika Kubalová
- Department of Experimental Plant Biology, Charles University, Prague, 12844, Czech Republic
| | - Karel Müller
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, 16502, Czech Republic
| | - Petre Ivanov Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, 16502, Czech Republic
| | - Annalisa Rizza
- Sainsbury Laboratory, Cambridge University, Cambridge, CB2 1LR, UK
| | | | - Matyáš Fendrych
- Department of Experimental Plant Biology, Charles University, Prague, 12844, Czech Republic
| |
Collapse
|
28
|
Cui X, Wang J, Li K, Lv B, Hou B, Ding Z. Protein post-translational modifications in auxin signaling. J Genet Genomics 2024; 51:279-291. [PMID: 37451336 DOI: 10.1016/j.jgg.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Protein post-translational modifications (PTMs), such as ubiquitination, phosphorylation, and small ubiquitin-like modifier (SUMO)ylation, are crucial for regulating protein stability, activity, subcellular localization, and binding with cofactors. Such modifications remarkably increase the variety and complexity of proteomes, which are essential for regulating numerous cellular and physiological processes. The regulation of auxin signaling is finely tuned in time and space to guide various plant growth and development. Accumulating evidence indicates that PTMs play critical roles in auxin signaling regulations. Thus, a thorough and systematic review of the functions of PTMs in auxin signal transduction will improve our profound comprehension of the regulation mechanism of auxin signaling and auxin-mediated various processes. This review discusses the progress of protein ubiquitination, phosphorylation, histone acetylation and methylation, SUMOylation, and S-nitrosylation in the regulation of auxin signaling.
Collapse
Affiliation(s)
- Xiankui Cui
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Junxia Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Ke Li
- Shandong Academy of Grape, Jinan, Shandong 250100, China
| | - Bingsheng Lv
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong 266109, China.
| | - Bingkai Hou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China.
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
29
|
Fuji S, Yamauchi S, Sugiyama N, Kohchi T, Nishihama R, Shimazaki KI, Takemiya A. Light-induced stomatal opening requires phosphorylation of the C-terminal autoinhibitory domain of plasma membrane H +-ATPase. Nat Commun 2024; 15:1195. [PMID: 38378726 PMCID: PMC10879506 DOI: 10.1038/s41467-024-45236-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 01/16/2024] [Indexed: 02/22/2024] Open
Abstract
Plasma membrane H+-ATPase provides the driving force for light-induced stomatal opening. However, the mechanisms underlying the regulation of its activity remain unclear. Here, we show that the phosphorylation of two Thr residues in the C-terminal autoinhibitory domain is crucial for H+-ATPase activation and stomatal opening in Arabidopsis thaliana. Using phosphoproteome analysis, we show that blue light induces the phosphorylation of Thr-881 within the C-terminal region I, in addition to penultimate Thr-948 in AUTOINHIBITED H+-ATPASE 1 (AHA1). Based on site-directed mutagenesis experiments, phosphorylation of both Thr residues is essential for H+ pumping and stomatal opening in response to blue light. Thr-948 phosphorylation is a prerequisite for Thr-881 phosphorylation by blue light. Additionally, red light-driven guard cell photosynthesis induces Thr-881 phosphorylation, possibly contributing to red light-dependent stomatal opening. Our findings provide mechanistic insights into H+-ATPase activation that exploits the ion transport across the plasma membrane and light signalling network in guard cells.
Collapse
Affiliation(s)
- Saashia Fuji
- Department of Biology, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8512, Japan
| | - Shota Yamauchi
- Department of Biology, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8512, Japan
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Naoyuki Sugiyama
- Department of Molecular & Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Ken-Ichiro Shimazaki
- Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Fukuoka, 819-0395, Japan
| | - Atsushi Takemiya
- Department of Biology, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8512, Japan.
| |
Collapse
|
30
|
Hayashi Y, Fukatsu K, Takahashi K, Kinoshita SN, Kato K, Sakakibara T, Kuwata K, Kinoshita T. Phosphorylation of plasma membrane H +-ATPase Thr881 participates in light-induced stomatal opening. Nat Commun 2024; 15:1194. [PMID: 38378616 PMCID: PMC10879185 DOI: 10.1038/s41467-024-45248-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 01/16/2024] [Indexed: 02/22/2024] Open
Abstract
Plasma membrane (PM) H+-ATPase is crucial for light-induced stomatal opening and phosphorylation of a penultimate residue, Thr948 (pen-Thr, numbering according to Arabidopsis AHA1) is required for enzyme activation. In this study, a comprehensive phosphoproteomic analysis using guard cell protoplasts from Vicia faba shows that both red and blue light increase the phosphorylation of Thr881, of PM H+-ATPase. Light-induced stomatal opening and the blue light-induced increase in stomatal conductance are reduced in transgenic Arabidopsis plants expressing mutant AHA1-T881A in aha1-9, whereas the blue light-induced phosphorylation of pen-Thr is unaffected. Auxin and photosynthetically active radiation induce the phosphorylation of both Thr881 and pen-Thr in etiolated seedlings and leaves, respectively. The dephosphorylation of phosphorylated Thr881 and pen-Thr are mediated by type 2 C protein phosphatase clade D isoforms. Taken together, Thr881 phosphorylation, in addition of the pen-Thr phosphorylation, are important for PM H+-ATPase function during physiological responses, such as light-induced stomatal opening in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Yuki Hayashi
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
| | - Kohei Fukatsu
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
| | - Koji Takahashi
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, Japan
| | | | - Kyohei Kato
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
| | - Taku Sakakibara
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, Japan
| | - Toshinori Kinoshita
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan.
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, Japan.
| |
Collapse
|
31
|
Shen N, Jiang C, Jiang A. Arabidopsis plasma membrane H +-ATPase interacts with auxin to regulate Danger-Associated Peptide Pep1-induced root growth inhibition. Biochem Biophys Res Commun 2024; 696:149507. [PMID: 38237234 DOI: 10.1016/j.bbrc.2024.149507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 01/08/2024] [Indexed: 02/02/2024]
Abstract
Plant elicitor peptide 1 (Pep1) is one of plant-derived damage-associated molecular patterns (DAMPs) involved in the regulation of multiple biological processes, including immune response and root growth. The exogenous application of Pep1 was shown to inhibit root growth by affecting the auxin content and extracellular pH level in the transition zone (TZ). However, the signaling relationship between extracellular pH and auxin in Pep1-regulated root growth inhibition has not been explored. Our study here suggested that both pH signaling and auxin signaling were responsible for Pep1-regulated root growth inhibition, and the Pep1-induced auxin accumulation in TZ depended on apoplastic acidification. To increase the apoplastic pH in TZ, we mutated the AHA2 and found that the mutants of aha2-4 and pin2aha2-4 both reduced Pep1-induced auxin content in TZ, thereby alleviating root growth inhibition. Thus, our results reveal a new auxin-pH signaling crosstalk mechanism in regulating root growth, and provide new insights into the function of Pep1 in regulating root growth in Arabidopsis.
Collapse
Affiliation(s)
- Nuo Shen
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Chuanwei Jiang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Aijuan Jiang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
32
|
Cha S, Min WK, Seo HS. Arabidopsis COP1 guides stomatal response in guard cells through pH regulation. Commun Biol 2024; 7:150. [PMID: 38316905 PMCID: PMC10844630 DOI: 10.1038/s42003-024-05847-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 01/23/2024] [Indexed: 02/07/2024] Open
Abstract
Plants rely on precise regulation of their stomatal pores to effectively carry out photosynthesis while managing water status. The Arabidopsis CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), a critical light signaling repressor, is known to repress stomatal opening, but the exact cellular mechanisms remain unknown. Here, we show that COP1 regulates stomatal movement by controlling the pH levels in guard cells. cop1-4 mutants have larger stomatal apertures and disrupted pH dynamics within guard cells, characterized by increased vacuolar and cytosolic pH and reduced apoplastic pH, leading to abnormal stomatal responses. The altered pH profiles are attributed to the increased plasma membrane (PM) H+-ATPase activity of cop1-4 mutants. Moreover, cop1-4 mutants resist to growth defect caused by alkali stress posed on roots. Overall, our study highlights the crucial role of COP1 in maintaining pH homeostasis of guard cells by regulating PM H+-ATPase activity, and demonstrates how proton movement affects stomatal movement and plant growth.
Collapse
Affiliation(s)
- Seoyeon Cha
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Wang Ki Min
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hak Soo Seo
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
33
|
Delesalle C, Vert G, Fujita S. The cell surface is the place to be for brassinosteroid perception and responses. NATURE PLANTS 2024; 10:206-218. [PMID: 38388723 DOI: 10.1038/s41477-024-01621-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/05/2024] [Indexed: 02/24/2024]
Abstract
Adjusting the microenvironment around the cell surface is critical to responding to external cues or endogenous signals and to maintaining cell activities. In plant cells, the plasma membrane is covered by the cell wall and scaffolded with cytoskeletal networks, which altogether compose the cell surface. It has long been known that these structures mutually interact, but the mechanisms that integrate the whole system are still obscure. Here we spotlight the brassinosteroid (BR) plant hormone receptor BRASSINOSTEROID INSENSITIVE1 (BRI1) since it represents an outstanding model for understanding cell surface signalling and regulation. We summarize how BRI1 activity and dynamics are controlled by plasma membrane components and their associated factors to fine-tune signalling. The downstream signals, in turn, manipulate cell surface structures by transcriptional and post-translational mechanisms. Moreover, the changes in these architectures impact BR signalling, resulting in a feedback loop formation. This Review discusses how BRI1 and BR signalling function as central hubs to integrate cell surface regulation.
Collapse
Affiliation(s)
- Charlotte Delesalle
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3, Auzeville-Tolosane, France
| | - Grégory Vert
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3, Auzeville-Tolosane, France
| | - Satoshi Fujita
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3, Auzeville-Tolosane, France.
| |
Collapse
|
34
|
Liu J, Li W, Wu G, Ali K. An update on evolutionary, structural, and functional studies of receptor-like kinases in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1305599. [PMID: 38362444 PMCID: PMC10868138 DOI: 10.3389/fpls.2024.1305599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/03/2024] [Indexed: 02/17/2024]
Abstract
All living organisms must develop mechanisms to cope with and adapt to new environments. The transition of plants from aquatic to terrestrial environment provided new opportunities for them to exploit additional resources but made them vulnerable to harsh and ever-changing conditions. As such, the transmembrane receptor-like kinases (RLKs) have been extensively duplicated and expanded in land plants, increasing the number of RLKs in the advanced angiosperms, thus becoming one of the largest protein families in eukaryotes. The basic structure of the RLKs consists of a variable extracellular domain (ECD), a transmembrane domain (TM), and a conserved kinase domain (KD). Their variable ECDs can perceive various kinds of ligands that activate the conserved KD through a series of auto- and trans-phosphorylation events, allowing the KDs to keep the conserved kinase activities as a molecular switch that stabilizes their intracellular signaling cascades, possibly maintaining cellular homeostasis as their advantages in different environmental conditions. The RLK signaling mechanisms may require a coreceptor and other interactors, which ultimately leads to the control of various functions of growth and development, fertilization, and immunity. Therefore, the identification of new signaling mechanisms might offer a unique insight into the regulatory mechanism of RLKs in plant development and adaptations. Here, we give an overview update of recent advances in RLKs and their signaling mechanisms.
Collapse
Affiliation(s)
| | | | - Guang Wu
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Khawar Ali
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
35
|
Kuhn A, Roosjen M, Mutte S, Dubey SM, Carrillo Carrasco VP, Boeren S, Monzer A, Koehorst J, Kohchi T, Nishihama R, Fendrych M, Sprakel J, Friml J, Weijers D. RAF-like protein kinases mediate a deeply conserved, rapid auxin response. Cell 2024; 187:130-148.e17. [PMID: 38128538 PMCID: PMC10783624 DOI: 10.1016/j.cell.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/29/2023] [Accepted: 11/18/2023] [Indexed: 12/23/2023]
Abstract
The plant-signaling molecule auxin triggers fast and slow cellular responses across land plants and algae. The nuclear auxin pathway mediates gene expression and controls growth and development in land plants, but this pathway is absent from algal sister groups. Several components of rapid responses have been identified in Arabidopsis, but it is unknown if these are part of a conserved mechanism. We recently identified a fast, proteome-wide phosphorylation response to auxin. Here, we show that this response occurs across 5 land plant and algal species and converges on a core group of shared targets. We found conserved rapid physiological responses to auxin in the same species and identified rapidly accelerated fibrosarcoma (RAF)-like protein kinases as central mediators of auxin-triggered phosphorylation across species. Genetic analysis connects this kinase to both auxin-triggered protein phosphorylation and rapid cellular response, thus identifying an ancient mechanism for fast auxin responses in the green lineage.
Collapse
Affiliation(s)
- Andre Kuhn
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, the Netherlands
| | - Mark Roosjen
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, the Netherlands
| | - Sumanth Mutte
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, the Netherlands
| | - Shiv Mani Dubey
- Department of Experimental Plant Biology, Charles University, Prague, Czech Republic
| | | | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, the Netherlands
| | - Aline Monzer
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Jasper Koehorst
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, the Netherlands
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Ryuichi Nishihama
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | - Matyáš Fendrych
- Department of Experimental Plant Biology, Charles University, Prague, Czech Republic
| | - Joris Sprakel
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, the Netherlands
| | - Jiří Friml
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, the Netherlands.
| |
Collapse
|
36
|
Jain D, Schmidt W. Protein Phosphorylation Orchestrates Acclimations of Arabidopsis Plants to Environmental pH. Mol Cell Proteomics 2024; 23:100685. [PMID: 38000714 PMCID: PMC10837763 DOI: 10.1016/j.mcpro.2023.100685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 10/18/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Environment pH (pHe) is a key parameter dictating a surfeit of conditions critical to plant survival and fitness. To elucidate the mechanisms that recalibrate cytoplasmic and apoplastic pH homeostasis, we conducted a comprehensive proteomic/phosphoproteomic inventory of plants subjected to transient exposure to acidic or alkaline pH, an approach that covered the majority of protein-coding genes of the reference plant Arabidopsis thaliana. Our survey revealed a large set-of so far undocumented pHe-dependent phospho-sites, indicative of extensive post-translational regulation of proteins involved in the acclimation to pHe. Changes in pHe altered both electrogenic H+ pumping via P-type ATPases and H+/anion co-transport processes, putatively leading to altered net trans-plasma membrane translocation of H+ ions. In pH 7.5 plants, the transport (but not the assimilation) of nitrogen via NRT2-type nitrate and AMT1-type ammonium transporters was induced, conceivably to increase the cytosolic H+ concentration. Exposure to both acidic and alkaline pH resulted in a marked repression of primary root elongation. No such cessation was observed in nrt2.1 mutants. Alkaline pH decreased the number of root hairs in the wild type but not in nrt2.1 plants, supporting a role of NRT2.1 in developmental signaling. Sequestration of iron into the vacuole via alterations in protein abundance of the vacuolar iron transporter VTL5 was inversely regulated in response to high and low pHe, presumptively in anticipation of associated changes in iron availability. A pH-dependent phospho-switch was also observed for the ABC transporter PDR7, suggesting changes in activity and, possibly, substrate specificity. Unexpectedly, the effect of pHe was not restricted to roots and provoked pronounced changes in the shoot proteome. In both roots and shoots, the plant-specific TPLATE complex components AtEH1 and AtEH2-essential for clathrin-mediated endocytosis-were differentially phosphorylated at multiple sites in response to pHe, indicating that the endocytic cargo protein trafficking is orchestrated by pHe.
Collapse
Affiliation(s)
- Dharmesh Jain
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei, Taiwan; Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan; Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Wolfgang Schmidt
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei, Taiwan; Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan; Biotechnology Center, National Chung-Hsing University, Taichun, Taiwan; Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
37
|
Kuhn A, Weijers D. Distant cousins come to ABP1's rescue. SCIENCE CHINA. LIFE SCIENCES 2024; 67:219-220. [PMID: 38097890 DOI: 10.1007/s11427-023-2498-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 01/12/2024]
Affiliation(s)
- Andre Kuhn
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, the Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, the Netherlands.
| |
Collapse
|
38
|
Samalova M, Melnikava A, Elsayad K, Peaucelle A, Gahurova E, Gumulec J, Spyroglou I, Zemlyanskaya EV, Ubogoeva EV, Balkova D, Demko M, Blavet N, Alexiou P, Benes V, Mouille G, Hejatko J. Hormone-regulated expansins: Expression, localization, and cell wall biomechanics in Arabidopsis root growth. PLANT PHYSIOLOGY 2023; 194:209-228. [PMID: 37073485 PMCID: PMC10762514 DOI: 10.1093/plphys/kiad228] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Expansins facilitate cell expansion by mediating pH-dependent cell wall (CW) loosening. However, the role of expansins in controlling CW biomechanical properties in specific tissues and organs remains elusive. We monitored hormonal responsiveness and spatial specificity of expression and localization of expansins predicted to be the direct targets of cytokinin signaling in Arabidopsis (Arabidopsis thaliana). We found EXPANSIN1 (EXPA1) homogenously distributed throughout the CW of columella/lateral root cap, while EXPA10 and EXPA14 localized predominantly at 3-cell boundaries in the epidermis/cortex in various root zones. EXPA15 revealed cell-type-specific combination of homogenous vs. 3-cell boundaries localization. By comparing Brillouin frequency shift and AFM-measured Young's modulus, we demonstrated Brillouin light scattering (BLS) as a tool suitable for non-invasive in vivo quantitative assessment of CW viscoelasticity. Using both BLS and AFM, we showed that EXPA1 overexpression upregulated CW stiffness in the root transition zone (TZ). The dexamethasone-controlled EXPA1 overexpression induced fast changes in the transcription of numerous CW-associated genes, including several EXPAs and XYLOGLUCAN:XYLOGLUCOSYL TRANSFERASEs (XTHs), and associated with rapid pectin methylesterification determined by in situ Fourier-transform infrared spectroscopy in the root TZ. The EXPA1-induced CW remodeling is associated with the shortening of the root apical meristem, leading to root growth arrest. Based on our results, we propose that expansins control root growth by a delicate orchestration of CW biomechanical properties, possibly regulating both CW loosening and CW remodeling.
Collapse
Affiliation(s)
- Marketa Samalova
- CEITEC – Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Alesia Melnikava
- CEITEC – Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Kareem Elsayad
- Division of Anatomy, Centre for Anatomy & Cell Biology, Medical University of Vienna, Vienna 1090, Austria
| | | | - Evelina Gahurova
- CEITEC – Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Jaromir Gumulec
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno 625 00, Czech Republic
| | - Ioannis Spyroglou
- CEITEC – Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Elena V Zemlyanskaya
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630073, Russia
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Elena V Ubogoeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Darina Balkova
- CEITEC – Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Martin Demko
- CEITEC – Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Nicolas Blavet
- CEITEC – Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Panagiotis Alexiou
- CEITEC – Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | | | - Jan Hejatko
- CEITEC – Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| |
Collapse
|
39
|
Yu Y, Tang W, Lin W, Li W, Zhou X, Li Y, Chen R, Zheng R, Qin G, Cao W, Pérez-Henríquez P, Huang R, Ma J, Qiu Q, Xu Z, Zou A, Lin J, Jiang L, Xu T, Yang Z. ABLs and TMKs are co-receptors for extracellular auxin. Cell 2023; 186:5457-5471.e17. [PMID: 37979582 PMCID: PMC10827329 DOI: 10.1016/j.cell.2023.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 09/03/2023] [Accepted: 10/18/2023] [Indexed: 11/20/2023]
Abstract
Extracellular perception of auxin, an essential phytohormone in plants, has been debated for decades. Auxin-binding protein 1 (ABP1) physically interacts with quintessential transmembrane kinases (TMKs) and was proposed to act as an extracellular auxin receptor, but its role was disputed because abp1 knockout mutants lack obvious morphological phenotypes. Here, we identified two new auxin-binding proteins, ABL1 and ABL2, that are localized to the apoplast and directly interact with the extracellular domain of TMKs in an auxin-dependent manner. Furthermore, functionally redundant ABL1 and ABL2 genetically interact with TMKs and exhibit functions that overlap with those of ABP1 as well as being independent of ABP1. Importantly, the extracellular domain of TMK1 itself binds auxin and synergizes with either ABP1 or ABL1 in auxin binding. Thus, our findings discovered auxin receptors ABL1 and ABL2 having functions overlapping with but distinct from ABP1 and acting together with TMKs as co-receptors for extracellular auxin.
Collapse
Affiliation(s)
- Yongqiang Yu
- Haixia Institute of Science and Technology, School of Future Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China; Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, P.R. China
| | - Wenxin Tang
- Haixia Institute of Science and Technology, School of Future Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Wenwei Lin
- Haixia Institute of Science and Technology, School of Future Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Wei Li
- Haixia Institute of Science and Technology, School of Future Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China; College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Xiang Zhou
- Haixia Institute of Science and Technology, School of Future Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China; Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, Guangdong 518055, P.R. China; Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, P.R. China
| | - Ying Li
- Haixia Institute of Science and Technology, School of Future Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Rong Chen
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, P.R. China
| | - Rui Zheng
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, P.R. China
| | - Guochen Qin
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, P.R. China; Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, P.R. China
| | - Wenhan Cao
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, P.R. China
| | - Patricio Pérez-Henríquez
- Institute of Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California-Riverside, Riverside, CA 92507, USA
| | - Rongfeng Huang
- Haixia Institute of Science and Technology, School of Future Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Jun Ma
- Haixia Institute of Science and Technology, School of Future Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Qiqi Qiu
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Ziwei Xu
- Haixia Institute of Science and Technology, School of Future Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Ailing Zou
- Haixia Institute of Science and Technology, School of Future Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Juncheng Lin
- Haixia Institute of Science and Technology, School of Future Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, P.R. China
| | - Tongda Xu
- Haixia Institute of Science and Technology, School of Future Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China; Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, P.R. China.
| | - Zhenbiao Yang
- Haixia Institute of Science and Technology, School of Future Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China; Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, Guangdong 518055, P.R. China; Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, P.R. China; Institute of Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California-Riverside, Riverside, CA 92507, USA.
| |
Collapse
|
40
|
Wang Q, De Gernier H, Duan X, Xie Y, Geelen D, Hayashi KI, Xuan W, Geisler M, Ten Tusscher K, Beeckman T, Vanneste S. GH3-mediated auxin inactivation attenuates multiple stages of lateral root development. THE NEW PHYTOLOGIST 2023; 240:1900-1912. [PMID: 37743759 DOI: 10.1111/nph.19284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/19/2023] [Indexed: 09/26/2023]
Abstract
Lateral root (LR) positioning and development rely on the dynamic interplay between auxin production, transport but also inactivation. Nonetheless, how the latter affects LR organogenesis remains largely uninvestigated. Here, we systematically analyze the impact of the major auxin inactivation pathway defined by GRETCHEN HAGEN3-type (GH3) auxin conjugating enzymes and DIOXYGENASE FOR AUXIN OXIDATION1 (DAO1) in all stages of LR development using reporters, genetics and inhibitors in Arabidopsis thaliana. Our data demonstrate that the gh3.1/2/3/4/5/6 hextuple (gh3hex) mutants display a higher LR density due to increased LR initiation and faster LR developmental progression, acting epistatically over dao1-1. Grafting and local inhibitor applications reveal that root and shoot GH3 activities control LR formation. The faster LR development in gh3hex is associated with GH3 expression domains in and around developing LRs. The increase in LR initiation is associated with accelerated auxin response oscillations coinciding with increases in apical meristem size and LR cap cell death rates. Our research reveals how GH3-mediated auxin inactivation attenuates LR development. Local GH3 expression in LR primordia attenuates development and emergence, whereas GH3 effects on pre-initiation stages are indirect, by modulating meristem activities that in turn coordinate root growth with LR spacing.
Collapse
Affiliation(s)
- Qing Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Hugues De Gernier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Xingliang Duan
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River and State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanming Xie
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River and State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Danny Geelen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
| | - Ken-Ishiro Hayashi
- Department of Bioscience, Okayama University of Science, Okayama, 700-0005, Japan
| | - Wei Xuan
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River and State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Markus Geisler
- Department of Biology, University of Fribourg, Fribourg, CH-1700, Switzerland
| | - Kirsten Ten Tusscher
- Computational Developmental Biology Group, Faculty of Science, Utrecht University, Utrecht, 3584 CH, the Netherlands
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
| |
Collapse
|
41
|
Zeng Y, Verstraeten I, Trinh HK, Lardon R, Schotte S, Olatunji D, Heugebaert T, Stevens C, Quareshy M, Napier R, Nastasi SP, Costa A, De Rybel B, Bellini C, Beeckman T, Vanneste S, Geelen D. Chemical induction of hypocotyl rooting reveals extensive conservation of auxin signalling controlling lateral and adventitious root formation. THE NEW PHYTOLOGIST 2023; 240:1883-1899. [PMID: 37787103 DOI: 10.1111/nph.19292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/19/2023] [Indexed: 10/04/2023]
Abstract
Upon exposure to light, etiolated Arabidopsis seedlings form adventitious roots (AR) along the hypocotyl. While processes underlying lateral root formation are studied intensively, comparatively little is known about the molecular processes involved in the initiation of hypocotyl AR. AR and LR formation were studied using a small molecule named Hypocotyl Specific Adventitious Root INducer (HYSPARIN) that strongly induces AR but not LR formation. HYSPARIN does not trigger rapid DR5-reporter activation, DII-Venus degradation or Ca2+ signalling. Transcriptome analysis, auxin signalling reporter lines and mutants show that HYSPARIN AR induction involves nuclear TIR1/AFB and plasma membrane TMK auxin signalling, as well as multiple downstream LR development genes (SHY2/IAA3, PUCHI, MAKR4 and GATA23). Comparison of the AR and LR induction transcriptome identified SAURs, AGC kinases and OFP transcription factors as specifically upregulated by HYSPARIN. Members of the SAUR19 subfamily, OFP4 and AGC2 suppress HYS-induced AR formation. While SAUR19 and OFP subfamily members also mildly modulate LR formation, AGC2 regulates only AR induction. Analysis of HYSPARIN-induced AR formation uncovers an evolutionary conservation of auxin signalling controlling LR and AR induction in Arabidopsis seedlings and identifies SAUR19, OFP4 and AGC2 kinase as novel regulators of AR formation.
Collapse
Affiliation(s)
- Yinwei Zeng
- Horticell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Inge Verstraeten
- Horticell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Hoang Khai Trinh
- Horticell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
- Institute of Food and Biotechnology, Can Tho University, 900000, Can Tho City, Vietnam
| | - Robin Lardon
- Horticell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Sebastien Schotte
- Horticell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Damilola Olatunji
- Horticell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Thomas Heugebaert
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Christian Stevens
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Mussa Quareshy
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Richard Napier
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Sara Paola Nastasi
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Alex Costa
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
- Institute of Biophysics, National Research Council of Italy (CNR), 20133, Milan, Italy
| | - Bert De Rybel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Catherine Bellini
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE-90736, Umeå, Sweden
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Steffen Vanneste
- Horticell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Danny Geelen
- Horticell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| |
Collapse
|
42
|
Jobert F, Yadav S, Robert S. Auxin as an architect of the pectin matrix. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6933-6949. [PMID: 37166384 PMCID: PMC10690733 DOI: 10.1093/jxb/erad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/10/2023] [Indexed: 05/12/2023]
Abstract
Auxin is a versatile plant growth regulator that triggers multiple signalling pathways at different spatial and temporal resolutions. A plant cell is surrounded by the cell wall, a complex and dynamic network of polysaccharides. The cell wall needs to be rigid to provide mechanical support and protection and highly flexible to allow cell growth and shape acquisition. The modification of the pectin components, among other processes, is a mechanism by which auxin activity alters the mechanical properties of the cell wall. Auxin signalling precisely controls the transcriptional output of several genes encoding pectin remodelling enzymes, their local activity, pectin deposition, and modulation in different developmental contexts. This review examines the mechanism of auxin activity in regulating pectin chemistry at organ, cellular, and subcellular levels across diverse plant species. Moreover, we ask questions that remain to be addressed to fully understand the interplay between auxin and pectin in plant growth and development.
Collapse
Affiliation(s)
- François Jobert
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
- CRRBM, Université de Picardie Jules Verne, 80000, Amiens, France
| | - Sandeep Yadav
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
| | - Stéphanie Robert
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
| |
Collapse
|
43
|
Xu F, Yu F. Sensing and regulation of plant extracellular pH. TRENDS IN PLANT SCIENCE 2023; 28:1422-1437. [PMID: 37596188 DOI: 10.1016/j.tplants.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/03/2023] [Accepted: 06/19/2023] [Indexed: 08/20/2023]
Abstract
In plants, pH determines nutrient acquisition and sensing, and triggers responses to osmotic stress, whereas pH homeostasis protects the cellular machinery. Extracellular pH (pHe) controls the chemistry and rheology of the cell wall to adjust its elasticity and regulate cell expansion in space and time. Plasma membrane (PM)-localized proton pumps, cell-wall components, and cell wall-remodeling enzymes jointly maintain pHe homeostasis. To adapt to their environment and modulate growth and development, plant cells must sense subtle changes in pHe caused by the environment or neighboring cells. Accumulating evidence indicates that PM-localized cell-surface peptide-receptor pairs sense pHe. We highlight recent advances in understanding how plants perceive and maintain pHe, and discuss future perspectives.
Collapse
Affiliation(s)
- Fan Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, PR China
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
44
|
Del Bianco M, Friml J, Strader L, Kepinski S. Auxin research: creating tools for a greener future. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6889-6892. [PMID: 38038239 PMCID: PMC10690723 DOI: 10.1093/jxb/erad420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Affiliation(s)
| | - Jiří Friml
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Lucia Strader
- Department of Biology, Duke University, Durham, NC, USA
| | | |
Collapse
|
45
|
Jing H, Wilkinson EG, Sageman-Furnas K, Strader LC. Auxin and abiotic stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:7000-7014. [PMID: 37591508 PMCID: PMC10690732 DOI: 10.1093/jxb/erad325] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Plants are exposed to a variety of abiotic stresses; these stresses have profound effects on plant growth, survival, and productivity. Tolerance and adaptation to stress require sophisticated stress sensing, signaling, and various regulatory mechanisms. The plant hormone auxin is a key regulator of plant growth and development, playing pivotal roles in the integration of abiotic stress signals and control of downstream stress responses. In this review, we summarize and discuss recent advances in understanding the intersection of auxin and abiotic stress in plants, with a focus on temperature, salt, and drought stresses. We also explore the roles of auxin in stress tolerance and opportunities arising for agricultural applications.
Collapse
Affiliation(s)
- Hongwei Jing
- Department of Biology, Duke University, Durham, NC 27008, USA
| | | | | | - Lucia C Strader
- Department of Biology, Duke University, Durham, NC 27008, USA
| |
Collapse
|
46
|
Liu L, Niu L, Ji K, Wang Y, Zhang C, Pan M, Wang W, Schiefelbein J, Yu F, An L. AXR1 modulates trichome morphogenesis through mediating ROP2 stability in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:756-772. [PMID: 37516999 DOI: 10.1111/tpj.16403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 07/09/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023]
Abstract
Cell differentiation and morphogenesis are crucial for the establishment of diverse cell types and organs in multicellular organisms. Trichome cells offer an excellent paradigm for dissecting the regulatory mechanisms of plant cell differentiation and morphogenesis due to their unique growth characteristics. Here, we report the isolation of an Arabidopsis mutant, aberrantly branched trichome 3-1 (abt3-1), with a reduced trichome branching phenotype. Positional cloning and molecular complementation experiments confirmed that abt3-1 is a new mutant allele of Auxin resistant 1 (AXR1), which encodes the N-terminal half of ubiquitin-activating enzyme E1 and functions in auxin signaling pathway. Meanwhile, we found that transgenic plants expressing constitutively active version of ROP2 (CA-ROP2) caused a reduction of trichome branches, resembling that of abt3-1. ROP2 is a member of Rho GTPase of plants (ROP) family, serving as versatile signaling switches involved in a range of cellular and developmental processes. Our genetic and biochemical analyses showed AXR1 genetically interacted with ROP2 and mediated ROP2 protein stability. The loss of AXR1 aggravated the trichome defects of CA-ROP2 and induced the accumulation of steady-state ROP2. Consistently, elevated AXR1 expression levels suppressed ROP2 expression and partially rescued trichome branching defects in CA-ROP2 plants. Together, our results presented a new mutant allele of AXR1, uncovered the effects of AXR1 and ROP2 during trichome development, and revealed a pathway of ROP2-mediated regulation of plant cell morphogenesis in Arabidopsis.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Linyu Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ke Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yali Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chi Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mi Pan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wenjia Wang
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - John Schiefelbein
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lijun An
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
47
|
Huang J, Li J, Chen H, Shen C, Wen Y. Phytotoxicity alleviation of imazethapyr to non-target plant wheat: active regulation between auxin and DIMBOA. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116004-116017. [PMID: 37897577 DOI: 10.1007/s11356-023-30608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
Effectively controlling target organisms while reducing the adverse effects of pesticides on non-target organisms is a crucial scientific inquiry and challenge in pesticide ecotoxicology research. Here, we studied the alleviation of herbicide (R)-imazethapyr [(R)-IM] to non-target plant wheat by active regulation between auxin and secondary metabolite 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazine-3(4H)-one (DIMBOA). We found (R)-IM reduced 32.4% auxin content in wheat leaves and induced 40.7% DIMBOA accumulation compared to the control group, which effortlessly disrupted the balance between wheat growth and defense. Transcriptomic results indicated that restoration of the auxin level in plants promoted the up-regulation of growth-related genes and the accumulation of DIMBOA up-regulated the expression of defense-related genes. Auxin and DIMBOA alleviated herbicide stress primarily through effects in the two directions of wheat growth and defense, respectively. Additionally, as a common precursor of auxin and DIMBOA, indole adopted a combined growth and defense strategy in response to (R)-IM toxicity, i.e., restoring growth development and enhancing the defense system. Future regulation of auxin and DIMBOA levels in plants may be possible through appropriate methods, thus regulating the plant growth-defense balance under herbicide stress. Our insight into the interference mechanism of herbicides to the plant growth-defense system will facilitate the design of improved strategies for herbicide detoxification.
Collapse
Affiliation(s)
- Jinye Huang
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jun Li
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hui Chen
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Cixi, 315300, China
| | - Chensi Shen
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yuezhong Wen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
48
|
Dalal M, Mansi, Mayandi K. Zoom-in to molecular mechanisms underlying root growth and function under heterogeneous soil environment and abiotic stresses. PLANTA 2023; 258:108. [PMID: 37898971 DOI: 10.1007/s00425-023-04262-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 10/06/2023] [Indexed: 10/31/2023]
Abstract
MAIN CONCLUSION The review describes tissue-specific and non-cell autonomous molecular responses regulating the root system architecture and function in plants. Phenotypic plasticity of roots relies on specific molecular and tissue specific responses towards local and microscale heterogeneity in edaphic factors. Unlike gravitropism, hydrotropism in Arabidopsis is regulated by MIZU KUSSIE1 (MIZ1)-dependent asymmetric distribution of cytokinin and activation of Arabidopsis response regulators, ARR16 and ARR17 on the lower water potential side of the root leading to higher cell division and root bending. The cortex specific role of Abscisic acid (ABA)-activated SNF1-related protein kinase 2.2 (SnRK2.2) and MIZ1 in elongation zone is emerging for hydrotropic curvature. Halotropism involves clathrin-mediated internalization of PIN FORMED 2 (PIN2) proteins at the side facing higher salt concentration in the root tip, and ABA-activated SnRK2.6 mediated phosphorylation of cortical microtubule-associated protein Spiral2-like (SP2L) in the root transition zone, which results in anisotropic cell expansion and root bending away from higher salt. In hydropatterning, Indole-3-acetic acid 3 (IAA3) interacts with SUMOylated-ARF7 (Auxin response factor 7) and prevents expression of Lateral organ boundaries-domain 16 (LBD16) in air-side of the root, while on wet side of the root, IAA3 cannot repress the non-SUMOylated-ARF7 thereby leading to LBD16 expression and lateral root development. In root vasculature, ABA induces expression of microRNA165/microRNA166 in endodermis, which moves into the stele to target class III Homeodomain leucine zipper protein (HD-ZIP III) mRNA in non-cell autonomous manner. The bidirectional gradient of microRNA165/6 and HD-ZIP III mRNA regulates xylem patterning under stress. Understanding the tissue specific molecular mechanisms regulating the root responses under heterogeneous and stress environments will help in designing climate-resilient crops.
Collapse
Affiliation(s)
- Monika Dalal
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India.
| | - Mansi
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Karthikeyan Mayandi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara, 630-0192, Japan
| |
Collapse
|
49
|
Brooks CJ, Atamian HS, Harmer SL. Multiple light signaling pathways control solar tracking in sunflowers. PLoS Biol 2023; 21:e3002344. [PMID: 37906610 PMCID: PMC10617704 DOI: 10.1371/journal.pbio.3002344] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/21/2023] [Indexed: 11/02/2023] Open
Abstract
Sunflowers are famous for their ability to track the sun throughout the day and then reorient at night to face east the following morning. This occurs by differential growth patterns, with the east sides of stems growing more during the day and the west sides of stems growing more at night. This process, termed heliotropism, is generally believed to be a specialized form of phototropism; however, the underlying mechanism is unknown. To better understand heliotropism, we compared gene expression patterns in plants undergoing phototropism in a controlled environment and in plants initiating and maintaining heliotropic growth in the field. We found the expected transcriptome signatures of phototropin-mediated phototropism in sunflower stems bending towards monochromatic blue light. Surprisingly, the expression patterns of these phototropism-regulated genes are quite different in heliotropic plants. Most genes rapidly induced during phototropism display only minor differences in expression across solar tracking stems. However, some genes that are both rapidly induced during phototropism and are implicated in growth responses to foliar shade are rapidly induced on the west sides of stems at the onset of heliotropism, suggesting a possible role for red light photoreceptors in solar tracking. To test the involvement of different photoreceptor signaling pathways in heliotropism, we modulated the light environment of plants initiating solar tracking. We found that depletion of either red and far-red light or blue light did not hinder the initiation or maintenance of heliotropism in the field. Together, our results suggest that the transcriptional regulation of heliotropism is distinct from phototropin-mediated phototropism and likely involves inputs from multiple light signaling pathways.
Collapse
Affiliation(s)
- Christopher J. Brooks
- Department of Plant Biology, University of California, Davis, Davis, California, United States of America
| | - Hagop S. Atamian
- Department of Plant Biology, University of California, Davis, Davis, California, United States of America
- Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Stacey L. Harmer
- Department of Plant Biology, University of California, Davis, Davis, California, United States of America
| |
Collapse
|
50
|
Wang T, Li X, Liu N, Yang Y, Gong Q. TurboID-based proximity labelling reveals a connection between VPS34 and cellular homeostasis. JOURNAL OF PLANT PHYSIOLOGY 2023; 289:154100. [PMID: 37748420 DOI: 10.1016/j.jplph.2023.154100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023]
Abstract
Unlike animals, plants and yeasts only have a class III phosphatidylinositol 3-kinase (PI3KC3). Its lipid product, phosphatidylinositol 3-phosphate (PtdIns-3-P, PI3P), organizes intracellular trafficking routes such as autophagosome formation, multivesicular body (MVB) formation, retro-transport from trans-Golgi network (TGN) to late Golgi, and the fusion events between autophagosomes and MVBs and the vacuole. The catalytic subunit of plant PI3KC3 is encoded by the essential gene Vacuolar Protein Sorting 34 (VPS34). Despite the importance of VPS34 in cellular homeostasis and plant development, a VPS34 interactome is lacking. Here we employed TurboID, an enzyme-catalyzed proximity labelling (PL) method, to describe a proximal interactome of Arabidopsis VPS34. TurboID catalyzed spatially restricted biotinylation and enabled VPS34-specific enrichment of 273 proteins from affinity purification coupled with mass spectrometry. The interactome confirmed known functions of VPS34 in endo-lysosomal trafficking. Intriguingly, carbohydrate metabolism was the most enriched Gene Ontology (GO) term, including glycolytic enzymes in the triose portion and enzymes functioning in chloroplast triose export and sucrose biosynthesis. The interaction between VPS34 and the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH, GAPC1/2) was validated in planta. Also verified was the interaction between VPS34 and the plasma membrane H+-ATPase AHA2, a primary determinant of membrane potential. Our study links PI3KC3 to carbohydrate metabolism and membrane potential, two key processes that maintain cellular homeostasis.
Collapse
Affiliation(s)
- Taotao Wang
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Xinjing Li
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Ningjing Liu
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Yi Yang
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Qingqiu Gong
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|