1
|
Day GJ, Zaytsev AV, Brewster RC, Kozhevnikov VN, Jarvis AG. A Dual-Purpose Non-Canonical Amino Acid for the Expanded Genetic Code: Combining Metal-Binding and Click Chemistry. Angew Chem Int Ed Engl 2024; 63:e202413073. [PMID: 39269196 DOI: 10.1002/anie.202413073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
A rationally designed dual-purpose non-canonical amino acid (Trz) has been synthesised and successfully incorporated into a protein scaffold by genetic code expansion. Trz contains a 5-pyridyl-1,2,4-triazine system, which allows for inverse-electron-demand Diels-Alder (IEDDA) reactions to occur on the triazine ring and for metal ions to be chelated both before and after the click reaction. Trz was successfully incorporated into a protein scaffold and the IEDDA utility of Trz demonstrated through the site-specific labelling of the purified protein with a bicyclononyne. Additionally, Trz was shown to successfully coordinate a cyclometallated iridium(III) centre, providing access to a bioorthogonal luminogenic probe. The luminescent properties of the Ir(III)-bound protein blue-shift upon IEDDA click reaction with bicyclononyne, providing a unique method for monitoring the extent and location of the labelling reaction. In summary, Trz is a new dual-purpose non-canonical amino acid with great potential for myriad bioapplications where metal-based functionality is required, for example in imaging, catalysis, and photo-dynamic therapy, in conjunction with a bioorthogonal reactive handle to impart additional functionalities, such as dual-modality imaging or therapeutic payloads.
Collapse
Affiliation(s)
- Graham J Day
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, EH9 3FJ, Edinburgh, UK
| | - Andrey V Zaytsev
- Department of Applied Sciences, Northumbria University, NE1 8ST, Newcastle-upon-Tyne, UK
| | - Richard C Brewster
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, EH9 3FJ, Edinburgh, UK
| | - Valery N Kozhevnikov
- Department of Applied Sciences, Northumbria University, NE1 8ST, Newcastle-upon-Tyne, UK
| | - Amanda G Jarvis
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, EH9 3FJ, Edinburgh, UK
| |
Collapse
|
2
|
Dyguda-Kazimierowicz E, Jedwabny W. Organophosphate Hydrolysis by a Designed Metalloenzyme: Impact of Mutations Explained. J Phys Chem B 2024; 128:12456-12470. [PMID: 39648809 DOI: 10.1021/acs.jpcb.4c06809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
The efficient design of novel enzymes has been attainable only by a combination of theoretical approaches and experimental refinement, suggesting inadequate performance of de novo design protocols. Based on the analysis of the evolutionary trajectory of a designed organophosphate hydrolase, this work aimed at developing and validating the improved theoretical models describing the catalytic activity of five enzyme variants (including wild-type as well as theoretically derived and experimentally refined enzymes) performing the hydrolysis of diethyl 7-hydroxycoumarinyl phosphate. The following aspects possibly important for enzyme design were addressed: the level of theory sufficient for a reliable description of enzyme-reactant interactions, the issue of ground state (GS) destabilization versus transition state (TS) stabilization, and the derivation of the proper side chain rotamers of amino acid residues. For enzyme variants analyzed herein, differential transition state stabilization (DTSS, i.e., preferential TS binding by an enzyme over the GS binding) calculated with a non-empirical model of the interaction energy (i.e., multipole electrostatic plus approximate dispersion terms, MED) displayed a superior performance in ranking the enzyme catalytic activity. The MED DTSS-based systematic rotamer refinement performed with an efficient scanning procedure and accounting for long-range interaction energy terms is an important step capable of unlocking the full potential impact of the given residue that could be otherwise overlooked with a conventional static approach featuring optimization to the nearby minimum. While TS stabilization is the main factor contributing to the increased catalytic activity of the de novo-designed variant studied in this work, directed evolution refinement appears to impact the catalytic activity of another enzyme variant analyzed herein via GS destabilization.
Collapse
Affiliation(s)
- Edyta Dyguda-Kazimierowicz
- Department of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Wiktoria Jedwabny
- Department of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
3
|
Mukherjee A, Roy S. Understanding the Directed Evolution of a Natural-like Efficient Artificial Metalloenzyme. J Phys Chem B 2024; 128:12122-12132. [PMID: 39588805 DOI: 10.1021/acs.jpcb.4c06994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The artificial metalloenzyme containing iridium in place of iron along with four directed evolution mutations C317G, T213G, L69V, and V254L in a natural cytochrome P450 presents an important milestone in merging the extraordinary efficiency of biocatalysts with the versatility of small molecule chemical catalysts in catalyzing a new-to-nature carbene insertion reaction. This is a show-stopper enzyme, as it exhibits a catalytic efficiency similar to that of natural enzymes. Despite this remarkable discovery, there is no mechanistic and structural understanding as to why it displays extraordinary efficiency after the incorporation of the four active site mutations by directed evolution methods, which so far has been intractable to any experimental methods. In this study, we have deciphered how directed evolution mutations gradually alter the protein conformational ensemble to populate a catalytically active conformation to boost a multistep catalysis in a natural-like artificial metalloenzyme using large-scale molecular dynamics simulations, rigorous quantum chemical (QM), and multiscale quantum chemical/molecular mechanics (QM/MM) calculations. It reveals how evolution precisely positions the cofactor-substrate in an unusual but effective orientation within a reshaped active site in the catalytically active conformation stabilized by C-H···π interactions from more ordered mutated L69V and V254L residues to achieve preferential transition state stabilization compared to the ground state. This work essentially tracks down in atomistic detail the shift in the conformational ensemble of the highly active conformation from the less efficient single mutant to the most efficient quadruple mutant and offers valuable insights for designing better enzymes. The active conformation correctly reproduces the experimental barrier height and also accounts for the catalytic effect, which is in good agreement with experimental observations. Moreover, this conformation features an unusual bonding interaction in a metal-carbene species that preferentially stabilizes the rate-determining formation of an iridium porphyrin carbene intermediate to render the observed high catalytic rate acceleration. Our study provides crucial insights into the underlying rationale for directed evolution, reports the major catalytic role of nonelectrostatic interactions in enzyme catalysis different from the electrostatic model, and suggests a crucial principle toward designing enzymes with natural efficiency.
Collapse
Affiliation(s)
- Anagh Mukherjee
- Crystallography & Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata 700064, India
| | - Subhendu Roy
- Crystallography & Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata 700064, India
- Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
4
|
Salihovic A, Ascham A, Rosenqvist PS, Taladriz-Sender A, Hoskisson PA, Hodgson DRW, Grogan G, Burley GA. Biocatalytic synthesis of ribonucleoside analogues using nucleoside transglycosylase-2. Chem Sci 2024:d4sc07521h. [PMID: 39691463 PMCID: PMC11647913 DOI: 10.1039/d4sc07521h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024] Open
Abstract
Ribonucleosides are essential building blocks used extensively in antiviral and oligonucleotide therapeutics. A major challenge in the further development of nucleoside analogues for therapeutic applications is access to scalable and environmentally sustainable synthetic strategies. This study uses the type II nucleoside 2'-deoxyribosyltransferase from Lactobacillus leichmannii (LlNDT-2) to prepare a suite of ribonucleoside analogues using naturally-occurring uridine and cytidine sugar donors. Crystal structure and mutational analyses are used to define the substrate tolerance of the nucleobase exchange and the 2'-substituent of the nucleoside sugar donor. Nucleobase profiling identified acceptance of both purine and pyrimidine nucleobases. Finally, the scalability of the approach is showcased, enabling the preparation of ribonucleosides on millimolar scales. This biocatalytic strategy opens up opportunities to establish chemoenzymatic routes to prepare nucleoside analogues incorporating 2' modifications that are of therapeutic importance.
Collapse
Affiliation(s)
- Admir Salihovic
- Department of Pure & Applied Chemistry, University of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
- Strathclyde Centre for Molecular Bioscience, University of Strathclyde Glasgow UK
| | - Alex Ascham
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | | | - Andrea Taladriz-Sender
- Department of Pure & Applied Chemistry, University of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
- Strathclyde Centre for Molecular Bioscience, University of Strathclyde Glasgow UK
| | - Paul A Hoskisson
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde 161 Cathedral Street Glasgow G4 0RE UK
| | - David R W Hodgson
- Department of Chemistry, Durham University South Road Durham DH1 3LE UK
| | - Gideon Grogan
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Glenn A Burley
- Department of Pure & Applied Chemistry, University of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
- Strathclyde Centre for Molecular Bioscience, University of Strathclyde Glasgow UK
| |
Collapse
|
5
|
Jiang F, Li M, Dong J, Yu Y, Sun X, Wu B, Huang J, Kang L, Pei Y, Zhang L, Wang S, Xu W, Xin J, Ouyang W, Fan G, Zheng L, Tan Y, Hu Z, Xiong Y, Feng Y, Yang G, Liu Q, Song J, Liu J, Hong L, Tan P. A general temperature-guided language model to design proteins of enhanced stability and activity. SCIENCE ADVANCES 2024; 10:eadr2641. [PMID: 39602544 PMCID: PMC11601203 DOI: 10.1126/sciadv.adr2641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024]
Abstract
Designing protein mutants with both high stability and activity is a critical yet challenging task in protein engineering. Here, we introduce PRIME, a deep learning model, which can suggest protein mutants with improved stability and activity without any prior experimental mutagenesis data for the specified protein. Leveraging temperature-aware language modeling, PRIME demonstrated superior predictive ability compared to current state-of-the-art models on the public mutagenesis dataset across 283 protein assays. Furthermore, we validated PRIME's predictions on five proteins, examining the impact of the top 30 to 45 single-site mutations on various protein properties, including thermal stability, antigen-antibody binding affinity, and the ability to polymerize nonnatural nucleic acid or resilience to extreme alkaline conditions. More than 30% of PRIME-recommended mutants exhibited superior performance compared to their premutation counterparts across all proteins and desired properties. We developed an efficient and effective method based on PRIME to rapidly obtain multisite mutants with enhanced activity and stability. Hence, PRIME demonstrates broad applicability in protein engineering.
Collapse
Affiliation(s)
- Fan Jiang
- School of Physics and Astronomy, & Shanghai National Center for Applied Mathematics (SJTU Center), & Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingchen Li
- Shanghai Artificial Intelligence Laboratory, Shanghai 200030, China
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200240, China
| | - Jiajun Dong
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, Guangdong 510005, China
| | - Yuanxi Yu
- School of Physics and Astronomy, & Shanghai National Center for Applied Mathematics (SJTU Center), & Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyu Sun
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
| | - Banghao Wu
- School of Physics and Astronomy, & Shanghai National Center for Applied Mathematics (SJTU Center), & Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Life Sciences and Biotechnology, & State Key Laboratory of Microbial Metabolism, & Joint International Research Laboratory of Metabolic, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jin Huang
- School of Physics and Astronomy, & Shanghai National Center for Applied Mathematics (SJTU Center), & Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Life Sciences and Biotechnology, & State Key Laboratory of Microbial Metabolism, & Joint International Research Laboratory of Metabolic, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liqi Kang
- School of Physics and Astronomy, & Shanghai National Center for Applied Mathematics (SJTU Center), & Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yufeng Pei
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
| | - Liang Zhang
- School of Physics and Astronomy, & Shanghai National Center for Applied Mathematics (SJTU Center), & Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shaojie Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wenxue Xu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jingyao Xin
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wanli Ouyang
- Shanghai Artificial Intelligence Laboratory, Shanghai 200030, China
| | - Guisheng Fan
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200240, China
| | - Lirong Zheng
- School of Physics and Astronomy, & Shanghai National Center for Applied Mathematics (SJTU Center), & Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yang Tan
- Shanghai Artificial Intelligence Laboratory, Shanghai 200030, China
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200240, China
| | | | - Yi Xiong
- School of Life Sciences and Biotechnology, & State Key Laboratory of Microbial Metabolism, & Joint International Research Laboratory of Metabolic, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Feng
- School of Life Sciences and Biotechnology, & State Key Laboratory of Microbial Metabolism, & Joint International Research Laboratory of Metabolic, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guangyu Yang
- School of Life Sciences and Biotechnology, & State Key Laboratory of Microbial Metabolism, & Joint International Research Laboratory of Metabolic, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Key Biological Raw Material, Shanghai Academy of Experimental Medicine, Shanghai 201401, China
- Hzymes Biotechnology Co. Ltd, Wuhan, Hubei 430075, China
| | - Qian Liu
- School of Life Sciences and Biotechnology, & State Key Laboratory of Microbial Metabolism, & Joint International Research Laboratory of Metabolic, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Song
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
| | - Jia Liu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Liang Hong
- School of Physics and Astronomy, & Shanghai National Center for Applied Mathematics (SJTU Center), & Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Artificial Intelligence Laboratory, Shanghai 200030, China
- Zhanjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pan Tan
- School of Physics and Astronomy, & Shanghai National Center for Applied Mathematics (SJTU Center), & Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Artificial Intelligence Laboratory, Shanghai 200030, China
| |
Collapse
|
6
|
Yu J, Chen B, Huang X. Single-Electron Oxidation Triggered by Visible-Light-Excited Enzymes for Asymmetric Biocatalysis. Angew Chem Int Ed Engl 2024:e202419262. [PMID: 39605283 DOI: 10.1002/anie.202419262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 11/29/2024]
Abstract
By integrating enzymatic catalysis with photocatalysis, photoenzymatic catalysis emerges as a powerful strategy to enhance enzyme catalytic capabilities and provide superior stereocontrol in reactions involving reactive intermediates. Repurposing naturally occurring enzymes using visible light is among the most active directions of photoenzymatic catalysis. This Minireview focuses on a cutting-edge strategy in this direction, namely single-electron-oxidation-triggered non-natural biotransformations catalyzed by photoexcited enzymes. These straightforward transformations feature a unique radical mechanism initiated by single-electron oxidation, achieving redox-neutral non-natural C-C, C-O, and C-S bond formation, and expanding the chemical toolbox of enzymes. By highlighting recent advances in this field and emphasizing their catalytic mechanisms and synthetic potential, innovative approaches for photobiomanufacturing are anticipated.
Collapse
Affiliation(s)
- Jinhai Yu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Bin Chen
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xiaoqiang Huang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
7
|
Hou Y, Chen J, Liu W, Zhu G, Yang Q, Wang X. Using the Theozyme Model to Study the Dynamical Mechanism of the Post-Transition State Bifurcation Reaction by NgnD Enzyme. Molecules 2024; 29:5518. [PMID: 39683677 DOI: 10.3390/molecules29235518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/19/2024] [Accepted: 11/17/2024] [Indexed: 12/18/2024] Open
Abstract
Post-transition state bifurcation (PTSB) is a fundamental process in which a single transition state leads to multiple products. This phenomenon is important in both biological and chemical contexts and offers valuable insights into reaction mechanisms and their applications. The theozyme model, which focuses on key residues within enzymes, offers a computationally efficient method for studying these processes while preserving the enzyme's catalytic properties. This approach enhances our understanding of how enzymes stabilize and direct the transition state, thereby influencing product distribution and selectivity. In this study, we investigate the dynamics and regulatory mechanisms of the PTSB reaction catalyzed by the enzyme NgnD. The enzyme NgnD facilitates a cycloaddition reaction that produces both [6 + 4] and [4 + 2] adducts, with a preference for the [6 + 4] adduct. By analyzing the potential energy surface, bond length distribution, and interactions between the theozyme and the ambimodal transition state, we elucidate the role of the enzyme's active site residues in determining product selectivity. We illustrate how these key residues contribute to the formation of different adducts, providing insights from various perspectives. Using theozyme models, we propose how the four most influential active residues collectively might control the direction of adduct formation through their cumulative effects.
Collapse
Affiliation(s)
- Yaning Hou
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jingyun Chen
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Weizhe Liu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Gaohua Zhu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Qianying Yang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xin Wang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
8
|
MacAulay A, Klemencic E, Brewster RC, Ünal SM, Notari E, Wood CW, Jarvis AG, Campopiano DJ. Installation of an organocatalyst into a protein scaffold creates an artificial Stetterase. Chem Commun (Camb) 2024; 60:13746-13749. [PMID: 39494563 PMCID: PMC11533139 DOI: 10.1039/d4cc05182c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Using a protein scaffold covalently functionalised with a thiamine-inspired N-heterocyclic carbene (NHC), we created an artificial Stetterase (ArtiSt) which catalyses a stereoselective, intramolecular Stetter reaction. We demonstrate that ArtiSt functions under ambient conditions with low catalyst loading. Furthermore, activity can be increased >20 fold by altering the protein scaffold.
Collapse
Affiliation(s)
- Alice MacAulay
- School of Chemistry, University of Edinburgh, Joseph Black Building, King's Buildings, Edinburgh, EH9 3FJ, UK.
| | - Eva Klemencic
- School of Chemistry, University of Edinburgh, Joseph Black Building, King's Buildings, Edinburgh, EH9 3FJ, UK.
| | - Richard C Brewster
- School of Chemistry, University of Edinburgh, Joseph Black Building, King's Buildings, Edinburgh, EH9 3FJ, UK.
| | - Süleyman Mert Ünal
- School of Biological Sciences, University of Edinburgh, Roger Land Building, King's Buildings, Edinburgh, EH9 3FF, UK
| | - Evangelia Notari
- School of Chemistry, University of Edinburgh, Joseph Black Building, King's Buildings, Edinburgh, EH9 3FJ, UK.
- School of Biological Sciences, University of Edinburgh, Roger Land Building, King's Buildings, Edinburgh, EH9 3FF, UK
| | - Christopher W Wood
- School of Biological Sciences, University of Edinburgh, Roger Land Building, King's Buildings, Edinburgh, EH9 3FF, UK
| | - Amanda G Jarvis
- School of Chemistry, University of Edinburgh, Joseph Black Building, King's Buildings, Edinburgh, EH9 3FJ, UK.
| | - Dominic J Campopiano
- School of Chemistry, University of Edinburgh, Joseph Black Building, King's Buildings, Edinburgh, EH9 3FJ, UK.
| |
Collapse
|
9
|
Lino BR, Williams SJ, Castor ME, Van Deventer JA. Reaching New Heights in Genetic Code Manipulation with High Throughput Screening. Chem Rev 2024; 124:12145-12175. [PMID: 39418482 DOI: 10.1021/acs.chemrev.4c00329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The chemical and physical properties of proteins are limited by the 20 canonical amino acids. Genetic code manipulation allows for the incorporation of noncanonical amino acids (ncAAs) that enhance or alter protein functionality. This review explores advances in the three main strategies for introducing ncAAs into biosynthesized proteins, focusing on the role of high throughput screening in these advancements. The first section discusses engineering aminoacyl-tRNA synthetases (aaRSs) and tRNAs, emphasizing how novel selection methods improve characteristics including ncAA incorporation efficiency and selectivity. The second section examines high-throughput techniques for improving protein translation machinery, enabling accommodation of alternative genetic codes. This includes opportunities to enhance ncAA incorporation through engineering cellular components unrelated to translation. The final section highlights various discovery platforms for high-throughput screening of ncAA-containing proteins, showcasing innovative binding ligands and enzymes that are challenging to create with only canonical amino acids. These advances have led to promising drug leads and biocatalysts. Overall, the ability to discover unexpected functionalities through high-throughput methods significantly influences ncAA incorporation and its applications. Future innovations in experimental techniques, along with advancements in computational protein design and machine learning, are poised to further elevate this field.
Collapse
Affiliation(s)
- Briana R Lino
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Sean J Williams
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Michelle E Castor
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - James A Van Deventer
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
10
|
Ma Z, Li W, Shen Y, Xu Y, Liu G, Chang J, Li Z, Qin H, Tian B, Gong H, Liu DR, Thuronyi BW, Voigt CA, Zhang S. EvoAI enables extreme compression and reconstruction of the protein sequence space. Nat Methods 2024:10.1038/s41592-024-02504-2. [PMID: 39528677 DOI: 10.1038/s41592-024-02504-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Designing proteins with improved functions requires a deep understanding of how sequence and function are related, a vast space that is hard to explore. The ability to efficiently compress this space by identifying functionally important features is extremely valuable. Here we establish a method called EvoScan to comprehensively segment and scan the high-fitness sequence space to obtain anchor points that capture its essential features, especially in high dimensions. Our approach is compatible with any biomolecular function that can be coupled to a transcriptional output. We then develop deep learning and large language models to accurately reconstruct the space from these anchors, allowing computational prediction of novel, highly fit sequences without prior homology-derived or structural information. We apply this hybrid experimental-computational method, which we call EvoAI, to a repressor protein and find that only 82 anchors are sufficient to compress the high-fitness sequence space with a compression ratio of 1048. The extreme compressibility of the space informs both applied biomolecular design and understanding of natural evolution.
Collapse
Affiliation(s)
- Ziyuan Ma
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Wenjie Li
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yunhao Shen
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yunxin Xu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Gengjiang Liu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Jiamin Chang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Zeju Li
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Hong Qin
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Boxue Tian
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Haipeng Gong
- School of Life Sciences, Tsinghua University, Beijing, China
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - B W Thuronyi
- Department of Chemistry, Williams College, Williamstown, MA, USA
| | - Christopher A Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shuyi Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China.
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.
| |
Collapse
|
11
|
Jabalera Y, Tascón I, Samperio S, López-Alonso JP, Gonzalez-Lopez M, Aransay AM, Abascal-Palacios G, Beisel CL, Ubarretxena-Belandia I, Perez-Jimenez R. A resurrected ancestor of Cas12a expands target access and substrate recognition for nucleic acid editing and detection. Nat Biotechnol 2024:10.1038/s41587-024-02461-3. [PMID: 39482449 DOI: 10.1038/s41587-024-02461-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/02/2024] [Indexed: 11/03/2024]
Abstract
The properties of Cas12a nucleases constrict the range of accessible targets and their applications. In this study, we applied ancestral sequence reconstruction (ASR) to a set of Cas12a orthologs from hydrobacteria to reconstruct a common ancestor, ReChb, characterized by near-PAMless targeting and the recognition of diverse nucleic acid activators and collateral substrates. ReChb shares 53% sequence identity with the closest Cas12a ortholog but no longer requires a T-rich PAM and can achieve genome editing in human cells at sites inaccessible to the natural FnCas12a or the engineered and PAM-flexible enAsCas12a. Furthermore, ReChb can be triggered not only by double-stranded DNA but also by single-stranded RNA and DNA targets, leading to non-specific collateral cleavage of all three nucleic acid substrates with similar efficiencies. Finally, tertiary and quaternary structures of ReChb obtained by cryogenic electron microscopy reveal the molecular details underlying its expanded biophysical activities. Overall, ReChb expands the application space of Cas12a nucleases and underscores the potential of ASR for enhancing CRISPR technologies.
Collapse
Affiliation(s)
- Ylenia Jabalera
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Igor Tascón
- Ikerbasque Foundation for Science, Bilbao, Spain
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain
| | - Sara Samperio
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Jorge P López-Alonso
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain
- Basque Resource for Electron Microscopy, Leioa, Spain
| | - Monika Gonzalez-Lopez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Ana M Aransay
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- CIBERehd, ISCIII, Madrid, Spain
| | - Guillermo Abascal-Palacios
- Ikerbasque Foundation for Science, Bilbao, Spain
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain
| | - Chase L Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
- Medical Faculty, University of Würzburg, Würzburg, Germany
| | - Iban Ubarretxena-Belandia
- Ikerbasque Foundation for Science, Bilbao, Spain.
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain.
| | - Raul Perez-Jimenez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.
- Ikerbasque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
12
|
Li ZL, Pei S, Chen Z, Huang TY, Wang XD, Shen L, Chen X, Wang QQ, Wang DX, Ao YF. Machine learning-assisted amidase-catalytic enantioselectivity prediction and rational design of variants for improving enantioselectivity. Nat Commun 2024; 15:8778. [PMID: 39389964 PMCID: PMC11467325 DOI: 10.1038/s41467-024-53048-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
Biocatalysis is an attractive approach for the synthesis of chiral pharmaceuticals and fine chemicals, but assessing and/or improving the enantioselectivity of biocatalyst towards target substrates is often time and resource intensive. Although machine learning has been used to reveal the underlying relationship between protein sequences and biocatalytic enantioselectivity, the establishment of substrate fitness space is usually disregarded by chemists and is still a challenge. Using 240 datasets collected in our previous works, we adopt chemistry and geometry descriptors and build random forest classification models for predicting the enantioselectivity of amidase towards new substrates. We further propose a heuristic strategy based on these models, by which the rational protein engineering can be efficiently performed to synthesize chiral compounds with higher ee values, and the optimized variant results in a 53-fold higher E-value comparing to the wild-type amidase. This data-driven methodology is expected to broaden the application of machine learning in biocatalysis research.
Collapse
Affiliation(s)
- Zi-Lin Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuxin Pei
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Ziying Chen
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Teng-Yu Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xu-Dong Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Lin Shen
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China.
- Yantai-Jingshi Institute of Material Genome Engineering, Yantai, China.
| | - Xuebo Chen
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China.
- Yantai-Jingshi Institute of Material Genome Engineering, Yantai, China.
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, China.
| | - Qi-Qiang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - De-Xian Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Fei Ao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
13
|
Brouwer B, Della-Felice F, Illies JH, Iglesias-Moncayo E, Roelfes G, Drienovská I. Noncanonical Amino Acids: Bringing New-to-Nature Functionalities to Biocatalysis. Chem Rev 2024; 124:10877-10923. [PMID: 39329413 PMCID: PMC11467907 DOI: 10.1021/acs.chemrev.4c00136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024]
Abstract
Biocatalysis has become an important component of modern organic chemistry, presenting an efficient and environmentally friendly approach to synthetic transformations. Advances in molecular biology, computational modeling, and protein engineering have unlocked the full potential of enzymes in various industrial applications. However, the inherent limitations of the natural building blocks have sparked a revolutionary shift. In vivo genetic incorporation of noncanonical amino acids exceeds the conventional 20 amino acids, opening new avenues for innovation. This review provides a comprehensive overview of applications of noncanonical amino acids in biocatalysis. We aim to examine the field from multiple perspectives, ranging from their impact on enzymatic reactions to the creation of novel active sites, and subsequent catalysis of new-to-nature reactions. Finally, we discuss the challenges, limitations, and promising opportunities within this dynamic research domain.
Collapse
Affiliation(s)
- Bart Brouwer
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Franco Della-Felice
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Jan Hendrik Illies
- Department
of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - Emilia Iglesias-Moncayo
- Department
of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - Gerard Roelfes
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Ivana Drienovská
- Department
of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Nie LS, Liu XC, Yu L, Liu AK, Sun LJ, Gao SQ, Lin YW. Rational Design of an Artificial Metalloenzyme by Constructing a Metal-Binding Site Close to the Heme Cofactor in Myoglobin. Inorg Chem 2024; 63:18531-18535. [PMID: 39311200 DOI: 10.1021/acs.inorgchem.4c03093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
In this study, we constructed a metal-binding site close to the heme cofactor in myoglobin (Mb) by covalently attaching a nonnative metal-binding ligand of bipyridine to Cys46 through the F46C mutation in the heme distal site. The X-ray structure of the designed enzyme, termed F46C-mBpy Mb, was solved in the Cu(II)-bound form, which revealed the formation of a heterodinuclear center of Cu-His-H2O-heme. Cu(II)-F46C-mBpy Mb exhibits not only nitrite reductase reactivity but also cascade reaction activity involving both hydrolysis and oxidation. Furthermore, F46C-mBpy Mb displays Mn-peroxidase activity by the oxidation of Mn2+ to Mn3+ using H2O2 as an oxidant. This study shows that the construction of a nonnative metal-binding site close to the heme cofactor is a convenient approach to creating an artificial metalloenzyme with a heterodinuclear center that confers multiple functions.
Collapse
Affiliation(s)
- Lv-Suo Nie
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Xi-Chun Liu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Lu Yu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Ao-Kun Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Li-Juan Sun
- Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Shu-Qin Gao
- Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
- Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|
15
|
Mou SB, Chen KY, Kunthic T, Xiang Z. Design and Evolution of an Artificial Friedel-Crafts Alkylation Enzyme Featuring an Organoboronic Acid Residue. J Am Chem Soc 2024; 146:26676-26686. [PMID: 39190546 DOI: 10.1021/jacs.4c03795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Creating artificial enzymes by the genetic incorporation of noncanonical amino acids with catalytic side chains would expand the enzyme chemistries that have not been discovered in nature. Here, we report the design of an artificial enzyme that uses p-boronophenylalanine as the catalytic residue. The artificial enzyme catalyzes Michael-type Friedel-Crafts alkylation through covalent activation. The designer enzyme was further engineered to afford high yields with excellent enantioselectivities. We next developed a practical method for preparative-scale reactions by whole-cell catalysis. This enzymatic C-C bond formation reaction was combined with palladium-catalyzed dearomative arylation to achieve the efficient synthesis of spiroindolenine compounds.
Collapse
Affiliation(s)
- Shu-Bin Mou
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Kai-Yue Chen
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Thittaya Kunthic
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Zheng Xiang
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Gaoke Innovation Center, Guangqiao Road, Guangming District, Shenzhen 518132, P. R. China
| |
Collapse
|
16
|
Lin Y, Dong Y, Li X, Cai J, Cai L, Zhang G. Enzymatic production of xylooligosaccharide from lignocellulosic and marine biomass: A review of current progress, challenges, and its applications in food sectors. Int J Biol Macromol 2024; 277:134014. [PMID: 39047995 DOI: 10.1016/j.ijbiomac.2024.134014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/03/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Over the last decade, xylooligosaccharides (XOS) have attracted great attentions because of their unique chemical properties and excellent prebiotic effects. Among the current strategies for XOS production, enzymatic hydrolysis is preferred due to its green and safe process, simplicity in equipment, and high control of the degrees of polymerization. This paper comprehensively summarizes various lignocellulosic biomass and marine biomass employed in enzymatic production of XOS. The importance and advantages of enzyme immobilization in XOS production are also discussed. Many novel immobilization techniques for xylanase are presented. In addition, bioinformatics techniques for the mining and designing of new xylanase are also described. Moreover, XOS has exhibited great potential applications in the food industry as diverse roles, such as a sugar replacer, a fat replacer, and cryoprotectant. This review systematically summarizes the current research progress on the applications of XOS in food sectors, including beverages, bakery products, dairy products, meat products, aquatic products, food packaging film, wall materials, and others. It is anticipated that this paper will act as a reference for the further development and application of XOS in food sectors and other fields.
Collapse
Affiliation(s)
- Yuanqing Lin
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, Fujian, China
| | - Yuting Dong
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, Fujian, China; Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian, China
| | - Xiangling Li
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States
| | - Jinzhong Cai
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, Fujian, China
| | - Lixi Cai
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian, China; College of Basic Medicine, Putian University, Putian 351100, Fujian, China.
| | - Guangya Zhang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian, China.
| |
Collapse
|
17
|
Niu W, Guo J. Cellular Site-Specific Incorporation of Noncanonical Amino Acids in Synthetic Biology. Chem Rev 2024; 124:10577-10617. [PMID: 39207844 PMCID: PMC11470805 DOI: 10.1021/acs.chemrev.3c00938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Over the past two decades, genetic code expansion (GCE)-enabled methods for incorporating noncanonical amino acids (ncAAs) into proteins have significantly advanced the field of synthetic biology while also reaping substantial benefits from it. On one hand, they provide synthetic biologists with a powerful toolkit to enhance and diversify biological designs beyond natural constraints. Conversely, synthetic biology has not only propelled the development of ncAA incorporation through sophisticated tools and innovative strategies but also broadened its potential applications across various fields. This Review delves into the methodological advancements and primary applications of site-specific cellular incorporation of ncAAs in synthetic biology. The topics encompass expanding the genetic code through noncanonical codon addition, creating semiautonomous and autonomous organisms, designing regulatory elements, and manipulating and extending peptide natural product biosynthetic pathways. The Review concludes by examining the ongoing challenges and future prospects of GCE-enabled ncAA incorporation in synthetic biology and highlighting opportunities for further advancements in this rapidly evolving field.
Collapse
Affiliation(s)
- Wei Niu
- Department of Chemical & Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
| |
Collapse
|
18
|
Li T, Liu X, Wang Z, Liu C, Liu Y, Cui N, Meng F, Zhang W, Wang D, Xu Y, Zhu X, Guo C, Wang Y. Characterization and rational engineering of an alkaline-tolerant azoreductase derived from Roseibium sp. H3510 for enhanced decolorization of azo dyes. Int J Biol Macromol 2024; 280:135810. [PMID: 39322137 DOI: 10.1016/j.ijbiomac.2024.135810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
rAzoR2326, an azoreductase derived from Roseibium sp. H3510, functions as an FMN-dependent homodimer utilizing NADH as cofactor. It demonstrated maximum activity at 45 °C and retained moderate activity above 50 °C, exhibiting stability from pH 7-10. Evolution and structure guided rational design of wild-type rAzoR2326 (WT) efficiently yielded 6 single-point mutants with improved thermostability and activity from a 22-variant library. Further combinatorial mutation led to mutant M20 with substantially enhanced thermostability (15-fold longer half-life at 50 °C) and activity (3.24-fold higher kcat/Km). M20 exhibited superior catalytic properties for decolorizing Allura Red compared to WT. Specifically, its decolorization capacity at pH 10.0 was 4.26-fold higher than WT. Additionally, M20 demonstrated remarkable thermostability, retaining 76.83 % decolorization activity for Allura Red after 120 min at 50 °C, whereas WT nearly lost all catalytic activity under the same conditions. Molecular dynamics simulations revealed the structural changes in M20, such as improved hydrogen bonding and a new C-H···π interaction, led to a more compact and rigid enzyme structure. This resulted in a more stable FMN-binding pocket and substrate tunnel, thereby improving the catalytic stability and activity of M20. Given its enhanced dye decolorization ability and alkaline tolerance, M20 shows promise as a biocatalyst for treating azo dye effluents.
Collapse
Affiliation(s)
- Tao Li
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Xinqi Liu
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Ziwei Wang
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Cong Liu
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Ning Cui
- Xinxiang Medical University Sanquan Medical College, Xinxiang 453003, PR China
| | - Fanling Meng
- Academic Affairs Office, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Wenbo Zhang
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Dandan Wang
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Yongtao Xu
- Henan Engineering Laboratory of Combinatorial Technique for Clinical & Biomedical Big Data, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Xueyi Zhu
- Zhengzhou Feier Medical Laboratory Co., LTD, Zhengzhou 450099, PR China
| | - Changjiang Guo
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Yan Wang
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, PR China.
| |
Collapse
|
19
|
Wang N, Li Y, Zheng M, Dong W, Zhang Q, Wang W. BhrPETase catalyzed polyethylene terephthalate depolymerization: A quantum mechanics/molecular mechanics approach. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135414. [PMID: 39102770 DOI: 10.1016/j.jhazmat.2024.135414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/20/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Polyethylene terephthalate (PET) is a widely used material in our daily life, particularly in areas such as packaging, fibers, and engineering plastics. However, PET waste can accumulate in the environment and pose a great threat to our ecosystem. Recently enzymatic conversion has emerged as an efficient and green strategy to address the PET crisis. Here, using a theoretical approach combining molecular dynamics simulation and quantum mechanics/molecular mechanics calculations, the depolymerization mechanism of the thermophilic cutinase BhrPETase was fully deciphered. Surprisingly, unlike the previously studied cutinase LCCICCG, our results indicate that the first step, catalytic triad assisted nucleophilic attack, is the rate-determining step. The corresponding Boltzmann weighted average energy barrier is 18.2 kcal/mol. Through extensive comparison between BhrPETase and LCCICCG, we evidence that key features like charge CHis@N1 and angle APET@C1-Ser@O1-His@H1 significantly impact the depolymerization efficiency of BhrPETase. Non-covalent bond interaction and distortion/interaction analysis inform new insights on enzyme engineer and may aid the recycling of enzymatic PET waste. This study will aid the advancement of the plastic bio-recycling economy and promote resource conservation and reuse.
Collapse
Affiliation(s)
- Ningru Wang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao 266237, PR China.
| | - Mingna Zheng
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China.
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
20
|
Casilli F, Canyelles-Niño M, Roelfes G, Alonso-Cotchico L. Computation-guided engineering of distal mutations in an artificial enzyme. Faraday Discuss 2024; 252:262-278. [PMID: 38836699 PMCID: PMC11389854 DOI: 10.1039/d4fd00069b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Artificial enzymes are valuable biocatalysts able to perform new-to-nature transformations with the precision and (enantio-)selectivity of natural enzymes. Although they are highly engineered biocatalysts, they often cannot reach catalytic rates akin those of their natural counterparts, slowing down their application in real-world industrial processes. Typically, their designs only optimise the chemistry inside the active site, while overlooking the role of protein dynamics on catalysis. In this work, we show how the catalytic performance of an already engineered artificial enzyme can be further improved by distal mutations that affect the conformational equilibrium of the protein. To this end, we subjected a specialised artificial enzyme based on the lactococcal multidrug resistance regulator (LmrR) to an innovative algorithm that quickly inspects the whole protein sequence space for hotpots which affect the protein dynamics. From an initial predicted selection of 73 variants, two variants with mutations distant by more than 11 Å from the catalytic pAF residue showed increased catalytic activity towards the new-to-nature hydrazone formation reaction. Their recombination displayed a 66% higher turnover number and 14 °C higher thermostability. Microsecond time scale molecular dynamics simulations evidenced a shift in the distribution of productive enzyme conformations, which are the result of a cascade of interactions initiated by the introduced mutations.
Collapse
Affiliation(s)
- Fabrizio Casilli
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG, Groningen, The Netherlands.
| | | | - Gerard Roelfes
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG, Groningen, The Netherlands.
| | | |
Collapse
|
21
|
Hilvert D. Spiers Memorial Lecture: Engineering biocatalysts. Faraday Discuss 2024; 252:9-28. [PMID: 39046423 PMCID: PMC11389855 DOI: 10.1039/d4fd00139g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024]
Abstract
Enzymes are being engineered to catalyze chemical reactions for many practical applications in chemistry and biotechnology. The approaches used are surveyed in this short review, emphasizing methods for accessing reactivities not expressed by native protein scaffolds. The successful generation of completely de novo enzymes that rival the rates and selectivities of their natural counterparts highlights the potential role that designer enzymes may play in the coming years in research, industry, and medicine. Some challenges that need to be addressed to realize this ambitious dream are considered together with possible solutions.
Collapse
Affiliation(s)
- Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
22
|
Bornscheuer UT. Concluding remarks: biocatalysis. Faraday Discuss 2024; 252:507-515. [PMID: 38958033 DOI: 10.1039/d4fd00127c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Biocatalysis is a rapidly evolving field with increasing impact in organic synthesis, chemical manufacturing and medicine. The Faraday Discussion reflected the current state of biocatalysis, covering the design of de novo enzymatic activities, but especially methods for the improvement of enzymes targeting a broad range of applications (i.e., hydroxylations by P450 monooxygenases, enzymatic deprotection of organic compounds under mild conditions, synthesis of chiral intermediates, plastic degradation, silicone polymer synthesis, and peptide synthesis). Central themes have been how to improve an enzyme using methods of rational design and directed evolution, informed by computer modelling and machine learning, and the incorporation of new catalytic functionalities to create hybrid and artificial enzymes.
Collapse
Affiliation(s)
- Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany.
| |
Collapse
|
23
|
Hutton AE, Foster J, Sanders JEJ, Taylor CJ, Hoffmann SA, Cai Y, Lovelock SL, Green AP. An efficient pyrrolysyl-tRNA synthetase for economical production of MeHis-containing enzymes. Faraday Discuss 2024; 252:295-305. [PMID: 38847587 PMCID: PMC11389853 DOI: 10.1039/d4fd00019f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Genetic code expansion has emerged as a powerful tool in enzyme design and engineering, providing new insights into sophisticated catalytic mechanisms and enabling the development of enzymes with new catalytic functions. In this regard, the non-canonical histidine analogue Nδ-methylhistidine (MeHis) has proven especially versatile due to its ability to serve as a metal coordinating ligand or a catalytic nucleophile with a similar mode of reactivity to small molecule catalysts such as 4-dimethylaminopyridine (DMAP). Here we report the development of a highly efficient aminoacyl tRNA synthetase (G1PylRSMIFAF) for encoding MeHis into proteins, by transplanting five known active site mutations from Methanomethylophilus alvus (MaPylRS) into the single domain PylRS from Methanogenic archaeon ISO4-G1. In contrast to the high concentrations of MeHis (5-10 mM) needed with the Ma system, G1PylRSMIFAF can operate efficiently using MeHis concentrations of ∼0.1 mM, allowing more economical production of a range of MeHis-containing enzymes in high titres. Interestingly G1PylRSMIFAF is also a 'polyspecific' aminoacyl tRNA synthetase (aaRS), enabling incorporation of five different non-canonical amino acids (ncAAs) including 3-pyridylalanine and 2-fluorophenylalanine. This study provides an important step towards scalable production of engineered enzymes that contain non-canonical amino acids such as MeHis as key catalytic elements.
Collapse
Affiliation(s)
- Amy E Hutton
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK.
| | - Jake Foster
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK.
| | - James E J Sanders
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK.
| | - Christopher J Taylor
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK.
| | - Stefan A Hoffmann
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK.
| | - Yizhi Cai
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK.
| | - Sarah L Lovelock
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK.
| | - Anthony P Green
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK.
| |
Collapse
|
24
|
Hollmann F, Sanchis J, Reetz MT. Learning from Protein Engineering by Deconvolution of Multi-Mutational Variants. Angew Chem Int Ed Engl 2024; 63:e202404880. [PMID: 38884594 DOI: 10.1002/anie.202404880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024]
Abstract
This review analyzes a development in biochemistry, enzymology and biotechnology that originally came as a surprise. Following the establishment of directed evolution of stereoselective enzymes in organic chemistry, the concept of partial or complete deconvolution of selective multi-mutational variants was introduced. Early deconvolution experiments of stereoselective variants led to the finding that mutations can interact cooperatively or antagonistically with one another, not just additively. During the past decade, this phenomenon was shown to be general. In some studies, molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) computations were performed in order to shed light on the origin of non-additivity at all stages of an evolutionary upward climb. Data of complete deconvolution can be used to construct unique multi-dimensional rugged fitness pathway landscapes, which provide mechanistic insights different from traditional fitness landscapes. Along a related line, biochemists have long tested the result of introducing two point mutations in an enzyme for mechanistic reasons, followed by a comparison of the respective double mutant in so-called double mutant cycles, which originally showed only additive effects, but more recently also uncovered cooperative and antagonistic non-additive effects. We conclude with suggestions for future work, and call for a unified overall picture of non-additivity and epistasis.
Collapse
Affiliation(s)
- Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft, Netherlands
| | - Joaquin Sanchis
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Manfred T Reetz
- Max-Plank-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45481, Mülheim, Germany
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| |
Collapse
|
25
|
Gong X, Zhang J, Gan Q, Teng Y, Hou J, Lyu Y, Liu Z, Wu Z, Dai R, Zou Y, Wang X, Zhu D, Zhu H, Liu T, Yan Y. Advancing microbial production through artificial intelligence-aided biology. Biotechnol Adv 2024; 74:108399. [PMID: 38925317 DOI: 10.1016/j.biotechadv.2024.108399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/20/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Microbial cell factories (MCFs) have been leveraged to construct sustainable platforms for value-added compound production. To optimize metabolism and reach optimal productivity, synthetic biology has developed various genetic devices to engineer microbial systems by gene editing, high-throughput protein engineering, and dynamic regulation. However, current synthetic biology methodologies still rely heavily on manual design, laborious testing, and exhaustive analysis. The emerging interdisciplinary field of artificial intelligence (AI) and biology has become pivotal in addressing the remaining challenges. AI-aided microbial production harnesses the power of processing, learning, and predicting vast amounts of biological data within seconds, providing outputs with high probability. With well-trained AI models, the conventional Design-Build-Test (DBT) cycle has been transformed into a multidimensional Design-Build-Test-Learn-Predict (DBTLP) workflow, leading to significantly improved operational efficiency and reduced labor consumption. Here, we comprehensively review the main components and recent advances in AI-aided microbial production, focusing on genome annotation, AI-aided protein engineering, artificial functional protein design, and AI-enabled pathway prediction. Finally, we discuss the challenges of integrating novel AI techniques into biology and propose the potential of large language models (LLMs) in advancing microbial production.
Collapse
Affiliation(s)
- Xinyu Gong
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Jianli Zhang
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Qi Gan
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Yuxi Teng
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Jixin Hou
- School of ECAM, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Yanjun Lyu
- Department of Computer Science and Engineering, The University of Texas at Arlington, Arlington 76019, USA
| | - Zhengliang Liu
- School of Computing, The University of Georgia, Athens, GA 30602, USA
| | - Zihao Wu
- School of Computing, The University of Georgia, Athens, GA 30602, USA
| | - Runpeng Dai
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yusong Zou
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Xianqiao Wang
- School of ECAM, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Dajiang Zhu
- Department of Computer Science and Engineering, The University of Texas at Arlington, Arlington 76019, USA
| | - Hongtu Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tianming Liu
- School of Computing, The University of Georgia, Athens, GA 30602, USA
| | - Yajun Yan
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
26
|
Zhang H, Guo L, Su Y, Wang R, Yang W, Mu W, Xuan L, Huang L, Wang J, Gao W. Hosts engineering and in vitro enzymatic synthesis for the discovery of novel natural products and their derivatives. Crit Rev Biotechnol 2024; 44:1121-1139. [PMID: 37574211 DOI: 10.1080/07388551.2023.2236787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/23/2023] [Accepted: 06/17/2023] [Indexed: 08/15/2023]
Abstract
Novel natural products (NPs) and their derivatives are important sources for drug discovery, which have been broadly applied in the fields of agriculture, livestock, and medicine, making the synthesis of NPs and their derivatives necessarily important. In recent years, biosynthesis technology has received increasing attention due to its high efficiency in the synthesis of high value-added novel products and its advantages of green, environmental protection, and controllability. In this review, the technological advances of biosynthesis strategies in the discovery of novel NPs and their derivatives are outlined, with an emphasis on two areas of host engineering and in vitro enzymatic synthesis. In terms of hosts engineering, multiple microorganisms, including Streptomyces, Aspergillus, and Penicillium, have been used as the biosynthetic gene clusters (BGCs) provider and host strain for the expression of BGCs to discover new compounds over the past years. In addition, the use of in vitro enzymatic synthesis strategy to generate novel compounds such as triterpenoid saponins and flavonoids is also hereby described.
Collapse
Affiliation(s)
- Huanyu Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, P.R. China
| | - Lanping Guo
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing, P.R. China
| | - Yaowu Su
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, P.R. China
| | - Rubing Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, P.R. China
| | - Wenqi Yang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, P.R. China
| | - Wenrong Mu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, P.R. China
| | - Liangshuang Xuan
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, P.R. China
| | - Luqi Huang
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing, P.R. China
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, P.R. China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, P.R. China
| |
Collapse
|
27
|
Chen XW, Bo Z, Yang Y. Artificial boron enzymes. Nat Chem Biol 2024; 20:1106-1107. [PMID: 39152214 DOI: 10.1038/s41589-024-01707-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Affiliation(s)
- Xiao-Wang Chen
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Zhiyu Bo
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Yang Yang
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, USA.
- Biomolecular Science and Engineering (BMSE) Program, University of California Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
28
|
Lauko A, Pellock SJ, Anischanka I, Sumida KH, Juergens D, Ahern W, Shida A, Hunt A, Kalvet I, Norn C, Humphreys IR, Jamieson C, Kang A, Brackenbrough E, Bera AK, Sankaran B, Houk KN, Baker D. Computational design of serine hydrolases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610411. [PMID: 39257749 PMCID: PMC11384011 DOI: 10.1101/2024.08.29.610411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Enzymes that proceed through multistep reaction mechanisms often utilize complex, polar active sites positioned with sub-angstrom precision to mediate distinct chemical steps, which makes their de novo construction extremely challenging. We sought to overcome this challenge using the classic catalytic triad and oxyanion hole of serine hydrolases as a model system. We used RFdiffusion1 to generate proteins housing catalytic sites of increasing complexity and varying geometry, and a newly developed ensemble generation method called ChemNet to assess active site geometry and preorganization at each step of the reaction. Experimental characterization revealed novel serine hydrolases that catalyze ester hydrolysis with catalytic efficiencies (k cat /K m ) up to 3.8 x 103 M-1 s-1, closely match the design models (Cα RMSDs < 1 Å), and have folds distinct from natural serine hydrolases. In silico selection of designs based on active site preorganization across the reaction coordinate considerably increased success rates, enabling identification of new catalysts in screens of as few as 20 designs. Our de novo buildup approach provides insight into the geometric determinants of catalysis that complements what can be obtained from structural and mutational studies of native enzymes (in which catalytic group geometry and active site makeup cannot be so systematically varied), and provides a roadmap for the design of industrially relevant serine hydrolases and, more generally, for designing complex enzymes that catalyze multi-step transformations.
Collapse
Affiliation(s)
- Anna Lauko
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA, USA
- These authors contributed equally: Anna Lauko, Samuel J. Pellock
| | - Samuel J Pellock
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- These authors contributed equally: Anna Lauko, Samuel J. Pellock
| | - Ivan Anischanka
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Kiera H Sumida
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - David Juergens
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Molecular Engineering, University of Washington, Seattle, WA, USA
| | - Woody Ahern
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Alex Shida
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Andrew Hunt
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Indrek Kalvet
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Christoffer Norn
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Ian R Humphreys
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Cooper Jamieson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Alex Kang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Evans Brackenbrough
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Asim K Bera
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Banumathi Sankaran
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
29
|
Koch NG, Budisa N. Evolution of Pyrrolysyl-tRNA Synthetase: From Methanogenesis to Genetic Code Expansion. Chem Rev 2024; 124:9580-9608. [PMID: 38953775 PMCID: PMC11363022 DOI: 10.1021/acs.chemrev.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Over 20 years ago, the pyrrolysine encoding translation system was discovered in specific archaea. Our Review provides an overview of how the once obscure pyrrolysyl-tRNA synthetase (PylRS) tRNA pair, originally responsible for accurately translating enzymes crucial in methanogenic metabolic pathways, laid the foundation for the burgeoning field of genetic code expansion. Our primary focus is the discussion of how to successfully engineer the PylRS to recognize new substrates and exhibit higher in vivo activity. We have compiled a comprehensive list of ncAAs incorporable with the PylRS system. Additionally, we also summarize recent successful applications of the PylRS system in creating innovative therapeutic solutions, such as new antibody-drug conjugates, advancements in vaccine modalities, and the potential production of new antimicrobials.
Collapse
Affiliation(s)
- Nikolaj G. Koch
- Department
of Chemistry, Institute of Physical Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Nediljko Budisa
- Biocatalysis
Group, Institute of Chemistry, Technische
Universität Berlin, 10623 Berlin, Germany
- Chemical
Synthetic Biology Chair, Department of Chemistry, University of Manitoba, Winnipeg MB R3T 2N2, Canada
| |
Collapse
|
30
|
Zhou J, Huang M. Navigating the landscape of enzyme design: from molecular simulations to machine learning. Chem Soc Rev 2024; 53:8202-8239. [PMID: 38990263 DOI: 10.1039/d4cs00196f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Global environmental issues and sustainable development call for new technologies for fine chemical synthesis and waste valorization. Biocatalysis has attracted great attention as the alternative to the traditional organic synthesis. However, it is challenging to navigate the vast sequence space to identify those proteins with admirable biocatalytic functions. The recent development of deep-learning based structure prediction methods such as AlphaFold2 reinforced by different computational simulations or multiscale calculations has largely expanded the 3D structure databases and enabled structure-based design. While structure-based approaches shed light on site-specific enzyme engineering, they are not suitable for large-scale screening of potential biocatalysts. Effective utilization of big data using machine learning techniques opens up a new era for accelerated predictions. Here, we review the approaches and applications of structure-based and machine-learning guided enzyme design. We also provide our view on the challenges and perspectives on effectively employing enzyme design approaches integrating traditional molecular simulations and machine learning, and the importance of database construction and algorithm development in attaining predictive ML models to explore the sequence fitness landscape for the design of admirable biocatalysts.
Collapse
Affiliation(s)
- Jiahui Zhou
- School of Chemistry and Chemical Engineering, Queen's University, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, UK.
| | - Meilan Huang
- School of Chemistry and Chemical Engineering, Queen's University, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, UK.
| |
Collapse
|
31
|
Zhu Z, Hu Q, Fu Y, Tong Y, Zhou Z. Design and Evolution of an Enzyme for the Asymmetric Michael Addition of Cyclic Ketones to Nitroolefins by Enamine Catalysis. Angew Chem Int Ed Engl 2024; 63:e202404312. [PMID: 38783596 DOI: 10.1002/anie.202404312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/01/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Consistent introduction of novel enzymes is required for developing efficient biocatalysts for challenging biotransformations. Absorbing catalytic modes from organocatalysis may be fruitful for designing new-to-nature enzymes with novel functions. Herein we report a newly designed artificial enzyme harboring a catalytic pyrrolidine residue that catalyzes the asymmetric Michael addition of cyclic ketones to nitroolefins through enamine activation with high efficiency. Diverse chiral γ-nitro cyclic ketones with two stereocenters were efficiently prepared with excellent stereoselectivity (up to 97 % e.e., >20 : 1 d.r.) and good yield (up to 86 %). This work provides an efficient biocatalytic strategy for cyclic ketone functionalization, and highlights the usefulness of artificial enzymes for extending biocatalysis to further non-natural reactions.
Collapse
Affiliation(s)
- Zhixi Zhu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Qinru Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yi Fu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yingjia Tong
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zhi Zhou
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
32
|
Morita I, Ward TR. Recent advances in the design and optimization of artificial metalloenzymes. Curr Opin Chem Biol 2024; 81:102508. [PMID: 39098211 DOI: 10.1016/j.cbpa.2024.102508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/27/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024]
Abstract
Embedding a catalytically competent transition metal into a protein scaffold affords an artificial metalloenzyme (ArM). Such hybrid catalysts display features that are reminiscent of both homogeneous and enzymatic catalysts. Pioneered by Whitesides and Kaiser in the late 1970s, this field of ArMs has expanded over the past two decades, marked by ever-increasing diversity in reaction types, cofactors, and protein scaffolds. Recent noteworthy developments include i) the use of earth-abundant metal cofactors, ii) concurrent cascade reactions, iii) synergistic catalysis, and iv) in vivo catalysis. Thanks to significant progress in computational protein design, ArMs based on de novo-designed proteins and tailored chimeric proteins promise a bright future for this exciting field.
Collapse
Affiliation(s)
- Iori Morita
- Department of Chemistry, University of Basel, Basel CH-4058, Switzerland
| | - Thomas R Ward
- Department of Chemistry, University of Basel, Basel CH-4058, Switzerland.
| |
Collapse
|
33
|
Das D, Ainavarapu SRK. Protein engineering using circular permutation - structure, function, stability, and applications. FEBS J 2024; 291:3581-3596. [PMID: 38676939 DOI: 10.1111/febs.17146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/13/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024]
Abstract
Protein engineering is important for creating novel variants from natural proteins, enabling a wide range of applications. Approaches such as rational design and directed evolution are routinely used to make new protein variants. Computational tools like de novo design can introduce new protein folds. Expanding the amino acid repertoire to include unnatural amino acids with non-canonical side chains in vitro by native chemical ligation and in vivo via codon expansion methods broadens sequence and structural possibilities. Circular permutation (CP) is an invaluable approach to redesigning a protein by rearranging the amino acid sequence, where the connectivity of the secondary structural elements is altered without changing the overall structure of the protein. Artificial CP proteins (CPs) are employed in various applications such as biocatalysis, sensing of small molecules by fluorescence, genome editing, ligand-binding protein switches, and optogenetic engineering. Many studies have shown that CP can lead to either reduced or enhanced stability or catalytic efficiency. The effects of CP on a protein's energy landscape cannot be predicted a priori. Thus, it is important to understand how CP can affect the thermodynamic and kinetic stability of a protein. In this review, we discuss the discovery and advancement of techniques to create protein CP, and existing reviews on CP. We delve into the plethora of biological applications for designed CP proteins. We subsequently discuss the experimental and computational reports on the effects of CP on the thermodynamic and kinetic stabilities of proteins of various topologies. An understanding of the various aspects of CP will allow the reader to design robust CP proteins for their specific purposes.
Collapse
Affiliation(s)
- Debanjana Das
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | | |
Collapse
|
34
|
Wang X, Xu K, Zeng X, Linghu K, Zhao B, Yu S, Wang K, Yu S, Zhao X, Zeng W, Wang K, Zhou J. Machine learning-assisted substrate binding pocket engineering based on structural information. Brief Bioinform 2024; 25:bbae381. [PMID: 39101501 PMCID: PMC11299021 DOI: 10.1093/bib/bbae381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/25/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024] Open
Abstract
Engineering enzyme-substrate binding pockets is the most efficient approach for modifying catalytic activity, but is limited if the substrate binding sites are indistinct. Here, we developed a 3D convolutional neural network for predicting protein-ligand binding sites. The network was integrated by DenseNet, UNet, and self-attention for extracting features and recovering sample size. We attempted to enlarge the dataset by data augmentation, and the model achieved success rates of 48.4%, 35.5%, and 43.6% at a precision of ≥50% and 52%, 47.6%, and 58.1%. The distance of predicted and real center is ≤4 Å, which is based on SC6K, COACH420, and BU48 validation datasets. The substrate binding sites of Klebsiella variicola acid phosphatase (KvAP) and Bacillus anthracis proline 4-hydroxylase (BaP4H) were predicted using DUnet, showing high competitive performance of 53.8% and 56% of the predicted binding sites that critically affected the catalysis of KvAP and BaP4H. Virtual saturation mutagenesis was applied based on the predicted binding sites of KvAP, and the top-ranked 10 single mutations contributed to stronger enzyme-substrate binding varied while the predicted sites were different. The advantage of DUnet for predicting key residues responsible for enzyme activity further promoted the success rate of virtual mutagenesis. This study highlighted the significance of correctly predicting key binding sites for enzyme engineering.
Collapse
Affiliation(s)
- Xinglong Wang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Kangjie Xu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xuan Zeng
- Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), School of Internet of Things Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Kai Linghu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Beichen Zhao
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shangyang Yu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Kun Wang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shuyao Yu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xinyi Zhao
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Kai Wang
- Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), School of Internet of Things Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
35
|
Huang H, Yan T, Liu C, Lu Y, Wu Z, Wang X, Wang J. Genetically encoded Nδ-vinyl histidine for the evolution of enzyme catalytic center. Nat Commun 2024; 15:5714. [PMID: 38977701 PMCID: PMC11231154 DOI: 10.1038/s41467-024-50005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024] Open
Abstract
Genetic code expansion has emerged as a powerful tool for precisely introducing unnatural chemical structures into proteins to improve their catalytic functions. Given the high catalytic propensity of histidine in the enzyme pocket, increasing the chemical diversity of catalytic histidine could result in new characteristics of biocatalysts. Herein, we report the genetically encoded Nδ-Vinyl Histidine (δVin-H) and achieve the wild-type-like incorporation efficiency by the evolution of pyrrolysyl tRNA synthetase. As histidine usually acts as the nucleophile or the metal ligand in the catalytic center, we replace these two types of catalytic histidine to δVin-H to improve the performance of the histidine-involved catalytic center. Additionally, we further demonstrate the improvements of the hydrolysis activity of a previously reported organocatalytic esterase (the OE1.3 variant) in the acidic condition and myoglobin (Mb) catalyzed carbene transfer reactions under the aerobic condition. As histidine is one of the most frequently used residues in the enzyme catalytic center, the derivatization of the catalytic histidine by δVin-H holds a great potential to promote the performance of biocatalysts.
Collapse
Affiliation(s)
- Haoran Huang
- Department of Chemistry, Research Center for Chemical Biology and Omics Analysis, College of Science, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Tao Yan
- Department of Chemistry, Research Center for Chemical Biology and Omics Analysis, College of Science, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chang Liu
- Department of Chemistry, Research Center for Chemical Biology and Omics Analysis, College of Science, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuxiang Lu
- Department of Chemistry, Research Center for Chemical Biology and Omics Analysis, College of Science, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhigang Wu
- Department of Chemistry, Research Center for Chemical Biology and Omics Analysis, College of Science, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xingchu Wang
- Department of Chemistry, Research Center for Chemical Biology and Omics Analysis, College of Science, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jie Wang
- Department of Chemistry, Research Center for Chemical Biology and Omics Analysis, College of Science, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
36
|
Wardman JF, Withers SG. Carbohydrate-active enzyme (CAZyme) discovery and engineering via (Ultra)high-throughput screening. RSC Chem Biol 2024; 5:595-616. [PMID: 38966674 PMCID: PMC11221537 DOI: 10.1039/d4cb00024b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/16/2024] [Indexed: 07/06/2024] Open
Abstract
Carbohydrate-active enzymes (CAZymes) constitute a diverse set of enzymes that catalyze the assembly, degradation, and modification of carbohydrates. These enzymes have been fashioned into potent, selective catalysts by millennia of evolution, and yet are also highly adaptable and readily evolved in the laboratory. To identify and engineer CAZymes for different purposes, (ultra)high-throughput screening campaigns have been frequently utilized with great success. This review provides an overview of the different approaches taken in screening for CAZymes and how mechanistic understandings of CAZymes can enable new approaches to screening. Within, we also cover how cutting-edge techniques such as microfluidics, advances in computational approaches and synthetic biology, as well as novel assay designs are leading the field towards more informative and effective screening approaches.
Collapse
Affiliation(s)
- Jacob F Wardman
- Department of Biochemistry and Molecular Biology, University of British Columbia Vancouver BC V6T 1Z3 Canada
- Michael Smith Laboratories, University of British Columbia Vancouver BC V6T 1Z4 Canada
| | - Stephen G Withers
- Department of Biochemistry and Molecular Biology, University of British Columbia Vancouver BC V6T 1Z3 Canada
- Michael Smith Laboratories, University of British Columbia Vancouver BC V6T 1Z4 Canada
- Department of Chemistry, University of British Columbia Vancouver BC V6T 1Z1 Canada
| |
Collapse
|
37
|
Guan A, He Z, Wang X, Jia ZJ, Qin J. Engineering the next-generation synthetic cell factory driven by protein engineering. Biotechnol Adv 2024; 73:108366. [PMID: 38663492 DOI: 10.1016/j.biotechadv.2024.108366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/21/2024] [Accepted: 04/22/2024] [Indexed: 05/09/2024]
Abstract
Synthetic cell factory offers substantial advantages in economically efficient production of biofuels, chemicals, and pharmaceutical compounds. However, to create a high-performance synthetic cell factory, precise regulation of cellular material and energy flux is essential. In this context, protein components including enzymes, transcription factor-based biosensors and transporters play pivotal roles. Protein engineering aims to create novel protein variants with desired properties by modifying or designing protein sequences. This review focuses on summarizing the latest advancements of protein engineering in optimizing various aspects of synthetic cell factory, including: enhancing enzyme activity to eliminate production bottlenecks, altering enzyme selectivity to steer metabolic pathways towards desired products, modifying enzyme promiscuity to explore innovative routes, and improving the efficiency of transporters. Furthermore, the utilization of protein engineering to modify protein-based biosensors accelerates evolutionary process and optimizes the regulation of metabolic pathways. The remaining challenges and future opportunities in this field are also discussed.
Collapse
Affiliation(s)
- Ailin Guan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zixi He
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xin Wang
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhi-Jun Jia
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jiufu Qin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
38
|
Rivoire O. A role for conformational changes in enzyme catalysis. Biophys J 2024; 123:1563-1578. [PMID: 38704639 PMCID: PMC11213973 DOI: 10.1016/j.bpj.2024.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/15/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
The role played by conformational changes in enzyme catalysis is controversial. In addition to examining specific enzymes, studying formal models can help identify the conditions under which conformational changes promote catalysis. Here, we present a model demonstrating how conformational changes can break a generic trade-off due to the conflicting requirements of successive steps in catalytic cycles, namely high specificity for the transition state to accelerate the chemical transformation and low affinity for the products to favor their release. The mechanism by which the trade-off is broken is a transition between conformations with different affinities for the substrate. The role of the effector that induces the transition is played by a substrate "handle," a part of the substrate that is not chemically transformed but whose interaction with the enzyme is nevertheless essential to rapidly complete the catalytic cycle. A key element of the model is the formalization of the constraints causing the trade-off that the presence of multiple states breaks, which we attribute to the strong chemical similarity between successive reaction states-substrates, transition states, and products. For the sake of clarity, we present our model for irreversible one-step unimolecular reactions. In this context, we demonstrate how the different forms that chemical similarities between reaction states can take impose limits on the overall catalytic turnover. We first analyze catalysts without internal degrees of freedom and then show how two-state catalysts can overcome their limitations. Our results recapitulate previous proposals concerning the role of conformational changes and substrate handles in a formalism that makes explicit the constraints that elicit these features. In addition, our approach establishes links with studies in the field of heterogeneous catalysis, where the same trade-offs are observed and where overcoming them is a well-recognized challenge.
Collapse
|
39
|
Stachelska-Wierzchowska A, Wierzchowski J. Chemo-Enzymatic Generation of Highly Fluorescent Nucleoside Analogs Using Purine-Nucleoside Phosphorylase. Biomolecules 2024; 14:701. [PMID: 38927104 PMCID: PMC11201700 DOI: 10.3390/biom14060701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Chemo-enzymatic syntheses of strongly fluorescent nucleoside analogs, potentially applicable in analytical biochemistry and cell biology are reviewed. The syntheses and properties of fluorescent ribofuranosides of several purine, 8-azapurine, and etheno-purine derivatives, obtained using various types of purine nucleoside phosphorylase (PNP) as catalysts, as well as α-ribose-1-phosphate (r1P) as a second substrate, are described. In several instances, the ribosylation sites are different to the canonical purine N9. Some of the obtained ribosides show fluorescence yields close to 100%. Possible applications of the new analogs include assays of PNP, nucleoside hydrolases, and other enzyme activities both in vitro and within living cells using fluorescence microscopy.
Collapse
Affiliation(s)
| | - Jacek Wierzchowski
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| |
Collapse
|
40
|
Chaturvedi SS, Vargas S, Ajmera P, Alexandrova AN. Directed Evolution of Protoglobin Optimizes the Enzyme Electric Field. J Am Chem Soc 2024. [PMID: 38848547 DOI: 10.1021/jacs.4c03914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
To unravel why computational design fails in creating viable enzymes, while directed evolution (DE) succeeds, our research delves into the laboratory evolution of protoglobin. DE has adapted this protein to efficiently catalyze carbene transfer reactions. We show that the previously proposed enhanced substrate access and binding alone cannot account for increased yields during DE. The 3D electric field in the entire active site is tracked through protein dynamics, clustered using the affinity propagation algorithm, and subjected to principal component analysis. This analysis reveals notable changes in the electric field with DE, where distinct field topologies influence transition state energetics and mechanism. A chemically meaningful field component emerges and takes the lead during DE and facilitates crossing the barrier to carbene transfer. Our findings underscore intrinsic electric field dynamic's influence on enzyme function, the ability of the field to switch mechanisms within the same protein, and the crucial role of the field in enzyme design.
Collapse
Affiliation(s)
- Shobhit S Chaturvedi
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Santiago Vargas
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Pujan Ajmera
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
41
|
Chen B, Li R, Feng J, Zhao B, Zhang J, Yu J, Xu Y, Xing Z, Zhao Y, Wang B, Huang X. Modular Access to Chiral Amines via Imine Reductase-Based Photoenzymatic Catalysis. J Am Chem Soc 2024; 146:14278-14286. [PMID: 38727720 DOI: 10.1021/jacs.4c03879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The development of catalysts serves as the cornerstone of innovation in synthesis, as exemplified by the recent discovery of photoenzymes. However, the repertoire of naturally occurring enzymes repurposed by direct light excitation to catalyze new-to-nature photobiotransformations is currently limited to flavoproteins and keto-reductases. Herein, we shed light on imine reductases (IREDs) that catalyze the remote C(sp3)-C(sp3) bond formation, providing a previously elusive radical hydroalkylation of enamides for accessing chiral amines (45 examples with up to 99% enantiomeric excess). Beyond their natural function in catalyzing two-electron reductive amination reactions, upon direct visible-light excitation or in synergy with a synthetic photoredox catalyst, IREDs are repurposed to tune the non-natural photoinduced single-electron radical processes. By conducting wet mechanistic experiments and computational simulations, we unravel how engineered IREDs direct radical intermediates toward the productive and enantioselective pathway. This work represents a promising paradigm for harnessing nature's catalysts for new-to-nature asymmetric transformations that remain challenging through traditional chemocatalytic methods.
Collapse
Affiliation(s)
- Bin Chen
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Renjie Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jianqiang Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Beibei Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jiawei Zhang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jinhai Yu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuanyuan Xu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhongqiu Xing
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaoqiang Huang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
42
|
Miller AH, Thompson SA, Blagova EV, Wilson KS, Grogan G, Duhme-Klair AK. Redox-reversible siderophore-based catalyst anchoring within cross-linked artificial metalloenzyme aggregates enables enantioselectivity switching. Chem Commun (Camb) 2024; 60:5490-5493. [PMID: 38699837 PMCID: PMC11107959 DOI: 10.1039/d4cc01158a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024]
Abstract
The immobilisation of artificial metalloenzymes (ArMs) holds promise for the implementation of new biocatalytic reactions. We present the synthesis of cross-linked artificial metalloenzyme aggregates (CLArMAs) with excellent recyclability, as an alternative to carrier-based immobilisation strategies. Furthermore, iron-siderophore supramolecular anchoring facilitates redox-triggered cofactor release, enabling CLArMAs to be recharged with alternative cofactors for diverse selectivity.
Collapse
Affiliation(s)
- Alex H Miller
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - Seán A Thompson
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Elena V Blagova
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Keith S Wilson
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Gideon Grogan
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Anne-K Duhme-Klair
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
43
|
Syrén PO. Ancestral terpene cyclases: From fundamental science to applications in biosynthesis. Methods Enzymol 2024; 699:311-341. [PMID: 38942509 DOI: 10.1016/bs.mie.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Terpenes constitute one of the largest family of natural products with potent applications as renewable platform chemicals and medicines. The low activity, selectivity and stability displayed by terpene biosynthetic machineries can constitute an obstacle towards achieving expedient biosynthesis of terpenoids in processes that adhere to the 12 principles of green chemistry. Accordingly, engineering of terpene synthase enzymes is a prerequisite for industrial biotechnology applications, but obstructed by their complex catalysis that depend on reactive carbocationic intermediates that are prone to undergo bifurcation mechanisms. Rational redesign of terpene synthases can be tedious and requires high-resolution structural information, which is not always available. Furthermore, it has proven difficult to link sequence space of terpene synthase enzymes to specific product profiles. Herein, the author shows how ancestral sequence reconstruction (ASR) can favorably be used as a protein engineering tool in the redesign of terpene synthases without the need of a structure, and without excessive screening. A detailed workflow of ASR is presented along with associated limitations, with a focus on applying this methodology on terpene synthases. From selected examples of both class I and II enzymes, the author advocates that ancestral terpene cyclases constitute valuable assets to shed light on terpene-synthase catalysis and in enabling accelerated biosynthesis.
Collapse
Affiliation(s)
- Per-Olof Syrén
- School of Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden; School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
44
|
Longwitz L, Leveson-Gower RB, Rozeboom HJ, Thunnissen AMWH, Roelfes G. Boron catalysis in a designer enzyme. Nature 2024; 629:824-829. [PMID: 38720081 DOI: 10.1038/s41586-024-07391-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/05/2024] [Indexed: 05/24/2024]
Abstract
Enzymes play an increasingly important role in improving the benignity and efficiency of chemical production, yet the diversity of their applications lags heavily behind chemical catalysts as a result of the relatively narrow range of reaction mechanisms of enzymes. The creation of enzymes containing non-biological functionalities facilitates reaction mechanisms outside nature's canon and paves the way towards fully programmable biocatalysis1-3. Here we present a completely genetically encoded boronic-acid-containing designer enzyme with organocatalytic reactivity not achievable with natural or engineered biocatalysts4,5. This boron enzyme catalyses the kinetic resolution of hydroxyketones by oxime formation, in which crucial interactions with the protein scaffold assist in the catalysis. A directed evolution campaign led to a variant with natural-enzyme-like enantioselectivities for several different substrates. The unique activation mode of the boron enzyme was confirmed using X-ray crystallography, high-resolution mass spectrometry (HRMS) and 11B NMR spectroscopy. Our study demonstrates that genetic-code expansion can be used to create evolvable enantioselective enzymes that rely on xenobiotic catalytic moieties such as boronic acids and access reaction mechanisms not reachable through catalytic promiscuity of natural or engineered enzymes.
Collapse
Affiliation(s)
- Lars Longwitz
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | | | - Henriëtte J Rozeboom
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Andy-Mark W H Thunnissen
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Gerard Roelfes
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
45
|
Jeon H, Han AR, Oh S, Park JG, Namkoong M, Bang KM, Kim HM, Kim NK, Hwang KY, Hur K, Lee BJ, Heo J, Kim S, Song HK, Cho H, Lee IG. Polymorphic Self-Assembly with Procedural Flexibility for Monodisperse Quaternary Protein Structures of DegQ Enzymes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308837. [PMID: 38351715 DOI: 10.1002/adma.202308837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/08/2024] [Indexed: 02/29/2024]
Abstract
As large molecular tertiary structures, some proteins can act as small robots that find, bind, and chaperone target protein clients, showing the potential to serve as smart building blocks in self-assembly fields. Instead of using such intrinsic functions, most self-assembly methodologies for proteins aim for de novo-designed structures with accurate geometric assemblies, which can limit procedural flexibility. Here, a strategy enabling polymorphic clustering of quaternary proteins, exhibiting simplicity and flexibility of self-assembling paths for proteins in forming monodisperse quaternary cage particles is presented. It is proposed that the enzyme protomer DegQ, previously solved at low resolution, may potentially be usable as a threefold symmetric building block, which can form polyhedral cages incorporated by the chaperone action of DegQ in the presence of protein clients. To obtain highly monodisperse cage particles, soft, and hence, less resistive client proteins, which can program the inherent chaperone activity of DegQ to efficient formations of polymorphic cages, depending on the size of clients are utilized. By reconstructing the atomic resolution cryogenic electron microscopy DegQ structures using obtained 12- and 24-meric clusters, the polymorphic clustering of DegQ enzymes is validated in terms of soft and rigid domains, which will provide effective routes for protein self-assemblies with procedural flexibility.
Collapse
Affiliation(s)
- Hanul Jeon
- Biomedical Research Division, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Department of Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Ah-Reum Han
- Center for Biomolecular and Cellular Structure, Life Science Cluster, Institute for Basic Science (IBS), 55, Expo-ro, Daejeon, 34126, Republic of Korea
| | - Sangmin Oh
- Extreme Materials Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Jin-Gyeong Park
- Biomedical Research Division, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Department of Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Myeong Namkoong
- Extreme Materials Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Kyeong-Mi Bang
- Advanced Analysis Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Department of Life Science, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Ho Min Kim
- Center for Biomolecular and Cellular Structure, Life Science Cluster, Institute for Basic Science (IBS), 55, Expo-ro, Daejeon, 34126, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Daejeon, 34126, Republic of Korea
| | - Nak-Kyoon Kim
- Advanced Analysis Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Kwang Yeon Hwang
- Department of Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Kahyun Hur
- Extreme Materials Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Bong-Jin Lee
- The Research Institute of Pharmaceutical Science, Seoul National University, 599, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- College of Pharmacy, Ajou University, 206, Worldcup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea
| | - Jeongyun Heo
- Biomedical Research Division, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Sehoon Kim
- Biomedical Research Division, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Hyun Kyu Song
- Department of Life Science, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Hyesung Cho
- Extreme Materials Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - In-Gyun Lee
- Biomedical Research Division, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| |
Collapse
|
46
|
Orsi E, Schada von Borzyskowski L, Noack S, Nikel PI, Lindner SN. Automated in vivo enzyme engineering accelerates biocatalyst optimization. Nat Commun 2024; 15:3447. [PMID: 38658554 PMCID: PMC11043082 DOI: 10.1038/s41467-024-46574-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/04/2024] [Indexed: 04/26/2024] Open
Abstract
Achieving cost-competitive bio-based processes requires development of stable and selective biocatalysts. Their realization through in vitro enzyme characterization and engineering is mostly low throughput and labor-intensive. Therefore, strategies for increasing throughput while diminishing manual labor are gaining momentum, such as in vivo screening and evolution campaigns. Computational tools like machine learning further support enzyme engineering efforts by widening the explorable design space. Here, we propose an integrated solution to enzyme engineering challenges whereby ML-guided, automated workflows (including library generation, implementation of hypermutation systems, adapted laboratory evolution, and in vivo growth-coupled selection) could be realized to accelerate pipelines towards superior biocatalysts.
Collapse
Affiliation(s)
- Enrico Orsi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | | | - Stephan Noack
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Steffen N Lindner
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany.
- Department of Biochemistry, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, 10117, Berlin, Germany.
| |
Collapse
|
47
|
Nguyen TN, Ingle C, Thompson S, Reynolds KA. The genetic landscape of a metabolic interaction. Nat Commun 2024; 15:3351. [PMID: 38637543 PMCID: PMC11026382 DOI: 10.1038/s41467-024-47671-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/09/2024] [Indexed: 04/20/2024] Open
Abstract
While much prior work has explored the constraints on protein sequence and evolution induced by physical protein-protein interactions, the sequence-level constraints emerging from non-binding functional interactions in metabolism remain unclear. To quantify how variation in the activity of one enzyme constrains the biochemical parameters and sequence of another, we focus on dihydrofolate reductase (DHFR) and thymidylate synthase (TYMS), a pair of enzymes catalyzing consecutive reactions in folate metabolism. We use deep mutational scanning to quantify the growth rate effect of 2696 DHFR single mutations in 3 TYMS backgrounds under conditions selected to emphasize biochemical epistasis. Our data are well-described by a relatively simple enzyme velocity to growth rate model that quantifies how metabolic context tunes enzyme mutational tolerance. Together our results reveal the structural distribution of epistasis in a metabolic enzyme and establish a foundation for the design of multi-enzyme systems.
Collapse
Affiliation(s)
- Thuy N Nguyen
- The Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- The Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- The Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Form Bio, Dallas, TX, 75226, USA
| | - Christine Ingle
- The Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- The Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- The Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Samuel Thompson
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, 94158, USA
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Kimberly A Reynolds
- The Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- The Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- The Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
48
|
Hansen AL, Theisen FF, Crehuet R, Marcos E, Aghajari N, Willemoës M. Carving out a Glycoside Hydrolase Active Site for Incorporation into a New Protein Scaffold Using Deep Network Hallucination. ACS Synth Biol 2024; 13:862-875. [PMID: 38357862 PMCID: PMC10949244 DOI: 10.1021/acssynbio.3c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/16/2024]
Abstract
Enzymes are indispensable biocatalysts for numerous industrial applications, yet stability, selectivity, and restricted substrate recognition present limitations for their use. Despite the importance of enzyme engineering in overcoming these limitations, success is often challenged by the intricate architecture of enzymes derived from natural sources. Recent advances in computational methods have enabled the de novo design of simplified scaffolds with specific functional sites. Such scaffolds may be advantageous as platforms for enzyme engineering. Here, we present a strategy for the de novo design of a simplified scaffold of an endo-α-N-acetylgalactosaminidase active site, a glycoside hydrolase from the GH101 enzyme family. Using a combination of trRosetta hallucination, iterative cycles of deep-learning-based structure prediction, and ProteinMPNN sequence design, we designed proteins with 290 amino acids incorporating the active site while reducing the molecular weight by over 100 kDa compared to the initial endo-α-N-acetylgalactosaminidase. Of 11 tested designs, six were expressed as soluble monomers, displaying similar or increased thermostabilities compared to the natural enzyme. Despite lacking detectable enzymatic activity, the experimentally determined crystal structures of a representative design closely matched the design with a root-mean-square deviation of 1.0 Å, with most catalytically important side chains within 2.0 Å. The results highlight the potential of scaffold hallucination in designing proteins that may serve as a foundation for subsequent enzyme engineering.
Collapse
Affiliation(s)
- Anders Lønstrup Hansen
- The
Linderstrøm-Lang Centre for Protein Science, Section for Biomolecular
Sciences, Department of Biology, University
of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Frederik Friis Theisen
- The
Linderstrøm-Lang Centre for Protein Science, Section for Biomolecular
Sciences, Department of Biology, University
of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Ramon Crehuet
- Institute
for Advanced Chemistry of Catalonia (IQAC), CSIC, Carrer Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Enrique Marcos
- Protein
Design and Modeling Lab, Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB), CSIC, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Nushin Aghajari
- Molecular
Microbiology and Structural Biochemistry, CNRS, University of Lyon1, UMR5086, 7 Passage du Vercors, F-69367 Lyon CEDEX 07, France
| | - Martin Willemoës
- The
Linderstrøm-Lang Centre for Protein Science, Section for Biomolecular
Sciences, Department of Biology, University
of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| |
Collapse
|
49
|
Lin P, Zhang B, Yang H, Yang S, Xue P, Chen Y, Yu S, Zhang J, Zhang Y, Chen L, Fan C, Li F, Ling D. An artificial protein modulator reprogramming neuronal protein functions. Nat Commun 2024; 15:2039. [PMID: 38448420 PMCID: PMC10917760 DOI: 10.1038/s41467-024-46308-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/14/2024] [Indexed: 03/08/2024] Open
Abstract
Reversible protein phosphorylation, regulated by protein phosphatases, fine-tunes target protein function and plays a vital role in biological processes. Dysregulation of this process leads to aberrant post-translational modifications (PTMs) and contributes to disease development. Despite the widespread use of artificial catalysts as enzyme mimetics, their direct modulation of proteins remains largely unexplored. To address this gap and enable the reversal of aberrant PTMs for disease therapy, we present the development of artificial protein modulators (APROMs). Through atomic-level engineering of heterogeneous catalysts with asymmetric catalytic centers, these modulators bear structural similarities to protein phosphatases and exhibit remarkable ability to destabilize the bridging μ3-hydroxide. This activation of catalytic centers enables spontaneous hydrolysis of phospho-substrates, providing precise control over PTMs. Notably, APROMs, with protein phosphatase-like characteristics, catalytically reprogram the biological function of α-synuclein by directly hydrolyzing hyperphosphorylated α-synuclein. Consequently, synaptic function is reinforced in Parkinson's disease. Our findings offer a promising avenue for reprogramming protein function through de novo PTMs strategy.
Collapse
Affiliation(s)
- Peihua Lin
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai, 201210, China
| | - Hongli Yang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shengfei Yang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Pengpeng Xue
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ying Chen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shiyi Yu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jichao Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Yixiao Zhang
- In-situ Center for Physical Sciences, School of Chemistry and Chemical Engineering, Shanghai Electrochemical Energy Device Research Center (SEED), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liwei Chen
- In-situ Center for Physical Sciences, School of Chemistry and Chemical Engineering, Shanghai Electrochemical Energy Device Research Center (SEED), Shanghai Jiao Tong University, Shanghai, 200240, China
- Future Battery Research Center, Global Institute of Future Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunhai Fan
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Songjiang Research Institute, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China.
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, China.
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China.
- World Laureates Association (WLA) Laboratories, Shanghai, 201210, China.
| |
Collapse
|
50
|
Hutton AE, Foster J, Crawshaw R, Hardy FJ, Johannissen LO, Lister TM, Gérard EF, Birch-Price Z, Obexer R, Hay S, Green AP. A non-canonical nucleophile unlocks a new mechanistic pathway in a designed enzyme. Nat Commun 2024; 15:1956. [PMID: 38438341 PMCID: PMC10912507 DOI: 10.1038/s41467-024-46123-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/09/2024] [Indexed: 03/06/2024] Open
Abstract
Directed evolution of computationally designed enzymes has provided new insights into the emergence of sophisticated catalytic sites in proteins. In this regard, we have recently shown that a histidine nucleophile and a flexible arginine can work in synergy to accelerate the Morita-Baylis-Hillman (MBH) reaction with unrivalled efficiency. Here, we show that replacing the catalytic histidine with a non-canonical Nδ-methylhistidine (MeHis23) nucleophile leads to a substantially altered evolutionary outcome in which the catalytic Arg124 has been abandoned. Instead, Glu26 has emerged, which mediates a rate-limiting proton transfer step to deliver an enzyme (BHMeHis1.8) that is more than an order of magnitude more active than our earlier MBHase. Interestingly, although MeHis23 to His substitution in BHMeHis1.8 reduces activity by 4-fold, the resulting His containing variant is still a potent MBH biocatalyst. However, analysis of the BHMeHis1.8 evolutionary trajectory reveals that the MeHis nucleophile was crucial in the early stages of engineering to unlock the new mechanistic pathway. This study demonstrates how even subtle perturbations to key catalytic elements of designed enzymes can lead to vastly different evolutionary outcomes, resulting in new mechanistic solutions to complex chemical transformations.
Collapse
Affiliation(s)
- Amy E Hutton
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK
| | - Jake Foster
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK
| | - Rebecca Crawshaw
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK
| | - Florence J Hardy
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK
| | - Linus O Johannissen
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK
| | - Thomas M Lister
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK
| | - Emilie F Gérard
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK
| | - Zachary Birch-Price
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK
| | - Richard Obexer
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK
| | - Sam Hay
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK
| | - Anthony P Green
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK.
| |
Collapse
|