1
|
Cheng B, Li H, Peng X, Chen J, Shao C, Kong Z. Recent advances in developing targeted protein degraders. Eur J Med Chem 2024; 284:117212. [PMID: 39736199 DOI: 10.1016/j.ejmech.2024.117212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/01/2025]
Abstract
Targeted protein degradation (TPD) represents a promising therapeutic approach, encompassing several innovative strategies, including but not limited to proteolysis targeting chimeras (PROTACs), molecular glues, hydrophobic tag tethering degraders (HyTTD), and lysosome-targeted chimeras (LYTACs). Central to TPD are small molecule ligands, which play a critical role in mediating the degradation of target proteins. This review summarizes the current landscape of small molecule ligands for TPD molecules. These small molecule ligands can utilize the proteasome, lysosome, autophagy, or hydrophobic-tagging system to achieve the degradation of target proteins. The article mainly focuses on introducing their design principles, application advantages, and potential limitations. A brief discussion on the development prospects and future directions of TPD technology was also provided.
Collapse
Affiliation(s)
- Binbin Cheng
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University, Huangshi, 435003, China; Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang, 323000, China
| | - Hongqiao Li
- The Central Hospital of Huangshi, Huangshi, 435000, China
| | - Xiaopeng Peng
- College of Pharmacy, Gannan Medical University, Ganzhou, 314000, China.
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chuxiao Shao
- Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang, 323000, China.
| | - Zhihua Kong
- Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, FoShan, 528200, China.
| |
Collapse
|
2
|
London N. Covalent Proximity Inducers. Chem Rev 2024. [PMID: 39692621 DOI: 10.1021/acs.chemrev.4c00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Molecules that are able to induce proximity between two proteins are finding ever increasing applications in chemical biology and drug discovery. The ability to introduce an electrophile and make such proximity inducers covalent can offer improved properties such as selectivity, potency, duration of action, and reduced molecular size. This concept has been heavily explored in the context of targeted degradation in particular for bivalent molecules, but recently, additional applications are reported in other contexts, as well as for monovalent molecular glues. This is a comprehensive review of reported covalent proximity inducers, aiming to identify common trends and current gaps in their discovery and application.
Collapse
Affiliation(s)
- Nir London
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
3
|
Rodríguez-Gimeno A, Galdeano C. Drug Discovery Approaches to Target E3 Ligases. Chembiochem 2024:e202400656. [PMID: 39686906 DOI: 10.1002/cbic.202400656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/31/2024] [Indexed: 12/18/2024]
Abstract
Targeting E3 ligases is a challenging area in drug discovery. Despite the human genome encoding for more than 600 E3 ubiquitin ligases, only a handful of E3 ligases have been pharmacologically modulated or exploited for targeted protein degradation (TPD) strategies. The main obstacle for hijacking these E3 ligases is the lack of small-molecule ligands. As research into this field advances, the identification of new small molecules capable of binding to E3 ligases has become an essential pursuit. These ligases not only expand the repertoire of druggable targets but also offer the potential for increased specificity and selectivity in protein degradation. The synergy between academia and industry is key, as it combines academic expertise in fundamental research with the industrial capabilities of translating these findings into novel therapeutics. In this review, we provide an overview of the different strategies employed in academia and industry to the discovery of new E3 ligases ligands, showing them with illustrative cases.
Collapse
Affiliation(s)
- Alejandra Rodríguez-Gimeno
- Department de Farmacia I Tecnología Farmacèutica, I Fisicoquímica, Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
- Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
| | - Carles Galdeano
- Department de Farmacia I Tecnología Farmacèutica, I Fisicoquímica, Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
- Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
| |
Collapse
|
4
|
Zhou Y, Garrigues SL, Villemure E, Ishisoko N, Nguyen HQ, Hamidi NK, Vogt R, Wang Y, Blake RA, Rudolph J, Nilewski C. Heteroaryl Glutarimides and Dihydrouracils as Cereblon Ligand Scaffolds for Molecular Glue Degrader Discovery. ACS Med Chem Lett 2024; 15:2158-2163. [PMID: 39691515 PMCID: PMC11647720 DOI: 10.1021/acsmedchemlett.4c00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 12/19/2024] Open
Abstract
Stabilization of cereblon (CRBN)/neosubstrate complexes with molecular glues followed by degradation of those neosubstrates is an emerging strategy in drug discovery with compelling potential to target certain proteins that were previously considered to be undruggable. In this context, the discovery of novel CRBN ligands is an important area of ongoing research that holds promise to expand the scope of proteins that can be targeted through this mode of action. Herein, we describe the synthesis and evaluation of CRBN ligands featuring heteroaryl glutarimide and dihydrouracil scaffolds. We identified a subset of heteroaryl glutarimides exhibiting potent CRBN binding and increased chemical stability in cell culture media compared with traditional immunomodulatory drugs (IMiDs). This indicates that the scaffolds described herein could become useful starting points for the discovery of novel molecular glue degraders.
Collapse
Affiliation(s)
- Yuebiao Zhou
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Star L. Garrigues
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Elisia Villemure
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Noriko Ishisoko
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Huy Q. Nguyen
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Nikkia K. Hamidi
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Rebecca Vogt
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Yong Wang
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Robert A. Blake
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Joachim Rudolph
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Christian Nilewski
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
5
|
Hu Y, Yan Y, Wang J, Hou J, Lin Q. Molecular glue degrader for tumor treatment. Front Oncol 2024; 14:1512666. [PMID: 39759140 PMCID: PMC11697593 DOI: 10.3389/fonc.2024.1512666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/19/2024] [Indexed: 01/07/2025] Open
Abstract
Targeted Protein Degradation (TPD) represented by Proteolysis-Targeting Chimeras (PROTAC) is the frontier field in the research and development of antitumor therapy, in which oral drug HP518 Receives FDA Proceed Authorization for its IND Application for Prostate Cancer Treatment. Recently, molecular glue, functioning via degradation of the target protein is emerging as a promising modality for the development of therapeutic agents, while exhibits greater advantages over PROTAC, including improved efficiency, resistance-free properties, and the capacity to selectively target "undruggable" proteins. This marks a revolutionary advancement in the landscape of small molecule drugs. Given that molecular glue research is still in its early stage, we summarized the mechanisms of molecular glue, the promising drugs in clinical trials and diverse feasible design strategies for molecular glue therapeutics.
Collapse
Affiliation(s)
- Yuhan Hu
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Yan Yan
- Department of Infectious Diseases, Zhoukou Central Hospital, Zhoukou, China
| | - Jiehao Wang
- Department of Gastroenterology, Zhengzhou First People's Hospital, Zhengzhou, China
| | - Jiangxue Hou
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Quande Lin
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
6
|
Hassan MM, Li YD, Ma MW, Teng M, Byun WS, Puvar K, Lumpkin R, Sandoval B, Rutter JC, Jin CY, Wang MY, Xu S, Schmoker AM, Cheong H, Groendyke BJ, Qi J, Fischer ES, Ebert BL, Gray NS. Exploration of the tunability of BRD4 degradation by DCAF16 trans-labelling covalent glues. Eur J Med Chem 2024; 279:116904. [PMID: 39341093 DOI: 10.1016/j.ejmech.2024.116904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024]
Abstract
Chemically induced proximity modalities such as targeted protein degradation (TPD) hold promise for expanding the number of proteins that can be manipulated pharmacologically. However, current TPD strategies are often limited to proteins with preexisting ligands. Molecular glues (e.g. glutarimide ligands for CUL4CRBN), offer the potential to target undruggable proteins. Yet, their rational design is largely unattainable due to the unpredictability of the 'gain-of-function' nature of the glue interaction upon chemical modification of ligands. We recently reported a covalent trans-labelling glue mechanism which we named 'Template-assisted covalent modification', where an electrophile decorated BRD4 inhibitor was effectively delivered to a cysteine residue on DCAF16 due to an electrophile-induced BRD4-DCAF16 interaction. Herein, we report our efforts to evaluate how various electrophilic modifications to the BRD4 binder, JQ1, affect DCAF16 recruitment and subsequent BRD4 degradation efficiency. We discovered a moderate correlation between the electrophile-induced BRD4-DCAF16 ternary complex formation and BRD4 degradation. Moreover, we show that a more solvent-exposed warhead presentation optimally recruits DCAF16 and promotes BRD4 degradation. The diversity of covalent attachments in this class of BRD4 degraders suggests a high tolerance and tunability for the BRD4-DCAF16 interaction. This offers a new avenue for rational glue design by introducing covalent warheads to known binders.
Collapse
Affiliation(s)
- Muhammad Murtaza Hassan
- Department of Chemical and Systems Biology, ChEM-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, USA; SPARK Translational Research Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Yen-Der Li
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michelle W Ma
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Mingxing Teng
- Center for Drug Discovery, Department of Pathology & Immunology, and Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Woong Sub Byun
- Department of Chemical and Systems Biology, ChEM-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Kedar Puvar
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Ryan Lumpkin
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Brittany Sandoval
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Justine C Rutter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Cyrus Y Jin
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Michelle Y Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shawn Xu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Anna M Schmoker
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Hakyung Cheong
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Brian J Groendyke
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jun Qi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute, Boston, MA, USA.
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, ChEM-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
7
|
Li L, Huang Z, Huang Y, Li Y, Ma X, Li P, Du W, Wang H, Zhao Y, Zeng S, Peng Y, Zhang G. Pomalidomide sensitizes lung cancer cells to TRAIL/CDDP-induced apoptosis via directly targeting electron transfer flavoprotein alpha subunit. Bioorg Chem 2024; 153:107815. [PMID: 39265523 DOI: 10.1016/j.bioorg.2024.107815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
Immunomodulatory drugs (IMiDs) represented by thalidomide exhibit benefits when combined with other chemotherapeutic drugs for patients with lung cancer, which inspired the exploration of combining pomalidomide with another agent to treat lung cancer as it is more potent than thalidomide. However, the drugs that can be combined with pomalidomide to benefit patients and related mechanisms remain unclear. Here, we performed a proteomic analysis based on the streptavidin pull-down to identify the potential target of pomalidomide in non-small cell lung cancer (NSCLC). In this work, electron transfer flavoprotein alpha subunit (ETFA), an important enzyme involved in electron transport in the respiratory chains was identified as a crucial cellular target of pomalidomide in NCI-H460 cells. Using apoptosis model and combination analyses, we found that pomalidomide directly targeted ETFA, and increased ATP generation, thereby significantly promoting tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. Specific knockdown of ETFA could effectively eliminate the promoting effect of pomalidomide on energy production. Furthermore, respiratory chain inhibitors can effectively block cell apoptosis induced by TRAIL and pomalidomide. These results suggested that pomalidomide may promote apoptosis by facilitating energy production by targeting ETFA and thus enhanced the anticancer effects of chemotherapeutic drugs. It is noteworthy that pomalidomide noticeably increased the anticancer efficacy of cisplatin (CDDP) in NCI-H460 xenograft model with the main mechanisms by inducing apoptosis. Collectively, our data not only provide new insights into the anticancer mechanisms of pomalidomide but also reflect translational prospects of combining pomalidomide with CDDP for NSCLC treatment.
Collapse
MESH Headings
- Humans
- Apoptosis/drug effects
- Lung Neoplasms/drug therapy
- Lung Neoplasms/pathology
- Lung Neoplasms/metabolism
- Thalidomide/pharmacology
- Thalidomide/analogs & derivatives
- Thalidomide/chemistry
- TNF-Related Apoptosis-Inducing Ligand/pharmacology
- TNF-Related Apoptosis-Inducing Ligand/metabolism
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Dose-Response Relationship, Drug
- Cisplatin/pharmacology
- Animals
- Molecular Structure
- Drug Screening Assays, Antitumor
- Electron-Transferring Flavoproteins/metabolism
- Cell Proliferation/drug effects
- Structure-Activity Relationship
- Mice
- Cell Line, Tumor
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/metabolism
- Mice, Nude
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/metabolism
Collapse
Affiliation(s)
- Liangping Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; School of Pharmacy, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Zetian Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yuying Huang
- Department of Pediatrics, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, China
| | - Yongkun Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xuesong Ma
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Pingping Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Wenqing Du
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Hui Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yufei Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shulan Zeng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yan Peng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Guohai Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
8
|
Zhang R, Zheng Y, Xiang F, Zhou J. Inducing or enhancing protein-protein interaction to develop drugs: Molecular glues with various biological activity. Eur J Med Chem 2024; 277:116756. [PMID: 39191033 DOI: 10.1016/j.ejmech.2024.116756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/15/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024]
Abstract
Over the past two decades, molecular glues (MGs) have gradually attracted the attention of the pharmaceutical community with the advent of MG degraders such as IMiDs and indisulam. Such molecules degrade the target protein by promoting the interaction between the target protein and E3 ligase. In addition, as a chemical inducer, MGs promote the dimerization of homologous proteins and heterologous proteins to form ternary complexes, which have great prospects in regulating biological activities. This review focuses on the application of MGs in the field of drug development including protein-protein interaction (PPI) stability and protein degradation. We thoroughly analyze the structure of various MGs and the interactions between MGs and various biologically active molecules, thus providing new perspectives for the development of PPI stabilizers and new degraders.
Collapse
Affiliation(s)
- Rongyu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China
| | - Yirong Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China
| | - Fengjiao Xiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China.
| |
Collapse
|
9
|
Zhang SH, Zeng N, Xu JZ, Liu CQ, Xu MY, Sun JX, An Y, Zhong XY, Miao LT, Wang SG, Xia QD. Recent breakthroughs in innovative elements, multidimensional enhancements, derived technologies, and novel applications of PROTACs. Biomed Pharmacother 2024; 180:117584. [PMID: 39427546 DOI: 10.1016/j.biopha.2024.117584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024] Open
Abstract
Proteolysis Targeting Chimera (PROTAC) is an emerging and evolving technology based on targeted protein degradation (TPD). Small molecule PROTACs have shown great efficacy in degrading disease-specific proteins in preclinical and clinical studies, but also showed various limitations. In recent years, new technologies and advances in TPD have provided additional optimized strategies based on conventional PROTACs that can overcome the shortcomings of conventional PROTACs in terms of undruggable targets, bioavailability, tissue-specificity, spatiotemporal control, and degradation scope. In addition, some designs of special targeting chimeras and applications based on multidisciplinary science have shed light on novel therapeutic modalities and drug design. However, each improvement has its own advantages, disadvantages and application conditions. In this review, we summarize the exploration of PROTAC elements, depict a landscape of improvements and derived concepts of PROTACs, and expect to provide perspectives for technological innovations, combinations and applications in future targeting chimera design.
Collapse
Affiliation(s)
- Si-Han Zhang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Na Zeng
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Jin-Zhou Xu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Chen-Qian Liu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Meng-Yao Xu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Jian-Xuan Sun
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Ye An
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Xing-Yu Zhong
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Lin-Tao Miao
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Shao-Gang Wang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Qi-Dong Xia
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| |
Collapse
|
10
|
Seront E, Hermans C, Boon LM, Vikkula M. Targeted treatments for vascular malformations: current state of the art. J Thromb Haemost 2024; 22:2961-2975. [PMID: 39097232 DOI: 10.1016/j.jtha.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 08/05/2024]
Abstract
Vascular malformations, which arise from anomalies in angiogenesis, encompass capillary, lymphatic, venous, arteriovenous, and mixed malformations, each affecting specific vessel types. Historically, therapeutic options such as sclerotherapy and surgery have shown limited efficacy in complicated malformations. Most vascular malformations stem from hereditary or somatic mutations akin to oncogenic alterations, activating the PI3K-AKT-mTOR, RAS-MAPK-ERK, and G-protein coupled receptor pathways. Recognizing the parallels with oncogenic mutations, we emphasize the potential of targeted molecular inhibitors in the treatment of vascular malformations by repurposing anticancer drugs. This review delves into the recent development and future use of such agents for the management of slow- and fast-flow vascular malformations, including in more specific situations, such as prenatal treatment and the management of associated coagulopathies.
Collapse
Affiliation(s)
- Emmanuel Seront
- Center for Vascular Anomalies (a VASCERN VASCA European Reference Centre), Cliniques universitaires St Luc, University of Louvain, Brussels, Belgium. https://twitter.com/emmanuelseront
| | - Cedric Hermans
- Center for Vascular Anomalies (a VASCERN VASCA European Reference Centre), Cliniques universitaires St Luc, University of Louvain, Brussels, Belgium; Institut Roi Albert II, Division of Hematology, Cliniques universitaires Saint-Luc, University of Louvain, Brussels, Belgium. https://twitter.com/HermansCedric
| | - Laurence M Boon
- Center for Vascular Anomalies (a VASCERN VASCA European Reference Centre), Cliniques universitaires St Luc, University of Louvain, Brussels, Belgium; Division of Plastic Surgery, Cliniques universitaires Saint-Luc, University of Louvain, Brussels, Belgium. https://twitter.com/LaurenceBoon4
| | - Miikka Vikkula
- Center for Vascular Anomalies (a VASCERN VASCA European Reference Centre), Cliniques universitaires St Luc, University of Louvain, Brussels, Belgium; Deprtment of Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium; Walloon ExceLlence in Life Sciences and Biotechnology (WELBIO) and Walloon ExceLlence Research Institute (WEL Research Institute), Wavre, Belgium.
| |
Collapse
|
11
|
Winter GE. Extrapolating Lessons from Targeted Protein Degradation to Other Proximity-Inducing Drugs. ACS Chem Biol 2024; 19:2089-2102. [PMID: 39264973 PMCID: PMC11494510 DOI: 10.1021/acschembio.4c00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/14/2024]
Abstract
Targeted protein degradation (TPD) is an emerging pharmacologic strategy. It relies on small-molecule "degraders" that induce proximity of a component of an E3 ubiquitin ligase complex and a target protein to induce target ubiquitination and subsequent proteasomal degradation. Essentially, degraders thus expand the function of E3 ligases, allowing them to degrade proteins they would not recognize in the absence of the small molecule. Over the past decade, insights gained from identifying, designing, and characterizing various degraders have significantly enhanced our understanding of TPD mechanisms, precipitating in rational degrader discovery strategies. In this Account, I aim to explore how these insights can be extrapolated to anticipate both opportunities and challenges of utilizing the overarching concept of proximity-inducing pharmacology to manipulate other cellular circuits for the dissection of biological mechanisms and for therapeutic purposes.
Collapse
Affiliation(s)
- Georg E. Winter
- CeMM Research Center for
Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| |
Collapse
|
12
|
Seabrook LJ, Franco CN, Loy CA, Osman J, Fredlender C, Zimak J, Campos M, Nguyen ST, Watson RL, Levine SR, Khalil MF, Sumigray K, Trader DJ, Albrecht LV. Methylarginine targeting chimeras for lysosomal degradation of intracellular proteins. Nat Chem Biol 2024:10.1038/s41589-024-01741-y. [PMID: 39414979 DOI: 10.1038/s41589-024-01741-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 09/05/2024] [Indexed: 10/18/2024]
Abstract
A paradigm shift in drug development is the discovery of small molecules that harness the ubiquitin-proteasomal pathway to eliminate pathogenic proteins. Here we provide a modality for targeted protein degradation in lysosomes. We exploit an endogenous lysosomal pathway whereby protein arginine methyltransferases (PRMTs) initiate substrate degradation via arginine methylation. We developed a heterobifunctional small molecule, methylarginine targeting chimera (MrTAC), that recruits PRMT1 to a target protein for induced degradation in lysosomes. MrTAC compounds degraded substrates across cell lines, timescales and doses. MrTAC degradation required target protein methylation for subsequent lysosomal delivery via microautophagy. A library of MrTAC molecules exemplified the generality of MrTAC to degrade known targets and neo-substrates-glycogen synthase kinase 3β, MYC, bromodomain-containing protein 4 and histone deacetylase 6. MrTAC selectively degraded target proteins and drove biological loss-of-function phenotypes in survival, transcription and proliferation. Collectively, MrTAC demonstrates the utility of endogenous lysosomal proteolysis in the generation of a new class of small molecule degraders.
Collapse
Affiliation(s)
- Laurence J Seabrook
- Department of Developmental & Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, USA
| | - Carolina N Franco
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Cody A Loy
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Jaida Osman
- Department of Chemistry, School of Physical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Callie Fredlender
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Jan Zimak
- Center for Neurotherapeutics, University of California, Irvine, Irvine, CA, USA
| | - Melissa Campos
- Department of Developmental & Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, USA
| | - Steven T Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Richard L Watson
- Department of Medicine, Division of Pulmonary & Critical Care, University of California, Los Angeles, Los Angeles, CA, USA
| | - Samantha R Levine
- Center for Neurotherapeutics, University of California, Irvine, Irvine, CA, USA
| | - Marian F Khalil
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Kaelyn Sumigray
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Darci J Trader
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
- Department of Chemistry, School of Physical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Lauren V Albrecht
- Department of Developmental & Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
13
|
Kroupova A, Spiteri VA, Rutter ZJ, Furihata H, Darren D, Ramachandran S, Chakraborti S, Haubrich K, Pethe J, Gonzales D, Wijaya AJ, Rodriguez-Rios M, Sturbaut M, Lynch DM, Farnaby W, Nakasone MA, Zollman D, Ciulli A. Design of a Cereblon construct for crystallographic and biophysical studies of protein degraders. Nat Commun 2024; 15:8885. [PMID: 39406745 PMCID: PMC11480361 DOI: 10.1038/s41467-024-52871-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
The ubiquitin E3 ligase cereblon (CRBN) is the target of therapeutic drugs thalidomide and lenalidomide and is recruited by most targeted protein degraders (PROTACs and molecular glues) in clinical development. Biophysical and structural investigation of CRBN has been limited by current constructs that either require co-expression with the adaptor DDB1 or inadequately represent full-length protein, with high-resolution structures of degrader ternary complexes remaining rare. We present the design of CRBNmidi, a construct that readily expresses from E. coli with high yields as soluble, stable protein without DDB1. We benchmark CRBNmidi for wild-type functionality through a suite of biophysical techniques and solve high-resolution co-crystal structures of its binary and ternary complexes with degraders. We qualify CRBNmidi as an enabling tool to accelerate structure-based discovery of the next generation of CRBN based therapeutics.
Collapse
Grants
- Almirall, Protac Programme, 35480b_CRT (118945), 03.01.2021-31.12.2024 Boehringer Ingelheim, Building a Protac, 8144e_CRT (115737), 01.12.16-31.12.2025 EUbOPEN (CEC), Enabling and Unlocking Biology in the Open, 35733_GR (118810), 01.05.2020-30.04.2025 Eisai, Research Collaboration, 34788_CRT (118489), 01.07.19-30.09-2025 JSPS Fellowship, 03.04.2023 but no separate funding for consumables Tocris, Development of a Covalent BromoTag System, 39186_CRT (119776), 10.01.2023-10.01.2025
Collapse
Affiliation(s)
- Alena Kroupova
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK
| | - Valentina A Spiteri
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK
| | - Zoe J Rutter
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK
| | - Hirotake Furihata
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK
| | - Darren Darren
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK
- Cancer Science Institute Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Sarath Ramachandran
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK
- Biocon BMS R&D Center, Bommasandra Industrial Area, Bommasandra, Karnataka, 560099, India
| | - Sohini Chakraborti
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK
| | - Kevin Haubrich
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK
| | - Julie Pethe
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK
- National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Denzel Gonzales
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK
- Institute of Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Andre J Wijaya
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK
- PT Kalbe Farma, Jl. Let. Jend Suprapto Kav 4, Kalbe Farma, Jakarta, 10510, Indonesia
| | - Maria Rodriguez-Rios
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK
| | - Manon Sturbaut
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK
| | - Dylan M Lynch
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK
| | - William Farnaby
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK
| | - Mark A Nakasone
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK
| | - David Zollman
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK.
| | - Alessio Ciulli
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK.
| |
Collapse
|
14
|
Touroutine D, Morozova N. A novel hypothesis about mechanism of thalidomide action on pattern formation. Biosystems 2024; 246:105344. [PMID: 39341546 DOI: 10.1016/j.biosystems.2024.105344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Morphogenesis, the complex process governing the formation of functional living structures, is regulated by a multitude of molecular mechanisms at various levels. While research in recent decades has shed light on many pathways involved in morphogenesis, none singularly accounts for the precise geometric shapes of organisms and their components in space. To bridge this conceptual gap between specific molecular mechanisms and the creation of definitive morphological forms, we have proposed the "epigenetic code hypothesis" in our previous work. In this framework, "epigenetic" means any inheritable cellular information beyond the genetic code that regulates cell fate alongside genetic information. In this study, we conduct a comprehensive analysis of thalidomide's teratogenic effects through the lens of our proposed "epigenetic code" theory, revealing significant indirect support for our hypothesis. We also explore the structural and functional parallels between thalidomide and auxin.
Collapse
Affiliation(s)
| | - Nadya Morozova
- Institute for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, Université Paris Saclay, Gif-sur-Yvette, France; Komarov Botanical Institute RAS, St-Petersburg, Russia.
| |
Collapse
|
15
|
Zheng M, Lin S, Chen K, Hu R, Wang L, Zhao Z, Xu H. MetaDegron: multimodal feature-integrated protein language model for predicting E3 ligase targeted degrons. Brief Bioinform 2024; 25:bbae519. [PMID: 39431517 PMCID: PMC11491831 DOI: 10.1093/bib/bbae519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/10/2024] [Accepted: 10/02/2024] [Indexed: 10/22/2024] Open
Abstract
Protein degradation through the ubiquitin proteasome system at the spatial and temporal regulation is essential for many cellular processes. E3 ligases and degradation signals (degrons), the sequences they recognize in the target proteins, are key parts of the ubiquitin-mediated proteolysis, and their interactions determine the degradation specificity and maintain cellular homeostasis. To date, only a limited number of targeted degron instances have been identified, and their properties are not yet fully characterized. To tackle on this challenge, here we develop a novel deep-learning framework, namely MetaDegron, for predicting E3 ligase targeted degron by integrating the protein language model and comprehensive featurization strategies. Through extensive evaluations using benchmark datasets and comparison with existing method, such as Degpred, we demonstrate the superior performance of MetaDegron. Among functional features, MetaDegron allows batch prediction of targeted degrons of 21 E3 ligases, and provides functional annotations and visualization of multiple degron-related structural and physicochemical features. MetaDegron is freely available at http://modinfor.com/MetaDegron/. We anticipate that MetaDegron will serve as a useful tool for the clinical and translational community to elucidate the mechanisms of regulation of protein homeostasis, cancer research, and drug development.
Collapse
Affiliation(s)
- Mengqiu Zheng
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Shaofeng Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fuzhou 350004, China
- Fujian Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350004, China
| | - Kunqi Chen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fuzhou 350004, China
- Fujian Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350004, China
| | - Ruifeng Hu
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States
| | - Liming Wang
- School of Biomedical Science, Hunan University, Changsha, Hunan, China
| | - Zhongming Zhao
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, United States
| | - Haodong Xu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States
| |
Collapse
|
16
|
Sievers J, Voget R, Lu F, Garchitorena KM, Ng YLD, Chau CH, Steinebach C, Figg WD, Krönke J, Gütschow M. Revisiting the antiangiogenic mechanisms of fluorinated thalidomide derivatives. Bioorg Med Chem Lett 2024; 110:129858. [PMID: 38917956 DOI: 10.1016/j.bmcl.2024.129858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
Introduction of fluorine into bioactive molecules has attracted much attention in drug development. For example, tetrafluorination of the phthalimide moiety of immunomodulatory drugs (IMiDs) has a strong beneficial effect on the ability to inhibit angiogenesis. The neomorphic activity of E3 ligase complexes is induced by the binding of IMiDs to cereblon. We investigated that a set of eight thalidomide analogs, comprising non- and tetrafluorinated counterparts, did not induce the degradation of neomorphic substrates (IKZF3, GSPT1, CK1α, SALL4). Hence, the antiangiogenic activity of fluorinated IMiDs was not triggered by neosubstrate degradation features. A fluorine scanning of non-traditional IMiDs of the benzamido glutarimide chemotype was performed. By measuring the endothelial cell tube formation, no angiogenesis inhibitors were identified, confirming the narrow structure-activity window of IMiD-induced antiangiogenesis.
Collapse
Affiliation(s)
- Johannes Sievers
- Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Rabea Voget
- Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Feiteng Lu
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, D-12203 Berlin, Germany
| | - Kathleen M Garchitorena
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yuen Lam Dora Ng
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, D-12203 Berlin, Germany
| | - Cindy H Chau
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christian Steinebach
- Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - William D Figg
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jan Krönke
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, D-12203 Berlin, Germany
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany.
| |
Collapse
|
17
|
Han EJ, Jeong M, Lee SR, Sorensen EJ, Seyedsayamdost MR. Hirocidins, Cytotoxic Metabolites from Streptomyces hiroshimensis, Induce Mitochondrion-Mediated Apoptosis. Angew Chem Int Ed Engl 2024; 63:e202405367. [PMID: 38898540 DOI: 10.1002/anie.202405367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024]
Abstract
Recent advances in whole genome sequencing have revealed an immense microbial potential for the production of therapeutic small molecules, even from well-known producers. To access this potential, we subjected prominent antimicrobial producers to alternative antiproliferative assays using persistent cancer cell lines. Described herein is our discovery of hirocidins, novel secondary metabolites from Streptomyces hiroshimensis with antiproliferative activities against colon and persistent breast cancer cells. Hirocidin A is an unusual nine-membered carbocyclic maleimide and hirocidins B and C are relatives with an unprecedented, bridged azamacrocyclic backbone. Mode of action studies show that hirocidins trigger mitochondrion-dependent apoptosis by inducing expression of the key apoptotic effector caspase-9. The discovery of new cytotoxins contributes to scaffold diversification in anticancer drug discovery and the reported modes of action and concise total synthetic route for variant A set the stage for unraveling specific targets and biochemical interactions of the hirocidins.
Collapse
Affiliation(s)
- Esther J Han
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Myungeun Jeong
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Seoung Rak Lee
- College of Pharmacy, Pusan National University, Busan, 46241, South Korea
| | - Erik J Sorensen
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
18
|
Tsai JM, Nowak RP, Ebert BL, Fischer ES. Targeted protein degradation: from mechanisms to clinic. Nat Rev Mol Cell Biol 2024; 25:740-757. [PMID: 38684868 DOI: 10.1038/s41580-024-00729-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 05/02/2024]
Abstract
Targeted protein degradation refers to the use of small molecules to induce the selective degradation of proteins. In its most common form, this degradation is achieved through ligand-mediated neo-interactions between ubiquitin E3 ligases - the principal waste disposal machines of a cell - and the protein targets of interest, resulting in ubiquitylation and subsequent proteasomal degradation. Notable advances have been made in biological and mechanistic understanding of serendipitously discovered degraders. This improved understanding and novel chemistry has not only provided clinical proof of concept for targeted protein degradation but has also led to rapid growth of the field, with dozens of investigational drugs in active clinical trials. Two distinct classes of protein degradation therapeutics are being widely explored: bifunctional PROTACs and molecular glue degraders, both of which have their unique advantages and challenges. Here, we review the current landscape of targeted protein degradation approaches and how they have parallels in biological processes. We also outline the ongoing clinical exploration of novel degraders and provide some perspectives on the directions the field might take.
Collapse
Affiliation(s)
- Jonathan M Tsai
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Radosław P Nowak
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Institute of Structural Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Roozitalab G, Abedi B, Imani S, Farghadani R, Jabbarzadeh Kaboli P. Comprehensive assessment of TECENTRIQ® and OPDIVO®: analyzing immunotherapy indications withdrawn in triple-negative breast cancer and hepatocellular carcinoma. Cancer Metastasis Rev 2024; 43:889-918. [PMID: 38409546 DOI: 10.1007/s10555-024-10174-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/05/2024] [Indexed: 02/28/2024]
Abstract
Atezolizumab (TECENTRIQ®) and nivolumab (OPDIVO®) are both immunotherapeutic indications targeting programmed cell death 1 ligand 1 (PD-L1) and programmed cell death 1 (PD-1), respectively. These inhibitors hold promise as therapies for triple-negative breast cancer (TNBC) and hepatocellular carcinoma (HCC) and have demonstrated encouraging results in reducing the progression and spread of tumors. However, due to their adverse effects and low response rates, the US Food and Drug Administration (FDA) has withdrawn the approval of atezolizumab in TNBC and nivolumab in HCC treatment. The withdrawals of atezolizumab and nivolumab have raised concerns regarding their effectiveness and the ability to predict treatment responses. Therefore, the current study aims to investigate the immunotherapy withdrawal of PD-1/PD-L1 inhibitors, specifically atezolizumab for TNBC and nivolumab for HCC. This study will examine both the structural and clinical aspects. This review provides detailed insights into the structure of the PD-1 receptor and its ligands, the interactions between PD-1 and PD-L1, and their interactions with the withdrawn antibodies (atezolizumab and nivolumab) as well as PD-1 and PD-L1 modifications. In addition, this review further assesses these antibodies in the context of TNBC and HCC. It seeks to elucidate the factors that contribute to diverse responses to PD-1/PD-L1 therapy in different types of cancer and propose approaches for predicting responses, mitigating the potential risks linked to therapy withdrawals, and optimizing patient outcomes. By better understanding the mechanisms underlying responses to PD-1/PD-L1 therapy and developing strategies to predict these responses, it is possible to create more efficient treatments for TNBC and HCC.
Collapse
Affiliation(s)
- Ghazaal Roozitalab
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Behnaz Abedi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Saber Imani
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People's Republic of China
| | - Reyhaneh Farghadani
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - Parham Jabbarzadeh Kaboli
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406, Taiwan.
| |
Collapse
|
20
|
Cheng J, Bin X, Tang Z. Cullin-RING Ligase 4 in Cancer: Structure, Functions, and Mechanisms. Biochim Biophys Acta Rev Cancer 2024; 1879:189169. [PMID: 39117093 DOI: 10.1016/j.bbcan.2024.189169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Cullin-RING ligase 4 (CRL4) has attracted enormous attentions because of its extensive regulatory roles in a wide variety of biological and pathological events, especially cancer-associated events. CRL4 exerts pleiotropic effects by targeting various substrates for proteasomal degradation or changes in activity through different internal compositions to regulate diverse events in cancer progression. In this review, we summarize the structure of CRL4 with manifold compositional modes and clarify the emerging functions and molecular mechanisms of CRL4 in a series of cancer-associated events.
Collapse
Affiliation(s)
- Jingyi Cheng
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China; Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha 410008, Hunan, China
| | - Xin Bin
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China; Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha 410008, Hunan, China.
| | - Zhangui Tang
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China; Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
21
|
Xu W, Zhao Z, Su M, Jain A, Lloyd HC, Feng EY, Cox N, Woo CM. Genesis and regulation of C-terminal cyclic imides from protein damage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.606997. [PMID: 39211211 PMCID: PMC11360958 DOI: 10.1101/2024.08.09.606997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
C-Terminal cyclic imides are post-translational modifications (PTMs) that can arise from spontaneous intramolecular cleavage of asparagine or glutamine residues resulting in a form of irreversible protein damage. These protein damage events are recognized and removed by the E3 ligase substrate adapter cereblon (CRBN), indicating that these aging-related modifications may require cellular quality control mechanisms to prevent deleterious effects. However, the factors that determine protein or peptide susceptibility to C-terminal cyclic imide formation or their effect on protein stability have not been explored in detail. Here, we characterize the primary and secondary structures of peptides and proteins that promote intrinsic formation of C-terminal cyclic imides in comparison to deamidation, a related form of protein damage. Extrinsic effects from solution properties and stressors on the cellular proteome additionally promote C-terminal cyclic imide formation on proteins like glutathione synthetase (GSS) that are susceptible to aggregation if the protein damage products are not removed by CRBN. This systematic investigation provides insight to the regions of the proteome that are prone to these unexpectedly frequent modifications, the effects of this form of protein damage on protein stability, and the biological role of CRBN.
Collapse
|
22
|
Brodermann MH, Henderson EK, Sellar RS. The emerging role of targeted protein degradation to treat and study cancer. J Pathol 2024; 263:403-417. [PMID: 38886898 DOI: 10.1002/path.6301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 06/20/2024]
Abstract
The evolution of cancer treatment has provided increasingly targeted strategies both in the upfront and relapsed disease settings. Small-molecule inhibitors and immunotherapy have risen to prominence with chimeric antigen receptor T-cells, checkpoint inhibitors, kinase inhibitors, and monoclonal antibody therapies being deployed across a range of solid organ and haematological malignancies. However, novel approaches are required to target transcription factors and oncogenic fusion proteins that are central to cancer biology and have generally eluded successful drug development. Thalidomide analogues causing protein degradation have been a cornerstone of treatment in multiple myeloma, but a lack of in-depth mechanistic understanding initially limited progress in the field. When the protein cereblon (CRBN) was found to mediate thalidomide analogues' action and CRBN's neo-targets were identified, existing and novel drug development accelerated, with applications outside multiple myeloma, including non-Hodgkin's lymphoma, myelodysplastic syndrome, and acute leukaemias. Critically, transcription factors were the first canonical targets described. In addition to broadening the application of protein-degrading drugs, resistance mechanisms are being overcome and targeted protein degradation is widening the scope of druggable proteins against which existing approaches have been ineffective. Examples of targeted protein degraders include molecular glues and proteolysis targeting chimeras (PROTACs): heterobifunctional molecules that bind to proteins of interest and cause proximity-induced ubiquitination and proteasomal degradation via a linked E3 ligase. Twenty years since their inception, PROTACs have begun progressing through clinical trials, with early success in targeting the oestrogen receptor and androgen receptor in breast and prostate cancer respectively. This review explores important developments in targeted protein degradation to both treat and study cancer. It also considers the potential advantages and challenges in the translational aspects of developing new treatments. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
| | - Elizabeth K Henderson
- Department of Haematology, UCL Cancer Institute, University College London, London, UK
| | - Rob S Sellar
- Department of Haematology, UCL Cancer Institute, University College London, London, UK
| |
Collapse
|
23
|
Xiao Y, Yuan Y, Liu Y, Lin Z, Zheng G, Zhou D, Lv D. Targeted Protein Degradation: Current and Emerging Approaches for E3 Ligase Deconvolution. J Med Chem 2024; 67:11580-11596. [PMID: 38981094 DOI: 10.1021/acs.jmedchem.4c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Targeted protein degradation (TPD), including the use of proteolysis-targeting chimeras (PROTACs) and molecular glue degraders (MGDs) to degrade proteins, is an emerging strategy to develop novel therapies for cancer and beyond. PROTACs or MGDs function by inducing the proximity between an E3 ligase and a protein of interest (POI), leading to ubiquitination and consequent proteasomal degradation of the POI. Notably, one major issue in TPD is the lack of ligandable E3 ligases, as current studies predominantly use CUL4CRBN and CUL2VHL. The TPD community is seeking to expand the landscape of ligandable E3 ligases, but most discoveries rely on phenotypic screens or serendipity, necessitating systematic target deconvolution. Here, we examine and discuss both current and emerging E3 ligase deconvolution approaches for degraders discovered from phenotypic screens or monovalent glue chemistry campaigns, highlighting future prospects for identifying more ligandable E3 ligases.
Collapse
Affiliation(s)
- Yufeng Xiao
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1333 Center Drive, Gainesville, Florida 32610, United States
| | - Yaxia Yuan
- Department of Biochemistry and Structural Biology and Center for Innovative Drug Discovery, School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229, United States
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229, United States
| | - Yi Liu
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1333 Center Drive, Gainesville, Florida 32610, United States
| | - Zongtao Lin
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1333 Center Drive, Gainesville, Florida 32610, United States
| | - Daohong Zhou
- Department of Biochemistry and Structural Biology and Center for Innovative Drug Discovery, School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229, United States
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229, United States
| | - Dongwen Lv
- Department of Biochemistry and Structural Biology and Center for Innovative Drug Discovery, School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229, United States
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229, United States
| |
Collapse
|
24
|
Sobierajski T, Małolepsza J, Pichlak M, Gendaszewska-Darmach E, Błażewska KM. The impact of E3 ligase choice on PROTAC effectiveness in protein kinase degradation. Drug Discov Today 2024; 29:104032. [PMID: 38789027 DOI: 10.1016/j.drudis.2024.104032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Proteolysis targeting chimera (PROTACs) provide a novel therapeutic approach that is revolutionizing drug discovery. The success of PROTACs largely depends on the combination of their three fragments: E3 ligase ligand, linker and protein of interest (POI)-targeting ligand. We summarize the pivotal significance of the precise combination of the E3 ligase ligand with the POI-recruiting warhead, which is crucial for the successful execution of cellular processes and achieving the desired outcomes. Therefore, the key to our selection was the use of at least two ligands recruiting two different ligases. This approach enables a direct comparison of the impacts of the specific ligases on target degradation.
Collapse
Affiliation(s)
- Tomasz Sobierajski
- Institute of Organic Chemistry, Lodz University of Technology, Łódź, Poland
| | - Joanna Małolepsza
- Institute of Organic Chemistry, Lodz University of Technology, Łódź, Poland
| | - Marta Pichlak
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Łódź, Poland
| | | | | |
Collapse
|
25
|
Yan KN, Nie YQ, Wang JY, Yin GL, Liu Q, Hu H, Sun X, Chen XH. Accelerating PROTACs Discovery Through a Direct-to-Biology Platform Enabled by Modular Photoclick Chemistry. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400594. [PMID: 38689503 PMCID: PMC11234393 DOI: 10.1002/advs.202400594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/02/2024] [Indexed: 05/02/2024]
Abstract
Proteolysis targeting chimeras (PROTACs) have emerged as a promising strategy for drug discovery and exploring protein functions, offering a revolutionary therapeutic modality. Currently, the predominant approach to PROTACs discovery mainly relies on an empirical design-synthesis-evaluation process involving numerous cycles of labor-intensive synthesis-purification and bioassay data collection. Therefore, the development of innovative methods to expedite PROTAC synthesis and exploration of chemical space remains highly desired. Here, a direct-to-biology strategy is reported to streamline the synthesis of PROTAC libraries on plates, enabling the seamless transfer of reaction products to cell-based bioassays without the need for additional purification. By integrating amide coupling and light-induced primary amines and o-nitrobenzyl alcohols cyclization (PANAC) photoclick chemistry into a plate-based synthetic process, this strategy produces PROTAC libraries with high efficiency and structural diversity. Moreover, by employing this platform for PROTACs screening, we smoothly found potent PROTACs effectively inhibit triple-negative breast cancer (TNBC) cell growth and induce rapid, selective targeted degradation of cyclin-dependent kinase 9 (CDK9). The study introduces a versatile platform for assembling PROTACs on plates, followed by direct biological evaluation. This approach provides a promising opportunity for high-throughput synthesis of PROTAC libraries, thereby enhancing the efficiency of exploring chemical space and accelerating the discovery of PROTACs.
Collapse
Affiliation(s)
- Ke-Nian Yan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong-Qiang Nie
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Jia-Yu Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Guang-Liang Yin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qia Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Hao Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiaoxia Sun
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Xiao-Hua Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
26
|
Cao S. Lessons from natural molecular glue degraders. Biochem Soc Trans 2024; 52:1191-1197. [PMID: 38864421 DOI: 10.1042/bst20230836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/25/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024]
Abstract
Molecular glue (MG) degraders include plant hormones and therapeutic drugs and have become a hot topic in drug discovery. Unlike bivalent proteolysis targeting chimeras (PROTACs), monovalent MGs can trigger the degradation of non-ligandable proteins by enhancing their interaction with E3 ubiquitin ligases. Here, I analyze the characteristics of natural MG degraders, contrast them with synthetic ones, and provide a rationale for optimizing MGs. In natural MG-based degradation systems, a stable complex is only formed when all three partners (MG, E3 ligase, and substrate) are present, while the affinities between any two components are either weak or undetectable. After the substrate is degraded, the MG will dissociate from its receptor (E3 ligase) due to their low micromolar affinity. In contrast, synthetic MGs, such as immunomodulatory drugs (IMiDs) and CR8, are potent inhibitors of their receptors by blocking the CRBN-native substrate interaction or by occupying the active site of CDK12. Inspired by nature, the affinities of IMiDs to CRBN can be reduced to make those compounds degraders without the E3-inhibitory activity, therefore, minimizing the interference with the physiological substrates of CRBN. Similarly, the CR8-CDK interaction can be weakened to uncouple the degrader function from the kinase inhibition. To mimic natural examples and reduce side effects, future development of MG degraders that lack the inhibitory activity should be considered.
Collapse
Affiliation(s)
- Shiyun Cao
- Department of Pharmacology, University of Washington, Seattle, WA, U.S.A
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, U.S.A
| |
Collapse
|
27
|
Schreiber SL. Molecular glues and bifunctional compounds: Therapeutic modalities based on induced proximity. Cell Chem Biol 2024; 31:1050-1063. [PMID: 38861986 DOI: 10.1016/j.chembiol.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/13/2024]
Abstract
This Perspective explores molecular glues and bifunctional compounds-proximity-inducing compounds-and offers a framework to understand and exploit their similarity to hotspots, missense mutations, and posttranslational modifications (PTMs). This view is also shown to be relevant to intramolecular glues, where compounds induce contacts between distinct domains of the same protein. A historical perspective of these compounds is presented that shows the field has come full circle from molecular glues targeting native proteins, to bifunctionals targeting fusion proteins, and back to molecular glues and bifunctionals targeting native proteins. Modern screening methods and data analyses with pre-selected target proteins are shown to yield either cooperative molecular glues or bifunctional compounds that induce proximity, thereby enabling novel functional outcomes.
Collapse
Affiliation(s)
- Stuart L Schreiber
- Arena BioWorks, Broad Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
28
|
Ichikawa S, Payne NC, Xu W, Chang CF, Vallavoju N, Frome S, Flaxman HA, Mazitschek R, Woo CM. The cyclimids: Degron-inspired cereblon binders for targeted protein degradation. Cell Chem Biol 2024; 31:1162-1175.e10. [PMID: 38320555 DOI: 10.1016/j.chembiol.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/02/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024]
Abstract
Cereblon (CRBN) is an E3 ligase substrate adapter widely exploited for targeted protein degradation (TPD) strategies. However, achieving efficient and selective target degradation is a preeminent challenge with ligands that engage CRBN. Here, we report that the cyclimids, ligands derived from the C-terminal cyclic imide degrons of CRBN, exhibit distinct modes of interaction with CRBN and offer a facile approach for developing potent and selective bifunctional degraders. Quantitative TR-FRET-based characterization of 60 cyclimid degraders in binary and ternary complexes across different substrates revealed that ternary complex binding affinities correlated strongly with cellular degradation efficiency. Our studies establish the unique properties of the cyclimids as versatile warheads in TPD and a systematic biochemical approach for quantifying ternary complex formation to predict their cellular degradation activity, which together will accelerate the development of ligands that engage CRBN.
Collapse
Affiliation(s)
- Saki Ichikawa
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - N Connor Payne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Wenqing Xu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Chia-Fu Chang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Nandini Vallavoju
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Spencer Frome
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Hope A Flaxman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Ralph Mazitschek
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
29
|
Mou J, Ning XL, Wang XY, Hou SY, Meng FB, Zhou C, Wu JW, Li C, Jia T, Wu X, Wu Y, Chen Y, Li GB. X-ray Structure-Guided Discovery of a Potent Benzimidazole Glutaminyl Cyclase Inhibitor That Shows Activity in a Parkinson's Disease Mouse Model. J Med Chem 2024; 67:8730-8756. [PMID: 38817193 DOI: 10.1021/acs.jmedchem.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The secretory glutaminyl cyclase (sQC) and Golgi-resident glutaminyl cyclase (gQC) are responsible for N-terminal protein pyroglutamation and associated with various human diseases. Although several sQC/gQC inhibitors have been reported, only one inhibitor, PQ912, is currently undergoing clinic trials for the treatment of Alzheimer's disease. We report an X-ray crystal structure of sQC complexed with PQ912, revealing that the benzimidazole makes "anchor" interactions with the active site zinc ion and catalytic triad. Structure-guided design and optimization led to a series of new benzimidazole derivatives exhibiting nanomolar inhibition for both sQC and gQC. In a MPTP-induced Parkinson's disease (PD) mouse model, BI-43 manifested efficacy in mitigating locomotor deficits through reversing dopaminergic neuronal loss, reducing microglia, and decreasing levels of the sQC/gQC substrates, α-synuclein, and CCL2. This study not only offers structural basis and new leads for drug discovery targeting sQC/gQC but also provides evidence supporting sQC/gQC as potential targets for PD treatment.
Collapse
Affiliation(s)
- Jun Mou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiang-Li Ning
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xin-Yue Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shu-Yan Hou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Fan-Bo Meng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Cong Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jing-Wei Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chunyan Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tao Jia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaoai Wu
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yongping Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guo-Bo Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
30
|
Zhao S, Chen M, Zhou W, Ni D, Li Z, Nie S, He Y. Green synthesis for diverse bioactive benzo-fused spiroindolines through DBU-catalysed post-Ugi double cyclization. Chem Commun (Camb) 2024; 60:5455-5458. [PMID: 38689553 DOI: 10.1039/d4cc00846d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
A metal-free protocol utilizing DBU catalysis for post-Ugi amide-ester exchange and Conia-ene double cyclization has been successfully developed, allowing the synthesis of diverse highly functionalized benzo-fused spiroindolines with anti-cancer activities under mild conditions. Remarkably, this methodology demonstrates promising prospects for green chemistry, as it allows for the preparation of the spiroindolines in water. Control experiments indicate that a crucial role of the cyclic imide, specifically ring rigidification, facilitates the subsequent Conia-ene cyclization.
Collapse
Affiliation(s)
- Shuang Zhao
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), Institute of Life Sciences, Chongqing 400016, China.
| | - Mengxiao Chen
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), Institute of Life Sciences, Chongqing 400016, China.
| | - Wenlu Zhou
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), Institute of Life Sciences, Chongqing 400016, China.
| | - Dan Ni
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), Institute of Life Sciences, Chongqing 400016, China.
| | - Zhenghua Li
- School of Science, Westlake University, Zhejiang 310030, China
| | - Shenyou Nie
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), Institute of Life Sciences, Chongqing 400016, China.
- Department of Urology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| | - Yi He
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), Institute of Life Sciences, Chongqing 400016, China.
| |
Collapse
|
31
|
Ito T. Protein degraders - from thalidomide to new PROTACs. J Biochem 2024; 175:507-519. [PMID: 38140952 DOI: 10.1093/jb/mvad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Recently, the development of protein degraders (protein-degrading compounds) has prominently progressed. There are two remarkable classes of protein degraders: proteolysis-targeting chimeras (PROTACs) and molecular glue degraders (MGDs). Almost 70 years have passed since thalidomide was initially developed as a sedative-hypnotic drug, which is currently recognized as one of the most well-known MGDs. During the last two decades, a myriad of PROTACs and MGDs have been developed, and the molecular mechanism of action (MOA) of thalidomide was basically elucidated, including identifying its molecular target cereblon (CRBN). CRBN forms a Cullin Ring Ligase 4 with Cul4 and DDB1, whose substrate specificity is controlled by its binding ligands. Thalidomide, lenalidomide and pomalidomide, three CRBN-binding MGDs, were clinically approved to treat several intractable diseases (including multiple myeloma). Several other MGDs and CRBN-based PROTACs (ARV-110 and AVR-471) are undergoing clinical trials. In addition, several new related technologies regarding PROTACs and MGDs have also been developed, and achievements of protein degraders impact not only therapeutic fields but also basic biological science. In this article, I introduce the history of protein degraders, from the development of thalidomide to the latest PROTACs and related technologies.
Collapse
Affiliation(s)
- Takumi Ito
- Institute of Medical Science, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| |
Collapse
|
32
|
Ma X, Yin J, Qiao L, Wan H, Liu X, Zhou Y, Wu J, Niu L, Wu M, Wang X, Ye H. A programmable targeted protein-degradation platform for versatile applications in mammalian cells and mice. Mol Cell 2024; 84:1585-1600.e7. [PMID: 38479385 DOI: 10.1016/j.molcel.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/15/2024] [Accepted: 02/21/2024] [Indexed: 04/21/2024]
Abstract
Myriad physiological and pathogenic processes are governed by protein levels and modifications. Controlled protein activity perturbation is essential to studying protein function in cells and animals. Based on Trim-Away technology, we screened for truncation variants of E3 ubiquitinase Trim21 with elevated efficiency (ΔTrim21) and developed multiple ΔTrim21-based targeted protein-degradation systems (ΔTrim-TPD) that can be transfected into host cells. Three ΔTrim-TPD variants are developed to enable chemical and light-triggered programmable activation of TPD in cells and animals. Specifically, we used ΔTrim-TPD for (1) red-light-triggered inhibition of HSV-1 virus proliferation by degrading the packaging protein gD, (2) for chemical-triggered control of the activity of Cas9/dCas9 protein for gene editing, and (3) for blue-light-triggered degradation of two tumor-associated proteins for spatiotemporal inhibition of melanoma tumor growth in mice. Our study demonstrates that multiple ΔTrim21-based controllable TPD systems provide powerful tools for basic biology research and highlight their potential biomedical applications.
Collapse
Affiliation(s)
- Xiaoding Ma
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Centre, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Jianli Yin
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Centre, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China; Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
| | - Longliang Qiao
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Centre, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Hang Wan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Centre, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Xingwan Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Centre, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yang Zhou
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Centre, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China; Wuhu Hospital, Health Science Center, East China Normal University, Wuhu City 241001, China
| | - Jiali Wu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Centre, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Lingxue Niu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Centre, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Min Wu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Centre, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Xinyi Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Centre, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Haifeng Ye
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Centre, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China.
| |
Collapse
|
33
|
Shevalev R, Bischof L, Sapegin A, Bunev A, Olga G, Kantin G, Kalinin S, Hartmann MD. Discovery and characterization of potent spiro-isoxazole-based cereblon ligands with a novel binding mode. Eur J Med Chem 2024; 270:116328. [PMID: 38552426 DOI: 10.1016/j.ejmech.2024.116328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 04/21/2024]
Abstract
The vast majority of current cereblon (CRBN) ligands is based on the thalidomide scaffold, relying on glutarimide as the core binding moiety. With this architecture, most of these ligands inherit the overall binding mode, interactions with neo-substrates, and thereby potentially also the cytotoxic and teratogenic properties of the parent thalidomide. In this work, by incorporating a spiro-linker to the glutarimide moiety, we have generated a new chemotype that exhibits an unprecedented binding mode for glutarimide-based CRBN ligands. In total, 16 spirocyclic glutarimide derivatives incorporating an isoxazole moiety were synthesized and tested for different criteria. In particular, all ligands showed a favorable lipophilicity, and several were able to outperform the binding affinity of thalidomide as a reference. In addition, all compounds showed favorable cytotoxicity profiles in myeloma cell lines and human peripheral blood mononuclear cells. The novel binding mode, which we determined in co-crystal structures, provides explanations for these improved properties: The incorporation of the spiro-isoxazole changes both the conformation of the glutarimide moiety within the canonical tri-trp pocket and the orientation of the protruding moiety. In this new orientation it forms additional hydrophobic interactions and is not available for direct interactions with the canonical neo-substrates. We therefore propose this chemotype as an attractive building block for the design of PROTACs.
Collapse
Affiliation(s)
- Robert Shevalev
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Luca Bischof
- Department of Protein Evolution, Max Planck Institute for Biology, Tübingen, Germany
| | - Alexander Sapegin
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Alexander Bunev
- Medicinal Chemistry Center, Togliatti State University, Togliatti, Russia
| | - Grigor'eva Olga
- Medicinal Chemistry Center, Togliatti State University, Togliatti, Russia
| | - Grigory Kantin
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Stanislav Kalinin
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia.
| | - Marcus D Hartmann
- Department of Protein Evolution, Max Planck Institute for Biology, Tübingen, Germany.
| |
Collapse
|
34
|
Kuemper S, Cairns AG, Birchall K, Yao Z, Large JM. Targeted protein degradation in CNS disorders: a promising route to novel therapeutics? Front Mol Neurosci 2024; 17:1370509. [PMID: 38685916 PMCID: PMC11057381 DOI: 10.3389/fnmol.2024.1370509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/27/2024] [Indexed: 05/02/2024] Open
Abstract
Targeted protein degradation (TPD) is a rapidly expanding field, with various PROTACs (proteolysis-targeting chimeras) in clinical trials and molecular glues such as immunomodulatory imide drugs (IMiDs) already well established in the treatment of certain blood cancers. Many current approaches are focused on oncology targets, leaving numerous potential applications underexplored. Targeting proteins for degradation offers a novel therapeutic route for targets whose inhibition remains challenging, such as protein aggregates in neurodegenerative diseases. This mini review focuses on the prospect of utilizing TPD for neurodegenerative disease targets, particularly PROTAC and molecular glue formats and opportunities for novel CNS E3 ligases. Some key challenges of utilizing such modalities including molecular design of degrader molecules, drug delivery and blood brain barrier penetrance will be discussed.
Collapse
Affiliation(s)
- Sandra Kuemper
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, United Kingdom
| | - Andrew G. Cairns
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, United Kingdom
| | | | | | | |
Collapse
|
35
|
Tracy W, Davies GHM, Grant LN, Ganley JM, Moreno J, Cherney EC, Davies HML. Anhydrous and Stereoretentive Fluoride-Enhanced Suzuki-Miyaura Coupling of Immunomodulatory Imide Drug Derivatives. J Org Chem 2024; 89:4595-4606. [PMID: 38452367 PMCID: PMC11002932 DOI: 10.1021/acs.joc.3c02873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 03/09/2024]
Abstract
Immunomodulatory imide drugs form the core of many pharmaceutically relevant structures, but Csp2-Csp2 bond formation via metal-catalyzed cross coupling is difficult due to the sensitivity of the glutarimide ring ubiquitous in these structures. We report that replacement of the traditional alkali base with a fluoride source enhances a previously challenging Suzuki-Miyaura coupling on glutarimide-containing compounds with trifluoroborates. These enabling conditions are reactive enough to generate these derivatives in high yields but mild enough to preserve both the glutarimide and its sensitive stereocenter. Experimental and computational data suggest a mechanistically distinct process of π-coordination of the trifluoroborate enabled by these conditions.
Collapse
Affiliation(s)
- William
F. Tracy
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Geraint H. M. Davies
- Small
Molecule Drug Discovery, Bristol Myers Squibb, Cambridge, Massachusetts 02140, United States
| | - Lauren N. Grant
- Chemical
Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Jacob M. Ganley
- Chemical
Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Jesus Moreno
- Small
Molecule Drug Discovery, Bristol Myers Squibb, San Diego, California 92121, United States
| | - Emily C. Cherney
- Small
Molecule Drug Discovery, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Huw M. L. Davies
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
36
|
Righetto GL, Yin Y, Duda DM, Vu V, Szewczyk MM, Zeng H, Li Y, Loppnau P, Mei T, Li YY, Seitova A, Patrick AN, Brazeau JF, Chaudhry C, Barsyte-Lovejoy D, Santhakumar V, Halabelian L. Probing the CRL4 DCAF12 interactions with MAGEA3 and CCT5 di-Glu C-terminal degrons. PNAS NEXUS 2024; 3:pgae153. [PMID: 38665159 PMCID: PMC11044963 DOI: 10.1093/pnasnexus/pgae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/02/2024] [Indexed: 04/28/2024]
Abstract
Damaged DNA-binding protein-1 (DDB1)- and CUL4-associated factor 12 (DCAF12) serves as the substrate recognition component within the Cullin4-RING E3 ligase (CRL4) complex, capable of identifying C-terminal double-glutamic acid degrons to promote the degradation of specific substrates through the ubiquitin proteasome system. Melanoma-associated antigen 3 (MAGEA3) and T-complex protein 1 subunit epsilon (CCT5) proteins have been identified as cellular targets of DCAF12. To further characterize the interactions between DCAF12 and both MAGEA3 and CCT5, we developed a suite of biophysical and proximity-based cellular NanoBRET assays showing that the C-terminal degron peptides of both MAGEA3 and CCT5 form nanomolar affinity interactions with DCAF12 in vitro and in cells. Furthermore, we report here the 3.17 Å cryo-EM structure of DDB1-DCAF12-MAGEA3 complex revealing the key DCAF12 residues responsible for C-terminal degron recognition and binding. Our study provides new insights and tools to enable the discovery of small molecule handles targeting the WD40-repeat domain of DCAF12 for future proteolysis targeting chimera design and development.
Collapse
Affiliation(s)
- Germanna Lima Righetto
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Yanting Yin
- Structural and Protein Sciences, Therapeutics Discovery, Janssen Research and Development, Spring House, PA 19044, USA
| | - David M Duda
- Structural and Protein Sciences, Therapeutics Discovery, Janssen Research and Development, Spring House, PA 19044, USA
| | - Victoria Vu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Magdalena M Szewczyk
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Hong Zeng
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Yanjun Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Peter Loppnau
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Tony Mei
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Yen-Yen Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Alma Seitova
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Aaron N Patrick
- Discovery Technology and Molecular Pharmacology, Therapeutics Discovery, Janssen Research and Development, LLC, Welsh and McKean Roads, Spring House, PA 19477, USA
| | - Jean-Francois Brazeau
- Discovery Chemistry, Therapeutics Discovery, Janssen Research and Development, LLC, 3210 Merryfield Row, La Jolla, CA 92121, USA
| | - Charu Chaudhry
- Discovery Technology and Molecular Pharmacology, Therapeutics Discovery, Janssen Research and Development, LLC, Welsh and McKean Roads, Spring House, PA 19477, USA
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | - Levon Halabelian
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
37
|
Lee H, Neri P, Bahlis NJ. Cereblon-Targeting Ligase Degraders in Myeloma: Mechanisms of Action and Resistance. Hematol Oncol Clin North Am 2024; 38:305-319. [PMID: 38302306 DOI: 10.1016/j.hoc.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Cereblon-targeting degraders, including immunomodulatory imide drugs lenalidomide and pomalidomide alongside cereblon E3 ligase modulators like iberdomide and mezigdomide, have demonstrated significant anti-myeloma effects. These drugs play a crucial role in diverse therapeutic approaches for multiple myeloma (MM), emphasizing their therapeutic importance across various disease stages. Despite their evident efficacy, approximately 5% to 10% of MM patients exhibit primary resistance to lenalidomide, and resistance commonly develops over time. Understanding the intricate mechanisms of action and resistance to this drug class becomes imperative for refining and advancing novel therapeutic combinations.
Collapse
Affiliation(s)
- Holly Lee
- Arnie Charbonneau Cancer Institute, University of Calgary, Heritage Medical Research Building, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada
| | - Paola Neri
- Arnie Charbonneau Cancer Institute, University of Calgary, Heritage Medical Research Building, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada
| | - Nizar J Bahlis
- Arnie Charbonneau Cancer Institute, University of Calgary, Heritage Medical Research Building, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
38
|
Lemaitre T, Cornu M, Schwalen F, Since M, Kieffer C, Voisin-Chiret AS. Molecular glue degraders: exciting opportunities for novel drug discovery. Expert Opin Drug Discov 2024; 19:433-449. [PMID: 38240114 DOI: 10.1080/17460441.2024.2306845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
INTRODUCTION Molecular Glue Degraders (MGDs) is a concept that refers to a class of compounds that facilitate the interaction between two proteins or molecules within a cell. These compounds act as bridge that enhances specific Protein-Protein Interactions (PPIs). Over the past decade, this technology has gained attention as a potential strategy to target proteins that were traditionally considered undruggable using small molecules. AREAS COVERED This review presents the concept of cellular homeostasis and the balance between protein synthesis and protein degradation. The concept of protein degradation is concerned with molecular glues, which form part of the broader field of Targeted Protein Degradation (TPD). Next, pharmacochemical strategies for the rational design of MGDs are detailed and illustrated by examples of Ligand-Based (LBDD), Structure-Based (SBDD) and Fragment-Based Drug Design (FBDD). EXPERT OPINION Expanding the scope of what can be effectively targeted in the development of treatments for diseases that are incurable or resistant to conventional therapies offers new therapeutic options. The treatment of microbial infections and neurodegenerative diseases is a major societal challenge, and the discovery of MGDs appears to be a promising avenue. Combining different approaches to discover and exploit a variety of innovative therapeutic agents will create opportunities to treat diseases that are still incurable.
Collapse
Affiliation(s)
| | - Marie Cornu
- Normandie University, UNICAEN, CERMN, Caen, France
| | - Florian Schwalen
- Normandie University, UNICAEN, CERMN, Caen, France
- Department of Pharmacy, Caen University Hospital, Caen, France
| | - Marc Since
- Normandie University, UNICAEN, CERMN, Caen, France
| | | | | |
Collapse
|
39
|
Brennan PJ, Saunders RE, Spanou M, Serafini M, Sun L, Heger GP, Konopacka A, Beveridge RD, Gordon L, Bunally SB, Saudemont A, Benowitz AB, Martinez-Fleites C, Queisser MA, An H, Deane CM, Hann MM, Brayshaw LL, Conway SJ. Orthogonal IMiD-Degron Pairs Induce Selective Protein Degradation in Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585309. [PMID: 38559242 PMCID: PMC10979945 DOI: 10.1101/2024.03.15.585309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Immunomodulatory imide drugs (IMiDs) including thalidomide, lenalidomide, and pomalidomide, can be used to induce degradation of a protein of interest that is fused to a short zinc finger (ZF) degron motif. These IMiDs, however, also induce degradation of endogenous neosubstrates, including IKZF1 and IKZF3. To improve degradation selectivity, we took a bump-and-hole approach to design and screen bumped IMiD analogs against 8380 ZF mutants. This yielded a bumped IMiD analog that induces efficient degradation of a mutant ZF degron, while not affecting other cellular proteins, including IKZF1 and IKZF3. In proof-of-concept studies, this system was applied to induce efficient degradation of TRIM28, a disease-relevant protein with no known small molecule binders. We anticipate that this system will make a valuable addition to the current arsenal of degron systems for use in target validation.
Collapse
Affiliation(s)
- Patrick J. Brennan
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford; Oxford, UK
- Department of Chemistry & Biochemistry, University of California, Los Angeles; Los Angeles, USA
| | | | | | - Marta Serafini
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford; Oxford, UK
| | - Liang Sun
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center; New York, USA
| | | | | | - Ryan D. Beveridge
- Virus Screening Facility, Weatherall Institute of Molecular Medicine, University of Oxford; Oxford, UK
| | | | | | | | | | | | | | - Heeseon An
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center; New York, USA
| | | | | | | | - Stuart J. Conway
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford; Oxford, UK
- Department of Chemistry & Biochemistry, University of California, Los Angeles; Los Angeles, USA
| |
Collapse
|
40
|
Heath SL, Guseman AJ, Gronenborn AM, Horne WS. Probing effects of site-specific aspartic acid isomerization on structure and stability of GB1 through chemical protein synthesis. Protein Sci 2024; 33:e4883. [PMID: 38143426 PMCID: PMC10868458 DOI: 10.1002/pro.4883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
Chemical modifications of long-lived proteins, such as isomerization and epimerization, have been evoked as prime triggers for protein-damage related diseases. Deamidation of Asn residues, which results in formation of a mixture of l- and d-Asp and isoAsp via an intermediate aspartyl succinimide, can result in the disruption of cellular proteostasis and toxic protein depositions. In contrast to extensive data on the biological prevalence and functional implications of aspartyl succinimide formation, much less is known about the impact of the resulting altered backbone composition on properties of individual proteins at a molecular level. Here, we report the total chemical synthesis, biophysical characterization, and NMR structural analysis of a series of variants of the B1 domain of protein G from Streptococcal bacteria (GB1) in which all possible Asp isomers as well as an aspartyl succinimide were individually incorporated at a defined position in a solvent-exposed loop. Subtle local structural effects were observed; however, these were accompanied by notable differences in thermodynamic folded stability. Surprisingly, the noncanonical backbone connectivity of d-isoAsp led to a variant that exhibited enhanced stability relative to the natural protein.
Collapse
Affiliation(s)
- Shelby L. Heath
- Department of ChemistryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Alex J. Guseman
- Department of Structural BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Angela M. Gronenborn
- Department of ChemistryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Structural BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - W. Seth Horne
- Department of ChemistryUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
41
|
Giltrap A, Yuan Y, Davis BG. Late-Stage Functionalization of Living Organisms: Rethinking Selectivity in Biology. Chem Rev 2024; 124:889-928. [PMID: 38231473 PMCID: PMC10870719 DOI: 10.1021/acs.chemrev.3c00579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/18/2024]
Abstract
With unlimited selectivity, full post-translational chemical control of biology would circumvent the dogma of genetic control. The resulting direct manipulation of organisms would enable atomic-level precision in "editing" of function. We argue that a key aspect that is still missing in our ability to do this (at least with a high degree of control) is the selectivity of a given chemical reaction in a living organism. In this Review, we systematize existing illustrative examples of chemical selectivity, as well as identify needed chemical selectivities set in a hierarchy of anatomical complexity: organismo- (selectivity for a given organism over another), tissuo- (selectivity for a given tissue type in a living organism), cellulo- (selectivity for a given cell type in an organism or tissue), and organelloselectivity (selectivity for a given organelle or discrete body within a cell). Finally, we analyze more traditional concepts such as regio-, chemo-, and stereoselective reactions where additionally appropriate. This survey of late-stage biomolecule methods emphasizes, where possible, functional consequences (i.e., biological function). In this way, we explore a concept of late-stage functionalization of living organisms (where "late" is taken to mean at a given state of an organism in time) in which programmed and selective chemical reactions take place in life. By building on precisely analyzed notions (e.g., mechanism and selectivity) we believe that the logic of chemical methodology might ultimately be applied to increasingly complex molecular constructs in biology. This could allow principles developed at the simple, small-molecule level to progress hierarchically even to manipulation of physiology.
Collapse
Affiliation(s)
- Andrew
M. Giltrap
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| | - Yizhi Yuan
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| | - Benjamin G. Davis
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| |
Collapse
|
42
|
Szewczyk SM, Verma I, Edwards JT, Weiss DR, Chekler ELP. Trends in Neosubstrate Degradation by Cereblon-Based Molecular Glues and the Development of Novel Multiparameter Optimization Scores. J Med Chem 2024; 67:1327-1335. [PMID: 38170610 DOI: 10.1021/acs.jmedchem.3c01872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Molecular glues enable the degradation of previously "undruggable" proteins via the recruitment of cereblon (CRBN) to the target. One major challenge in designing CRBN E3 ligase modulating compounds (CELMoDs) is the selectivity profile toward neosubstrates, proteins recruited by CRBN E3 ligase agents for degradation. Common neosubstrates include Aiolos, Ikaros, GSPT1, CK1α, and SALL4. Unlike achieving potency and selectivity for traditional small molecule inhibitors, reducing the degradation of these neosubstrates is complicated by the ternary nature of the complex formed between the protein, CRBN, and CELMoD. The standard guiding principles of medicinal chemistry, such as enforcing hydrogen bond formation, are less predictive of degradation efficiency and selectivity. Disclosed is an analysis of our glutarimide CELMoD library to identify interpretable chemical features correlated to selectivity profiles and general cytotoxicity. Included is a simple multiparameter optimization function using only three parameters to predict whether molecules will have undesired neosubstrate activity.
Collapse
Affiliation(s)
| | - Isha Verma
- Bristol Myers Squibb, Redwood City, California 94063, United States
| | - Jacob T Edwards
- Bristol Myers Squibb, Redwood City, California 94063, United States
| | - Dahlia R Weiss
- Bristol Myers Squibb, Redwood City, California 94063, United States
| | | |
Collapse
|
43
|
Oleinikovas V, Gainza P, Ryckmans T, Fasching B, Thomä NH. From Thalidomide to Rational Molecular Glue Design for Targeted Protein Degradation. Annu Rev Pharmacol Toxicol 2024; 64:291-312. [PMID: 37585660 DOI: 10.1146/annurev-pharmtox-022123-104147] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Thalidomide and its derivatives are powerful cancer therapeutics that are among the best-understood molecular glue degraders (MGDs). These drugs selectively reprogram the E3 ubiquitin ligase cereblon (CRBN) to commit target proteins for degradation by the ubiquitin-proteasome system. MGDs create novel recognition interfaces on the surface of the E3 ligase that engage in induced protein-protein interactions with neosubstrates. Molecular insight into their mechanism of action opens exciting opportunities to engage a plethora of targets through a specific recognition motif, the G-loop. Our analysis shows that current CRBN-based MGDs can in principle recognize over 2,500 proteins in the human proteome that contain a G-loop. We review recent advances in tuning the specificity between CRBN and its MGD-induced neosubstrates and deduce a set of simple rules that govern these interactions. We conclude that rational MGD design efforts will enable selective degradation of many more proteins, expanding this therapeutic modality to more disease areas.
Collapse
Affiliation(s)
| | | | | | | | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland;
| |
Collapse
|
44
|
Jiang W, Jiang Y, Luo Y, Qiao W, Yang T. Facilitating the development of molecular glues: Opportunities from serendipity and rational design. Eur J Med Chem 2024; 263:115950. [PMID: 37984298 DOI: 10.1016/j.ejmech.2023.115950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
Molecular glues can specifically induce interactions between two or more proteins to modulate biological functions and have been proven to be a powerful therapeutic modality in drug discovery. It plays a variety of vital roles in several biological processes, such as complex stabilization, interactome modulation and transporter inhibition, thus enabling challenging therapeutic targets to be druggable. Most known molecular glues were identified serendipitously, such as IMiDs, auxin, and rapamycin. In recent years, more rational strategies were explored with the development of chemical biology and a deep understanding of the interaction between molecular glues and proteins, which led to the rational discovery of several molecular glues. Thus, in this review, we aim to highlight the discovery strategies of molecular glues from three aspects: serendipitous discovery, screening methods and rational design principles. We expect that this review will provide a reasonable reference and insights for the discovery of molecular glues.
Collapse
Affiliation(s)
- Weiqing Jiang
- Laboratory of Human Diseases and Immunotherapies, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yunhan Jiang
- Laboratory of Human Diseases and Immunotherapies, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China; Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Youfu Luo
- Laboratory of Human Diseases and Immunotherapies, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Wenliang Qiao
- Lung Cancer Center, Laboratory of Lung Cancer, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Tao Yang
- Laboratory of Human Diseases and Immunotherapies, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
45
|
Liu Y, Lu X, Chen M, Wei Z, Peng G, Yang J, Tang C, Yu P. Advances in screening, synthesis, modification, and biomedical applications of peptides and peptide aptamers. Biofactors 2024; 50:33-57. [PMID: 37646383 DOI: 10.1002/biof.2001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
Peptides and peptide aptamers have emerged as promising molecules for a wide range of biomedical applications due to their unique properties and versatile functionalities. The screening strategies for identifying peptides and peptide aptamers with desired properties are discussed, including high-throughput screening, display screening technology, and in silico design approaches. The synthesis methods for the efficient production of peptides and peptide aptamers, such as solid-phase peptide synthesis and biosynthesis technology, are described, along with their advantages and limitations. Moreover, various modification techniques are explored to enhance the stability, specificity, and pharmacokinetic properties of peptides and peptide aptamers. This includes chemical modifications, enzymatic modifications, biomodifications, genetic engineering modifications, and physical modifications. Furthermore, the review highlights the diverse biomedical applications of peptides and peptide aptamers, including targeted drug delivery, diagnostics, and therapeutic. This review provides valuable insights into the advancements in screening, synthesis, modification, and biomedical applications of peptides and peptide aptamers. A comprehensive understanding of these aspects will aid researchers in the development of novel peptide-based therapeutics and diagnostic tools for various biomedical challenges.
Collapse
Affiliation(s)
- Yijie Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xiaoling Lu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Meilun Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Zheng Wei
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Guangnan Peng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jie Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Chunhua Tang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Peng Yu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
46
|
Kong KYE, Shankar S, Rühle F, Khmelinskii A. Orphan quality control by an SCF ubiquitin ligase directed to pervasive C-degrons. Nat Commun 2023; 14:8363. [PMID: 38102142 PMCID: PMC10724198 DOI: 10.1038/s41467-023-44096-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Selective protein degradation typically involves substrate recognition via short linear motifs known as degrons. Various degrons can be found at protein termini from bacteria to mammals. While N-degrons have been extensively studied, our understanding of C-degrons is still limited. Towards a comprehensive understanding of eukaryotic C-degron pathways, here we perform an unbiased survey of C-degrons in budding yeast. We identify over 5000 potential C-degrons by stability profiling of random peptide libraries and of the yeast C‑terminome. Combining machine learning, high-throughput mutagenesis and genetic screens reveals that the SCF ubiquitin ligase targets ~40% of degrons using a single F-box substrate receptor Das1. Although sequence-specific, Das1 is highly promiscuous, recognizing a variety of C-degron motifs. By screening for full-length substrates, we implicate SCFDas1 in degradation of orphan protein complex subunits. Altogether, this work highlights the variety of C-degron pathways in eukaryotes and uncovers how an SCF/C-degron pathway of broad specificity contributes to proteostasis.
Collapse
Affiliation(s)
| | | | - Frank Rühle
- Institute of Molecular Biology (IMB), Mainz, Germany
| | | |
Collapse
|
47
|
Xue G, Xie J, Hinterndorfer M, Cigler M, Dötsch L, Imrichova H, Lampe P, Cheng X, Adariani SR, Winter GE, Waldmann H. Discovery of a Drug-like, Natural Product-Inspired DCAF11 Ligand Chemotype. Nat Commun 2023; 14:7908. [PMID: 38036533 PMCID: PMC10689823 DOI: 10.1038/s41467-023-43657-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023] Open
Abstract
Targeted proteasomal and autophagic protein degradation, often employing bifunctional modalities, is a new paradigm for modulation of protein function. In an attempt to explore protein degradation by means of autophagy we combine arylidene-indolinones reported to bind the autophagy-related LC3B-protein and ligands of the PDEδ lipoprotein chaperone, the BRD2/3/4-bromodomain containing proteins and the BTK- and BLK kinases. Unexpectedly, the resulting bifunctional degraders do not induce protein degradation by means of macroautophagy, but instead direct their targets to the ubiquitin-proteasome system. Target and mechanism identification reveal that the arylidene-indolinones covalently bind DCAF11, a substrate receptor in the CUL4A/B-RBX1-DDB1-DCAF11 E3 ligase. The tempered α, β-unsaturated indolinone electrophiles define a drug-like DCAF11-ligand class that enables exploration of this E3 ligase in chemical biology and medicinal chemistry programs. The arylidene-indolinone scaffold frequently occurs in natural products which raises the question whether E3 ligand classes can be found more widely among natural products and related compounds.
Collapse
Affiliation(s)
- Gang Xue
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Jianing Xie
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Matthias Hinterndorfer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Marko Cigler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Lara Dötsch
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Dortmund, Germany
| | - Hana Imrichova
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Philipp Lampe
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Xiufen Cheng
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Soheila Rezaei Adariani
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Georg E Winter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| | - Herbert Waldmann
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
- Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Dortmund, Germany.
| |
Collapse
|
48
|
Mancarella C, Morrione A, Scotlandi K. PROTAC-Based Protein Degradation as a Promising Strategy for Targeted Therapy in Sarcomas. Int J Mol Sci 2023; 24:16346. [PMID: 38003535 PMCID: PMC10671294 DOI: 10.3390/ijms242216346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Sarcomas are heterogeneous bone and soft tissue cancers representing the second most common tumor type in children and adolescents. Histology and genetic profiling discovered more than 100 subtypes, which are characterized by peculiar molecular vulnerabilities. However, limited therapeutic options exist beyond standard therapy and clinical benefits from targeted therapies were observed only in a minority of patients with sarcomas. The rarity of these tumors, paucity of actionable mutations, and limitations in the chemical composition of current targeted therapies hindered the use of these approaches in sarcomas. Targeted protein degradation (TPD) is an innovative pharmacological modality to directly alter protein abundance with promising clinical potential in cancer, even for undruggable proteins. TPD is based on the use of small molecules called degraders or proteolysis-targeting chimeras (PROTACs), which trigger ubiquitin-dependent degradation of protein of interest. In this review, we will discuss major features of PROTAC and PROTAC-derived genetic systems for target validation and cancer treatment and focus on the potential of these approaches to overcome major issues connected to targeted therapies in sarcomas, including drug resistance, target specificity, and undruggable targets. A deeper understanding of these strategies might provide new fuel to drive molecular and personalized medicine to sarcomas.
Collapse
Affiliation(s)
- Caterina Mancarella
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| |
Collapse
|
49
|
He Q, Zhao X, Wu D, Jia S, Liu C, Cheng Z, Huang F, Chen Y, Lu T, Lu S. Hydrophobic tag-based protein degradation: Development, opportunity and challenge. Eur J Med Chem 2023; 260:115741. [PMID: 37607438 DOI: 10.1016/j.ejmech.2023.115741] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023]
Abstract
Targeted protein degradation (TPD) has emerged as a promising approach for drug development, particularly for undruggable targets. TPD technology has also been instrumental in overcoming drug resistance. While some TPD molecules utilizing proteolysis-targeting chimera (PROTACs) or molecular glue strategies have been approved or evaluated in clinical trials, hydrophobic tag-based protein degradation (HyT-PD) has also gained significant attention as a tool for medicinal chemists. The increasing number of reported HyT-PD molecules possessing high efficiency in degrading protein and good pharmacokinetic (PK) properties, has further fueled interest in this approach. This review aims to present the design rationale, hydrophobic tags in use, and diverse mechanisms of action of HyT-PD. Additionally, the advantages and disadvantages of HyT-PD in protein degradation are discussed. This review may help inspire the development of more HyT-PDs with superior drug-like properties for clinical evaluation.
Collapse
Affiliation(s)
- Qindi He
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Xiaofei Zhao
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Donglin Wu
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Siming Jia
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Canlin Liu
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Zitian Cheng
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Fei Huang
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Tao Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Shuai Lu
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
50
|
Steinebach C, Bricelj A, Murgai A, Sosič I, Bischof L, Ng YLD, Heim C, Maiwald S, Proj M, Voget R, Feller F, Košmrlj J, Sapozhnikova V, Schmidt A, Zuleeg MR, Lemnitzer P, Mertins P, Hansen FK, Gütschow M, Krönke J, Hartmann MD. Leveraging Ligand Affinity and Properties: Discovery of Novel Benzamide-Type Cereblon Binders for the Design of PROTACs. J Med Chem 2023; 66:14513-14543. [PMID: 37902300 PMCID: PMC10641816 DOI: 10.1021/acs.jmedchem.3c00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/11/2023] [Accepted: 10/05/2023] [Indexed: 10/31/2023]
Abstract
Immunomodulatory imide drugs (IMiDs) such as thalidomide, pomalidomide, and lenalidomide are the most common cereblon (CRBN) recruiters in proteolysis-targeting chimera (PROTAC) design. However, these CRBN ligands induce the degradation of IMiD neosubstrates and are inherently unstable, degrading hydrolytically under moderate conditions. In this work, we simultaneously optimized physiochemical properties, stability, on-target affinity, and off-target neosubstrate modulation features to develop novel nonphthalimide CRBN binders. These efforts led to the discovery of conformationally locked benzamide-type derivatives that replicate the interactions of the natural CRBN degron, exhibit enhanced chemical stability, and display a favorable selectivity profile in terms of neosubstrate recruitment. The utility of the most potent ligands was demonstrated by their transformation into potent degraders of BRD4 and HDAC6 that outperform previously described reference PROTACs. Together with their significantly decreased neomorphic ligase activity on IKZF1/3 and SALL4, these ligands provide opportunities for the design of highly selective and potent chemically inert proximity-inducing compounds.
Collapse
Affiliation(s)
| | - Aleša Bricelj
- Faculty
of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Arunima Murgai
- Department
of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin
Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, D-12203 Berlin, Germany
| | - Izidor Sosič
- Faculty
of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Luca Bischof
- Max
Planck Institute for Biology Tübingen, D-72076 Tübingen, Germany
| | - Yuen Lam Dora Ng
- Department
of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin
Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, D-12203 Berlin, Germany
| | - Christopher Heim
- Max
Planck Institute for Biology Tübingen, D-72076 Tübingen, Germany
| | - Samuel Maiwald
- Max
Planck Institute for Biology Tübingen, D-72076 Tübingen, Germany
| | - Matic Proj
- Faculty
of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Rabea Voget
- Pharmaceutical
Institute, University of Bonn, D-53121 Bonn, Germany
| | - Felix Feller
- Pharmaceutical
Institute, University of Bonn, D-53121 Bonn, Germany
| | - Janez Košmrlj
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, SI 1000 Ljubljana, Slovenia
| | - Valeriia Sapozhnikova
- Department
of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin
Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, D-12203 Berlin, Germany
- Max
Delbrück
Center for Molecular Medicine, D-13125 Berlin, Germany
- German
Cancer Consortium (DKTK), Partner Site Berlin, DKFZ, D-69120 Heidelberg, Germany
| | - Annika Schmidt
- Department
of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin
Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, D-12203 Berlin, Germany
| | - Maximilian Rudolf Zuleeg
- Department
of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin
Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, D-12203 Berlin, Germany
| | - Patricia Lemnitzer
- Department
of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin
Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, D-12203 Berlin, Germany
| | - Philipp Mertins
- Max
Delbrück
Center for Molecular Medicine, D-13125 Berlin, Germany
- Berlin
Institute of Health, D-10178 Berlin, Germany
| | - Finn K. Hansen
- Pharmaceutical
Institute, University of Bonn, D-53121 Bonn, Germany
| | - Michael Gütschow
- Pharmaceutical
Institute, University of Bonn, D-53121 Bonn, Germany
| | - Jan Krönke
- Department
of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin
Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, D-12203 Berlin, Germany
- German
Cancer Consortium (DKTK), Partner Site Berlin, DKFZ, D-69120 Heidelberg, Germany
| | - Marcus D. Hartmann
- Max
Planck Institute for Biology Tübingen, D-72076 Tübingen, Germany
- Interfaculty
Institute of Biochemistry, University of
Tübingen, D-72076 Tübingen, Germany
| |
Collapse
|